1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/blk-cgroup.h>
10 #include <linux/file.h>
11 #include <linux/fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/xattr.h>
21 #include <linux/posix_acl.h>
22 #include <linux/falloc.h>
23 #include <linux/slab.h>
24 #include <linux/ratelimit.h>
25 #include <linux/btrfs.h>
26 #include <linux/blkdev.h>
27 #include <linux/posix_acl_xattr.h>
28 #include <linux/uio.h>
29 #include <linux/magic.h>
30 #include <linux/iversion.h>
31 #include <linux/swap.h>
32 #include <linux/migrate.h>
33 #include <linux/sched/mm.h>
34 #include <linux/iomap.h>
35 #include <linux/unaligned.h>
36 #include <linux/fsverity.h>
37 #include "misc.h"
38 #include "ctree.h"
39 #include "disk-io.h"
40 #include "transaction.h"
41 #include "btrfs_inode.h"
42 #include "ordered-data.h"
43 #include "xattr.h"
44 #include "tree-log.h"
45 #include "bio.h"
46 #include "compression.h"
47 #include "locking.h"
48 #include "props.h"
49 #include "qgroup.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
52 #include "space-info.h"
53 #include "zoned.h"
54 #include "subpage.h"
55 #include "inode-item.h"
56 #include "fs.h"
57 #include "accessors.h"
58 #include "extent-tree.h"
59 #include "root-tree.h"
60 #include "defrag.h"
61 #include "dir-item.h"
62 #include "file-item.h"
63 #include "uuid-tree.h"
64 #include "ioctl.h"
65 #include "file.h"
66 #include "acl.h"
67 #include "relocation.h"
68 #include "verity.h"
69 #include "super.h"
70 #include "orphan.h"
71 #include "backref.h"
72 #include "raid-stripe-tree.h"
73 #include "fiemap.h"
74
75 struct btrfs_iget_args {
76 u64 ino;
77 struct btrfs_root *root;
78 };
79
80 struct btrfs_rename_ctx {
81 /* Output field. Stores the index number of the old directory entry. */
82 u64 index;
83 };
84
85 /*
86 * Used by data_reloc_print_warning_inode() to pass needed info for filename
87 * resolution and output of error message.
88 */
89 struct data_reloc_warn {
90 struct btrfs_path path;
91 struct btrfs_fs_info *fs_info;
92 u64 extent_item_size;
93 u64 logical;
94 int mirror_num;
95 };
96
97 /*
98 * For the file_extent_tree, we want to hold the inode lock when we lookup and
99 * update the disk_i_size, but lockdep will complain because our io_tree we hold
100 * the tree lock and get the inode lock when setting delalloc. These two things
101 * are unrelated, so make a class for the file_extent_tree so we don't get the
102 * two locking patterns mixed up.
103 */
104 static struct lock_class_key file_extent_tree_class;
105
106 static const struct inode_operations btrfs_dir_inode_operations;
107 static const struct inode_operations btrfs_symlink_inode_operations;
108 static const struct inode_operations btrfs_special_inode_operations;
109 static const struct inode_operations btrfs_file_inode_operations;
110 static const struct address_space_operations btrfs_aops;
111 static const struct file_operations btrfs_dir_file_operations;
112
113 static struct kmem_cache *btrfs_inode_cachep;
114
115 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
116 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback);
117
118 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
119 struct folio *locked_folio, u64 start,
120 u64 end, struct writeback_control *wbc,
121 bool pages_dirty);
122
data_reloc_print_warning_inode(u64 inum,u64 offset,u64 num_bytes,u64 root,void * warn_ctx)123 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
124 u64 root, void *warn_ctx)
125 {
126 struct data_reloc_warn *warn = warn_ctx;
127 struct btrfs_fs_info *fs_info = warn->fs_info;
128 struct extent_buffer *eb;
129 struct btrfs_inode_item *inode_item;
130 struct inode_fs_paths *ipath = NULL;
131 struct btrfs_root *local_root;
132 struct btrfs_key key;
133 unsigned int nofs_flag;
134 u32 nlink;
135 int ret;
136
137 local_root = btrfs_get_fs_root(fs_info, root, true);
138 if (IS_ERR(local_root)) {
139 ret = PTR_ERR(local_root);
140 goto err;
141 }
142
143 /* This makes the path point to (inum INODE_ITEM ioff). */
144 key.objectid = inum;
145 key.type = BTRFS_INODE_ITEM_KEY;
146 key.offset = 0;
147
148 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0);
149 if (ret) {
150 btrfs_put_root(local_root);
151 btrfs_release_path(&warn->path);
152 goto err;
153 }
154
155 eb = warn->path.nodes[0];
156 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item);
157 nlink = btrfs_inode_nlink(eb, inode_item);
158 btrfs_release_path(&warn->path);
159
160 nofs_flag = memalloc_nofs_save();
161 ipath = init_ipath(4096, local_root, &warn->path);
162 memalloc_nofs_restore(nofs_flag);
163 if (IS_ERR(ipath)) {
164 btrfs_put_root(local_root);
165 ret = PTR_ERR(ipath);
166 ipath = NULL;
167 /*
168 * -ENOMEM, not a critical error, just output an generic error
169 * without filename.
170 */
171 btrfs_warn(fs_info,
172 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu",
173 warn->logical, warn->mirror_num, root, inum, offset);
174 return ret;
175 }
176 ret = paths_from_inode(inum, ipath);
177 if (ret < 0)
178 goto err;
179
180 /*
181 * We deliberately ignore the bit ipath might have been too small to
182 * hold all of the paths here
183 */
184 for (int i = 0; i < ipath->fspath->elem_cnt; i++) {
185 btrfs_warn(fs_info,
186 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)",
187 warn->logical, warn->mirror_num, root, inum, offset,
188 fs_info->sectorsize, nlink,
189 (char *)(unsigned long)ipath->fspath->val[i]);
190 }
191
192 btrfs_put_root(local_root);
193 free_ipath(ipath);
194 return 0;
195
196 err:
197 btrfs_warn(fs_info,
198 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d",
199 warn->logical, warn->mirror_num, root, inum, offset, ret);
200
201 free_ipath(ipath);
202 return ret;
203 }
204
205 /*
206 * Do extra user-friendly error output (e.g. lookup all the affected files).
207 *
208 * Return true if we succeeded doing the backref lookup.
209 * Return false if such lookup failed, and has to fallback to the old error message.
210 */
print_data_reloc_error(const struct btrfs_inode * inode,u64 file_off,const u8 * csum,const u8 * csum_expected,int mirror_num)211 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off,
212 const u8 *csum, const u8 *csum_expected,
213 int mirror_num)
214 {
215 struct btrfs_fs_info *fs_info = inode->root->fs_info;
216 struct btrfs_path path = { 0 };
217 struct btrfs_key found_key = { 0 };
218 struct extent_buffer *eb;
219 struct btrfs_extent_item *ei;
220 const u32 csum_size = fs_info->csum_size;
221 u64 logical;
222 u64 flags;
223 u32 item_size;
224 int ret;
225
226 mutex_lock(&fs_info->reloc_mutex);
227 logical = btrfs_get_reloc_bg_bytenr(fs_info);
228 mutex_unlock(&fs_info->reloc_mutex);
229
230 if (logical == U64_MAX) {
231 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation");
232 btrfs_warn_rl(fs_info,
233 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
234 btrfs_root_id(inode->root), btrfs_ino(inode), file_off,
235 CSUM_FMT_VALUE(csum_size, csum),
236 CSUM_FMT_VALUE(csum_size, csum_expected),
237 mirror_num);
238 return;
239 }
240
241 logical += file_off;
242 btrfs_warn_rl(fs_info,
243 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
244 btrfs_root_id(inode->root),
245 btrfs_ino(inode), file_off, logical,
246 CSUM_FMT_VALUE(csum_size, csum),
247 CSUM_FMT_VALUE(csum_size, csum_expected),
248 mirror_num);
249
250 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags);
251 if (ret < 0) {
252 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d",
253 logical, ret);
254 return;
255 }
256 eb = path.nodes[0];
257 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item);
258 item_size = btrfs_item_size(eb, path.slots[0]);
259 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
260 unsigned long ptr = 0;
261 u64 ref_root;
262 u8 ref_level;
263
264 while (true) {
265 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
266 item_size, &ref_root,
267 &ref_level);
268 if (ret < 0) {
269 btrfs_warn_rl(fs_info,
270 "failed to resolve tree backref for logical %llu: %d",
271 logical, ret);
272 break;
273 }
274 if (ret > 0)
275 break;
276
277 btrfs_warn_rl(fs_info,
278 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu",
279 logical, mirror_num,
280 (ref_level ? "node" : "leaf"),
281 ref_level, ref_root);
282 }
283 btrfs_release_path(&path);
284 } else {
285 struct btrfs_backref_walk_ctx ctx = { 0 };
286 struct data_reloc_warn reloc_warn = { 0 };
287
288 btrfs_release_path(&path);
289
290 ctx.bytenr = found_key.objectid;
291 ctx.extent_item_pos = logical - found_key.objectid;
292 ctx.fs_info = fs_info;
293
294 reloc_warn.logical = logical;
295 reloc_warn.extent_item_size = found_key.offset;
296 reloc_warn.mirror_num = mirror_num;
297 reloc_warn.fs_info = fs_info;
298
299 iterate_extent_inodes(&ctx, true,
300 data_reloc_print_warning_inode, &reloc_warn);
301 }
302 }
303
btrfs_print_data_csum_error(struct btrfs_inode * inode,u64 logical_start,u8 * csum,u8 * csum_expected,int mirror_num)304 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode,
305 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
306 {
307 struct btrfs_root *root = inode->root;
308 const u32 csum_size = root->fs_info->csum_size;
309
310 /* For data reloc tree, it's better to do a backref lookup instead. */
311 if (btrfs_root_id(root) == BTRFS_DATA_RELOC_TREE_OBJECTID)
312 return print_data_reloc_error(inode, logical_start, csum,
313 csum_expected, mirror_num);
314
315 /* Output without objectid, which is more meaningful */
316 if (btrfs_root_id(root) >= BTRFS_LAST_FREE_OBJECTID) {
317 btrfs_warn_rl(root->fs_info,
318 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
319 btrfs_root_id(root), btrfs_ino(inode),
320 logical_start,
321 CSUM_FMT_VALUE(csum_size, csum),
322 CSUM_FMT_VALUE(csum_size, csum_expected),
323 mirror_num);
324 } else {
325 btrfs_warn_rl(root->fs_info,
326 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
327 btrfs_root_id(root), btrfs_ino(inode),
328 logical_start,
329 CSUM_FMT_VALUE(csum_size, csum),
330 CSUM_FMT_VALUE(csum_size, csum_expected),
331 mirror_num);
332 }
333 }
334
335 /*
336 * Lock inode i_rwsem based on arguments passed.
337 *
338 * ilock_flags can have the following bit set:
339 *
340 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
341 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
342 * return -EAGAIN
343 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
344 */
btrfs_inode_lock(struct btrfs_inode * inode,unsigned int ilock_flags)345 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags)
346 {
347 if (ilock_flags & BTRFS_ILOCK_SHARED) {
348 if (ilock_flags & BTRFS_ILOCK_TRY) {
349 if (!inode_trylock_shared(&inode->vfs_inode))
350 return -EAGAIN;
351 else
352 return 0;
353 }
354 inode_lock_shared(&inode->vfs_inode);
355 } else {
356 if (ilock_flags & BTRFS_ILOCK_TRY) {
357 if (!inode_trylock(&inode->vfs_inode))
358 return -EAGAIN;
359 else
360 return 0;
361 }
362 inode_lock(&inode->vfs_inode);
363 }
364 if (ilock_flags & BTRFS_ILOCK_MMAP)
365 down_write(&inode->i_mmap_lock);
366 return 0;
367 }
368
369 /*
370 * Unock inode i_rwsem.
371 *
372 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
373 * to decide whether the lock acquired is shared or exclusive.
374 */
btrfs_inode_unlock(struct btrfs_inode * inode,unsigned int ilock_flags)375 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags)
376 {
377 if (ilock_flags & BTRFS_ILOCK_MMAP)
378 up_write(&inode->i_mmap_lock);
379 if (ilock_flags & BTRFS_ILOCK_SHARED)
380 inode_unlock_shared(&inode->vfs_inode);
381 else
382 inode_unlock(&inode->vfs_inode);
383 }
384
385 /*
386 * Cleanup all submitted ordered extents in specified range to handle errors
387 * from the btrfs_run_delalloc_range() callback.
388 *
389 * NOTE: caller must ensure that when an error happens, it can not call
390 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
391 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
392 * to be released, which we want to happen only when finishing the ordered
393 * extent (btrfs_finish_ordered_io()).
394 */
btrfs_cleanup_ordered_extents(struct btrfs_inode * inode,struct folio * locked_folio,u64 offset,u64 bytes)395 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
396 struct folio *locked_folio,
397 u64 offset, u64 bytes)
398 {
399 unsigned long index = offset >> PAGE_SHIFT;
400 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
401 u64 page_start = 0, page_end = 0;
402 struct folio *folio;
403
404 if (locked_folio) {
405 page_start = folio_pos(locked_folio);
406 page_end = page_start + folio_size(locked_folio) - 1;
407 }
408
409 while (index <= end_index) {
410 /*
411 * For locked page, we will call btrfs_mark_ordered_io_finished
412 * through btrfs_mark_ordered_io_finished() on it
413 * in run_delalloc_range() for the error handling, which will
414 * clear page Ordered and run the ordered extent accounting.
415 *
416 * Here we can't just clear the Ordered bit, or
417 * btrfs_mark_ordered_io_finished() would skip the accounting
418 * for the page range, and the ordered extent will never finish.
419 */
420 if (locked_folio && index == (page_start >> PAGE_SHIFT)) {
421 index++;
422 continue;
423 }
424 folio = __filemap_get_folio(inode->vfs_inode.i_mapping, index, 0, 0);
425 index++;
426 if (IS_ERR(folio))
427 continue;
428
429 /*
430 * Here we just clear all Ordered bits for every page in the
431 * range, then btrfs_mark_ordered_io_finished() will handle
432 * the ordered extent accounting for the range.
433 */
434 btrfs_folio_clamp_clear_ordered(inode->root->fs_info, folio,
435 offset, bytes);
436 folio_put(folio);
437 }
438
439 if (locked_folio) {
440 /* The locked page covers the full range, nothing needs to be done */
441 if (bytes + offset <= page_start + folio_size(locked_folio))
442 return;
443 /*
444 * In case this page belongs to the delalloc range being
445 * instantiated then skip it, since the first page of a range is
446 * going to be properly cleaned up by the caller of
447 * run_delalloc_range
448 */
449 if (page_start >= offset && page_end <= (offset + bytes - 1)) {
450 bytes = offset + bytes - folio_pos(locked_folio) -
451 folio_size(locked_folio);
452 offset = folio_pos(locked_folio) + folio_size(locked_folio);
453 }
454 }
455
456 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false);
457 }
458
459 static int btrfs_dirty_inode(struct btrfs_inode *inode);
460
btrfs_init_inode_security(struct btrfs_trans_handle * trans,struct btrfs_new_inode_args * args)461 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
462 struct btrfs_new_inode_args *args)
463 {
464 int err;
465
466 if (args->default_acl) {
467 err = __btrfs_set_acl(trans, args->inode, args->default_acl,
468 ACL_TYPE_DEFAULT);
469 if (err)
470 return err;
471 }
472 if (args->acl) {
473 err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
474 if (err)
475 return err;
476 }
477 if (!args->default_acl && !args->acl)
478 cache_no_acl(args->inode);
479 return btrfs_xattr_security_init(trans, args->inode, args->dir,
480 &args->dentry->d_name);
481 }
482
483 /*
484 * this does all the hard work for inserting an inline extent into
485 * the btree. The caller should have done a btrfs_drop_extents so that
486 * no overlapping inline items exist in the btree
487 */
insert_inline_extent(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_inode * inode,bool extent_inserted,size_t size,size_t compressed_size,int compress_type,struct folio * compressed_folio,bool update_i_size)488 static int insert_inline_extent(struct btrfs_trans_handle *trans,
489 struct btrfs_path *path,
490 struct btrfs_inode *inode, bool extent_inserted,
491 size_t size, size_t compressed_size,
492 int compress_type,
493 struct folio *compressed_folio,
494 bool update_i_size)
495 {
496 struct btrfs_root *root = inode->root;
497 struct extent_buffer *leaf;
498 const u32 sectorsize = trans->fs_info->sectorsize;
499 char *kaddr;
500 unsigned long ptr;
501 struct btrfs_file_extent_item *ei;
502 int ret;
503 size_t cur_size = size;
504 u64 i_size;
505
506 /*
507 * The decompressed size must still be no larger than a sector. Under
508 * heavy race, we can have size == 0 passed in, but that shouldn't be a
509 * big deal and we can continue the insertion.
510 */
511 ASSERT(size <= sectorsize);
512
513 /*
514 * The compressed size also needs to be no larger than a sector.
515 * That's also why we only need one page as the parameter.
516 */
517 if (compressed_folio)
518 ASSERT(compressed_size <= sectorsize);
519 else
520 ASSERT(compressed_size == 0);
521
522 if (compressed_size && compressed_folio)
523 cur_size = compressed_size;
524
525 if (!extent_inserted) {
526 struct btrfs_key key;
527 size_t datasize;
528
529 key.objectid = btrfs_ino(inode);
530 key.offset = 0;
531 key.type = BTRFS_EXTENT_DATA_KEY;
532
533 datasize = btrfs_file_extent_calc_inline_size(cur_size);
534 ret = btrfs_insert_empty_item(trans, root, path, &key,
535 datasize);
536 if (ret)
537 goto fail;
538 }
539 leaf = path->nodes[0];
540 ei = btrfs_item_ptr(leaf, path->slots[0],
541 struct btrfs_file_extent_item);
542 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
543 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
544 btrfs_set_file_extent_encryption(leaf, ei, 0);
545 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
546 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
547 ptr = btrfs_file_extent_inline_start(ei);
548
549 if (compress_type != BTRFS_COMPRESS_NONE) {
550 kaddr = kmap_local_folio(compressed_folio, 0);
551 write_extent_buffer(leaf, kaddr, ptr, compressed_size);
552 kunmap_local(kaddr);
553
554 btrfs_set_file_extent_compression(leaf, ei,
555 compress_type);
556 } else {
557 struct folio *folio;
558
559 folio = __filemap_get_folio(inode->vfs_inode.i_mapping,
560 0, 0, 0);
561 ASSERT(!IS_ERR(folio));
562 btrfs_set_file_extent_compression(leaf, ei, 0);
563 kaddr = kmap_local_folio(folio, 0);
564 write_extent_buffer(leaf, kaddr, ptr, size);
565 kunmap_local(kaddr);
566 folio_put(folio);
567 }
568 btrfs_mark_buffer_dirty(trans, leaf);
569 btrfs_release_path(path);
570
571 /*
572 * We align size to sectorsize for inline extents just for simplicity
573 * sake.
574 */
575 ret = btrfs_inode_set_file_extent_range(inode, 0,
576 ALIGN(size, root->fs_info->sectorsize));
577 if (ret)
578 goto fail;
579
580 /*
581 * We're an inline extent, so nobody can extend the file past i_size
582 * without locking a page we already have locked.
583 *
584 * We must do any i_size and inode updates before we unlock the pages.
585 * Otherwise we could end up racing with unlink.
586 */
587 i_size = i_size_read(&inode->vfs_inode);
588 if (update_i_size && size > i_size) {
589 i_size_write(&inode->vfs_inode, size);
590 i_size = size;
591 }
592 inode->disk_i_size = i_size;
593
594 fail:
595 return ret;
596 }
597
can_cow_file_range_inline(struct btrfs_inode * inode,u64 offset,u64 size,size_t compressed_size)598 static bool can_cow_file_range_inline(struct btrfs_inode *inode,
599 u64 offset, u64 size,
600 size_t compressed_size)
601 {
602 struct btrfs_fs_info *fs_info = inode->root->fs_info;
603 u64 data_len = (compressed_size ?: size);
604
605 /* Inline extents must start at offset 0. */
606 if (offset != 0)
607 return false;
608
609 /*
610 * Due to the page size limit, for subpage we can only trigger the
611 * writeback for the dirty sectors of page, that means data writeback
612 * is doing more writeback than what we want.
613 *
614 * This is especially unexpected for some call sites like fallocate,
615 * where we only increase i_size after everything is done.
616 * This means we can trigger inline extent even if we didn't want to.
617 * So here we skip inline extent creation completely.
618 */
619 if (fs_info->sectorsize != PAGE_SIZE)
620 return false;
621
622 /* Inline extents are limited to sectorsize. */
623 if (size > fs_info->sectorsize)
624 return false;
625
626 /* We cannot exceed the maximum inline data size. */
627 if (data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
628 return false;
629
630 /* We cannot exceed the user specified max_inline size. */
631 if (data_len > fs_info->max_inline)
632 return false;
633
634 /* Inline extents must be the entirety of the file. */
635 if (size < i_size_read(&inode->vfs_inode))
636 return false;
637
638 return true;
639 }
640
641 /*
642 * conditionally insert an inline extent into the file. This
643 * does the checks required to make sure the data is small enough
644 * to fit as an inline extent.
645 *
646 * If being used directly, you must have already checked we're allowed to cow
647 * the range by getting true from can_cow_file_range_inline().
648 */
__cow_file_range_inline(struct btrfs_inode * inode,u64 offset,u64 size,size_t compressed_size,int compress_type,struct folio * compressed_folio,bool update_i_size)649 static noinline int __cow_file_range_inline(struct btrfs_inode *inode, u64 offset,
650 u64 size, size_t compressed_size,
651 int compress_type,
652 struct folio *compressed_folio,
653 bool update_i_size)
654 {
655 struct btrfs_drop_extents_args drop_args = { 0 };
656 struct btrfs_root *root = inode->root;
657 struct btrfs_fs_info *fs_info = root->fs_info;
658 struct btrfs_trans_handle *trans;
659 u64 data_len = (compressed_size ?: size);
660 int ret;
661 struct btrfs_path *path;
662
663 path = btrfs_alloc_path();
664 if (!path)
665 return -ENOMEM;
666
667 trans = btrfs_join_transaction(root);
668 if (IS_ERR(trans)) {
669 btrfs_free_path(path);
670 return PTR_ERR(trans);
671 }
672 trans->block_rsv = &inode->block_rsv;
673
674 drop_args.path = path;
675 drop_args.start = 0;
676 drop_args.end = fs_info->sectorsize;
677 drop_args.drop_cache = true;
678 drop_args.replace_extent = true;
679 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
680 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
681 if (ret) {
682 btrfs_abort_transaction(trans, ret);
683 goto out;
684 }
685
686 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
687 size, compressed_size, compress_type,
688 compressed_folio, update_i_size);
689 if (ret && ret != -ENOSPC) {
690 btrfs_abort_transaction(trans, ret);
691 goto out;
692 } else if (ret == -ENOSPC) {
693 ret = 1;
694 goto out;
695 }
696
697 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
698 ret = btrfs_update_inode(trans, inode);
699 if (ret && ret != -ENOSPC) {
700 btrfs_abort_transaction(trans, ret);
701 goto out;
702 } else if (ret == -ENOSPC) {
703 ret = 1;
704 goto out;
705 }
706
707 btrfs_set_inode_full_sync(inode);
708 out:
709 /*
710 * Don't forget to free the reserved space, as for inlined extent
711 * it won't count as data extent, free them directly here.
712 * And at reserve time, it's always aligned to page size, so
713 * just free one page here.
714 */
715 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE, NULL);
716 btrfs_free_path(path);
717 btrfs_end_transaction(trans);
718 return ret;
719 }
720
cow_file_range_inline(struct btrfs_inode * inode,struct folio * locked_folio,u64 offset,u64 end,size_t compressed_size,int compress_type,struct folio * compressed_folio,bool update_i_size)721 static noinline int cow_file_range_inline(struct btrfs_inode *inode,
722 struct folio *locked_folio,
723 u64 offset, u64 end,
724 size_t compressed_size,
725 int compress_type,
726 struct folio *compressed_folio,
727 bool update_i_size)
728 {
729 struct extent_state *cached = NULL;
730 unsigned long clear_flags = EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
731 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING | EXTENT_LOCKED;
732 u64 size = min_t(u64, i_size_read(&inode->vfs_inode), end + 1);
733 int ret;
734
735 if (!can_cow_file_range_inline(inode, offset, size, compressed_size))
736 return 1;
737
738 lock_extent(&inode->io_tree, offset, end, &cached);
739 ret = __cow_file_range_inline(inode, offset, size, compressed_size,
740 compress_type, compressed_folio,
741 update_i_size);
742 if (ret > 0) {
743 unlock_extent(&inode->io_tree, offset, end, &cached);
744 return ret;
745 }
746
747 /*
748 * In the successful case (ret == 0 here), cow_file_range will return 1.
749 *
750 * Quite a bit further up the callstack in extent_writepage(), ret == 1
751 * is treated as a short circuited success and does not unlock the folio,
752 * so we must do it here.
753 *
754 * In the failure case, the locked_folio does get unlocked by
755 * btrfs_folio_end_all_writers, which asserts that it is still locked
756 * at that point, so we must *not* unlock it here.
757 *
758 * The other two callsites in compress_file_range do not have a
759 * locked_folio, so they are not relevant to this logic.
760 */
761 if (ret == 0)
762 locked_folio = NULL;
763
764 extent_clear_unlock_delalloc(inode, offset, end, locked_folio, &cached,
765 clear_flags, PAGE_UNLOCK |
766 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
767 return ret;
768 }
769
770 struct async_extent {
771 u64 start;
772 u64 ram_size;
773 u64 compressed_size;
774 struct folio **folios;
775 unsigned long nr_folios;
776 int compress_type;
777 struct list_head list;
778 };
779
780 struct async_chunk {
781 struct btrfs_inode *inode;
782 struct folio *locked_folio;
783 u64 start;
784 u64 end;
785 blk_opf_t write_flags;
786 struct list_head extents;
787 struct cgroup_subsys_state *blkcg_css;
788 struct btrfs_work work;
789 struct async_cow *async_cow;
790 };
791
792 struct async_cow {
793 atomic_t num_chunks;
794 struct async_chunk chunks[];
795 };
796
add_async_extent(struct async_chunk * cow,u64 start,u64 ram_size,u64 compressed_size,struct folio ** folios,unsigned long nr_folios,int compress_type)797 static noinline int add_async_extent(struct async_chunk *cow,
798 u64 start, u64 ram_size,
799 u64 compressed_size,
800 struct folio **folios,
801 unsigned long nr_folios,
802 int compress_type)
803 {
804 struct async_extent *async_extent;
805
806 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
807 if (!async_extent)
808 return -ENOMEM;
809 async_extent->start = start;
810 async_extent->ram_size = ram_size;
811 async_extent->compressed_size = compressed_size;
812 async_extent->folios = folios;
813 async_extent->nr_folios = nr_folios;
814 async_extent->compress_type = compress_type;
815 list_add_tail(&async_extent->list, &cow->extents);
816 return 0;
817 }
818
819 /*
820 * Check if the inode needs to be submitted to compression, based on mount
821 * options, defragmentation, properties or heuristics.
822 */
inode_need_compress(struct btrfs_inode * inode,u64 start,u64 end)823 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
824 u64 end)
825 {
826 struct btrfs_fs_info *fs_info = inode->root->fs_info;
827
828 if (!btrfs_inode_can_compress(inode)) {
829 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
830 KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
831 btrfs_ino(inode));
832 return 0;
833 }
834 /*
835 * Special check for subpage.
836 *
837 * We lock the full page then run each delalloc range in the page, thus
838 * for the following case, we will hit some subpage specific corner case:
839 *
840 * 0 32K 64K
841 * | |///////| |///////|
842 * \- A \- B
843 *
844 * In above case, both range A and range B will try to unlock the full
845 * page [0, 64K), causing the one finished later will have page
846 * unlocked already, triggering various page lock requirement BUG_ON()s.
847 *
848 * So here we add an artificial limit that subpage compression can only
849 * if the range is fully page aligned.
850 *
851 * In theory we only need to ensure the first page is fully covered, but
852 * the tailing partial page will be locked until the full compression
853 * finishes, delaying the write of other range.
854 *
855 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range
856 * first to prevent any submitted async extent to unlock the full page.
857 * By this, we can ensure for subpage case that only the last async_cow
858 * will unlock the full page.
859 */
860 if (fs_info->sectorsize < PAGE_SIZE) {
861 if (!PAGE_ALIGNED(start) ||
862 !PAGE_ALIGNED(end + 1))
863 return 0;
864 }
865
866 /* force compress */
867 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
868 return 1;
869 /* defrag ioctl */
870 if (inode->defrag_compress)
871 return 1;
872 /* bad compression ratios */
873 if (inode->flags & BTRFS_INODE_NOCOMPRESS)
874 return 0;
875 if (btrfs_test_opt(fs_info, COMPRESS) ||
876 inode->flags & BTRFS_INODE_COMPRESS ||
877 inode->prop_compress)
878 return btrfs_compress_heuristic(inode, start, end);
879 return 0;
880 }
881
inode_should_defrag(struct btrfs_inode * inode,u64 start,u64 end,u64 num_bytes,u32 small_write)882 static inline void inode_should_defrag(struct btrfs_inode *inode,
883 u64 start, u64 end, u64 num_bytes, u32 small_write)
884 {
885 /* If this is a small write inside eof, kick off a defrag */
886 if (num_bytes < small_write &&
887 (start > 0 || end + 1 < inode->disk_i_size))
888 btrfs_add_inode_defrag(inode, small_write);
889 }
890
extent_range_clear_dirty_for_io(struct inode * inode,u64 start,u64 end)891 static int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
892 {
893 unsigned long end_index = end >> PAGE_SHIFT;
894 struct folio *folio;
895 int ret = 0;
896
897 for (unsigned long index = start >> PAGE_SHIFT;
898 index <= end_index; index++) {
899 folio = __filemap_get_folio(inode->i_mapping, index, 0, 0);
900 if (IS_ERR(folio)) {
901 if (!ret)
902 ret = PTR_ERR(folio);
903 continue;
904 }
905 folio_clear_dirty_for_io(folio);
906 folio_put(folio);
907 }
908 return ret;
909 }
910
911 /*
912 * Work queue call back to started compression on a file and pages.
913 *
914 * This is done inside an ordered work queue, and the compression is spread
915 * across many cpus. The actual IO submission is step two, and the ordered work
916 * queue takes care of making sure that happens in the same order things were
917 * put onto the queue by writepages and friends.
918 *
919 * If this code finds it can't get good compression, it puts an entry onto the
920 * work queue to write the uncompressed bytes. This makes sure that both
921 * compressed inodes and uncompressed inodes are written in the same order that
922 * the flusher thread sent them down.
923 */
compress_file_range(struct btrfs_work * work)924 static void compress_file_range(struct btrfs_work *work)
925 {
926 struct async_chunk *async_chunk =
927 container_of(work, struct async_chunk, work);
928 struct btrfs_inode *inode = async_chunk->inode;
929 struct btrfs_fs_info *fs_info = inode->root->fs_info;
930 struct address_space *mapping = inode->vfs_inode.i_mapping;
931 u64 blocksize = fs_info->sectorsize;
932 u64 start = async_chunk->start;
933 u64 end = async_chunk->end;
934 u64 actual_end;
935 u64 i_size;
936 int ret = 0;
937 struct folio **folios;
938 unsigned long nr_folios;
939 unsigned long total_compressed = 0;
940 unsigned long total_in = 0;
941 unsigned int poff;
942 int i;
943 int compress_type = fs_info->compress_type;
944
945 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K);
946
947 /*
948 * We need to call clear_page_dirty_for_io on each page in the range.
949 * Otherwise applications with the file mmap'd can wander in and change
950 * the page contents while we are compressing them.
951 */
952 ret = extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end);
953
954 /*
955 * All the folios should have been locked thus no failure.
956 *
957 * And even if some folios are missing, btrfs_compress_folios()
958 * would handle them correctly, so here just do an ASSERT() check for
959 * early logic errors.
960 */
961 ASSERT(ret == 0);
962
963 /*
964 * We need to save i_size before now because it could change in between
965 * us evaluating the size and assigning it. This is because we lock and
966 * unlock the page in truncate and fallocate, and then modify the i_size
967 * later on.
968 *
969 * The barriers are to emulate READ_ONCE, remove that once i_size_read
970 * does that for us.
971 */
972 barrier();
973 i_size = i_size_read(&inode->vfs_inode);
974 barrier();
975 actual_end = min_t(u64, i_size, end + 1);
976 again:
977 folios = NULL;
978 nr_folios = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
979 nr_folios = min_t(unsigned long, nr_folios, BTRFS_MAX_COMPRESSED_PAGES);
980
981 /*
982 * we don't want to send crud past the end of i_size through
983 * compression, that's just a waste of CPU time. So, if the
984 * end of the file is before the start of our current
985 * requested range of bytes, we bail out to the uncompressed
986 * cleanup code that can deal with all of this.
987 *
988 * It isn't really the fastest way to fix things, but this is a
989 * very uncommon corner.
990 */
991 if (actual_end <= start)
992 goto cleanup_and_bail_uncompressed;
993
994 total_compressed = actual_end - start;
995
996 /*
997 * Skip compression for a small file range(<=blocksize) that
998 * isn't an inline extent, since it doesn't save disk space at all.
999 */
1000 if (total_compressed <= blocksize &&
1001 (start > 0 || end + 1 < inode->disk_i_size))
1002 goto cleanup_and_bail_uncompressed;
1003
1004 /*
1005 * For subpage case, we require full page alignment for the sector
1006 * aligned range.
1007 * Thus we must also check against @actual_end, not just @end.
1008 */
1009 if (blocksize < PAGE_SIZE) {
1010 if (!PAGE_ALIGNED(start) ||
1011 !PAGE_ALIGNED(round_up(actual_end, blocksize)))
1012 goto cleanup_and_bail_uncompressed;
1013 }
1014
1015 total_compressed = min_t(unsigned long, total_compressed,
1016 BTRFS_MAX_UNCOMPRESSED);
1017 total_in = 0;
1018 ret = 0;
1019
1020 /*
1021 * We do compression for mount -o compress and when the inode has not
1022 * been flagged as NOCOMPRESS. This flag can change at any time if we
1023 * discover bad compression ratios.
1024 */
1025 if (!inode_need_compress(inode, start, end))
1026 goto cleanup_and_bail_uncompressed;
1027
1028 folios = kcalloc(nr_folios, sizeof(struct folio *), GFP_NOFS);
1029 if (!folios) {
1030 /*
1031 * Memory allocation failure is not a fatal error, we can fall
1032 * back to uncompressed code.
1033 */
1034 goto cleanup_and_bail_uncompressed;
1035 }
1036
1037 if (inode->defrag_compress)
1038 compress_type = inode->defrag_compress;
1039 else if (inode->prop_compress)
1040 compress_type = inode->prop_compress;
1041
1042 /* Compression level is applied here. */
1043 ret = btrfs_compress_folios(compress_type | (fs_info->compress_level << 4),
1044 mapping, start, folios, &nr_folios, &total_in,
1045 &total_compressed);
1046 if (ret)
1047 goto mark_incompressible;
1048
1049 /*
1050 * Zero the tail end of the last page, as we might be sending it down
1051 * to disk.
1052 */
1053 poff = offset_in_page(total_compressed);
1054 if (poff)
1055 folio_zero_range(folios[nr_folios - 1], poff, PAGE_SIZE - poff);
1056
1057 /*
1058 * Try to create an inline extent.
1059 *
1060 * If we didn't compress the entire range, try to create an uncompressed
1061 * inline extent, else a compressed one.
1062 *
1063 * Check cow_file_range() for why we don't even try to create inline
1064 * extent for the subpage case.
1065 */
1066 if (total_in < actual_end)
1067 ret = cow_file_range_inline(inode, NULL, start, end, 0,
1068 BTRFS_COMPRESS_NONE, NULL, false);
1069 else
1070 ret = cow_file_range_inline(inode, NULL, start, end, total_compressed,
1071 compress_type, folios[0], false);
1072 if (ret <= 0) {
1073 if (ret < 0)
1074 mapping_set_error(mapping, -EIO);
1075 goto free_pages;
1076 }
1077
1078 /*
1079 * We aren't doing an inline extent. Round the compressed size up to a
1080 * block size boundary so the allocator does sane things.
1081 */
1082 total_compressed = ALIGN(total_compressed, blocksize);
1083
1084 /*
1085 * One last check to make sure the compression is really a win, compare
1086 * the page count read with the blocks on disk, compression must free at
1087 * least one sector.
1088 */
1089 total_in = round_up(total_in, fs_info->sectorsize);
1090 if (total_compressed + blocksize > total_in)
1091 goto mark_incompressible;
1092
1093 /*
1094 * The async work queues will take care of doing actual allocation on
1095 * disk for these compressed pages, and will submit the bios.
1096 */
1097 ret = add_async_extent(async_chunk, start, total_in, total_compressed, folios,
1098 nr_folios, compress_type);
1099 BUG_ON(ret);
1100 if (start + total_in < end) {
1101 start += total_in;
1102 cond_resched();
1103 goto again;
1104 }
1105 return;
1106
1107 mark_incompressible:
1108 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress)
1109 inode->flags |= BTRFS_INODE_NOCOMPRESS;
1110 cleanup_and_bail_uncompressed:
1111 ret = add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
1112 BTRFS_COMPRESS_NONE);
1113 BUG_ON(ret);
1114 free_pages:
1115 if (folios) {
1116 for (i = 0; i < nr_folios; i++) {
1117 WARN_ON(folios[i]->mapping);
1118 btrfs_free_compr_folio(folios[i]);
1119 }
1120 kfree(folios);
1121 }
1122 }
1123
free_async_extent_pages(struct async_extent * async_extent)1124 static void free_async_extent_pages(struct async_extent *async_extent)
1125 {
1126 int i;
1127
1128 if (!async_extent->folios)
1129 return;
1130
1131 for (i = 0; i < async_extent->nr_folios; i++) {
1132 WARN_ON(async_extent->folios[i]->mapping);
1133 btrfs_free_compr_folio(async_extent->folios[i]);
1134 }
1135 kfree(async_extent->folios);
1136 async_extent->nr_folios = 0;
1137 async_extent->folios = NULL;
1138 }
1139
submit_uncompressed_range(struct btrfs_inode * inode,struct async_extent * async_extent,struct folio * locked_folio)1140 static void submit_uncompressed_range(struct btrfs_inode *inode,
1141 struct async_extent *async_extent,
1142 struct folio *locked_folio)
1143 {
1144 u64 start = async_extent->start;
1145 u64 end = async_extent->start + async_extent->ram_size - 1;
1146 int ret;
1147 struct writeback_control wbc = {
1148 .sync_mode = WB_SYNC_ALL,
1149 .range_start = start,
1150 .range_end = end,
1151 .no_cgroup_owner = 1,
1152 };
1153
1154 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode);
1155 ret = run_delalloc_cow(inode, locked_folio, start, end,
1156 &wbc, false);
1157 wbc_detach_inode(&wbc);
1158 if (ret < 0) {
1159 btrfs_cleanup_ordered_extents(inode, locked_folio,
1160 start, end - start + 1);
1161 if (locked_folio) {
1162 const u64 page_start = folio_pos(locked_folio);
1163
1164 folio_start_writeback(locked_folio);
1165 folio_end_writeback(locked_folio);
1166 btrfs_mark_ordered_io_finished(inode, locked_folio,
1167 page_start, PAGE_SIZE,
1168 !ret);
1169 mapping_set_error(locked_folio->mapping, ret);
1170 folio_unlock(locked_folio);
1171 }
1172 }
1173 }
1174
submit_one_async_extent(struct async_chunk * async_chunk,struct async_extent * async_extent,u64 * alloc_hint)1175 static void submit_one_async_extent(struct async_chunk *async_chunk,
1176 struct async_extent *async_extent,
1177 u64 *alloc_hint)
1178 {
1179 struct btrfs_inode *inode = async_chunk->inode;
1180 struct extent_io_tree *io_tree = &inode->io_tree;
1181 struct btrfs_root *root = inode->root;
1182 struct btrfs_fs_info *fs_info = root->fs_info;
1183 struct btrfs_ordered_extent *ordered;
1184 struct btrfs_file_extent file_extent;
1185 struct btrfs_key ins;
1186 struct folio *locked_folio = NULL;
1187 struct extent_state *cached = NULL;
1188 struct extent_map *em;
1189 int ret = 0;
1190 u64 start = async_extent->start;
1191 u64 end = async_extent->start + async_extent->ram_size - 1;
1192
1193 if (async_chunk->blkcg_css)
1194 kthread_associate_blkcg(async_chunk->blkcg_css);
1195
1196 /*
1197 * If async_chunk->locked_folio is in the async_extent range, we need to
1198 * handle it.
1199 */
1200 if (async_chunk->locked_folio) {
1201 u64 locked_folio_start = folio_pos(async_chunk->locked_folio);
1202 u64 locked_folio_end = locked_folio_start +
1203 folio_size(async_chunk->locked_folio) - 1;
1204
1205 if (!(start >= locked_folio_end || end <= locked_folio_start))
1206 locked_folio = async_chunk->locked_folio;
1207 }
1208
1209 if (async_extent->compress_type == BTRFS_COMPRESS_NONE) {
1210 submit_uncompressed_range(inode, async_extent, locked_folio);
1211 goto done;
1212 }
1213
1214 ret = btrfs_reserve_extent(root, async_extent->ram_size,
1215 async_extent->compressed_size,
1216 async_extent->compressed_size,
1217 0, *alloc_hint, &ins, 1, 1);
1218 if (ret) {
1219 /*
1220 * We can't reserve contiguous space for the compressed size.
1221 * Unlikely, but it's possible that we could have enough
1222 * non-contiguous space for the uncompressed size instead. So
1223 * fall back to uncompressed.
1224 */
1225 submit_uncompressed_range(inode, async_extent, locked_folio);
1226 goto done;
1227 }
1228
1229 lock_extent(io_tree, start, end, &cached);
1230
1231 /* Here we're doing allocation and writeback of the compressed pages */
1232 file_extent.disk_bytenr = ins.objectid;
1233 file_extent.disk_num_bytes = ins.offset;
1234 file_extent.ram_bytes = async_extent->ram_size;
1235 file_extent.num_bytes = async_extent->ram_size;
1236 file_extent.offset = 0;
1237 file_extent.compression = async_extent->compress_type;
1238
1239 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED);
1240 if (IS_ERR(em)) {
1241 ret = PTR_ERR(em);
1242 goto out_free_reserve;
1243 }
1244 free_extent_map(em);
1245
1246 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
1247 1 << BTRFS_ORDERED_COMPRESSED);
1248 if (IS_ERR(ordered)) {
1249 btrfs_drop_extent_map_range(inode, start, end, false);
1250 ret = PTR_ERR(ordered);
1251 goto out_free_reserve;
1252 }
1253 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1254
1255 /* Clear dirty, set writeback and unlock the pages. */
1256 extent_clear_unlock_delalloc(inode, start, end,
1257 NULL, &cached, EXTENT_LOCKED | EXTENT_DELALLOC,
1258 PAGE_UNLOCK | PAGE_START_WRITEBACK);
1259 btrfs_submit_compressed_write(ordered,
1260 async_extent->folios, /* compressed_folios */
1261 async_extent->nr_folios,
1262 async_chunk->write_flags, true);
1263 *alloc_hint = ins.objectid + ins.offset;
1264 done:
1265 if (async_chunk->blkcg_css)
1266 kthread_associate_blkcg(NULL);
1267 kfree(async_extent);
1268 return;
1269
1270 out_free_reserve:
1271 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1272 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1273 mapping_set_error(inode->vfs_inode.i_mapping, -EIO);
1274 extent_clear_unlock_delalloc(inode, start, end,
1275 NULL, &cached,
1276 EXTENT_LOCKED | EXTENT_DELALLOC |
1277 EXTENT_DELALLOC_NEW |
1278 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1279 PAGE_UNLOCK | PAGE_START_WRITEBACK |
1280 PAGE_END_WRITEBACK);
1281 free_async_extent_pages(async_extent);
1282 if (async_chunk->blkcg_css)
1283 kthread_associate_blkcg(NULL);
1284 btrfs_debug(fs_info,
1285 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1286 btrfs_root_id(root), btrfs_ino(inode), start,
1287 async_extent->ram_size, ret);
1288 kfree(async_extent);
1289 }
1290
btrfs_get_extent_allocation_hint(struct btrfs_inode * inode,u64 start,u64 num_bytes)1291 u64 btrfs_get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1292 u64 num_bytes)
1293 {
1294 struct extent_map_tree *em_tree = &inode->extent_tree;
1295 struct extent_map *em;
1296 u64 alloc_hint = 0;
1297
1298 read_lock(&em_tree->lock);
1299 em = search_extent_mapping(em_tree, start, num_bytes);
1300 if (em) {
1301 /*
1302 * if block start isn't an actual block number then find the
1303 * first block in this inode and use that as a hint. If that
1304 * block is also bogus then just don't worry about it.
