1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
5
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/pagevec.h>
12 #include <linux/highmem.h>
13 #include <linux/kthread.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/psi.h>
20 #include <linux/slab.h>
21 #include <linux/sched/mm.h>
22 #include <linux/log2.h>
23 #include <linux/shrinker.h>
24 #include <crypto/hash.h>
25 #include "misc.h"
26 #include "ctree.h"
27 #include "fs.h"
28 #include "btrfs_inode.h"
29 #include "bio.h"
30 #include "ordered-data.h"
31 #include "compression.h"
32 #include "extent_io.h"
33 #include "extent_map.h"
34 #include "subpage.h"
35 #include "messages.h"
36 #include "super.h"
37
38 static struct bio_set btrfs_compressed_bioset;
39
40 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
41
btrfs_compress_type2str(enum btrfs_compression_type type)42 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
43 {
44 switch (type) {
45 case BTRFS_COMPRESS_ZLIB:
46 case BTRFS_COMPRESS_LZO:
47 case BTRFS_COMPRESS_ZSTD:
48 case BTRFS_COMPRESS_NONE:
49 return btrfs_compress_types[type];
50 default:
51 break;
52 }
53
54 return NULL;
55 }
56
to_compressed_bio(struct btrfs_bio * bbio)57 static inline struct compressed_bio *to_compressed_bio(struct btrfs_bio *bbio)
58 {
59 return container_of(bbio, struct compressed_bio, bbio);
60 }
61
alloc_compressed_bio(struct btrfs_inode * inode,u64 start,blk_opf_t op,btrfs_bio_end_io_t end_io)62 static struct compressed_bio *alloc_compressed_bio(struct btrfs_inode *inode,
63 u64 start, blk_opf_t op,
64 btrfs_bio_end_io_t end_io)
65 {
66 struct btrfs_bio *bbio;
67
68 bbio = btrfs_bio(bio_alloc_bioset(NULL, BTRFS_MAX_COMPRESSED_PAGES, op,
69 GFP_NOFS, &btrfs_compressed_bioset));
70 btrfs_bio_init(bbio, inode->root->fs_info, end_io, NULL);
71 bbio->inode = inode;
72 bbio->file_offset = start;
73 return to_compressed_bio(bbio);
74 }
75
btrfs_compress_is_valid_type(const char * str,size_t len)76 bool btrfs_compress_is_valid_type(const char *str, size_t len)
77 {
78 int i;
79
80 for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
81 size_t comp_len = strlen(btrfs_compress_types[i]);
82
83 if (len < comp_len)
84 continue;
85
86 if (!strncmp(btrfs_compress_types[i], str, comp_len))
87 return true;
88 }
89 return false;
90 }
91
compression_compress_pages(int type,struct list_head * ws,struct address_space * mapping,u64 start,struct folio ** folios,unsigned long * out_folios,unsigned long * total_in,unsigned long * total_out)92 static int compression_compress_pages(int type, struct list_head *ws,
93 struct address_space *mapping, u64 start,
94 struct folio **folios, unsigned long *out_folios,
95 unsigned long *total_in, unsigned long *total_out)
96 {
97 switch (type) {
98 case BTRFS_COMPRESS_ZLIB:
99 return zlib_compress_folios(ws, mapping, start, folios,
100 out_folios, total_in, total_out);
101 case BTRFS_COMPRESS_LZO:
102 return lzo_compress_folios(ws, mapping, start, folios,
103 out_folios, total_in, total_out);
104 case BTRFS_COMPRESS_ZSTD:
105 return zstd_compress_folios(ws, mapping, start, folios,
106 out_folios, total_in, total_out);
107 case BTRFS_COMPRESS_NONE:
108 default:
109 /*
110 * This can happen when compression races with remount setting
111 * it to 'no compress', while caller doesn't call
112 * inode_need_compress() to check if we really need to
113 * compress.
114 *
115 * Not a big deal, just need to inform caller that we
116 * haven't allocated any pages yet.
117 */
118 *out_folios = 0;
119 return -E2BIG;
120 }
121 }
122
compression_decompress_bio(struct list_head * ws,struct compressed_bio * cb)123 static int compression_decompress_bio(struct list_head *ws,
124 struct compressed_bio *cb)
125 {
126 switch (cb->compress_type) {
127 case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
128 case BTRFS_COMPRESS_LZO: return lzo_decompress_bio(ws, cb);
129 case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
130 case BTRFS_COMPRESS_NONE:
131 default:
132 /*
133 * This can't happen, the type is validated several times
134 * before we get here.
