1 /* BFD back-end for HP PA-RISC ELF files.
2    Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3    2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4 
5    Original code by
6 	Center for Software Science
7 	Department of Computer Science
8 	University of Utah
9    Largely rewritten by Alan Modra <alan@linuxcare.com.au>
10 
11    This file is part of BFD, the Binary File Descriptor library.
12 
13    This program is free software; you can redistribute it and/or modify
14    it under the terms of the GNU General Public License as published by
15    the Free Software Foundation; either version 2 of the License, or
16    (at your option) any later version.
17 
18    This program is distributed in the hope that it will be useful,
19    but WITHOUT ANY WARRANTY; without even the implied warranty of
20    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21    GNU General Public License for more details.
22 
23    You should have received a copy of the GNU General Public License
24    along with this program; if not, write to the Free Software
25    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA.  */
26 
27 #include "bfd.h"
28 #include "sysdep.h"
29 #include "libbfd.h"
30 #include "elf-bfd.h"
31 #include "elf/hppa.h"
32 #include "libhppa.h"
33 #include "elf32-hppa.h"
34 #define ARCH_SIZE		32
35 #include "elf32-hppa.h"
36 #include "elf-hppa.h"
37 
38 /* In order to gain some understanding of code in this file without
39    knowing all the intricate details of the linker, note the
40    following:
41 
42    Functions named elf32_hppa_* are called by external routines, other
43    functions are only called locally.  elf32_hppa_* functions appear
44    in this file more or less in the order in which they are called
45    from external routines.  eg. elf32_hppa_check_relocs is called
46    early in the link process, elf32_hppa_finish_dynamic_sections is
47    one of the last functions.  */
48 
49 /* We use two hash tables to hold information for linking PA ELF objects.
50 
51    The first is the elf32_hppa_link_hash_table which is derived
52    from the standard ELF linker hash table.  We use this as a place to
53    attach other hash tables and static information.
54 
55    The second is the stub hash table which is derived from the
56    base BFD hash table.  The stub hash table holds the information
57    necessary to build the linker stubs during a link.
58 
59    There are a number of different stubs generated by the linker.
60 
61    Long branch stub:
62    :		ldil LR'X,%r1
63    :		be,n RR'X(%sr4,%r1)
64 
65    PIC long branch stub:
66    :		b,l .+8,%r1
67    :		addil LR'X - ($PIC_pcrel$0 - 4),%r1
68    :		be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
69 
70    Import stub to call shared library routine from normal object file
71    (single sub-space version)
72    :		addil LR'lt_ptr+ltoff,%dp	; get procedure entry point
73    :		ldw RR'lt_ptr+ltoff(%r1),%r21
74    :		bv %r0(%r21)
75    :		ldw RR'lt_ptr+ltoff+4(%r1),%r19	; get new dlt value.
76 
77    Import stub to call shared library routine from shared library
78    (single sub-space version)
79    :		addil LR'ltoff,%r19		; get procedure entry point
80    :		ldw RR'ltoff(%r1),%r21
81    :		bv %r0(%r21)
82    :		ldw RR'ltoff+4(%r1),%r19	; get new dlt value.
83 
84    Import stub to call shared library routine from normal object file
85    (multiple sub-space support)
86    :		addil LR'lt_ptr+ltoff,%dp	; get procedure entry point
87    :		ldw RR'lt_ptr+ltoff(%r1),%r21
88    :		ldw RR'lt_ptr+ltoff+4(%r1),%r19	; get new dlt value.
89    :		ldsid (%r21),%r1
90    :		mtsp %r1,%sr0
91    :		be 0(%sr0,%r21)			; branch to target
92    :		stw %rp,-24(%sp)		; save rp
93 
94    Import stub to call shared library routine from shared library
95    (multiple sub-space support)
96    :		addil LR'ltoff,%r19		; get procedure entry point
97    :		ldw RR'ltoff(%r1),%r21
98    :		ldw RR'ltoff+4(%r1),%r19	; get new dlt value.
99    :		ldsid (%r21),%r1
100    :		mtsp %r1,%sr0
101    :		be 0(%sr0,%r21)			; branch to target
102    :		stw %rp,-24(%sp)		; save rp
103 
104    Export stub to return from shared lib routine (multiple sub-space support)
105    One of these is created for each exported procedure in a shared
106    library (and stored in the shared lib).  Shared lib routines are
107    called via the first instruction in the export stub so that we can
108    do an inter-space return.  Not required for single sub-space.
109    :		bl,n X,%rp			; trap the return
110    :		nop
111    :		ldw -24(%sp),%rp		; restore the original rp
112    :		ldsid (%rp),%r1
113    :		mtsp %r1,%sr0
114    :		be,n 0(%sr0,%rp)		; inter-space return.  */
115 
116 
117 /* Variable names follow a coding style.
118    Please follow this (Apps Hungarian) style:
119 
120    Structure/Variable         		Prefix
121    elf_link_hash_table			"etab"
122    elf_link_hash_entry			"eh"
123 
124    elf32_hppa_link_hash_table		"htab"
125    elf32_hppa_link_hash_entry		"hh"
126 
127    bfd_hash_table			"btab"
128    bfd_hash_entry			"bh"
129 
130    bfd_hash_table containing stubs	"bstab"
131    elf32_hppa_stub_hash_entry		"hsh"
132 
133    elf32_hppa_dyn_reloc_entry		"hdh"
134 
135    Always remember to use GNU Coding Style. */
136 
137 #define PLT_ENTRY_SIZE 8
138 #define GOT_ENTRY_SIZE 4
139 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
140 
141 static const bfd_byte plt_stub[] =
142 {
143   0x0e, 0x80, 0x10, 0x96,  /* 1: ldw	0(%r20),%r22		*/
144   0xea, 0xc0, 0xc0, 0x00,  /*    bv	%r0(%r22)		*/
145   0x0e, 0x88, 0x10, 0x95,  /*    ldw	4(%r20),%r21		*/
146 #define PLT_STUB_ENTRY (3*4)
147   0xea, 0x9f, 0x1f, 0xdd,  /*    b,l	1b,%r20			*/
148   0xd6, 0x80, 0x1c, 0x1e,  /*    depi	0,31,2,%r20		*/
149   0x00, 0xc0, 0xff, 0xee,  /* 9: .word	fixup_func		*/
150   0xde, 0xad, 0xbe, 0xef   /*    .word	fixup_ltp		*/
151 };
152 
153 /* Section name for stubs is the associated section name plus this
154    string.  */
155 #define STUB_SUFFIX ".stub"
156 
157 /* We don't need to copy certain PC- or GP-relative dynamic relocs
158    into a shared object's dynamic section.  All the relocs of the
159    limited class we are interested in, are absolute.  */
160 #ifndef RELATIVE_DYNRELOCS
161 #define RELATIVE_DYNRELOCS 0
162 #define IS_ABSOLUTE_RELOC(r_type) 1
163 #endif
164 
165 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
166    copying dynamic variables from a shared lib into an app's dynbss
167    section, and instead use a dynamic relocation to point into the
168    shared lib.  */
169 #define ELIMINATE_COPY_RELOCS 1
170 
171 enum elf32_hppa_stub_type {
172   hppa_stub_long_branch,
173   hppa_stub_long_branch_shared,
174   hppa_stub_import,
175   hppa_stub_import_shared,
176   hppa_stub_export,
177   hppa_stub_none
178 };
179 
180 struct elf32_hppa_stub_hash_entry {
181 
182   /* Base hash table entry structure.  */
183   struct bfd_hash_entry bh_root;
184 
185   /* The stub section.  */
186   asection *stub_sec;
187 
188   /* Offset within stub_sec of the beginning of this stub.  */
189   bfd_vma stub_offset;
190 
191   /* Given the symbol's value and its section we can determine its final
192      value when building the stubs (so the stub knows where to jump.  */
193   bfd_vma target_value;
194   asection *target_section;
195 
196   enum elf32_hppa_stub_type stub_type;
197 
198   /* The symbol table entry, if any, that this was derived from.  */
199   struct elf32_hppa_link_hash_entry *hh;
200 
201   /* Where this stub is being called from, or, in the case of combined
202      stub sections, the first input section in the group.  */
203   asection *id_sec;
204 };
205 
206 struct elf32_hppa_link_hash_entry {
207 
208   struct elf_link_hash_entry eh;
209 
210   /* A pointer to the most recently used stub hash entry against this
211      symbol.  */
212   struct elf32_hppa_stub_hash_entry *hsh_cache;
213 
214   /* Used to count relocations for delayed sizing of relocation
215      sections.  */
216   struct elf32_hppa_dyn_reloc_entry {
217 
218     /* Next relocation in the chain.  */
219     struct elf32_hppa_dyn_reloc_entry *hdh_next;
220 
221     /* The input section of the reloc.  */
222     asection *sec;
223 
224     /* Number of relocs copied in this section.  */
225     bfd_size_type count;
226 
227 #if RELATIVE_DYNRELOCS
228   /* Number of relative relocs copied for the input section.  */
229     bfd_size_type relative_count;
230 #endif
231   } *dyn_relocs;
232 
233   /* Set if this symbol is used by a plabel reloc.  */
234   unsigned int plabel:1;
235 };
236 
237 struct elf32_hppa_link_hash_table {
238 
239   /* The main hash table.  */
240   struct elf_link_hash_table etab;
241 
242   /* The stub hash table.  */
243   struct bfd_hash_table bstab;
244 
245   /* Linker stub bfd.  */
246   bfd *stub_bfd;
247 
248   /* Linker call-backs.  */
249   asection * (*add_stub_section) (const char *, asection *);
250   void (*layout_sections_again) (void);
251 
252   /* Array to keep track of which stub sections have been created, and
253      information on stub grouping.  */
254   struct map_stub {
255     /* This is the section to which stubs in the group will be
256        attached.  */
257     asection *link_sec;
258     /* The stub section.  */
259     asection *stub_sec;
260   } *stub_group;
261 
262   /* Assorted information used by elf32_hppa_size_stubs.  */
263   unsigned int bfd_count;
264   int top_index;
265   asection **input_list;
266   Elf_Internal_Sym **all_local_syms;
267 
268   /* Short-cuts to get to dynamic linker sections.  */
269   asection *sgot;
270   asection *srelgot;
271   asection *splt;
272   asection *srelplt;
273   asection *sdynbss;
274   asection *srelbss;
275 
276   /* Used during a final link to store the base of the text and data
277      segments so that we can perform SEGREL relocations.  */
278   bfd_vma text_segment_base;
279   bfd_vma data_segment_base;
280 
281   /* Whether we support multiple sub-spaces for shared libs.  */
282   unsigned int multi_subspace:1;
283 
284   /* Flags set when various size branches are detected.  Used to
285      select suitable defaults for the stub group size.  */
286   unsigned int has_12bit_branch:1;
287   unsigned int has_17bit_branch:1;
288   unsigned int has_22bit_branch:1;
289 
290   /* Set if we need a .plt stub to support lazy dynamic linking.  */
291   unsigned int need_plt_stub:1;
292 
293   /* Small local sym to section mapping cache.  */
294   struct sym_sec_cache sym_sec;
295 };
296 
297 /* Various hash macros and functions.  */
298 #define hppa_link_hash_table(p) \
299   ((struct elf32_hppa_link_hash_table *) ((p)->hash))
300 
301 #define hppa_elf_hash_entry(ent) \
302   ((struct elf32_hppa_link_hash_entry *)(ent))
303 
304 #define hppa_stub_hash_entry(ent) \
305   ((struct elf32_hppa_stub_hash_entry *)(ent))
306 
307 #define hppa_stub_hash_lookup(table, string, create, copy) \
308   ((struct elf32_hppa_stub_hash_entry *) \
309    bfd_hash_lookup ((table), (string), (create), (copy)))
310 
311 /* Assorted hash table functions.  */
312 
313 /* Initialize an entry in the stub hash table.  */
314 
315 static struct bfd_hash_entry *
stub_hash_newfunc(struct bfd_hash_entry * entry,struct bfd_hash_table * table,const char * string)316 stub_hash_newfunc (struct bfd_hash_entry *entry,
317 		   struct bfd_hash_table *table,
318 		   const char *string)
319 {
320   /* Allocate the structure if it has not already been allocated by a
321      subclass.  */
322   if (entry == NULL)
323     {
324       entry = bfd_hash_allocate (table,
325 				 sizeof (struct elf32_hppa_stub_hash_entry));
326       if (entry == NULL)
327 	return entry;
328     }
329 
330   /* Call the allocation method of the superclass.  */
331   entry = bfd_hash_newfunc (entry, table, string);
332   if (entry != NULL)
333     {
334       struct elf32_hppa_stub_hash_entry *hsh;
335 
336       /* Initialize the local fields.  */
337       hsh = hppa_stub_hash_entry (entry);
338       hsh->stub_sec = NULL;
339       hsh->stub_offset = 0;
340       hsh->target_value = 0;
341       hsh->target_section = NULL;
342       hsh->stub_type = hppa_stub_long_branch;
343       hsh->hh = NULL;
344       hsh->id_sec = NULL;
345     }
346 
347   return entry;
348 }
349 
350 /* Initialize an entry in the link hash table.  */
351 
352 static struct bfd_hash_entry *
hppa_link_hash_newfunc(struct bfd_hash_entry * entry,struct bfd_hash_table * table,const char * string)353 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
354 			struct bfd_hash_table *table,
355 			const char *string)
356 {
357   /* Allocate the structure if it has not already been allocated by a
358      subclass.  */
359   if (entry == NULL)
360     {
361       entry = bfd_hash_allocate (table,
362 				 sizeof (struct elf32_hppa_link_hash_entry));
363       if (entry == NULL)
364 	return entry;
365     }
366 
367   /* Call the allocation method of the superclass.  */
368   entry = _bfd_elf_link_hash_newfunc (entry, table, string);
369   if (entry != NULL)
370     {
371       struct elf32_hppa_link_hash_entry *hh;
372 
373       /* Initialize the local fields.  */
374       hh = hppa_elf_hash_entry (entry);
375       hh->hsh_cache = NULL;
376       hh->dyn_relocs = NULL;
377       hh->plabel = 0;
378     }
379 
380   return entry;
381 }
382 
383 /* Create the derived linker hash table.  The PA ELF port uses the derived
384    hash table to keep information specific to the PA ELF linker (without
385    using static variables).  */
386 
387 static struct bfd_link_hash_table *
elf32_hppa_link_hash_table_create(bfd * abfd)388 elf32_hppa_link_hash_table_create (bfd *abfd)
389 {
390   struct elf32_hppa_link_hash_table *htab;
391   bfd_size_type amt = sizeof (*htab);
392 
393   htab = (struct elf32_hppa_link_hash_table *) bfd_malloc (amt);
394   if (htab == NULL)
395     return NULL;
396 
397   if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
398 				      sizeof (struct elf32_hppa_link_hash_entry)))
399     {
400       free (htab);
401       return NULL;
402     }
403 
404   /* Init the stub hash table too.  */
405   if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
406 			    sizeof (struct elf32_hppa_stub_hash_entry)))
407     return NULL;
408 
409   htab->stub_bfd = NULL;
410   htab->add_stub_section = NULL;
411   htab->layout_sections_again = NULL;
412   htab->stub_group = NULL;
413   htab->sgot = NULL;
414   htab->srelgot = NULL;
415   htab->splt = NULL;
416   htab->srelplt = NULL;
417   htab->sdynbss = NULL;
418   htab->srelbss = NULL;
419   htab->text_segment_base = (bfd_vma) -1;
420   htab->data_segment_base = (bfd_vma) -1;
421   htab->multi_subspace = 0;
422   htab->has_12bit_branch = 0;
423   htab->has_17bit_branch = 0;
424   htab->has_22bit_branch = 0;
425   htab->need_plt_stub = 0;
426   htab->sym_sec.abfd = NULL;
427 
428   return &htab->etab.root;
429 }
430 
431 /* Free the derived linker hash table.  */
432 
433 static void
elf32_hppa_link_hash_table_free(struct bfd_link_hash_table * btab)434 elf32_hppa_link_hash_table_free (struct bfd_link_hash_table *btab)
435 {
436   struct elf32_hppa_link_hash_table *htab
437     = (struct elf32_hppa_link_hash_table *) btab;
438 
439   bfd_hash_table_free (&htab->bstab);
440   _bfd_generic_link_hash_table_free (btab);
441 }
442 
443 /* Build a name for an entry in the stub hash table.  */
444 
445 static char *
hppa_stub_name(const asection * input_section,const asection * sym_sec,const struct elf32_hppa_link_hash_entry * hh,const Elf_Internal_Rela * rela)446 hppa_stub_name (const asection *input_section,
447 		const asection *sym_sec,
448 		const struct elf32_hppa_link_hash_entry *hh,
449 		const Elf_Internal_Rela *rela)
450 {
451   char *stub_name;
452   bfd_size_type len;
453 
454   if (hh)
455     {
456       len = 8 + 1 + strlen (hh->eh.root.root.string) + 1 + 8 + 1;
457       stub_name = bfd_malloc (len);
458       if (stub_name != NULL)
459 	{
460 	  sprintf (stub_name, "%08x_%s+%x",
461 		   input_section->id & 0xffffffff,
462 		   hh->eh.root.root.string,
463 		   (int) rela->r_addend & 0xffffffff);
464 	}
465     }
466   else
467     {
468       len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
469       stub_name = bfd_malloc (len);
470       if (stub_name != NULL)
471 	{
472 	  sprintf (stub_name, "%08x_%x:%x+%x",
473 		   input_section->id & 0xffffffff,
474 		   sym_sec->id & 0xffffffff,
475 		   (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
476 		   (int) rela->r_addend & 0xffffffff);
477 	}
478     }
479   return stub_name;
480 }
481 
482 /* Look up an entry in the stub hash.  Stub entries are cached because
483    creating the stub name takes a bit of time.  */
484 
485 static struct elf32_hppa_stub_hash_entry *
hppa_get_stub_entry(const asection * input_section,const asection * sym_sec,struct elf32_hppa_link_hash_entry * hh,const Elf_Internal_Rela * rela,struct elf32_hppa_link_hash_table * htab)486 hppa_get_stub_entry (const asection *input_section,
487 		     const asection *sym_sec,
488 		     struct elf32_hppa_link_hash_entry *hh,
489 		     const Elf_Internal_Rela *rela,
490 		     struct elf32_hppa_link_hash_table *htab)
491 {
492   struct elf32_hppa_stub_hash_entry *hsh_entry;
493   const asection *id_sec;
494 
495   /* If this input section is part of a group of sections sharing one
496      stub section, then use the id of the first section in the group.