1305 */
1306 if (em->disk_bytenr >= EXTENT_MAP_LAST_BYTE) {
1307 free_extent_map(em);
1308 em = search_extent_mapping(em_tree, 0, 0);
1309 if (em && em->disk_bytenr < EXTENT_MAP_LAST_BYTE)
1310 alloc_hint = extent_map_block_start(em);
1311 if (em)
1312 free_extent_map(em);
1313 } else {
1314 alloc_hint = extent_map_block_start(em);
1315 free_extent_map(em);
1316 }
1317 }
1318 read_unlock(&em_tree->lock);
1319
1320 return alloc_hint;
1321 }
1322
1323 /*
1324 * when extent_io.c finds a delayed allocation range in the file,
1325 * the call backs end up in this code. The basic idea is to
1326 * allocate extents on disk for the range, and create ordered data structs
1327 * in ram to track those extents.
1328 *
1329 * locked_folio is the folio that writepage had locked already. We use
1330 * it to make sure we don't do extra locks or unlocks.
1331 *
1332 * When this function fails, it unlocks all pages except @locked_folio.
1333 *
1334 * When this function successfully creates an inline extent, it returns 1 and
1335 * unlocks all pages including locked_folio and starts I/O on them.
1336 * (In reality inline extents are limited to a single page, so locked_folio is
1337 * the only page handled anyway).
1338 *
1339 * When this function succeed and creates a normal extent, the page locking
1340 * status depends on the passed in flags:
1341 *
1342 * - If @keep_locked is set, all pages are kept locked.
1343 * - Else all pages except for @locked_folio are unlocked.
1344 *
1345 * When a failure happens in the second or later iteration of the
1346 * while-loop, the ordered extents created in previous iterations are kept
1347 * intact. So, the caller must clean them up by calling
1348 * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for
1349 * example.
1350 */
cow_file_range(struct btrfs_inode * inode,struct folio * locked_folio,u64 start,u64 end,u64 * done_offset,bool keep_locked,bool no_inline)1351 static noinline int cow_file_range(struct btrfs_inode *inode,
1352 struct folio *locked_folio, u64 start,
1353 u64 end, u64 *done_offset,
1354 bool keep_locked, bool no_inline)
1355 {
1356 struct btrfs_root *root = inode->root;
1357 struct btrfs_fs_info *fs_info = root->fs_info;
1358 struct extent_state *cached = NULL;
1359 u64 alloc_hint = 0;
1360 u64 orig_start = start;
1361 u64 num_bytes;
1362 unsigned long ram_size;
1363 u64 cur_alloc_size = 0;
1364 u64 min_alloc_size;
1365 u64 blocksize = fs_info->sectorsize;
1366 struct btrfs_key ins;
1367 struct extent_map *em;
1368 unsigned clear_bits;
1369 unsigned long page_ops;
1370 bool extent_reserved = false;
1371 int ret = 0;
1372
1373 if (btrfs_is_free_space_inode(inode)) {
1374 ret = -EINVAL;
1375 goto out_unlock;
1376 }
1377
1378 num_bytes = ALIGN(end - start + 1, blocksize);
1379 num_bytes = max(blocksize, num_bytes);
1380 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1381
1382 inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1383
1384 if (!no_inline) {
1385 /* lets try to make an inline extent */
1386 ret = cow_file_range_inline(inode, locked_folio, start, end, 0,
1387 BTRFS_COMPRESS_NONE, NULL, false);
1388 if (ret <= 0) {
1389 /*
1390 * We succeeded, return 1 so the caller knows we're done
1391 * with this page and already handled the IO.
1392 *
1393 * If there was an error then cow_file_range_inline() has
1394 * already done the cleanup.
1395 */
1396 if (ret == 0)
1397 ret = 1;
1398 goto done;
1399 }
1400 }
1401
1402 alloc_hint = btrfs_get_extent_allocation_hint(inode, start, num_bytes);
1403
1404 /*
1405 * Relocation relies on the relocated extents to have exactly the same
1406 * size as the original extents. Normally writeback for relocation data
1407 * extents follows a NOCOW path because relocation preallocates the
1408 * extents. However, due to an operation such as scrub turning a block
1409 * group to RO mode, it may fallback to COW mode, so we must make sure
1410 * an extent allocated during COW has exactly the requested size and can
1411 * not be split into smaller extents, otherwise relocation breaks and
1412 * fails during the stage where it updates the bytenr of file extent
1413 * items.
1414 */
1415 if (btrfs_is_data_reloc_root(root))
1416 min_alloc_size = num_bytes;
1417 else
1418 min_alloc_size = fs_info->sectorsize;
1419
1420 while (num_bytes > 0) {
1421 struct btrfs_ordered_extent *ordered;
1422 struct btrfs_file_extent file_extent;
1423
1424 cur_alloc_size = num_bytes;
1425 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1426 min_alloc_size, 0, alloc_hint,
1427 &ins, 1, 1);
1428 if (ret == -EAGAIN) {
1429 /*
1430 * btrfs_reserve_extent only returns -EAGAIN for zoned
1431 * file systems, which is an indication that there are
1432 * no active zones to allocate from at the moment.
1433 *
1434 * If this is the first loop iteration, wait for at
1435 * least one zone to finish before retrying the
1436 * allocation. Otherwise ask the caller to write out
1437 * the already allocated blocks before coming back to
1438 * us, or return -ENOSPC if it can't handle retries.
1439 */
1440 ASSERT(btrfs_is_zoned(fs_info));
1441 if (start == orig_start) {
1442 wait_on_bit_io(&inode->root->fs_info->flags,
1443 BTRFS_FS_NEED_ZONE_FINISH,
1444 TASK_UNINTERRUPTIBLE);
1445 continue;
1446 }
1447 if (done_offset) {
1448 *done_offset = start - 1;
1449 return 0;
1450 }
1451 ret = -ENOSPC;
1452 }
1453 if (ret < 0)
1454 goto out_unlock;
1455 cur_alloc_size = ins.offset;
1456 extent_reserved = true;
1457
1458 ram_size = ins.offset;
1459 file_extent.disk_bytenr = ins.objectid;
1460 file_extent.disk_num_bytes = ins.offset;
1461 file_extent.num_bytes = ins.offset;
1462 file_extent.ram_bytes = ins.offset;
1463 file_extent.offset = 0;
1464 file_extent.compression = BTRFS_COMPRESS_NONE;
1465
1466 lock_extent(&inode->io_tree, start, start + ram_size - 1,
1467 &cached);
1468
1469 em = btrfs_create_io_em(inode, start, &file_extent,
1470 BTRFS_ORDERED_REGULAR);
1471 if (IS_ERR(em)) {
1472 unlock_extent(&inode->io_tree, start,
1473 start + ram_size - 1, &cached);
1474 ret = PTR_ERR(em);
1475 goto out_reserve;
1476 }
1477 free_extent_map(em);
1478
1479 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
1480 1 << BTRFS_ORDERED_REGULAR);
1481 if (IS_ERR(ordered)) {
1482 unlock_extent(&inode->io_tree, start,
1483 start + ram_size - 1, &cached);
1484 ret = PTR_ERR(ordered);
1485 goto out_drop_extent_cache;
1486 }
1487
1488 if (btrfs_is_data_reloc_root(root)) {
1489 ret = btrfs_reloc_clone_csums(ordered);
1490
1491 /*
1492 * Only drop cache here, and process as normal.
1493 *
1494 * We must not allow extent_clear_unlock_delalloc()
1495 * at out_unlock label to free meta of this ordered
1496 * extent, as its meta should be freed by
1497 * btrfs_finish_ordered_io().
1498 *
1499 * So we must continue until @start is increased to
1500 * skip current ordered extent.
1501 */
1502 if (ret)
1503 btrfs_drop_extent_map_range(inode, start,
1504 start + ram_size - 1,
1505 false);
1506 }
1507 btrfs_put_ordered_extent(ordered);
1508
1509 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1510
1511 /*
1512 * We're not doing compressed IO, don't unlock the first page
1513 * (which the caller expects to stay locked), don't clear any
1514 * dirty bits and don't set any writeback bits
1515 *
1516 * Do set the Ordered (Private2) bit so we know this page was
1517 * properly setup for writepage.
1518 */
1519 page_ops = (keep_locked ? 0 : PAGE_UNLOCK);
1520 page_ops |= PAGE_SET_ORDERED;
1521
1522 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1523 locked_folio, &cached,
1524 EXTENT_LOCKED | EXTENT_DELALLOC,
1525 page_ops);
1526 if (num_bytes < cur_alloc_size)
1527 num_bytes = 0;
1528 else
1529 num_bytes -= cur_alloc_size;
1530 alloc_hint = ins.objectid + ins.offset;
1531 start += cur_alloc_size;
1532 extent_reserved = false;
1533
1534 /*
1535 * btrfs_reloc_clone_csums() error, since start is increased
1536 * extent_clear_unlock_delalloc() at out_unlock label won't
1537 * free metadata of current ordered extent, we're OK to exit.
1538 */
1539 if (ret)
1540 goto out_unlock;
1541 }
1542 done:
1543 if (done_offset)
1544 *done_offset = end;
1545 return ret;
1546
1547 out_drop_extent_cache:
1548 btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false);
1549 out_reserve:
1550 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1551 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1552 out_unlock:
1553 /*
1554 * Now, we have three regions to clean up:
1555 *
1556 * |-------(1)----|---(2)---|-------------(3)----------|
1557 * `- orig_start `- start `- start + cur_alloc_size `- end
1558 *
1559 * We process each region below.
1560 */
1561
1562 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1563 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1564 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1565
1566 /*
1567 * For the range (1). We have already instantiated the ordered extents
1568 * for this region. They are cleaned up by
1569 * btrfs_cleanup_ordered_extents() in e.g,
1570 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are
1571 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW |
1572 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup
1573 * function.
1574 *
1575 * However, in case of @keep_locked, we still need to unlock the pages
1576 * (except @locked_folio) to ensure all the pages are unlocked.
1577 */
1578 if (keep_locked && orig_start < start) {
1579 if (!locked_folio)
1580 mapping_set_error(inode->vfs_inode.i_mapping, ret);
1581 extent_clear_unlock_delalloc(inode, orig_start, start - 1,
1582 locked_folio, NULL, 0, page_ops);
1583 }
1584
1585 /*
1586 * At this point we're unlocked, we want to make sure we're only
1587 * clearing these flags under the extent lock, so lock the rest of the
1588 * range and clear everything up.
1589 */
1590 lock_extent(&inode->io_tree, start, end, NULL);
1591
1592 /*
1593 * For the range (2). If we reserved an extent for our delalloc range
1594 * (or a subrange) and failed to create the respective ordered extent,
1595 * then it means that when we reserved the extent we decremented the
1596 * extent's size from the data space_info's bytes_may_use counter and
1597 * incremented the space_info's bytes_reserved counter by the same
1598 * amount. We must make sure extent_clear_unlock_delalloc() does not try
1599 * to decrement again the data space_info's bytes_may_use counter,
1600 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
1601 */
1602 if (extent_reserved) {
1603 extent_clear_unlock_delalloc(inode, start,
1604 start + cur_alloc_size - 1,
1605 locked_folio, &cached, clear_bits,
1606 page_ops);
1607 btrfs_qgroup_free_data(inode, NULL, start, cur_alloc_size, NULL);
1608 start += cur_alloc_size;
1609 }
1610
1611 /*
1612 * For the range (3). We never touched the region. In addition to the
1613 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1614 * space_info's bytes_may_use counter, reserved in
1615 * btrfs_check_data_free_space().
1616 */
1617 if (start < end) {
1618 clear_bits |= EXTENT_CLEAR_DATA_RESV;
1619 extent_clear_unlock_delalloc(inode, start, end, locked_folio,
1620 &cached, clear_bits, page_ops);
1621 btrfs_qgroup_free_data(inode, NULL, start, cur_alloc_size, NULL);
1622 }
1623 return ret;
1624 }
1625
1626 /*
1627 * Phase two of compressed writeback. This is the ordered portion of the code,
1628 * which only gets called in the order the work was queued. We walk all the
1629 * async extents created by compress_file_range and send them down to the disk.
1630 *
1631 * If called with @do_free == true then it'll try to finish the work and free
1632 * the work struct eventually.
1633 */
submit_compressed_extents(struct btrfs_work * work,bool do_free)1634 static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free)
1635 {
1636 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1637 work);
1638 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1639 struct async_extent *async_extent;
1640 unsigned long nr_pages;
1641 u64 alloc_hint = 0;
1642
1643 if (do_free) {
1644 struct async_cow *async_cow;
1645
1646 btrfs_add_delayed_iput(async_chunk->inode);
1647 if (async_chunk->blkcg_css)
1648 css_put(async_chunk->blkcg_css);
1649
1650 async_cow = async_chunk->async_cow;
1651 if (atomic_dec_and_test(&async_cow->num_chunks))
1652 kvfree(async_cow);
1653 return;
1654 }
1655
1656 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1657 PAGE_SHIFT;
1658
1659 while (!list_empty(&async_chunk->extents)) {
1660 async_extent = list_entry(async_chunk->extents.next,
1661 struct async_extent, list);
1662 list_del(&async_extent->list);
1663 submit_one_async_extent(async_chunk, async_extent, &alloc_hint);
1664 }
1665
1666 /* atomic_sub_return implies a barrier */
1667 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1668 5 * SZ_1M)
1669 cond_wake_up_nomb(&fs_info->async_submit_wait);
1670 }
1671
run_delalloc_compressed(struct btrfs_inode * inode,struct folio * locked_folio,u64 start,u64 end,struct writeback_control * wbc)1672 static bool run_delalloc_compressed(struct btrfs_inode *inode,
1673 struct folio *locked_folio, u64 start,
1674 u64 end, struct writeback_control *wbc)
1675 {
1676 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1677 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1678 struct async_cow *ctx;
1679 struct async_chunk *async_chunk;
1680 unsigned long nr_pages;
1681 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1682 int i;
1683 unsigned nofs_flag;
1684 const blk_opf_t write_flags = wbc_to_write_flags(wbc);
1685
1686 nofs_flag = memalloc_nofs_save();
1687 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1688 memalloc_nofs_restore(nofs_flag);
1689 if (!ctx)
1690 return false;
1691
1692 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1693
1694 async_chunk = ctx->chunks;
1695 atomic_set(&ctx->num_chunks, num_chunks);
1696
1697 for (i = 0; i < num_chunks; i++) {
1698 u64 cur_end = min(end, start + SZ_512K - 1);
1699
1700 /*
1701 * igrab is called higher up in the call chain, take only the
1702 * lightweight reference for the callback lifetime
1703 */
1704 ihold(&inode->vfs_inode);
1705 async_chunk[i].async_cow = ctx;
1706 async_chunk[i].inode = inode;
1707 async_chunk[i].start = start;
1708 async_chunk[i].end = cur_end;
1709 async_chunk[i].write_flags = write_flags;
1710 INIT_LIST_HEAD(&async_chunk[i].extents);
1711
1712 /*
1713 * The locked_folio comes all the way from writepage and its
1714 * the original folio we were actually given. As we spread
1715 * this large delalloc region across multiple async_chunk
1716 * structs, only the first struct needs a pointer to
1717 * locked_folio.
1718 *
1719 * This way we don't need racey decisions about who is supposed
1720 * to unlock it.
1721 */
1722 if (locked_folio) {
1723 /*
1724 * Depending on the compressibility, the pages might or
1725 * might not go through async. We want all of them to
1726 * be accounted against wbc once. Let's do it here
1727 * before the paths diverge. wbc accounting is used
1728 * only for foreign writeback detection and doesn't
1729 * need full accuracy. Just account the whole thing
1730 * against the first page.
1731 */
1732 wbc_account_cgroup_owner(wbc, &locked_folio->page,
1733 cur_end - start);
1734 async_chunk[i].locked_folio = locked_folio;
1735 locked_folio = NULL;
1736 } else {
1737 async_chunk[i].locked_folio = NULL;
1738 }
1739
1740 if (blkcg_css != blkcg_root_css) {
1741 css_get(blkcg_css);
1742 async_chunk[i].blkcg_css = blkcg_css;
1743 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT;
1744 } else {
1745 async_chunk[i].blkcg_css = NULL;
1746 }
1747
1748 btrfs_init_work(&async_chunk[i].work, compress_file_range,
1749 submit_compressed_extents);
1750
1751 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1752 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1753
1754 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1755
1756 start = cur_end + 1;
1757 }
1758 return true;
1759 }
1760
1761 /*
1762 * Run the delalloc range from start to end, and write back any dirty pages
1763 * covered by the range.
1764 */
run_delalloc_cow(struct btrfs_inode * inode,struct folio * locked_folio,u64 start,u64 end,struct writeback_control * wbc,bool pages_dirty)1765 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
1766 struct folio *locked_folio, u64 start,
1767 u64 end, struct writeback_control *wbc,
1768 bool pages_dirty)
1769 {
1770 u64 done_offset = end;
1771 int ret;
1772
1773 while (start <= end) {
1774 ret = cow_file_range(inode, locked_folio, start, end,
1775 &done_offset, true, false);
1776 if (ret)
1777 return ret;
1778 extent_write_locked_range(&inode->vfs_inode, locked_folio,
1779 start, done_offset, wbc, pages_dirty);
1780 start = done_offset + 1;
1781 }
1782
1783 return 1;
1784 }
1785
fallback_to_cow(struct btrfs_inode * inode,struct folio * locked_folio,const u64 start,const u64 end)1786 static int fallback_to_cow(struct btrfs_inode *inode,
1787 struct folio *locked_folio, const u64 start,
1788 const u64 end)
1789 {
1790 const bool is_space_ino = btrfs_is_free_space_inode(inode);
1791 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1792 const u64 range_bytes = end + 1 - start;
1793 struct extent_io_tree *io_tree = &inode->io_tree;
1794 struct extent_state *cached_state = NULL;
1795 u64 range_start = start;
1796 u64 count;
1797 int ret;
1798
1799 /*
1800 * If EXTENT_NORESERVE is set it means that when the buffered write was
1801 * made we had not enough available data space and therefore we did not
1802 * reserve data space for it, since we though we could do NOCOW for the
1803 * respective file range (either there is prealloc extent or the inode
1804 * has the NOCOW bit set).
1805 *
1806 * However when we need to fallback to COW mode (because for example the
1807 * block group for the corresponding extent was turned to RO mode by a
1808 * scrub or relocation) we need to do the following:
1809 *
1810 * 1) We increment the bytes_may_use counter of the data space info.
1811 * If COW succeeds, it allocates a new data extent and after doing
1812 * that it decrements the space info's bytes_may_use counter and
1813 * increments its bytes_reserved counter by the same amount (we do
1814 * this at btrfs_add_reserved_bytes()). So we need to increment the
1815 * bytes_may_use counter to compensate (when space is reserved at
1816 * buffered write time, the bytes_may_use counter is incremented);
1817 *
1818 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1819 * that if the COW path fails for any reason, it decrements (through
1820 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1821 * data space info, which we incremented in the step above.
1822 *
1823 * If we need to fallback to cow and the inode corresponds to a free
1824 * space cache inode or an inode of the data relocation tree, we must
1825 * also increment bytes_may_use of the data space_info for the same
1826 * reason. Space caches and relocated data extents always get a prealloc
1827 * extent for them, however scrub or balance may have set the block
1828 * group that contains that extent to RO mode and therefore force COW
1829 * when starting writeback.
1830 */
1831 lock_extent(io_tree, start, end, &cached_state);
1832 count = count_range_bits(io_tree, &range_start, end, range_bytes,
1833 EXTENT_NORESERVE, 0, NULL);
1834 if (count > 0 || is_space_ino || is_reloc_ino) {
1835 u64 bytes = count;
1836 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1837 struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1838
1839 if (is_space_ino || is_reloc_ino)
1840 bytes = range_bytes;
1841
1842 spin_lock(&sinfo->lock);
1843 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1844 spin_unlock(&sinfo->lock);
1845
1846 if (count > 0)
1847 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1848 NULL);
1849 }
1850 unlock_extent(io_tree, start, end, &cached_state);
1851
1852 /*
1853 * Don't try to create inline extents, as a mix of inline extent that
1854 * is written out and unlocked directly and a normal NOCOW extent
1855 * doesn't work.
1856 */
1857 ret = cow_file_range(inode, locked_folio, start, end, NULL, false,
1858 true);
1859 ASSERT(ret != 1);
1860 return ret;
1861 }
1862
1863 struct can_nocow_file_extent_args {
1864 /* Input fields. */
1865
1866 /* Start file offset of the range we want to NOCOW. */
1867 u64 start;
1868 /* End file offset (inclusive) of the range we want to NOCOW. */
1869 u64 end;
1870 bool writeback_path;
1871 bool strict;
1872 /*
1873 * Free the path passed to can_nocow_file_extent() once it's not needed
1874 * anymore.
1875 */
1876 bool free_path;
1877
1878 /*
1879 * Output fields. Only set when can_nocow_file_extent() returns 1.
1880 * The expected file extent for the NOCOW write.
1881 */
1882 struct btrfs_file_extent file_extent;
1883 };
1884
1885 /*
1886 * Check if we can NOCOW the file extent that the path points to.
1887 * This function may return with the path released, so the caller should check
1888 * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1889 *
1890 * Returns: < 0 on error
1891 * 0 if we can not NOCOW
1892 * 1 if we can NOCOW
1893 */
can_nocow_file_extent(struct btrfs_path * path,struct btrfs_key * key,struct btrfs_inode * inode,struct can_nocow_file_extent_args * args)1894 static int can_nocow_file_extent(struct btrfs_path *path,
1895 struct btrfs_key *key,
1896 struct btrfs_inode *inode,
1897 struct can_nocow_file_extent_args *args)
1898 {
1899 const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1900 struct extent_buffer *leaf = path->nodes[0];
1901 struct btrfs_root *root = inode->root;
1902 struct btrfs_file_extent_item *fi;
1903 struct btrfs_root *csum_root;
1904 u64 io_start;
1905 u64 extent_end;
1906 u8 extent_type;
1907 int can_nocow = 0;
1908 int ret = 0;
1909 bool nowait = path->nowait;
1910
1911 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
1912 extent_type = btrfs_file_extent_type(leaf, fi);
1913
1914 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1915 goto out;
1916
1917 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1918 extent_type == BTRFS_FILE_EXTENT_REG)
1919 goto out;
1920
1921 /*
1922 * If the extent was created before the generation where the last snapshot
1923 * for its subvolume was created, then this implies the extent is shared,
1924 * hence we must COW.
1925 */
1926 if (!args->strict &&
1927 btrfs_file_extent_generation(leaf, fi) <=
1928 btrfs_root_last_snapshot(&root->root_item))
1929 goto out;
1930
1931 /* An explicit hole, must COW. */
1932 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
1933 goto out;
1934
1935 /* Compressed/encrypted/encoded extents must be COWed. */
1936 if (btrfs_file_extent_compression(leaf, fi) ||
1937 btrfs_file_extent_encryption(leaf, fi) ||
1938 btrfs_file_extent_other_encoding(leaf, fi))
1939 goto out;
1940
1941 extent_end = btrfs_file_extent_end(path);
1942
1943 args->file_extent.disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1944 args->file_extent.disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1945 args->file_extent.ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1946 args->file_extent.offset = btrfs_file_extent_offset(leaf, fi);
1947 args->file_extent.compression = btrfs_file_extent_compression(leaf, fi);
1948
1949 /*
1950 * The following checks can be expensive, as they need to take other
1951 * locks and do btree or rbtree searches, so release the path to avoid
1952 * blocking other tasks for too long.
1953 */
1954 btrfs_release_path(path);
1955
1956 ret = btrfs_cross_ref_exist(root, btrfs_ino(inode),
1957 key->offset - args->file_extent.offset,
1958 args->file_extent.disk_bytenr, args->strict, path);
1959 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1960 if (ret != 0)
1961 goto out;
1962
1963 if (args->free_path) {
1964 /*
1965 * We don't need the path anymore, plus through the
1966 * btrfs_lookup_csums_list() call below we will end up allocating
1967 * another path. So free the path to avoid unnecessary extra
1968 * memory usage.
1969 */
1970 btrfs_free_path(path);
1971 path = NULL;
1972 }
1973
1974 /* If there are pending snapshots for this root, we must COW. */
1975 if (args->writeback_path && !is_freespace_inode &&
1976 atomic_read(&root->snapshot_force_cow))
1977 goto out;
1978
1979 args->file_extent.num_bytes = min(args->end + 1, extent_end) - args->start;
1980 args->file_extent.offset += args->start - key->offset;
1981 io_start = args->file_extent.disk_bytenr + args->file_extent.offset;
1982
1983 /*
1984 * Force COW if csums exist in the range. This ensures that csums for a
1985 * given extent are either valid or do not exist.
1986 */
1987
1988 csum_root = btrfs_csum_root(root->fs_info, io_start);
1989 ret = btrfs_lookup_csums_list(csum_root, io_start,
1990 io_start + args->file_extent.num_bytes - 1,
1991 NULL, nowait);
1992 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1993 if (ret != 0)
1994 goto out;
1995
1996 can_nocow = 1;
1997 out:
1998 if (args->free_path && path)
1999 btrfs_free_path(path);
2000
2001 return ret < 0 ? ret : can_nocow;
2002 }
2003
2004 /*
2005 * when nowcow writeback call back. This checks for snapshots or COW copies
2006 * of the extents that exist in the file, and COWs the file as required.
2007 *
2008 * If no cow copies or snapshots exist, we write directly to the existing
2009 * blocks on disk
2010 */
run_delalloc_nocow(struct btrfs_inode * inode,struct folio * locked_folio,const u64 start,const u64 end)2011 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
2012 struct folio *locked_folio,
2013 const u64 start, const u64 end)
2014 {
2015 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2016 struct btrfs_root *root = inode->root;
2017 struct btrfs_path *path;
2018 u64 cow_start = (u64)-1;
2019 u64 cur_offset = start;
2020 int ret;
2021 bool check_prev = true;
2022 u64 ino = btrfs_ino(inode);
2023 struct can_nocow_file_extent_args nocow_args = { 0 };
2024
2025 /*
2026 * Normally on a zoned device we're only doing COW writes, but in case
2027 * of relocation on a zoned filesystem serializes I/O so that we're only
2028 * writing sequentially and can end up here as well.
2029 */
2030 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root));
2031
2032 path = btrfs_alloc_path();
2033 if (!path) {
2034 ret = -ENOMEM;
2035 goto error;
2036 }
2037
2038 nocow_args.end = end;
2039 nocow_args.writeback_path = true;
2040
2041 while (cur_offset <= end) {
2042 struct btrfs_block_group *nocow_bg = NULL;
2043 struct btrfs_ordered_extent *ordered;
2044 struct btrfs_key found_key;
2045 struct btrfs_file_extent_item *fi;
2046 struct extent_buffer *leaf;
2047 struct extent_state *cached_state = NULL;
2048 u64 extent_end;
2049 u64 nocow_end;
2050 int extent_type;
2051 bool is_prealloc;
2052
2053 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
2054 cur_offset, 0);
2055 if (ret < 0)
2056 goto error;
2057
2058 /*
2059 * If there is no extent for our range when doing the initial
2060 * search, then go back to the previous slot as it will be the
2061 * one containing the search offset
2062 */
2063 if (ret > 0 && path->slots[0] > 0 && check_prev) {
2064 leaf = path->nodes[0];
2065 btrfs_item_key_to_cpu(leaf, &found_key,
2066 path->slots[0] - 1);
2067 if (found_key.objectid == ino &&
2068 found_key.type == BTRFS_EXTENT_DATA_KEY)
2069 path->slots[0]--;
2070 }
2071 check_prev = false;
2072 next_slot:
2073 /* Go to next leaf if we have exhausted the current one */
2074 leaf = path->nodes[0];
2075 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2076 ret = btrfs_next_leaf(root, path);
2077 if (ret < 0)
2078 goto error;
2079 if (ret > 0)
2080 break;
2081 leaf = path->nodes[0];
2082 }
2083
2084 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2085
2086 /* Didn't find anything for our INO */
2087 if (found_key.objectid > ino)
2088 break;
2089 /*
2090 * Keep searching until we find an EXTENT_ITEM or there are no
2091 * more extents for this inode
2092 */
2093 if (WARN_ON_ONCE(found_key.objectid < ino) ||
2094 found_key.type < BTRFS_EXTENT_DATA_KEY) {
2095 path->slots[0]++;
2096 goto next_slot;
2097 }
2098
2099 /* Found key is not EXTENT_DATA_KEY or starts after req range */
2100 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
2101 found_key.offset > end)
2102 break;
2103
2104 /*
2105 * If the found extent starts after requested offset, then
2106 * adjust extent_end to be right before this extent begins
2107 */
2108 if (found_key.offset > cur_offset) {
2109 extent_end = found_key.offset;
2110 extent_type = 0;
2111 goto must_cow;
2112 }
2113
2114 /*
2115 * Found extent which begins before our range and potentially
2116 * intersect it
2117 */
2118 fi = btrfs_item_ptr(leaf, path->slots[0],
2119 struct btrfs_file_extent_item);
2120 extent_type = btrfs_file_extent_type(leaf, fi);
2121 /* If this is triggered then we have a memory corruption. */
2122 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
2123 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
2124 ret = -EUCLEAN;
2125 goto error;
2126 }
2127 extent_end = btrfs_file_extent_end(path);
2128
2129 /*
2130 * If the extent we got ends before our current offset, skip to
2131 * the next extent.
2132 */
2133 if (extent_end <= cur_offset) {
2134 path->slots[0]++;
2135 goto next_slot;
2136 }
2137
2138 nocow_args.start = cur_offset;
2139 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
2140 if (ret < 0)
2141 goto error;
2142 if (ret == 0)
2143 goto must_cow;
2144
2145 ret = 0;
2146 nocow_bg = btrfs_inc_nocow_writers(fs_info,
2147 nocow_args.file_extent.disk_bytenr +
2148 nocow_args.file_extent.offset);
2149 if (!nocow_bg) {
2150 must_cow:
2151 /*
2152 * If we can't perform NOCOW writeback for the range,
2153 * then record the beginning of the range that needs to
2154 * be COWed. It will be written out before the next
2155 * NOCOW range if we find one, or when exiting this
2156 * loop.
2157 */
2158 if (cow_start == (u64)-1)
2159 cow_start = cur_offset;
2160 cur_offset = extent_end;
2161 if (cur_offset > end)
2162 break;
2163 if (!path->nodes[0])
2164 continue;
2165 path->slots[0]++;
2166 goto next_slot;
2167 }
2168
2169 /*
2170 * COW range from cow_start to found_key.offset - 1. As the key
2171 * will contain the beginning of the first extent that can be
2172 * NOCOW, following one which needs to be COW'ed
2173 */
2174 if (cow_start != (u64)-1) {
2175 ret = fallback_to_cow(inode, locked_folio, cow_start,
2176 found_key.offset - 1);
2177 cow_start = (u64)-1;
2178 if (ret) {
2179 btrfs_dec_nocow_writers(nocow_bg);
2180 goto error;
2181 }
2182 }
2183
2184 nocow_end = cur_offset + nocow_args.file_extent.num_bytes - 1;
2185 lock_extent(&inode->io_tree, cur_offset, nocow_end, &cached_state);
2186
2187 is_prealloc = extent_type == BTRFS_FILE_EXTENT_PREALLOC;
2188 if (is_prealloc) {
2189 struct extent_map *em;
2190
2191 em = btrfs_create_io_em(inode, cur_offset,
2192 &nocow_args.file_extent,
2193 BTRFS_ORDERED_PREALLOC);
2194 if (IS_ERR(em)) {
2195 unlock_extent(&inode->io_tree, cur_offset,
2196 nocow_end, &cached_state);
2197 btrfs_dec_nocow_writers(nocow_bg);
2198 ret = PTR_ERR(em);
2199 goto error;
2200 }
2201 free_extent_map(em);
2202 }
2203
2204 ordered = btrfs_alloc_ordered_extent(inode, cur_offset,
2205 &nocow_args.file_extent,
2206 is_prealloc
2207 ? (1 << BTRFS_ORDERED_PREALLOC)
2208 : (1 << BTRFS_ORDERED_NOCOW));
2209 btrfs_dec_nocow_writers(nocow_bg);
2210 if (IS_ERR(ordered)) {
2211 if (is_prealloc) {
2212 btrfs_drop_extent_map_range(inode, cur_offset,
2213 nocow_end, false);
2214 }
2215 unlock_extent(&inode->io_tree, cur_offset,
2216 nocow_end, &cached_state);
2217 ret = PTR_ERR(ordered);
2218 goto error;
2219 }
2220
2221 if (btrfs_is_data_reloc_root(root))
2222 /*
2223 * Error handled later, as we must prevent
2224 * extent_clear_unlock_delalloc() in error handler
2225 * from freeing metadata of created ordered extent.
2226 */
2227 ret = btrfs_reloc_clone_csums(ordered);
2228 btrfs_put_ordered_extent(ordered);
2229
2230 extent_clear_unlock_delalloc(inode, cur_offset, nocow_end,
2231 locked_folio, &cached_state,
2232 EXTENT_LOCKED | EXTENT_DELALLOC |
2233 EXTENT_CLEAR_DATA_RESV,
2234 PAGE_UNLOCK | PAGE_SET_ORDERED);
2235
2236 cur_offset = extent_end;
2237
2238 /*
2239 * btrfs_reloc_clone_csums() error, now we're OK to call error
2240 * handler, as metadata for created ordered extent will only
2241 * be freed by btrfs_finish_ordered_io().
2242 */
2243 if (ret)
2244 goto error;
2245 }
2246 btrfs_release_path(path);
2247
2248 if (cur_offset <= end && cow_start == (u64)-1)
2249 cow_start = cur_offset;
2250
2251 if (cow_start != (u64)-1) {
2252 cur_offset = end;
2253 ret = fallback_to_cow(inode, locked_folio, cow_start, end);
2254 cow_start = (u64)-1;
2255 if (ret)
2256 goto error;
2257 }
2258
2259 btrfs_free_path(path);
2260 return 0;
2261
2262 error:
2263 /*
2264 * If an error happened while a COW region is outstanding, cur_offset
2265 * needs to be reset to cow_start to ensure the COW region is unlocked
2266 * as well.
2267 */
2268 if (cow_start != (u64)-1)
2269 cur_offset = cow_start;
2270
2271 /*
2272 * We need to lock the extent here because we're clearing DELALLOC and
2273 * we're not locked at this point.
2274 */
2275 if (cur_offset < end) {
2276 struct extent_state *cached = NULL;
2277
2278 lock_extent(&inode->io_tree, cur_offset, end, &cached);
2279 extent_clear_unlock_delalloc(inode, cur_offset, end,
2280 locked_folio, &cached,
2281 EXTENT_LOCKED | EXTENT_DELALLOC |
2282 EXTENT_DEFRAG |
2283 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
2284 PAGE_START_WRITEBACK |
2285 PAGE_END_WRITEBACK);
2286 btrfs_qgroup_free_data(inode, NULL, cur_offset, end - cur_offset + 1, NULL);
2287 }
2288 btrfs_free_path(path);
2289 return ret;
2290 }
2291
should_nocow(struct btrfs_inode * inode,u64 start,u64 end)2292 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
2293 {
2294 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2295 if (inode->defrag_bytes &&
2296 test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG))
2297 return false;
2298 return true;
2299 }
2300 return false;
2301 }
2302
2303 /*
2304 * Function to process delayed allocation (create CoW) for ranges which are
2305 * being touched for the first time.
2306 */
btrfs_run_delalloc_range(struct btrfs_inode * inode,struct folio * locked_folio,u64 start,u64 end,struct writeback_control * wbc)2307 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct folio *locked_folio,
2308 u64 start, u64 end, struct writeback_control *wbc)
2309 {
2310 const bool zoned = btrfs_is_zoned(inode->root->fs_info);
2311 int ret;
2312
2313 /*
2314 * The range must cover part of the @locked_folio, or a return of 1
2315 * can confuse the caller.
2316 */
2317 ASSERT(!(end <= folio_pos(locked_folio) ||
2318 start >= folio_pos(locked_folio) + folio_size(locked_folio)));
2319
2320 if (should_nocow(inode, start, end)) {
2321 ret = run_delalloc_nocow(inode, locked_folio, start, end);
2322 goto out;
2323 }
2324
2325 if (btrfs_inode_can_compress(inode) &&
2326 inode_need_compress(inode, start, end) &&
2327 run_delalloc_compressed(inode, locked_folio, start, end, wbc))
2328 return 1;
2329
2330 if (zoned)
2331 ret = run_delalloc_cow(inode, locked_folio, start, end, wbc,
2332 true);
2333 else
2334 ret = cow_file_range(inode, locked_folio, start, end, NULL,
2335 false, false);
2336
2337 out:
2338 if (ret < 0)
2339 btrfs_cleanup_ordered_extents(inode, locked_folio, start,
2340 end - start + 1);
2341 return ret;
2342 }
2343
btrfs_split_delalloc_extent(struct btrfs_inode * inode,struct extent_state * orig,u64 split)2344 void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
2345 struct extent_state *orig, u64 split)
2346 {
2347 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2348 u64 size;
2349
2350 lockdep_assert_held(&inode->io_tree.lock);
2351
2352 /* not delalloc, ignore it */
2353 if (!(orig->state & EXTENT_DELALLOC))
2354 return;
2355
2356 size = orig->end - orig->start + 1;
2357 if (size > fs_info->max_extent_size) {
2358 u32 num_extents;
2359 u64 new_size;
2360
2361 /*
2362 * See the explanation in btrfs_merge_delalloc_extent, the same
2363 * applies here, just in reverse.
2364 */
2365 new_size = orig->end - split + 1;
2366 num_extents = count_max_extents(fs_info, new_size);
2367 new_size = split - orig->start;
2368 num_extents += count_max_extents(fs_info, new_size);
2369 if (count_max_extents(fs_info, size) >= num_extents)
2370 return;
2371 }
2372
2373 spin_lock(&inode->lock);
2374 btrfs_mod_outstanding_extents(inode, 1);
2375 spin_unlock(&inode->lock);
2376 }
2377
2378 /*
2379 * Handle merged delayed allocation extents so we can keep track of new extents
2380 * that are just merged onto old extents, such as when we are doing sequential
2381 * writes, so we can properly account for the metadata space we'll need.
2382 */
btrfs_merge_delalloc_extent(struct btrfs_inode * inode,struct extent_state * new,struct extent_state * other)2383 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
2384 struct extent_state *other)
2385 {
2386 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2387 u64 new_size, old_size;
2388 u32 num_extents;
2389
2390 lockdep_assert_held(&inode->io_tree.lock);
2391
2392 /* not delalloc, ignore it */
2393 if (!(other->state & EXTENT_DELALLOC))
2394 return;
2395
2396 if (new->start > other->start)
2397 new_size = new->end - other->start + 1;
2398 else
2399 new_size = other->end - new->start + 1;
2400
2401 /* we're not bigger than the max, unreserve the space and go */
2402 if (new_size <= fs_info->max_extent_size) {
2403 spin_lock(&inode->lock);
2404 btrfs_mod_outstanding_extents(inode, -1);
2405 spin_unlock(&inode->lock);
2406 return;
2407 }
2408
2409 /*
2410 * We have to add up either side to figure out how many extents were
2411 * accounted for before we merged into one big extent. If the number of
2412 * extents we accounted for is <= the amount we need for the new range
2413 * then we can return, otherwise drop. Think of it like this
2414 *
2415 * [ 4k][MAX_SIZE]
2416 *
2417 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2418 * need 2 outstanding extents, on one side we have 1 and the other side
2419 * we have 1 so they are == and we can return. But in this case
2420 *
2421 * [MAX_SIZE+4k][MAX_SIZE+4k]
2422 *
2423 * Each range on their own accounts for 2 extents, but merged together
2424 * they are only 3 extents worth of accounting, so we need to drop in
2425 * this case.
2426 */
2427 old_size = other->end - other->start + 1;
2428 num_extents = count_max_extents(fs_info, old_size);
2429 old_size = new->end - new->start + 1;
2430 num_extents += count_max_extents(fs_info, old_size);
2431 if (count_max_extents(fs_info, new_size) >= num_extents)
2432 return;
2433
2434 spin_lock(&inode->lock);
2435 btrfs_mod_outstanding_extents(inode, -1);
2436 spin_unlock(&inode->lock);
2437 }
2438
btrfs_add_delalloc_inode(struct btrfs_inode * inode)2439 static void btrfs_add_delalloc_inode(struct btrfs_inode *inode)
2440 {
2441 struct btrfs_root *root = inode->root;
2442 struct btrfs_fs_info *fs_info = root->fs_info;
2443
2444 spin_lock(&root->delalloc_lock);
2445 ASSERT(list_empty(&inode->delalloc_inodes));
2446 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
2447 root->nr_delalloc_inodes++;
2448 if (root->nr_delalloc_inodes == 1) {
2449 spin_lock(&fs_info->delalloc_root_lock);
2450 ASSERT(list_empty(&root->delalloc_root));
2451 list_add_tail(&root->delalloc_root, &fs_info->delalloc_roots);
2452 spin_unlock(&fs_info->delalloc_root_lock);
2453 }
2454 spin_unlock(&root->delalloc_lock);
2455 }
2456
btrfs_del_delalloc_inode(struct btrfs_inode * inode)2457 void btrfs_del_delalloc_inode(struct btrfs_inode *inode)
2458 {
2459 struct btrfs_root *root = inode->root;
2460 struct btrfs_fs_info *fs_info = root->fs_info;
2461
2462 lockdep_assert_held(&root->delalloc_lock);
2463
2464 /*
2465 * We may be called after the inode was already deleted from the list,
2466 * namely in the transaction abort path btrfs_destroy_delalloc_inodes(),
2467 * and then later through btrfs_clear_delalloc_extent() while the inode
2468 * still has ->delalloc_bytes > 0.