135 */
136 BUG();
137 }
138 }
139
compression_decompress(int type,struct list_head * ws,const u8 * data_in,struct folio * dest_folio,unsigned long dest_pgoff,size_t srclen,size_t destlen)140 static int compression_decompress(int type, struct list_head *ws,
141 const u8 *data_in, struct folio *dest_folio,
142 unsigned long dest_pgoff, size_t srclen, size_t destlen)
143 {
144 switch (type) {
145 case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_folio,
146 dest_pgoff, srclen, destlen);
147 case BTRFS_COMPRESS_LZO: return lzo_decompress(ws, data_in, dest_folio,
148 dest_pgoff, srclen, destlen);
149 case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_folio,
150 dest_pgoff, srclen, destlen);
151 case BTRFS_COMPRESS_NONE:
152 default:
153 /*
154 * This can't happen, the type is validated several times
155 * before we get here.
156 */
157 BUG();
158 }
159 }
160
btrfs_free_compressed_folios(struct compressed_bio * cb)161 static void btrfs_free_compressed_folios(struct compressed_bio *cb)
162 {
163 for (unsigned int i = 0; i < cb->nr_folios; i++)
164 btrfs_free_compr_folio(cb->compressed_folios[i]);
165 kfree(cb->compressed_folios);
166 }
167
168 static int btrfs_decompress_bio(struct compressed_bio *cb);
169
170 /*
171 * Global cache of last unused pages for compression/decompression.
172 */
173 static struct btrfs_compr_pool {
174 struct shrinker *shrinker;
175 spinlock_t lock;
176 struct list_head list;
177 int count;
178 int thresh;
179 } compr_pool;
180
btrfs_compr_pool_count(struct shrinker * sh,struct shrink_control * sc)181 static unsigned long btrfs_compr_pool_count(struct shrinker *sh, struct shrink_control *sc)
182 {
183 int ret;
184
185 /*
186 * We must not read the values more than once if 'ret' gets expanded in
187 * the return statement so we don't accidentally return a negative
188 * number, even if the first condition finds it positive.
189 */
190 ret = READ_ONCE(compr_pool.count) - READ_ONCE(compr_pool.thresh);
191
192 return ret > 0 ? ret : 0;
193 }
194
btrfs_compr_pool_scan(struct shrinker * sh,struct shrink_control * sc)195 static unsigned long btrfs_compr_pool_scan(struct shrinker *sh, struct shrink_control *sc)
196 {
197 struct list_head remove;
198 struct list_head *tmp, *next;
199 int freed;
200
201 if (compr_pool.count == 0)
202 return SHRINK_STOP;
203
204 INIT_LIST_HEAD(&remove);
205
206 /* For now, just simply drain the whole list. */
207 spin_lock(&compr_pool.lock);
208 list_splice_init(&compr_pool.list, &remove);
209 freed = compr_pool.count;
210 compr_pool.count = 0;
211 spin_unlock(&compr_pool.lock);
212
213 list_for_each_safe(tmp, next, &remove) {
214 struct page *page = list_entry(tmp, struct page, lru);
215
216 ASSERT(page_ref_count(page) == 1);
217 put_page(page);
218 }
219
220 return freed;
221 }
222
223 /*
224 * Common wrappers for page allocation from compression wrappers
225 */
btrfs_alloc_compr_folio(void)226 struct folio *btrfs_alloc_compr_folio(void)
227 {
228 struct folio *folio = NULL;
229
230 spin_lock(&compr_pool.lock);
231 if (compr_pool.count > 0) {
232 folio = list_first_entry(&compr_pool.list, struct folio, lru);
233 list_del_init(&folio->lru);
234 compr_pool.count--;
235 }
236 spin_unlock(&compr_pool.lock);
237
238 if (folio)
239 return folio;
240
241 return folio_alloc(GFP_NOFS, 0);
242 }
243
btrfs_free_compr_folio(struct folio * folio)244 void btrfs_free_compr_folio(struct folio *folio)
245 {
246 bool do_free = false;
247
248 spin_lock(&compr_pool.lock);
249 if (compr_pool.count > compr_pool.thresh) {
250 do_free = true;
251 } else {
252 list_add(&folio->lru, &compr_pool.list);
253 compr_pool.count++;
254 }
255 spin_unlock(&compr_pool.lock);
256
257 if (!do_free)
258 return;
259
260 ASSERT(folio_ref_count(folio) == 1);
261 folio_put(folio);
262 }
263