497      Stub names need to include a section id, as there may well be
498      more than one stub used to reach say, printf, and we need to
499      distinguish between them.  */
500   id_sec = htab->stub_group[input_section->id].link_sec;
501 
502   if (hh != NULL && hh->hsh_cache != NULL
503       && hh->hsh_cache->hh == hh
504       && hh->hsh_cache->id_sec == id_sec)
505     {
506       hsh_entry = hh->hsh_cache;
507     }
508   else
509     {
510       char *stub_name;
511 
512       stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
513       if (stub_name == NULL)
514 	return NULL;
515 
516       hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
517 					  stub_name, FALSE, FALSE);
518       if (hh != NULL)
519 	hh->hsh_cache = hsh_entry;
520 
521       free (stub_name);
522     }
523 
524   return hsh_entry;
525 }
526 
527 /* Add a new stub entry to the stub hash.  Not all fields of the new
528    stub entry are initialised.  */
529 
530 static struct elf32_hppa_stub_hash_entry *
hppa_add_stub(const char * stub_name,asection * section,struct elf32_hppa_link_hash_table * htab)531 hppa_add_stub (const char *stub_name,
532 	       asection *section,
533 	       struct elf32_hppa_link_hash_table *htab)
534 {
535   asection *link_sec;
536   asection *stub_sec;
537   struct elf32_hppa_stub_hash_entry *hsh;
538 
539   link_sec = htab->stub_group[section->id].link_sec;
540   stub_sec = htab->stub_group[section->id].stub_sec;
541   if (stub_sec == NULL)
542     {
543       stub_sec = htab->stub_group[link_sec->id].stub_sec;
544       if (stub_sec == NULL)
545 	{
546 	  size_t namelen;
547 	  bfd_size_type len;
548 	  char *s_name;
549 
550 	  namelen = strlen (link_sec->name);
551 	  len = namelen + sizeof (STUB_SUFFIX);
552 	  s_name = bfd_alloc (htab->stub_bfd, len);
553 	  if (s_name == NULL)
554 	    return NULL;
555 
556 	  memcpy (s_name, link_sec->name, namelen);
557 	  memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
558 	  stub_sec = (*htab->add_stub_section) (s_name, link_sec);
559 	  if (stub_sec == NULL)
560 	    return NULL;
561 	  htab->stub_group[link_sec->id].stub_sec = stub_sec;
562 	}
563       htab->stub_group[section->id].stub_sec = stub_sec;
564     }
565 
566   /* Enter this entry into the linker stub hash table.  */
567   hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
568 				      TRUE, FALSE);
569   if (hsh == NULL)
570     {
571       (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
572 			     section->owner,
573 			     stub_name);
574       return NULL;
575     }
576 
577   hsh->stub_sec = stub_sec;
578   hsh->stub_offset = 0;
579   hsh->id_sec = link_sec;
580   return hsh;
581 }
582 
583 /* Determine the type of stub needed, if any, for a call.  */
584 
585 static enum elf32_hppa_stub_type
hppa_type_of_stub(asection * input_sec,const Elf_Internal_Rela * rela,struct elf32_hppa_link_hash_entry * hh,bfd_vma destination,struct bfd_link_info * info)586 hppa_type_of_stub (asection *input_sec,
587 		   const Elf_Internal_Rela *rela,
588 		   struct elf32_hppa_link_hash_entry *hh,
589 		   bfd_vma destination,
590 		   struct bfd_link_info *info)
591 {
592   bfd_vma location;
593   bfd_vma branch_offset;
594   bfd_vma max_branch_offset;
595   unsigned int r_type;
596 
597   if (hh != NULL
598       && hh->eh.plt.offset != (bfd_vma) -1
599       && hh->eh.dynindx != -1
600       && !hh->plabel
601       && (info->shared
602 	  || !hh->eh.def_regular
603 	  || hh->eh.root.type == bfd_link_hash_defweak))
604     {
605       /* We need an import stub.  Decide between hppa_stub_import
606 	 and hppa_stub_import_shared later.  */
607       return hppa_stub_import;
608     }
609 
610   /* Determine where the call point is.  */
611   location = (input_sec->output_offset
612 	      + input_sec->output_section->vma
613 	      + rela->r_offset);
614 
615   branch_offset = destination - location - 8;
616   r_type = ELF32_R_TYPE (rela->r_info);
617 
618   /* Determine if a long branch stub is needed.  parisc branch offsets
619      are relative to the second instruction past the branch, ie. +8
620      bytes on from the branch instruction location.  The offset is
621      signed and counts in units of 4 bytes.  */
622   if (r_type == (unsigned int) R_PARISC_PCREL17F)
623     {
624       max_branch_offset = (1 << (17-1)) << 2;
625     }
626   else if (r_type == (unsigned int) R_PARISC_PCREL12F)
627     {
628       max_branch_offset = (1 << (12-1)) << 2;
629     }
630   else /* R_PARISC_PCREL22F.  */
631     {
632       max_branch_offset = (1 << (22-1)) << 2;
633     }
634 
635   if (branch_offset + max_branch_offset >= 2*max_branch_offset)
636     return hppa_stub_long_branch;
637 
638   return hppa_stub_none;
639 }
640 
641 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
642    IN_ARG contains the link info pointer.  */
643 
644 #define LDIL_R1		0x20200000	/* ldil  LR'XXX,%r1		*/
645 #define BE_SR4_R1	0xe0202002	/* be,n  RR'XXX(%sr4,%r1)	*/
646 
647 #define BL_R1		0xe8200000	/* b,l   .+8,%r1		*/
648 #define ADDIL_R1	0x28200000	/* addil LR'XXX,%r1,%r1		*/
649 #define DEPI_R1		0xd4201c1e	/* depi  0,31,2,%r1		*/
650 
651 #define ADDIL_DP	0x2b600000	/* addil LR'XXX,%dp,%r1		*/
652 #define LDW_R1_R21	0x48350000	/* ldw   RR'XXX(%sr0,%r1),%r21	*/
653 #define BV_R0_R21	0xeaa0c000	/* bv    %r0(%r21)		*/
654 #define LDW_R1_R19	0x48330000	/* ldw   RR'XXX(%sr0,%r1),%r19	*/
655 
656 #define ADDIL_R19	0x2a600000	/* addil LR'XXX,%r19,%r1	*/
657 #define LDW_R1_DP	0x483b0000	/* ldw   RR'XXX(%sr0,%r1),%dp	*/
658 
659 #define LDSID_R21_R1	0x02a010a1	/* ldsid (%sr0,%r21),%r1	*/
660 #define MTSP_R1		0x00011820	/* mtsp  %r1,%sr0		*/
661 #define BE_SR0_R21	0xe2a00000	/* be    0(%sr0,%r21)		*/
662 #define STW_RP		0x6bc23fd1	/* stw   %rp,-24(%sr0,%sp)	*/
663 
664 #define BL22_RP		0xe800a002	/* b,l,n XXX,%rp		*/
665 #define BL_RP		0xe8400002	/* b,l,n XXX,%rp		*/
666 #define NOP		0x08000240	/* nop				*/
667 #define LDW_RP		0x4bc23fd1	/* ldw   -24(%sr0,%sp),%rp	*/
668 #define LDSID_RP_R1	0x004010a1	/* ldsid (%sr0,%rp),%r1		*/
669 #define BE_SR0_RP	0xe0400002	/* be,n  0(%sr0,%rp)		*/
670 
671 #ifndef R19_STUBS
672 #define R19_STUBS 1
673 #endif
674 
675 #if R19_STUBS
676 #define LDW_R1_DLT	LDW_R1_R19
677 #else
678 #define LDW_R1_DLT	LDW_R1_DP
679 #endif
680 
681 static bfd_boolean
hppa_build_one_stub(struct bfd_hash_entry * bh,void * in_arg)682 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
683 {
684   struct elf32_hppa_stub_hash_entry *hsh;
685   struct bfd_link_info *info;
686   struct elf32_hppa_link_hash_table *htab;
687   asection *stub_sec;
688   bfd *stub_bfd;
689   bfd_byte *loc;
690   bfd_vma sym_value;
691   bfd_vma insn;
692   bfd_vma off;
693   int val;
694   int size;
695 
696   /* Massage our args to the form they really have.  */
697   hsh = hppa_stub_hash_entry (bh);
698   info = (struct bfd_link_info *)in_arg;
699 
700   htab = hppa_link_hash_table (info);
701   stub_sec = hsh->stub_sec;
702 
703   /* Make a note of the offset within the stubs for this entry.  */
704   hsh->stub_offset = stub_sec->size;
705   loc = stub_sec->contents + hsh->stub_offset;
706 
707   stub_bfd = stub_sec->owner;
708 
709   switch (hsh->stub_type)
710     {
711     case hppa_stub_long_branch:
712       /* Create the long branch.  A long branch is formed with "ldil"
713 	 loading the upper bits of the target address into a register,
714 	 then branching with "be" which adds in the lower bits.
715 	 The "be" has its delay slot nullified.  */
716       sym_value = (hsh->target_value
717 		   + hsh->target_section->output_offset
718 		   + hsh->target_section->output_section->vma);
719 
720       val = hppa_field_adjust (sym_value, 0, e_lrsel);
721       insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
722       bfd_put_32 (stub_bfd, insn, loc);
723 
724       val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
725       insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
726       bfd_put_32 (stub_bfd, insn, loc + 4);
727 
728       size = 8;
729       break;
730 
731     case hppa_stub_long_branch_shared:
732       /* Branches are relative.  This is where we are going to.  */
733       sym_value = (hsh->target_value
734 		   + hsh->target_section->output_offset
735 		   + hsh->target_section->output_section->vma);
736 
737       /* And this is where we are coming from, more or less.  */
738       sym_value -= (hsh->stub_offset
739 		    + stub_sec->output_offset
740 		    + stub_sec->output_section->vma);
741 
742       bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
743       val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
744       insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
745       bfd_put_32 (stub_bfd, insn, loc + 4);
746 
747       val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
748       insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
749       bfd_put_32 (stub_bfd, insn, loc + 8);
750       size = 12;
751       break;
752 
753     case hppa_stub_import:
754     case hppa_stub_import_shared:
755       off = hsh->hh->eh.plt.offset;
756       if (off >= (bfd_vma) -2)
757 	abort ();
758 
759       off &= ~ (bfd_vma) 1;
760       sym_value = (off
761 		   + htab->splt->output_offset
762 		   + htab->splt->output_section->vma
763 		   - elf_gp (htab->splt->output_section->owner));
764 
765       insn = ADDIL_DP;
766 #if R19_STUBS
767       if (hsh->stub_type == hppa_stub_import_shared)
768 	insn = ADDIL_R19;
769 #endif
770       val = hppa_field_adjust (sym_value, 0, e_lrsel),
771       insn = hppa_rebuild_insn ((int) insn, val, 21);
772       bfd_put_32 (stub_bfd, insn, loc);
773 
774       /* It is critical to use lrsel/rrsel here because we are using
775 	 two different offsets (+0 and +4) from sym_value.  If we use
776 	 lsel/rsel then with unfortunate sym_values we will round
777 	 sym_value+4 up to the next 2k block leading to a mis-match
778 	 between the lsel and rsel value.  */
779       val = hppa_field_adjust (sym_value, 0, e_rrsel);
780       insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
781       bfd_put_32 (stub_bfd, insn, loc + 4);
782 
783       if (htab->multi_subspace)
784 	{
785 	  val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
786 	  insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
787 	  bfd_put_32 (stub_bfd, insn, loc + 8);
788 
789 	  bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
790 	  bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1,      loc + 16);
791 	  bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21,   loc + 20);
792 	  bfd_put_32 (stub_bfd, (bfd_vma) STW_RP,       loc + 24);
793 
794 	  size = 28;
795 	}
796       else
797 	{
798 	  bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
799 	  val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
800 	  insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
801 	  bfd_put_32 (stub_bfd, insn, loc + 12);
802 
803 	  size = 16;
804 	}
805 
806       break;
807 
808     case hppa_stub_export:
809       /* Branches are relative.  This is where we are going to.  */
810       sym_value = (hsh->target_value
811 		   + hsh->target_section->output_offset
812 		   + hsh->target_section->output_section->vma);
813 
814       /* And this is where we are coming from.  */
815       sym_value -= (hsh->stub_offset
816 		    + stub_sec->output_offset
817 		    + stub_sec->output_section->vma);
818 
819       if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
820 	  && (!htab->has_22bit_branch
821 	      || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
822 	{
823 	  (*_bfd_error_handler)
824 	    (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
825 	     hsh->target_section->owner,
826 	     stub_sec,
827 	     (long) hsh->stub_offset,
828 	     hsh->bh_root.string);
829 	  bfd_set_error (bfd_error_bad_value);
830 	  return FALSE;
831 	}
832 
833       val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
834       if (!htab->has_22bit_branch)
835 	insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
836       else
837 	insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
838       bfd_put_32 (stub_bfd, insn, loc);
839 
840       bfd_put_32 (stub_bfd, (bfd_vma) NOP,         loc + 4);
841       bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP,      loc + 8);
842       bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
843       bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1,     loc + 16);
844       bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP,   loc + 20);
845 
846       /* Point the function symbol at the stub.  */
847       hsh->hh->eh.root.u.def.section = stub_sec;
848       hsh->hh->eh.root.u.def.value = stub_sec->size;
849 
850       size = 24;
851       break;
852 
853     default:
854       BFD_FAIL ();
855       return FALSE;
856     }
857 
858   stub_sec->size += size;
859   return TRUE;
860 }
861 
862 #undef LDIL_R1
863 #undef BE_SR4_R1
864 #undef BL_R1
865 #undef ADDIL_R1
866 #undef DEPI_R1
867 #undef LDW_R1_R21
868 #undef LDW_R1_DLT
869 #undef LDW_R1_R19
870 #undef ADDIL_R19
871 #undef LDW_R1_DP
872 #undef LDSID_R21_R1
873 #undef MTSP_R1
874 #undef BE_SR0_R21
875 #undef STW_RP
876 #undef BV_R0_R21
877 #undef BL_RP
878 #undef NOP
879 #undef LDW_RP
880 #undef LDSID_RP_R1
881 #undef BE_SR0_RP
882 
883 /* As above, but don't actually build the stub.  Just bump offset so
884    we know stub section sizes.  */
885 
886 static bfd_boolean
hppa_size_one_stub(struct bfd_hash_entry * bh,void * in_arg)887 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
888 {
889   struct elf32_hppa_stub_hash_entry *hsh;
890   struct elf32_hppa_link_hash_table *htab;
891   int size;
892 
893   /* Massage our args to the form they really have.  */
894   hsh = hppa_stub_hash_entry (bh);
895   htab = in_arg;
896 
897   if (hsh->stub_type == hppa_stub_long_branch)
898     size = 8;
899   else if (hsh->stub_type == hppa_stub_long_branch_shared)
900     size = 12;
901   else if (hsh->stub_type == hppa_stub_export)
902     size = 24;
903   else /* hppa_stub_import or hppa_stub_import_shared.  */
904     {
905       if (htab->multi_subspace)
906 	size = 28;
907       else
908 	size = 16;
909     }
910 
911   hsh->stub_sec->size += size;
912   return TRUE;
913 }
914 
915 /* Return nonzero if ABFD represents an HPPA ELF32 file.
916    Additionally we set the default architecture and machine.  */
917 
918 static bfd_boolean
elf32_hppa_object_p(bfd * abfd)919 elf32_hppa_object_p (bfd *abfd)
920 {
921   Elf_Internal_Ehdr * i_ehdrp;
922   unsigned int flags;
923 
924   i_ehdrp = elf_elfheader (abfd);
925   if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
926     {
927       /* GCC on hppa-linux produces binaries with OSABI=Linux,
928 	 but the kernel produces corefiles with OSABI=SysV.  */
929       if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX &&
930 	  i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
931 	return FALSE;
932     }
933   else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
934     {
935       /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
936 	 but the kernel produces corefiles with OSABI=SysV.  */
937       if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
938 	  i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
939 	return FALSE;
940     }
941   else
942     {
943       if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
944 	return FALSE;
945     }
946 
947   flags = i_ehdrp->e_flags;
948   switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
949     {
950     case EFA_PARISC_1_0:
951       return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
952     case EFA_PARISC_1_1:
953       return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
954     case EFA_PARISC_2_0:
955       return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
956     case EFA_PARISC_2_0 | EF_PARISC_WIDE:
957       return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
958     }
959   return TRUE;
960 }
961 
962 /* Create the .plt and .got sections, and set up our hash table
963    short-cuts to various dynamic sections.  */
964 
965 static bfd_boolean
elf32_hppa_create_dynamic_sections(bfd * abfd,struct bfd_link_info * info)966 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
967 {
968   struct elf32_hppa_link_hash_table *htab;
969   struct elf_link_hash_entry *eh;
970 
971   /* Don't try to create the .plt and .got twice.  */
972   htab = hppa_link_hash_table (info);
973   if (htab->splt != NULL)
974     return TRUE;
975 
976   /* Call the generic code to do most of the work.  */
977   if (! _bfd_elf_create_dynamic_sections (abfd, info))
978     return FALSE;
979 
980   htab->splt = bfd_get_section_by_name (abfd, ".plt");
981   htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
982 
983   htab->sgot = bfd_get_section_by_name (abfd, ".got");
984   htab->srelgot = bfd_make_section_with_flags (abfd, ".rela.got",
985 					       (SEC_ALLOC
986 						| SEC_LOAD
987 						| SEC_HAS_CONTENTS
988 						| SEC_IN_MEMORY
989 						| SEC_LINKER_CREATED
990 						| SEC_READONLY));
991   if (htab->srelgot == NULL
992       || ! bfd_set_section_alignment (abfd, htab->srelgot, 2))
993     return FALSE;
994 
995   htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
996   htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
997 
998   /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
999      application, because __canonicalize_funcptr_for_compare needs it.  */
1000   eh = elf_hash_table (info)->hgot;
1001   eh->forced_local = 0;
1002   eh->other = STV_DEFAULT;
1003   return bfd_elf_link_record_dynamic_symbol (info, eh);
1004 }
1005 
1006 /* Copy the extra info we tack onto an elf_link_hash_entry.  */
1007 
1008 static void
elf32_hppa_copy_indirect_symbol(struct bfd_link_info * info,struct elf_link_hash_entry * eh_dir,struct elf_link_hash_entry * eh_ind)1009 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1010 				 struct elf_link_hash_entry *eh_dir,
1011 				 struct elf_link_hash_entry *eh_ind)
1012 {
1013   struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1014 
1015   hh_dir = hppa_elf_hash_entry (eh_dir);
1016   hh_ind = hppa_elf_hash_entry (eh_ind);
1017 
1018   if (hh_ind->dyn_relocs != NULL)
1019     {
1020       if (hh_dir->dyn_relocs != NULL)
1021 	{
1022 	  struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1023 	  struct elf32_hppa_dyn_reloc_entry *hdh_p;
1024 
1025 	  /* Add reloc counts against the indirect sym to the direct sym
1026 	     list.  Merge any entries against the same section.  */
1027 	  for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1028 	    {
1029 	      struct elf32_hppa_dyn_reloc_entry *hdh_q;
1030 
1031 	      for (hdh_q = hh_dir->dyn_relocs;
1032 		   hdh_q != NULL;
1033 		   hdh_q = hdh_q->hdh_next)
1034 		if (hdh_q->sec == hdh_p->sec)
1035 		  {
1036 #if RELATIVE_DYNRELOCS
1037 		    hdh_q->relative_count += hdh_p->relative_count;
1038 #endif
1039 		    hdh_q->count += hdh_p->count;
1040 		    *hdh_pp = hdh_p->hdh_next;
1041 		    break;
1042 		  }
1043 	      if (hdh_q == NULL)
1044 		hdh_pp = &hdh_p->hdh_next;
1045 	    }
1046 	  *hdh_pp = hh_dir->dyn_relocs;
1047 	}
1048 
1049       hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1050       hh_ind->dyn_relocs = NULL;
1051     }
1052 
1053   if (ELIMINATE_COPY_RELOCS
1054       && eh_ind->root.type != bfd_link_hash_indirect
1055       && eh_dir->dynamic_adjusted)
1056     {
1057       /* If called to transfer flags for a weakdef during processing
1058 	 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1059 	 We clear it ourselves for ELIMINATE_COPY_RELOCS.  */
1060       eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
1061       eh_dir->ref_regular |= eh_ind->ref_regular;
1062       eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
1063       eh_dir->needs_plt |= eh_ind->needs_plt;
1064     }
1065   else
1066    _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1067 }
1068 
1069 /* Look through the relocs for a section during the first phase, and
1070    calculate needed space in the global offset table, procedure linkage
1071    table, and dynamic reloc sections.  At this point we haven't
1072    necessarily read all the input files.  */
1073 
1074 static bfd_boolean
elf32_hppa_check_relocs(bfd * abfd,struct bfd_link_info * info,asection * sec,const Elf_Internal_Rela * relocs)1075 elf32_hppa_check_relocs (bfd *abfd,
1076 			 struct bfd_link_info *info,
1077 			 asection *sec,
1078 			 const Elf_Internal_Rela *relocs)
1079 {
1080   Elf_Internal_Shdr *symtab_hdr;
1081   struct elf_link_hash_entry **eh_syms;
1082   const Elf_Internal_Rela *rela;
1083   const Elf_Internal_Rela *rela_end;
1084   struct elf32_hppa_link_hash_table *htab;
1085   asection *sreloc;
1086   asection *stubreloc;
1087 
1088   if (info->relocatable)
1089     return TRUE;
1090 
1091   htab = hppa_link_hash_table (info);
1092   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1093   eh_syms = elf_sym_hashes (abfd);
1094   sreloc = NULL;
1095   stubreloc = NULL;
1096 
1097   rela_end = relocs + sec->reloc_count;
1098   for (rela = relocs; rela < rela_end; rela++)
1099     {
1100       enum {
1101 	NEED_GOT = 1,
1102 	NEED_PLT = 2,
1103 	NEED_DYNREL = 4,
1104 	PLT_PLABEL = 8
1105       };
1106 
1107       unsigned int r_symndx, r_type;
1108       struct elf32_hppa_link_hash_entry *hh;
1109       int need_entry = 0;
1110 
1111       r_symndx = ELF32_R_SYM (rela->r_info);
1112 
1113       if (r_symndx < symtab_hdr->sh_info)
1114 	hh = NULL;
1115       else
1116 	{
1117 	  hh =  hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1118 	  while (hh->eh.root.type == bfd_link_hash_indirect
1119 		 || hh->eh.root.type == bfd_link_hash_warning)
1120 	    hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1121 	}
1122 
1123       r_type = ELF32_R_TYPE (rela->r_info);
1124 
1125       switch (r_type)
1126 	{
1127 	case R_PARISC_DLTIND14F:
1128 	case R_PARISC_DLTIND14R:
1129 	case R_PARISC_DLTIND21L:
1130 	  /* This symbol requires a global offset table entry.  */
1131 	  need_entry = NEED_GOT;
1132 	  break;
1133 
1134 	case R_PARISC_PLABEL14R: /* "Official" procedure labels.  */
1135 	case R_PARISC_PLABEL21L:
1136 	case R_PARISC_PLABEL32:
1137 	  /* If the addend is non-zero, we break badly.  */
1138 	  if (rela->r_addend != 0)
1139 	    abort ();
1140 
1141 	  /* If we are creating a shared library, then we need to
1142 	     create a PLT entry for all PLABELs, because PLABELs with
1143 	     local symbols may be passed via a pointer to another
1144 	     object.  Additionally, output a dynamic relocation
1145 	     pointing to the PLT entry.