2469 */
2470 if (!list_empty(&inode->delalloc_inodes)) {
2471 list_del_init(&inode->delalloc_inodes);
2472 root->nr_delalloc_inodes--;
2473 if (!root->nr_delalloc_inodes) {
2474 ASSERT(list_empty(&root->delalloc_inodes));
2475 spin_lock(&fs_info->delalloc_root_lock);
2476 ASSERT(!list_empty(&root->delalloc_root));
2477 list_del_init(&root->delalloc_root);
2478 spin_unlock(&fs_info->delalloc_root_lock);
2479 }
2480 }
2481 }
2482
2483 /*
2484 * Properly track delayed allocation bytes in the inode and to maintain the
2485 * list of inodes that have pending delalloc work to be done.
2486 */
btrfs_set_delalloc_extent(struct btrfs_inode * inode,struct extent_state * state,u32 bits)2487 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
2488 u32 bits)
2489 {
2490 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2491
2492 lockdep_assert_held(&inode->io_tree.lock);
2493
2494 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC))
2495 WARN_ON(1);
2496 /*
2497 * set_bit and clear bit hooks normally require _irqsave/restore
2498 * but in this case, we are only testing for the DELALLOC
2499 * bit, which is only set or cleared with irqs on
2500 */
2501 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2502 u64 len = state->end + 1 - state->start;
2503 u64 prev_delalloc_bytes;
2504 u32 num_extents = count_max_extents(fs_info, len);
2505
2506 spin_lock(&inode->lock);
2507 btrfs_mod_outstanding_extents(inode, num_extents);
2508 spin_unlock(&inode->lock);
2509
2510 /* For sanity tests */
2511 if (btrfs_is_testing(fs_info))
2512 return;
2513
2514 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2515 fs_info->delalloc_batch);
2516 spin_lock(&inode->lock);
2517 prev_delalloc_bytes = inode->delalloc_bytes;
2518 inode->delalloc_bytes += len;
2519 if (bits & EXTENT_DEFRAG)
2520 inode->defrag_bytes += len;
2521 spin_unlock(&inode->lock);
2522
2523 /*
2524 * We don't need to be under the protection of the inode's lock,
2525 * because we are called while holding the inode's io_tree lock
2526 * and are therefore protected against concurrent calls of this
2527 * function and btrfs_clear_delalloc_extent().
2528 */
2529 if (!btrfs_is_free_space_inode(inode) && prev_delalloc_bytes == 0)
2530 btrfs_add_delalloc_inode(inode);
2531 }
2532
2533 if (!(state->state & EXTENT_DELALLOC_NEW) &&
2534 (bits & EXTENT_DELALLOC_NEW)) {
2535 spin_lock(&inode->lock);
2536 inode->new_delalloc_bytes += state->end + 1 - state->start;
2537 spin_unlock(&inode->lock);
2538 }
2539 }
2540
2541 /*
2542 * Once a range is no longer delalloc this function ensures that proper
2543 * accounting happens.
2544 */
btrfs_clear_delalloc_extent(struct btrfs_inode * inode,struct extent_state * state,u32 bits)2545 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
2546 struct extent_state *state, u32 bits)
2547 {
2548 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2549 u64 len = state->end + 1 - state->start;
2550 u32 num_extents = count_max_extents(fs_info, len);
2551
2552 lockdep_assert_held(&inode->io_tree.lock);
2553
2554 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) {
2555 spin_lock(&inode->lock);
2556 inode->defrag_bytes -= len;
2557 spin_unlock(&inode->lock);
2558 }
2559
2560 /*
2561 * set_bit and clear bit hooks normally require _irqsave/restore
2562 * but in this case, we are only testing for the DELALLOC
2563 * bit, which is only set or cleared with irqs on
2564 */
2565 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2566 struct btrfs_root *root = inode->root;
2567 u64 new_delalloc_bytes;
2568
2569 spin_lock(&inode->lock);
2570 btrfs_mod_outstanding_extents(inode, -num_extents);
2571 spin_unlock(&inode->lock);
2572
2573 /*
2574 * We don't reserve metadata space for space cache inodes so we
2575 * don't need to call delalloc_release_metadata if there is an
2576 * error.
2577 */
2578 if (bits & EXTENT_CLEAR_META_RESV &&
2579 root != fs_info->tree_root)
2580 btrfs_delalloc_release_metadata(inode, len, true);
2581
2582 /* For sanity tests. */
2583 if (btrfs_is_testing(fs_info))
2584 return;
2585
2586 if (!btrfs_is_data_reloc_root(root) &&
2587 !btrfs_is_free_space_inode(inode) &&
2588 !(state->state & EXTENT_NORESERVE) &&
2589 (bits & EXTENT_CLEAR_DATA_RESV))
2590 btrfs_free_reserved_data_space_noquota(fs_info, len);
2591
2592 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2593 fs_info->delalloc_batch);
2594 spin_lock(&inode->lock);
2595 inode->delalloc_bytes -= len;
2596 new_delalloc_bytes = inode->delalloc_bytes;
2597 spin_unlock(&inode->lock);
2598
2599 /*
2600 * We don't need to be under the protection of the inode's lock,
2601 * because we are called while holding the inode's io_tree lock
2602 * and are therefore protected against concurrent calls of this
2603 * function and btrfs_set_delalloc_extent().
2604 */
2605 if (!btrfs_is_free_space_inode(inode) && new_delalloc_bytes == 0) {
2606 spin_lock(&root->delalloc_lock);
2607 btrfs_del_delalloc_inode(inode);
2608 spin_unlock(&root->delalloc_lock);
2609 }
2610 }
2611
2612 if ((state->state & EXTENT_DELALLOC_NEW) &&
2613 (bits & EXTENT_DELALLOC_NEW)) {
2614 spin_lock(&inode->lock);
2615 ASSERT(inode->new_delalloc_bytes >= len);
2616 inode->new_delalloc_bytes -= len;
2617 if (bits & EXTENT_ADD_INODE_BYTES)
2618 inode_add_bytes(&inode->vfs_inode, len);
2619 spin_unlock(&inode->lock);
2620 }
2621 }
2622
2623 /*
2624 * given a list of ordered sums record them in the inode. This happens
2625 * at IO completion time based on sums calculated at bio submission time.
2626 */
add_pending_csums(struct btrfs_trans_handle * trans,struct list_head * list)2627 static int add_pending_csums(struct btrfs_trans_handle *trans,
2628 struct list_head *list)
2629 {
2630 struct btrfs_ordered_sum *sum;
2631 struct btrfs_root *csum_root = NULL;
2632 int ret;
2633
2634 list_for_each_entry(sum, list, list) {
2635 trans->adding_csums = true;
2636 if (!csum_root)
2637 csum_root = btrfs_csum_root(trans->fs_info,
2638 sum->logical);
2639 ret = btrfs_csum_file_blocks(trans, csum_root, sum);
2640 trans->adding_csums = false;
2641 if (ret)
2642 return ret;
2643 }
2644 return 0;
2645 }
2646
btrfs_find_new_delalloc_bytes(struct btrfs_inode * inode,const u64 start,const u64 len,struct extent_state ** cached_state)2647 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2648 const u64 start,
2649 const u64 len,
2650 struct extent_state **cached_state)
2651 {
2652 u64 search_start = start;
2653 const u64 end = start + len - 1;
2654
2655 while (search_start < end) {
2656 const u64 search_len = end - search_start + 1;
2657 struct extent_map *em;
2658 u64 em_len;
2659 int ret = 0;
2660
2661 em = btrfs_get_extent(inode, NULL, search_start, search_len);
2662 if (IS_ERR(em))
2663 return PTR_ERR(em);
2664
2665 if (em->disk_bytenr != EXTENT_MAP_HOLE)
2666 goto next;
2667
2668 em_len = em->len;
2669 if (em->start < search_start)
2670 em_len -= search_start - em->start;
2671 if (em_len > search_len)
2672 em_len = search_len;
2673
2674 ret = set_extent_bit(&inode->io_tree, search_start,
2675 search_start + em_len - 1,
2676 EXTENT_DELALLOC_NEW, cached_state);
2677 next:
2678 search_start = extent_map_end(em);
2679 free_extent_map(em);
2680 if (ret)
2681 return ret;
2682 }
2683 return 0;
2684 }
2685
btrfs_set_extent_delalloc(struct btrfs_inode * inode,u64 start,u64 end,unsigned int extra_bits,struct extent_state ** cached_state)2686 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2687 unsigned int extra_bits,
2688 struct extent_state **cached_state)
2689 {
2690 WARN_ON(PAGE_ALIGNED(end));
2691
2692 if (start >= i_size_read(&inode->vfs_inode) &&
2693 !(inode->flags & BTRFS_INODE_PREALLOC)) {
2694 /*
2695 * There can't be any extents following eof in this case so just
2696 * set the delalloc new bit for the range directly.
2697 */
2698 extra_bits |= EXTENT_DELALLOC_NEW;
2699 } else {
2700 int ret;
2701
2702 ret = btrfs_find_new_delalloc_bytes(inode, start,
2703 end + 1 - start,
2704 cached_state);
2705 if (ret)
2706 return ret;
2707 }
2708
2709 return set_extent_bit(&inode->io_tree, start, end,
2710 EXTENT_DELALLOC | extra_bits, cached_state);
2711 }
2712
2713 /* see btrfs_writepage_start_hook for details on why this is required */
2714 struct btrfs_writepage_fixup {
2715 struct folio *folio;
2716 struct btrfs_inode *inode;
2717 struct btrfs_work work;
2718 };
2719
btrfs_writepage_fixup_worker(struct btrfs_work * work)2720 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2721 {
2722 struct btrfs_writepage_fixup *fixup =
2723 container_of(work, struct btrfs_writepage_fixup, work);
2724 struct btrfs_ordered_extent *ordered;
2725 struct extent_state *cached_state = NULL;
2726 struct extent_changeset *data_reserved = NULL;
2727 struct folio *folio = fixup->folio;
2728 struct btrfs_inode *inode = fixup->inode;
2729 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2730 u64 page_start = folio_pos(folio);
2731 u64 page_end = folio_pos(folio) + folio_size(folio) - 1;
2732 int ret = 0;
2733 bool free_delalloc_space = true;
2734
2735 /*
2736 * This is similar to page_mkwrite, we need to reserve the space before
2737 * we take the folio lock.
2738 */
2739 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2740 folio_size(folio));
2741 again:
2742 folio_lock(folio);
2743
2744 /*
2745 * Before we queued this fixup, we took a reference on the folio.
2746 * folio->mapping may go NULL, but it shouldn't be moved to a different
2747 * address space.
2748 */
2749 if (!folio->mapping || !folio_test_dirty(folio) ||
2750 !folio_test_checked(folio)) {
2751 /*
2752 * Unfortunately this is a little tricky, either
2753 *
2754 * 1) We got here and our folio had already been dealt with and
2755 * we reserved our space, thus ret == 0, so we need to just
2756 * drop our space reservation and bail. This can happen the
2757 * first time we come into the fixup worker, or could happen
2758 * while waiting for the ordered extent.
2759 * 2) Our folio was already dealt with, but we happened to get an
2760 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2761 * this case we obviously don't have anything to release, but
2762 * because the folio was already dealt with we don't want to
2763 * mark the folio with an error, so make sure we're resetting
2764 * ret to 0. This is why we have this check _before_ the ret
2765 * check, because we do not want to have a surprise ENOSPC
2766 * when the folio was already properly dealt with.
2767 */
2768 if (!ret) {
2769 btrfs_delalloc_release_extents(inode, folio_size(folio));
2770 btrfs_delalloc_release_space(inode, data_reserved,
2771 page_start, folio_size(folio),
2772 true);
2773 }
2774 ret = 0;
2775 goto out_page;
2776 }
2777
2778 /*
2779 * We can't mess with the folio state unless it is locked, so now that
2780 * it is locked bail if we failed to make our space reservation.
2781 */
2782 if (ret)
2783 goto out_page;
2784
2785 lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2786
2787 /* already ordered? We're done */
2788 if (folio_test_ordered(folio))
2789 goto out_reserved;
2790
2791 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2792 if (ordered) {
2793 unlock_extent(&inode->io_tree, page_start, page_end,
2794 &cached_state);
2795 folio_unlock(folio);
2796 btrfs_start_ordered_extent(ordered);
2797 btrfs_put_ordered_extent(ordered);
2798 goto again;
2799 }
2800
2801 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2802 &cached_state);
2803 if (ret)
2804 goto out_reserved;
2805
2806 /*
2807 * Everything went as planned, we're now the owner of a dirty page with
2808 * delayed allocation bits set and space reserved for our COW
2809 * destination.
2810 *
2811 * The page was dirty when we started, nothing should have cleaned it.
2812 */
2813 BUG_ON(!folio_test_dirty(folio));
2814 free_delalloc_space = false;
2815 out_reserved:
2816 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2817 if (free_delalloc_space)
2818 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2819 PAGE_SIZE, true);
2820 unlock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2821 out_page:
2822 if (ret) {
2823 /*
2824 * We hit ENOSPC or other errors. Update the mapping and page
2825 * to reflect the errors and clean the page.
2826 */
2827 mapping_set_error(folio->mapping, ret);
2828 btrfs_mark_ordered_io_finished(inode, folio, page_start,
2829 folio_size(folio), !ret);
2830 folio_clear_dirty_for_io(folio);
2831 }
2832 btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE);
2833 folio_unlock(folio);
2834 folio_put(folio);
2835 kfree(fixup);
2836 extent_changeset_free(data_reserved);
2837 /*
2838 * As a precaution, do a delayed iput in case it would be the last iput
2839 * that could need flushing space. Recursing back to fixup worker would
2840 * deadlock.
2841 */
2842 btrfs_add_delayed_iput(inode);
2843 }
2844
2845 /*
2846 * There are a few paths in the higher layers of the kernel that directly
2847 * set the folio dirty bit without asking the filesystem if it is a
2848 * good idea. This causes problems because we want to make sure COW
2849 * properly happens and the data=ordered rules are followed.
2850 *
2851 * In our case any range that doesn't have the ORDERED bit set
2852 * hasn't been properly setup for IO. We kick off an async process
2853 * to fix it up. The async helper will wait for ordered extents, set
2854 * the delalloc bit and make it safe to write the folio.
2855 */
btrfs_writepage_cow_fixup(struct folio * folio)2856 int btrfs_writepage_cow_fixup(struct folio *folio)
2857 {
2858 struct inode *inode = folio->mapping->host;
2859 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2860 struct btrfs_writepage_fixup *fixup;
2861
2862 /* This folio has ordered extent covering it already */
2863 if (folio_test_ordered(folio))
2864 return 0;
2865
2866 /*
2867 * folio_checked is set below when we create a fixup worker for this
2868 * folio, don't try to create another one if we're already
2869 * folio_test_checked.
2870 *
2871 * The extent_io writepage code will redirty the foio if we send back
2872 * EAGAIN.
2873 */
2874 if (folio_test_checked(folio))
2875 return -EAGAIN;
2876
2877 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2878 if (!fixup)
2879 return -EAGAIN;
2880
2881 /*
2882 * We are already holding a reference to this inode from
2883 * write_cache_pages. We need to hold it because the space reservation
2884 * takes place outside of the folio lock, and we can't trust
2885 * page->mapping outside of the folio lock.
2886 */
2887 ihold(inode);
2888 btrfs_folio_set_checked(fs_info, folio, folio_pos(folio), folio_size(folio));
2889 folio_get(folio);
2890 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL);
2891 fixup->folio = folio;
2892 fixup->inode = BTRFS_I(inode);
2893 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2894
2895 return -EAGAIN;
2896 }
2897
insert_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,u64 file_pos,struct btrfs_file_extent_item * stack_fi,const bool update_inode_bytes,u64 qgroup_reserved)2898 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2899 struct btrfs_inode *inode, u64 file_pos,
2900 struct btrfs_file_extent_item *stack_fi,
2901 const bool update_inode_bytes,
2902 u64 qgroup_reserved)
2903 {
2904 struct btrfs_root *root = inode->root;
2905 const u64 sectorsize = root->fs_info->sectorsize;
2906 struct btrfs_path *path;
2907 struct extent_buffer *leaf;
2908 struct btrfs_key ins;
2909 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2910 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2911 u64 offset = btrfs_stack_file_extent_offset(stack_fi);
2912 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2913 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2914 struct btrfs_drop_extents_args drop_args = { 0 };
2915 int ret;
2916
2917 path = btrfs_alloc_path();
2918 if (!path)
2919 return -ENOMEM;
2920
2921 /*
2922 * we may be replacing one extent in the tree with another.
2923 * The new extent is pinned in the extent map, and we don't want
2924 * to drop it from the cache until it is completely in the btree.
2925 *
2926 * So, tell btrfs_drop_extents to leave this extent in the cache.
2927 * the caller is expected to unpin it and allow it to be merged
2928 * with the others.
2929 */
2930 drop_args.path = path;
2931 drop_args.start = file_pos;
2932 drop_args.end = file_pos + num_bytes;
2933 drop_args.replace_extent = true;
2934 drop_args.extent_item_size = sizeof(*stack_fi);
2935 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2936 if (ret)
2937 goto out;
2938
2939 if (!drop_args.extent_inserted) {
2940 ins.objectid = btrfs_ino(inode);
2941 ins.offset = file_pos;
2942 ins.type = BTRFS_EXTENT_DATA_KEY;
2943
2944 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2945 sizeof(*stack_fi));
2946 if (ret)
2947 goto out;
2948 }
2949 leaf = path->nodes[0];
2950 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2951 write_extent_buffer(leaf, stack_fi,
2952 btrfs_item_ptr_offset(leaf, path->slots[0]),
2953 sizeof(struct btrfs_file_extent_item));
2954
2955 btrfs_mark_buffer_dirty(trans, leaf);
2956 btrfs_release_path(path);
2957
2958 /*
2959 * If we dropped an inline extent here, we know the range where it is
2960 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
2961 * number of bytes only for that range containing the inline extent.
2962 * The remaining of the range will be processed when clearning the
2963 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2964 */
2965 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2966 u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2967
2968 inline_size = drop_args.bytes_found - inline_size;
2969 btrfs_update_inode_bytes(inode, sectorsize, inline_size);
2970 drop_args.bytes_found -= inline_size;
2971 num_bytes -= sectorsize;
2972 }
2973
2974 if (update_inode_bytes)
2975 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
2976
2977 ins.objectid = disk_bytenr;
2978 ins.offset = disk_num_bytes;
2979 ins.type = BTRFS_EXTENT_ITEM_KEY;
2980
2981 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
2982 if (ret)
2983 goto out;
2984
2985 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
2986 file_pos - offset,
2987 qgroup_reserved, &ins);
2988 out:
2989 btrfs_free_path(path);
2990
2991 return ret;
2992 }
2993
btrfs_release_delalloc_bytes(struct btrfs_fs_info * fs_info,u64 start,u64 len)2994 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2995 u64 start, u64 len)
2996 {
2997 struct btrfs_block_group *cache;
2998
2999 cache = btrfs_lookup_block_group(fs_info, start);
3000 ASSERT(cache);
3001
3002 spin_lock(&cache->lock);
3003 cache->delalloc_bytes -= len;
3004 spin_unlock(&cache->lock);
3005
3006 btrfs_put_block_group(cache);
3007 }
3008
insert_ordered_extent_file_extent(struct btrfs_trans_handle * trans,struct btrfs_ordered_extent * oe)3009 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
3010 struct btrfs_ordered_extent *oe)
3011 {
3012 struct btrfs_file_extent_item stack_fi;
3013 bool update_inode_bytes;
3014 u64 num_bytes = oe->num_bytes;
3015 u64 ram_bytes = oe->ram_bytes;
3016
3017 memset(&stack_fi, 0, sizeof(stack_fi));
3018 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
3019 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
3020 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
3021 oe->disk_num_bytes);
3022 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
3023 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
3024 num_bytes = oe->truncated_len;
3025 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
3026 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
3027 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
3028 /* Encryption and other encoding is reserved and all 0 */
3029
3030 /*
3031 * For delalloc, when completing an ordered extent we update the inode's
3032 * bytes when clearing the range in the inode's io tree, so pass false
3033 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
3034 * except if the ordered extent was truncated.
3035 */
3036 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
3037 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3038 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3039
3040 return insert_reserved_file_extent(trans, oe->inode,
3041 oe->file_offset, &stack_fi,
3042 update_inode_bytes, oe->qgroup_rsv);
3043 }
3044
3045 /*
3046 * As ordered data IO finishes, this gets called so we can finish
3047 * an ordered extent if the range of bytes in the file it covers are
3048 * fully written.
3049 */
btrfs_finish_one_ordered(struct btrfs_ordered_extent * ordered_extent)3050 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent)
3051 {
3052 struct btrfs_inode *inode = ordered_extent->inode;
3053 struct btrfs_root *root = inode->root;
3054 struct btrfs_fs_info *fs_info = root->fs_info;
3055 struct btrfs_trans_handle *trans = NULL;
3056 struct extent_io_tree *io_tree = &inode->io_tree;
3057 struct extent_state *cached_state = NULL;
3058 u64 start, end;
3059 int compress_type = 0;
3060 int ret = 0;
3061 u64 logical_len = ordered_extent->num_bytes;
3062 bool freespace_inode;
3063 bool truncated = false;
3064 bool clear_reserved_extent = true;
3065 unsigned int clear_bits = EXTENT_DEFRAG;
3066
3067 start = ordered_extent->file_offset;
3068 end = start + ordered_extent->num_bytes - 1;
3069
3070 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3071 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3072 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3073 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3074 clear_bits |= EXTENT_DELALLOC_NEW;
3075
3076 freespace_inode = btrfs_is_free_space_inode(inode);
3077 if (!freespace_inode)
3078 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent);
3079
3080 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3081 ret = -EIO;
3082 goto out;
3083 }
3084
3085 if (btrfs_is_zoned(fs_info))
3086 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3087 ordered_extent->disk_num_bytes);
3088
3089 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3090 truncated = true;
3091 logical_len = ordered_extent->truncated_len;
3092 /* Truncated the entire extent, don't bother adding */
3093 if (!logical_len)
3094 goto out;
3095 }
3096
3097 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3098 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3099
3100 btrfs_inode_safe_disk_i_size_write(inode, 0);
3101 if (freespace_inode)
3102 trans = btrfs_join_transaction_spacecache(root);
3103 else
3104 trans = btrfs_join_transaction(root);
3105 if (IS_ERR(trans)) {
3106 ret = PTR_ERR(trans);
3107 trans = NULL;
3108 goto out;
3109 }
3110 trans->block_rsv = &inode->block_rsv;
3111 ret = btrfs_update_inode_fallback(trans, inode);
3112 if (ret) /* -ENOMEM or corruption */
3113 btrfs_abort_transaction(trans, ret);
3114
3115 ret = btrfs_insert_raid_extent(trans, ordered_extent);
3116 if (ret)
3117 btrfs_abort_transaction(trans, ret);
3118
3119 goto out;
3120 }
3121
3122 clear_bits |= EXTENT_LOCKED;
3123 lock_extent(io_tree, start, end, &cached_state);
3124
3125 if (freespace_inode)
3126 trans = btrfs_join_transaction_spacecache(root);
3127 else
3128 trans = btrfs_join_transaction(root);
3129 if (IS_ERR(trans)) {
3130 ret = PTR_ERR(trans);
3131 trans = NULL;
3132 goto out;
3133 }
3134
3135 trans->block_rsv = &inode->block_rsv;
3136
3137 ret = btrfs_insert_raid_extent(trans, ordered_extent);
3138 if (ret)
3139 goto out;
3140
3141 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3142 compress_type = ordered_extent->compress_type;
3143 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3144 BUG_ON(compress_type);
3145 ret = btrfs_mark_extent_written(trans, inode,
3146 ordered_extent->file_offset,
3147 ordered_extent->file_offset +
3148 logical_len);
3149 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3150 ordered_extent->disk_num_bytes);
3151 } else {
3152 BUG_ON(root == fs_info->tree_root);
3153 ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3154 if (!ret) {
3155 clear_reserved_extent = false;
3156 btrfs_release_delalloc_bytes(fs_info,
3157 ordered_extent->disk_bytenr,
3158 ordered_extent->disk_num_bytes);
3159 }
3160 }
3161 if (ret < 0) {
3162 btrfs_abort_transaction(trans, ret);
3163 goto out;
3164 }
3165
3166 ret = unpin_extent_cache(inode, ordered_extent->file_offset,
3167 ordered_extent->num_bytes, trans->transid);
3168 if (ret < 0) {
3169 btrfs_abort_transaction(trans, ret);
3170 goto out;
3171 }
3172
3173 ret = add_pending_csums(trans, &ordered_extent->list);
3174 if (ret) {
3175 btrfs_abort_transaction(trans, ret);
3176 goto out;
3177 }
3178
3179 /*
3180 * If this is a new delalloc range, clear its new delalloc flag to
3181 * update the inode's number of bytes. This needs to be done first
3182 * before updating the inode item.
3183 */
3184 if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3185 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3186 clear_extent_bit(&inode->io_tree, start, end,
3187 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3188 &cached_state);
3189
3190 btrfs_inode_safe_disk_i_size_write(inode, 0);
3191 ret = btrfs_update_inode_fallback(trans, inode);
3192 if (ret) { /* -ENOMEM or corruption */
3193 btrfs_abort_transaction(trans, ret);
3194 goto out;
3195 }
3196 out:
3197 clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3198 &cached_state);
3199
3200 if (trans)
3201 btrfs_end_transaction(trans);
3202
3203 if (ret || truncated) {
3204 u64 unwritten_start = start;
3205
3206 /*
3207 * If we failed to finish this ordered extent for any reason we
3208 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3209 * extent, and mark the inode with the error if it wasn't
3210 * already set. Any error during writeback would have already
3211 * set the mapping error, so we need to set it if we're the ones
3212 * marking this ordered extent as failed.
3213 */
3214 if (ret)
3215 btrfs_mark_ordered_extent_error(ordered_extent);
3216
3217 if (truncated)
3218 unwritten_start += logical_len;
3219 clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3220
3221 /*
3222 * Drop extent maps for the part of the extent we didn't write.
3223 *
3224 * We have an exception here for the free_space_inode, this is
3225 * because when we do btrfs_get_extent() on the free space inode
3226 * we will search the commit root. If this is a new block group
3227 * we won't find anything, and we will trip over the assert in
3228 * writepage where we do ASSERT(em->block_start !=
3229 * EXTENT_MAP_HOLE).
3230 *
3231 * Theoretically we could also skip this for any NOCOW extent as
3232 * we don't mess with the extent map tree in the NOCOW case, but
3233 * for now simply skip this if we are the free space inode.
3234 */
3235 if (!btrfs_is_free_space_inode(inode))
3236 btrfs_drop_extent_map_range(inode, unwritten_start,
3237 end, false);
3238
3239 /*
3240 * If the ordered extent had an IOERR or something else went
3241 * wrong we need to return the space for this ordered extent
3242 * back to the allocator. We only free the extent in the
3243 * truncated case if we didn't write out the extent at all.
3244 *
3245 * If we made it past insert_reserved_file_extent before we
3246 * errored out then we don't need to do this as the accounting
3247 * has already been done.
3248 */
3249 if ((ret || !logical_len) &&
3250 clear_reserved_extent &&
3251 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3252 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3253 /*
3254 * Discard the range before returning it back to the
3255 * free space pool
3256 */
3257 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3258 btrfs_discard_extent(fs_info,
3259 ordered_extent->disk_bytenr,
3260 ordered_extent->disk_num_bytes,
3261 NULL);
3262 btrfs_free_reserved_extent(fs_info,
3263 ordered_extent->disk_bytenr,
3264 ordered_extent->disk_num_bytes, 1);
3265 /*
3266 * Actually free the qgroup rsv which was released when
3267 * the ordered extent was created.
3268 */
3269 btrfs_qgroup_free_refroot(fs_info, btrfs_root_id(inode->root),
3270 ordered_extent->qgroup_rsv,
3271 BTRFS_QGROUP_RSV_DATA);
3272 }
3273 }
3274
3275 /*
3276 * This needs to be done to make sure anybody waiting knows we are done
3277 * updating everything for this ordered extent.
3278 */
3279 btrfs_remove_ordered_extent(inode, ordered_extent);
3280
3281 /* once for us */
3282 btrfs_put_ordered_extent(ordered_extent);
3283 /* once for the tree */
3284 btrfs_put_ordered_extent(ordered_extent);
3285
3286 return ret;
3287 }
3288
btrfs_finish_ordered_io(struct btrfs_ordered_extent * ordered)3289 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered)
3290 {
3291 if (btrfs_is_zoned(ordered->inode->root->fs_info) &&
3292 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3293 list_empty(&ordered->bioc_list))
3294 btrfs_finish_ordered_zoned(ordered);
3295 return btrfs_finish_one_ordered(ordered);
3296 }
3297
3298 /*
3299 * Verify the checksum for a single sector without any extra action that depend
3300 * on the type of I/O.
3301 */
btrfs_check_sector_csum(struct btrfs_fs_info * fs_info,struct page * page,u32 pgoff,u8 * csum,const u8 * const csum_expected)3302 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
3303 u32 pgoff, u8 *csum, const u8 * const csum_expected)
3304 {
3305 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3306 char *kaddr;
3307
3308 ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE);
3309
3310 shash->tfm = fs_info->csum_shash;
3311
3312 kaddr = kmap_local_page(page) + pgoff;
3313 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
3314 kunmap_local(kaddr);
3315
3316 if (memcmp(csum, csum_expected, fs_info->csum_size))
3317 return -EIO;
3318 return 0;
3319 }
3320
3321 /*
3322 * Verify the checksum of a single data sector.
3323 *
3324 * @bbio: btrfs_io_bio which contains the csum
3325 * @dev: device the sector is on
3326 * @bio_offset: offset to the beginning of the bio (in bytes)
3327 * @bv: bio_vec to check
3328 *
3329 * Check if the checksum on a data block is valid. When a checksum mismatch is
3330 * detected, report the error and fill the corrupted range with zero.
3331 *
3332 * Return %true if the sector is ok or had no checksum to start with, else %false.
3333 */
btrfs_data_csum_ok(struct btrfs_bio * bbio,struct btrfs_device * dev,u32 bio_offset,struct bio_vec * bv)3334 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev,
3335 u32 bio_offset, struct bio_vec *bv)
3336 {
3337 struct btrfs_inode *inode = bbio->inode;
3338 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3339 u64 file_offset = bbio->file_offset + bio_offset;
3340 u64 end = file_offset + bv->bv_len - 1;
3341 u8 *csum_expected;
3342 u8 csum[BTRFS_CSUM_SIZE];
3343
3344 ASSERT(bv->bv_len == fs_info->sectorsize);
3345
3346 if (!bbio->csum)
3347 return true;
3348
3349 if (btrfs_is_data_reloc_root(inode->root) &&
3350 test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM,
3351 NULL)) {
3352 /* Skip the range without csum for data reloc inode */
3353 clear_extent_bits(&inode->io_tree, file_offset, end,
3354 EXTENT_NODATASUM);
3355 return true;
3356 }
3357
3358 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) *
3359 fs_info->csum_size;
3360 if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum,
3361 csum_expected))
3362 goto zeroit;
3363 return true;
3364
3365 zeroit:
3366 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected,
3367 bbio->mirror_num);
3368 if (dev)
3369 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
3370 memzero_bvec(bv);
3371 return false;
3372 }
3373
3374 /*
3375 * Perform a delayed iput on @inode.
3376 *
3377 * @inode: The inode we want to perform iput on
3378 *
3379 * This function uses the generic vfs_inode::i_count to track whether we should
3380 * just decrement it (in case it's > 1) or if this is the last iput then link
3381 * the inode to the delayed iput machinery. Delayed iputs are processed at
3382 * transaction commit time/superblock commit/cleaner kthread.
3383 */
btrfs_add_delayed_iput(struct btrfs_inode * inode)3384 void btrfs_add_delayed_iput(struct btrfs_inode *inode)
3385 {
3386 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3387 unsigned long flags;
3388
3389 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1))
3390 return;
3391
3392 atomic_inc(&fs_info->nr_delayed_iputs);
3393 /*
3394 * Need to be irq safe here because we can be called from either an irq
3395 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq
3396 * context.
3397 */
3398 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags);
3399 ASSERT(list_empty(&inode->delayed_iput));
3400 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs);
3401 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags);
3402 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3403 wake_up_process(fs_info->cleaner_kthread);
3404 }
3405
run_delayed_iput_locked(struct btrfs_fs_info * fs_info,struct btrfs_inode * inode)3406 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3407 struct btrfs_inode *inode)
3408 {
3409 list_del_init(&inode->delayed_iput);
3410 spin_unlock_irq(&fs_info->delayed_iput_lock);
3411 iput(&inode->vfs_inode);
3412 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3413 wake_up(&fs_info->delayed_iputs_wait);
3414 spin_lock_irq(&fs_info->delayed_iput_lock);
3415 }
3416
btrfs_run_delayed_iput(struct btrfs_fs_info * fs_info,struct btrfs_inode * inode)3417 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3418 struct btrfs_inode *inode)
3419 {
3420 if (!list_empty(&inode->delayed_iput)) {
3421 spin_lock_irq(&fs_info->delayed_iput_lock);
3422 if (!list_empty(&inode->delayed_iput))
3423 run_delayed_iput_locked(fs_info, inode);
3424 spin_unlock_irq(&fs_info->delayed_iput_lock);
3425 }
3426 }
3427
btrfs_run_delayed_iputs(struct btrfs_fs_info * fs_info)3428 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3429 {
3430 /*
3431 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which
3432 * calls btrfs_add_delayed_iput() and that needs to lock
3433 * fs_info->delayed_iput_lock. So we need to disable irqs here to
3434 * prevent a deadlock.
3435 */
3436 spin_lock_irq(&fs_info->delayed_iput_lock);
3437 while (!list_empty(&fs_info->delayed_iputs)) {
3438 struct btrfs_inode *inode;
3439
3440 inode = list_first_entry(&fs_info->delayed_iputs,
3441 struct btrfs_inode, delayed_iput);
3442 run_delayed_iput_locked(fs_info, inode);
3443 if (need_resched()) {
3444 spin_unlock_irq(&fs_info->delayed_iput_lock);
3445 cond_resched();
3446 spin_lock_irq(&fs_info->delayed_iput_lock);
3447 }
3448 }
3449 spin_unlock_irq(&fs_info->delayed_iput_lock);
3450 }
3451
3452 /*
3453 * Wait for flushing all delayed iputs
3454 *
3455 * @fs_info: the filesystem
3456 *
3457 * This will wait on any delayed iputs that are currently running with KILLABLE
3458 * set. Once they are all done running we will return, unless we are killed in
3459 * which case we return EINTR. This helps in user operations like fallocate etc
3460 * that might get blocked on the iputs.
3461 *
3462 * Return EINTR if we were killed, 0 if nothing's pending
3463 */
btrfs_wait_on_delayed_iputs(struct btrfs_fs_info * fs_info)3464 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3465 {
3466 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3467 atomic_read(&fs_info->nr_delayed_iputs) == 0);
3468 if (ret)
3469 return -EINTR;
3470 return 0;
3471 }
3472
3473 /*
3474 * This creates an orphan entry for the given inode in case something goes wrong
3475 * in the middle of an unlink.
3476 */
btrfs_orphan_add(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3477 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3478 struct btrfs_inode *inode)
3479 {
3480 int ret;
3481
3482 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3483 if (ret && ret != -EEXIST) {
3484 btrfs_abort_transaction(trans, ret);
3485 return ret;
3486 }
3487
3488 return 0;
3489 }
3490
3491 /*
3492 * We have done the delete so we can go ahead and remove the orphan item for
3493 * this particular inode.
3494 */
btrfs_orphan_del(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3495 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3496 struct btrfs_inode *inode)
3497 {
3498 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3499 }
3500
3501 /*
3502 * this cleans up any orphans that may be left on the list from the last use
3503 * of this root.
3504 */
btrfs_orphan_cleanup(struct btrfs_root * root)3505 int btrfs_orphan_cleanup(struct btrfs_root *root)
3506 {
3507 struct btrfs_fs_info *fs_info = root->fs_info;
3508 struct btrfs_path *path;
3509 struct extent_buffer *leaf;
3510 struct btrfs_key key, found_key;
3511 struct btrfs_trans_handle *trans;
3512 struct inode *inode;
3513 u64 last_objectid = 0;
3514 int ret = 0, nr_unlink = 0;
3515
3516 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
3517 return 0;
3518
3519 path = btrfs_alloc_path();
3520 if (!path) {
3521 ret = -ENOMEM;
3522 goto out;
3523 }
3524 path->reada = READA_BACK;
3525
3526 key.objectid = BTRFS_ORPHAN_OBJECTID;
3527 key.type = BTRFS_ORPHAN_ITEM_KEY;
3528 key.offset = (u64)-1;
3529
3530 while (1) {
3531 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3532 if (ret < 0)
3533 goto out;
3534
3535 /*
3536 * if ret == 0 means we found what we were searching for, which
3537 * is weird, but possible, so only screw with path if we didn't
3538 * find the key and see if we have stuff that matches
3539 */
3540 if (ret > 0) {
3541 ret = 0;
3542 if (path->slots[0] == 0)
3543 break;
3544 path->slots[0]--;
3545 }
3546
3547 /* pull out the item */
3548 leaf = path->nodes[0];
3549 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3550
3551 /* make sure the item matches what we want */
3552 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3553 break;
3554 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3555 break;
3556
3557 /* release the path since we're done with it */
3558 btrfs_release_path(path);
3559
3560 /*
3561 * this is where we are basically btrfs_lookup, without the
3562 * crossing root thing. we store the inode number in the
3563 * offset of the orphan item.
3564 */
3565
3566 if (found_key.offset == last_objectid) {
3567 /*
3568 * We found the same inode as before. This means we were
3569 * not able to remove its items via eviction triggered
3570 * by an iput(). A transaction abort may have happened,
3571 * due to -ENOSPC for example, so try to grab the error
3572 * that lead to a transaction abort, if any.
3573 */
3574 btrfs_err(fs_info,
3575 "Error removing orphan entry, stopping orphan cleanup");
3576 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL;
3577 goto out;
3578 }
3579
3580 last_objectid = found_key.offset;
3581
3582 found_key.objectid = found_key.offset;
3583 found_key.type = BTRFS_INODE_ITEM_KEY;
3584 found_key.offset = 0;
3585 inode = btrfs_iget(last_objectid, root);
3586 if (IS_ERR(inode)) {
3587 ret = PTR_ERR(inode);
3588 inode = NULL;
3589 if (ret != -ENOENT)
3590 goto out;
3591 }
3592
3593 if (!inode && root == fs_info->tree_root) {
3594 struct btrfs_root *dead_root;
3595 int is_dead_root = 0;
3596
3597 /*
3598 * This is an orphan in the tree root. Currently these
3599 * could come from 2 sources:
3600 * a) a root (snapshot/subvolume) deletion in progress
3601 * b) a free space cache inode
3602 * We need to distinguish those two, as the orphan item
3603 * for a root must not get deleted before the deletion
3604 * of the snapshot/subvolume's tree completes.
3605 *
3606 * btrfs_find_orphan_roots() ran before us, which has
3607 * found all deleted roots and loaded them into
3608 * fs_info->fs_roots_radix. So here we can find if an
3609 * orphan item corresponds to a deleted root by looking
3610 * up the root from that radix tree.
3611 */
3612
3613 spin_lock(&fs_info->fs_roots_radix_lock);
3614 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3615 (unsigned long)found_key.objectid);
3616 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3617 is_dead_root = 1;
3618 spin_unlock(&fs_info->fs_roots_radix_lock);
3619
3620 if (is_dead_root) {
3621 /* prevent this orphan from being found again */
3622 key.offset = found_key.objectid - 1;
3623 continue;
3624 }
3625
3626 }
3627
3628 /*
3629 * If we have an inode with links, there are a couple of
3630 * possibilities:
3631 *
3632 * 1. We were halfway through creating fsverity metadata for the
3633 * file. In that case, the orphan item represents incomplete
3634 * fsverity metadata which must be cleaned up with
3635 * btrfs_drop_verity_items and deleting the orphan item.
3636
3637 * 2. Old kernels (before v3.12) used to create an
3638 * orphan item for truncate indicating that there were possibly
3639 * extent items past i_size that needed to be deleted. In v3.12,
3640 * truncate was changed to update i_size in sync with the extent
3641 * items, but the (useless) orphan item was still created. Since
3642 * v4.18, we don't create the orphan item for truncate at all.
3643 *
3644 * So, this item could mean that we need to do a truncate, but
3645 * only if this filesystem was last used on a pre-v3.12 kernel
3646 * and was not cleanly unmounted. The odds of that are quite
3647 * slim, and it's a pain to do the truncate now, so just delete
3648 * the orphan item.
3649 *
3650 * It's also possible that this orphan item was supposed to be
3651 * deleted but wasn't. The inode number may have been reused,
3652 * but either way, we can delete the orphan item.
3653 */
3654 if (!inode || inode->i_nlink) {
3655 if (inode) {
3656 ret = btrfs_drop_verity_items(BTRFS_I(inode));
3657 iput(inode);
3658 inode = NULL;
3659 if (ret)
3660 goto out;
3661 }
3662 trans = btrfs_start_transaction(root, 1);
3663 if (IS_ERR(trans)) {
3664 ret = PTR_ERR(trans);
3665 goto out;
3666 }
3667 btrfs_debug(fs_info, "auto deleting %Lu",
3668 found_key.objectid);
3669 ret = btrfs_del_orphan_item(trans, root,
3670 found_key.objectid);
3671 btrfs_end_transaction(trans);
3672 if (ret)
3673 goto out;
3674 continue;
3675 }
3676
3677 nr_unlink++;
3678
3679 /* this will do delete_inode and everything for us */
3680 iput(inode);
3681 }
3682 /* release the path since we're done with it */
3683 btrfs_release_path(path);
3684
3685 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3686 trans = btrfs_join_transaction(root);
3687 if (!IS_ERR(trans))
3688 btrfs_end_transaction(trans);
3689 }
3690
3691 if (nr_unlink)
3692 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3693
3694 out:
3695 if (ret)
3696 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3697 btrfs_free_path(path);
3698 return ret;
3699 }
3700
3701 /*
3702 * very simple check to peek ahead in the leaf looking for xattrs. If we
3703 * don't find any xattrs, we know there can't be any acls.
3704 *
3705 * slot is the slot the inode is in, objectid is the objectid of the inode
3706 */
acls_after_inode_item(struct extent_buffer * leaf,int slot,u64 objectid,int * first_xattr_slot)3707 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3708 int slot, u64 objectid,
3709 int *first_xattr_slot)
3710 {
3711 u32 nritems = btrfs_header_nritems(leaf);
3712 struct btrfs_key found_key;
3713 static u64 xattr_access = 0;
3714 static u64 xattr_default = 0;
3715 int scanned = 0;
3716
3717 if (!xattr_access) {
3718 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3719 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3720 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3721 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3722 }
3723
3724 slot++;
3725 *first_xattr_slot = -1;
3726 while (slot < nritems) {
3727 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3728
3729 /* we found a different objectid, there must not be acls */
3730 if (found_key.objectid != objectid)
3731 return 0;
3732
3733 /* we found an xattr, assume we've got an acl */
3734 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3735 if (*first_xattr_slot == -1)
3736 *first_xattr_slot = slot;
3737 if (found_key.offset == xattr_access ||
3738 found_key.offset == xattr_default)
3739 return 1;
3740 }
3741
3742 /*
3743 * we found a key greater than an xattr key, there can't
3744 * be any acls later on
3745 */
3746 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3747 return 0;
3748
3749 slot++;
3750 scanned++;
3751
3752 /*
3753 * it goes inode, inode backrefs, xattrs, extents,
3754 * so if there are a ton of hard links to an inode there can
3755 * be a lot of backrefs. Don't waste time searching too hard,
3756 * this is just an optimization
3757 */
3758 if (scanned >= 8)
3759 break;
3760 }
3761 /* we hit the end of the leaf before we found an xattr or
3762 * something larger than an xattr. We have to assume the inode
3763 * has acls
3764 */
3765 if (*first_xattr_slot == -1)
3766 *first_xattr_slot = slot;
3767 return 1;
3768 }
3769
btrfs_init_file_extent_tree(struct btrfs_inode * inode)3770 static int btrfs_init_file_extent_tree(struct btrfs_inode *inode)
3771 {
3772 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3773
3774 if (WARN_ON_ONCE(inode->file_extent_tree))
3775 return 0;
3776 if (btrfs_fs_incompat(fs_info, NO_HOLES))
3777 return 0;
3778 if (!S_ISREG(inode->vfs_inode.i_mode))
3779 return 0;
3780 if (btrfs_is_free_space_inode(inode))
3781 return 0;
3782
3783 inode->file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL);
3784 if (!inode->file_extent_tree)
3785 return -ENOMEM;
3786
3787 extent_io_tree_init(fs_info, inode->file_extent_tree, IO_TREE_INODE_FILE_EXTENT);
3788 /* Lockdep class is set only for the file extent tree. */
3789 lockdep_set_class(&inode->file_extent_tree->lock, &file_extent_tree_class);
3790
3791 return 0;
3792 }
3793
3794 /*
3795 * read an inode from the btree into the in-memory inode
3796 */
btrfs_read_locked_inode(struct inode * inode,struct btrfs_path * in_path)3797 static int btrfs_read_locked_inode(struct inode *inode,
3798 struct btrfs_path *in_path)
3799 {
3800 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3801 struct btrfs_path *path = in_path;
3802 struct extent_buffer *leaf;
3803 struct btrfs_inode_item *inode_item;
3804 struct btrfs_root *root = BTRFS_I(inode)->root;
3805 struct btrfs_key location;
3806 unsigned long ptr;
3807 int maybe_acls;
3808 u32 rdev;
3809 int ret;
3810 bool filled = false;
3811 int first_xattr_slot;
3812
3813 ret = btrfs_init_file_extent_tree(BTRFS_I(inode));
3814 if (ret)
3815 return ret;
3816
3817 ret = btrfs_fill_inode(inode, &rdev);
3818 if (!ret)
3819 filled = true;
3820
3821 if (!path) {
3822 path = btrfs_alloc_path();
3823 if (!path)
3824 return -ENOMEM;
3825 }
3826
3827 btrfs_get_inode_key(BTRFS_I(inode), &location);
3828
3829 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3830 if (ret) {
3831 if (path != in_path)
3832 btrfs_free_path(path);
3833 return ret;
3834 }
3835
3836 leaf = path->nodes[0];
3837
3838 if (filled)
3839 goto cache_index;
3840
3841 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3842 struct btrfs_inode_item);
3843 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3844 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3845 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3846 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3847 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3848 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3849 round_up(i_size_read(inode), fs_info->sectorsize));
3850
3851 inode_set_atime(inode, btrfs_timespec_sec(leaf, &inode_item->atime),
3852 btrfs_timespec_nsec(leaf, &inode_item->atime));
3853
3854 inode_set_mtime(inode, btrfs_timespec_sec(leaf, &inode_item->mtime),
3855 btrfs_timespec_nsec(leaf, &inode_item->mtime));
3856
3857 inode_set_ctime(inode, btrfs_timespec_sec(leaf, &inode_item->ctime),
3858 btrfs_timespec_nsec(leaf, &inode_item->ctime));
3859
3860 BTRFS_I(inode)->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime);
3861 BTRFS_I(inode)->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime);
3862
3863 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3864 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3865 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3866
3867 inode_set_iversion_queried(inode,
3868 btrfs_inode_sequence(leaf, inode_item));
3869 inode->i_generation = BTRFS_I(inode)->generation;
3870 inode->i_rdev = 0;
3871 rdev = btrfs_inode_rdev(leaf, inode_item);
3872
3873 if (S_ISDIR(inode->i_mode))
3874 BTRFS_I(inode)->index_cnt = (u64)-1;
3875
3876 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
3877 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
3878
3879 cache_index:
3880 /*
3881 * If we were modified in the current generation and evicted from memory
3882 * and then re-read we need to do a full sync since we don't have any
3883 * idea about which extents were modified before we were evicted from
3884 * cache.
3885 *
3886 * This is required for both inode re-read from disk and delayed inode
3887 * in the delayed_nodes xarray.
3888 */
3889 if (BTRFS_I(inode)->last_trans == btrfs_get_fs_generation(fs_info))
3890 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3891 &BTRFS_I(inode)->runtime_flags);
3892
3893 /*
3894 * We don't persist the id of the transaction where an unlink operation
3895 * against the inode was last made. So here we assume the inode might
3896 * have been evicted, and therefore the exact value of last_unlink_trans
3897 * lost, and set it to last_trans to avoid metadata inconsistencies
3898 * between the inode and its parent if the inode is fsync'ed and the log
3899 * replayed. For example, in the scenario:
3900 *
3901 * touch mydir/foo
3902 * ln mydir/foo mydir/bar
3903 * sync
3904 * unlink mydir/bar
3905 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3906 * xfs_io -c fsync mydir/foo
3907 * <power failure>
3908 * mount fs, triggers fsync log replay
3909 *
3910 * We must make sure that when we fsync our inode foo we also log its
3911 * parent inode, otherwise after log replay the parent still has the
3912 * dentry with the "bar" name but our inode foo has a link count of 1
3913 * and doesn't have an inode ref with the name "bar" anymore.
3914 *
3915 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3916 * but it guarantees correctness at the expense of occasional full
3917 * transaction commits on fsync if our inode is a directory, or if our
3918 * inode is not a directory, logging its parent unnecessarily.
3919 */
3920 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3921
3922 /*
3923 * Same logic as for last_unlink_trans. We don't persist the generation
3924 * of the last transaction where this inode was used for a reflink
3925 * operation, so after eviction and reloading the inode we must be
3926 * pessimistic and assume the last transaction that modified the inode.
3927 */
3928 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3929
3930 path->slots[0]++;
3931 if (inode->i_nlink != 1 ||
3932 path->slots[0] >= btrfs_header_nritems(leaf))
3933 goto cache_acl;
3934
3935 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3936 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3937 goto cache_acl;
3938
3939 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3940 if (location.type == BTRFS_INODE_REF_KEY) {
3941 struct btrfs_inode_ref *ref;
3942
3943 ref = (struct btrfs_inode_ref *)ptr;
3944 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3945 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3946 struct btrfs_inode_extref *extref;
3947
3948 extref = (struct btrfs_inode_extref *)ptr;
3949 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3950 extref);
3951 }
3952 cache_acl:
3953 /*
3954 * try to precache a NULL acl entry for files that don't have
3955 * any xattrs or acls
3956 */
3957 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3958 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3959 if (first_xattr_slot != -1) {
3960 path->slots[0] = first_xattr_slot;
3961 ret = btrfs_load_inode_props(inode, path);
3962 if (ret)
3963 btrfs_err(fs_info,
3964 "error loading props for ino %llu (root %llu): %d",
3965 btrfs_ino(BTRFS_I(inode)),
3966 btrfs_root_id(root), ret);
3967 }
3968 if (path != in_path)
3969 btrfs_free_path(path);
3970
3971 if (!maybe_acls)
3972 cache_no_acl(inode);
3973
3974 switch (inode->i_mode & S_IFMT) {
3975 case S_IFREG:
3976 inode->i_mapping->a_ops = &btrfs_aops;
3977 inode->i_fop = &btrfs_file_operations;
3978 inode->i_op = &btrfs_file_inode_operations;
3979 break;
3980 case S_IFDIR:
3981 inode->i_fop = &btrfs_dir_file_operations;
3982 inode->i_op = &btrfs_dir_inode_operations;
3983 break;
3984 case S_IFLNK:
3985 inode->i_op = &btrfs_symlink_inode_operations;
3986 inode_nohighmem(inode);
3987 inode->i_mapping->a_ops = &btrfs_aops;
3988 break;
3989 default:
3990 inode->i_op = &btrfs_special_inode_operations;
3991 init_special_inode(inode, inode->i_mode, rdev);
3992 break;
3993 }
3994
3995 btrfs_sync_inode_flags_to_i_flags(inode);
3996 return 0;
3997 }
3998
3999 /*
4000 * given a leaf and an inode, copy the inode fields into the leaf
4001 */
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode)4002 static void fill_inode_item(struct btrfs_trans_handle *trans,
4003 struct extent_buffer *leaf,
4004 struct btrfs_inode_item *item,
4005 struct inode *inode)
4006 {
4007 struct btrfs_map_token token;
4008 u64 flags;
4009
4010 btrfs_init_map_token(&token, leaf);
4011
4012 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4013 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4014 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
4015 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4016 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4017
4018 btrfs_set_token_timespec_sec(&token, &item->atime,
4019 inode_get_atime_sec(inode));
4020 btrfs_set_token_timespec_nsec(&token, &item->atime,
4021 inode_get_atime_nsec(inode));
4022
4023 btrfs_set_token_timespec_sec(&token, &item->mtime,
4024 inode_get_mtime_sec(inode));
4025 btrfs_set_token_timespec_nsec(&token, &item->mtime,
4026 inode_get_mtime_nsec(inode));
4027
4028 btrfs_set_token_timespec_sec(&token, &item->ctime,
4029 inode_get_ctime_sec(inode));
4030 btrfs_set_token_timespec_nsec(&token, &item->ctime,
4031 inode_get_ctime_nsec(inode));
4032
4033 btrfs_set_token_timespec_sec(&token, &item->otime, BTRFS_I(inode)->i_otime_sec);
4034 btrfs_set_token_timespec_nsec(&token, &item->otime, BTRFS_I(inode)->i_otime_nsec);
4035
4036 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
4037 btrfs_set_token_inode_generation(&token, item,
4038 BTRFS_I(inode)->generation);
4039 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4040 btrfs_set_token_inode_transid(&token, item, trans->transid);
4041 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4042 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4043 BTRFS_I(inode)->ro_flags);
4044 btrfs_set_token_inode_flags(&token, item, flags);
4045 btrfs_set_token_inode_block_group(&token, item, 0);
4046 }
4047
4048 /*
4049 * copy everything in the in-memory inode into the btree.
4050 */
btrfs_update_inode_item(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)4051 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
4052 struct btrfs_inode *inode)
4053 {
4054 struct btrfs_inode_item *inode_item;
4055 struct btrfs_path *path;
4056 struct extent_buffer *leaf;
4057 struct btrfs_key key;
4058 int ret;
4059
4060 path = btrfs_alloc_path();
4061 if (!path)
4062 return -ENOMEM;
4063
4064 btrfs_get_inode_key(inode, &key);
4065 ret = btrfs_lookup_inode(trans, inode->root, path, &key, 1);
4066 if (ret) {
4067 if (ret > 0)
4068 ret = -ENOENT;
4069 goto failed;
4070 }
4071
4072 leaf = path->nodes[0];
4073 inode_item = btrfs_item_ptr(leaf, path->slots[0],
4074 struct btrfs_inode_item);
4075
4076 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
4077 btrfs_mark_buffer_dirty(trans, leaf);
4078 btrfs_set_inode_last_trans(trans, inode);
4079 ret = 0;
4080 failed:
4081 btrfs_free_path(path);
4082 return ret;
4083 }
4084
4085 /*
4086 * copy everything in the in-memory inode into the btree.
4087 */
btrfs_update_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)4088 int btrfs_update_inode(struct btrfs_trans_handle *trans,
4089 struct btrfs_inode *inode)
4090 {
4091 struct btrfs_root *root = inode->root;
4092 struct btrfs_fs_info *fs_info = root->fs_info;
4093 int ret;
4094
4095 /*
4096 * If the inode is a free space inode, we can deadlock during commit
4097 * if we put it into the delayed code.
4098 *
4099 * The data relocation inode should also be directly updated
4100 * without delay
4101 */
4102 if (!btrfs_is_free_space_inode(inode)
4103 && !btrfs_is_data_reloc_root(root)
4104 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4105 btrfs_update_root_times(trans, root);
4106
4107 ret = btrfs_delayed_update_inode(trans, inode);
4108 if (!ret)
4109 btrfs_set_inode_last_trans(trans, inode);
4110 return ret;
4111 }
4112
4113 return btrfs_update_inode_item(trans, inode);
4114 }
4115
btrfs_update_inode_fallback(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)4116 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4117 struct btrfs_inode *inode)
4118 {
4119 int ret;
4120
4121 ret = btrfs_update_inode(trans, inode);
4122 if (ret == -ENOSPC)
4123 return btrfs_update_inode_item(trans, inode);
4124 return ret;
4125 }
4126
4127 /*
4128 * unlink helper that gets used here in inode.c and in the tree logging
4129 * recovery code. It remove a link in a directory with a given name, and
4130 * also drops the back refs in the inode to the directory
4131 */
__btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,const struct fscrypt_str * name,struct btrfs_rename_ctx * rename_ctx)4132 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4133 struct btrfs_inode *dir,
4134 struct btrfs_inode *inode,
4135 const struct fscrypt_str *name,
4136 struct btrfs_rename_ctx *rename_ctx)
4137 {
4138 struct btrfs_root *root = dir->root;
4139 struct btrfs_fs_info *fs_info = root->fs_info;
4140 struct btrfs_path *path;
4141 int ret = 0;
4142 struct btrfs_dir_item *di;
4143 u64 index;
4144 u64 ino = btrfs_ino(inode);
4145 u64 dir_ino = btrfs_ino(dir);
4146
4147 path = btrfs_alloc_path();
4148 if (!path) {
4149 ret = -ENOMEM;
4150 goto out;
4151 }
4152
4153 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1);
4154 if (IS_ERR_OR_NULL(di)) {
4155 ret = di ? PTR_ERR(di) : -ENOENT;
4156 goto err;
4157 }
4158 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4159 if (ret)
4160 goto err;
4161 btrfs_release_path(path);
4162
4163 /*
4164 * If we don't have dir index, we have to get it by looking up
4165 * the inode ref, since we get the inode ref, remove it directly,
4166 * it is unnecessary to do delayed deletion.
4167 *
4168 * But if we have dir index, needn't search inode ref to get it.
4169 * Since the inode ref is close to the inode item, it is better
4170 * that we delay to delete it, and just do this deletion when
4171 * we update the inode item.
4172 */
4173 if (inode->dir_index) {
4174 ret = btrfs_delayed_delete_inode_ref(inode);
4175 if (!ret) {
4176 index = inode->dir_index;
4177 goto skip_backref;
4178 }
4179 }
4180
4181 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index);
4182 if (ret) {
4183 btrfs_info(fs_info,
4184 "failed to delete reference to %.*s, inode %llu parent %llu",
4185 name->len, name->name, ino, dir_ino);
4186 btrfs_abort_transaction(trans, ret);
4187 goto err;
4188 }
4189 skip_backref:
4190 if (rename_ctx)
4191 rename_ctx->index = index;
4192
4193 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4194 if (ret) {
4195 btrfs_abort_transaction(trans, ret);
4196 goto err;
4197 }
4198
4199 /*
4200 * If we are in a rename context, we don't need to update anything in the
4201 * log. That will be done later during the rename by btrfs_log_new_name().
4202 * Besides that, doing it here would only cause extra unnecessary btree
4203 * operations on the log tree, increasing latency for applications.
4204 */
4205 if (!rename_ctx) {
4206 btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino);
4207 btrfs_del_dir_entries_in_log(trans, root, name, dir, index);
4208 }
4209
4210 /*
4211 * If we have a pending delayed iput we could end up with the final iput
4212 * being run in btrfs-cleaner context. If we have enough of these built
4213 * up we can end up burning a lot of time in btrfs-cleaner without any
4214 * way to throttle the unlinks. Since we're currently holding a ref on
4215 * the inode we can run the delayed iput here without any issues as the
4216 * final iput won't be done until after we drop the ref we're currently
4217 * holding.
4218 */
4219 btrfs_run_delayed_iput(fs_info, inode);
4220 err:
4221 btrfs_free_path(path);
4222 if (ret)
4223 goto out;
4224
4225 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2);
4226 inode_inc_iversion(&inode->vfs_inode);
4227 inode_set_ctime_current(&inode->vfs_inode);
4228 inode_inc_iversion(&dir->vfs_inode);
4229 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode));
4230 ret = btrfs_update_inode(trans, dir);
4231 out:
4232 return ret;
4233 }
4234
btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,const struct fscrypt_str * name)4235 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4236 struct btrfs_inode *dir, struct btrfs_inode *inode,
4237 const struct fscrypt_str *name)
4238 {
4239 int ret;
4240
4241 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL);
4242 if (!ret) {
4243 drop_nlink(&inode->vfs_inode);
4244 ret = btrfs_update_inode(trans, inode);
4245 }
4246 return ret;
4247 }
4248
4249 /*
4250 * helper to start transaction for unlink and rmdir.
4251 *
4252 * unlink and rmdir are special in btrfs, they do not always free space, so
4253 * if we cannot make our reservations the normal way try and see if there is
4254 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4255 * allow the unlink to occur.
4256 */
__unlink_start_trans(struct btrfs_inode * dir)4257 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir)
4258 {
4259 struct btrfs_root *root = dir->root;
4260
4261 return btrfs_start_transaction_fallback_global_rsv(root,
4262 BTRFS_UNLINK_METADATA_UNITS);
4263 }
4264
btrfs_unlink(struct inode * dir,struct dentry * dentry)4265 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4266 {
4267 struct btrfs_trans_handle *trans;
4268 struct inode *inode = d_inode(dentry);
4269 int ret;
4270 struct fscrypt_name fname;
4271
4272 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4273 if (ret)
4274 return ret;
4275
4276 /* This needs to handle no-key deletions later on */
4277
4278 trans = __unlink_start_trans(BTRFS_I(dir));
4279 if (IS_ERR(trans)) {
4280 ret = PTR_ERR(trans);
4281 goto fscrypt_free;
4282 }
4283
4284 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4285 false);
4286
4287 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4288 &fname.disk_name);
4289 if (ret)
4290 goto end_trans;
4291
4292 if (inode->i_nlink == 0) {
4293 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4294 if (ret)
4295 goto end_trans;
4296 }
4297
4298 end_trans:
4299 btrfs_end_transaction(trans);
4300 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4301 fscrypt_free:
4302 fscrypt_free_filename(&fname);
4303 return ret;
4304 }
4305
btrfs_unlink_subvol(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct dentry * dentry)4306 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4307 struct btrfs_inode *dir, struct dentry *dentry)
4308 {
4309 struct btrfs_root *root = dir->root;
4310 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4311 struct btrfs_path *path;
4312 struct extent_buffer *leaf;
4313 struct btrfs_dir_item *di;
4314 struct btrfs_key key;
4315 u64 index;
4316 int ret;
4317 u64 objectid;
4318 u64 dir_ino = btrfs_ino(dir);
4319 struct fscrypt_name fname;
4320
4321 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
4322 if (ret)
4323 return ret;
4324
4325 /* This needs to handle no-key deletions later on */
4326
4327 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4328 objectid = btrfs_root_id(inode->root);
4329 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4330 objectid = inode->ref_root_id;
4331 } else {
4332 WARN_ON(1);
4333 fscrypt_free_filename(&fname);
4334 return -EINVAL;
4335 }
4336
4337 path = btrfs_alloc_path();
4338 if (!path) {
4339 ret = -ENOMEM;
4340 goto out;
4341 }
4342
4343 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4344 &fname.disk_name, -1);
4345 if (IS_ERR_OR_NULL(di)) {
4346 ret = di ? PTR_ERR(di) : -ENOENT;
4347 goto out;
4348 }
4349
4350 leaf = path->nodes[0];
4351 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4352 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4353 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4354 if (ret) {
4355 btrfs_abort_transaction(trans, ret);
4356 goto out;
4357 }
4358 btrfs_release_path(path);
4359
4360 /*
4361 * This is a placeholder inode for a subvolume we didn't have a
4362 * reference to at the time of the snapshot creation. In the meantime
4363 * we could have renamed the real subvol link into our snapshot, so
4364 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4365 * Instead simply lookup the dir_index_item for this entry so we can
4366 * remove it. Otherwise we know we have a ref to the root and we can
4367 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4368 */
4369 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4370 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name);
4371 if (IS_ERR(di)) {
4372 ret = PTR_ERR(di);
4373 btrfs_abort_transaction(trans, ret);
4374 goto out;
4375 }
4376
4377 leaf = path->nodes[0];
4378 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4379 index = key.offset;
4380 btrfs_release_path(path);
4381 } else {
4382 ret = btrfs_del_root_ref(trans, objectid,
4383 btrfs_root_id(root), dir_ino,
4384 &index, &fname.disk_name);
4385 if (ret) {
4386 btrfs_abort_transaction(trans, ret);
4387 goto out;
4388 }
4389 }
4390
4391 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4392 if (ret) {
4393 btrfs_abort_transaction(trans, ret);
4394 goto out;
4395 }
4396
4397 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2);
4398 inode_inc_iversion(&dir->vfs_inode);
4399 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode));
4400 ret = btrfs_update_inode_fallback(trans, dir);
4401 if (ret)
4402 btrfs_abort_transaction(trans, ret);
4403 out:
4404 btrfs_free_path(path);
4405 fscrypt_free_filename(&fname);
4406 return ret;
4407 }
4408
4409 /*
4410 * Helper to check if the subvolume references other subvolumes or if it's
4411 * default.
4412 */
may_destroy_subvol(struct btrfs_root * root)4413 static noinline int may_destroy_subvol(struct btrfs_root *root)
4414 {
4415 struct btrfs_fs_info *fs_info = root->fs_info;
4416 struct btrfs_path *path;
4417 struct btrfs_dir_item *di;
4418 struct btrfs_key key;
4419 struct fscrypt_str name = FSTR_INIT("default", 7);
4420 u64 dir_id;
4421 int ret;
4422
4423 path = btrfs_alloc_path();
4424 if (!path)
4425 return -ENOMEM;
4426
4427 /* Make sure this root isn't set as the default subvol */
4428 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4429 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4430 dir_id, &name, 0);
4431 if (di && !IS_ERR(di)) {
4432 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4433 if (key.objectid == btrfs_root_id(root)) {
4434 ret = -EPERM;
4435 btrfs_err(fs_info,
4436 "deleting default subvolume %llu is not allowed",
4437 key.objectid);
4438 goto out;
4439 }
4440 btrfs_release_path(path);
4441 }
4442
4443 key.objectid = btrfs_root_id(root);
4444 key.type = BTRFS_ROOT_REF_KEY;
4445 key.offset = (u64)-1;
4446
4447 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4448 if (ret < 0)
4449 goto out;
4450 if (ret == 0) {
4451 /*
4452 * Key with offset -1 found, there would have to exist a root
4453 * with such id, but this is out of valid range.
4454 */
4455 ret = -EUCLEAN;
4456 goto out;
4457 }
4458
4459 ret = 0;
4460 if (path->slots[0] > 0) {
4461 path->slots[0]--;
4462 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4463 if (key.objectid == btrfs_root_id(root) && key.type == BTRFS_ROOT_REF_KEY)
4464 ret = -ENOTEMPTY;
4465 }
4466 out:
4467 btrfs_free_path(path);
4468 return ret;
4469 }
4470
4471 /* Delete all dentries for inodes belonging to the root */
btrfs_prune_dentries(struct btrfs_root * root)4472 static void btrfs_prune_dentries(struct btrfs_root *root)
4473 {
4474 struct btrfs_fs_info *fs_info = root->fs_info;
4475 struct btrfs_inode *inode;
4476 u64 min_ino = 0;
4477
4478 if (!BTRFS_FS_ERROR(fs_info))
4479 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4480
4481 inode = btrfs_find_first_inode(root, min_ino);
4482 while (inode) {
4483 if (atomic_read(&inode->vfs_inode.i_count) > 1)
4484 d_prune_aliases(&inode->vfs_inode);
4485
4486 min_ino = btrfs_ino(inode) + 1;
4487 /*
4488 * btrfs_drop_inode() will have it removed from the inode
4489 * cache when its usage count hits zero.
4490 */
4491 iput(&inode->vfs_inode);
4492 cond_resched();
4493 inode = btrfs_find_first_inode(root, min_ino);
4494 }
4495 }
4496
btrfs_delete_subvolume(struct btrfs_inode * dir,struct dentry * dentry)4497 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry)
4498 {
4499 struct btrfs_root *root = dir->root;
4500 struct btrfs_fs_info *fs_info = root->fs_info;
4501 struct inode *inode = d_inode(dentry);
4502 struct btrfs_root *dest = BTRFS_I(inode)->root;
4503 struct btrfs_trans_handle *trans;
4504 struct btrfs_block_rsv block_rsv;
4505 u64 root_flags;
4506 u64 qgroup_reserved = 0;
4507 int ret;
4508
4509 down_write(&fs_info->subvol_sem);
4510
4511 /*
4512 * Don't allow to delete a subvolume with send in progress. This is
4513 * inside the inode lock so the error handling that has to drop the bit
4514 * again is not run concurrently.
4515 */
4516 spin_lock(&dest->root_item_lock);
4517 if (dest->send_in_progress) {
4518 spin_unlock(&dest->root_item_lock);
4519 btrfs_warn(fs_info,
4520 "attempt to delete subvolume %llu during send",
4521 btrfs_root_id(dest));
4522 ret = -EPERM;
4523 goto out_up_write;
4524 }
4525 if (atomic_read(&dest->nr_swapfiles)) {
4526 spin_unlock(&dest->root_item_lock);
4527 btrfs_warn(fs_info,
4528 "attempt to delete subvolume %llu with active swapfile",
4529 btrfs_root_id(root));
4530 ret = -EPERM;
4531 goto out_up_write;
4532 }
4533 root_flags = btrfs_root_flags(&dest->root_item);
4534 btrfs_set_root_flags(&dest->root_item,
4535 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4536 spin_unlock(&dest->root_item_lock);
4537
4538 ret = may_destroy_subvol(dest);
4539 if (ret)
4540 goto out_undead;
4541
4542 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4543 /*
4544 * One for dir inode,
4545 * two for dir entries,
4546 * two for root ref/backref.
4547 */
4548 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4549 if (ret)
4550 goto out_undead;
4551 qgroup_reserved = block_rsv.qgroup_rsv_reserved;
4552
4553 trans = btrfs_start_transaction(root, 0);
4554 if (IS_ERR(trans)) {
4555 ret = PTR_ERR(trans);
4556 goto out_release;
4557 }
4558 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
4559 qgroup_reserved = 0;
4560 trans->block_rsv = &block_rsv;
4561 trans->bytes_reserved = block_rsv.size;
4562
4563 btrfs_record_snapshot_destroy(trans, dir);
4564
4565 ret = btrfs_unlink_subvol(trans, dir, dentry);
4566 if (ret) {
4567 btrfs_abort_transaction(trans, ret);
4568 goto out_end_trans;
4569 }
4570
4571 ret = btrfs_record_root_in_trans(trans, dest);
4572 if (ret) {
4573 btrfs_abort_transaction(trans, ret);
4574 goto out_end_trans;
4575 }
4576
4577 memset(&dest->root_item.drop_progress, 0,
4578 sizeof(dest->root_item.drop_progress));
4579 btrfs_set_root_drop_level(&dest->root_item, 0);
4580 btrfs_set_root_refs(&dest->root_item, 0);
4581
4582 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4583 ret = btrfs_insert_orphan_item(trans,
4584 fs_info->tree_root,
4585 btrfs_root_id(dest));
4586 if (ret) {
4587 btrfs_abort_transaction(trans, ret);
4588 goto out_end_trans;
4589 }
4590 }
4591
4592 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4593 BTRFS_UUID_KEY_SUBVOL, btrfs_root_id(dest));
4594 if (ret && ret != -ENOENT) {
4595 btrfs_abort_transaction(trans, ret);
4596 goto out_end_trans;
4597 }
4598 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4599 ret = btrfs_uuid_tree_remove(trans,
4600 dest->root_item.received_uuid,
4601 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4602 btrfs_root_id(dest));
4603 if (ret && ret != -ENOENT) {
4604 btrfs_abort_transaction(trans, ret);
4605 goto out_end_trans;
4606 }
4607 }
4608
4609 free_anon_bdev(dest->anon_dev);
4610 dest->anon_dev = 0;
4611 out_end_trans:
4612 trans->block_rsv = NULL;
4613 trans->bytes_reserved = 0;
4614 ret = btrfs_end_transaction(trans);
4615 inode->i_flags |= S_DEAD;
4616 out_release:
4617 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL);
4618 if (qgroup_reserved)
4619 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
4620 out_undead:
4621 if (ret) {
4622 spin_lock(&dest->root_item_lock);
4623 root_flags = btrfs_root_flags(&dest->root_item);
4624 btrfs_set_root_flags(&dest->root_item,
4625 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4626 spin_unlock(&dest->root_item_lock);
4627 }
4628 out_up_write:
4629 up_write(&fs_info->subvol_sem);
4630 if (!ret) {
4631 d_invalidate(dentry);
4632 btrfs_prune_dentries(dest);
4633 ASSERT(dest->send_in_progress == 0);
4634 }
4635
4636 return ret;
4637 }
4638
btrfs_rmdir(struct inode * dir,struct dentry * dentry)4639 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4640 {
4641 struct inode *inode = d_inode(dentry);
4642 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4643 int ret = 0;
4644 struct btrfs_trans_handle *trans;
4645 u64 last_unlink_trans;
4646 struct fscrypt_name fname;
4647
4648 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4649 return -ENOTEMPTY;
4650 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) {
4651 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4652 btrfs_err(fs_info,
4653 "extent tree v2 doesn't support snapshot deletion yet");
4654 return -EOPNOTSUPP;
4655 }
4656 return btrfs_delete_subvolume(BTRFS_I(dir), dentry);
4657 }
4658
4659 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4660 if (ret)
4661 return ret;
4662
4663 /* This needs to handle no-key deletions later on */
4664
4665 trans = __unlink_start_trans(BTRFS_I(dir));
4666 if (IS_ERR(trans)) {
4667 ret = PTR_ERR(trans);
4668 goto out_notrans;
4669 }
4670
4671 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4672 ret = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry);
4673 goto out;
4674 }
4675
4676 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4677 if (ret)
4678 goto out;
4679
4680 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4681
4682 /* now the directory is empty */
4683 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4684 &fname.disk_name);
4685 if (!ret) {
4686 btrfs_i_size_write(BTRFS_I(inode), 0);
4687 /*
4688 * Propagate the last_unlink_trans value of the deleted dir to
4689 * its parent directory. This is to prevent an unrecoverable
4690 * log tree in the case we do something like this:
4691 * 1) create dir foo
4692 * 2) create snapshot under dir foo
4693 * 3) delete the snapshot
4694 * 4) rmdir foo
4695 * 5) mkdir foo
4696 * 6) fsync foo or some file inside foo
4697 */
4698 if (last_unlink_trans >= trans->transid)
4699 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4700 }
4701 out:
4702 btrfs_end_transaction(trans);
4703 out_notrans:
4704 btrfs_btree_balance_dirty(fs_info);
4705 fscrypt_free_filename(&fname);
4706
4707 return ret;
4708 }
4709
4710 /*
4711 * Read, zero a chunk and write a block.
4712 *
4713 * @inode - inode that we're zeroing
4714 * @from - the offset to start zeroing
4715 * @len - the length to zero, 0 to zero the entire range respective to the
4716 * offset
4717 * @front - zero up to the offset instead of from the offset on
4718 *
4719 * This will find the block for the "from" offset and cow the block and zero the
4720 * part we want to zero. This is used with truncate and hole punching.
4721 */
btrfs_truncate_block(struct btrfs_inode * inode,loff_t from,loff_t len,int front)4722 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4723 int front)
4724 {
4725 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4726 struct address_space *mapping = inode->vfs_inode.i_mapping;
4727 struct extent_io_tree *io_tree = &inode->io_tree;
4728 struct btrfs_ordered_extent *ordered;
4729 struct extent_state *cached_state = NULL;
4730 struct extent_changeset *data_reserved = NULL;
4731 bool only_release_metadata = false;
4732 u32 blocksize = fs_info->sectorsize;
4733 pgoff_t index = from >> PAGE_SHIFT;
4734 unsigned offset = from & (blocksize - 1);
4735 struct folio *folio;
4736 gfp_t mask = btrfs_alloc_write_mask(mapping);
4737 size_t write_bytes = blocksize;
4738 int ret = 0;
4739 u64 block_start;
4740 u64 block_end;
4741
4742 if (IS_ALIGNED(offset, blocksize) &&
4743 (!len || IS_ALIGNED(len, blocksize)))
4744 goto out;
4745
4746 block_start = round_down(from, blocksize);
4747 block_end = block_start + blocksize - 1;
4748
4749 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4750 blocksize, false);
4751 if (ret < 0) {
4752 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) {
4753 /* For nocow case, no need to reserve data space */
4754 only_release_metadata = true;
4755 } else {
4756 goto out;
4757 }
4758 }
4759 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
4760 if (ret < 0) {
4761 if (!only_release_metadata)
4762 btrfs_free_reserved_data_space(inode, data_reserved,
4763 block_start, blocksize);
4764 goto out;
4765 }
4766 again:
4767 folio = __filemap_get_folio(mapping, index,
4768 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask);
4769 if (IS_ERR(folio)) {
4770 btrfs_delalloc_release_space(inode, data_reserved, block_start,
4771 blocksize, true);
4772 btrfs_delalloc_release_extents(inode, blocksize);
4773 ret = -ENOMEM;
4774 goto out;
4775 }
4776
4777 if (!folio_test_uptodate(folio)) {
4778 ret = btrfs_read_folio(NULL, folio);
4779 folio_lock(folio);
4780 if (folio->mapping != mapping) {
4781 folio_unlock(folio);
4782 folio_put(folio);
4783 goto again;
4784 }
4785 if (!folio_test_uptodate(folio)) {
4786 ret = -EIO;
4787 goto out_unlock;
4788 }
4789 }
4790
4791 /*
4792 * We unlock the page after the io is completed and then re-lock it
4793 * above. release_folio() could have come in between that and cleared
4794 * folio private, but left the page in the mapping. Set the page mapped
4795 * here to make sure it's properly set for the subpage stuff.
4796 */
4797 ret = set_folio_extent_mapped(folio);
4798 if (ret < 0)
4799 goto out_unlock;
4800
4801 folio_wait_writeback(folio);
4802
4803 lock_extent(io_tree, block_start, block_end, &cached_state);
4804
4805 ordered = btrfs_lookup_ordered_extent(inode, block_start);
4806 if (ordered) {
4807 unlock_extent(io_tree, block_start, block_end, &cached_state);
4808 folio_unlock(folio);
4809 folio_put(folio);
4810 btrfs_start_ordered_extent(ordered);
4811 btrfs_put_ordered_extent(ordered);
4812 goto again;
4813 }
4814
4815 clear_extent_bit(&inode->io_tree, block_start, block_end,
4816 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4817 &cached_state);
4818
4819 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4820 &cached_state);
4821 if (ret) {
4822 unlock_extent(io_tree, block_start, block_end, &cached_state);
4823 goto out_unlock;
4824 }
4825
4826 if (offset != blocksize) {
4827 if (!len)
4828 len = blocksize - offset;
4829 if (front)
4830 folio_zero_range(folio, block_start - folio_pos(folio),
4831 offset);
4832 else
4833 folio_zero_range(folio,
4834 (block_start - folio_pos(folio)) + offset,
4835 len);
4836 }
4837 btrfs_folio_clear_checked(fs_info, folio, block_start,
4838 block_end + 1 - block_start);
4839 btrfs_folio_set_dirty(fs_info, folio, block_start,
4840 block_end + 1 - block_start);
4841 unlock_extent(io_tree, block_start, block_end, &cached_state);
4842
4843 if (only_release_metadata)
4844 set_extent_bit(&inode->io_tree, block_start, block_end,
4845 EXTENT_NORESERVE, NULL);
4846
4847 out_unlock:
4848 if (ret) {
4849 if (only_release_metadata)
4850 btrfs_delalloc_release_metadata(inode, blocksize, true);
4851 else
4852 btrfs_delalloc_release_space(inode, data_reserved,
4853 block_start, blocksize, true);
4854 }
4855 btrfs_delalloc_release_extents(inode, blocksize);
4856 folio_unlock(folio);
4857 folio_put(folio);
4858 out:
4859 if (only_release_metadata)
4860 btrfs_check_nocow_unlock(inode);
4861 extent_changeset_free(data_reserved);
4862 return ret;
4863 }
4864
maybe_insert_hole(struct btrfs_inode * inode,u64 offset,u64 len)4865 static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len)
4866 {
4867 struct btrfs_root *root = inode->root;
4868 struct btrfs_fs_info *fs_info = root->fs_info;
4869 struct btrfs_trans_handle *trans;
4870 struct btrfs_drop_extents_args drop_args = { 0 };
4871 int ret;
4872
4873 /*
4874 * If NO_HOLES is enabled, we don't need to do anything.
4875 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
4876 * or btrfs_update_inode() will be called, which guarantee that the next
4877 * fsync will know this inode was changed and needs to be logged.
4878 */
4879 if (btrfs_fs_incompat(fs_info, NO_HOLES))
4880 return 0;
4881
4882 /*
4883 * 1 - for the one we're dropping
4884 * 1 - for the one we're adding
4885 * 1 - for updating the inode.
4886 */
4887 trans = btrfs_start_transaction(root, 3);
4888 if (IS_ERR(trans))
4889 return PTR_ERR(trans);
4890
4891 drop_args.start = offset;
4892 drop_args.end = offset + len;
4893 drop_args.drop_cache = true;
4894
4895 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
4896 if (ret) {
4897 btrfs_abort_transaction(trans, ret);
4898 btrfs_end_transaction(trans);
4899 return ret;
4900 }
4901
4902 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len);
4903 if (ret) {
4904 btrfs_abort_transaction(trans, ret);
4905 } else {
4906 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
4907 btrfs_update_inode(trans, inode);
4908 }
4909 btrfs_end_transaction(trans);
4910 return ret;
4911 }
4912
4913 /*
4914 * This function puts in dummy file extents for the area we're creating a hole
4915 * for. So if we are truncating this file to a larger size we need to insert
4916 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4917 * the range between oldsize and size
4918 */
btrfs_cont_expand(struct btrfs_inode * inode,loff_t oldsize,loff_t size)4919 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
4920 {
4921 struct btrfs_root *root = inode->root;
4922 struct btrfs_fs_info *fs_info = root->fs_info;
4923 struct extent_io_tree *io_tree = &inode->io_tree;
4924 struct extent_map *em = NULL;
4925 struct extent_state *cached_state = NULL;
4926 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4927 u64 block_end = ALIGN(size, fs_info->sectorsize);
4928 u64 last_byte;
4929 u64 cur_offset;
4930 u64 hole_size;
4931 int ret = 0;
4932
4933 /*
4934 * If our size started in the middle of a block we need to zero out the
4935 * rest of the block before we expand the i_size, otherwise we could
4936 * expose stale data.
4937 */
4938 ret = btrfs_truncate_block(inode, oldsize, 0, 0);
4939 if (ret)
4940 return ret;
4941
4942 if (size <= hole_start)
4943 return 0;
4944
4945 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
4946 &cached_state);
4947 cur_offset = hole_start;
4948 while (1) {
4949 em = btrfs_get_extent(inode, NULL, cur_offset, block_end - cur_offset);
4950 if (IS_ERR(em)) {
4951 ret = PTR_ERR(em);
4952 em = NULL;
4953 break;
4954 }
4955 last_byte = min(extent_map_end(em), block_end);
4956 last_byte = ALIGN(last_byte, fs_info->sectorsize);
4957 hole_size = last_byte - cur_offset;
4958
4959 if (!(em->flags & EXTENT_FLAG_PREALLOC)) {
4960 struct extent_map *hole_em;
4961
4962 ret = maybe_insert_hole(inode, cur_offset, hole_size);
4963 if (ret)
4964 break;
4965
4966 ret = btrfs_inode_set_file_extent_range(inode,
4967 cur_offset, hole_size);
4968 if (ret)
4969 break;
4970
4971 hole_em = alloc_extent_map();
4972 if (!hole_em) {
4973 btrfs_drop_extent_map_range(inode, cur_offset,
4974 cur_offset + hole_size - 1,
4975 false);
4976 btrfs_set_inode_full_sync(inode);
4977 goto next;
4978 }
4979 hole_em->start = cur_offset;
4980 hole_em->len = hole_size;
4981
4982 hole_em->disk_bytenr = EXTENT_MAP_HOLE;
4983 hole_em->disk_num_bytes = 0;
4984 hole_em->ram_bytes = hole_size;
4985 hole_em->generation = btrfs_get_fs_generation(fs_info);
4986
4987 ret = btrfs_replace_extent_map_range(inode, hole_em, true);
4988 free_extent_map(hole_em);
4989 } else {
4990 ret = btrfs_inode_set_file_extent_range(inode,
4991 cur_offset, hole_size);
4992 if (ret)
4993 break;
4994 }
4995 next:
4996 free_extent_map(em);
4997 em = NULL;
4998 cur_offset = last_byte;
4999 if (cur_offset >= block_end)
5000 break;
5001 }
5002 free_extent_map(em);
5003 unlock_extent(io_tree, hole_start, block_end - 1, &cached_state);
5004 return ret;
5005 }
5006
btrfs_setsize(struct inode * inode,struct iattr * attr)5007 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5008 {
5009 struct btrfs_root *root = BTRFS_I(inode)->root;
5010 struct btrfs_trans_handle *trans;
5011 loff_t oldsize = i_size_read(inode);
5012 loff_t newsize = attr->ia_size;
5013 int mask = attr->ia_valid;
5014 int ret;
5015
5016 /*
5017 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5018 * special case where we need to update the times despite not having
5019 * these flags set. For all other operations the VFS set these flags
5020 * explicitly if it wants a timestamp update.
5021 */
5022 if (newsize != oldsize) {
5023 inode_inc_iversion(inode);
5024 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) {
5025 inode_set_mtime_to_ts(inode,
5026 inode_set_ctime_current(inode));
5027 }
5028 }
5029
5030 if (newsize > oldsize) {
5031 /*
5032 * Don't do an expanding truncate while snapshotting is ongoing.
5033 * This is to ensure the snapshot captures a fully consistent
5034 * state of this file - if the snapshot captures this expanding
5035 * truncation, it must capture all writes that happened before
5036 * this truncation.
5037 */
5038 btrfs_drew_write_lock(&root->snapshot_lock);
5039 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
5040 if (ret) {
5041 btrfs_drew_write_unlock(&root->snapshot_lock);
5042 return ret;
5043 }
5044
5045 trans = btrfs_start_transaction(root, 1);
5046 if (IS_ERR(trans)) {
5047 btrfs_drew_write_unlock(&root->snapshot_lock);
5048 return PTR_ERR(trans);
5049 }
5050
5051 i_size_write(inode, newsize);
5052 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5053 pagecache_isize_extended(inode, oldsize, newsize);
5054 ret = btrfs_update_inode(trans, BTRFS_I(inode));
5055 btrfs_drew_write_unlock(&root->snapshot_lock);
5056 btrfs_end_transaction(trans);
5057 } else {
5058 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
5059
5060 if (btrfs_is_zoned(fs_info)) {
5061 ret = btrfs_wait_ordered_range(BTRFS_I(inode),
5062 ALIGN(newsize, fs_info->sectorsize),
5063 (u64)-1);
5064 if (ret)
5065 return ret;
5066 }
5067
5068 /*
5069 * We're truncating a file that used to have good data down to
5070 * zero. Make sure any new writes to the file get on disk
5071 * on close.