1146 
1147 	     For executables, the original 32-bit ABI allowed two
1148 	     different styles of PLABELs (function pointers):  For
1149 	     global functions, the PLABEL word points into the .plt
1150 	     two bytes past a (function address, gp) pair, and for
1151 	     local functions the PLABEL points directly at the
1152 	     function.  The magic +2 for the first type allows us to
1153 	     differentiate between the two.  As you can imagine, this
1154 	     is a real pain when it comes to generating code to call
1155 	     functions indirectly or to compare function pointers.
1156 	     We avoid the mess by always pointing a PLABEL into the
1157 	     .plt, even for local functions.  */
1158 	  need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1159 	  break;
1160 
1161 	case R_PARISC_PCREL12F:
1162 	  htab->has_12bit_branch = 1;
1163 	  goto branch_common;
1164 
1165 	case R_PARISC_PCREL17C:
1166 	case R_PARISC_PCREL17F:
1167 	  htab->has_17bit_branch = 1;
1168 	  goto branch_common;
1169 
1170 	case R_PARISC_PCREL22F:
1171 	  htab->has_22bit_branch = 1;
1172 	branch_common:
1173 	  /* Function calls might need to go through the .plt, and
1174 	     might require long branch stubs.  */
1175 	  if (hh == NULL)
1176 	    {
1177 	      /* We know local syms won't need a .plt entry, and if
1178 		 they need a long branch stub we can't guarantee that
1179 		 we can reach the stub.  So just flag an error later
1180 		 if we're doing a shared link and find we need a long
1181 		 branch stub.  */
1182 	      continue;
1183 	    }
1184 	  else
1185 	    {
1186 	      /* Global symbols will need a .plt entry if they remain
1187 		 global, and in most cases won't need a long branch
1188 		 stub.  Unfortunately, we have to cater for the case
1189 		 where a symbol is forced local by versioning, or due
1190 		 to symbolic linking, and we lose the .plt entry.  */
1191 	      need_entry = NEED_PLT;
1192 	      if (hh->eh.type == STT_PARISC_MILLI)
1193 		need_entry = 0;
1194 	    }
1195 	  break;
1196 
1197 	case R_PARISC_SEGBASE:  /* Used to set segment base.  */
1198 	case R_PARISC_SEGREL32: /* Relative reloc, used for unwind.  */
1199 	case R_PARISC_PCREL14F: /* PC relative load/store.  */
1200 	case R_PARISC_PCREL14R:
1201 	case R_PARISC_PCREL17R: /* External branches.  */
1202 	case R_PARISC_PCREL21L: /* As above, and for load/store too.  */
1203 	case R_PARISC_PCREL32:
1204 	  /* We don't need to propagate the relocation if linking a
1205 	     shared object since these are section relative.  */
1206 	  continue;
1207 
1208 	case R_PARISC_DPREL14F: /* Used for gp rel data load/store.  */
1209 	case R_PARISC_DPREL14R:
1210 	case R_PARISC_DPREL21L:
1211 	  if (info->shared)
1212 	    {
1213 	      (*_bfd_error_handler)
1214 		(_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1215 		 abfd,
1216 		 elf_hppa_howto_table[r_type].name);
1217 	      bfd_set_error (bfd_error_bad_value);
1218 	      return FALSE;
1219 	    }
1220 	  /* Fall through.  */
1221 
1222 	case R_PARISC_DIR17F: /* Used for external branches.  */
1223 	case R_PARISC_DIR17R:
1224 	case R_PARISC_DIR14F: /* Used for load/store from absolute locn.  */
1225 	case R_PARISC_DIR14R:
1226 	case R_PARISC_DIR21L: /* As above, and for ext branches too.  */
1227 	case R_PARISC_DIR32: /* .word relocs.  */
1228 	  /* We may want to output a dynamic relocation later.  */
1229 	  need_entry = NEED_DYNREL;
1230 	  break;
1231 
1232 	  /* This relocation describes the C++ object vtable hierarchy.
1233 	     Reconstruct it for later use during GC.  */
1234 	case R_PARISC_GNU_VTINHERIT:
1235 	  if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1236 	    return FALSE;
1237 	  continue;
1238 
1239 	  /* This relocation describes which C++ vtable entries are actually
1240 	     used.  Record for later use during GC.  */
1241 	case R_PARISC_GNU_VTENTRY:
1242 	  if (!bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1243 	    return FALSE;
1244 	  continue;
1245 
1246 	default:
1247 	  continue;
1248 	}
1249 
1250       /* Now carry out our orders.  */
1251       if (need_entry & NEED_GOT)
1252 	{
1253 	  /* Allocate space for a GOT entry, as well as a dynamic
1254 	     relocation for this entry.  */
1255 	  if (htab->sgot == NULL)
1256 	    {
1257 	      if (htab->etab.dynobj == NULL)
1258 		htab->etab.dynobj = abfd;
1259 	      if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1260 		return FALSE;
1261 	    }
1262 
1263 	  if (hh != NULL)
1264 	    {
1265 	      hh->eh.got.refcount += 1;
1266 	    }
1267 	  else
1268 	    {
1269 	      bfd_signed_vma *local_got_refcounts;
1270               /* This is a global offset table entry for a local symbol.  */
1271 	      local_got_refcounts = elf_local_got_refcounts (abfd);
1272 	      if (local_got_refcounts == NULL)
1273 		{
1274 		  bfd_size_type size;
1275 
1276 		  /* Allocate space for local got offsets and local
1277 		     plt offsets.  Done this way to save polluting
1278 		     elf_obj_tdata with another target specific
1279 		     pointer.  */
1280 		  size = symtab_hdr->sh_info;
1281 		  size *= 2 * sizeof (bfd_signed_vma);
1282 		  local_got_refcounts = bfd_zalloc (abfd, size);
1283 		  if (local_got_refcounts == NULL)
1284 		    return FALSE;
1285 		  elf_local_got_refcounts (abfd) = local_got_refcounts;
1286 		}
1287 	      local_got_refcounts[r_symndx] += 1;
1288 	    }
1289 	}
1290 
1291       if (need_entry & NEED_PLT)
1292 	{
1293 	  /* If we are creating a shared library, and this is a reloc
1294 	     against a weak symbol or a global symbol in a dynamic
1295 	     object, then we will be creating an import stub and a
1296 	     .plt entry for the symbol.  Similarly, on a normal link
1297 	     to symbols defined in a dynamic object we'll need the
1298 	     import stub and a .plt entry.  We don't know yet whether
1299 	     the symbol is defined or not, so make an entry anyway and
1300 	     clean up later in adjust_dynamic_symbol.  */
1301 	  if ((sec->flags & SEC_ALLOC) != 0)
1302 	    {
1303 	      if (hh != NULL)
1304 		{
1305 		  hh->eh.needs_plt = 1;
1306 		  hh->eh.plt.refcount += 1;
1307 
1308 		  /* If this .plt entry is for a plabel, mark it so
1309 		     that adjust_dynamic_symbol will keep the entry
1310 		     even if it appears to be local.  */
1311 		  if (need_entry & PLT_PLABEL)
1312 		    hh->plabel = 1;
1313 		}
1314 	      else if (need_entry & PLT_PLABEL)
1315 		{
1316 		  bfd_signed_vma *local_got_refcounts;
1317 		  bfd_signed_vma *local_plt_refcounts;
1318 
1319 		  local_got_refcounts = elf_local_got_refcounts (abfd);
1320 		  if (local_got_refcounts == NULL)
1321 		    {
1322 		      bfd_size_type size;
1323 
1324 		      /* Allocate space for local got offsets and local
1325 			 plt offsets.  */
1326 		      size = symtab_hdr->sh_info;
1327 		      size *= 2 * sizeof (bfd_signed_vma);
1328 		      local_got_refcounts = bfd_zalloc (abfd, size);
1329 		      if (local_got_refcounts == NULL)
1330 			return FALSE;
1331 		      elf_local_got_refcounts (abfd) = local_got_refcounts;
1332 		    }
1333 		  local_plt_refcounts = (local_got_refcounts
1334 					 + symtab_hdr->sh_info);
1335 		  local_plt_refcounts[r_symndx] += 1;
1336 		}
1337 	    }
1338 	}
1339 
1340       if (need_entry & NEED_DYNREL)
1341 	{
1342 	  /* Flag this symbol as having a non-got, non-plt reference
1343 	     so that we generate copy relocs if it turns out to be
1344 	     dynamic.  */
1345 	  if (hh != NULL && !info->shared)
1346 	    hh->eh.non_got_ref = 1;
1347 
1348 	  /* If we are creating a shared library then we need to copy
1349 	     the reloc into the shared library.  However, if we are
1350 	     linking with -Bsymbolic, we need only copy absolute
1351 	     relocs or relocs against symbols that are not defined in
1352 	     an object we are including in the link.  PC- or DP- or
1353 	     DLT-relative relocs against any local sym or global sym
1354 	     with DEF_REGULAR set, can be discarded.  At this point we
1355 	     have not seen all the input files, so it is possible that
1356 	     DEF_REGULAR is not set now but will be set later (it is
1357 	     never cleared).  We account for that possibility below by
1358 	     storing information in the dyn_relocs field of the
1359 	     hash table entry.
1360 
1361 	     A similar situation to the -Bsymbolic case occurs when
1362 	     creating shared libraries and symbol visibility changes
1363 	     render the symbol local.
1364 
1365 	     As it turns out, all the relocs we will be creating here
1366 	     are absolute, so we cannot remove them on -Bsymbolic
1367 	     links or visibility changes anyway.  A STUB_REL reloc
1368 	     is absolute too, as in that case it is the reloc in the
1369 	     stub we will be creating, rather than copying the PCREL
1370 	     reloc in the branch.
1371 
1372 	     If on the other hand, we are creating an executable, we
1373 	     may need to keep relocations for symbols satisfied by a
1374 	     dynamic library if we manage to avoid copy relocs for the
1375 	     symbol.  */
1376 	  if ((info->shared
1377 	       && (sec->flags & SEC_ALLOC) != 0
1378 	       && (IS_ABSOLUTE_RELOC (r_type)
1379 		   || (hh != NULL
1380 		       && (!info->symbolic
1381 			   || hh->eh.root.type == bfd_link_hash_defweak
1382 			   || !hh->eh.def_regular))))
1383 	      || (ELIMINATE_COPY_RELOCS
1384 		  && !info->shared
1385 		  && (sec->flags & SEC_ALLOC) != 0
1386 		  && hh != NULL
1387 		  && (hh->eh.root.type == bfd_link_hash_defweak
1388 		      || !hh->eh.def_regular)))
1389 	    {
1390 	      struct elf32_hppa_dyn_reloc_entry *hdh_p;
1391 	      struct elf32_hppa_dyn_reloc_entry **hdh_head;
1392 
1393 	      /* Create a reloc section in dynobj and make room for
1394 		 this reloc.  */
1395 	      if (sreloc == NULL)
1396 		{
1397 		  char *name;
1398 		  bfd *dynobj;
1399 
1400 		  name = (bfd_elf_string_from_elf_section
1401 			  (abfd,
1402 			   elf_elfheader (abfd)->e_shstrndx,
1403 			   elf_section_data (sec)->rel_hdr.sh_name));
1404 		  if (name == NULL)
1405 		    {
1406 		      (*_bfd_error_handler)
1407 			(_("Could not find relocation section for %s"),
1408 			 sec->name);
1409 		      bfd_set_error (bfd_error_bad_value);
1410 		      return FALSE;
1411 		    }
1412 
1413 		  if (htab->etab.dynobj == NULL)
1414 		    htab->etab.dynobj = abfd;
1415 
1416 		  dynobj = htab->etab.dynobj;
1417 		  sreloc = bfd_get_section_by_name (dynobj, name);
1418 		  if (sreloc == NULL)
1419 		    {
1420 		      flagword flags;
1421 
1422 		      flags = (SEC_HAS_CONTENTS | SEC_READONLY
1423 			       | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1424 		      if ((sec->flags & SEC_ALLOC) != 0)
1425 			flags |= SEC_ALLOC | SEC_LOAD;
1426 		      sreloc = bfd_make_section_with_flags (dynobj,
1427 							    name,
1428 							    flags);
1429 		      if (sreloc == NULL
1430 			  || !bfd_set_section_alignment (dynobj, sreloc, 2))
1431 			return FALSE;
1432 		    }
1433 
1434 		  elf_section_data (sec)->sreloc = sreloc;
1435 		}
1436 
1437 	      /* If this is a global symbol, we count the number of
1438 		 relocations we need for this symbol.  */
1439 	      if (hh != NULL)
1440 		{
1441 		  hdh_head = &hh->dyn_relocs;
1442 		}
1443 	      else
1444 		{
1445 		  /* Track dynamic relocs needed for local syms too.