5072 */
5073 if (newsize == 0)
5074 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5075 &BTRFS_I(inode)->runtime_flags);
5076
5077 truncate_setsize(inode, newsize);
5078
5079 inode_dio_wait(inode);
5080
5081 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize);
5082 if (ret && inode->i_nlink) {
5083 int err;
5084
5085 /*
5086 * Truncate failed, so fix up the in-memory size. We
5087 * adjusted disk_i_size down as we removed extents, so
5088 * wait for disk_i_size to be stable and then update the
5089 * in-memory size to match.
5090 */
5091 err = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1);
5092 if (err)
5093 return err;
5094 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5095 }
5096 }
5097
5098 return ret;
5099 }
5100
btrfs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)5101 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5102 struct iattr *attr)
5103 {
5104 struct inode *inode = d_inode(dentry);
5105 struct btrfs_root *root = BTRFS_I(inode)->root;
5106 int err;
5107
5108 if (btrfs_root_readonly(root))
5109 return -EROFS;
5110
5111 err = setattr_prepare(idmap, dentry, attr);
5112 if (err)
5113 return err;
5114
5115 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5116 err = btrfs_setsize(inode, attr);
5117 if (err)
5118 return err;
5119 }
5120
5121 if (attr->ia_valid) {
5122 setattr_copy(idmap, inode, attr);
5123 inode_inc_iversion(inode);
5124 err = btrfs_dirty_inode(BTRFS_I(inode));
5125
5126 if (!err && attr->ia_valid & ATTR_MODE)
5127 err = posix_acl_chmod(idmap, dentry, inode->i_mode);
5128 }
5129
5130 return err;
5131 }
5132
5133 /*
5134 * While truncating the inode pages during eviction, we get the VFS
5135 * calling btrfs_invalidate_folio() against each folio of the inode. This
5136 * is slow because the calls to btrfs_invalidate_folio() result in a
5137 * huge amount of calls to lock_extent() and clear_extent_bit(),
5138 * which keep merging and splitting extent_state structures over and over,
5139 * wasting lots of time.
5140 *
5141 * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5142 * skip all those expensive operations on a per folio basis and do only
5143 * the ordered io finishing, while we release here the extent_map and
5144 * extent_state structures, without the excessive merging and splitting.
5145 */
evict_inode_truncate_pages(struct inode * inode)5146 static void evict_inode_truncate_pages(struct inode *inode)
5147 {
5148 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5149 struct rb_node *node;
5150
5151 ASSERT(inode->i_state & I_FREEING);
5152 truncate_inode_pages_final(&inode->i_data);
5153
5154 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
5155
5156 /*
5157 * Keep looping until we have no more ranges in the io tree.
5158 * We can have ongoing bios started by readahead that have
5159 * their endio callback (extent_io.c:end_bio_extent_readpage)
5160 * still in progress (unlocked the pages in the bio but did not yet
5161 * unlocked the ranges in the io tree). Therefore this means some
5162 * ranges can still be locked and eviction started because before
5163 * submitting those bios, which are executed by a separate task (work
5164 * queue kthread), inode references (inode->i_count) were not taken
5165 * (which would be dropped in the end io callback of each bio).
5166 * Therefore here we effectively end up waiting for those bios and
5167 * anyone else holding locked ranges without having bumped the inode's
5168 * reference count - if we don't do it, when they access the inode's
5169 * io_tree to unlock a range it may be too late, leading to an
5170 * use-after-free issue.
5171 */
5172 spin_lock(&io_tree->lock);
5173 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5174 struct extent_state *state;
5175 struct extent_state *cached_state = NULL;
5176 u64 start;
5177 u64 end;
5178 unsigned state_flags;
5179
5180 node = rb_first(&io_tree->state);
5181 state = rb_entry(node, struct extent_state, rb_node);
5182 start = state->start;
5183 end = state->end;
5184 state_flags = state->state;
5185 spin_unlock(&io_tree->lock);
5186
5187 lock_extent(io_tree, start, end, &cached_state);
5188
5189 /*
5190 * If still has DELALLOC flag, the extent didn't reach disk,
5191 * and its reserved space won't be freed by delayed_ref.
5192 * So we need to free its reserved space here.
5193 * (Refer to comment in btrfs_invalidate_folio, case 2)
5194 *
5195 * Note, end is the bytenr of last byte, so we need + 1 here.
5196 */
5197 if (state_flags & EXTENT_DELALLOC)
5198 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5199 end - start + 1, NULL);
5200
5201 clear_extent_bit(io_tree, start, end,
5202 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING,
5203 &cached_state);
5204
5205 cond_resched();
5206 spin_lock(&io_tree->lock);
5207 }
5208 spin_unlock(&io_tree->lock);
5209 }
5210
evict_refill_and_join(struct btrfs_root * root,struct btrfs_block_rsv * rsv)5211 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5212 struct btrfs_block_rsv *rsv)
5213 {
5214 struct btrfs_fs_info *fs_info = root->fs_info;
5215 struct btrfs_trans_handle *trans;
5216 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1);
5217 int ret;
5218
5219 /*
5220 * Eviction should be taking place at some place safe because of our
5221 * delayed iputs. However the normal flushing code will run delayed
5222 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5223 *
5224 * We reserve the delayed_refs_extra here again because we can't use
5225 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5226 * above. We reserve our extra bit here because we generate a ton of
5227 * delayed refs activity by truncating.
5228 *
5229 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5230 * if we fail to make this reservation we can re-try without the
5231 * delayed_refs_extra so we can make some forward progress.
5232 */
5233 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
5234 BTRFS_RESERVE_FLUSH_EVICT);
5235 if (ret) {
5236 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
5237 BTRFS_RESERVE_FLUSH_EVICT);
5238 if (ret) {
5239 btrfs_warn(fs_info,
5240 "could not allocate space for delete; will truncate on mount");
5241 return ERR_PTR(-ENOSPC);
5242 }
5243 delayed_refs_extra = 0;
5244 }
5245
5246 trans = btrfs_join_transaction(root);
5247 if (IS_ERR(trans))
5248 return trans;
5249
5250 if (delayed_refs_extra) {
5251 trans->block_rsv = &fs_info->trans_block_rsv;
5252 trans->bytes_reserved = delayed_refs_extra;
5253 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5254 delayed_refs_extra, true);
5255 }
5256 return trans;
5257 }
5258
btrfs_evict_inode(struct inode * inode)5259 void btrfs_evict_inode(struct inode *inode)
5260 {
5261 struct btrfs_fs_info *fs_info;
5262 struct btrfs_trans_handle *trans;
5263 struct btrfs_root *root = BTRFS_I(inode)->root;
5264 struct btrfs_block_rsv *rsv = NULL;
5265 int ret;
5266
5267 trace_btrfs_inode_evict(inode);
5268
5269 if (!root) {
5270 fsverity_cleanup_inode(inode);
5271 clear_inode(inode);
5272 return;
5273 }
5274
5275 fs_info = inode_to_fs_info(inode);
5276 evict_inode_truncate_pages(inode);
5277
5278 if (inode->i_nlink &&
5279 ((btrfs_root_refs(&root->root_item) != 0 &&
5280 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID) ||
5281 btrfs_is_free_space_inode(BTRFS_I(inode))))
5282 goto out;
5283
5284 if (is_bad_inode(inode))
5285 goto out;
5286
5287 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5288 goto out;
5289
5290 if (inode->i_nlink > 0) {
5291 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5292 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID);
5293 goto out;
5294 }
5295
5296 /*
5297 * This makes sure the inode item in tree is uptodate and the space for
5298 * the inode update is released.
5299 */
5300 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5301 if (ret)
5302 goto out;
5303
5304 /*
5305 * This drops any pending insert or delete operations we have for this
5306 * inode. We could have a delayed dir index deletion queued up, but
5307 * we're removing the inode completely so that'll be taken care of in
5308 * the truncate.
5309 */
5310 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5311
5312 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5313 if (!rsv)
5314 goto out;
5315 rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5316 rsv->failfast = true;
5317
5318 btrfs_i_size_write(BTRFS_I(inode), 0);
5319
5320 while (1) {
5321 struct btrfs_truncate_control control = {
5322 .inode = BTRFS_I(inode),
5323 .ino = btrfs_ino(BTRFS_I(inode)),
5324 .new_size = 0,
5325 .min_type = 0,
5326 };
5327
5328 trans = evict_refill_and_join(root, rsv);
5329 if (IS_ERR(trans))
5330 goto out;
5331
5332 trans->block_rsv = rsv;
5333
5334 ret = btrfs_truncate_inode_items(trans, root, &control);
5335 trans->block_rsv = &fs_info->trans_block_rsv;
5336 btrfs_end_transaction(trans);
5337 /*
5338 * We have not added new delayed items for our inode after we
5339 * have flushed its delayed items, so no need to throttle on
5340 * delayed items. However we have modified extent buffers.
5341 */
5342 btrfs_btree_balance_dirty_nodelay(fs_info);
5343 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5344 goto out;
5345 else if (!ret)
5346 break;
5347 }
5348
5349 /*
5350 * Errors here aren't a big deal, it just means we leave orphan items in
5351 * the tree. They will be cleaned up on the next mount. If the inode
5352 * number gets reused, cleanup deletes the orphan item without doing
5353 * anything, and unlink reuses the existing orphan item.
5354 *
5355 * If it turns out that we are dropping too many of these, we might want
5356 * to add a mechanism for retrying these after a commit.
5357 */
5358 trans = evict_refill_and_join(root, rsv);
5359 if (!IS_ERR(trans)) {
5360 trans->block_rsv = rsv;
5361 btrfs_orphan_del(trans, BTRFS_I(inode));
5362 trans->block_rsv = &fs_info->trans_block_rsv;
5363 btrfs_end_transaction(trans);
5364 }
5365
5366 out:
5367 btrfs_free_block_rsv(fs_info, rsv);
5368 /*
5369 * If we didn't successfully delete, the orphan item will still be in
5370 * the tree and we'll retry on the next mount. Again, we might also want
5371 * to retry these periodically in the future.
5372 */
5373 btrfs_remove_delayed_node(BTRFS_I(inode));
5374 fsverity_cleanup_inode(inode);
5375 clear_inode(inode);
5376 }
5377
5378 /*
5379 * Return the key found in the dir entry in the location pointer, fill @type
5380 * with BTRFS_FT_*, and return 0.
5381 *
5382 * If no dir entries were found, returns -ENOENT.
5383 * If found a corrupted location in dir entry, returns -EUCLEAN.
5384 */
btrfs_inode_by_name(struct btrfs_inode * dir,struct dentry * dentry,struct btrfs_key * location,u8 * type)5385 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry,
5386 struct btrfs_key *location, u8 *type)
5387 {
5388 struct btrfs_dir_item *di;
5389 struct btrfs_path *path;
5390 struct btrfs_root *root = dir->root;
5391 int ret = 0;
5392 struct fscrypt_name fname;
5393
5394 path = btrfs_alloc_path();
5395 if (!path)
5396 return -ENOMEM;
5397
5398 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
5399 if (ret < 0)
5400 goto out;
5401 /*
5402 * fscrypt_setup_filename() should never return a positive value, but
5403 * gcc on sparc/parisc thinks it can, so assert that doesn't happen.
5404 */
5405 ASSERT(ret == 0);
5406
5407 /* This needs to handle no-key deletions later on */
5408
5409 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir),
5410 &fname.disk_name, 0);
5411 if (IS_ERR_OR_NULL(di)) {
5412 ret = di ? PTR_ERR(di) : -ENOENT;
5413 goto out;
5414 }
5415
5416 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5417 if (location->type != BTRFS_INODE_ITEM_KEY &&
5418 location->type != BTRFS_ROOT_ITEM_KEY) {
5419 ret = -EUCLEAN;
5420 btrfs_warn(root->fs_info,
5421 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5422 __func__, fname.disk_name.name, btrfs_ino(dir),
5423 location->objectid, location->type, location->offset);
5424 }
5425 if (!ret)
5426 *type = btrfs_dir_ftype(path->nodes[0], di);
5427 out:
5428 fscrypt_free_filename(&fname);
5429 btrfs_free_path(path);
5430 return ret;
5431 }
5432
5433 /*
5434 * when we hit a tree root in a directory, the btrfs part of the inode
5435 * needs to be changed to reflect the root directory of the tree root. This
5436 * is kind of like crossing a mount point.
5437 */
fixup_tree_root_location(struct btrfs_fs_info * fs_info,struct btrfs_inode * dir,struct dentry * dentry,struct btrfs_key * location,struct btrfs_root ** sub_root)5438 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5439 struct btrfs_inode *dir,
5440 struct dentry *dentry,
5441 struct btrfs_key *location,
5442 struct btrfs_root **sub_root)
5443 {
5444 struct btrfs_path *path;
5445 struct btrfs_root *new_root;
5446 struct btrfs_root_ref *ref;
5447 struct extent_buffer *leaf;
5448 struct btrfs_key key;
5449 int ret;
5450 int err = 0;
5451 struct fscrypt_name fname;
5452
5453 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname);
5454 if (ret)
5455 return ret;
5456
5457 path = btrfs_alloc_path();
5458 if (!path) {
5459 err = -ENOMEM;
5460 goto out;
5461 }
5462
5463 err = -ENOENT;
5464 key.objectid = btrfs_root_id(dir->root);
5465 key.type = BTRFS_ROOT_REF_KEY;
5466 key.offset = location->objectid;
5467
5468 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5469 if (ret) {
5470 if (ret < 0)
5471 err = ret;
5472 goto out;
5473 }
5474
5475 leaf = path->nodes[0];
5476 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5477 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5478 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len)
5479 goto out;
5480
5481 ret = memcmp_extent_buffer(leaf, fname.disk_name.name,
5482 (unsigned long)(ref + 1), fname.disk_name.len);
5483 if (ret)
5484 goto out;
5485
5486 btrfs_release_path(path);
5487
5488 new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5489 if (IS_ERR(new_root)) {
5490 err = PTR_ERR(new_root);
5491 goto out;
5492 }
5493
5494 *sub_root = new_root;
5495 location->objectid = btrfs_root_dirid(&new_root->root_item);
5496 location->type = BTRFS_INODE_ITEM_KEY;
5497 location->offset = 0;
5498 err = 0;
5499 out:
5500 btrfs_free_path(path);
5501 fscrypt_free_filename(&fname);
5502 return err;
5503 }
5504
btrfs_add_inode_to_root(struct btrfs_inode * inode,bool prealloc)5505 static int btrfs_add_inode_to_root(struct btrfs_inode *inode, bool prealloc)
5506 {
5507 struct btrfs_root *root = inode->root;
5508 struct btrfs_inode *existing;
5509 const u64 ino = btrfs_ino(inode);
5510 int ret;
5511
5512 if (inode_unhashed(&inode->vfs_inode))
5513 return 0;
5514
5515 if (prealloc) {
5516 ret = xa_reserve(&root->inodes, ino, GFP_NOFS);
5517 if (ret)
5518 return ret;
5519 }
5520
5521 existing = xa_store(&root->inodes, ino, inode, GFP_ATOMIC);
5522
5523 if (xa_is_err(existing)) {
5524 ret = xa_err(existing);
5525 ASSERT(ret != -EINVAL);
5526 ASSERT(ret != -ENOMEM);
5527 return ret;
5528 } else if (existing) {
5529 WARN_ON(!(existing->vfs_inode.i_state & (I_WILL_FREE | I_FREEING)));
5530 }
5531
5532 return 0;
5533 }
5534
btrfs_del_inode_from_root(struct btrfs_inode * inode)5535 static void btrfs_del_inode_from_root(struct btrfs_inode *inode)
5536 {
5537 struct btrfs_root *root = inode->root;
5538 struct btrfs_inode *entry;
5539 bool empty = false;
5540
5541 xa_lock(&root->inodes);
5542 entry = __xa_erase(&root->inodes, btrfs_ino(inode));
5543 if (entry == inode)
5544 empty = xa_empty(&root->inodes);
5545 xa_unlock(&root->inodes);
5546
5547 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5548 xa_lock(&root->inodes);
5549 empty = xa_empty(&root->inodes);
5550 xa_unlock(&root->inodes);
5551 if (empty)
5552 btrfs_add_dead_root(root);
5553 }
5554 }
5555
5556
btrfs_init_locked_inode(struct inode * inode,void * p)5557 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5558 {
5559 struct btrfs_iget_args *args = p;
5560
5561 btrfs_set_inode_number(BTRFS_I(inode), args->ino);
5562 BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5563
5564 if (args->root && args->root == args->root->fs_info->tree_root &&
5565 args->ino != BTRFS_BTREE_INODE_OBJECTID)
5566 set_bit(BTRFS_INODE_FREE_SPACE_INODE,
5567 &BTRFS_I(inode)->runtime_flags);
5568 return 0;
5569 }
5570
btrfs_find_actor(struct inode * inode,void * opaque)5571 static int btrfs_find_actor(struct inode *inode, void *opaque)
5572 {
5573 struct btrfs_iget_args *args = opaque;
5574
5575 return args->ino == btrfs_ino(BTRFS_I(inode)) &&
5576 args->root == BTRFS_I(inode)->root;
5577 }
5578
btrfs_iget_locked(u64 ino,struct btrfs_root * root)5579 static struct inode *btrfs_iget_locked(u64 ino, struct btrfs_root *root)
5580 {
5581 struct inode *inode;
5582 struct btrfs_iget_args args;
5583 unsigned long hashval = btrfs_inode_hash(ino, root);
5584
5585 args.ino = ino;
5586 args.root = root;
5587
5588 inode = iget5_locked_rcu(root->fs_info->sb, hashval, btrfs_find_actor,
5589 btrfs_init_locked_inode,
5590 (void *)&args);
5591 return inode;
5592 }
5593
5594 /*
5595 * Get an inode object given its inode number and corresponding root.
5596 * Path can be preallocated to prevent recursing back to iget through
5597 * allocator. NULL is also valid but may require an additional allocation
5598 * later.
5599 */
btrfs_iget_path(u64 ino,struct btrfs_root * root,struct btrfs_path * path)5600 struct inode *btrfs_iget_path(u64 ino, struct btrfs_root *root,
5601 struct btrfs_path *path)
5602 {
5603 struct inode *inode;
5604 int ret;
5605
5606 inode = btrfs_iget_locked(ino, root);
5607 if (!inode)
5608 return ERR_PTR(-ENOMEM);
5609
5610 if (!(inode->i_state & I_NEW))
5611 return inode;
5612
5613 ret = btrfs_read_locked_inode(inode, path);
5614 /*
5615 * ret > 0 can come from btrfs_search_slot called by
5616 * btrfs_read_locked_inode(), this means the inode item was not found.
5617 */
5618 if (ret > 0)
5619 ret = -ENOENT;
5620 if (ret < 0)
5621 goto error;
5622
5623 ret = btrfs_add_inode_to_root(BTRFS_I(inode), true);
5624 if (ret < 0)
5625 goto error;
5626
5627 unlock_new_inode(inode);
5628
5629 return inode;
5630 error:
5631 iget_failed(inode);
5632 return ERR_PTR(ret);
5633 }
5634
btrfs_iget(u64 ino,struct btrfs_root * root)5635 struct inode *btrfs_iget(u64 ino, struct btrfs_root *root)
5636 {
5637 return btrfs_iget_path(ino, root, NULL);
5638 }
5639
new_simple_dir(struct inode * dir,struct btrfs_key * key,struct btrfs_root * root)5640 static struct inode *new_simple_dir(struct inode *dir,
5641 struct btrfs_key *key,
5642 struct btrfs_root *root)
5643 {
5644 struct timespec64 ts;
5645 struct inode *inode = new_inode(dir->i_sb);
5646
5647 if (!inode)
5648 return ERR_PTR(-ENOMEM);
5649
5650 BTRFS_I(inode)->root = btrfs_grab_root(root);
5651 BTRFS_I(inode)->ref_root_id = key->objectid;
5652 set_bit(BTRFS_INODE_ROOT_STUB, &BTRFS_I(inode)->runtime_flags);
5653 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5654
5655 btrfs_set_inode_number(BTRFS_I(inode), BTRFS_EMPTY_SUBVOL_DIR_OBJECTID);
5656 /*
5657 * We only need lookup, the rest is read-only and there's no inode
5658 * associated with the dentry
5659 */
5660 inode->i_op = &simple_dir_inode_operations;
5661 inode->i_opflags &= ~IOP_XATTR;
5662 inode->i_fop = &simple_dir_operations;
5663 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5664
5665 ts = inode_set_ctime_current(inode);
5666 inode_set_mtime_to_ts(inode, ts);
5667 inode_set_atime_to_ts(inode, inode_get_atime(dir));
5668 BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
5669 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
5670
5671 inode->i_uid = dir->i_uid;
5672 inode->i_gid = dir->i_gid;
5673
5674 return inode;
5675 }
5676
5677 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5678 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5679 static_assert(BTRFS_FT_DIR == FT_DIR);
5680 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5681 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5682 static_assert(BTRFS_FT_FIFO == FT_FIFO);
5683 static_assert(BTRFS_FT_SOCK == FT_SOCK);
5684 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5685
btrfs_inode_type(struct inode * inode)5686 static inline u8 btrfs_inode_type(struct inode *inode)
5687 {
5688 return fs_umode_to_ftype(inode->i_mode);
5689 }
5690
btrfs_lookup_dentry(struct inode * dir,struct dentry * dentry)5691 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5692 {
5693 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
5694 struct inode *inode;
5695 struct btrfs_root *root = BTRFS_I(dir)->root;
5696 struct btrfs_root *sub_root = root;
5697 struct btrfs_key location = { 0 };
5698 u8 di_type = 0;
5699 int ret = 0;
5700
5701 if (dentry->d_name.len > BTRFS_NAME_LEN)
5702 return ERR_PTR(-ENAMETOOLONG);
5703
5704 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type);
5705 if (ret < 0)
5706 return ERR_PTR(ret);
5707
5708 if (location.type == BTRFS_INODE_ITEM_KEY) {
5709 inode = btrfs_iget(location.objectid, root);
5710 if (IS_ERR(inode))
5711 return inode;
5712
5713 /* Do extra check against inode mode with di_type */
5714 if (btrfs_inode_type(inode) != di_type) {
5715 btrfs_crit(fs_info,
5716 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5717 inode->i_mode, btrfs_inode_type(inode),
5718 di_type);
5719 iput(inode);
5720 return ERR_PTR(-EUCLEAN);
5721 }
5722 return inode;
5723 }
5724
5725 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry,
5726 &location, &sub_root);
5727 if (ret < 0) {
5728 if (ret != -ENOENT)
5729 inode = ERR_PTR(ret);
5730 else
5731 inode = new_simple_dir(dir, &location, root);
5732 } else {
5733 inode = btrfs_iget(location.objectid, sub_root);
5734 btrfs_put_root(sub_root);
5735
5736 if (IS_ERR(inode))
5737 return inode;
5738
5739 down_read(&fs_info->cleanup_work_sem);
5740 if (!sb_rdonly(inode->i_sb))
5741 ret = btrfs_orphan_cleanup(sub_root);
5742 up_read(&fs_info->cleanup_work_sem);
5743 if (ret) {
5744 iput(inode);
5745 inode = ERR_PTR(ret);
5746 }
5747 }
5748
5749 return inode;
5750 }
5751
btrfs_dentry_delete(const struct dentry * dentry)5752 static int btrfs_dentry_delete(const struct dentry *dentry)
5753 {
5754 struct btrfs_root *root;
5755 struct inode *inode = d_inode(dentry);
5756
5757 if (!inode && !IS_ROOT(dentry))
5758 inode = d_inode(dentry->d_parent);
5759
5760 if (inode) {
5761 root = BTRFS_I(inode)->root;
5762 if (btrfs_root_refs(&root->root_item) == 0)
5763 return 1;
5764
5765 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5766 return 1;
5767 }
5768 return 0;
5769 }
5770
btrfs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)5771 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5772 unsigned int flags)
5773 {
5774 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5775
5776 if (inode == ERR_PTR(-ENOENT))
5777 inode = NULL;
5778 return d_splice_alias(inode, dentry);
5779 }
5780
5781 /*
5782 * Find the highest existing sequence number in a directory and then set the
5783 * in-memory index_cnt variable to the first free sequence number.
5784 */
btrfs_set_inode_index_count(struct btrfs_inode * inode)5785 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5786 {
5787 struct btrfs_root *root = inode->root;
5788 struct btrfs_key key, found_key;
5789 struct btrfs_path *path;
5790 struct extent_buffer *leaf;
5791 int ret;
5792
5793 key.objectid = btrfs_ino(inode);
5794 key.type = BTRFS_DIR_INDEX_KEY;
5795 key.offset = (u64)-1;
5796
5797 path = btrfs_alloc_path();
5798 if (!path)
5799 return -ENOMEM;
5800
5801 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5802 if (ret < 0)
5803 goto out;
5804 /* FIXME: we should be able to handle this */
5805 if (ret == 0)
5806 goto out;
5807 ret = 0;
5808
5809 if (path->slots[0] == 0) {
5810 inode->index_cnt = BTRFS_DIR_START_INDEX;
5811 goto out;
5812 }
5813
5814 path->slots[0]--;
5815
5816 leaf = path->nodes[0];
5817 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5818
5819 if (found_key.objectid != btrfs_ino(inode) ||
5820 found_key.type != BTRFS_DIR_INDEX_KEY) {
5821 inode->index_cnt = BTRFS_DIR_START_INDEX;
5822 goto out;
5823 }
5824
5825 inode->index_cnt = found_key.offset + 1;
5826 out:
5827 btrfs_free_path(path);
5828 return ret;
5829 }
5830
btrfs_get_dir_last_index(struct btrfs_inode * dir,u64 * index)5831 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index)
5832 {
5833 int ret = 0;
5834
5835 btrfs_inode_lock(dir, 0);
5836 if (dir->index_cnt == (u64)-1) {
5837 ret = btrfs_inode_delayed_dir_index_count(dir);
5838 if (ret) {
5839 ret = btrfs_set_inode_index_count(dir);
5840 if (ret)
5841 goto out;
5842 }
5843 }
5844
5845 /* index_cnt is the index number of next new entry, so decrement it. */
5846 *index = dir->index_cnt - 1;
5847 out:
5848 btrfs_inode_unlock(dir, 0);
5849
5850 return ret;
5851 }
5852
5853 /*
5854 * All this infrastructure exists because dir_emit can fault, and we are holding
5855 * the tree lock when doing readdir. For now just allocate a buffer and copy
5856 * our information into that, and then dir_emit from the buffer. This is
5857 * similar to what NFS does, only we don't keep the buffer around in pagecache
5858 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5859 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5860 * tree lock.
5861 */
btrfs_opendir(struct inode * inode,struct file * file)5862 static int btrfs_opendir(struct inode *inode, struct file *file)
5863 {
5864 struct btrfs_file_private *private;
5865 u64 last_index;
5866 int ret;
5867
5868 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index);
5869 if (ret)
5870 return ret;
5871
5872 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5873 if (!private)
5874 return -ENOMEM;
5875 private->last_index = last_index;
5876 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5877 if (!private->filldir_buf) {
5878 kfree(private);
5879 return -ENOMEM;
5880 }
5881 file->private_data = private;
5882 return 0;
5883 }
5884
btrfs_dir_llseek(struct file * file,loff_t offset,int whence)5885 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence)
5886 {
5887 struct btrfs_file_private *private = file->private_data;
5888 int ret;
5889
5890 ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)),
5891 &private->last_index);
5892 if (ret)
5893 return ret;
5894
5895 return generic_file_llseek(file, offset, whence);
5896 }
5897
5898 struct dir_entry {
5899 u64 ino;
5900 u64 offset;
5901 unsigned type;
5902 int name_len;
5903 };
5904
btrfs_filldir(void * addr,int entries,struct dir_context * ctx)5905 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5906 {
5907 while (entries--) {
5908 struct dir_entry *entry = addr;
5909 char *name = (char *)(entry + 1);
5910
5911 ctx->pos = get_unaligned(&entry->offset);
5912 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5913 get_unaligned(&entry->ino),
5914 get_unaligned(&entry->type)))
5915 return 1;
5916 addr += sizeof(struct dir_entry) +
5917 get_unaligned(&entry->name_len);
5918 ctx->pos++;
5919 }
5920 return 0;
5921 }
5922
btrfs_real_readdir(struct file * file,struct dir_context * ctx)5923 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5924 {
5925 struct inode *inode = file_inode(file);
5926 struct btrfs_root *root = BTRFS_I(inode)->root;
5927 struct btrfs_file_private *private = file->private_data;
5928 struct btrfs_dir_item *di;
5929 struct btrfs_key key;
5930 struct btrfs_key found_key;
5931 struct btrfs_path *path;
5932 void *addr;
5933 LIST_HEAD(ins_list);
5934 LIST_HEAD(del_list);
5935 int ret;
5936 char *name_ptr;
5937 int name_len;
5938 int entries = 0;
5939 int total_len = 0;
5940 bool put = false;
5941 struct btrfs_key location;
5942
5943 if (!dir_emit_dots(file, ctx))
5944 return 0;
5945
5946 path = btrfs_alloc_path();
5947 if (!path)
5948 return -ENOMEM;
5949
5950 addr = private->filldir_buf;
5951 path->reada = READA_FORWARD;
5952
5953 put = btrfs_readdir_get_delayed_items(BTRFS_I(inode), private->last_index,
5954 &ins_list, &del_list);
5955
5956 again:
5957 key.type = BTRFS_DIR_INDEX_KEY;
5958 key.offset = ctx->pos;
5959 key.objectid = btrfs_ino(BTRFS_I(inode));
5960
5961 btrfs_for_each_slot(root, &key, &found_key, path, ret) {
5962 struct dir_entry *entry;
5963 struct extent_buffer *leaf = path->nodes[0];
5964 u8 ftype;
5965
5966 if (found_key.objectid != key.objectid)
5967 break;
5968 if (found_key.type != BTRFS_DIR_INDEX_KEY)
5969 break;
5970 if (found_key.offset < ctx->pos)
5971 continue;
5972 if (found_key.offset > private->last_index)
5973 break;
5974 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5975 continue;
5976 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5977 name_len = btrfs_dir_name_len(leaf, di);
5978 if ((total_len + sizeof(struct dir_entry) + name_len) >=
5979 PAGE_SIZE) {
5980 btrfs_release_path(path);
5981 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5982 if (ret)
5983 goto nopos;
5984 addr = private->filldir_buf;
5985 entries = 0;
5986 total_len = 0;
5987 goto again;
5988 }
5989
5990 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di));
5991 entry = addr;
5992 name_ptr = (char *)(entry + 1);
5993 read_extent_buffer(leaf, name_ptr,
5994 (unsigned long)(di + 1), name_len);
5995 put_unaligned(name_len, &entry->name_len);
5996 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type);
5997 btrfs_dir_item_key_to_cpu(leaf, di, &location);
5998 put_unaligned(location.objectid, &entry->ino);
5999 put_unaligned(found_key.offset, &entry->offset);
6000 entries++;
6001 addr += sizeof(struct dir_entry) + name_len;
6002 total_len += sizeof(struct dir_entry) + name_len;
6003 }
6004 /* Catch error encountered during iteration */
6005 if (ret < 0)
6006 goto err;
6007
6008 btrfs_release_path(path);
6009
6010 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6011 if (ret)
6012 goto nopos;
6013
6014 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6015 if (ret)
6016 goto nopos;
6017
6018 /*
6019 * Stop new entries from being returned after we return the last
6020 * entry.
6021 *
6022 * New directory entries are assigned a strictly increasing
6023 * offset. This means that new entries created during readdir
6024 * are *guaranteed* to be seen in the future by that readdir.
6025 * This has broken buggy programs which operate on names as
6026 * they're returned by readdir. Until we re-use freed offsets
6027 * we have this hack to stop new entries from being returned
6028 * under the assumption that they'll never reach this huge
6029 * offset.
6030 *
6031 * This is being careful not to overflow 32bit loff_t unless the
6032 * last entry requires it because doing so has broken 32bit apps
6033 * in the past.
6034 */
6035 if (ctx->pos >= INT_MAX)
6036 ctx->pos = LLONG_MAX;
6037 else
6038 ctx->pos = INT_MAX;
6039 nopos:
6040 ret = 0;
6041 err:
6042 if (put)
6043 btrfs_readdir_put_delayed_items(BTRFS_I(inode), &ins_list, &del_list);
6044 btrfs_free_path(path);
6045 return ret;
6046 }
6047
6048 /*
6049 * This is somewhat expensive, updating the tree every time the
6050 * inode changes. But, it is most likely to find the inode in cache.
6051 * FIXME, needs more benchmarking...there are no reasons other than performance
6052 * to keep or drop this code.
6053 */
btrfs_dirty_inode(struct btrfs_inode * inode)6054 static int btrfs_dirty_inode(struct btrfs_inode *inode)
6055 {
6056 struct btrfs_root *root = inode->root;
6057 struct btrfs_fs_info *fs_info = root->fs_info;
6058 struct btrfs_trans_handle *trans;
6059 int ret;
6060
6061 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags))
6062 return 0;
6063
6064 trans = btrfs_join_transaction(root);
6065 if (IS_ERR(trans))
6066 return PTR_ERR(trans);
6067
6068 ret = btrfs_update_inode(trans, inode);
6069 if (ret == -ENOSPC || ret == -EDQUOT) {
6070 /* whoops, lets try again with the full transaction */
6071 btrfs_end_transaction(trans);
6072 trans = btrfs_start_transaction(root, 1);
6073 if (IS_ERR(trans))
6074 return PTR_ERR(trans);
6075
6076 ret = btrfs_update_inode(trans, inode);
6077 }
6078 btrfs_end_transaction(trans);
6079 if (inode->delayed_node)
6080 btrfs_balance_delayed_items(fs_info);
6081
6082 return ret;
6083 }
6084
6085 /*
6086 * This is a copy of file_update_time. We need this so we can return error on
6087 * ENOSPC for updating the inode in the case of file write and mmap writes.
6088 */
btrfs_update_time(struct inode * inode,int flags)6089 static int btrfs_update_time(struct inode *inode, int flags)
6090 {
6091 struct btrfs_root *root = BTRFS_I(inode)->root;
6092 bool dirty;
6093
6094 if (btrfs_root_readonly(root))
6095 return -EROFS;
6096
6097 dirty = inode_update_timestamps(inode, flags);
6098 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0;
6099 }
6100
6101 /*
6102 * helper to find a free sequence number in a given directory. This current
6103 * code is very simple, later versions will do smarter things in the btree
6104 */
btrfs_set_inode_index(struct btrfs_inode * dir,u64 * index)6105 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6106 {
6107 int ret = 0;
6108
6109 if (dir->index_cnt == (u64)-1) {
6110 ret = btrfs_inode_delayed_dir_index_count(dir);
6111 if (ret) {
6112 ret = btrfs_set_inode_index_count(dir);
6113 if (ret)
6114 return ret;
6115 }
6116 }
6117
6118 *index = dir->index_cnt;
6119 dir->index_cnt++;
6120
6121 return ret;
6122 }
6123
btrfs_insert_inode_locked(struct inode * inode)6124 static int btrfs_insert_inode_locked(struct inode *inode)
6125 {
6126 struct btrfs_iget_args args;
6127
6128 args.ino = btrfs_ino(BTRFS_I(inode));
6129 args.root = BTRFS_I(inode)->root;
6130
6131 return insert_inode_locked4(inode,
6132 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6133 btrfs_find_actor, &args);
6134 }
6135
btrfs_new_inode_prepare(struct btrfs_new_inode_args * args,unsigned int * trans_num_items)6136 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6137 unsigned int *trans_num_items)
6138 {
6139 struct inode *dir = args->dir;
6140 struct inode *inode = args->inode;
6141 int ret;
6142
6143 if (!args->orphan) {
6144 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0,
6145 &args->fname);
6146 if (ret)
6147 return ret;
6148 }
6149
6150 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
6151 if (ret) {
6152 fscrypt_free_filename(&args->fname);
6153 return ret;
6154 }
6155
6156 /* 1 to add inode item */
6157 *trans_num_items = 1;
6158 /* 1 to add compression property */
6159 if (BTRFS_I(dir)->prop_compress)
6160 (*trans_num_items)++;
6161 /* 1 to add default ACL xattr */
6162 if (args->default_acl)
6163 (*trans_num_items)++;
6164 /* 1 to add access ACL xattr */
6165 if (args->acl)
6166 (*trans_num_items)++;
6167 #ifdef CONFIG_SECURITY
6168 /* 1 to add LSM xattr */
6169 if (dir->i_security)
6170 (*trans_num_items)++;
6171 #endif
6172 if (args->orphan) {
6173 /* 1 to add orphan item */
6174 (*trans_num_items)++;
6175 } else {
6176 /*
6177 * 1 to add dir item
6178 * 1 to add dir index
6179 * 1 to update parent inode item
6180 *
6181 * No need for 1 unit for the inode ref item because it is
6182 * inserted in a batch together with the inode item at
6183 * btrfs_create_new_inode().
6184 */
6185 *trans_num_items += 3;
6186 }
6187 return 0;
6188 }
6189
btrfs_new_inode_args_destroy(struct btrfs_new_inode_args * args)6190 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6191 {
6192 posix_acl_release(args->acl);
6193 posix_acl_release(args->default_acl);
6194 fscrypt_free_filename(&args->fname);
6195 }
6196
6197 /*
6198 * Inherit flags from the parent inode.
6199 *
6200 * Currently only the compression flags and the cow flags are inherited.
6201 */
btrfs_inherit_iflags(struct btrfs_inode * inode,struct btrfs_inode * dir)6202 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir)
6203 {
6204 unsigned int flags;
6205
6206 flags = dir->flags;
6207
6208 if (flags & BTRFS_INODE_NOCOMPRESS) {
6209 inode->flags &= ~BTRFS_INODE_COMPRESS;
6210 inode->flags |= BTRFS_INODE_NOCOMPRESS;
6211 } else if (flags & BTRFS_INODE_COMPRESS) {
6212 inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
6213 inode->flags |= BTRFS_INODE_COMPRESS;
6214 }
6215
6216 if (flags & BTRFS_INODE_NODATACOW) {
6217 inode->flags |= BTRFS_INODE_NODATACOW;
6218 if (S_ISREG(inode->vfs_inode.i_mode))
6219 inode->flags |= BTRFS_INODE_NODATASUM;
6220 }
6221
6222 btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
6223 }
6224
btrfs_create_new_inode(struct btrfs_trans_handle * trans,struct btrfs_new_inode_args * args)6225 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
6226 struct btrfs_new_inode_args *args)
6227 {
6228 struct timespec64 ts;
6229 struct inode *dir = args->dir;
6230 struct inode *inode = args->inode;
6231 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name;
6232 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
6233 struct btrfs_root *root;
6234 struct btrfs_inode_item *inode_item;
6235 struct btrfs_path *path;
6236 u64 objectid;
6237 struct btrfs_inode_ref *ref;
6238 struct btrfs_key key[2];
6239 u32 sizes[2];
6240 struct btrfs_item_batch batch;
6241 unsigned long ptr;
6242 int ret;
6243 bool xa_reserved = false;
6244
6245 path = btrfs_alloc_path();
6246 if (!path)
6247 return -ENOMEM;
6248
6249 if (!args->subvol)
6250 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6251 root = BTRFS_I(inode)->root;
6252
6253 ret = btrfs_init_file_extent_tree(BTRFS_I(inode));
6254 if (ret)
6255 goto out;
6256
6257 ret = btrfs_get_free_objectid(root, &objectid);
6258 if (ret)
6259 goto out;
6260 btrfs_set_inode_number(BTRFS_I(inode), objectid);
6261
6262 ret = xa_reserve(&root->inodes, objectid, GFP_NOFS);
6263 if (ret)
6264 goto out;
6265 xa_reserved = true;
6266
6267 if (args->orphan) {
6268 /*
6269 * O_TMPFILE, set link count to 0, so that after this point, we
6270 * fill in an inode item with the correct link count.
6271 */
6272 set_nlink(inode, 0);
6273 } else {
6274 trace_btrfs_inode_request(dir);
6275
6276 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6277 if (ret)
6278 goto out;
6279 }
6280
6281 if (S_ISDIR(inode->i_mode))
6282 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
6283
6284 BTRFS_I(inode)->generation = trans->transid;
6285 inode->i_generation = BTRFS_I(inode)->generation;
6286
6287 /*
6288 * We don't have any capability xattrs set here yet, shortcut any
6289 * queries for the xattrs here. If we add them later via the inode
6290 * security init path or any other path this flag will be cleared.
6291 */
6292 set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags);
6293
6294 /*
6295 * Subvolumes don't inherit flags from their parent directory.
6296 * Originally this was probably by accident, but we probably can't
6297 * change it now without compatibility issues.
6298 */
6299 if (!args->subvol)
6300 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir));
6301
6302 if (S_ISREG(inode->i_mode)) {
6303 if (btrfs_test_opt(fs_info, NODATASUM))
6304 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6305 if (btrfs_test_opt(fs_info, NODATACOW))
6306 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6307 BTRFS_INODE_NODATASUM;
6308 }
6309
6310 ret = btrfs_insert_inode_locked(inode);
6311 if (ret < 0) {
6312 if (!args->orphan)
6313 BTRFS_I(dir)->index_cnt--;
6314 goto out;
6315 }
6316
6317 /*
6318 * We could have gotten an inode number from somebody who was fsynced
6319 * and then removed in this same transaction, so let's just set full
6320 * sync since it will be a full sync anyway and this will blow away the
6321 * old info in the log.
6322 */
6323 btrfs_set_inode_full_sync(BTRFS_I(inode));
6324
6325 key[0].objectid = objectid;
6326 key[0].type = BTRFS_INODE_ITEM_KEY;
6327 key[0].offset = 0;
6328
6329 sizes[0] = sizeof(struct btrfs_inode_item);
6330
6331 if (!args->orphan) {
6332 /*
6333 * Start new inodes with an inode_ref. This is slightly more
6334 * efficient for small numbers of hard links since they will
6335 * be packed into one item. Extended refs will kick in if we
6336 * add more hard links than can fit in the ref item.
6337 */
6338 key[1].objectid = objectid;
6339 key[1].type = BTRFS_INODE_REF_KEY;
6340 if (args->subvol) {
6341 key[1].offset = objectid;
6342 sizes[1] = 2 + sizeof(*ref);
6343 } else {
6344 key[1].offset = btrfs_ino(BTRFS_I(dir));
6345 sizes[1] = name->len + sizeof(*ref);
6346 }
6347 }
6348
6349 batch.keys = &key[0];
6350 batch.data_sizes = &sizes[0];
6351 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6352 batch.nr = args->orphan ? 1 : 2;
6353 ret = btrfs_insert_empty_items(trans, root, path, &batch);
6354 if (ret != 0) {
6355 btrfs_abort_transaction(trans, ret);
6356 goto discard;
6357 }
6358
6359 ts = simple_inode_init_ts(inode);
6360 BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
6361 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
6362
6363 /*
6364 * We're going to fill the inode item now, so at this point the inode
6365 * must be fully initialized.
6366 */
6367
6368 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6369 struct btrfs_inode_item);
6370 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6371 sizeof(*inode_item));
6372 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6373
6374 if (!args->orphan) {
6375 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6376 struct btrfs_inode_ref);
6377 ptr = (unsigned long)(ref + 1);
6378 if (args->subvol) {
6379 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6380 btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6381 write_extent_buffer(path->nodes[0], "..", ptr, 2);
6382 } else {
6383 btrfs_set_inode_ref_name_len(path->nodes[0], ref,
6384 name->len);
6385 btrfs_set_inode_ref_index(path->nodes[0], ref,
6386 BTRFS_I(inode)->dir_index);
6387 write_extent_buffer(path->nodes[0], name->name, ptr,
6388 name->len);
6389 }
6390 }
6391
6392 btrfs_mark_buffer_dirty(trans, path->nodes[0]);
6393 /*
6394 * We don't need the path anymore, plus inheriting properties, adding
6395 * ACLs, security xattrs, orphan item or adding the link, will result in
6396 * allocating yet another path. So just free our path.
6397 */
6398 btrfs_free_path(path);
6399 path = NULL;
6400
6401 if (args->subvol) {
6402 struct inode *parent;
6403
6404 /*
6405 * Subvolumes inherit properties from their parent subvolume,
6406 * not the directory they were created in.
6407 */
6408 parent = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, BTRFS_I(dir)->root);
6409 if (IS_ERR(parent)) {
6410 ret = PTR_ERR(parent);
6411 } else {
6412 ret = btrfs_inode_inherit_props(trans, inode, parent);
6413 iput(parent);
6414 }
6415 } else {
6416 ret = btrfs_inode_inherit_props(trans, inode, dir);
6417 }
6418 if (ret) {
6419 btrfs_err(fs_info,
6420 "error inheriting props for ino %llu (root %llu): %d",
6421 btrfs_ino(BTRFS_I(inode)), btrfs_root_id(root), ret);
6422 }
6423
6424 /*
6425 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6426 * probably a bug.
6427 */
6428 if (!args->subvol) {
6429 ret = btrfs_init_inode_security(trans, args);
6430 if (ret) {
6431 btrfs_abort_transaction(trans, ret);
6432 goto discard;
6433 }
6434 }
6435
6436 ret = btrfs_add_inode_to_root(BTRFS_I(inode), false);
6437 if (WARN_ON(ret)) {
6438 /* Shouldn't happen, we used xa_reserve() before. */
6439 btrfs_abort_transaction(trans, ret);
6440 goto discard;
6441 }
6442
6443 trace_btrfs_inode_new(inode);
6444 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6445
6446 btrfs_update_root_times(trans, root);
6447
6448 if (args->orphan) {
6449 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6450 } else {
6451 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
6452 0, BTRFS_I(inode)->dir_index);
6453 }
6454 if (ret) {
6455 btrfs_abort_transaction(trans, ret);
6456 goto discard;
6457 }
6458
6459 return 0;
6460
6461 discard:
6462 /*
6463 * discard_new_inode() calls iput(), but the caller owns the reference
6464 * to the inode.
6465 */
6466 ihold(inode);
6467 discard_new_inode(inode);
6468 out:
6469 if (xa_reserved)
6470 xa_release(&root->inodes, objectid);
6471
6472 btrfs_free_path(path);
6473 return ret;
6474 }
6475
6476 /*
6477 * utility function to add 'inode' into 'parent_inode' with
6478 * a give name and a given sequence number.
6479 * if 'add_backref' is true, also insert a backref from the
6480 * inode to the parent directory.
6481 */
btrfs_add_link(struct btrfs_trans_handle * trans,struct btrfs_inode * parent_inode,struct btrfs_inode * inode,const struct fscrypt_str * name,int add_backref,u64 index)6482 int btrfs_add_link(struct btrfs_trans_handle *trans,
6483 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6484 const struct fscrypt_str *name, int add_backref, u64 index)
6485 {
6486 int ret = 0;
6487 struct btrfs_key key;
6488 struct btrfs_root *root = parent_inode->root;
6489 u64 ino = btrfs_ino(inode);
6490 u64 parent_ino = btrfs_ino(parent_inode);
6491
6492 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6493 memcpy(&key, &inode->root->root_key, sizeof(key));
6494 } else {
6495 key.objectid = ino;
6496 key.type = BTRFS_INODE_ITEM_KEY;
6497 key.offset = 0;
6498 }
6499
6500 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6501 ret = btrfs_add_root_ref(trans, key.objectid,
6502 btrfs_root_id(root), parent_ino,
6503 index, name);
6504 } else if (add_backref) {
6505 ret = btrfs_insert_inode_ref(trans, root, name,
6506 ino, parent_ino, index);
6507 }
6508
6509 /* Nothing to clean up yet */
6510 if (ret)
6511 return ret;
6512
6513 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key,
6514 btrfs_inode_type(&inode->vfs_inode), index);
6515 if (ret == -EEXIST || ret == -EOVERFLOW)
6516 goto fail_dir_item;
6517 else if (ret) {
6518 btrfs_abort_transaction(trans, ret);
6519 return ret;
6520 }
6521
6522 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6523 name->len * 2);
6524 inode_inc_iversion(&parent_inode->vfs_inode);
6525 /*
6526 * If we are replaying a log tree, we do not want to update the mtime
6527 * and ctime of the parent directory with the current time, since the
6528 * log replay procedure is responsible for setting them to their correct
6529 * values (the ones it had when the fsync was done).
6530 */
6531 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags))
6532 inode_set_mtime_to_ts(&parent_inode->vfs_inode,
6533 inode_set_ctime_current(&parent_inode->vfs_inode));
6534
6535 ret = btrfs_update_inode(trans, parent_inode);
6536 if (ret)
6537 btrfs_abort_transaction(trans, ret);
6538 return ret;
6539
6540 fail_dir_item:
6541 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6542 u64 local_index;
6543 int err;
6544 err = btrfs_del_root_ref(trans, key.objectid,
6545 btrfs_root_id(root), parent_ino,
6546 &local_index, name);
6547 if (err)
6548 btrfs_abort_transaction(trans, err);
6549 } else if (add_backref) {
6550 u64 local_index;
6551 int err;
6552
6553 err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino,
6554 &local_index);
6555 if (err)
6556 btrfs_abort_transaction(trans, err);
6557 }
6558
6559 /* Return the original error code */
6560 return ret;
6561 }
6562
btrfs_create_common(struct inode * dir,struct dentry * dentry,struct inode * inode)6563 static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6564 struct inode *inode)
6565 {
6566 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
6567 struct btrfs_root *root = BTRFS_I(dir)->root;
6568 struct btrfs_new_inode_args new_inode_args = {
6569 .dir = dir,
6570 .dentry = dentry,
6571 .inode = inode,
6572 };
6573 unsigned int trans_num_items;
6574 struct btrfs_trans_handle *trans;
6575 int err;
6576
6577 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
6578 if (err)
6579 goto out_inode;
6580
6581 trans = btrfs_start_transaction(root, trans_num_items);
6582 if (IS_ERR(trans)) {
6583 err = PTR_ERR(trans);
6584 goto out_new_inode_args;
6585 }
6586
6587 err = btrfs_create_new_inode(trans, &new_inode_args);
6588 if (!err)
6589 d_instantiate_new(dentry, inode);
6590
6591 btrfs_end_transaction(trans);
6592 btrfs_btree_balance_dirty(fs_info);
6593 out_new_inode_args:
6594 btrfs_new_inode_args_destroy(&new_inode_args);
6595 out_inode:
6596 if (err)
6597 iput(inode);
6598 return err;
6599 }
6600
btrfs_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)6601 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
6602 struct dentry *dentry, umode_t mode, dev_t rdev)
6603 {
6604 struct inode *inode;
6605
6606 inode = new_inode(dir->i_sb);
6607 if (!inode)
6608 return -ENOMEM;
6609 inode_init_owner(idmap, inode, dir, mode);
6610 inode->i_op = &btrfs_special_inode_operations;
6611 init_special_inode(inode, inode->i_mode, rdev);
6612 return btrfs_create_common(dir, dentry, inode);
6613 }
6614
btrfs_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)6615 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir,
6616 struct dentry *dentry, umode_t mode, bool excl)
6617 {
6618 struct inode *inode;
6619
6620 inode = new_inode(dir->i_sb);
6621 if (!inode)
6622 return -ENOMEM;
6623 inode_init_owner(idmap, inode, dir, mode);
6624 inode->i_fop = &btrfs_file_operations;
6625 inode->i_op = &btrfs_file_inode_operations;
6626 inode->i_mapping->a_ops = &btrfs_aops;
6627 return btrfs_create_common(dir, dentry, inode);
6628 }
6629
btrfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)6630 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6631 struct dentry *dentry)
6632 {
6633 struct btrfs_trans_handle *trans = NULL;
6634 struct btrfs_root *root = BTRFS_I(dir)->root;
6635 struct inode *inode = d_inode(old_dentry);
6636 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
6637 struct fscrypt_name fname;
6638 u64 index;
6639 int err;
6640 int drop_inode = 0;
6641
6642 /* do not allow sys_link's with other subvols of the same device */
6643 if (btrfs_root_id(root) != btrfs_root_id(BTRFS_I(inode)->root))
6644 return -EXDEV;
6645
6646 if (inode->i_nlink >= BTRFS_LINK_MAX)
6647 return -EMLINK;
6648
6649 err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname);
6650 if (err)
6651 goto fail;
6652
6653 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6654 if (err)
6655 goto fail;
6656
6657 /*
6658 * 2 items for inode and inode ref
6659 * 2 items for dir items
6660 * 1 item for parent inode
6661 * 1 item for orphan item deletion if O_TMPFILE
6662 */
6663 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6664 if (IS_ERR(trans)) {
6665 err = PTR_ERR(trans);
6666 trans = NULL;
6667 goto fail;
6668 }
6669
6670 /* There are several dir indexes for this inode, clear the cache. */
6671 BTRFS_I(inode)->dir_index = 0ULL;
6672 inc_nlink(inode);
6673 inode_inc_iversion(inode);
6674 inode_set_ctime_current(inode);
6675 ihold(inode);
6676 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6677
6678 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6679 &fname.disk_name, 1, index);
6680
6681 if (err) {
6682 drop_inode = 1;
6683 } else {
6684 struct dentry *parent = dentry->d_parent;
6685
6686 err = btrfs_update_inode(trans, BTRFS_I(inode));
6687 if (err)
6688 goto fail;
6689 if (inode->i_nlink == 1) {
6690 /*
6691 * If new hard link count is 1, it's a file created
6692 * with open(2) O_TMPFILE flag.
6693 */
6694 err = btrfs_orphan_del(trans, BTRFS_I(inode));
6695 if (err)
6696 goto fail;
6697 }
6698 d_instantiate(dentry, inode);
6699 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent);
6700 }
6701
6702 fail:
6703 fscrypt_free_filename(&fname);
6704 if (trans)
6705 btrfs_end_transaction(trans);
6706 if (drop_inode) {
6707 inode_dec_link_count(inode);
6708 iput(inode);
6709 }
6710 btrfs_btree_balance_dirty(fs_info);
6711 return err;
6712 }
6713
btrfs_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)6714 static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
6715 struct dentry *dentry, umode_t mode)
6716 {
6717 struct inode *inode;
6718
6719 inode = new_inode(dir->i_sb);
6720 if (!inode)
6721 return -ENOMEM;
6722 inode_init_owner(idmap, inode, dir, S_IFDIR | mode);
6723 inode->i_op = &btrfs_dir_inode_operations;
6724 inode->i_fop = &btrfs_dir_file_operations;
6725 return btrfs_create_common(dir, dentry, inode);
6726 }
6727
uncompress_inline(struct btrfs_path * path,struct folio * folio,struct btrfs_file_extent_item * item)6728 static noinline int uncompress_inline(struct btrfs_path *path,
6729 struct folio *folio,
6730 struct btrfs_file_extent_item *item)
6731 {
6732 int ret;
6733 struct extent_buffer *leaf = path->nodes[0];
6734 char *tmp;
6735 size_t max_size;
6736 unsigned long inline_size;
6737 unsigned long ptr;
6738 int compress_type;
6739
6740 compress_type = btrfs_file_extent_compression(leaf, item);
6741 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6742 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
6743 tmp = kmalloc(inline_size, GFP_NOFS);
6744 if (!tmp)
6745 return -ENOMEM;
6746 ptr = btrfs_file_extent_inline_start(item);
6747
6748 read_extent_buffer(leaf, tmp, ptr, inline_size);
6749
6750 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6751 ret = btrfs_decompress(compress_type, tmp, folio, 0, inline_size,
6752 max_size);
6753
6754 /*
6755 * decompression code contains a memset to fill in any space between the end
6756 * of the uncompressed data and the end of max_size in case the decompressed
6757 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6758 * the end of an inline extent and the beginning of the next block, so we
6759 * cover that region here.
6760 */
6761
6762 if (max_size < PAGE_SIZE)
6763 folio_zero_range(folio, max_size, PAGE_SIZE - max_size);
6764 kfree(tmp);
6765 return ret;
6766 }
6767
read_inline_extent(struct btrfs_inode * inode,struct btrfs_path * path,struct folio * folio)6768 static int read_inline_extent(struct btrfs_inode *inode, struct btrfs_path *path,
6769 struct folio *folio)
6770 {
6771 struct btrfs_file_extent_item *fi;
6772 void *kaddr;
6773 size_t copy_size;
6774
6775 if (!folio || folio_test_uptodate(folio))
6776 return 0;
6777
6778 ASSERT(folio_pos(folio) == 0);
6779
6780 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
6781 struct btrfs_file_extent_item);
6782 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE)
6783 return uncompress_inline(path, folio, fi);
6784
6785 copy_size = min_t(u64, PAGE_SIZE,
6786 btrfs_file_extent_ram_bytes(path->nodes[0], fi));
6787 kaddr = kmap_local_folio(folio, 0);
6788 read_extent_buffer(path->nodes[0], kaddr,
6789 btrfs_file_extent_inline_start(fi), copy_size);
6790 kunmap_local(kaddr);
6791 if (copy_size < PAGE_SIZE)
6792 folio_zero_range(folio, copy_size, PAGE_SIZE - copy_size);
6793 return 0;
6794 }
6795
6796 /*
6797 * Lookup the first extent overlapping a range in a file.
6798 *
6799 * @inode: file to search in
6800 * @page: page to read extent data into if the extent is inline
6801 * @start: file offset
6802 * @len: length of range starting at @start
6803 *
6804 * Return the first &struct extent_map which overlaps the given range, reading
6805 * it from the B-tree and caching it if necessary. Note that there may be more
6806 * extents which overlap the given range after the returned extent_map.
6807 *
6808 * If @page is not NULL and the extent is inline, this also reads the extent
6809 * data directly into the page and marks the extent up to date in the io_tree.
6810 *
6811 * Return: ERR_PTR on error, non-NULL extent_map on success.
6812 */
btrfs_get_extent(struct btrfs_inode * inode,struct folio * folio,u64 start,u64 len)6813 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6814 struct folio *folio, u64 start, u64 len)
6815 {
6816 struct btrfs_fs_info *fs_info = inode->root->fs_info;
6817 int ret = 0;
6818 u64 extent_start = 0;
6819 u64 extent_end = 0;
6820 u64 objectid = btrfs_ino(inode);
6821 int extent_type = -1;
6822 struct btrfs_path *path = NULL;
6823 struct btrfs_root *root = inode->root;
6824 struct btrfs_file_extent_item *item;
6825 struct extent_buffer *leaf;
6826 struct btrfs_key found_key;
6827 struct extent_map *em = NULL;
6828 struct extent_map_tree *em_tree = &inode->extent_tree;
6829
6830 read_lock(&em_tree->lock);
6831 em = lookup_extent_mapping(em_tree, start, len);
6832 read_unlock(&em_tree->lock);
6833
6834 if (em) {
6835 if (em->start > start || em->start + em->len <= start)
6836 free_extent_map(em);
6837 else if (em->disk_bytenr == EXTENT_MAP_INLINE && folio)
6838 free_extent_map(em);
6839 else
6840 goto out;
6841 }
6842 em = alloc_extent_map();
6843 if (!em) {
6844 ret = -ENOMEM;
6845 goto out;
6846 }
6847 em->start = EXTENT_MAP_HOLE;
6848 em->disk_bytenr = EXTENT_MAP_HOLE;
6849 em->len = (u64)-1;
6850
6851 path = btrfs_alloc_path();
6852 if (!path) {
6853 ret = -ENOMEM;
6854 goto out;
6855 }
6856
6857 /* Chances are we'll be called again, so go ahead and do readahead */
6858 path->reada = READA_FORWARD;
6859
6860 /*
6861 * The same explanation in load_free_space_cache applies here as well,
6862 * we only read when we're loading the free space cache, and at that
6863 * point the commit_root has everything we need.
6864 */
6865 if (btrfs_is_free_space_inode(inode)) {
6866 path->search_commit_root = 1;
6867 path->skip_locking = 1;
6868 }
6869
6870 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6871 if (ret < 0) {
6872 goto out;
6873 } else if (ret > 0) {
6874 if (path->slots[0] == 0)
6875 goto not_found;
6876 path->slots[0]--;
6877 ret = 0;
6878 }
6879
6880 leaf = path->nodes[0];
6881 item = btrfs_item_ptr(leaf, path->slots[0],
6882 struct btrfs_file_extent_item);
6883 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6884 if (found_key.objectid != objectid ||
6885 found_key.type != BTRFS_EXTENT_DATA_KEY) {
6886 /*
6887 * If we backup past the first extent we want to move forward
6888 * and see if there is an extent in front of us, otherwise we'll
6889 * say there is a hole for our whole search range which can
6890 * cause problems.
6891 */
6892 extent_end = start;
6893 goto next;
6894 }
6895
6896 extent_type = btrfs_file_extent_type(leaf, item);
6897 extent_start = found_key.offset;
6898 extent_end = btrfs_file_extent_end(path);
6899 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6900 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6901 /* Only regular file could have regular/prealloc extent */
6902 if (!S_ISREG(inode->vfs_inode.i_mode)) {
6903 ret = -EUCLEAN;
6904 btrfs_crit(fs_info,
6905 "regular/prealloc extent found for non-regular inode %llu",
6906 btrfs_ino(inode));
6907 goto out;
6908 }
6909 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6910 extent_start);
6911 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6912 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6913 path->slots[0],
6914 extent_start);
6915 }
6916 next:
6917 if (start >= extent_end) {
6918 path->slots[0]++;
6919 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6920 ret = btrfs_next_leaf(root, path);
6921 if (ret < 0)
6922 goto out;
6923 else if (ret > 0)
6924 goto not_found;
6925
6926 leaf = path->nodes[0];
6927 }
6928 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6929 if (found_key.objectid != objectid ||
6930 found_key.type != BTRFS_EXTENT_DATA_KEY)
6931 goto not_found;
6932 if (start + len <= found_key.offset)
6933 goto not_found;
6934 if (start > found_key.offset)
6935 goto next;
6936
6937 /* New extent overlaps with existing one */
6938 em->start = start;
6939 em->len = found_key.offset - start;
6940 em->disk_bytenr = EXTENT_MAP_HOLE;
6941 goto insert;
6942 }
6943
6944 btrfs_extent_item_to_extent_map(inode, path, item, em);
6945
6946 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6947 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6948 goto insert;
6949 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6950 /*
6951 * Inline extent can only exist at file offset 0. This is
6952 * ensured by tree-checker and inline extent creation path.
6953 * Thus all members representing file offsets should be zero.
6954 */
6955 ASSERT(extent_start == 0);
6956 ASSERT(em->start == 0);
6957
6958 /*
6959 * btrfs_extent_item_to_extent_map() should have properly
6960 * initialized em members already.
6961 *
6962 * Other members are not utilized for inline extents.
6963 */
6964 ASSERT(em->disk_bytenr == EXTENT_MAP_INLINE);
6965 ASSERT(em->len == fs_info->sectorsize);
6966
6967 ret = read_inline_extent(inode, path, folio);
6968 if (ret < 0)
6969 goto out;
6970 goto insert;
6971 }
6972 not_found:
6973 em->start = start;
6974 em->len = len;
6975 em->disk_bytenr = EXTENT_MAP_HOLE;
6976 insert:
6977 ret = 0;
6978 btrfs_release_path(path);
6979 if (em->start > start || extent_map_end(em) <= start) {
6980 btrfs_err(fs_info,
6981 "bad extent! em: [%llu %llu] passed [%llu %llu]",
6982 em->start, em->len, start, len);
6983 ret = -EIO;
6984 goto out;
6985 }
6986
6987 write_lock(&em_tree->lock);
6988 ret = btrfs_add_extent_mapping(inode, &em, start, len);
6989 write_unlock(&em_tree->lock);
6990 out:
6991 btrfs_free_path(path);
6992
6993 trace_btrfs_get_extent(root, inode, em);
6994
6995 if (ret) {
6996 free_extent_map(em);
6997 return ERR_PTR(ret);
6998 }
6999 return em;
7000 }
7001
btrfs_extent_readonly(struct btrfs_fs_info * fs_info,u64 bytenr)7002 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7003 {
7004 struct btrfs_block_group *block_group;
7005 bool readonly = false;
7006
7007 block_group = btrfs_lookup_block_group(fs_info, bytenr);
7008 if (!block_group || block_group->ro)
7009 readonly = true;
7010 if (block_group)
7011 btrfs_put_block_group(block_group);
7012 return readonly;
7013 }
7014
7015 /*
7016 * Check if we can do nocow write into the range [@offset, @offset + @len)
7017 *
7018 * @offset: File offset
7019 * @len: The length to write, will be updated to the nocow writeable
7020 * range
7021 * @orig_start: (optional) Return the original file offset of the file extent
7022 * @orig_len: (optional) Return the original on-disk length of the file extent
7023 * @ram_bytes: (optional) Return the ram_bytes of the file extent
7024 * @strict: if true, omit optimizations that might force us into unnecessary
7025 * cow. e.g., don't trust generation number.
7026 *
7027 * Return:
7028 * >0 and update @len if we can do nocow write
7029 * 0 if we can't do nocow write
7030 * <0 if error happened
7031 *
7032 * NOTE: This only checks the file extents, caller is responsible to wait for
7033 * any ordered extents.
7034 */
can_nocow_extent(struct inode * inode,u64 offset,u64 * len,struct btrfs_file_extent * file_extent,bool nowait,bool strict)7035 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7036 struct btrfs_file_extent *file_extent,
7037 bool nowait, bool strict)
7038 {
7039 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
7040 struct can_nocow_file_extent_args nocow_args = { 0 };
7041 struct btrfs_path *path;
7042 int ret;
7043 struct extent_buffer *leaf;
7044 struct btrfs_root *root = BTRFS_I(inode)->root;
7045 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7046 struct btrfs_file_extent_item *fi;
7047 struct btrfs_key key;
7048 int found_type;
7049
7050 path = btrfs_alloc_path();
7051 if (!path)
7052 return -ENOMEM;
7053 path->nowait = nowait;
7054
7055 ret = btrfs_lookup_file_extent(NULL, root, path,
7056 btrfs_ino(BTRFS_I(inode)), offset, 0);
7057 if (ret < 0)
7058 goto out;
7059
7060 if (ret == 1) {
7061 if (path->slots[0] == 0) {
7062 /* can't find the item, must cow */
7063 ret = 0;
7064 goto out;
7065 }
7066 path->slots[0]--;
7067 }
7068 ret = 0;
7069 leaf = path->nodes[0];
7070 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7071 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7072 key.type != BTRFS_EXTENT_DATA_KEY) {
7073 /* not our file or wrong item type, must cow */
7074 goto out;
7075 }
7076
7077 if (key.offset > offset) {
7078 /* Wrong offset, must cow */
7079 goto out;
7080 }
7081
7082 if (btrfs_file_extent_end(path) <= offset)
7083 goto out;
7084
7085 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7086 found_type = btrfs_file_extent_type(leaf, fi);
7087
7088 nocow_args.start = offset;
7089 nocow_args.end = offset + *len - 1;
7090 nocow_args.strict = strict;
7091 nocow_args.free_path = true;
7092
7093 ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args);
7094 /* can_nocow_file_extent() has freed the path. */
7095 path = NULL;
7096
7097 if (ret != 1) {
7098 /* Treat errors as not being able to NOCOW. */
7099 ret = 0;
7100 goto out;
7101 }
7102
7103 ret = 0;
7104 if (btrfs_extent_readonly(fs_info,
7105 nocow_args.file_extent.disk_bytenr +
7106 nocow_args.file_extent.offset))
7107 goto out;
7108
7109 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7110 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7111 u64 range_end;
7112
7113 range_end = round_up(offset + nocow_args.file_extent.num_bytes,
7114 root->fs_info->sectorsize) - 1;
7115 ret = test_range_bit_exists(io_tree, offset, range_end, EXTENT_DELALLOC);
7116 if (ret) {
7117 ret = -EAGAIN;
7118 goto out;
7119 }
7120 }
7121
7122 if (file_extent)
7123 memcpy(file_extent, &nocow_args.file_extent, sizeof(*file_extent));
7124
7125 *len = nocow_args.file_extent.num_bytes;
7126 ret = 1;
7127 out:
7128 btrfs_free_path(path);
7129 return ret;
7130 }
7131
7132 /* The callers of this must take lock_extent() */
btrfs_create_io_em(struct btrfs_inode * inode,u64 start,const struct btrfs_file_extent * file_extent,int type)7133 struct extent_map *btrfs_create_io_em(struct btrfs_inode *inode, u64 start,
7134 const struct btrfs_file_extent *file_extent,
7135 int type)
7136 {
7137 struct extent_map *em;
7138 int ret;
7139
7140 /*
7141 * Note the missing NOCOW type.
7142 *
7143 * For pure NOCOW writes, we should not create an io extent map, but
7144 * just reusing the existing one.
7145 * Only PREALLOC writes (NOCOW write into preallocated range) can
7146 * create an io extent map.
7147 */
7148 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7149 type == BTRFS_ORDERED_COMPRESSED ||
7150 type == BTRFS_ORDERED_REGULAR);
7151
7152 switch (type) {
7153 case BTRFS_ORDERED_PREALLOC:
7154 /* We're only referring part of a larger preallocated extent. */
7155 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes);
7156 break;
7157 case BTRFS_ORDERED_REGULAR:
7158 /* COW results a new extent matching our file extent size. */
7159 ASSERT(file_extent->disk_num_bytes == file_extent->num_bytes);
7160 ASSERT(file_extent->ram_bytes == file_extent->num_bytes);
7161
7162 /* Since it's a new extent, we should not have any offset. */
7163 ASSERT(file_extent->offset == 0);
7164 break;
7165 case BTRFS_ORDERED_COMPRESSED:
7166 /* Must be compressed. */
7167 ASSERT(file_extent->compression != BTRFS_COMPRESS_NONE);
7168
7169 /*
7170 * Encoded write can make us to refer to part of the
7171 * uncompressed extent.
7172 */
7173 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes);
7174 break;
7175 }
7176
7177 em = alloc_extent_map();
7178 if (!em)
7179 return ERR_PTR(-ENOMEM);
7180
7181 em->start = start;
7182 em->len = file_extent->num_bytes;
7183 em->disk_bytenr = file_extent->disk_bytenr;
7184 em->disk_num_bytes = file_extent->disk_num_bytes;
7185 em->ram_bytes = file_extent->ram_bytes;
7186 em->generation = -1;
7187 em->offset = file_extent->offset;
7188 em->flags |= EXTENT_FLAG_PINNED;
7189 if (type == BTRFS_ORDERED_COMPRESSED)
7190 extent_map_set_compression(em, file_extent->compression);
7191
7192 ret = btrfs_replace_extent_map_range(inode, em, true);
7193 if (ret) {
7194 free_extent_map(em);
7195 return ERR_PTR(ret);
7196 }
7197
7198 /* em got 2 refs now, callers needs to do free_extent_map once. */
7199 return em;
7200 }
7201
7202 /*
7203 * For release_folio() and invalidate_folio() we have a race window where
7204 * folio_end_writeback() is called but the subpage spinlock is not yet released.
7205 * If we continue to release/invalidate the page, we could cause use-after-free
7206 * for subpage spinlock. So this function is to spin and wait for subpage
7207 * spinlock.
7208 */
wait_subpage_spinlock(struct folio * folio)7209 static void wait_subpage_spinlock(struct folio *folio)
7210 {
7211 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
7212 struct btrfs_subpage *subpage;
7213
7214 if (!btrfs_is_subpage(fs_info, folio->mapping))
7215 return;
7216
7217 ASSERT(folio_test_private(folio) && folio_get_private(folio));
7218 subpage = folio_get_private(folio);
7219
7220 /*
7221 * This may look insane as we just acquire the spinlock and release it,
7222 * without doing anything. But we just want to make sure no one is
7223 * still holding the subpage spinlock.
7224 * And since the page is not dirty nor writeback, and we have page
7225 * locked, the only possible way to hold a spinlock is from the endio
7226 * function to clear page writeback.
7227 *
7228 * Here we just acquire the spinlock so that all existing callers
7229 * should exit and we're safe to release/invalidate the page.
7230 */
7231 spin_lock_irq(&subpage->lock);
7232 spin_unlock_irq(&subpage->lock);
7233 }
7234
btrfs_launder_folio(struct folio * folio)7235 static int btrfs_launder_folio(struct folio *folio)
7236 {
7237 return btrfs_qgroup_free_data(folio_to_inode(folio), NULL, folio_pos(folio),
7238 PAGE_SIZE, NULL);
7239 }
7240
__btrfs_release_folio(struct folio * folio,gfp_t gfp_flags)7241 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7242 {
7243 if (try_release_extent_mapping(folio, gfp_flags)) {
7244 wait_subpage_spinlock(folio);
7245 clear_folio_extent_mapped(folio);
7246 return true;
7247 }
7248 return false;
7249 }
7250
btrfs_release_folio(struct folio * folio,gfp_t gfp_flags)7251 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7252 {
7253 if (folio_test_writeback(folio) || folio_test_dirty(folio))
7254 return false;
7255 return __btrfs_release_folio(folio, gfp_flags);
7256 }
7257
7258 #ifdef CONFIG_MIGRATION
btrfs_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)7259 static int btrfs_migrate_folio(struct address_space *mapping,
7260 struct folio *dst, struct folio *src,
7261 enum migrate_mode mode)
7262 {
7263 int ret = filemap_migrate_folio(mapping, dst, src, mode);
7264
7265 if (ret != MIGRATEPAGE_SUCCESS)
7266 return ret;
7267
7268 if (folio_test_ordered(src)) {
7269 folio_clear_ordered(src);
7270 folio_set_ordered(dst);
7271 }
7272
7273 return MIGRATEPAGE_SUCCESS;
7274 }
7275 #else
7276 #define btrfs_migrate_folio NULL
7277 #endif
7278
btrfs_invalidate_folio(struct folio * folio,size_t offset,size_t length)7279 static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
7280 size_t length)
7281 {
7282 struct btrfs_inode *inode = folio_to_inode(folio);
7283 struct btrfs_fs_info *fs_info = inode->root->fs_info;
7284 struct extent_io_tree *tree = &inode->io_tree;
7285 struct extent_state *cached_state = NULL;
7286 u64 page_start = folio_pos(folio);
7287 u64 page_end = page_start + folio_size(folio) - 1;
7288 u64 cur;
7289 int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
7290
7291 /*
7292 * We have folio locked so no new ordered extent can be created on this
7293 * page, nor bio can be submitted for this folio.
7294 *
7295 * But already submitted bio can still be finished on this folio.
7296 * Furthermore, endio function won't skip folio which has Ordered
7297 * (Private2) already cleared, so it's possible for endio and
7298 * invalidate_folio to do the same ordered extent accounting twice
7299 * on one folio.
7300 *
7301 * So here we wait for any submitted bios to finish, so that we won't
7302 * do double ordered extent accounting on the same folio.
7303 */
7304 folio_wait_writeback(folio);
7305 wait_subpage_spinlock(folio);
7306
7307 /*
7308 * For subpage case, we have call sites like
7309 * btrfs_punch_hole_lock_range() which passes range not aligned to
7310 * sectorsize.
7311 * If the range doesn't cover the full folio, we don't need to and
7312 * shouldn't clear page extent mapped, as folio->private can still
7313 * record subpage dirty bits for other part of the range.
7314 *
7315 * For cases that invalidate the full folio even the range doesn't
7316 * cover the full folio, like invalidating the last folio, we're
7317 * still safe to wait for ordered extent to finish.
7318 */
7319 if (!(offset == 0 && length == folio_size(folio))) {
7320 btrfs_release_folio(folio, GFP_NOFS);
7321 return;
7322 }
7323
7324 if (!inode_evicting)
7325 lock_extent(tree, page_start, page_end, &cached_state);
7326
7327 cur = page_start;
7328 while (cur < page_end) {
7329 struct btrfs_ordered_extent *ordered;
7330 u64 range_end;
7331 u32 range_len;
7332 u32 extra_flags = 0;
7333
7334 ordered = btrfs_lookup_first_ordered_range(inode, cur,
7335 page_end + 1 - cur);
7336 if (!ordered) {
7337 range_end = page_end;
7338 /*
7339 * No ordered extent covering this range, we are safe
7340 * to delete all extent states in the range.
7341 */
7342 extra_flags = EXTENT_CLEAR_ALL_BITS;
7343 goto next;
7344 }
7345 if (ordered->file_offset > cur) {
7346 /*
7347 * There is a range between [cur, oe->file_offset) not
7348 * covered by any ordered extent.
7349 * We are safe to delete all extent states, and handle
7350 * the ordered extent in the next iteration.
7351 */
7352 range_end = ordered->file_offset - 1;
7353 extra_flags = EXTENT_CLEAR_ALL_BITS;
7354 goto next;
7355 }
7356
7357 range_end = min(ordered->file_offset + ordered->num_bytes - 1,
7358 page_end);
7359 ASSERT(range_end + 1 - cur < U32_MAX);
7360 range_len = range_end + 1 - cur;
7361 if (!btrfs_folio_test_ordered(fs_info, folio, cur, range_len)) {
7362 /*
7363 * If Ordered (Private2) is cleared, it means endio has
7364 * already been executed for the range.
7365 * We can't delete the extent states as
7366 * btrfs_finish_ordered_io() may still use some of them.
7367 */
7368 goto next;
7369 }
7370 btrfs_folio_clear_ordered(fs_info, folio, cur, range_len);
7371
7372 /*
7373 * IO on this page will never be started, so we need to account
7374 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
7375 * here, must leave that up for the ordered extent completion.
7376 *
7377 * This will also unlock the range for incoming
7378 * btrfs_finish_ordered_io().
7379 */
7380 if (!inode_evicting)
7381 clear_extent_bit(tree, cur, range_end,
7382 EXTENT_DELALLOC |
7383 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7384 EXTENT_DEFRAG, &cached_state);
7385
7386 spin_lock_irq(&inode->ordered_tree_lock);
7387 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
7388 ordered->truncated_len = min(ordered->truncated_len,
7389 cur - ordered->file_offset);
7390 spin_unlock_irq(&inode->ordered_tree_lock);
7391
7392 /*
7393 * If the ordered extent has finished, we're safe to delete all
7394 * the extent states of the range, otherwise
7395 * btrfs_finish_ordered_io() will get executed by endio for
7396 * other pages, so we can't delete extent states.
7397 */
7398 if (btrfs_dec_test_ordered_pending(inode, &ordered,
7399 cur, range_end + 1 - cur)) {
7400 btrfs_finish_ordered_io(ordered);
7401 /*
7402 * The ordered extent has finished, now we're again
7403 * safe to delete all extent states of the range.
7404 */
7405 extra_flags = EXTENT_CLEAR_ALL_BITS;
7406 }
7407 next:
7408 if (ordered)
7409 btrfs_put_ordered_extent(ordered);
7410 /*
7411 * Qgroup reserved space handler
7412 * Sector(s) here will be either:
7413 *
7414 * 1) Already written to disk or bio already finished
7415 * Then its QGROUP_RESERVED bit in io_tree is already cleared.
7416 * Qgroup will be handled by its qgroup_record then.
7417 * btrfs_qgroup_free_data() call will do nothing here.
7418 *
7419 * 2) Not written to disk yet
7420 * Then btrfs_qgroup_free_data() call will clear the
7421 * QGROUP_RESERVED bit of its io_tree, and free the qgroup
7422 * reserved data space.
7423 * Since the IO will never happen for this page.
7424 */
7425 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL);
7426 if (!inode_evicting) {
7427 clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
7428 EXTENT_DELALLOC | EXTENT_UPTODATE |
7429 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG |
7430 extra_flags, &cached_state);
7431 }
7432 cur = range_end + 1;
7433 }
7434 /*
7435 * We have iterated through all ordered extents of the page, the page
7436 * should not have Ordered (Private2) anymore, or the above iteration
7437 * did something wrong.
7438 */
7439 ASSERT(!folio_test_ordered(folio));
7440 btrfs_folio_clear_checked(fs_info, folio, folio_pos(folio), folio_size(folio));
7441 if (!inode_evicting)
7442 __btrfs_release_folio(folio, GFP_NOFS);
7443 clear_folio_extent_mapped(folio);
7444 }
7445
btrfs_truncate(struct btrfs_inode * inode,bool skip_writeback)7446 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback)
7447 {
7448 struct btrfs_truncate_control control = {
7449 .inode = inode,
7450 .ino = btrfs_ino(inode),
7451 .min_type = BTRFS_EXTENT_DATA_KEY,
7452 .clear_extent_range = true,
7453 };
7454 struct btrfs_root *root = inode->root;
7455 struct btrfs_fs_info *fs_info = root->fs_info;
7456 struct btrfs_block_rsv *rsv;
7457 int ret;
7458 struct btrfs_trans_handle *trans;
7459 u64 mask = fs_info->sectorsize - 1;
7460 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
7461
7462 if (!skip_writeback) {
7463 ret = btrfs_wait_ordered_range(inode,
7464 inode->vfs_inode.i_size & (~mask),
7465 (u64)-1);
7466 if (ret)
7467 return ret;
7468 }
7469
7470 /*
7471 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
7472 * things going on here:
7473 *
7474 * 1) We need to reserve space to update our inode.
7475 *
7476 * 2) We need to have something to cache all the space that is going to
7477 * be free'd up by the truncate operation, but also have some slack
7478 * space reserved in case it uses space during the truncate (thank you
7479 * very much snapshotting).
7480 *
7481 * And we need these to be separate. The fact is we can use a lot of
7482 * space doing the truncate, and we have no earthly idea how much space
7483 * we will use, so we need the truncate reservation to be separate so it
7484 * doesn't end up using space reserved for updating the inode. We also
7485 * need to be able to stop the transaction and start a new one, which
7486 * means we need to be able to update the inode several times, and we
7487 * have no idea of knowing how many times that will be, so we can't just
7488 * reserve 1 item for the entirety of the operation, so that has to be
7489 * done separately as well.
7490 *
7491 * So that leaves us with
7492 *
7493 * 1) rsv - for the truncate reservation, which we will steal from the
7494 * transaction reservation.
7495 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
7496 * updating the inode.
7497 */
7498 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
7499 if (!rsv)
7500 return -ENOMEM;
7501 rsv->size = min_size;
7502 rsv->failfast = true;
7503
7504 /*
7505 * 1 for the truncate slack space
7506 * 1 for updating the inode.
7507 */
7508 trans = btrfs_start_transaction(root, 2);
7509 if (IS_ERR(trans)) {
7510 ret = PTR_ERR(trans);
7511 goto out;
7512 }
7513
7514 /* Migrate the slack space for the truncate to our reserve */
7515 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
7516 min_size, false);
7517 /*
7518 * We have reserved 2 metadata units when we started the transaction and
7519 * min_size matches 1 unit, so this should never fail, but if it does,
7520 * it's not critical we just fail truncation.
7521 */
7522 if (WARN_ON(ret)) {
7523 btrfs_end_transaction(trans);
7524 goto out;
7525 }
7526
7527 trans->block_rsv = rsv;
7528
7529 while (1) {
7530 struct extent_state *cached_state = NULL;
7531 const u64 new_size = inode->vfs_inode.i_size;
7532 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
7533
7534 control.new_size = new_size;
7535 lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
7536 /*
7537 * We want to drop from the next block forward in case this new
7538 * size is not block aligned since we will be keeping the last
7539 * block of the extent just the way it is.
7540 */
7541 btrfs_drop_extent_map_range(inode,
7542 ALIGN(new_size, fs_info->sectorsize),
7543 (u64)-1, false);
7544
7545 ret = btrfs_truncate_inode_items(trans, root, &control);
7546
7547 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
7548 btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
7549
7550 unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
7551
7552 trans->block_rsv = &fs_info->trans_block_rsv;
7553 if (ret != -ENOSPC && ret != -EAGAIN)
7554 break;
7555
7556 ret = btrfs_update_inode(trans, inode);
7557 if (ret)
7558 break;
7559
7560 btrfs_end_transaction(trans);
7561 btrfs_btree_balance_dirty(fs_info);
7562
7563 trans = btrfs_start_transaction(root, 2);
7564 if (IS_ERR(trans)) {
7565 ret = PTR_ERR(trans);
7566 trans = NULL;
7567 break;
7568 }
7569
7570 btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
7571 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
7572 rsv, min_size, false);
7573 /*
7574 * We have reserved 2 metadata units when we started the
7575 * transaction and min_size matches 1 unit, so this should never
7576 * fail, but if it does, it's not critical we just fail truncation.
7577 */
7578 if (WARN_ON(ret))
7579 break;
7580
7581 trans->block_rsv = rsv;
7582 }
7583
7584 /*
7585 * We can't call btrfs_truncate_block inside a trans handle as we could
7586 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
7587 * know we've truncated everything except the last little bit, and can
7588 * do btrfs_truncate_block and then update the disk_i_size.
7589 */
7590 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
7591 btrfs_end_transaction(trans);
7592 btrfs_btree_balance_dirty(fs_info);
7593
7594 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0);
7595 if (ret)
7596 goto out;
7597 trans = btrfs_start_transaction(root, 1);
7598 if (IS_ERR(trans)) {
7599 ret = PTR_ERR(trans);
7600 goto out;
7601 }
7602 btrfs_inode_safe_disk_i_size_write(inode, 0);
7603 }
7604
7605 if (trans) {
7606 int ret2;
7607
7608 trans->block_rsv = &fs_info->trans_block_rsv;
7609 ret2 = btrfs_update_inode(trans, inode);
7610 if (ret2 && !ret)
7611 ret = ret2;
7612
7613 ret2 = btrfs_end_transaction(trans);
7614 if (ret2 && !ret)
7615 ret = ret2;
7616 btrfs_btree_balance_dirty(fs_info);
7617 }
7618 out:
7619 btrfs_free_block_rsv(fs_info, rsv);
7620 /*
7621 * So if we truncate and then write and fsync we normally would just
7622 * write the extents that changed, which is a problem if we need to
7623 * first truncate that entire inode. So set this flag so we write out
7624 * all of the extents in the inode to the sync log so we're completely
7625 * safe.
7626 *
7627 * If no extents were dropped or trimmed we don't need to force the next
7628 * fsync to truncate all the inode's items from the log and re-log them
7629 * all. This means the truncate operation did not change the file size,
7630 * or changed it to a smaller size but there was only an implicit hole
7631 * between the old i_size and the new i_size, and there were no prealloc
7632 * extents beyond i_size to drop.
7633 */
7634 if (control.extents_found > 0)
7635 btrfs_set_inode_full_sync(inode);
7636
7637 return ret;
7638 }
7639
btrfs_new_subvol_inode(struct mnt_idmap * idmap,struct inode * dir)7640 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap,
7641 struct inode *dir)
7642 {
7643 struct inode *inode;
7644
7645 inode = new_inode(dir->i_sb);
7646 if (inode) {
7647 /*
7648 * Subvolumes don't inherit the sgid bit or the parent's gid if
7649 * the parent's sgid bit is set. This is probably a bug.