1446 		     We really need local syms available to do this
1447 		     easily.  Oh well.  */
1448 
1449 		  asection *sr;
1450 		  void *vpp;
1451 
1452 		  sr = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1453 						       sec, r_symndx);
1454 		  if (sr == NULL)
1455 		    return FALSE;
1456 
1457 		  vpp = &elf_section_data (sr)->local_dynrel;
1458 		  hdh_head = (struct elf32_hppa_dyn_reloc_entry **) vpp;
1459 		}
1460 
1461 	      hdh_p = *hdh_head;
1462 	      if (hdh_p == NULL || hdh_p->sec != sec)
1463 		{
1464 		  hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1465 		  if (hdh_p == NULL)
1466 		    return FALSE;
1467 		  hdh_p->hdh_next = *hdh_head;
1468 		  *hdh_head = hdh_p;
1469 		  hdh_p->sec = sec;
1470 		  hdh_p->count = 0;
1471 #if RELATIVE_DYNRELOCS
1472 		  hdh_p->relative_count = 0;
1473 #endif
1474 		}
1475 
1476 	      hdh_p->count += 1;
1477 #if RELATIVE_DYNRELOCS
1478 	      if (!IS_ABSOLUTE_RELOC (rtype))
1479 		hdh_p->relative_count += 1;
1480 #endif
1481 	    }
1482 	}
1483     }
1484 
1485   return TRUE;
1486 }
1487 
1488 /* Return the section that should be marked against garbage collection
1489    for a given relocation.  */
1490 
1491 static asection *
elf32_hppa_gc_mark_hook(asection * sec,struct bfd_link_info * info ATTRIBUTE_UNUSED,Elf_Internal_Rela * rela,struct elf_link_hash_entry * hh,Elf_Internal_Sym * sym)1492 elf32_hppa_gc_mark_hook (asection *sec,
1493 			 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1494 			 Elf_Internal_Rela *rela,
1495 			 struct elf_link_hash_entry *hh,
1496 			 Elf_Internal_Sym *sym)
1497 {
1498   if (hh != NULL)
1499     {
1500       switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1501 	{
1502 	case R_PARISC_GNU_VTINHERIT:
1503 	case R_PARISC_GNU_VTENTRY:
1504 	  break;
1505 
1506 	default:
1507 	  switch (hh->root.type)
1508 	    {
1509 	    case bfd_link_hash_defined:
1510 	    case bfd_link_hash_defweak:
1511 	      return hh->root.u.def.section;
1512 
1513 	    case bfd_link_hash_common:
1514 	      return hh->root.u.c.p->section;
1515 
1516 	    default:
1517 	      break;
1518 	    }
1519 	}
1520     }
1521   else
1522     return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1523 
1524   return NULL;
1525 }
1526 
1527 /* Update the got and plt entry reference counts for the section being
1528    removed.  */
1529 
1530 static bfd_boolean
elf32_hppa_gc_sweep_hook(bfd * abfd,struct bfd_link_info * info ATTRIBUTE_UNUSED,asection * sec,const Elf_Internal_Rela * relocs)1531 elf32_hppa_gc_sweep_hook (bfd *abfd,
1532 			  struct bfd_link_info *info ATTRIBUTE_UNUSED,
1533 			  asection *sec,
1534 			  const Elf_Internal_Rela *relocs)
1535 {
1536   Elf_Internal_Shdr *symtab_hdr;
1537   struct elf_link_hash_entry **eh_syms;
1538   bfd_signed_vma *local_got_refcounts;
1539   bfd_signed_vma *local_plt_refcounts;
1540   const Elf_Internal_Rela *rela, *relend;
1541 
1542   elf_section_data (sec)->local_dynrel = NULL;
1543 
1544   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1545   eh_syms = elf_sym_hashes (abfd);
1546   local_got_refcounts = elf_local_got_refcounts (abfd);
1547   local_plt_refcounts = local_got_refcounts;
1548   if (local_plt_refcounts != NULL)
1549     local_plt_refcounts += symtab_hdr->sh_info;
1550 
1551   relend = relocs + sec->reloc_count;
1552   for (rela = relocs; rela < relend; rela++)
1553     {
1554       unsigned long r_symndx;
1555       unsigned int r_type;
1556       struct elf_link_hash_entry *eh = NULL;
1557 
1558       r_symndx = ELF32_R_SYM (rela->r_info);
1559       if (r_symndx >= symtab_hdr->sh_info)
1560 	{
1561 	  struct elf32_hppa_link_hash_entry *hh;
1562 	  struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1563 	  struct elf32_hppa_dyn_reloc_entry *hdh_p;
1564 
1565 	  eh = eh_syms[r_symndx - symtab_hdr->sh_info];
1566 	  while (eh->root.type == bfd_link_hash_indirect
1567 		 || eh->root.type == bfd_link_hash_warning)
1568 	    eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1569 	  hh = hppa_elf_hash_entry (eh);
1570 
1571 	  for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; hdh_pp = &hdh_p->hdh_next)
1572 	    if (hdh_p->sec == sec)
1573 	      {
1574 		/* Everything must go for SEC.  */
1575 		*hdh_pp = hdh_p->hdh_next;
1576 		break;
1577 	      }
1578 	}
1579 
1580       r_type = ELF32_R_TYPE (rela->r_info);
1581       switch (r_type)
1582 	{
1583 	case R_PARISC_DLTIND14F:
1584 	case R_PARISC_DLTIND14R:
1585 	case R_PARISC_DLTIND21L:
1586 	  if (eh != NULL)
1587 	    {
1588 	      if (eh->got.refcount > 0)
1589 		eh->got.refcount -= 1;
1590 	    }
1591 	  else if (local_got_refcounts != NULL)
1592 	    {
1593 	      if (local_got_refcounts[r_symndx] > 0)
1594 		local_got_refcounts[r_symndx] -= 1;
1595 	    }
1596 	  break;
1597 
1598 	case R_PARISC_PCREL12F:
1599 	case R_PARISC_PCREL17C:
1600 	case R_PARISC_PCREL17F:
1601 	case R_PARISC_PCREL22F:
1602 	  if (eh != NULL)
1603 	    {
1604 	      if (eh->plt.refcount > 0)
1605 		eh->plt.refcount -= 1;
1606 	    }
1607 	  break;
1608 
1609 	case R_PARISC_PLABEL14R:
1610 	case R_PARISC_PLABEL21L:
1611 	case R_PARISC_PLABEL32:
1612 	  if (eh != NULL)
1613 	    {
1614 	      if (eh->plt.refcount > 0)
1615 		eh->plt.refcount -= 1;
1616 	    }
1617 	  else if (local_plt_refcounts != NULL)
1618 	    {
1619 	      if (local_plt_refcounts[r_symndx] > 0)
1620 		local_plt_refcounts[r_symndx] -= 1;
1621 	    }
1622 	  break;
1623 
1624 	default:
1625 	  break;
1626 	}
1627     }
1628 
1629   return TRUE;
1630 }
1631 
1632 /* Support for core dump NOTE sections.  */
1633 
1634 static bfd_boolean
elf32_hppa_grok_prstatus(bfd * abfd,Elf_Internal_Note * note)1635 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1636 {
1637   int offset;
1638   size_t size;
1639 
1640   switch (note->descsz)
1641     {
1642       default:
1643 	return FALSE;
1644 
1645       case 396:		/* Linux/hppa */
1646 	/* pr_cursig */
1647 	elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1648 
1649 	/* pr_pid */
1650 	elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1651 
1652 	/* pr_reg */
1653 	offset = 72;
1654 	size = 320;
1655 
1656 	break;
1657     }
1658 
1659   /* Make a ".reg/999" section.  */
1660   return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1661 					  size, note->descpos + offset);
1662 }
1663 
1664 static bfd_boolean
elf32_hppa_grok_psinfo(bfd * abfd,Elf_Internal_Note * note)1665 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1666 {
1667   switch (note->descsz)
1668     {
1669       default:
1670 	return FALSE;
1671 
1672       case 124:		/* Linux/hppa elf_prpsinfo.  */
1673 	elf_tdata (abfd)->core_program
1674 	  = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1675 	elf_tdata (abfd)->core_command
1676 	  = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1677     }
1678 
1679   /* Note that for some reason, a spurious space is tacked
1680      onto the end of the args in some (at least one anyway)
1681      implementations, so strip it off if it exists.  */
1682   {
1683     char *command = elf_tdata (abfd)->core_command;
1684     int n = strlen (command);
1685 
1686     if (0 < n && command[n - 1] == ' ')
1687       command[n - 1] = '\0';
1688   }
1689 
1690   return TRUE;
1691 }
1692 
1693 /* Our own version of hide_symbol, so that we can keep plt entries for
1694    plabels.  */
1695 
1696 static void
elf32_hppa_hide_symbol(struct bfd_link_info * info,struct elf_link_hash_entry * eh,bfd_boolean force_local)1697 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1698 			struct elf_link_hash_entry *eh,
1699 			bfd_boolean force_local)
1700 {
1701   if (force_local)
1702     {
1703       eh->forced_local = 1;
1704       if (eh->dynindx != -1)
1705 	{
1706 	  eh->dynindx = -1;
1707 	  _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1708 				  eh->dynstr_index);
1709 	}
1710     }
1711 
1712   if (! hppa_elf_hash_entry(eh)->plabel)
1713     {
1714       eh->needs_plt = 0;
1715       eh->plt = elf_hash_table (info)->init_plt_offset;
1716     }
1717 }
1718 
1719 /* Adjust a symbol defined by a dynamic object and referenced by a
1720    regular object.  The current definition is in some section of the
1721    dynamic object, but we're not including those sections.  We have to
1722    change the definition to something the rest of the link can
1723    understand.  */
1724 
1725 static bfd_boolean
elf32_hppa_adjust_dynamic_symbol(struct bfd_link_info * info,struct elf_link_hash_entry * eh)1726 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1727 				  struct elf_link_hash_entry *eh)
1728 {
1729   struct elf32_hppa_link_hash_table *htab;
1730   asection *sec;
1731   unsigned int power_of_two;
1732 
1733   /* If this is a function, put it in the procedure linkage table.  We
1734      will fill in the contents of the procedure linkage table later.  */
1735   if (eh->type == STT_FUNC
1736       || eh->needs_plt)
1737     {
1738       /* We must always allocate a .plt entry if the symbol is used by
1739 	 a plabel.  For hidden symbols the refcount may have been
1740 	 reset .  Fix it here to avoidlosing the .plt entry later.  */
1741       if (hppa_elf_hash_entry (eh)->plabel)
1742 	eh->plt.refcount = 1;
1743 
1744       if (eh->plt.refcount <= 0
1745 	  || (eh->def_regular
1746 	      && eh->root.type != bfd_link_hash_defweak
1747 	      && ! hppa_elf_hash_entry (eh)->plabel
1748 	      && (!info->shared || info->symbolic)))
1749 	{
1750 	  /* The .plt entry is not needed when:
1751 	     a) Garbage collection has removed all references to the
1752 	     symbol, or
1753 	     b) We know for certain the symbol is defined in this
1754 	     object, and it's not a weak definition, nor is the symbol
1755 	     used by a plabel relocation.  Either this object is the
1756 	     application or we are doing a shared symbolic link.  */
1757 
1758 	  eh->plt.offset = (bfd_vma) -1;
1759 	  eh->needs_plt = 0;
1760 	}
1761 
1762       return TRUE;
1763     }
1764   else
1765     eh->plt.offset = (bfd_vma) -1;
1766 
1767   /* If this is a weak symbol, and there is a real definition, the
1768      processor independent code will have arranged for us to see the
1769      real definition first, and we can just use the same value.  */
1770   if (eh->u.weakdef != NULL)
1771     {
1772       if (eh->u.weakdef->root.type != bfd_link_hash_defined
1773 	  && eh->u.weakdef->root.type != bfd_link_hash_defweak)
1774 	abort ();
1775       eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1776       eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1777       if (ELIMINATE_COPY_RELOCS)
1778 	eh->non_got_ref = eh->u.weakdef->non_got_ref;
1779       return TRUE;
1780     }
1781 
1782   /* This is a reference to a symbol defined by a dynamic object which
1783      is not a function.  */
1784 
1785   /* If we are creating a shared library, we must presume that the
1786      only references to the symbol are via the global offset table.
1787      For such cases we need not do anything here; the relocations will
1788      be handled correctly by relocate_section.  */
1789   if (info->shared)
1790     return TRUE;
1791 
1792   /* If there are no references to this symbol that do not use the
1793      GOT, we don't need to generate a copy reloc.  */
1794   if (!eh->non_got_ref)
1795     return TRUE;
1796 
1797   if (ELIMINATE_COPY_RELOCS)
1798     {
1799       struct elf32_hppa_link_hash_entry *hh;
1800       struct elf32_hppa_dyn_reloc_entry *hdh_p;
1801 
1802       hh = hppa_elf_hash_entry (eh);
1803       for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
1804 	{
1805 	  sec = hdh_p->sec->output_section;
1806 	  if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1807 	    break;
1808 	}
1809 
1810       /* If we didn't find any dynamic relocs in read-only sections, then
1811 	 we'll be keeping the dynamic relocs and avoiding the copy reloc.  */
1812       if (hdh_p == NULL)
1813 	{
1814 	  eh->non_got_ref = 0;
1815 	  return TRUE;
1816 	}
1817     }
1818 
1819   if (eh->size == 0)
1820     {
1821       (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
1822 			     eh->root.root.string);
1823       return TRUE;
1824     }
1825 
1826   /* We must allocate the symbol in our .dynbss section, which will
1827      become part of the .bss section of the executable.  There will be
1828      an entry for this symbol in the .dynsym section.  The dynamic
1829      object will contain position independent code, so all references
1830      from the dynamic object to this symbol will go through the global
1831      offset table.  The dynamic linker will use the .dynsym entry to
1832      determine the address it must put in the global offset table, so
1833      both the dynamic object and the regular object will refer to the
1834      same memory location for the variable.  */
1835 
1836   htab = hppa_link_hash_table (info);
1837 
1838   /* We must generate a COPY reloc to tell the dynamic linker to
1839      copy the initial value out of the dynamic object and into the
1840      runtime process image.  */
1841   if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0)
1842     {
1843       htab->srelbss->size += sizeof (Elf32_External_Rela);
1844       eh->needs_copy = 1;
1845     }
1846 
1847   /* We need to figure out the alignment required for this symbol.  I
1848      have no idea how other ELF linkers handle this.  */
1849 
1850   power_of_two = bfd_log2 (eh->size);
1851   if (power_of_two > 3)
1852     power_of_two = 3;
1853 
1854   /* Apply the required alignment.  */
1855   sec = htab->sdynbss;
1856   sec->size = BFD_ALIGN (sec->size, (bfd_size_type) (1 << power_of_two));
1857   if (power_of_two > bfd_get_section_alignment (htab->etab.dynobj, sec))
1858     {
1859       if (! bfd_set_section_alignment (htab->etab.dynobj, sec, power_of_two))
1860 	return FALSE;
1861     }
1862 
1863   /* Define the symbol as being at this point in the section.  */
1864   eh->root.u.def.section = sec;
1865   eh->root.u.def.value = sec->size;
1866 
1867   /* Increment the section size to make room for the symbol.  */
1868   sec->size += eh->size;
1869 
1870   return TRUE;
1871 }
1872 
1873 /* Allocate space in the .plt for entries that won't have relocations.
1874    ie. plabel entries.  */
1875 
1876 static bfd_boolean
allocate_plt_static(struct elf_link_hash_entry * eh,void * inf)1877 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1878 {
1879   struct bfd_link_info *info;
1880   struct elf32_hppa_link_hash_table *htab;
1881   struct elf32_hppa_link_hash_entry *hh;
1882   asection *sec;
1883 
1884   if (eh->root.type == bfd_link_hash_indirect)
1885     return TRUE;
1886 
1887   if (eh->root.type == bfd_link_hash_warning)
1888     eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1889 
1890   info = (struct bfd_link_info *) inf;
1891   hh = hppa_elf_hash_entry(eh);
1892   htab = hppa_link_hash_table (info);
1893   if (htab->etab.dynamic_sections_created
1894       && eh->plt.refcount > 0)
1895     {
1896       /* Make sure this symbol is output as a dynamic symbol.
1897 	 Undefined weak syms won't yet be marked as dynamic.  */
1898       if (eh->dynindx == -1
1899 	  && !eh->forced_local
1900 	  && eh->type != STT_PARISC_MILLI)
1901 	{
1902 	  if (! bfd_elf_link_record_dynamic_symbol (info, eh))
1903 	    return FALSE;
1904 	}
1905 
1906       if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, eh))
1907 	{
1908 	  /* Allocate these later.  From this point on, h->plabel
1909 	     means that the plt entry is only used by a plabel.
1910 	     We'll be using a normal plt entry for this symbol, so
1911 	     clear the plabel indicator.  */
1912 
1913 	  hh->plabel = 0;
1914 	}
1915       else if (hh->plabel)
1916 	{
1917 	  /* Make an entry in the .plt section for plabel references
1918 	     that won't have a .plt entry for other reasons.  */
1919 	  sec = htab->splt;
1920 	  eh->plt.offset = sec->size;
1921 	  sec->size += PLT_ENTRY_SIZE;
1922 	}
1923       else
1924 	{
1925 	  /* No .plt entry needed.  */
1926 	  eh->plt.offset = (bfd_vma) -1;
1927 	  eh->needs_plt = 0;
1928 	}
1929     }
1930   else
1931     {
1932       eh->plt.offset = (bfd_vma) -1;
1933       eh->needs_plt = 0;
1934     }
1935 
1936   return TRUE;
1937 }
1938 
1939 /* Allocate space in .plt, .got and associated reloc sections for
1940    global syms.  */
1941 
1942 static bfd_boolean
allocate_dynrelocs(struct elf_link_hash_entry * eh,void * inf)1943 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
1944 {
1945   struct bfd_link_info *info;
1946   struct elf32_hppa_link_hash_table *htab;
1947   asection *sec;
1948   struct elf32_hppa_link_hash_entry *hh;
1949   struct elf32_hppa_dyn_reloc_entry *hdh_p;
1950 
1951   if (eh->root.type == bfd_link_hash_indirect)
1952     return TRUE;
1953 
1954   if (eh->root.type == bfd_link_hash_warning)
1955     eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1956 
1957   info = inf;
1958   htab = hppa_link_hash_table (info);
1959   hh = hppa_elf_hash_entry (eh);
1960 
1961   if (htab->etab.dynamic_sections_created
1962       && eh->plt.offset != (bfd_vma) -1
1963       && !hh->plabel
1964       && eh->plt.refcount > 0)
1965     {
1966       /* Make an entry in the .plt section.  */
1967       sec = htab->splt;
1968       eh->plt.offset = sec->size;
1969       sec->size += PLT_ENTRY_SIZE;
1970 
1971       /* We also need to make an entry in the .rela.plt section.  */
1972       htab->srelplt->size += sizeof (Elf32_External_Rela);
1973       htab->need_plt_stub = 1;
1974     }
1975 
1976   if (eh->got.refcount > 0)
1977     {
1978       /* Make sure this symbol is output as a dynamic symbol.
1979 	 Undefined weak syms won't yet be marked as dynamic.  */
1980       if (eh->dynindx == -1
1981 	  && !eh->forced_local
1982 	  && eh->type != STT_PARISC_MILLI)
1983 	{
1984 	  if (! bfd_elf_link_record_dynamic_symbol (info, eh))
1985 	    return FALSE;
1986 	}
1987 
1988       sec = htab->sgot;
1989       eh->got.offset = sec->size;
1990       sec->size += GOT_ENTRY_SIZE;
1991       if (htab->etab.dynamic_sections_created
1992 	  && (info->shared
1993 	      || (eh->dynindx != -1
1994 		  && !eh->forced_local)))
1995 	{
1996 	  htab->srelgot->size += sizeof (Elf32_External_Rela);
1997 	}
1998     }
1999   else
2000     eh->got.offset = (bfd_vma) -1;
2001 
2002   if (hh->dyn_relocs == NULL)
2003     return TRUE;
2004 
2005   /* If this is a -Bsymbolic shared link, then we need to discard all
2006      space allocated for dynamic pc-relative relocs against symbols
2007      defined in a regular object.  For the normal shared case, discard
2008      space for relocs that have become local due to symbol visibility
2009      changes.  */
2010   if (info->shared)
2011     {
2012 #if RELATIVE_DYNRELOCS
2013       if (SYMBOL_CALLS_LOCAL (info, eh))
2014 	{
2015 	  struct elf32_hppa_dyn_reloc_entry **hdh_pp;
2016 
2017 	  for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2018 	    {
2019 	      hdh_p->count -= hdh_p->relative_count;
2020 	      hdh_p->relative_count = 0;
2021 	      if (hdh_p->count == 0)
2022 		*hdh_pp = hdh_p->hdh_next;
2023 	      else
2024 		hdh_pp = &hdh_p->hdh_next;
2025 	    }
2026 	}
2027 #endif
2028 
2029       /* Also discard relocs on undefined weak syms with non-default
2030 	 visibility.  */
2031       if (hh->dyn_relocs != NULL
2032 	  && eh->root.type == bfd_link_hash_undefweak)
2033 	{
2034 	  if (ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
2035 	    hh->dyn_relocs = NULL;
2036 
2037 	  /* Make sure undefined weak symbols are output as a dynamic
2038 	     symbol in PIEs.  */
2039 	  else if (eh->dynindx == -1
2040 		   && !eh->forced_local)
2041 	    {
2042 	      if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2043 		return FALSE;
2044 	    }
2045 	}
2046     }
2047   else
2048     {
2049       /* For the non-shared case, discard space for relocs against
2050 	 symbols which turn out to need copy relocs or are not
2051 	 dynamic.  */
2052 
2053       if (!eh->non_got_ref
2054 	  && ((ELIMINATE_COPY_RELOCS
2055 	       && eh->def_dynamic
2056 	       && !eh->def_regular)
2057 	       || (htab->etab.dynamic_sections_created
2058 		   && (eh->root.type == bfd_link_hash_undefweak
2059 		       || eh->root.type == bfd_link_hash_undefined))))
2060 	{
2061 	  /* Make sure this symbol is output as a dynamic symbol.
2062 	     Undefined weak syms won't yet be marked as dynamic.  */
2063 	  if (eh->dynindx == -1
2064 	      && !eh->forced_local
2065 	      && eh->type != STT_PARISC_MILLI)
2066 	    {
2067 	      if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2068 		return FALSE;
2069 	    }
2070 
2071 	  /* If that succeeded, we know we'll be keeping all the
2072 	     relocs.  */
2073 	  if (eh->dynindx != -1)
2074 	    goto keep;
2075 	}
2076 
2077       hh->dyn_relocs = NULL;
2078       return TRUE;
2079 
2080     keep: ;
2081     }
2082 
2083   /* Finally, allocate space.  */
2084   for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2085     {
2086       asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2087       sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2088     }
2089 
2090   return TRUE;
2091 }
2092 
2093 /* This function is called via elf_link_hash_traverse to force
2094    millicode symbols local so they do not end up as globals in the
2095    dynamic symbol table.  We ought to be able to do this in
2096    adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2097    for all dynamic symbols.  Arguably, this is a bug in
2098    elf_adjust_dynamic_symbol.  */
2099 
2100 static bfd_boolean
clobber_millicode_symbols(struct elf_link_hash_entry * eh,struct bfd_link_info * info)2101 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2102 			   struct bfd_link_info *info)
2103 {
2104   if (eh->root.type == bfd_link_hash_warning)
2105     eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2106 
2107   if (eh->type == STT_PARISC_MILLI
2108       && !eh->forced_local)
2109     {
2110       elf32_hppa_hide_symbol (info, eh, TRUE);
2111     }
2112   return TRUE;
2113 }
2114 
2115 /* Find any dynamic relocs that apply to read-only sections.  */
2116 
2117 static bfd_boolean
readonly_dynrelocs(struct elf_link_hash_entry * eh,void * inf)2118 readonly_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2119 {
2120   struct elf32_hppa_link_hash_entry *hh;
2121   struct elf32_hppa_dyn_reloc_entry *hdh_p;
2122 
2123   if (eh->root.type == bfd_link_hash_warning)
2124     eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2125 
2126   hh = hppa_elf_hash_entry (eh);
2127   for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2128     {
2129       asection *sec = hdh_p->sec->output_section;
2130 
2131       if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
2132 	{
2133 	  struct bfd_link_info *info = inf;
2134 
2135 	  info->flags |= DF_TEXTREL;
2136 
2137 	  /* Not an error, just cut short the traversal.  */
2138 	  return FALSE;
2139 	}
2140     }
2141   return TRUE;
2142 }
2143 
2144 /* Set the sizes of the dynamic sections.  */
2145 
2146 static bfd_boolean
elf32_hppa_size_dynamic_sections(bfd * output_bfd ATTRIBUTE_UNUSED,struct bfd_link_info * info)2147 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2148 				  struct bfd_link_info *info)
2149 {
2150   struct elf32_hppa_link_hash_table *htab;
2151   bfd *dynobj;
2152   bfd *ibfd;
2153   asection *sec;
2154   bfd_boolean relocs;
2155 
2156   htab = hppa_link_hash_table (info);
2157   dynobj = htab->etab.dynobj;
2158   if (dynobj == NULL)
2159     abort ();
2160 
2161   if (htab->etab.dynamic_sections_created)
2162     {
2163       /* Set the contents of the .interp section to the interpreter.  */
2164       if (info->executable && !info->static_link)
2165 	{
2166 	  sec = bfd_get_section_by_name (dynobj, ".interp");
2167 	  if (sec == NULL)
2168 	    abort ();
2169 	  sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2170 	  sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2171 	}
2172 
2173       /* Force millicode symbols local.  */
2174       elf_link_hash_traverse (&htab->etab,
2175 			      clobber_millicode_symbols,
2176 			      info);
2177     }
2178 
2179   /* Set up .got and .plt offsets for local syms, and space for local
2180      dynamic relocs.  */
2181   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2182     {
2183       bfd_signed_vma *local_got;
2184       bfd_signed_vma *end_local_got;
2185       bfd_signed_vma *local_plt;
2186       bfd_signed_vma *end_local_plt;
2187       bfd_size_type locsymcount;
2188       Elf_Internal_Shdr *symtab_hdr;
2189       asection *srel;
2190 
2191       if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2192 	continue;
2193 
2194       for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2195 	{
2196 	  struct elf32_hppa_dyn_reloc_entry *hdh_p;
2197 
2198 	  for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
2199 		    elf_section_data (sec)->local_dynrel);
2200 	       hdh_p != NULL;
2201 	       hdh_p = hdh_p->hdh_next)
2202 	    {
2203 	      if (!bfd_is_abs_section (hdh_p->sec)
2204 		  && bfd_is_abs_section (hdh_p->sec->output_section))
2205 		{
2206 		  /* Input section has been discarded, either because
2207 		     it is a copy of a linkonce section or due to
2208 		     linker script /DISCARD/, so we'll be discarding
2209 		     the relocs too.  */
2210 		}
2211 	      else if (hdh_p->count != 0)
2212 		{
2213 		  srel = elf_section_data (hdh_p->sec)->sreloc;
2214 		  srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2215 		  if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2216 		    info->flags |= DF_TEXTREL;
2217 		}
2218 	    }
2219 	}
2220 
2221       local_got = elf_local_got_refcounts (ibfd);
2222       if (!local_got)
2223 	continue;
2224 
2225       symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2226       locsymcount = symtab_hdr->sh_info;
2227       end_local_got = local_got + locsymcount;
2228       sec = htab->sgot;
2229       srel = htab->srelgot;
2230       for (; local_got < end_local_got; ++local_got)
2231 	{
2232 	  if (*local_got > 0)
2233 	    {
2234 	      *local_got = sec->size;
2235 	      sec->size += GOT_ENTRY_SIZE;
2236 	      if (info->shared)
2237 		srel->size += sizeof (Elf32_External_Rela);
2238 	    }
2239 	  else
2240 	    *local_got = (bfd_vma) -1;
2241 	}
2242 
2243       local_plt = end_local_got;
2244       end_local_plt = local_plt + locsymcount;
2245       if (! htab->etab.dynamic_sections_created)
2246 	{
2247 	  /* Won't be used, but be safe.  */
2248 	  for (; local_plt < end_local_plt; ++local_plt)
2249 	    *local_plt = (bfd_vma) -1;
2250 	}
2251       else
2252 	{
2253 	  sec = htab->splt;
2254 	  srel = htab->srelplt;
2255 	  for (; local_plt < end_local_plt; ++local_plt)
2256 	    {
2257 	      if (*local_plt > 0)
2258 		{
2259 		  *local_plt = sec->size;
2260 		  sec->size += PLT_ENTRY_SIZE;
2261 		  if (info->shared)
2262 		    srel->size += sizeof (Elf32_External_Rela);
2263 		}
2264 	      else
2265 		*local_plt = (bfd_vma) -1;
2266 	    }
2267 	}
2268     }
2269 
2270   /* Do all the .plt entries without relocs first.  The dynamic linker
2271      uses the last .plt reloc to find the end of the .plt (and hence
2272      the start of the .got) for lazy linking.  */
2273   elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2274 
2275   /* Allocate global sym .plt and .got entries, and space for global
2276      sym dynamic relocs.  */
2277   elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2278 
2279   /* The check_relocs and adjust_dynamic_symbol entry points have
2280      determined the sizes of the various dynamic sections.  Allocate
2281      memory for them.  */
2282   relocs = FALSE;
2283   for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2284     {
2285       if ((sec->flags & SEC_LINKER_CREATED) == 0)
2286 	continue;
2287 
2288       if (sec == htab->splt)
2289 	{
2290 	  if (htab->need_plt_stub)
2291 	    {
2292 	      /* Make space for the plt stub at the end of the .plt
2293 		 section.  We want this stub right at the end, up
2294 		 against the .got section.  */
2295 	      int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2296 	      int pltalign = bfd_section_alignment (dynobj, sec);
2297 	      bfd_size_type mask;
2298 
2299 	      if (gotalign > pltalign)
2300 		bfd_set_section_alignment (dynobj, sec, gotalign);
2301 	      mask = ((bfd_size_type) 1 << gotalign) - 1;
2302 	      sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2303 	    }
2304 	}
2305       else if (sec == htab->sgot
2306 	       || sec == htab->sdynbss)
2307 	;
2308       else if (strncmp (bfd_get_section_name (dynobj, sec), ".rela", 5) == 0)
2309 	{
2310 	  if (sec->size != 0)
2311 	    {
2312 	      /* Remember whether there are any reloc sections other
2313 		 than .rela.plt.  */
2314 	      if (sec != htab->srelplt)
2315 		relocs = TRUE;
2316 
2317 	      /* We use the reloc_count field as a counter if we need
2318 		 to copy relocs into the output file.  */
2319 	      sec->reloc_count = 0;
2320 	    }
2321 	}
2322       else
2323 	{
2324 	  /* It's not one of our sections, so don't allocate space.  */
2325 	  continue;
2326 	}
2327 
2328       if (sec->size == 0)
2329 	{
2330 	  /* If we don't need this section, strip it from the
2331 	     output file.  This is mostly to handle .rela.bss and
2332 	     .rela.plt.  We must create both sections in
2333 	     create_dynamic_sections, because they must be created
2334 	     before the linker maps input sections to output
2335 	     sections.  The linker does that before
2336 	     adjust_dynamic_symbol is called, and it is that
2337 	     function which decides whether anything needs to go
2338 	     into these sections.  */
2339 	  sec->flags |= SEC_EXCLUDE;
2340 	  continue;
2341 	}
2342 
2343       if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2344 	continue;
2345 
2346       /* Allocate memory for the section contents.  Zero it, because
2347 	 we may not fill in all the reloc sections.  */
2348       sec->contents = bfd_zalloc (dynobj, sec->size);
2349       if (sec->contents == NULL)
2350 	return FALSE;
2351     }
2352 
2353   if (htab->etab.dynamic_sections_created)
2354     {
2355       /* Like IA-64 and HPPA64, always create a DT_PLTGOT.  It
2356 	 actually has nothing to do with the PLT, it is how we
2357 	 communicate the LTP value of a load module to the dynamic
2358 	 linker.  */
2359 #define add_dynamic_entry(TAG, VAL) \
2360   _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2361 
2362       if (!add_dynamic_entry (DT_PLTGOT, 0))
2363 	return FALSE;
2364 
2365       /* Add some entries to the .dynamic section.  We fill in the
2366 	 values later, in elf32_hppa_finish_dynamic_sections, but we
2367 	 must add the entries now so that we get the correct size for
2368 	 the .dynamic section.  The DT_DEBUG entry is filled in by the
2369 	 dynamic linker and used by the debugger.  */
2370       if (info->executable)
2371 	{
2372 	  if (!add_dynamic_entry (DT_DEBUG, 0))
2373 	    return FALSE;
2374 	}
2375 
2376       if (htab->srelplt->size != 0)
2377 	{
2378 	  if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2379 	      || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2380 	      || !add_dynamic_entry (DT_JMPREL, 0))
2381 	    return FALSE;
2382 	}
2383 
2384       if (relocs)
2385 	{
2386 	  if (!add_dynamic_entry (DT_RELA, 0)
2387 	      || !add_dynamic_entry (DT_RELASZ, 0)
2388 	      || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2389 	    return FALSE;
2390 
2391 	  /* If any dynamic relocs apply to a read-only section,
2392 	     then we need a DT_TEXTREL entry.  */
2393 	  if ((info->flags & DF_TEXTREL) == 0)
2394 	    elf_link_hash_traverse (&htab->etab, readonly_dynrelocs, info);
2395 
2396 	  if ((info->flags & DF_TEXTREL) != 0)
2397 	    {
2398 	      if (!add_dynamic_entry (DT_TEXTREL, 0))
2399 		return FALSE;
2400 	    }
2401 	}
2402     }
2403 #undef add_dynamic_entry
2404 
2405   return TRUE;
2406 }
2407 
2408 /* External entry points for sizing and building linker stubs.  */
2409 
2410 /* Set up various things so that we can make a list of input sections
2411    for each output section included in the link.  Returns -1 on error,
2412    0 when no stubs will be needed, and 1 on success.  */
2413 
2414 int
elf32_hppa_setup_section_lists(bfd * output_bfd,struct bfd_link_info * info)2415 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2416 {
2417   bfd *input_bfd;
2418   unsigned int bfd_count;
2419   int top_id, top_index;
2420   asection *section;
2421   asection **input_list, **list;
2422   bfd_size_type amt;
2423   struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2424 
2425   /* Count the number of input BFDs and find the top input section id.  */
2426   for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2427        input_bfd != NULL;
2428        input_bfd = input_bfd->link_next)
2429     {
2430       bfd_count += 1;
2431       for (section = input_bfd->sections;
2432 	   section != NULL;
2433 	   section = section->next)
2434 	{
2435 	  if (top_id < section->id)
2436 	    top_id = section->id;
2437 	}
2438     }
2439   htab->bfd_count = bfd_count;
2440 
2441   amt = sizeof (struct map_stub) * (top_id + 1);
2442   htab->stub_group = bfd_zmalloc (amt);
2443   if (htab->stub_group == NULL)
2444     return -1;
2445 
2446   /* We can't use output_bfd->section_count here to find the top output
2447      section index as some sections may have been removed, and
2448      strip_excluded_output_sections doesn't renumber the indices.  */
2449   for (section = output_bfd->sections, top_index = 0;
2450        section != NULL;
2451        section = section->next)
2452     {
2453       if (top_index < section->index)
2454 	top_index = section->index;
2455     }
2456 
2457   htab->top_index = top_index;
2458   amt = sizeof (asection *) * (top_index + 1);
2459   input_list = bfd_malloc (amt);
2460   htab->input_list = input_list;
2461   if (input_list == NULL)
2462     return -1;
2463 
2464   /* For sections we aren't interested in, mark their entries with a
2465      value we can check later.  */
2466   list = input_list + top_index;
2467   do
2468     *list = bfd_abs_section_ptr;
2469   while (list-- != input_list);
2470 
2471   for (section = output_bfd->sections;
2472        section != NULL;
2473        section = section->next)
2474     {
2475       if ((section->flags & SEC_CODE) != 0)
2476 	input_list[section->index] = NULL;
2477     }
2478 
2479   return 1;
2480 }
2481 
2482 /* The linker repeatedly calls this function for each input section,
2483    in the order that input sections are linked into output sections.
2484    Build lists of input sections to determine groupings between which
2485    we may insert linker stubs.  */
2486 
2487 void
elf32_hppa_next_input_section(struct bfd_link_info * info,asection * isec)2488 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2489 {
2490   struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2491 
2492   if (isec->output_section->index <= htab->top_index)
2493     {
2494       asection **list = htab->input_list + isec->output_section->index;
2495       if (*list != bfd_abs_section_ptr)
2496 	{
2497 	  /* Steal the link_sec pointer for our list.  */
2498 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2499 	  /* This happens to make the list in reverse order,
2500 	     which is what we want.  */
2501 	  PREV_SEC (isec) = *list;
2502 	  *list = isec;
2503 	}
2504     }
2505 }
2506 
2507 /* See whether we can group stub sections together.  Grouping stub
2508    sections may result in fewer stubs.  More importantly, we need to
2509    put all .init* and .fini* stubs at the beginning of the .init or
2510    .fini output sections respectively, because glibc splits the
2511    _init and _fini functions into multiple parts.  Putting a stub in
2512    the middle of a function is not a good idea.  */
2513 
2514 static void
group_sections(struct elf32_hppa_link_hash_table * htab,bfd_size_type stub_group_size,bfd_boolean stubs_always_before_branch)2515 group_sections (struct elf32_hppa_link_hash_table *htab,
2516 		bfd_size_type stub_group_size,
2517 		bfd_boolean stubs_always_before_branch)
2518 {
2519   asection **list = htab->input_list + htab->top_index;
2520   do
2521     {
2522       asection *tail = *list;
2523       if (tail == bfd_abs_section_ptr)
2524 	continue;
2525       while (tail != NULL)
2526 	{
2527 	  asection *curr;
2528 	  asection *prev;
2529 	  bfd_size_type total;
2530 	  bfd_boolean big_sec;
2531 
2532 	  curr = tail;
2533 	  total = tail->size;
2534 	  big_sec = total >= stub_group_size;
2535 
2536 	  while ((prev = PREV_SEC (curr)) != NULL
2537 		 && ((total += curr->output_offset - prev->output_offset)
2538 		     < stub_group_size))
2539 	    curr = prev;
2540 
2541 	  /* OK, the size from the start of CURR to the end is less
2542 	     than 240000 bytes and thus can be handled by one stub
2543 	     section.  (or the tail section is itself larger than
2544 	     240000 bytes, in which case we may be toast.)
2545 	     We should really be keeping track of the total size of
2546 	     stubs added here, as stubs contribute to the final output
2547 	     section size.  That's a little tricky, and this way will
2548 	     only break if stubs added total more than 22144 bytes, or
2549 	     2768 long branch stubs.  It seems unlikely for more than
2550 	     2768 different functions to be called, especially from
2551 	     code only 240000 bytes long.  This limit used to be
2552 	     250000, but c++ code tends to generate lots of little
2553 	     functions, and sometimes violated the assumption.  */
2554 	  do
2555 	    {
2556 	      prev = PREV_SEC (tail);
2557 	      /* Set up this stub group.  */
2558 	      htab->stub_group[tail->id].link_sec = curr;
2559 	    }
2560 	  while (tail != curr && (tail = prev) != NULL);
2561 
2562 	  /* But wait, there's more!  Input sections up to 240000
2563 	     bytes before the stub section can be handled by it too.
2564 	     Don't do this if we have a really large section after the
2565 	     stubs, as adding more stubs increases the chance that
2566 	     branches may not reach into the stub section.  */
2567 	  if (!stubs_always_before_branch && !big_sec)
2568 	    {
2569 	      total = 0;
2570 	      while (prev != NULL
2571 		     && ((total += tail->output_offset - prev->output_offset)
2572 			 < stub_group_size))
2573 		{
2574 		  tail = prev;
2575 		  prev = PREV_SEC (tail);
2576 		  htab->stub_group[tail->id].link_sec = curr;
2577 		}
2578 	    }
2579 	  tail = prev;
2580 	}
2581     }
2582   while (list-- != htab->input_list);
2583   free (htab->input_list);
2584 #undef PREV_SEC
2585 }
2586 
2587 /* Read in all local syms for all input bfds, and create hash entries
2588    for export stubs if we are building a multi-subspace shared lib.
2589    Returns -1 on error, 1 if export stubs created, 0 otherwise.  */
2590 
2591 static int
get_local_syms(bfd * output_bfd,bfd * input_bfd,struct bfd_link_info * info)2592 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2593 {
2594   unsigned int bfd_indx;
2595   Elf_Internal_Sym *local_syms, **all_local_syms;
2596   int stub_changed = 0;
2597   struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2598 
2599   /* We want to read in symbol extension records only once.  To do this
2600      we need to read in the local symbols in parallel and save them for
2601      later use; so hold pointers to the local symbols in an array.  */
2602   bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2603   all_local_syms = bfd_zmalloc (amt);
2604   htab->all_local_syms = all_local_syms;
2605   if (all_local_syms == NULL)
2606     return -1;
2607 
2608   /* Walk over all the input BFDs, swapping in local symbols.
2609      If we are creating a shared library, create hash entries for the
2610      export stubs.  */
2611   for (bfd_indx = 0;
2612        input_bfd != NULL;
2613        input_bfd = input_bfd->link_next, bfd_indx++)
2614     {
2615       Elf_Internal_Shdr *symtab_hdr;
2616 
2617       /* We'll need the symbol table in a second.  */
2618       symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2619       if (symtab_hdr->sh_info == 0)
2620 	continue;
2621 
2622       /* We need an array of the local symbols attached to the input bfd.  */
2623       local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2624       if (local_syms == NULL)
2625 	{
2626 	  local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2627 					     symtab_hdr->sh_info, 0,
2628 					     NULL, NULL, NULL);
2629 	  /* Cache them for elf_link_input_bfd.  */
2630 	  symtab_hdr->contents = (unsigned char *) local_syms;
2631 	}
2632       if (local_syms == NULL)
2633 	return -1;
2634 
2635       all_local_syms[bfd_indx] = local_syms;
2636 
2637       if (info->shared && htab->multi_subspace)
2638 	{
2639 	  struct elf_link_hash_entry **eh_syms;
2640 	  struct elf_link_hash_entry **eh_symend;
2641 	  unsigned int symcount;
2642 
2643 	  symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2644 		      - symtab_hdr->sh_info);
2645 	  eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2646 	  eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2647 
2648 	  /* Look through the global syms for functions;  We need to
2649 	     build export stubs for all globally visible functions.  */
2650 	  for (; eh_syms < eh_symend; eh_syms++)
2651 	    {
2652 	      struct elf32_hppa_link_hash_entry *hh;
2653 
2654 	      hh = hppa_elf_hash_entry (*eh_syms);
2655 
2656 	      while (hh->eh.root.type == bfd_link_hash_indirect
2657 		     || hh->eh.root.type == bfd_link_hash_warning)
2658 		   hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2659 
2660 	      /* At this point in the link, undefined syms have been
2661 		 resolved, so we need to check that the symbol was
2662 		 defined in this BFD.  */
2663 	      if ((hh->eh.root.type == bfd_link_hash_defined
2664 		   || hh->eh.root.type == bfd_link_hash_defweak)
2665 		  && hh->eh.type == STT_FUNC
2666 		  && hh->eh.root.u.def.section->output_section != NULL
2667 		  && (hh->eh.root.u.def.section->output_section->owner
2668 		      == output_bfd)
2669 		  && hh->eh.root.u.def.section->owner == input_bfd
2670 		  && hh->eh.def_regular
2671 		  && !hh->eh.forced_local
2672 		  && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2673 		{
2674 		  asection *sec;
2675 		  const char *stub_name;
2676 		  struct elf32_hppa_stub_hash_entry *hsh;
2677 
2678 		  sec = hh->eh.root.u.def.section;
2679 		  stub_name = hh->eh.root.root.string;
2680 		  hsh = hppa_stub_hash_lookup (&htab->bstab,
2681 						      stub_name,
2682 						      FALSE, FALSE);
2683 		  if (hsh == NULL)
2684 		    {
2685 		      hsh = hppa_add_stub (stub_name, sec, htab);
2686 		      if (!hsh)
2687 			return -1;
2688 
2689 		      hsh->target_value = hh->eh.root.u.def.value;
2690 		      hsh->target_section = hh->eh.root.u.def.section;
2691 		      hsh->stub_type = hppa_stub_export;
2692 		      hsh->hh = hh;
2693 		      stub_changed = 1;
2694 		    }
2695 		  else
2696 		    {
2697 		      (*_bfd_error_handler) (_("%B: duplicate export stub %s"),
2698 					     input_bfd,
2699 					     stub_name);
2700 		    }
2701 		}
2702 	    }
2703 	}
2704     }
2705 
2706   return stub_changed;
2707 }
2708 
2709 /* Determine and set the size of the stub section for a final link.