7650 */
7651 inode_init_owner(idmap, inode, NULL,
7652 S_IFDIR | (~current_umask() & S_IRWXUGO));
7653 inode->i_op = &btrfs_dir_inode_operations;
7654 inode->i_fop = &btrfs_dir_file_operations;
7655 }
7656 return inode;
7657 }
7658
btrfs_alloc_inode(struct super_block * sb)7659 struct inode *btrfs_alloc_inode(struct super_block *sb)
7660 {
7661 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
7662 struct btrfs_inode *ei;
7663 struct inode *inode;
7664
7665 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
7666 if (!ei)
7667 return NULL;
7668
7669 ei->root = NULL;
7670 ei->generation = 0;
7671 ei->last_trans = 0;
7672 ei->last_sub_trans = 0;
7673 ei->logged_trans = 0;
7674 ei->delalloc_bytes = 0;
7675 ei->new_delalloc_bytes = 0;
7676 ei->defrag_bytes = 0;
7677 ei->disk_i_size = 0;
7678 ei->flags = 0;
7679 ei->ro_flags = 0;
7680 /*
7681 * ->index_cnt will be properly initialized later when creating a new
7682 * inode (btrfs_create_new_inode()) or when reading an existing inode
7683 * from disk (btrfs_read_locked_inode()).
7684 */
7685 ei->csum_bytes = 0;
7686 ei->dir_index = 0;
7687 ei->last_unlink_trans = 0;
7688 ei->last_reflink_trans = 0;
7689 ei->last_log_commit = 0;
7690
7691 spin_lock_init(&ei->lock);
7692 ei->outstanding_extents = 0;
7693 if (sb->s_magic != BTRFS_TEST_MAGIC)
7694 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
7695 BTRFS_BLOCK_RSV_DELALLOC);
7696 ei->runtime_flags = 0;
7697 ei->prop_compress = BTRFS_COMPRESS_NONE;
7698 ei->defrag_compress = BTRFS_COMPRESS_NONE;
7699
7700 ei->delayed_node = NULL;
7701
7702 ei->i_otime_sec = 0;
7703 ei->i_otime_nsec = 0;
7704
7705 inode = &ei->vfs_inode;
7706 extent_map_tree_init(&ei->extent_tree);
7707
7708 /* This io tree sets the valid inode. */
7709 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO);
7710 ei->io_tree.inode = ei;
7711
7712 ei->file_extent_tree = NULL;
7713
7714 mutex_init(&ei->log_mutex);
7715 spin_lock_init(&ei->ordered_tree_lock);
7716 ei->ordered_tree = RB_ROOT;
7717 ei->ordered_tree_last = NULL;
7718 INIT_LIST_HEAD(&ei->delalloc_inodes);
7719 INIT_LIST_HEAD(&ei->delayed_iput);
7720 init_rwsem(&ei->i_mmap_lock);
7721
7722 return inode;
7723 }
7724
7725 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
btrfs_test_destroy_inode(struct inode * inode)7726 void btrfs_test_destroy_inode(struct inode *inode)
7727 {
7728 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
7729 kfree(BTRFS_I(inode)->file_extent_tree);
7730 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7731 }
7732 #endif
7733
btrfs_free_inode(struct inode * inode)7734 void btrfs_free_inode(struct inode *inode)
7735 {
7736 kfree(BTRFS_I(inode)->file_extent_tree);
7737 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7738 }
7739
btrfs_destroy_inode(struct inode * vfs_inode)7740 void btrfs_destroy_inode(struct inode *vfs_inode)
7741 {
7742 struct btrfs_ordered_extent *ordered;
7743 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
7744 struct btrfs_root *root = inode->root;
7745 bool freespace_inode;
7746
7747 WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
7748 WARN_ON(vfs_inode->i_data.nrpages);
7749 WARN_ON(inode->block_rsv.reserved);
7750 WARN_ON(inode->block_rsv.size);
7751 WARN_ON(inode->outstanding_extents);
7752 if (!S_ISDIR(vfs_inode->i_mode)) {
7753 WARN_ON(inode->delalloc_bytes);
7754 WARN_ON(inode->new_delalloc_bytes);
7755 WARN_ON(inode->csum_bytes);
7756 }
7757 if (!root || !btrfs_is_data_reloc_root(root))
7758 WARN_ON(inode->defrag_bytes);
7759
7760 /*
7761 * This can happen where we create an inode, but somebody else also
7762 * created the same inode and we need to destroy the one we already
7763 * created.
7764 */
7765 if (!root)
7766 return;
7767
7768 /*
7769 * If this is a free space inode do not take the ordered extents lockdep
7770 * map.
7771 */
7772 freespace_inode = btrfs_is_free_space_inode(inode);
7773
7774 while (1) {
7775 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7776 if (!ordered)
7777 break;
7778 else {
7779 btrfs_err(root->fs_info,
7780 "found ordered extent %llu %llu on inode cleanup",
7781 ordered->file_offset, ordered->num_bytes);
7782
7783 if (!freespace_inode)
7784 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent);
7785
7786 btrfs_remove_ordered_extent(inode, ordered);
7787 btrfs_put_ordered_extent(ordered);
7788 btrfs_put_ordered_extent(ordered);
7789 }
7790 }
7791 btrfs_qgroup_check_reserved_leak(inode);
7792 btrfs_del_inode_from_root(inode);
7793 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
7794 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
7795 btrfs_put_root(inode->root);
7796 }
7797
btrfs_drop_inode(struct inode * inode)7798 int btrfs_drop_inode(struct inode *inode)
7799 {
7800 struct btrfs_root *root = BTRFS_I(inode)->root;
7801
7802 if (root == NULL)
7803 return 1;
7804
7805 /* the snap/subvol tree is on deleting */
7806 if (btrfs_root_refs(&root->root_item) == 0)
7807 return 1;
7808 else
7809 return generic_drop_inode(inode);
7810 }
7811
init_once(void * foo)7812 static void init_once(void *foo)
7813 {
7814 struct btrfs_inode *ei = foo;
7815
7816 inode_init_once(&ei->vfs_inode);
7817 }
7818
btrfs_destroy_cachep(void)7819 void __cold btrfs_destroy_cachep(void)
7820 {
7821 /*
7822 * Make sure all delayed rcu free inodes are flushed before we
7823 * destroy cache.
7824 */
7825 rcu_barrier();
7826 kmem_cache_destroy(btrfs_inode_cachep);
7827 }
7828
btrfs_init_cachep(void)7829 int __init btrfs_init_cachep(void)
7830 {
7831 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
7832 sizeof(struct btrfs_inode), 0,
7833 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT,
7834 init_once);
7835 if (!btrfs_inode_cachep)
7836 return -ENOMEM;
7837
7838 return 0;
7839 }
7840
btrfs_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int flags)7841 static int btrfs_getattr(struct mnt_idmap *idmap,
7842 const struct path *path, struct kstat *stat,
7843 u32 request_mask, unsigned int flags)
7844 {
7845 u64 delalloc_bytes;
7846 u64 inode_bytes;
7847 struct inode *inode = d_inode(path->dentry);
7848 u32 blocksize = btrfs_sb(inode->i_sb)->sectorsize;
7849 u32 bi_flags = BTRFS_I(inode)->flags;
7850 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
7851
7852 stat->result_mask |= STATX_BTIME;
7853 stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec;
7854 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec;
7855 if (bi_flags & BTRFS_INODE_APPEND)
7856 stat->attributes |= STATX_ATTR_APPEND;
7857 if (bi_flags & BTRFS_INODE_COMPRESS)
7858 stat->attributes |= STATX_ATTR_COMPRESSED;
7859 if (bi_flags & BTRFS_INODE_IMMUTABLE)
7860 stat->attributes |= STATX_ATTR_IMMUTABLE;
7861 if (bi_flags & BTRFS_INODE_NODUMP)
7862 stat->attributes |= STATX_ATTR_NODUMP;
7863 if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
7864 stat->attributes |= STATX_ATTR_VERITY;
7865
7866 stat->attributes_mask |= (STATX_ATTR_APPEND |
7867 STATX_ATTR_COMPRESSED |
7868 STATX_ATTR_IMMUTABLE |
7869 STATX_ATTR_NODUMP);
7870
7871 generic_fillattr(idmap, request_mask, inode, stat);
7872 stat->dev = BTRFS_I(inode)->root->anon_dev;
7873
7874 stat->subvol = BTRFS_I(inode)->root->root_key.objectid;
7875 stat->result_mask |= STATX_SUBVOL;
7876
7877 spin_lock(&BTRFS_I(inode)->lock);
7878 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
7879 inode_bytes = inode_get_bytes(inode);
7880 spin_unlock(&BTRFS_I(inode)->lock);
7881 stat->blocks = (ALIGN(inode_bytes, blocksize) +
7882 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT;
7883 return 0;
7884 }
7885
btrfs_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)7886 static int btrfs_rename_exchange(struct inode *old_dir,
7887 struct dentry *old_dentry,
7888 struct inode *new_dir,
7889 struct dentry *new_dentry)
7890 {
7891 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir);
7892 struct btrfs_trans_handle *trans;
7893 unsigned int trans_num_items;
7894 struct btrfs_root *root = BTRFS_I(old_dir)->root;
7895 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
7896 struct inode *new_inode = new_dentry->d_inode;
7897 struct inode *old_inode = old_dentry->d_inode;
7898 struct btrfs_rename_ctx old_rename_ctx;
7899 struct btrfs_rename_ctx new_rename_ctx;
7900 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
7901 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
7902 u64 old_idx = 0;
7903 u64 new_idx = 0;
7904 int ret;
7905 int ret2;
7906 bool need_abort = false;
7907 struct fscrypt_name old_fname, new_fname;
7908 struct fscrypt_str *old_name, *new_name;
7909
7910 /*
7911 * For non-subvolumes allow exchange only within one subvolume, in the
7912 * same inode namespace. Two subvolumes (represented as directory) can
7913 * be exchanged as they're a logical link and have a fixed inode number.
7914 */
7915 if (root != dest &&
7916 (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
7917 new_ino != BTRFS_FIRST_FREE_OBJECTID))
7918 return -EXDEV;
7919
7920 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
7921 if (ret)
7922 return ret;
7923
7924 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
7925 if (ret) {
7926 fscrypt_free_filename(&old_fname);
7927 return ret;
7928 }
7929
7930 old_name = &old_fname.disk_name;
7931 new_name = &new_fname.disk_name;
7932
7933 /* close the race window with snapshot create/destroy ioctl */
7934 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
7935 new_ino == BTRFS_FIRST_FREE_OBJECTID)
7936 down_read(&fs_info->subvol_sem);
7937
7938 /*
7939 * For each inode:
7940 * 1 to remove old dir item
7941 * 1 to remove old dir index
7942 * 1 to add new dir item
7943 * 1 to add new dir index
7944 * 1 to update parent inode
7945 *
7946 * If the parents are the same, we only need to account for one
7947 */
7948 trans_num_items = (old_dir == new_dir ? 9 : 10);
7949 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
7950 /*
7951 * 1 to remove old root ref
7952 * 1 to remove old root backref
7953 * 1 to add new root ref
7954 * 1 to add new root backref
7955 */
7956 trans_num_items += 4;
7957 } else {
7958 /*
7959 * 1 to update inode item
7960 * 1 to remove old inode ref
7961 * 1 to add new inode ref
7962 */
7963 trans_num_items += 3;
7964 }
7965 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
7966 trans_num_items += 4;
7967 else
7968 trans_num_items += 3;
7969 trans = btrfs_start_transaction(root, trans_num_items);
7970 if (IS_ERR(trans)) {
7971 ret = PTR_ERR(trans);
7972 goto out_notrans;
7973 }
7974
7975 if (dest != root) {
7976 ret = btrfs_record_root_in_trans(trans, dest);
7977 if (ret)
7978 goto out_fail;
7979 }
7980
7981 /*
7982 * We need to find a free sequence number both in the source and
7983 * in the destination directory for the exchange.
7984 */
7985 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
7986 if (ret)
7987 goto out_fail;
7988 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
7989 if (ret)
7990 goto out_fail;
7991
7992 BTRFS_I(old_inode)->dir_index = 0ULL;
7993 BTRFS_I(new_inode)->dir_index = 0ULL;
7994
7995 /* Reference for the source. */
7996 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
7997 /* force full log commit if subvolume involved. */
7998 btrfs_set_log_full_commit(trans);
7999 } else {
8000 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino,
8001 btrfs_ino(BTRFS_I(new_dir)),
8002 old_idx);
8003 if (ret)
8004 goto out_fail;
8005 need_abort = true;
8006 }
8007
8008 /* And now for the dest. */
8009 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8010 /* force full log commit if subvolume involved. */
8011 btrfs_set_log_full_commit(trans);
8012 } else {
8013 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino,
8014 btrfs_ino(BTRFS_I(old_dir)),
8015 new_idx);
8016 if (ret) {
8017 if (need_abort)
8018 btrfs_abort_transaction(trans, ret);
8019 goto out_fail;
8020 }
8021 }
8022
8023 /* Update inode version and ctime/mtime. */
8024 inode_inc_iversion(old_dir);
8025 inode_inc_iversion(new_dir);
8026 inode_inc_iversion(old_inode);
8027 inode_inc_iversion(new_inode);
8028 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8029
8030 if (old_dentry->d_parent != new_dentry->d_parent) {
8031 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8032 BTRFS_I(old_inode), true);
8033 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8034 BTRFS_I(new_inode), true);
8035 }
8036
8037 /* src is a subvolume */
8038 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8039 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8040 } else { /* src is an inode */
8041 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8042 BTRFS_I(old_dentry->d_inode),
8043 old_name, &old_rename_ctx);
8044 if (!ret)
8045 ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
8046 }
8047 if (ret) {
8048 btrfs_abort_transaction(trans, ret);
8049 goto out_fail;
8050 }
8051
8052 /* dest is a subvolume */
8053 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8054 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8055 } else { /* dest is an inode */
8056 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8057 BTRFS_I(new_dentry->d_inode),
8058 new_name, &new_rename_ctx);
8059 if (!ret)
8060 ret = btrfs_update_inode(trans, BTRFS_I(new_inode));
8061 }
8062 if (ret) {
8063 btrfs_abort_transaction(trans, ret);
8064 goto out_fail;
8065 }
8066
8067 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8068 new_name, 0, old_idx);
8069 if (ret) {
8070 btrfs_abort_transaction(trans, ret);
8071 goto out_fail;
8072 }
8073
8074 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
8075 old_name, 0, new_idx);
8076 if (ret) {
8077 btrfs_abort_transaction(trans, ret);
8078 goto out_fail;
8079 }
8080
8081 if (old_inode->i_nlink == 1)
8082 BTRFS_I(old_inode)->dir_index = old_idx;
8083 if (new_inode->i_nlink == 1)
8084 BTRFS_I(new_inode)->dir_index = new_idx;
8085
8086 /*
8087 * Now pin the logs of the roots. We do it to ensure that no other task
8088 * can sync the logs while we are in progress with the rename, because
8089 * that could result in an inconsistency in case any of the inodes that
8090 * are part of this rename operation were logged before.
8091 */
8092 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8093 btrfs_pin_log_trans(root);
8094 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8095 btrfs_pin_log_trans(dest);
8096
8097 /* Do the log updates for all inodes. */
8098 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8099 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8100 old_rename_ctx.index, new_dentry->d_parent);
8101 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8102 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
8103 new_rename_ctx.index, old_dentry->d_parent);
8104
8105 /* Now unpin the logs. */
8106 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8107 btrfs_end_log_trans(root);
8108 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8109 btrfs_end_log_trans(dest);
8110 out_fail:
8111 ret2 = btrfs_end_transaction(trans);
8112 ret = ret ? ret : ret2;
8113 out_notrans:
8114 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
8115 old_ino == BTRFS_FIRST_FREE_OBJECTID)
8116 up_read(&fs_info->subvol_sem);
8117
8118 fscrypt_free_filename(&new_fname);
8119 fscrypt_free_filename(&old_fname);
8120 return ret;
8121 }
8122
new_whiteout_inode(struct mnt_idmap * idmap,struct inode * dir)8123 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap,
8124 struct inode *dir)
8125 {
8126 struct inode *inode;
8127
8128 inode = new_inode(dir->i_sb);
8129 if (inode) {
8130 inode_init_owner(idmap, inode, dir,
8131 S_IFCHR | WHITEOUT_MODE);
8132 inode->i_op = &btrfs_special_inode_operations;
8133 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
8134 }
8135 return inode;
8136 }
8137
btrfs_rename(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)8138 static int btrfs_rename(struct mnt_idmap *idmap,
8139 struct inode *old_dir, struct dentry *old_dentry,
8140 struct inode *new_dir, struct dentry *new_dentry,
8141 unsigned int flags)
8142 {
8143 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir);
8144 struct btrfs_new_inode_args whiteout_args = {
8145 .dir = old_dir,
8146 .dentry = old_dentry,
8147 };
8148 struct btrfs_trans_handle *trans;
8149 unsigned int trans_num_items;
8150 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8151 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8152 struct inode *new_inode = d_inode(new_dentry);
8153 struct inode *old_inode = d_inode(old_dentry);
8154 struct btrfs_rename_ctx rename_ctx;
8155 u64 index = 0;
8156 int ret;
8157 int ret2;
8158 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8159 struct fscrypt_name old_fname, new_fname;
8160
8161 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8162 return -EPERM;
8163
8164 /* we only allow rename subvolume link between subvolumes */
8165 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8166 return -EXDEV;
8167
8168 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8169 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
8170 return -ENOTEMPTY;
8171
8172 if (S_ISDIR(old_inode->i_mode) && new_inode &&
8173 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8174 return -ENOTEMPTY;
8175
8176 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8177 if (ret)
8178 return ret;
8179
8180 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8181 if (ret) {
8182 fscrypt_free_filename(&old_fname);
8183 return ret;
8184 }
8185
8186 /* check for collisions, even if the name isn't there */
8187 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name);
8188 if (ret) {
8189 if (ret == -EEXIST) {
8190 /* we shouldn't get
8191 * eexist without a new_inode */
8192 if (WARN_ON(!new_inode)) {
8193 goto out_fscrypt_names;
8194 }
8195 } else {
8196 /* maybe -EOVERFLOW */
8197 goto out_fscrypt_names;
8198 }
8199 }
8200 ret = 0;
8201
8202 /*
8203 * we're using rename to replace one file with another. Start IO on it
8204 * now so we don't add too much work to the end of the transaction
8205 */
8206 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
8207 filemap_flush(old_inode->i_mapping);
8208
8209 if (flags & RENAME_WHITEOUT) {
8210 whiteout_args.inode = new_whiteout_inode(idmap, old_dir);
8211 if (!whiteout_args.inode) {
8212 ret = -ENOMEM;
8213 goto out_fscrypt_names;
8214 }
8215 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
8216 if (ret)
8217 goto out_whiteout_inode;
8218 } else {
8219 /* 1 to update the old parent inode. */
8220 trans_num_items = 1;
8221 }
8222
8223 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8224 /* Close the race window with snapshot create/destroy ioctl */
8225 down_read(&fs_info->subvol_sem);
8226 /*
8227 * 1 to remove old root ref
8228 * 1 to remove old root backref
8229 * 1 to add new root ref
8230 * 1 to add new root backref
8231 */
8232 trans_num_items += 4;
8233 } else {
8234 /*
8235 * 1 to update inode
8236 * 1 to remove old inode ref
8237 * 1 to add new inode ref
8238 */
8239 trans_num_items += 3;
8240 }
8241 /*
8242 * 1 to remove old dir item
8243 * 1 to remove old dir index
8244 * 1 to add new dir item
8245 * 1 to add new dir index
8246 */
8247 trans_num_items += 4;
8248 /* 1 to update new parent inode if it's not the same as the old parent */
8249 if (new_dir != old_dir)
8250 trans_num_items++;
8251 if (new_inode) {
8252 /*
8253 * 1 to update inode
8254 * 1 to remove inode ref
8255 * 1 to remove dir item
8256 * 1 to remove dir index
8257 * 1 to possibly add orphan item
8258 */
8259 trans_num_items += 5;
8260 }
8261 trans = btrfs_start_transaction(root, trans_num_items);
8262 if (IS_ERR(trans)) {
8263 ret = PTR_ERR(trans);
8264 goto out_notrans;
8265 }
8266
8267 if (dest != root) {
8268 ret = btrfs_record_root_in_trans(trans, dest);
8269 if (ret)
8270 goto out_fail;
8271 }
8272
8273 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
8274 if (ret)
8275 goto out_fail;
8276
8277 BTRFS_I(old_inode)->dir_index = 0ULL;
8278 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8279 /* force full log commit if subvolume involved. */
8280 btrfs_set_log_full_commit(trans);
8281 } else {
8282 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name,
8283 old_ino, btrfs_ino(BTRFS_I(new_dir)),
8284 index);
8285 if (ret)
8286 goto out_fail;
8287 }
8288
8289 inode_inc_iversion(old_dir);
8290 inode_inc_iversion(new_dir);
8291 inode_inc_iversion(old_inode);
8292 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8293
8294 if (old_dentry->d_parent != new_dentry->d_parent)
8295 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8296 BTRFS_I(old_inode), true);
8297
8298 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8299 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8300 } else {
8301 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8302 BTRFS_I(d_inode(old_dentry)),
8303 &old_fname.disk_name, &rename_ctx);
8304 if (!ret)
8305 ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
8306 }
8307 if (ret) {
8308 btrfs_abort_transaction(trans, ret);
8309 goto out_fail;
8310 }
8311
8312 if (new_inode) {
8313 inode_inc_iversion(new_inode);
8314 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
8315 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8316 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8317 BUG_ON(new_inode->i_nlink == 0);
8318 } else {
8319 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8320 BTRFS_I(d_inode(new_dentry)),
8321 &new_fname.disk_name);
8322 }
8323 if (!ret && new_inode->i_nlink == 0)
8324 ret = btrfs_orphan_add(trans,
8325 BTRFS_I(d_inode(new_dentry)));
8326 if (ret) {
8327 btrfs_abort_transaction(trans, ret);
8328 goto out_fail;
8329 }
8330 }
8331
8332 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8333 &new_fname.disk_name, 0, index);
8334 if (ret) {
8335 btrfs_abort_transaction(trans, ret);
8336 goto out_fail;
8337 }
8338
8339 if (old_inode->i_nlink == 1)
8340 BTRFS_I(old_inode)->dir_index = index;
8341
8342 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8343 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8344 rename_ctx.index, new_dentry->d_parent);
8345
8346 if (flags & RENAME_WHITEOUT) {
8347 ret = btrfs_create_new_inode(trans, &whiteout_args);
8348 if (ret) {
8349 btrfs_abort_transaction(trans, ret);
8350 goto out_fail;
8351 } else {
8352 unlock_new_inode(whiteout_args.inode);
8353 iput(whiteout_args.inode);
8354 whiteout_args.inode = NULL;
8355 }
8356 }
8357 out_fail:
8358 ret2 = btrfs_end_transaction(trans);
8359 ret = ret ? ret : ret2;
8360 out_notrans:
8361 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8362 up_read(&fs_info->subvol_sem);
8363 if (flags & RENAME_WHITEOUT)
8364 btrfs_new_inode_args_destroy(&whiteout_args);
8365 out_whiteout_inode:
8366 if (flags & RENAME_WHITEOUT)
8367 iput(whiteout_args.inode);
8368 out_fscrypt_names:
8369 fscrypt_free_filename(&old_fname);
8370 fscrypt_free_filename(&new_fname);
8371 return ret;
8372 }
8373
btrfs_rename2(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)8374 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir,
8375 struct dentry *old_dentry, struct inode *new_dir,
8376 struct dentry *new_dentry, unsigned int flags)
8377 {
8378 int ret;
8379
8380 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
8381 return -EINVAL;
8382
8383 if (flags & RENAME_EXCHANGE)
8384 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir,
8385 new_dentry);
8386 else
8387 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir,
8388 new_dentry, flags);
8389
8390 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info);
8391
8392 return ret;
8393 }
8394
8395 struct btrfs_delalloc_work {
8396 struct inode *inode;
8397 struct completion completion;
8398 struct list_head list;
8399 struct btrfs_work work;
8400 };
8401
btrfs_run_delalloc_work(struct btrfs_work * work)8402 static void btrfs_run_delalloc_work(struct btrfs_work *work)
8403 {
8404 struct btrfs_delalloc_work *delalloc_work;
8405 struct inode *inode;
8406
8407 delalloc_work = container_of(work, struct btrfs_delalloc_work,
8408 work);
8409 inode = delalloc_work->inode;
8410 filemap_flush(inode->i_mapping);
8411 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8412 &BTRFS_I(inode)->runtime_flags))
8413 filemap_flush(inode->i_mapping);
8414
8415 iput(inode);
8416 complete(&delalloc_work->completion);
8417 }
8418
btrfs_alloc_delalloc_work(struct inode * inode)8419 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
8420 {
8421 struct btrfs_delalloc_work *work;
8422
8423 work = kmalloc(sizeof(*work), GFP_NOFS);
8424 if (!work)
8425 return NULL;
8426
8427 init_completion(&work->completion);
8428 INIT_LIST_HEAD(&work->list);
8429 work->inode = inode;
8430 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL);
8431
8432 return work;
8433 }
8434
8435 /*
8436 * some fairly slow code that needs optimization. This walks the list
8437 * of all the inodes with pending delalloc and forces them to disk.
8438 */
start_delalloc_inodes(struct btrfs_root * root,struct writeback_control * wbc,bool snapshot,bool in_reclaim_context)8439 static int start_delalloc_inodes(struct btrfs_root *root,
8440 struct writeback_control *wbc, bool snapshot,
8441 bool in_reclaim_context)
8442 {
8443 struct btrfs_inode *binode;
8444 struct inode *inode;
8445 struct btrfs_delalloc_work *work, *next;
8446 LIST_HEAD(works);
8447 LIST_HEAD(splice);
8448 int ret = 0;
8449 bool full_flush = wbc->nr_to_write == LONG_MAX;
8450
8451 mutex_lock(&root->delalloc_mutex);
8452 spin_lock(&root->delalloc_lock);
8453 list_splice_init(&root->delalloc_inodes, &splice);
8454 while (!list_empty(&splice)) {
8455 binode = list_entry(splice.next, struct btrfs_inode,
8456 delalloc_inodes);
8457
8458 list_move_tail(&binode->delalloc_inodes,
8459 &root->delalloc_inodes);
8460
8461 if (in_reclaim_context &&
8462 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
8463 continue;
8464
8465 inode = igrab(&binode->vfs_inode);
8466 if (!inode) {
8467 cond_resched_lock(&root->delalloc_lock);
8468 continue;
8469 }
8470 spin_unlock(&root->delalloc_lock);
8471
8472 if (snapshot)
8473 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
8474 &binode->runtime_flags);
8475 if (full_flush) {
8476 work = btrfs_alloc_delalloc_work(inode);
8477 if (!work) {
8478 iput(inode);
8479 ret = -ENOMEM;
8480 goto out;
8481 }
8482 list_add_tail(&work->list, &works);
8483 btrfs_queue_work(root->fs_info->flush_workers,
8484 &work->work);
8485 } else {
8486 ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
8487 btrfs_add_delayed_iput(BTRFS_I(inode));
8488 if (ret || wbc->nr_to_write <= 0)
8489 goto out;
8490 }
8491 cond_resched();
8492 spin_lock(&root->delalloc_lock);
8493 }
8494 spin_unlock(&root->delalloc_lock);
8495
8496 out:
8497 list_for_each_entry_safe(work, next, &works, list) {
8498 list_del_init(&work->list);
8499 wait_for_completion(&work->completion);
8500 kfree(work);
8501 }
8502
8503 if (!list_empty(&splice)) {
8504 spin_lock(&root->delalloc_lock);
8505 list_splice_tail(&splice, &root->delalloc_inodes);
8506 spin_unlock(&root->delalloc_lock);
8507 }
8508 mutex_unlock(&root->delalloc_mutex);
8509 return ret;
8510 }
8511
btrfs_start_delalloc_snapshot(struct btrfs_root * root,bool in_reclaim_context)8512 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
8513 {
8514 struct writeback_control wbc = {
8515 .nr_to_write = LONG_MAX,
8516 .sync_mode = WB_SYNC_NONE,
8517 .range_start = 0,
8518 .range_end = LLONG_MAX,
8519 };
8520 struct btrfs_fs_info *fs_info = root->fs_info;
8521
8522 if (BTRFS_FS_ERROR(fs_info))
8523 return -EROFS;
8524
8525 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
8526 }
8527
btrfs_start_delalloc_roots(struct btrfs_fs_info * fs_info,long nr,bool in_reclaim_context)8528 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
8529 bool in_reclaim_context)
8530 {
8531 struct writeback_control wbc = {
8532 .nr_to_write = nr,
8533 .sync_mode = WB_SYNC_NONE,
8534 .range_start = 0,
8535 .range_end = LLONG_MAX,
8536 };
8537 struct btrfs_root *root;
8538 LIST_HEAD(splice);
8539 int ret;
8540
8541 if (BTRFS_FS_ERROR(fs_info))
8542 return -EROFS;
8543
8544 mutex_lock(&fs_info->delalloc_root_mutex);
8545 spin_lock(&fs_info->delalloc_root_lock);
8546 list_splice_init(&fs_info->delalloc_roots, &splice);
8547 while (!list_empty(&splice)) {
8548 /*
8549 * Reset nr_to_write here so we know that we're doing a full
8550 * flush.
8551 */
8552 if (nr == LONG_MAX)
8553 wbc.nr_to_write = LONG_MAX;
8554
8555 root = list_first_entry(&splice, struct btrfs_root,
8556 delalloc_root);
8557 root = btrfs_grab_root(root);
8558 BUG_ON(!root);
8559 list_move_tail(&root->delalloc_root,
8560 &fs_info->delalloc_roots);
8561 spin_unlock(&fs_info->delalloc_root_lock);
8562
8563 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
8564 btrfs_put_root(root);
8565 if (ret < 0 || wbc.nr_to_write <= 0)
8566 goto out;
8567 spin_lock(&fs_info->delalloc_root_lock);
8568 }
8569 spin_unlock(&fs_info->delalloc_root_lock);
8570
8571 ret = 0;
8572 out:
8573 if (!list_empty(&splice)) {
8574 spin_lock(&fs_info->delalloc_root_lock);
8575 list_splice_tail(&splice, &fs_info->delalloc_roots);
8576 spin_unlock(&fs_info->delalloc_root_lock);
8577 }
8578 mutex_unlock(&fs_info->delalloc_root_mutex);
8579 return ret;
8580 }
8581
btrfs_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * symname)8582 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
8583 struct dentry *dentry, const char *symname)
8584 {
8585 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
8586 struct btrfs_trans_handle *trans;
8587 struct btrfs_root *root = BTRFS_I(dir)->root;
8588 struct btrfs_path *path;
8589 struct btrfs_key key;
8590 struct inode *inode;
8591 struct btrfs_new_inode_args new_inode_args = {
8592 .dir = dir,
8593 .dentry = dentry,
8594 };
8595 unsigned int trans_num_items;
8596 int err;
8597 int name_len;
8598 int datasize;
8599 unsigned long ptr;
8600 struct btrfs_file_extent_item *ei;
8601 struct extent_buffer *leaf;
8602
8603 name_len = strlen(symname);
8604 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
8605 return -ENAMETOOLONG;
8606
8607 inode = new_inode(dir->i_sb);
8608 if (!inode)
8609 return -ENOMEM;
8610 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO);
8611 inode->i_op = &btrfs_symlink_inode_operations;
8612 inode_nohighmem(inode);
8613 inode->i_mapping->a_ops = &btrfs_aops;
8614 btrfs_i_size_write(BTRFS_I(inode), name_len);
8615 inode_set_bytes(inode, name_len);
8616
8617 new_inode_args.inode = inode;
8618 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
8619 if (err)
8620 goto out_inode;
8621 /* 1 additional item for the inline extent */
8622 trans_num_items++;
8623
8624 trans = btrfs_start_transaction(root, trans_num_items);
8625 if (IS_ERR(trans)) {
8626 err = PTR_ERR(trans);
8627 goto out_new_inode_args;
8628 }
8629
8630 err = btrfs_create_new_inode(trans, &new_inode_args);
8631 if (err)
8632 goto out;
8633
8634 path = btrfs_alloc_path();
8635 if (!path) {
8636 err = -ENOMEM;
8637 btrfs_abort_transaction(trans, err);
8638 discard_new_inode(inode);
8639 inode = NULL;
8640 goto out;
8641 }
8642 key.objectid = btrfs_ino(BTRFS_I(inode));
8643 key.offset = 0;
8644 key.type = BTRFS_EXTENT_DATA_KEY;
8645 datasize = btrfs_file_extent_calc_inline_size(name_len);
8646 err = btrfs_insert_empty_item(trans, root, path, &key,
8647 datasize);
8648 if (err) {
8649 btrfs_abort_transaction(trans, err);
8650 btrfs_free_path(path);
8651 discard_new_inode(inode);
8652 inode = NULL;
8653 goto out;
8654 }
8655 leaf = path->nodes[0];
8656 ei = btrfs_item_ptr(leaf, path->slots[0],
8657 struct btrfs_file_extent_item);
8658 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8659 btrfs_set_file_extent_type(leaf, ei,
8660 BTRFS_FILE_EXTENT_INLINE);
8661 btrfs_set_file_extent_encryption(leaf, ei, 0);
8662 btrfs_set_file_extent_compression(leaf, ei, 0);
8663 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8664 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8665
8666 ptr = btrfs_file_extent_inline_start(ei);
8667 write_extent_buffer(leaf, symname, ptr, name_len);
8668 btrfs_mark_buffer_dirty(trans, leaf);
8669 btrfs_free_path(path);
8670
8671 d_instantiate_new(dentry, inode);
8672 err = 0;
8673 out:
8674 btrfs_end_transaction(trans);
8675 btrfs_btree_balance_dirty(fs_info);
8676 out_new_inode_args:
8677 btrfs_new_inode_args_destroy(&new_inode_args);
8678 out_inode:
8679 if (err)
8680 iput(inode);
8681 return err;
8682 }
8683
insert_prealloc_file_extent(struct btrfs_trans_handle * trans_in,struct btrfs_inode * inode,struct btrfs_key * ins,u64 file_offset)8684 static struct btrfs_trans_handle *insert_prealloc_file_extent(
8685 struct btrfs_trans_handle *trans_in,
8686 struct btrfs_inode *inode,
8687 struct btrfs_key *ins,
8688 u64 file_offset)
8689 {
8690 struct btrfs_file_extent_item stack_fi;
8691 struct btrfs_replace_extent_info extent_info;
8692 struct btrfs_trans_handle *trans = trans_in;
8693 struct btrfs_path *path;
8694 u64 start = ins->objectid;
8695 u64 len = ins->offset;
8696 u64 qgroup_released = 0;
8697 int ret;
8698
8699 memset(&stack_fi, 0, sizeof(stack_fi));
8700
8701 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
8702 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
8703 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
8704 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
8705 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
8706 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
8707 /* Encryption and other encoding is reserved and all 0 */
8708
8709 ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released);
8710 if (ret < 0)
8711 return ERR_PTR(ret);
8712
8713 if (trans) {
8714 ret = insert_reserved_file_extent(trans, inode,
8715 file_offset, &stack_fi,
8716 true, qgroup_released);
8717 if (ret)
8718 goto free_qgroup;
8719 return trans;
8720 }
8721
8722 extent_info.disk_offset = start;
8723 extent_info.disk_len = len;
8724 extent_info.data_offset = 0;
8725 extent_info.data_len = len;
8726 extent_info.file_offset = file_offset;
8727 extent_info.extent_buf = (char *)&stack_fi;
8728 extent_info.is_new_extent = true;
8729 extent_info.update_times = true;
8730 extent_info.qgroup_reserved = qgroup_released;
8731 extent_info.insertions = 0;
8732
8733 path = btrfs_alloc_path();
8734 if (!path) {
8735 ret = -ENOMEM;
8736 goto free_qgroup;
8737 }
8738
8739 ret = btrfs_replace_file_extents(inode, path, file_offset,
8740 file_offset + len - 1, &extent_info,
8741 &trans);
8742 btrfs_free_path(path);
8743 if (ret)
8744 goto free_qgroup;
8745 return trans;
8746
8747 free_qgroup:
8748 /*
8749 * We have released qgroup data range at the beginning of the function,
8750 * and normally qgroup_released bytes will be freed when committing
8751 * transaction.
8752 * But if we error out early, we have to free what we have released
8753 * or we leak qgroup data reservation.
8754 */
8755 btrfs_qgroup_free_refroot(inode->root->fs_info,
8756 btrfs_root_id(inode->root), qgroup_released,
8757 BTRFS_QGROUP_RSV_DATA);
8758 return ERR_PTR(ret);
8759 }
8760
__btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint,struct btrfs_trans_handle * trans)8761 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
8762 u64 start, u64 num_bytes, u64 min_size,
8763 loff_t actual_len, u64 *alloc_hint,
8764 struct btrfs_trans_handle *trans)
8765 {
8766 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
8767 struct extent_map *em;
8768 struct btrfs_root *root = BTRFS_I(inode)->root;
8769 struct btrfs_key ins;
8770 u64 cur_offset = start;
8771 u64 clear_offset = start;
8772 u64 i_size;
8773 u64 cur_bytes;
8774 u64 last_alloc = (u64)-1;
8775 int ret = 0;
8776 bool own_trans = true;
8777 u64 end = start + num_bytes - 1;
8778
8779 if (trans)
8780 own_trans = false;
8781 while (num_bytes > 0) {
8782 cur_bytes = min_t(u64, num_bytes, SZ_256M);
8783 cur_bytes = max(cur_bytes, min_size);
8784 /*
8785 * If we are severely fragmented we could end up with really
8786 * small allocations, so if the allocator is returning small
8787 * chunks lets make its job easier by only searching for those
8788 * sized chunks.
8789 */
8790 cur_bytes = min(cur_bytes, last_alloc);
8791 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
8792 min_size, 0, *alloc_hint, &ins, 1, 0);
8793 if (ret)
8794 break;
8795
8796 /*
8797 * We've reserved this space, and thus converted it from
8798 * ->bytes_may_use to ->bytes_reserved. Any error that happens
8799 * from here on out we will only need to clear our reservation
8800 * for the remaining unreserved area, so advance our
8801 * clear_offset by our extent size.
8802 */
8803 clear_offset += ins.offset;
8804
8805 last_alloc = ins.offset;
8806 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
8807 &ins, cur_offset);
8808 /*
8809 * Now that we inserted the prealloc extent we can finally
8810 * decrement the number of reservations in the block group.
8811 * If we did it before, we could race with relocation and have
8812 * relocation miss the reserved extent, making it fail later.
8813 */
8814 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
8815 if (IS_ERR(trans)) {
8816 ret = PTR_ERR(trans);
8817 btrfs_free_reserved_extent(fs_info, ins.objectid,
8818 ins.offset, 0);
8819 break;
8820 }
8821
8822 em = alloc_extent_map();
8823 if (!em) {
8824 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset,
8825 cur_offset + ins.offset - 1, false);
8826 btrfs_set_inode_full_sync(BTRFS_I(inode));
8827 goto next;
8828 }
8829
8830 em->start = cur_offset;
8831 em->len = ins.offset;
8832 em->disk_bytenr = ins.objectid;
8833 em->offset = 0;
8834 em->disk_num_bytes = ins.offset;
8835 em->ram_bytes = ins.offset;
8836 em->flags |= EXTENT_FLAG_PREALLOC;
8837 em->generation = trans->transid;
8838
8839 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true);
8840 free_extent_map(em);
8841 next:
8842 num_bytes -= ins.offset;
8843 cur_offset += ins.offset;
8844 *alloc_hint = ins.objectid + ins.offset;
8845
8846 inode_inc_iversion(inode);
8847 inode_set_ctime_current(inode);
8848 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
8849 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
8850 (actual_len > inode->i_size) &&
8851 (cur_offset > inode->i_size)) {
8852 if (cur_offset > actual_len)
8853 i_size = actual_len;
8854 else
8855 i_size = cur_offset;
8856 i_size_write(inode, i_size);
8857 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
8858 }
8859
8860 ret = btrfs_update_inode(trans, BTRFS_I(inode));
8861
8862 if (ret) {
8863 btrfs_abort_transaction(trans, ret);
8864 if (own_trans)
8865 btrfs_end_transaction(trans);
8866 break;
8867 }
8868
8869 if (own_trans) {
8870 btrfs_end_transaction(trans);
8871 trans = NULL;
8872 }
8873 }
8874 if (clear_offset < end)
8875 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
8876 end - clear_offset + 1);
8877 return ret;
8878 }
8879
btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)8880 int btrfs_prealloc_file_range(struct inode *inode, int mode,
8881 u64 start, u64 num_bytes, u64 min_size,
8882 loff_t actual_len, u64 *alloc_hint)
8883 {
8884 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8885 min_size, actual_len, alloc_hint,
8886 NULL);
8887 }
8888
btrfs_prealloc_file_range_trans(struct inode * inode,struct btrfs_trans_handle * trans,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)8889 int btrfs_prealloc_file_range_trans(struct inode *inode,
8890 struct btrfs_trans_handle *trans, int mode,
8891 u64 start, u64 num_bytes, u64 min_size,
8892 loff_t actual_len, u64 *alloc_hint)
8893 {
8894 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8895 min_size, actual_len, alloc_hint, trans);
8896 }
8897
btrfs_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)8898 static int btrfs_permission(struct mnt_idmap *idmap,
8899 struct inode *inode, int mask)
8900 {
8901 struct btrfs_root *root = BTRFS_I(inode)->root;
8902 umode_t mode = inode->i_mode;
8903
8904 if (mask & MAY_WRITE &&
8905 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
8906 if (btrfs_root_readonly(root))
8907 return -EROFS;
8908 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
8909 return -EACCES;
8910 }
8911 return generic_permission(idmap, inode, mask);
8912 }
8913
btrfs_tmpfile(struct mnt_idmap * idmap,struct inode * dir,struct file * file,umode_t mode)8914 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
8915 struct file *file, umode_t mode)
8916 {
8917 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
8918 struct btrfs_trans_handle *trans;
8919 struct btrfs_root *root = BTRFS_I(dir)->root;
8920 struct inode *inode;
8921 struct btrfs_new_inode_args new_inode_args = {
8922 .dir = dir,
8923 .dentry = file->f_path.dentry,
8924 .orphan = true,
8925 };
8926 unsigned int trans_num_items;
8927 int ret;
8928
8929 inode = new_inode(dir->i_sb);
8930 if (!inode)
8931 return -ENOMEM;
8932 inode_init_owner(idmap, inode, dir, mode);
8933 inode->i_fop = &btrfs_file_operations;
8934 inode->i_op = &btrfs_file_inode_operations;
8935 inode->i_mapping->a_ops = &btrfs_aops;
8936
8937 new_inode_args.inode = inode;
8938 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
8939 if (ret)
8940 goto out_inode;
8941
8942 trans = btrfs_start_transaction(root, trans_num_items);
8943 if (IS_ERR(trans)) {
8944 ret = PTR_ERR(trans);
8945 goto out_new_inode_args;
8946 }
8947
8948 ret = btrfs_create_new_inode(trans, &new_inode_args);
8949
8950 /*
8951 * We set number of links to 0 in btrfs_create_new_inode(), and here we
8952 * set it to 1 because d_tmpfile() will issue a warning if the count is
8953 * 0, through:
8954 *
8955 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
8956 */
8957 set_nlink(inode, 1);
8958
8959 if (!ret) {
8960 d_tmpfile(file, inode);
8961 unlock_new_inode(inode);
8962 mark_inode_dirty(inode);
8963 }
8964
8965 btrfs_end_transaction(trans);
8966 btrfs_btree_balance_dirty(fs_info);
8967 out_new_inode_args:
8968 btrfs_new_inode_args_destroy(&new_inode_args);
8969 out_inode:
8970 if (ret)
8971 iput(inode);
8972 return finish_open_simple(file, ret);
8973 }
8974
btrfs_set_range_writeback(struct btrfs_inode * inode,u64 start,u64 end)8975 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
8976 {
8977 struct btrfs_fs_info *fs_info = inode->root->fs_info;
8978 unsigned long index = start >> PAGE_SHIFT;
8979 unsigned long end_index = end >> PAGE_SHIFT;
8980 struct folio *folio;
8981 u32 len;
8982
8983 ASSERT(end + 1 - start <= U32_MAX);
8984 len = end + 1 - start;
8985 while (index <= end_index) {
8986 folio = __filemap_get_folio(inode->vfs_inode.i_mapping, index, 0, 0);
8987 ASSERT(!IS_ERR(folio)); /* folios should be in the extent_io_tree */
8988
8989 /* This is for data, which doesn't yet support larger folio. */
8990 ASSERT(folio_order(folio) == 0);
8991 btrfs_folio_set_writeback(fs_info, folio, start, len);
8992 folio_put(folio);
8993 index++;
8994 }
8995 }
8996
btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info * fs_info,int compress_type)8997 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
8998 int compress_type)
8999 {
9000 switch (compress_type) {
9001 case BTRFS_COMPRESS_NONE:
9002 return BTRFS_ENCODED_IO_COMPRESSION_NONE;
9003 case BTRFS_COMPRESS_ZLIB:
9004 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
9005 case BTRFS_COMPRESS_LZO:
9006 /*
9007 * The LZO format depends on the sector size. 64K is the maximum
9008 * sector size that we support.