2710 
2711    The basic idea here is to examine all the relocations looking for
2712    PC-relative calls to a target that is unreachable with a "bl"
2713    instruction.  */
2714 
2715 bfd_boolean
elf32_hppa_size_stubs(bfd * output_bfd,bfd * stub_bfd,struct bfd_link_info * info,bfd_boolean multi_subspace,bfd_signed_vma group_size,asection * (* add_stub_section)(const char *,asection *),void (* layout_sections_again)(void))2716 elf32_hppa_size_stubs
2717   (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2718    bfd_boolean multi_subspace, bfd_signed_vma group_size,
2719    asection * (*add_stub_section) (const char *, asection *),
2720    void (*layout_sections_again) (void))
2721 {
2722   bfd_size_type stub_group_size;
2723   bfd_boolean stubs_always_before_branch;
2724   bfd_boolean stub_changed;
2725   struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2726 
2727   /* Stash our params away.  */
2728   htab->stub_bfd = stub_bfd;
2729   htab->multi_subspace = multi_subspace;
2730   htab->add_stub_section = add_stub_section;
2731   htab->layout_sections_again = layout_sections_again;
2732   stubs_always_before_branch = group_size < 0;
2733   if (group_size < 0)
2734     stub_group_size = -group_size;
2735   else
2736     stub_group_size = group_size;
2737   if (stub_group_size == 1)
2738     {
2739       /* Default values.  */
2740       if (stubs_always_before_branch)
2741 	{
2742 	  stub_group_size = 7680000;
2743 	  if (htab->has_17bit_branch || htab->multi_subspace)
2744 	    stub_group_size = 240000;
2745 	  if (htab->has_12bit_branch)
2746 	    stub_group_size = 7500;
2747 	}
2748       else
2749 	{
2750 	  stub_group_size = 6971392;
2751 	  if (htab->has_17bit_branch || htab->multi_subspace)
2752 	    stub_group_size = 217856;
2753 	  if (htab->has_12bit_branch)
2754 	    stub_group_size = 6808;
2755 	}
2756     }
2757 
2758   group_sections (htab, stub_group_size, stubs_always_before_branch);
2759 
2760   switch (get_local_syms (output_bfd, info->input_bfds, info))
2761     {
2762     default:
2763       if (htab->all_local_syms)
2764 	goto error_ret_free_local;
2765       return FALSE;
2766 
2767     case 0:
2768       stub_changed = FALSE;
2769       break;
2770 
2771     case 1:
2772       stub_changed = TRUE;
2773       break;
2774     }
2775 
2776   while (1)
2777     {
2778       bfd *input_bfd;
2779       unsigned int bfd_indx;
2780       asection *stub_sec;
2781 
2782       for (input_bfd = info->input_bfds, bfd_indx = 0;
2783 	   input_bfd != NULL;
2784 	   input_bfd = input_bfd->link_next, bfd_indx++)
2785 	{
2786 	  Elf_Internal_Shdr *symtab_hdr;
2787 	  asection *section;
2788 	  Elf_Internal_Sym *local_syms;
2789 
2790 	  /* We'll need the symbol table in a second.  */
2791 	  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2792 	  if (symtab_hdr->sh_info == 0)
2793 	    continue;
2794 
2795 	  local_syms = htab->all_local_syms[bfd_indx];
2796 
2797 	  /* Walk over each section attached to the input bfd.  */
2798 	  for (section = input_bfd->sections;
2799 	       section != NULL;
2800 	       section = section->next)
2801 	    {
2802 	      Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2803 
2804 	      /* If there aren't any relocs, then there's nothing more
2805 		 to do.  */
2806 	      if ((section->flags & SEC_RELOC) == 0
2807 		  || section->reloc_count == 0)
2808 		continue;
2809 
2810 	      /* If this section is a link-once section that will be
2811 		 discarded, then don't create any stubs.  */
2812 	      if (section->output_section == NULL
2813 		  || section->output_section->owner != output_bfd)
2814 		continue;
2815 
2816 	      /* Get the relocs.  */
2817 	      internal_relocs
2818 		= _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2819 					     info->keep_memory);
2820 	      if (internal_relocs == NULL)
2821 		goto error_ret_free_local;
2822 
2823 	      /* Now examine each relocation.  */
2824 	      irela = internal_relocs;
2825 	      irelaend = irela + section->reloc_count;
2826 	      for (; irela < irelaend; irela++)
2827 		{
2828 		  unsigned int r_type, r_indx;
2829 		  enum elf32_hppa_stub_type stub_type;
2830 		  struct elf32_hppa_stub_hash_entry *hsh;
2831 		  asection *sym_sec;
2832 		  bfd_vma sym_value;
2833 		  bfd_vma destination;
2834 		  struct elf32_hppa_link_hash_entry *hh;
2835 		  char *stub_name;
2836 		  const asection *id_sec;
2837 
2838 		  r_type = ELF32_R_TYPE (irela->r_info);
2839 		  r_indx = ELF32_R_SYM (irela->r_info);
2840 
2841 		  if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2842 		    {
2843 		      bfd_set_error (bfd_error_bad_value);
2844 		    error_ret_free_internal:
2845 		      if (elf_section_data (section)->relocs == NULL)
2846 			free (internal_relocs);
2847 		      goto error_ret_free_local;
2848 		    }
2849 
2850 		  /* Only look for stubs on call instructions.  */
2851 		  if (r_type != (unsigned int) R_PARISC_PCREL12F
2852 		      && r_type != (unsigned int) R_PARISC_PCREL17F
2853 		      && r_type != (unsigned int) R_PARISC_PCREL22F)
2854 		    continue;
2855 
2856 		  /* Now determine the call target, its name, value,
2857 		     section.  */
2858 		  sym_sec = NULL;
2859 		  sym_value = 0;
2860 		  destination = 0;
2861 		  hh = NULL;
2862 		  if (r_indx < symtab_hdr->sh_info)
2863 		    {
2864 		      /* It's a local symbol.  */
2865 		      Elf_Internal_Sym *sym;
2866 		      Elf_Internal_Shdr *hdr;
2867 
2868 		      sym = local_syms + r_indx;
2869 		      hdr = elf_elfsections (input_bfd)[sym->st_shndx];
2870 		      sym_sec = hdr->bfd_section;
2871 		      if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2872 			sym_value = sym->st_value;
2873 		      destination = (sym_value + irela->r_addend
2874 				     + sym_sec->output_offset
2875 				     + sym_sec->output_section->vma);
2876 		    }
2877 		  else
2878 		    {
2879 		      /* It's an external symbol.  */
2880 		      int e_indx;
2881 
2882 		      e_indx = r_indx - symtab_hdr->sh_info;
2883 		      hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2884 
2885 		      while (hh->eh.root.type == bfd_link_hash_indirect
2886 			     || hh->eh.root.type == bfd_link_hash_warning)
2887 			hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2888 
2889 		      if (hh->eh.root.type == bfd_link_hash_defined
2890 			  || hh->eh.root.type == bfd_link_hash_defweak)
2891 			{
2892 			  sym_sec = hh->eh.root.u.def.section;
2893 			  sym_value = hh->eh.root.u.def.value;
2894 			  if (sym_sec->output_section != NULL)
2895 			    destination = (sym_value + irela->r_addend
2896 					   + sym_sec->output_offset
2897 					   + sym_sec->output_section->vma);
2898 			}
2899 		      else if (hh->eh.root.type == bfd_link_hash_undefweak)
2900 			{
2901 			  if (! info->shared)
2902 			    continue;
2903 			}
2904 		      else if (hh->eh.root.type == bfd_link_hash_undefined)
2905 			{
2906 			  if (! (info->unresolved_syms_in_objects == RM_IGNORE
2907 				 && (ELF_ST_VISIBILITY (hh->eh.other)
2908 				     == STV_DEFAULT)
2909 				 && hh->eh.type != STT_PARISC_MILLI))
2910 			    continue;
2911 			}
2912 		      else
2913 			{
2914 			  bfd_set_error (bfd_error_bad_value);
2915 			  goto error_ret_free_internal;
2916 			}
2917 		    }
2918 
2919 		  /* Determine what (if any) linker stub is needed.  */
2920 		  stub_type = hppa_type_of_stub (section, irela, hh,
2921 						 destination, info);
2922 		  if (stub_type == hppa_stub_none)
2923 		    continue;
2924 
2925 		  /* Support for grouping stub sections.  */
2926 		  id_sec = htab->stub_group[section->id].link_sec;
2927 
2928 		  /* Get the name of this stub.  */
2929 		  stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
2930 		  if (!stub_name)
2931 		    goto error_ret_free_internal;
2932 
2933 		  hsh = hppa_stub_hash_lookup (&htab->bstab,
2934 						      stub_name,
2935 						      FALSE, FALSE);
2936 		  if (hsh != NULL)
2937 		    {
2938 		      /* The proper stub has already been created.  */
2939 		      free (stub_name);
2940 		      continue;
2941 		    }
2942 
2943 		  hsh = hppa_add_stub (stub_name, section, htab);
2944 		  if (hsh == NULL)
2945 		    {
2946 		      free (stub_name);
2947 		      goto error_ret_free_internal;
2948 		    }
2949 
2950 		  hsh->target_value = sym_value;
2951 		  hsh->target_section = sym_sec;
2952 		  hsh->stub_type = stub_type;
2953 		  if (info->shared)
2954 		    {
2955 		      if (stub_type == hppa_stub_import)
2956 			hsh->stub_type = hppa_stub_import_shared;
2957 		      else if (stub_type == hppa_stub_long_branch)
2958 			hsh->stub_type = hppa_stub_long_branch_shared;
2959 		    }
2960 		  hsh->hh = hh;
2961 		  stub_changed = TRUE;
2962 		}
2963 
2964 	      /* We're done with the internal relocs, free them.  */
2965 	      if (elf_section_data (section)->relocs == NULL)
2966 		free (internal_relocs);
2967 	    }
2968 	}
2969 
2970       if (!stub_changed)
2971 	break;
2972 
2973       /* OK, we've added some stubs.  Find out the new size of the
2974 	 stub sections.  */
2975       for (stub_sec = htab->stub_bfd->sections;
2976 	   stub_sec != NULL;
2977 	   stub_sec = stub_sec->next)
2978 	stub_sec->size = 0;
2979 
2980       bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
2981 
2982       /* Ask the linker to do its stuff.  */
2983       (*htab->layout_sections_again) ();
2984       stub_changed = FALSE;
2985     }
2986 
2987   free (htab->all_local_syms);
2988   return TRUE;
2989 
2990  error_ret_free_local:
2991   free (htab->all_local_syms);
2992   return FALSE;
2993 }
2994 
2995 /* For a final link, this function is called after we have sized the
2996    stubs to provide a value for __gp.  */
2997 
2998 bfd_boolean
elf32_hppa_set_gp(bfd * abfd,struct bfd_link_info * info)2999 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
3000 {
3001   struct bfd_link_hash_entry *h;
3002   asection *sec = NULL;
3003   bfd_vma gp_val = 0;
3004   struct elf32_hppa_link_hash_table *htab;
3005 
3006   htab = hppa_link_hash_table (info);
3007   h = bfd_link_hash_lookup (&htab->etab.root, "$global$", FALSE, FALSE, FALSE);
3008 
3009   if (h != NULL
3010       && (h->type == bfd_link_hash_defined
3011 	  || h->type == bfd_link_hash_defweak))
3012     {
3013       gp_val = h->u.def.value;
3014       sec = h->u.def.section;
3015     }
3016   else
3017     {
3018       asection *splt = bfd_get_section_by_name (abfd, ".plt");
3019       asection *sgot = bfd_get_section_by_name (abfd, ".got");
3020 
3021       /* Choose to point our LTP at, in this order, one of .plt, .got,
3022 	 or .data, if these sections exist.  In the case of choosing
3023 	 .plt try to make the LTP ideal for addressing anywhere in the
3024 	 .plt or .got with a 14 bit signed offset.  Typically, the end
3025 	 of the .plt is the start of the .got, so choose .plt + 0x2000
3026 	 if either the .plt or .got is larger than 0x2000.  If both
3027 	 the .plt and .got are smaller than 0x2000, choose the end of
3028 	 the .plt section.  */
3029       sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3030 	  ? NULL : splt;
3031       if (sec != NULL)
3032 	{
3033 	  gp_val = sec->size;
3034 	  if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3035 	    {
3036 	      gp_val = 0x2000;
3037 	    }
3038 	}
3039       else
3040 	{
3041 	  sec = sgot;
3042 	  if (sec != NULL)
3043 	    {
3044 	      if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3045 		{
3046 	          /* We know we don't have a .plt.  If .got is large,
3047 		     offset our LTP.  */
3048 	          if (sec->size > 0x2000)
3049 		    gp_val = 0x2000;
3050 		}
3051 	    }
3052 	  else
3053 	    {
3054 	      /* No .plt or .got.  Who cares what the LTP is?  */
3055 	      sec = bfd_get_section_by_name (abfd, ".data");
3056 	    }
3057 	}
3058 
3059       if (h != NULL)
3060 	{
3061 	  h->type = bfd_link_hash_defined;
3062 	  h->u.def.value = gp_val;
3063 	  if (sec != NULL)
3064 	    h->u.def.section = sec;
3065 	  else
3066 	    h->u.def.section = bfd_abs_section_ptr;
3067 	}
3068     }
3069 
3070   if (sec != NULL && sec->output_section != NULL)
3071     gp_val += sec->output_section->vma + sec->output_offset;
3072 
3073   elf_gp (abfd) = gp_val;
3074   return TRUE;
3075 }
3076 
3077 /* Build all the stubs associated with the current output file.  The
3078    stubs are kept in a hash table attached to the main linker hash
3079    table.  We also set up the .plt entries for statically linked PIC
3080    functions here.  This function is called via hppaelf_finish in the
3081    linker.  */
3082 
3083 bfd_boolean
elf32_hppa_build_stubs(struct bfd_link_info * info)3084 elf32_hppa_build_stubs (struct bfd_link_info *info)
3085 {
3086   asection *stub_sec;
3087   struct bfd_hash_table *table;
3088   struct elf32_hppa_link_hash_table *htab;
3089 
3090   htab = hppa_link_hash_table (info);
3091 
3092   for (stub_sec = htab->stub_bfd->sections;
3093        stub_sec != NULL;
3094        stub_sec = stub_sec->next)
3095     {
3096       bfd_size_type size;
3097 
3098       /* Allocate memory to hold the linker stubs.  */
3099       size = stub_sec->size;
3100       stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3101       if (stub_sec->contents == NULL && size != 0)
3102 	return FALSE;
3103       stub_sec->size = 0;
3104     }
3105 
3106   /* Build the stubs as directed by the stub hash table.  */
3107   table = &htab->bstab;
3108   bfd_hash_traverse (table, hppa_build_one_stub, info);
3109 
3110   return TRUE;
3111 }
3112 
3113 /* Perform a final link.  */
3114 
3115 static bfd_boolean
elf32_hppa_final_link(bfd * abfd,struct bfd_link_info * info)3116 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3117 {
3118   /* Invoke the regular ELF linker to do all the work.  */
3119   if (!bfd_elf_final_link (abfd, info))
3120     return FALSE;
3121 
3122   /* If we're producing a final executable, sort the contents of the
3123      unwind section.  */
3124   return elf_hppa_sort_unwind (abfd);
3125 }
3126 
3127 /* Record the lowest address for the data and text segments.  */
3128 
3129 static void
hppa_record_segment_addr(bfd * abfd ATTRIBUTE_UNUSED,asection * section,void * data)3130 hppa_record_segment_addr (bfd *abfd ATTRIBUTE_UNUSED,
3131 			  asection *section,
3132 			  void *data)
3133 {
3134   struct elf32_hppa_link_hash_table *htab;
3135 
3136   htab = (struct elf32_hppa_link_hash_table*) data;
3137 
3138   if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3139     {
3140       bfd_vma value = section->vma - section->filepos;
3141 
3142       if ((section->flags & SEC_READONLY) != 0)
3143 	{
3144 	  if (value < htab->text_segment_base)
3145 	    htab->text_segment_base = value;
3146 	}
3147       else
3148 	{
3149 	  if (value < htab->data_segment_base)
3150 	    htab->data_segment_base = value;
3151 	}
3152     }
3153 }
3154 
3155 /* Perform a relocation as part of a final link.  */
3156 
3157 static bfd_reloc_status_type
final_link_relocate(asection * input_section,bfd_byte * contents,const Elf_Internal_Rela * rela,bfd_vma value,struct elf32_hppa_link_hash_table * htab,asection * sym_sec,struct elf32_hppa_link_hash_entry * hh,struct bfd_link_info * info)3158 final_link_relocate (asection *input_section,
3159 		     bfd_byte *contents,
3160 		     const Elf_Internal_Rela *rela,
3161 		     bfd_vma value,
3162 		     struct elf32_hppa_link_hash_table *htab,
3163 		     asection *sym_sec,
3164 		     struct elf32_hppa_link_hash_entry *hh,
3165 		     struct bfd_link_info *info)
3166 {
3167   int insn;
3168   unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3169   unsigned int orig_r_type = r_type;
3170   reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3171   int r_format = howto->bitsize;
3172   enum hppa_reloc_field_selector_type_alt r_field;
3173   bfd *input_bfd = input_section->owner;
3174   bfd_vma offset = rela->r_offset;
3175   bfd_vma max_branch_offset = 0;
3176   bfd_byte *hit_data = contents + offset;
3177   bfd_signed_vma addend = rela->r_addend;
3178   bfd_vma location;
3179   struct elf32_hppa_stub_hash_entry *hsh = NULL;
3180   int val;
3181 
3182   if (r_type == R_PARISC_NONE)
3183     return bfd_reloc_ok;
3184 
3185   insn = bfd_get_32 (input_bfd, hit_data);
3186 
3187   /* Find out where we are and where we're going.  */
3188   location = (offset +
3189 	      input_section->output_offset +
3190 	      input_section->output_section->vma);
3191 
3192   /* If we are not building a shared library, convert DLTIND relocs to
3193      DPREL relocs.  */
3194   if (!info->shared)
3195     {
3196       switch (r_type)
3197 	{
3198 	  case R_PARISC_DLTIND21L:
3199 	    r_type = R_PARISC_DPREL21L;
3200 	    break;
3201 
3202 	  case R_PARISC_DLTIND14R:
3203 	    r_type = R_PARISC_DPREL14R;
3204 	    break;
3205 
3206 	  case R_PARISC_DLTIND14F:
3207 	    r_type = R_PARISC_DPREL14F;
3208 	    break;
3209 	}
3210     }
3211 
3212   switch (r_type)
3213     {
3214     case R_PARISC_PCREL12F:
3215     case R_PARISC_PCREL17F:
3216     case R_PARISC_PCREL22F:
3217       /* If this call should go via the plt, find the import stub in
3218 	 the stub hash.  */
3219       if (sym_sec == NULL
3220 	  || sym_sec->output_section == NULL
3221 	  || (hh != NULL
3222 	      && hh->eh.plt.offset != (bfd_vma) -1
3223 	      && hh->eh.dynindx != -1
3224 	      && !hh->plabel
3225 	      && (info->shared
3226 		  || !hh->eh.def_regular
3227 		  || hh->eh.root.type == bfd_link_hash_defweak)))
3228 	{
3229 	  hsh = hppa_get_stub_entry (input_section, sym_sec,
3230 					    hh, rela, htab);
3231 	  if (hsh != NULL)
3232 	    {
3233 	      value = (hsh->stub_offset
3234 		       + hsh->stub_sec->output_offset
3235 		       + hsh->stub_sec->output_section->vma);
3236 	      addend = 0;
3237 	    }
3238 	  else if (sym_sec == NULL && hh != NULL
3239 		   && hh->eh.root.type == bfd_link_hash_undefweak)
3240 	    {
3241 	      /* It's OK if undefined weak.  Calls to undefined weak
3242 		 symbols behave as if the "called" function
3243 		 immediately returns.  We can thus call to a weak
3244 		 function without first checking whether the function
3245 		 is defined.  */
3246 	      value = location;
3247 	      addend = 8;
3248 	    }
3249 	  else
3250 	    return bfd_reloc_undefined;
3251 	}
3252       /* Fall thru.  */
3253 
3254     case R_PARISC_PCREL21L:
3255     case R_PARISC_PCREL17C:
3256     case R_PARISC_PCREL17R:
3257     case R_PARISC_PCREL14R:
3258     case R_PARISC_PCREL14F:
3259     case R_PARISC_PCREL32:
3260       /* Make it a pc relative offset.  */
3261       value -= location;
3262       addend -= 8;
3263       break;
3264 
3265     case R_PARISC_DPREL21L:
3266     case R_PARISC_DPREL14R:
3267     case R_PARISC_DPREL14F:
3268       /* Convert instructions that use the linkage table pointer (r19) to
3269 	 instructions that use the global data pointer (dp).  This is the
3270 	 most efficient way of using PIC code in an incomplete executable,
3271 	 but the user must follow the standard runtime conventions for
3272 	 accessing data for this to work.  */
3273       if (orig_r_type == R_PARISC_DLTIND21L)
3274 	{
3275 	  /* Convert addil instructions if the original reloc was a
3276 	     DLTIND21L.  GCC sometimes uses a register other than r19 for
3277 	     the operation, so we must convert any addil instruction
3278 	     that uses this relocation.  */
3279 	  if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3280 	    insn = ADDIL_DP;
3281 	  else
3282 	    /* We must have a ldil instruction.  It's too hard to find
3283 	       and convert the associated add instruction, so issue an
3284 	       error.  */
3285 	    (*_bfd_error_handler)
3286 	      (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3287 	       input_bfd,
3288 	       input_section,
3289 	       offset,
3290 	       howto->name,
3291 	       insn);
3292 	}
3293       else if (orig_r_type == R_PARISC_DLTIND14F)
3294 	{
3295 	  /* This must be a format 1 load/store.  Change the base
3296 	     register to dp.  */
3297 	  insn = (insn & 0xfc1ffff) | (27 << 21);
3298 	}
3299 
3300     /* For all the DP relative relocations, we need to examine the symbol's
3301        section.  If it has no section or if it's a code section, then
3302        "data pointer relative" makes no sense.  In that case we don't
3303        adjust the "value", and for 21 bit addil instructions, we change the
3304        source addend register from %dp to %r0.  This situation commonly
3305        arises for undefined weak symbols and when a variable's "constness"
3306        is declared differently from the way the variable is defined.  For
3307        instance: "extern int foo" with foo defined as "const int foo".  */
3308       if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3309 	{
3310 	  if ((insn & ((0x3f << 26) | (0x1f << 21)))
3311 	      == (((int) OP_ADDIL << 26) | (27 << 21)))
3312 	    {
3313 	      insn &= ~ (0x1f << 21);
3314 	    }
3315 	  /* Now try to make things easy for the dynamic linker.  */
3316 
3317 	  break;
3318 	}
3319       /* Fall thru.  */
3320 
3321     case R_PARISC_DLTIND21L:
3322     case R_PARISC_DLTIND14R:
3323     case R_PARISC_DLTIND14F:
3324       value -= elf_gp (input_section->output_section->owner);
3325       break;
3326 
3327     case R_PARISC_SEGREL32:
3328       if ((sym_sec->flags & SEC_CODE) != 0)
3329 	value -= htab->text_segment_base;
3330       else
3331 	value -= htab->data_segment_base;
3332       break;
3333 
3334     default:
3335       break;
3336     }
3337 
3338   switch (r_type)
3339     {
3340     case R_PARISC_DIR32:
3341     case R_PARISC_DIR14F:
3342     case R_PARISC_DIR17F:
3343     case R_PARISC_PCREL17C:
3344     case R_PARISC_PCREL14F:
3345     case R_PARISC_PCREL32:
3346     case R_PARISC_DPREL14F:
3347     case R_PARISC_PLABEL32:
3348     case R_PARISC_DLTIND14F:
3349     case R_PARISC_SEGBASE:
3350     case R_PARISC_SEGREL32:
3351       r_field = e_fsel;
3352       break;
3353 
3354     case R_PARISC_DLTIND21L:
3355     case R_PARISC_PCREL21L:
3356     case R_PARISC_PLABEL21L:
3357       r_field = e_lsel;
3358       break;
3359 
3360     case R_PARISC_DIR21L:
3361     case R_PARISC_DPREL21L:
3362       r_field = e_lrsel;
3363       break;
3364 
3365     case R_PARISC_PCREL17R:
3366     case R_PARISC_PCREL14R:
3367     case R_PARISC_PLABEL14R:
3368     case R_PARISC_DLTIND14R:
3369       r_field = e_rsel;
3370       break;
3371 
3372     case R_PARISC_DIR17R:
3373     case R_PARISC_DIR14R:
3374     case R_PARISC_DPREL14R:
3375       r_field = e_rrsel;
3376       break;
3377 
3378     case R_PARISC_PCREL12F:
3379     case R_PARISC_PCREL17F:
3380     case R_PARISC_PCREL22F:
3381       r_field = e_fsel;
3382 
3383       if (r_type == (unsigned int) R_PARISC_PCREL17F)
3384 	{
3385 	  max_branch_offset = (1 << (17-1)) << 2;
3386 	}
3387       else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3388 	{
3389 	  max_branch_offset = (1 << (12-1)) << 2;
3390 	}
3391       else
3392 	{
3393 	  max_branch_offset = (1 << (22-1)) << 2;
3394 	}
3395 
3396       /* sym_sec is NULL on undefined weak syms or when shared on
3397 	 undefined syms.  We've already checked for a stub for the
3398 	 shared undefined case.  */
3399       if (sym_sec == NULL)
3400 	break;
3401 
3402       /* If the branch is out of reach, then redirect the
3403 	 call to the local stub for this function.  */
3404       if (value + addend + max_branch_offset >= 2*max_branch_offset)
3405 	{
3406 	  hsh = hppa_get_stub_entry (input_section, sym_sec,
3407 					    hh, rela, htab);
3408 	  if (hsh == NULL)
3409 	    return bfd_reloc_undefined;
3410 
3411 	  /* Munge up the value and addend so that we call the stub
3412 	     rather than the procedure directly.  */
3413 	  value = (hsh->stub_offset
3414 		   + hsh->stub_sec->output_offset
3415 		   + hsh->stub_sec->output_section->vma
3416 		   - location);
3417 	  addend = -8;
3418 	}
3419       break;
3420 
3421     /* Something we don't know how to handle.  */
3422     default:
3423       return bfd_reloc_notsupported;
3424     }
3425 
3426   /* Make sure we can reach the stub.  */
3427   if (max_branch_offset != 0
3428       && value + addend + max_branch_offset >= 2*max_branch_offset)
3429     {
3430       (*_bfd_error_handler)
3431 	(_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3432 	 input_bfd,
3433 	 input_section,
3434 	 offset,
3435 	 hsh->bh_root.string);
3436       bfd_set_error (bfd_error_bad_value);
3437       return bfd_reloc_notsupported;
3438     }
3439 
3440   val = hppa_field_adjust (value, addend, r_field);
3441 
3442   switch (r_type)
3443     {
3444     case R_PARISC_PCREL12F:
3445     case R_PARISC_PCREL17C:
3446     case R_PARISC_PCREL17F:
3447     case R_PARISC_PCREL17R:
3448     case R_PARISC_PCREL22F:
3449     case R_PARISC_DIR17F:
3450     case R_PARISC_DIR17R:
3451       /* This is a branch.  Divide the offset by four.
3452 	 Note that we need to decide whether it's a branch or
3453 	 otherwise by inspecting the reloc.  Inspecting insn won't
3454 	 work as insn might be from a .word directive.  */
3455       val >>= 2;
3456       break;
3457 
3458     default:
3459       break;
3460     }
3461 
3462   insn = hppa_rebuild_insn (insn, val, r_format);
3463 
3464   /* Update the instruction word.  */
3465   bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3466   return bfd_reloc_ok;
3467 }
3468 
3469 /* Relocate an HPPA ELF section.  */
3470 
3471 static bfd_boolean
elf32_hppa_relocate_section(bfd * output_bfd,struct bfd_link_info * info,bfd * input_bfd,asection * input_section,bfd_byte * contents,Elf_Internal_Rela * relocs,Elf_Internal_Sym * local_syms,asection ** local_sections)3472 elf32_hppa_relocate_section (bfd *output_bfd,
3473 			     struct bfd_link_info *info,
3474 			     bfd *input_bfd,
3475 			     asection *input_section,
3476 			     bfd_byte *contents,
3477 			     Elf_Internal_Rela *relocs,
3478 			     Elf_Internal_Sym *local_syms,
3479 			     asection **local_sections)
3480 {
3481   bfd_vma *local_got_offsets;
3482   struct elf32_hppa_link_hash_table *htab;
3483   Elf_Internal_Shdr *symtab_hdr;
3484   Elf_Internal_Rela *rela;
3485   Elf_Internal_Rela *relend;
3486 
3487   if (info->relocatable)
3488     return TRUE;
3489 
3490   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3491 
3492   htab = hppa_link_hash_table (info);
3493   local_got_offsets = elf_local_got_offsets (input_bfd);
3494 
3495   rela = relocs;
3496   relend = relocs + input_section->reloc_count;
3497   for (; rela < relend; rela++)
3498     {
3499       unsigned int r_type;
3500       reloc_howto_type *howto;
3501       unsigned int r_symndx;
3502       struct elf32_hppa_link_hash_entry *hh;
3503       Elf_Internal_Sym *sym;
3504       asection *sym_sec;
3505       bfd_vma relocation;
3506       bfd_reloc_status_type rstatus;
3507       const char *sym_name;
3508       bfd_boolean plabel;
3509       bfd_boolean warned_undef;
3510 
3511       r_type = ELF32_R_TYPE (rela->r_info);
3512       if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3513 	{
3514 	  bfd_set_error (bfd_error_bad_value);
3515 	  return FALSE;
3516 	}
3517       if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3518 	  || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3519 	continue;
3520 
3521       /* This is a final link.  */
3522       r_symndx = ELF32_R_SYM (rela->r_info);
3523       hh = NULL;
3524       sym = NULL;
3525       sym_sec = NULL;
3526       warned_undef = FALSE;
3527       if (r_symndx < symtab_hdr->sh_info)
3528 	{
3529 	  /* This is a local symbol, h defaults to NULL.  */
3530 	  sym = local_syms + r_symndx;
3531 	  sym_sec = local_sections[r_symndx];
3532 	  relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3533 	}
3534       else
3535 	{
3536 	  struct elf_link_hash_entry *eh;
3537 	  bfd_boolean unresolved_reloc;
3538 	  struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3539 
3540 	  RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3541 				   r_symndx, symtab_hdr, sym_hashes,
3542 				   eh, sym_sec, relocation,
3543 				   unresolved_reloc, warned_undef);
3544 
3545 	  if (relocation == 0
3546 	      && eh->root.type != bfd_link_hash_defined
3547 	      && eh->root.type != bfd_link_hash_defweak
3548 	      && eh->root.type != bfd_link_hash_undefweak)
3549 	    {
3550 	      if (info->unresolved_syms_in_objects == RM_IGNORE
3551 		  && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3552 		  && eh->type == STT_PARISC_MILLI)
3553 		{
3554 		  if (! info->callbacks->undefined_symbol
3555 		      (info, eh->root.root.string, input_bfd,
3556 		       input_section, rela->r_offset, FALSE))
3557 		    return FALSE;
3558 		  warned_undef = TRUE;
3559 		}
3560 	    }
3561 	  hh = hppa_elf_hash_entry (eh);
3562 	}
3563 
3564       /* Do any required modifications to the relocation value, and
3565 	 determine what types of dynamic info we need to output, if
3566 	 any.  */
3567       plabel = 0;
3568       switch (r_type)
3569 	{
3570 	case R_PARISC_DLTIND14F:
3571 	case R_PARISC_DLTIND14R:
3572 	case R_PARISC_DLTIND21L:
3573 	  {
3574 	    bfd_vma off;
3575 	    bfd_boolean do_got = 0;
3576 
3577 	    /* Relocation is to the entry for this symbol in the
3578 	       global offset table.  */
3579 	    if (hh != NULL)
3580 	      {
3581 		bfd_boolean dyn;
3582 
3583 		off = hh->eh.got.offset;
3584 		dyn = htab->etab.dynamic_sections_created;
3585 		if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
3586 						       &hh->eh))
3587 		  {
3588 		    /* If we aren't going to call finish_dynamic_symbol,
3589 		       then we need to handle initialisation of the .got
3590 		       entry and create needed relocs here.  Since the
3591 		       offset must always be a multiple of 4, we use the
3592 		       least significant bit to record whether we have
3593 		       initialised it already.  */
3594 		    if ((off & 1) != 0)
3595 		      off &= ~1;
3596 		    else
3597 		      {
3598 			hh->eh.got.offset |= 1;
3599 			do_got = 1;
3600 		      }
3601 		  }
3602 	      }
3603 	    else
3604 	      {
3605 		/* Local symbol case.  */
3606 		if (local_got_offsets == NULL)
3607 		  abort ();
3608 
3609 		off = local_got_offsets[r_symndx];
3610 
3611 		/* The offset must always be a multiple of 4.  We use
3612 		   the least significant bit to record whether we have
3613 		   already generated the necessary reloc.  */
3614 		if ((off & 1) != 0)
3615 		  off &= ~1;
3616 		else
3617 		  {
3618 		    local_got_offsets[r_symndx] |= 1;
3619 		    do_got = 1;
3620 		  }
3621 	      }
3622 
3623 	    if (do_got)
3624 	      {
3625 		if (info->shared)
3626 		  {
3627 		    /* Output a dynamic relocation for this GOT entry.
3628 		       In this case it is relative to the base of the
3629 		       object because the symbol index is zero.  */
3630 		    Elf_Internal_Rela outrel;
3631 		    bfd_byte *loc;
3632 		    asection *sec = htab->srelgot;
3633 
3634 		    outrel.r_offset = (off
3635 				       + htab->sgot->output_offset
3636 				       + htab->sgot->output_section->vma);
3637 		    outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3638 		    outrel.r_addend = relocation;
3639 		    loc = sec->contents;
3640 		    loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3641 		    bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3642 		  }
3643 		else
3644 		  bfd_put_32 (output_bfd, relocation,
3645 			      htab->sgot->contents + off);
3646 	      }
3647 
3648 	    if (off >= (bfd_vma) -2)
3649 	      abort ();
3650 
3651 	    /* Add the base of the GOT to the relocation value.  */
3652 	    relocation = (off
3653 			  + htab->sgot->output_offset
3654 			  + htab->sgot->output_section->vma);
3655 	  }
3656 	  break;
3657 
3658 	case R_PARISC_SEGREL32:
3659 	  /* If this is the first SEGREL relocation, then initialize
3660 	     the segment base values.  */
3661 	  if (htab->text_segment_base == (bfd_vma) -1)
3662 	    bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3663 	  break;
3664 
3665 	case R_PARISC_PLABEL14R:
3666 	case R_PARISC_PLABEL21L:
3667 	case R_PARISC_PLABEL32:
3668 	  if (htab->etab.dynamic_sections_created)
3669 	    {
3670 	      bfd_vma off;
3671 	      bfd_boolean do_plt = 0;
3672 	      /* If we have a global symbol with a PLT slot, then
3673 		 redirect this relocation to it.  */
3674 	      if (hh != NULL)
3675 		{
3676 		  off = hh->eh.plt.offset;
3677 		  if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared,
3678 							 &hh->eh))
3679 		    {
3680 		      /* In a non-shared link, adjust_dynamic_symbols
3681 			 isn't called for symbols forced local.  We
3682 			 need to write out the plt entry here.  */
3683 		      if ((off & 1) != 0)
3684 			off &= ~1;
3685 		      else
3686 			{
3687 			  hh->eh.plt.offset |= 1;
3688 			  do_plt = 1;
3689 			}
3690 		    }
3691 		}
3692 	      else
3693 		{
3694 		  bfd_vma *local_plt_offsets;
3695 
3696 		  if (local_got_offsets == NULL)
3697 		    abort ();
3698 
3699 		  local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3700 		  off = local_plt_offsets[r_symndx];
3701 
3702 		  /* As for the local .got entry case, we use the last
3703 		     bit to record whether we've already initialised
3704 		     this local .plt entry.  */
3705 		  if ((off & 1) != 0)
3706 		    off &= ~1;
3707 		  else
3708 		    {
3709 		      local_plt_offsets[r_symndx] |= 1;
3710 		      do_plt = 1;
3711 		    }
3712 		}
3713 
3714 	      if (do_plt)
3715 		{
3716 		  if (info->shared)
3717 		    {
3718 		      /* Output a dynamic IPLT relocation for this
3719 			 PLT entry.  */
3720 		      Elf_Internal_Rela outrel;
3721 		      bfd_byte *loc;
3722 		      asection *s = htab->srelplt;
3723 
3724 		      outrel.r_offset = (off
3725 					 + htab->splt->output_offset
3726 					 + htab->splt->output_section->vma);
3727 		      outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3728 		      outrel.r_addend = relocation;
3729 		      loc = s->contents;
3730 		      loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3731 		      bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3732 		    }
3733 		  else
3734 		    {
3735 		      bfd_put_32 (output_bfd,
3736 				  relocation,
3737 				  htab->splt->contents + off);
3738 		      bfd_put_32 (output_bfd,
3739 				  elf_gp (htab->splt->output_section->owner),
3740 				  htab->splt->contents + off + 4);
3741 		    }
3742 		}
3743 
3744 	      if (off >= (bfd_vma) -2)
3745 		abort ();
3746 
3747 	      /* PLABELs contain function pointers.  Relocation is to
3748 		 the entry for the function in the .plt.  The magic +2
3749 		 offset signals to $$dyncall that the function pointer
3750 		 is in the .plt and thus has a gp pointer too.
3751 		 Exception:  Undefined PLABELs should have a value of
3752 		 zero.  */
3753 	      if (hh == NULL
3754 		  || (hh->eh.root.type != bfd_link_hash_undefweak
3755 		      && hh->eh.root.type != bfd_link_hash_undefined))
3756 		{
3757 		  relocation = (off
3758 				+ htab->splt->output_offset
3759 				+ htab->splt->output_section->vma
3760 				+ 2);
3761 		}
3762 	      plabel = 1;
3763 	    }
3764 	  /* Fall through and possibly emit a dynamic relocation.  */
3765 
3766 	case R_PARISC_DIR17F:
3767 	case R_PARISC_DIR17R:
3768 	case R_PARISC_DIR14F:
3769 	case R_PARISC_DIR14R:
3770 	case R_PARISC_DIR21L:
3771 	case R_PARISC_DPREL14F:
3772 	case R_PARISC_DPREL14R:
3773 	case R_PARISC_DPREL21L:
3774 	case R_PARISC_DIR32:
3775 	  /* r_symndx will be zero only for relocs against symbols
3776 	     from removed linkonce sections, or sections discarded by
3777 	     a linker script.  */
3778 	  if (r_symndx == 0
3779 	      || (input_section->flags & SEC_ALLOC) == 0)
3780 	    break;
3781 
3782 	  /* The reloc types handled here and this conditional
3783 	     expression must match the code in ..check_relocs and
3784 	     allocate_dynrelocs.  ie. We need exactly the same condition
3785 	     as in ..check_relocs, with some extra conditions (dynindx
3786 	     test in this case) to cater for relocs removed by
3787 	     allocate_dynrelocs.  If you squint, the non-shared test
3788 	     here does indeed match the one in ..check_relocs, the
3789 	     difference being that here we test DEF_DYNAMIC as well as
3790 	     !DEF_REGULAR.  All common syms end up with !DEF_REGULAR,
3791 	     which is why we can't use just that test here.