9009 */
9010 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
9011 return -EINVAL;
9012 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
9013 (fs_info->sectorsize_bits - 12);
9014 case BTRFS_COMPRESS_ZSTD:
9015 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
9016 default:
9017 return -EUCLEAN;
9018 }
9019 }
9020
btrfs_encoded_read_inline(struct kiocb * iocb,struct iov_iter * iter,u64 start,u64 lockend,struct extent_state ** cached_state,u64 extent_start,size_t count,struct btrfs_ioctl_encoded_io_args * encoded,bool * unlocked)9021 static ssize_t btrfs_encoded_read_inline(
9022 struct kiocb *iocb,
9023 struct iov_iter *iter, u64 start,
9024 u64 lockend,
9025 struct extent_state **cached_state,
9026 u64 extent_start, size_t count,
9027 struct btrfs_ioctl_encoded_io_args *encoded,
9028 bool *unlocked)
9029 {
9030 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9031 struct btrfs_root *root = inode->root;
9032 struct btrfs_fs_info *fs_info = root->fs_info;
9033 struct extent_io_tree *io_tree = &inode->io_tree;
9034 struct btrfs_path *path;
9035 struct extent_buffer *leaf;
9036 struct btrfs_file_extent_item *item;
9037 u64 ram_bytes;
9038 unsigned long ptr;
9039 void *tmp;
9040 ssize_t ret;
9041
9042 path = btrfs_alloc_path();
9043 if (!path) {
9044 ret = -ENOMEM;
9045 goto out;
9046 }
9047 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
9048 extent_start, 0);
9049 if (ret) {
9050 if (ret > 0) {
9051 /* The extent item disappeared? */
9052 ret = -EIO;
9053 }
9054 goto out;
9055 }
9056 leaf = path->nodes[0];
9057 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
9058
9059 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
9060 ptr = btrfs_file_extent_inline_start(item);
9061
9062 encoded->len = min_t(u64, extent_start + ram_bytes,
9063 inode->vfs_inode.i_size) - iocb->ki_pos;
9064 ret = btrfs_encoded_io_compression_from_extent(fs_info,
9065 btrfs_file_extent_compression(leaf, item));
9066 if (ret < 0)
9067 goto out;
9068 encoded->compression = ret;
9069 if (encoded->compression) {
9070 size_t inline_size;
9071
9072 inline_size = btrfs_file_extent_inline_item_len(leaf,
9073 path->slots[0]);
9074 if (inline_size > count) {
9075 ret = -ENOBUFS;
9076 goto out;
9077 }
9078 count = inline_size;
9079 encoded->unencoded_len = ram_bytes;
9080 encoded->unencoded_offset = iocb->ki_pos - extent_start;
9081 } else {
9082 count = min_t(u64, count, encoded->len);
9083 encoded->len = count;
9084 encoded->unencoded_len = count;
9085 ptr += iocb->ki_pos - extent_start;
9086 }
9087
9088 tmp = kmalloc(count, GFP_NOFS);
9089 if (!tmp) {
9090 ret = -ENOMEM;
9091 goto out;
9092 }
9093 read_extent_buffer(leaf, tmp, ptr, count);
9094 btrfs_release_path(path);
9095 unlock_extent(io_tree, start, lockend, cached_state);
9096 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9097 *unlocked = true;
9098
9099 ret = copy_to_iter(tmp, count, iter);
9100 if (ret != count)
9101 ret = -EFAULT;
9102 kfree(tmp);
9103 out:
9104 btrfs_free_path(path);
9105 return ret;
9106 }
9107
9108 struct btrfs_encoded_read_private {
9109 wait_queue_head_t wait;
9110 atomic_t pending;
9111 blk_status_t status;
9112 };
9113
btrfs_encoded_read_endio(struct btrfs_bio * bbio)9114 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio)
9115 {
9116 struct btrfs_encoded_read_private *priv = bbio->private;
9117
9118 if (bbio->bio.bi_status) {
9119 /*
9120 * The memory barrier implied by the atomic_dec_return() here
9121 * pairs with the memory barrier implied by the
9122 * atomic_dec_return() or io_wait_event() in
9123 * btrfs_encoded_read_regular_fill_pages() to ensure that this
9124 * write is observed before the load of status in
9125 * btrfs_encoded_read_regular_fill_pages().
9126 */
9127 WRITE_ONCE(priv->status, bbio->bio.bi_status);
9128 }
9129 if (!atomic_dec_return(&priv->pending))
9130 wake_up(&priv->wait);
9131 bio_put(&bbio->bio);
9132 }
9133
btrfs_encoded_read_regular_fill_pages(struct btrfs_inode * inode,u64 file_offset,u64 disk_bytenr,u64 disk_io_size,struct page ** pages)9134 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
9135 u64 file_offset, u64 disk_bytenr,
9136 u64 disk_io_size, struct page **pages)
9137 {
9138 struct btrfs_fs_info *fs_info = inode->root->fs_info;
9139 struct btrfs_encoded_read_private priv = {
9140 .pending = ATOMIC_INIT(1),
9141 };
9142 unsigned long i = 0;
9143 struct btrfs_bio *bbio;
9144
9145 init_waitqueue_head(&priv.wait);
9146
9147 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9148 btrfs_encoded_read_endio, &priv);
9149 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9150 bbio->inode = inode;
9151
9152 do {
9153 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE);
9154
9155 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) {
9156 atomic_inc(&priv.pending);
9157 btrfs_submit_bbio(bbio, 0);
9158
9159 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9160 btrfs_encoded_read_endio, &priv);
9161 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9162 bbio->inode = inode;
9163 continue;
9164 }
9165
9166 i++;
9167 disk_bytenr += bytes;
9168 disk_io_size -= bytes;
9169 } while (disk_io_size);
9170
9171 atomic_inc(&priv.pending);
9172 btrfs_submit_bbio(bbio, 0);
9173
9174 if (atomic_dec_return(&priv.pending))
9175 io_wait_event(priv.wait, !atomic_read(&priv.pending));
9176 /* See btrfs_encoded_read_endio() for ordering. */
9177 return blk_status_to_errno(READ_ONCE(priv.status));
9178 }
9179
btrfs_encoded_read_regular(struct kiocb * iocb,struct iov_iter * iter,u64 start,u64 lockend,struct extent_state ** cached_state,u64 disk_bytenr,u64 disk_io_size,size_t count,bool compressed,bool * unlocked)9180 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb,
9181 struct iov_iter *iter,
9182 u64 start, u64 lockend,
9183 struct extent_state **cached_state,
9184 u64 disk_bytenr, u64 disk_io_size,
9185 size_t count, bool compressed,
9186 bool *unlocked)
9187 {
9188 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9189 struct extent_io_tree *io_tree = &inode->io_tree;
9190 struct page **pages;
9191 unsigned long nr_pages, i;
9192 u64 cur;
9193 size_t page_offset;
9194 ssize_t ret;
9195
9196 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
9197 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
9198 if (!pages)
9199 return -ENOMEM;
9200 ret = btrfs_alloc_page_array(nr_pages, pages, false);
9201 if (ret) {
9202 ret = -ENOMEM;
9203 goto out;
9204 }
9205
9206 ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr,
9207 disk_io_size, pages);
9208 if (ret)
9209 goto out;
9210
9211 unlock_extent(io_tree, start, lockend, cached_state);
9212 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9213 *unlocked = true;
9214
9215 if (compressed) {
9216 i = 0;
9217 page_offset = 0;
9218 } else {
9219 i = (iocb->ki_pos - start) >> PAGE_SHIFT;
9220 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
9221 }
9222 cur = 0;
9223 while (cur < count) {
9224 size_t bytes = min_t(size_t, count - cur,
9225 PAGE_SIZE - page_offset);
9226
9227 if (copy_page_to_iter(pages[i], page_offset, bytes,
9228 iter) != bytes) {
9229 ret = -EFAULT;
9230 goto out;
9231 }
9232 i++;
9233 cur += bytes;
9234 page_offset = 0;
9235 }
9236 ret = count;
9237 out:
9238 for (i = 0; i < nr_pages; i++) {
9239 if (pages[i])
9240 __free_page(pages[i]);
9241 }
9242 kfree(pages);
9243 return ret;
9244 }
9245
btrfs_encoded_read(struct kiocb * iocb,struct iov_iter * iter,struct btrfs_ioctl_encoded_io_args * encoded)9246 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
9247 struct btrfs_ioctl_encoded_io_args *encoded)
9248 {
9249 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9250 struct btrfs_fs_info *fs_info = inode->root->fs_info;
9251 struct extent_io_tree *io_tree = &inode->io_tree;
9252 ssize_t ret;
9253 size_t count = iov_iter_count(iter);
9254 u64 start, lockend, disk_bytenr, disk_io_size;
9255 struct extent_state *cached_state = NULL;
9256 struct extent_map *em;
9257 bool unlocked = false;
9258
9259 file_accessed(iocb->ki_filp);
9260
9261 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
9262
9263 if (iocb->ki_pos >= inode->vfs_inode.i_size) {
9264 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9265 return 0;
9266 }
9267 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
9268 /*
9269 * We don't know how long the extent containing iocb->ki_pos is, but if
9270 * it's compressed we know that it won't be longer than this.
9271 */
9272 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
9273
9274 for (;;) {
9275 struct btrfs_ordered_extent *ordered;
9276
9277 ret = btrfs_wait_ordered_range(inode, start,
9278 lockend - start + 1);
9279 if (ret)
9280 goto out_unlock_inode;
9281 lock_extent(io_tree, start, lockend, &cached_state);
9282 ordered = btrfs_lookup_ordered_range(inode, start,
9283 lockend - start + 1);
9284 if (!ordered)
9285 break;
9286 btrfs_put_ordered_extent(ordered);
9287 unlock_extent(io_tree, start, lockend, &cached_state);
9288 cond_resched();
9289 }
9290
9291 em = btrfs_get_extent(inode, NULL, start, lockend - start + 1);
9292 if (IS_ERR(em)) {
9293 ret = PTR_ERR(em);
9294 goto out_unlock_extent;
9295 }
9296
9297 if (em->disk_bytenr == EXTENT_MAP_INLINE) {
9298 u64 extent_start = em->start;
9299
9300 /*
9301 * For inline extents we get everything we need out of the
9302 * extent item.
9303 */
9304 free_extent_map(em);
9305 em = NULL;
9306 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
9307 &cached_state, extent_start,
9308 count, encoded, &unlocked);
9309 goto out;
9310 }
9311
9312 /*
9313 * We only want to return up to EOF even if the extent extends beyond
9314 * that.
9315 */
9316 encoded->len = min_t(u64, extent_map_end(em),
9317 inode->vfs_inode.i_size) - iocb->ki_pos;
9318 if (em->disk_bytenr == EXTENT_MAP_HOLE ||
9319 (em->flags & EXTENT_FLAG_PREALLOC)) {
9320 disk_bytenr = EXTENT_MAP_HOLE;
9321 count = min_t(u64, count, encoded->len);
9322 encoded->len = count;
9323 encoded->unencoded_len = count;
9324 } else if (extent_map_is_compressed(em)) {
9325 disk_bytenr = em->disk_bytenr;
9326 /*
9327 * Bail if the buffer isn't large enough to return the whole
9328 * compressed extent.
9329 */
9330 if (em->disk_num_bytes > count) {
9331 ret = -ENOBUFS;
9332 goto out_em;
9333 }
9334 disk_io_size = em->disk_num_bytes;
9335 count = em->disk_num_bytes;
9336 encoded->unencoded_len = em->ram_bytes;
9337 encoded->unencoded_offset = iocb->ki_pos - (em->start - em->offset);
9338 ret = btrfs_encoded_io_compression_from_extent(fs_info,
9339 extent_map_compression(em));
9340 if (ret < 0)
9341 goto out_em;
9342 encoded->compression = ret;
9343 } else {
9344 disk_bytenr = extent_map_block_start(em) + (start - em->start);
9345 if (encoded->len > count)
9346 encoded->len = count;
9347 /*
9348 * Don't read beyond what we locked. This also limits the page
9349 * allocations that we'll do.
9350 */
9351 disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
9352 count = start + disk_io_size - iocb->ki_pos;
9353 encoded->len = count;
9354 encoded->unencoded_len = count;
9355 disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize);
9356 }
9357 free_extent_map(em);
9358 em = NULL;
9359
9360 if (disk_bytenr == EXTENT_MAP_HOLE) {
9361 unlock_extent(io_tree, start, lockend, &cached_state);
9362 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9363 unlocked = true;
9364 ret = iov_iter_zero(count, iter);
9365 if (ret != count)
9366 ret = -EFAULT;
9367 } else {
9368 ret = btrfs_encoded_read_regular(iocb, iter, start, lockend,
9369 &cached_state, disk_bytenr,
9370 disk_io_size, count,
9371 encoded->compression,
9372 &unlocked);
9373 }
9374
9375 out:
9376 if (ret >= 0)
9377 iocb->ki_pos += encoded->len;
9378 out_em:
9379 free_extent_map(em);
9380 out_unlock_extent:
9381 if (!unlocked)
9382 unlock_extent(io_tree, start, lockend, &cached_state);
9383 out_unlock_inode:
9384 if (!unlocked)
9385 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9386 return ret;
9387 }
9388
btrfs_do_encoded_write(struct kiocb * iocb,struct iov_iter * from,const struct btrfs_ioctl_encoded_io_args * encoded)9389 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
9390 const struct btrfs_ioctl_encoded_io_args *encoded)
9391 {
9392 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9393 struct btrfs_root *root = inode->root;
9394 struct btrfs_fs_info *fs_info = root->fs_info;
9395 struct extent_io_tree *io_tree = &inode->io_tree;
9396 struct extent_changeset *data_reserved = NULL;
9397 struct extent_state *cached_state = NULL;
9398 struct btrfs_ordered_extent *ordered;
9399 struct btrfs_file_extent file_extent;
9400 int compression;
9401 size_t orig_count;
9402 u64 start, end;
9403 u64 num_bytes, ram_bytes, disk_num_bytes;
9404 unsigned long nr_folios, i;
9405 struct folio **folios;
9406 struct btrfs_key ins;
9407 bool extent_reserved = false;
9408 struct extent_map *em;
9409 ssize_t ret;
9410
9411 switch (encoded->compression) {
9412 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
9413 compression = BTRFS_COMPRESS_ZLIB;
9414 break;
9415 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
9416 compression = BTRFS_COMPRESS_ZSTD;
9417 break;
9418 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
9419 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
9420 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
9421 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
9422 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
9423 /* The sector size must match for LZO. */
9424 if (encoded->compression -
9425 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
9426 fs_info->sectorsize_bits)
9427 return -EINVAL;
9428 compression = BTRFS_COMPRESS_LZO;
9429 break;
9430 default:
9431 return -EINVAL;
9432 }
9433 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
9434 return -EINVAL;
9435
9436 /*
9437 * Compressed extents should always have checksums, so error out if we
9438 * have a NOCOW file or inode was created while mounted with NODATASUM.
9439 */
9440 if (inode->flags & BTRFS_INODE_NODATASUM)
9441 return -EINVAL;
9442
9443 orig_count = iov_iter_count(from);
9444
9445 /* The extent size must be sane. */
9446 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
9447 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
9448 return -EINVAL;
9449
9450 /*
9451 * The compressed data must be smaller than the decompressed data.
9452 *
9453 * It's of course possible for data to compress to larger or the same
9454 * size, but the buffered I/O path falls back to no compression for such
9455 * data, and we don't want to break any assumptions by creating these
9456 * extents.
9457 *
9458 * Note that this is less strict than the current check we have that the
9459 * compressed data must be at least one sector smaller than the
9460 * decompressed data. We only want to enforce the weaker requirement
9461 * from old kernels that it is at least one byte smaller.
9462 */
9463 if (orig_count >= encoded->unencoded_len)
9464 return -EINVAL;
9465
9466 /* The extent must start on a sector boundary. */
9467 start = iocb->ki_pos;
9468 if (!IS_ALIGNED(start, fs_info->sectorsize))
9469 return -EINVAL;
9470
9471 /*
9472 * The extent must end on a sector boundary. However, we allow a write
9473 * which ends at or extends i_size to have an unaligned length; we round
9474 * up the extent size and set i_size to the unaligned end.
9475 */
9476 if (start + encoded->len < inode->vfs_inode.i_size &&
9477 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
9478 return -EINVAL;
9479
9480 /* Finally, the offset in the unencoded data must be sector-aligned. */
9481 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
9482 return -EINVAL;
9483
9484 num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
9485 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
9486 end = start + num_bytes - 1;
9487
9488 /*
9489 * If the extent cannot be inline, the compressed data on disk must be
9490 * sector-aligned. For convenience, we extend it with zeroes if it
9491 * isn't.
9492 */
9493 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
9494 nr_folios = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
9495 folios = kvcalloc(nr_folios, sizeof(struct page *), GFP_KERNEL_ACCOUNT);
9496 if (!folios)
9497 return -ENOMEM;
9498 for (i = 0; i < nr_folios; i++) {
9499 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
9500 char *kaddr;
9501
9502 folios[i] = folio_alloc(GFP_KERNEL_ACCOUNT, 0);
9503 if (!folios[i]) {
9504 ret = -ENOMEM;
9505 goto out_folios;
9506 }
9507 kaddr = kmap_local_folio(folios[i], 0);
9508 if (copy_from_iter(kaddr, bytes, from) != bytes) {
9509 kunmap_local(kaddr);
9510 ret = -EFAULT;
9511 goto out_folios;
9512 }
9513 if (bytes < PAGE_SIZE)
9514 memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
9515 kunmap_local(kaddr);
9516 }
9517
9518 for (;;) {
9519 struct btrfs_ordered_extent *ordered;
9520
9521 ret = btrfs_wait_ordered_range(inode, start, num_bytes);
9522 if (ret)
9523 goto out_folios;
9524 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
9525 start >> PAGE_SHIFT,
9526 end >> PAGE_SHIFT);
9527 if (ret)
9528 goto out_folios;
9529 lock_extent(io_tree, start, end, &cached_state);
9530 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
9531 if (!ordered &&
9532 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
9533 break;
9534 if (ordered)
9535 btrfs_put_ordered_extent(ordered);
9536 unlock_extent(io_tree, start, end, &cached_state);
9537 cond_resched();
9538 }
9539
9540 /*
9541 * We don't use the higher-level delalloc space functions because our
9542 * num_bytes and disk_num_bytes are different.
9543 */
9544 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
9545 if (ret)
9546 goto out_unlock;
9547 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
9548 if (ret)
9549 goto out_free_data_space;
9550 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
9551 false);
9552 if (ret)
9553 goto out_qgroup_free_data;
9554
9555 /* Try an inline extent first. */
9556 if (encoded->unencoded_len == encoded->len &&
9557 encoded->unencoded_offset == 0 &&
9558 can_cow_file_range_inline(inode, start, encoded->len, orig_count)) {
9559 ret = __cow_file_range_inline(inode, start, encoded->len,
9560 orig_count, compression, folios[0],
9561 true);
9562 if (ret <= 0) {
9563 if (ret == 0)
9564 ret = orig_count;
9565 goto out_delalloc_release;
9566 }
9567 }
9568
9569 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
9570 disk_num_bytes, 0, 0, &ins, 1, 1);
9571 if (ret)
9572 goto out_delalloc_release;
9573 extent_reserved = true;
9574
9575 file_extent.disk_bytenr = ins.objectid;
9576 file_extent.disk_num_bytes = ins.offset;
9577 file_extent.num_bytes = num_bytes;
9578 file_extent.ram_bytes = ram_bytes;
9579 file_extent.offset = encoded->unencoded_offset;
9580 file_extent.compression = compression;
9581 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED);
9582 if (IS_ERR(em)) {
9583 ret = PTR_ERR(em);
9584 goto out_free_reserved;
9585 }
9586 free_extent_map(em);
9587
9588 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
9589 (1 << BTRFS_ORDERED_ENCODED) |
9590 (1 << BTRFS_ORDERED_COMPRESSED));
9591 if (IS_ERR(ordered)) {
9592 btrfs_drop_extent_map_range(inode, start, end, false);
9593 ret = PTR_ERR(ordered);
9594 goto out_free_reserved;
9595 }
9596 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9597
9598 if (start + encoded->len > inode->vfs_inode.i_size)
9599 i_size_write(&inode->vfs_inode, start + encoded->len);
9600
9601 unlock_extent(io_tree, start, end, &cached_state);
9602
9603 btrfs_delalloc_release_extents(inode, num_bytes);
9604
9605 btrfs_submit_compressed_write(ordered, folios, nr_folios, 0, false);
9606 ret = orig_count;
9607 goto out;
9608
9609 out_free_reserved:
9610 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9611 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
9612 out_delalloc_release:
9613 btrfs_delalloc_release_extents(inode, num_bytes);
9614 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
9615 out_qgroup_free_data:
9616 if (ret < 0)
9617 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL);
9618 out_free_data_space:
9619 /*
9620 * If btrfs_reserve_extent() succeeded, then we already decremented
9621 * bytes_may_use.
9622 */
9623 if (!extent_reserved)
9624 btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes);
9625 out_unlock:
9626 unlock_extent(io_tree, start, end, &cached_state);
9627 out_folios:
9628 for (i = 0; i < nr_folios; i++) {
9629 if (folios[i])
9630 folio_put(folios[i]);
9631 }
9632 kvfree(folios);
9633 out:
9634 if (ret >= 0)
9635 iocb->ki_pos += encoded->len;
9636 return ret;
9637 }
9638
9639 #ifdef CONFIG_SWAP
9640 /*
9641 * Add an entry indicating a block group or device which is pinned by a
9642 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
9643 * negative errno on failure.
9644 */
btrfs_add_swapfile_pin(struct inode * inode,void * ptr,bool is_block_group)9645 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
9646 bool is_block_group)
9647 {
9648 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9649 struct btrfs_swapfile_pin *sp, *entry;
9650 struct rb_node **p;
9651 struct rb_node *parent = NULL;
9652
9653 sp = kmalloc(sizeof(*sp), GFP_NOFS);
9654 if (!sp)
9655 return -ENOMEM;
9656 sp->ptr = ptr;
9657 sp->inode = inode;
9658 sp->is_block_group = is_block_group;
9659 sp->bg_extent_count = 1;
9660
9661 spin_lock(&fs_info->swapfile_pins_lock);
9662 p = &fs_info->swapfile_pins.rb_node;
9663 while (*p) {
9664 parent = *p;
9665 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
9666 if (sp->ptr < entry->ptr ||
9667 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
9668 p = &(*p)->rb_left;
9669 } else if (sp->ptr > entry->ptr ||
9670 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
9671 p = &(*p)->rb_right;
9672 } else {
9673 if (is_block_group)
9674 entry->bg_extent_count++;
9675 spin_unlock(&fs_info->swapfile_pins_lock);
9676 kfree(sp);
9677 return 1;
9678 }
9679 }
9680 rb_link_node(&sp->node, parent, p);
9681 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
9682 spin_unlock(&fs_info->swapfile_pins_lock);
9683 return 0;
9684 }
9685
9686 /* Free all of the entries pinned by this swapfile. */
btrfs_free_swapfile_pins(struct inode * inode)9687 static void btrfs_free_swapfile_pins(struct inode *inode)
9688 {
9689 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9690 struct btrfs_swapfile_pin *sp;
9691 struct rb_node *node, *next;
9692
9693 spin_lock(&fs_info->swapfile_pins_lock);
9694 node = rb_first(&fs_info->swapfile_pins);
9695 while (node) {
9696 next = rb_next(node);
9697 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
9698 if (sp->inode == inode) {
9699 rb_erase(&sp->node, &fs_info->swapfile_pins);
9700 if (sp->is_block_group) {
9701 btrfs_dec_block_group_swap_extents(sp->ptr,
9702 sp->bg_extent_count);
9703 btrfs_put_block_group(sp->ptr);
9704 }
9705 kfree(sp);
9706 }
9707 node = next;
9708 }
9709 spin_unlock(&fs_info->swapfile_pins_lock);
9710 }
9711
9712 struct btrfs_swap_info {
9713 u64 start;
9714 u64 block_start;
9715 u64 block_len;
9716 u64 lowest_ppage;
9717 u64 highest_ppage;
9718 unsigned long nr_pages;
9719 int nr_extents;
9720 };
9721
btrfs_add_swap_extent(struct swap_info_struct * sis,struct btrfs_swap_info * bsi)9722 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
9723 struct btrfs_swap_info *bsi)
9724 {
9725 unsigned long nr_pages;
9726 unsigned long max_pages;
9727 u64 first_ppage, first_ppage_reported, next_ppage;
9728 int ret;
9729
9730 /*
9731 * Our swapfile may have had its size extended after the swap header was
9732 * written. In that case activating the swapfile should not go beyond
9733 * the max size set in the swap header.
9734 */
9735 if (bsi->nr_pages >= sis->max)
9736 return 0;
9737
9738 max_pages = sis->max - bsi->nr_pages;
9739 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT;
9740 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT;
9741
9742 if (first_ppage >= next_ppage)
9743 return 0;
9744 nr_pages = next_ppage - first_ppage;
9745 nr_pages = min(nr_pages, max_pages);
9746
9747 first_ppage_reported = first_ppage;
9748 if (bsi->start == 0)
9749 first_ppage_reported++;
9750 if (bsi->lowest_ppage > first_ppage_reported)
9751 bsi->lowest_ppage = first_ppage_reported;
9752 if (bsi->highest_ppage < (next_ppage - 1))
9753 bsi->highest_ppage = next_ppage - 1;
9754
9755 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
9756 if (ret < 0)
9757 return ret;
9758 bsi->nr_extents += ret;
9759 bsi->nr_pages += nr_pages;
9760 return 0;
9761 }
9762
btrfs_swap_deactivate(struct file * file)9763 static void btrfs_swap_deactivate(struct file *file)
9764 {
9765 struct inode *inode = file_inode(file);
9766
9767 btrfs_free_swapfile_pins(inode);
9768 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
9769 }
9770
btrfs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)9771 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
9772 sector_t *span)
9773 {
9774 struct inode *inode = file_inode(file);
9775 struct btrfs_root *root = BTRFS_I(inode)->root;
9776 struct btrfs_fs_info *fs_info = root->fs_info;
9777 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
9778 struct extent_state *cached_state = NULL;
9779 struct extent_map *em = NULL;
9780 struct btrfs_chunk_map *map = NULL;
9781 struct btrfs_device *device = NULL;
9782 struct btrfs_swap_info bsi = {
9783 .lowest_ppage = (sector_t)-1ULL,
9784 };
9785 int ret = 0;
9786 u64 isize;
9787 u64 start;
9788
9789 /*
9790 * If the swap file was just created, make sure delalloc is done. If the
9791 * file changes again after this, the user is doing something stupid and
9792 * we don't really care.
9793 */
9794 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1);
9795 if (ret)
9796 return ret;
9797
9798 /*
9799 * The inode is locked, so these flags won't change after we check them.
9800 */
9801 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
9802 btrfs_warn(fs_info, "swapfile must not be compressed");
9803 return -EINVAL;
9804 }
9805 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
9806 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
9807 return -EINVAL;
9808 }
9809 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
9810 btrfs_warn(fs_info, "swapfile must not be checksummed");
9811 return -EINVAL;
9812 }
9813
9814 /*
9815 * Balance or device remove/replace/resize can move stuff around from
9816 * under us. The exclop protection makes sure they aren't running/won't
9817 * run concurrently while we are mapping the swap extents, and
9818 * fs_info->swapfile_pins prevents them from running while the swap
9819 * file is active and moving the extents. Note that this also prevents
9820 * a concurrent device add which isn't actually necessary, but it's not
9821 * really worth the trouble to allow it.
9822 */
9823 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
9824 btrfs_warn(fs_info,
9825 "cannot activate swapfile while exclusive operation is running");
9826 return -EBUSY;
9827 }
9828
9829 /*
9830 * Prevent snapshot creation while we are activating the swap file.
9831 * We do not want to race with snapshot creation. If snapshot creation
9832 * already started before we bumped nr_swapfiles from 0 to 1 and
9833 * completes before the first write into the swap file after it is
9834 * activated, than that write would fallback to COW.
9835 */
9836 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
9837 btrfs_exclop_finish(fs_info);
9838 btrfs_warn(fs_info,
9839 "cannot activate swapfile because snapshot creation is in progress");
9840 return -EINVAL;
9841 }
9842 /*
9843 * Snapshots can create extents which require COW even if NODATACOW is
9844 * set. We use this counter to prevent snapshots. We must increment it
9845 * before walking the extents because we don't want a concurrent
9846 * snapshot to run after we've already checked the extents.
9847 *
9848 * It is possible that subvolume is marked for deletion but still not
9849 * removed yet. To prevent this race, we check the root status before
9850 * activating the swapfile.
9851 */
9852 spin_lock(&root->root_item_lock);
9853 if (btrfs_root_dead(root)) {
9854 spin_unlock(&root->root_item_lock);
9855
9856 btrfs_exclop_finish(fs_info);
9857 btrfs_warn(fs_info,
9858 "cannot activate swapfile because subvolume %llu is being deleted",
9859 btrfs_root_id(root));
9860 return -EPERM;
9861 }
9862 atomic_inc(&root->nr_swapfiles);
9863 spin_unlock(&root->root_item_lock);
9864
9865 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
9866
9867 lock_extent(io_tree, 0, isize - 1, &cached_state);
9868 start = 0;
9869 while (start < isize) {
9870 u64 logical_block_start, physical_block_start;
9871 struct btrfs_block_group *bg;
9872 u64 len = isize - start;
9873
9874 em = btrfs_get_extent(BTRFS_I(inode), NULL, start, len);
9875 if (IS_ERR(em)) {
9876 ret = PTR_ERR(em);
9877 goto out;
9878 }
9879
9880 if (em->disk_bytenr == EXTENT_MAP_HOLE) {
9881 btrfs_warn(fs_info, "swapfile must not have holes");
9882 ret = -EINVAL;
9883 goto out;
9884 }
9885 if (em->disk_bytenr == EXTENT_MAP_INLINE) {
9886 /*
9887 * It's unlikely we'll ever actually find ourselves
9888 * here, as a file small enough to fit inline won't be
9889 * big enough to store more than the swap header, but in
9890 * case something changes in the future, let's catch it
9891 * here rather than later.
9892 */
9893 btrfs_warn(fs_info, "swapfile must not be inline");
9894 ret = -EINVAL;
9895 goto out;
9896 }
9897 if (extent_map_is_compressed(em)) {
9898 btrfs_warn(fs_info, "swapfile must not be compressed");
9899 ret = -EINVAL;
9900 goto out;
9901 }
9902
9903 logical_block_start = extent_map_block_start(em) + (start - em->start);
9904 len = min(len, em->len - (start - em->start));
9905 free_extent_map(em);
9906 em = NULL;
9907
9908 ret = can_nocow_extent(inode, start, &len, NULL, false, true);
9909 if (ret < 0) {
9910 goto out;
9911 } else if (ret) {
9912 ret = 0;
9913 } else {
9914 btrfs_warn(fs_info,
9915 "swapfile must not be copy-on-write");
9916 ret = -EINVAL;
9917 goto out;
9918 }
9919
9920 map = btrfs_get_chunk_map(fs_info, logical_block_start, len);
9921 if (IS_ERR(map)) {
9922 ret = PTR_ERR(map);
9923 goto out;
9924 }
9925
9926 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
9927 btrfs_warn(fs_info,
9928 "swapfile must have single data profile");
9929 ret = -EINVAL;
9930 goto out;
9931 }
9932
9933 if (device == NULL) {
9934 device = map->stripes[0].dev;
9935 ret = btrfs_add_swapfile_pin(inode, device, false);
9936 if (ret == 1)
9937 ret = 0;
9938 else if (ret)
9939 goto out;
9940 } else if (device != map->stripes[0].dev) {
9941 btrfs_warn(fs_info, "swapfile must be on one device");
9942 ret = -EINVAL;
9943 goto out;
9944 }
9945
9946 physical_block_start = (map->stripes[0].physical +
9947 (logical_block_start - map->start));
9948 len = min(len, map->chunk_len - (logical_block_start - map->start));
9949 btrfs_free_chunk_map(map);
9950 map = NULL;
9951
9952 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
9953 if (!bg) {
9954 btrfs_warn(fs_info,
9955 "could not find block group containing swapfile");
9956 ret = -EINVAL;
9957 goto out;
9958 }
9959
9960 if (!btrfs_inc_block_group_swap_extents(bg)) {
9961 btrfs_warn(fs_info,
9962 "block group for swapfile at %llu is read-only%s",
9963 bg->start,
9964 atomic_read(&fs_info->scrubs_running) ?
9965 " (scrub running)" : "");
9966 btrfs_put_block_group(bg);
9967 ret = -EINVAL;
9968 goto out;
9969 }
9970
9971 ret = btrfs_add_swapfile_pin(inode, bg, true);
9972 if (ret) {
9973 btrfs_put_block_group(bg);
9974 if (ret == 1)
9975 ret = 0;
9976 else
9977 goto out;
9978 }
9979
9980 if (bsi.block_len &&
9981 bsi.block_start + bsi.block_len == physical_block_start) {
9982 bsi.block_len += len;
9983 } else {
9984 if (bsi.block_len) {
9985 ret = btrfs_add_swap_extent(sis, &bsi);
9986 if (ret)
9987 goto out;
9988 }
9989 bsi.start = start;
9990 bsi.block_start = physical_block_start;
9991 bsi.block_len = len;
9992 }
9993
9994 start += len;
9995 }
9996
9997 if (bsi.block_len)
9998 ret = btrfs_add_swap_extent(sis, &bsi);
9999
10000 out:
10001 if (!IS_ERR_OR_NULL(em))
10002 free_extent_map(em);
10003 if (!IS_ERR_OR_NULL(map))
10004 btrfs_free_chunk_map(map);
10005
10006 unlock_extent(io_tree, 0, isize - 1, &cached_state);
10007
10008 if (ret)
10009 btrfs_swap_deactivate(file);
10010
10011 btrfs_drew_write_unlock(&root->snapshot_lock);
10012
10013 btrfs_exclop_finish(fs_info);
10014
10015 if (ret)
10016 return ret;
10017
10018 if (device)
10019 sis->bdev = device->bdev;
10020 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10021 sis->max = bsi.nr_pages;
10022 sis->pages = bsi.nr_pages - 1;
10023 sis->highest_bit = bsi.nr_pages - 1;
10024 return bsi.nr_extents;
10025 }
10026 #else
btrfs_swap_deactivate(struct file * file)10027 static void btrfs_swap_deactivate(struct file *file)
10028 {
10029 }
10030
btrfs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)10031 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10032 sector_t *span)
10033 {
10034 return -EOPNOTSUPP;
10035 }
10036 #endif
10037
10038 /*
10039 * Update the number of bytes used in the VFS' inode. When we replace extents in
10040 * a range (clone, dedupe, fallocate's zero range), we must update the number of
10041 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10042 * always get a correct value.
10043 */
btrfs_update_inode_bytes(struct btrfs_inode * inode,const u64 add_bytes,const u64 del_bytes)10044 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10045 const u64 add_bytes,
10046 const u64 del_bytes)
10047 {
10048 if (add_bytes == del_bytes)
10049 return;
10050
10051 spin_lock(&inode->lock);
10052 if (del_bytes > 0)
10053 inode_sub_bytes(&inode->vfs_inode, del_bytes);
10054 if (add_bytes > 0)
10055 inode_add_bytes(&inode->vfs_inode, add_bytes);
10056 spin_unlock(&inode->lock);
10057 }
10058
10059 /*
10060 * Verify that there are no ordered extents for a given file range.
10061 *
10062 * @inode: The target inode.
10063 * @start: Start offset of the file range, should be sector size aligned.
10064 * @end: End offset (inclusive) of the file range, its value +1 should be
10065 * sector size aligned.
10066 *
10067 * This should typically be used for cases where we locked an inode's VFS lock in
10068 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
10069 * we have flushed all delalloc in the range, we have waited for all ordered
10070 * extents in the range to complete and finally we have locked the file range in
10071 * the inode's io_tree.
10072 */
btrfs_assert_inode_range_clean(struct btrfs_inode * inode,u64 start,u64 end)10073 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
10074 {
10075 struct btrfs_root *root = inode->root;
10076 struct btrfs_ordered_extent *ordered;
10077
10078 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
10079 return;
10080
10081 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
10082 if (ordered) {
10083 btrfs_err(root->fs_info,
10084 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
10085 start, end, btrfs_ino(inode), btrfs_root_id(root),
10086 ordered->file_offset,
10087 ordered->file_offset + ordered->num_bytes - 1);
10088 btrfs_put_ordered_extent(ordered);
10089 }
10090
10091 ASSERT(ordered == NULL);
10092 }
10093
10094 /*
10095 * Find the first inode with a minimum number.
10096 *
10097 * @root: The root to search for.
10098 * @min_ino: The minimum inode number.
10099 *
10100 * Find the first inode in the @root with a number >= @min_ino and return it.
10101 * Returns NULL if no such inode found.
10102 */
btrfs_find_first_inode(struct btrfs_root * root,u64 min_ino)10103 struct btrfs_inode *btrfs_find_first_inode(struct btrfs_root *root, u64 min_ino)
10104 {
10105 struct btrfs_inode *inode;
10106 unsigned long from = min_ino;
10107
10108 xa_lock(&root->inodes);
10109 while (true) {
10110 inode = xa_find(&root->inodes, &from, ULONG_MAX, XA_PRESENT);
10111 if (!inode)
10112 break;
10113 if (igrab(&inode->vfs_inode))
10114 break;
10115
10116 from = btrfs_ino(inode) + 1;
10117 cond_resched_lock(&root->inodes.xa_lock);
10118 }
10119 xa_unlock(&root->inodes);
10120
10121 return inode;
10122 }
10123
10124 static const struct inode_operations btrfs_dir_inode_operations = {
10125 .getattr = btrfs_getattr,
10126 .lookup = btrfs_lookup,
10127 .create = btrfs_create,
10128 .unlink = btrfs_unlink,
10129 .link = btrfs_link,
10130 .mkdir = btrfs_mkdir,
10131 .rmdir = btrfs_rmdir,
10132 .rename = btrfs_rename2,
10133 .symlink = btrfs_symlink,
10134 .setattr = btrfs_setattr,
10135 .mknod = btrfs_mknod,
10136 .listxattr = btrfs_listxattr,
10137 .permission = btrfs_permission,
10138 .get_inode_acl = btrfs_get_acl,
10139 .set_acl = btrfs_set_acl,
10140 .update_time = btrfs_update_time,
10141 .tmpfile = btrfs_tmpfile,
10142 .fileattr_get = btrfs_fileattr_get,
10143 .fileattr_set = btrfs_fileattr_set,
10144 };
10145
10146 static const struct file_operations btrfs_dir_file_operations = {
10147 .llseek = btrfs_dir_llseek,
10148 .read = generic_read_dir,
10149 .iterate_shared = btrfs_real_readdir,
10150 .open = btrfs_opendir,
10151 .unlocked_ioctl = btrfs_ioctl,
10152 #ifdef CONFIG_COMPAT
10153 .compat_ioctl = btrfs_compat_ioctl,
10154 #endif
10155 .release = btrfs_release_file,
10156 .fsync = btrfs_sync_file,
10157 };
10158
10159 /*
10160 * btrfs doesn't support the bmap operation because swapfiles
10161 * use bmap to make a mapping of extents in the file. They assume
10162 * these extents won't change over the life of the file and they
10163 * use the bmap result to do IO directly to the drive.
10164 *
10165 * the btrfs bmap call would return logical addresses that aren't
10166 * suitable for IO and they also will change frequently as COW
10167 * operations happen. So, swapfile + btrfs == corruption.
10168 *
10169 * For now we're avoiding this by dropping bmap.
10170 */
10171 static const struct address_space_operations btrfs_aops = {
10172 .read_folio = btrfs_read_folio,
10173 .writepages = btrfs_writepages,
10174 .readahead = btrfs_readahead,
10175 .invalidate_folio = btrfs_invalidate_folio,
10176 .launder_folio = btrfs_launder_folio,
10177 .release_folio = btrfs_release_folio,
10178 .migrate_folio = btrfs_migrate_folio,
10179 .dirty_folio = filemap_dirty_folio,
10180 .error_remove_folio = generic_error_remove_folio,
10181 .swap_activate = btrfs_swap_activate,
10182 .swap_deactivate = btrfs_swap_deactivate,
10183 };
10184
10185 static const struct inode_operations btrfs_file_inode_operations = {
10186 .getattr = btrfs_getattr,
10187 .setattr = btrfs_setattr,
10188 .listxattr = btrfs_listxattr,
10189 .permission = btrfs_permission,
10190 .fiemap = btrfs_fiemap,
10191 .get_inode_acl = btrfs_get_acl,
10192 .set_acl = btrfs_set_acl,
10193 .update_time = btrfs_update_time,
10194 .fileattr_get = btrfs_fileattr_get,
10195 .fileattr_set = btrfs_fileattr_set,
10196 };
10197 static const struct inode_operations btrfs_special_inode_operations = {
10198 .getattr = btrfs_getattr,
10199 .setattr = btrfs_setattr,
10200 .permission = btrfs_permission,
10201 .listxattr = btrfs_listxattr,
10202 .get_inode_acl = btrfs_get_acl,
10203 .set_acl = btrfs_set_acl,
10204 .update_time = btrfs_update_time,
10205 };
10206 static const struct inode_operations btrfs_symlink_inode_operations = {
10207 .get_link = page_get_link,
10208 .getattr = btrfs_getattr,
10209 .setattr = btrfs_setattr,
10210 .permission = btrfs_permission,
10211 .listxattr = btrfs_listxattr,
10212 .update_time = btrfs_update_time,
10213 };
10214
10215 const struct dentry_operations btrfs_dentry_operations = {
10216 .d_delete = btrfs_dentry_delete,
10217 };
10218