3792 	     Conversely, DEF_DYNAMIC can't be used in check_relocs as
3793 	     there all files have not been loaded.  */
3794 	  if ((info->shared
3795 	       && (hh == NULL
3796 		   || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
3797 		   || hh->eh.root.type != bfd_link_hash_undefweak)
3798 	       && (IS_ABSOLUTE_RELOC (r_type)
3799 		   || !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
3800 	      || (!info->shared
3801 		  && hh != NULL
3802 		  && hh->eh.dynindx != -1
3803 		  && !hh->eh.non_got_ref
3804 		  && ((ELIMINATE_COPY_RELOCS
3805 		       && hh->eh.def_dynamic
3806 		       && !hh->eh.def_regular)
3807 		      || hh->eh.root.type == bfd_link_hash_undefweak
3808 		      || hh->eh.root.type == bfd_link_hash_undefined)))
3809 	    {
3810 	      Elf_Internal_Rela outrel;
3811 	      bfd_boolean skip;
3812 	      asection *sreloc;
3813 	      bfd_byte *loc;
3814 
3815 	      /* When generating a shared object, these relocations
3816 		 are copied into the output file to be resolved at run
3817 		 time.  */
3818 
3819 	      outrel.r_addend = rela->r_addend;
3820 	      outrel.r_offset =
3821 		_bfd_elf_section_offset (output_bfd, info, input_section,
3822 					 rela->r_offset);
3823 	      skip = (outrel.r_offset == (bfd_vma) -1
3824 		      || outrel.r_offset == (bfd_vma) -2);
3825 	      outrel.r_offset += (input_section->output_offset
3826 				  + input_section->output_section->vma);
3827 
3828 	      if (skip)
3829 		{
3830 		  memset (&outrel, 0, sizeof (outrel));
3831 		}
3832 	      else if (hh != NULL
3833 		       && hh->eh.dynindx != -1
3834 		       && (plabel
3835 			   || !IS_ABSOLUTE_RELOC (r_type)
3836 			   || !info->shared
3837 			   || !info->symbolic
3838 			   || !hh->eh.def_regular))
3839 		{
3840 		  outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
3841 		}
3842 	      else /* It's a local symbol, or one marked to become local.  */
3843 		{
3844 		  int indx = 0;
3845 
3846 		  /* Add the absolute offset of the symbol.  */
3847 		  outrel.r_addend += relocation;
3848 
3849 		  /* Global plabels need to be processed by the
3850 		     dynamic linker so that functions have at most one
3851 		     fptr.  For this reason, we need to differentiate
3852 		     between global and local plabels, which we do by
3853 		     providing the function symbol for a global plabel
3854 		     reloc, and no symbol for local plabels.  */
3855 		  if (! plabel
3856 		      && sym_sec != NULL
3857 		      && sym_sec->output_section != NULL
3858 		      && ! bfd_is_abs_section (sym_sec))
3859 		    {
3860 		      /* Skip this relocation if the output section has
3861 			 been discarded.  */
3862 		      if (bfd_is_abs_section (sym_sec->output_section))
3863 			break;
3864 
3865 		      indx = elf_section_data (sym_sec->output_section)->dynindx;
3866 		      /* We are turning this relocation into one
3867 			 against a section symbol, so subtract out the
3868 			 output section's address but not the offset
3869 			 of the input section in the output section.  */
3870 		      outrel.r_addend -= sym_sec->output_section->vma;
3871 		    }
3872 
3873 		  outrel.r_info = ELF32_R_INFO (indx, r_type);
3874 		}
3875 	      sreloc = elf_section_data (input_section)->sreloc;
3876 	      if (sreloc == NULL)
3877 		abort ();
3878 
3879 	      loc = sreloc->contents;
3880 	      loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3881 	      bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3882 	    }
3883 	  break;
3884 
3885 	default:
3886 	  break;
3887 	}
3888 
3889       rstatus = final_link_relocate (input_section, contents, rela, relocation,
3890 			       htab, sym_sec, hh, info);
3891 
3892       if (rstatus == bfd_reloc_ok)
3893 	continue;
3894 
3895       if (hh != NULL)
3896 	sym_name = hh->eh.root.root.string;
3897       else
3898 	{
3899 	  sym_name = bfd_elf_string_from_elf_section (input_bfd,
3900 						      symtab_hdr->sh_link,
3901 						      sym->st_name);
3902 	  if (sym_name == NULL)
3903 	    return FALSE;
3904 	  if (*sym_name == '\0')
3905 	    sym_name = bfd_section_name (input_bfd, sym_sec);
3906 	}
3907 
3908       howto = elf_hppa_howto_table + r_type;
3909 
3910       if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
3911 	{
3912 	  if (rstatus == bfd_reloc_notsupported || !warned_undef)
3913 	    {
3914 	      (*_bfd_error_handler)
3915 		(_("%B(%A+0x%lx): cannot handle %s for %s"),
3916 		 input_bfd,
3917 		 input_section,
3918 		 (long) rela->r_offset,
3919 		 howto->name,
3920 		 sym_name);
3921 	      bfd_set_error (bfd_error_bad_value);
3922 	      return FALSE;
3923 	    }
3924 	}
3925       else
3926 	{
3927 	  if (!((*info->callbacks->reloc_overflow)
3928 		(info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
3929 		 (bfd_vma) 0, input_bfd, input_section, rela->r_offset)))
3930 	    return FALSE;
3931 	}
3932     }
3933 
3934   return TRUE;
3935 }
3936 
3937 /* Finish up dynamic symbol handling.  We set the contents of various
3938    dynamic sections here.  */
3939 
3940 static bfd_boolean
elf32_hppa_finish_dynamic_symbol(bfd * output_bfd,struct bfd_link_info * info,struct elf_link_hash_entry * eh,Elf_Internal_Sym * sym)3941 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
3942 				  struct bfd_link_info *info,
3943 				  struct elf_link_hash_entry *eh,
3944 				  Elf_Internal_Sym *sym)
3945 {
3946   struct elf32_hppa_link_hash_table *htab;
3947   Elf_Internal_Rela rela;
3948   bfd_byte *loc;
3949 
3950   htab = hppa_link_hash_table (info);
3951 
3952   if (eh->plt.offset != (bfd_vma) -1)
3953     {
3954       bfd_vma value;
3955 
3956       if (eh->plt.offset & 1)
3957 	abort ();
3958 
3959       /* This symbol has an entry in the procedure linkage table.  Set
3960 	 it up.
3961 
3962 	 The format of a plt entry is
3963 	 <funcaddr>
3964 	 <__gp>
3965       */
3966       value = 0;
3967       if (eh->root.type == bfd_link_hash_defined
3968 	  || eh->root.type == bfd_link_hash_defweak)
3969 	{
3970 	  value = eh->root.u.def.value;
3971 	  if (eh->root.u.def.section->output_section != NULL)
3972 	    value += (eh->root.u.def.section->output_offset
3973 		      + eh->root.u.def.section->output_section->vma);
3974 	}
3975 
3976       /* Create a dynamic IPLT relocation for this entry.  */
3977       rela.r_offset = (eh->plt.offset
3978 		      + htab->splt->output_offset
3979 		      + htab->splt->output_section->vma);
3980       if (eh->dynindx != -1)
3981 	{
3982 	  rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
3983 	  rela.r_addend = 0;
3984 	}
3985       else
3986 	{
3987 	  /* This symbol has been marked to become local, and is
3988 	     used by a plabel so must be kept in the .plt.  */
3989 	  rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3990 	  rela.r_addend = value;
3991 	}
3992 
3993       loc = htab->srelplt->contents;
3994       loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
3995       bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rela, loc);
3996 
3997       if (!eh->def_regular)
3998 	{
3999 	  /* Mark the symbol as undefined, rather than as defined in
4000 	     the .plt section.  Leave the value alone.  */
4001 	  sym->st_shndx = SHN_UNDEF;
4002 	}
4003     }
4004 
4005   if (eh->got.offset != (bfd_vma) -1)
4006     {
4007       /* This symbol has an entry in the global offset table.  Set it
4008 	 up.  */
4009 
4010       rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4011 		      + htab->sgot->output_offset
4012 		      + htab->sgot->output_section->vma);
4013 
4014       /* If this is a -Bsymbolic link and the symbol is defined
4015 	 locally or was forced to be local because of a version file,
4016 	 we just want to emit a RELATIVE reloc.  The entry in the
4017 	 global offset table will already have been initialized in the
4018 	 relocate_section function.  */
4019       if (info->shared
4020 	  && (info->symbolic || eh->dynindx == -1)
4021 	  && eh->def_regular)
4022 	{
4023 	  rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4024 	  rela.r_addend = (eh->root.u.def.value
4025 			  + eh->root.u.def.section->output_offset
4026 			  + eh->root.u.def.section->output_section->vma);
4027 	}
4028       else
4029 	{
4030 	  if ((eh->got.offset & 1) != 0)
4031 	    abort ();
4032 
4033 	  bfd_put_32 (output_bfd, 0, htab->sgot->contents + (eh->got.offset & ~1));
4034 	  rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4035 	  rela.r_addend = 0;
4036 	}
4037 
4038       loc = htab->srelgot->contents;
4039       loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4040       bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4041     }
4042 
4043   if (eh->needs_copy)
4044     {
4045       asection *sec;
4046 
4047       /* This symbol needs a copy reloc.  Set it up.  */
4048 
4049       if (! (eh->dynindx != -1
4050 	     && (eh->root.type == bfd_link_hash_defined
4051 		 || eh->root.type == bfd_link_hash_defweak)))
4052 	abort ();
4053 
4054       sec = htab->srelbss;
4055 
4056       rela.r_offset = (eh->root.u.def.value
4057 		      + eh->root.u.def.section->output_offset
4058 		      + eh->root.u.def.section->output_section->vma);
4059       rela.r_addend = 0;
4060       rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4061       loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4062       bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4063     }
4064 
4065   /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.  */
4066   if (eh->root.root.string[0] == '_'
4067       && (strcmp (eh->root.root.string, "_DYNAMIC") == 0
4068 	  || eh == htab->etab.hgot))
4069     {
4070       sym->st_shndx = SHN_ABS;
4071     }
4072 
4073   return TRUE;
4074 }
4075 
4076 /* Used to decide how to sort relocs in an optimal manner for the
4077    dynamic linker, before writing them out.  */
4078 
4079 static enum elf_reloc_type_class
elf32_hppa_reloc_type_class(const Elf_Internal_Rela * rela)4080 elf32_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
4081 {
4082   if (ELF32_R_SYM (rela->r_info) == 0)
4083     return reloc_class_relative;
4084 
4085   switch ((int) ELF32_R_TYPE (rela->r_info))
4086     {
4087     case R_PARISC_IPLT:
4088       return reloc_class_plt;
4089     case R_PARISC_COPY:
4090       return reloc_class_copy;
4091     default:
4092       return reloc_class_normal;
4093     }
4094 }
4095 
4096 /* Finish up the dynamic sections.  */
4097 
4098 static bfd_boolean
elf32_hppa_finish_dynamic_sections(bfd * output_bfd,struct bfd_link_info * info)4099 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4100 				    struct bfd_link_info *info)
4101 {
4102   bfd *dynobj;
4103   struct elf32_hppa_link_hash_table *htab;
4104   asection *sdyn;
4105 
4106   htab = hppa_link_hash_table (info);
4107   dynobj = htab->etab.dynobj;
4108 
4109   sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4110 
4111   if (htab->etab.dynamic_sections_created)
4112     {
4113       Elf32_External_Dyn *dyncon, *dynconend;
4114 
4115       if (sdyn == NULL)
4116 	abort ();
4117 
4118       dyncon = (Elf32_External_Dyn *) sdyn->contents;
4119       dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4120       for (; dyncon < dynconend; dyncon++)
4121 	{
4122 	  Elf_Internal_Dyn dyn;
4123 	  asection *s;
4124 
4125 	  bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4126 
4127 	  switch (dyn.d_tag)
4128 	    {
4129 	    default:
4130 	      continue;
4131 
4132 	    case DT_PLTGOT:
4133 	      /* Use PLTGOT to set the GOT register.  */
4134 	      dyn.d_un.d_ptr = elf_gp (output_bfd);
4135 	      break;
4136 
4137 	    case DT_JMPREL:
4138 	      s = htab->srelplt;
4139 	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4140 	      break;
4141 
4142 	    case DT_PLTRELSZ:
4143 	      s = htab->srelplt;
4144 	      dyn.d_un.d_val = s->size;
4145 	      break;
4146 
4147 	    case DT_RELASZ:
4148 	      /* Don't count procedure linkage table relocs in the
4149 		 overall reloc count.  */
4150 	      s = htab->srelplt;
4151 	      if (s == NULL)
4152 		continue;
4153 	      dyn.d_un.d_val -= s->size;
4154 	      break;
4155 
4156 	    case DT_RELA:
4157 	      /* We may not be using the standard ELF linker script.
4158 		 If .rela.plt is the first .rela section, we adjust
4159 		 DT_RELA to not include it.  */
4160 	      s = htab->srelplt;
4161 	      if (s == NULL)
4162 		continue;
4163 	      if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4164 		continue;
4165 	      dyn.d_un.d_ptr += s->size;
4166 	      break;
4167 	    }
4168 
4169 	  bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4170 	}
4171     }
4172 
4173   if (htab->sgot != NULL && htab->sgot->size != 0)
4174     {
4175       /* Fill in the first entry in the global offset table.
4176 	 We use it to point to our dynamic section, if we have one.  */
4177       bfd_put_32 (output_bfd,
4178 		  sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4179 		  htab->sgot->contents);
4180 
4181       /* The second entry is reserved for use by the dynamic linker.  */
4182       memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4183 
4184       /* Set .got entry size.  */
4185       elf_section_data (htab->sgot->output_section)
4186 	->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4187     }
4188 
4189   if (htab->splt != NULL && htab->splt->size != 0)
4190     {
4191       /* Set plt entry size.  */
4192       elf_section_data (htab->splt->output_section)
4193 	->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4194 
4195       if (htab->need_plt_stub)
4196 	{
4197 	  /* Set up the .plt stub.  */
4198 	  memcpy (htab->splt->contents
4199 		  + htab->splt->size - sizeof (plt_stub),
4200 		  plt_stub, sizeof (plt_stub));
4201 
4202 	  if ((htab->splt->output_offset
4203 	       + htab->splt->output_section->vma
4204 	       + htab->splt->size)
4205 	      != (htab->sgot->output_offset
4206 		  + htab->sgot->output_section->vma))
4207 	    {
4208 	      (*_bfd_error_handler)
4209 		(_(".got section not immediately after .plt section"));
4210 	      return FALSE;
4211 	    }
4212 	}
4213     }
4214 
4215   return TRUE;
4216 }
4217 
4218 /* Tweak the OSABI field of the elf header.  */
4219 
4220 static void
elf32_hppa_post_process_headers(bfd * abfd,struct bfd_link_info * info ATTRIBUTE_UNUSED)4221 elf32_hppa_post_process_headers (bfd *abfd,
4222 				 struct bfd_link_info *info ATTRIBUTE_UNUSED)
4223 {
4224   Elf_Internal_Ehdr * i_ehdrp;
4225 
4226   i_ehdrp = elf_elfheader (abfd);
4227 
4228   if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
4229     {
4230       i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
4231     }
4232   else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
4233     {
4234       i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_NETBSD;
4235     }
4236   else
4237     {
4238       i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
4239     }
4240 }
4241 
4242 /* Called when writing out an object file to decide the type of a
4243    symbol.  */
4244 static int
elf32_hppa_elf_get_symbol_type(Elf_Internal_Sym * elf_sym,int type)4245 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4246 {
4247   if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4248     return STT_PARISC_MILLI;
4249   else
4250     return type;
4251 }
4252 
4253 /* Misc BFD support code.  */
4254 #define bfd_elf32_bfd_is_local_label_name    elf_hppa_is_local_label_name
4255 #define bfd_elf32_bfd_reloc_type_lookup	     elf_hppa_reloc_type_lookup
4256 #define elf_info_to_howto		     elf_hppa_info_to_howto
4257 #define elf_info_to_howto_rel		     elf_hppa_info_to_howto_rel
4258 
4259 /* Stuff for the BFD linker.  */
4260 #define bfd_elf32_bfd_final_link	     elf32_hppa_final_link
4261 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4262 #define bfd_elf32_bfd_link_hash_table_free   elf32_hppa_link_hash_table_free
4263 #define elf_backend_adjust_dynamic_symbol    elf32_hppa_adjust_dynamic_symbol
4264 #define elf_backend_copy_indirect_symbol     elf32_hppa_copy_indirect_symbol
4265 #define elf_backend_check_relocs	     elf32_hppa_check_relocs
4266 #define elf_backend_create_dynamic_sections  elf32_hppa_create_dynamic_sections
4267 #define elf_backend_fake_sections	     elf_hppa_fake_sections
4268 #define elf_backend_relocate_section	     elf32_hppa_relocate_section
4269 #define elf_backend_hide_symbol		     elf32_hppa_hide_symbol
4270 #define elf_backend_finish_dynamic_symbol    elf32_hppa_finish_dynamic_symbol
4271 #define elf_backend_finish_dynamic_sections  elf32_hppa_finish_dynamic_sections
4272 #define elf_backend_size_dynamic_sections    elf32_hppa_size_dynamic_sections
4273 #define elf_backend_gc_mark_hook	     elf32_hppa_gc_mark_hook
4274 #define elf_backend_gc_sweep_hook	     elf32_hppa_gc_sweep_hook
4275 #define elf_backend_grok_prstatus	     elf32_hppa_grok_prstatus
4276 #define elf_backend_grok_psinfo		     elf32_hppa_grok_psinfo
4277 #define elf_backend_object_p		     elf32_hppa_object_p
4278 #define elf_backend_final_write_processing   elf_hppa_final_write_processing
4279 #define elf_backend_post_process_headers     elf32_hppa_post_process_headers
4280 #define elf_backend_get_symbol_type	     elf32_hppa_elf_get_symbol_type
4281 #define elf_backend_reloc_type_class	     elf32_hppa_reloc_type_class
4282 #define elf_backend_action_discarded	     elf_hppa_action_discarded
4283 
4284 #define elf_backend_can_gc_sections	     1
4285 #define elf_backend_can_refcount	     1
4286 #define elf_backend_plt_alignment	     2
4287 #define elf_backend_want_got_plt	     0
4288 #define elf_backend_plt_readonly	     0
4289 #define elf_backend_want_plt_sym	     0
4290 #define elf_backend_got_header_size	     8
4291 #define elf_backend_rela_normal		     1
4292 
4293 #define TARGET_BIG_SYM		bfd_elf32_hppa_vec
4294 #define TARGET_BIG_NAME		"elf32-hppa"
4295 #define ELF_ARCH		bfd_arch_hppa
4296 #define ELF_MACHINE_CODE	EM_PARISC
4297 #define ELF_MAXPAGESIZE		0x1000
4298 
4299 #include "elf32-target.h"
4300 
4301 #undef TARGET_BIG_SYM
4302 #define TARGET_BIG_SYM			bfd_elf32_hppa_linux_vec
4303 #undef TARGET_BIG_NAME
4304 #define TARGET_BIG_NAME			"elf32-hppa-linux"
4305 
4306 #define INCLUDED_TARGET_FILE 1
4307 #include "elf32-target.h"
4308 
4309 #undef TARGET_BIG_SYM
4310 #define TARGET_BIG_SYM			bfd_elf32_hppa_nbsd_vec
4311 #undef TARGET_BIG_NAME
4312 #define TARGET_BIG_NAME			"elf32-hppa-netbsd"
4313 
4314 #include "elf32-target.h"
4315