end_bbio_compressed_read(struct btrfs_bio * bbio)264 static void end_bbio_compressed_read(struct btrfs_bio *bbio)
265 {
266 struct compressed_bio *cb = to_compressed_bio(bbio);
267 blk_status_t status = bbio->bio.bi_status;
268
269 if (!status)
270 status = errno_to_blk_status(btrfs_decompress_bio(cb));
271
272 btrfs_free_compressed_folios(cb);
273 btrfs_bio_end_io(cb->orig_bbio, status);
274 bio_put(&bbio->bio);
275 }
276
277 /*
278 * Clear the writeback bits on all of the file
279 * pages for a compressed write
280 */
end_compressed_writeback(const struct compressed_bio * cb)281 static noinline void end_compressed_writeback(const struct compressed_bio *cb)
282 {
283 struct inode *inode = &cb->bbio.inode->vfs_inode;
284 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
285 unsigned long index = cb->start >> PAGE_SHIFT;
286 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
287 struct folio_batch fbatch;
288 const int error = blk_status_to_errno(cb->bbio.bio.bi_status);
289 int i;
290 int ret;
291
292 if (error)
293 mapping_set_error(inode->i_mapping, error);
294
295 folio_batch_init(&fbatch);
296 while (index <= end_index) {
297 ret = filemap_get_folios(inode->i_mapping, &index, end_index,
298 &fbatch);
299
300 if (ret == 0)
301 return;
302
303 for (i = 0; i < ret; i++) {
304 struct folio *folio = fbatch.folios[i];
305
306 btrfs_folio_clamp_clear_writeback(fs_info, folio,
307 cb->start, cb->len);
308 }
309 folio_batch_release(&fbatch);
310 }
311 /* the inode may be gone now */
312 }
313
btrfs_finish_compressed_write_work(struct work_struct * work)314 static void btrfs_finish_compressed_write_work(struct work_struct *work)
315 {
316 struct compressed_bio *cb =
317 container_of(work, struct compressed_bio, write_end_work);
318
319 btrfs_finish_ordered_extent(cb->bbio.ordered, NULL, cb->start, cb->len,
320 cb->bbio.bio.bi_status == BLK_STS_OK);
321
322 if (cb->writeback)
323 end_compressed_writeback(cb);
324 /* Note, our inode could be gone now */
325
326 btrfs_free_compressed_folios(cb);
327 bio_put(&cb->bbio.bio);
328 }
329
330 /*
331 * Do the cleanup once all the compressed pages hit the disk. This will clear
332 * writeback on the file pages and free the compressed pages.
333 *
334 * This also calls the writeback end hooks for the file pages so that metadata
335 * and checksums can be updated in the file.
336 */
end_bbio_compressed_write(struct btrfs_bio * bbio)337 static void end_bbio_compressed_write(struct btrfs_bio *bbio)
338 {
339 struct compressed_bio *cb = to_compressed_bio(bbio);
340 struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info;
341
342 queue_work(fs_info->compressed_write_workers, &cb->write_end_work);
343 }
344
btrfs_add_compressed_bio_folios(struct compressed_bio * cb)345 static void btrfs_add_compressed_bio_folios(struct compressed_bio *cb)
346 {
347 struct bio *bio = &cb->bbio.bio;
348 u32 offset = 0;
349
350 while (offset < cb->compressed_len) {
351 int ret;
352 u32 len = min_t(u32, cb->compressed_len - offset, PAGE_SIZE);
353
354 /* Maximum compressed extent is smaller than bio size limit. */
355 ret = bio_add_folio(bio, cb->compressed_folios[offset >> PAGE_SHIFT],
356 len, 0);
357 ASSERT(ret);
358 offset += len;
359 }
360 }
361
362 /*
363 * worker function to build and submit bios for previously compressed pages.
364 * The corresponding pages in the inode should be marked for writeback
365 * and the compressed pages should have a reference on them for dropping
366 * when the IO is complete.
367 *
368 * This also checksums the file bytes and gets things ready for
369 * the end io hooks.
370 */
btrfs_submit_compressed_write(struct btrfs_ordered_extent * ordered,struct folio ** compressed_folios,unsigned int nr_folios,blk_opf_t write_flags,bool writeback)371 void btrfs_submit_compressed_write(struct btrfs_ordered_extent *ordered,
372 struct folio **compressed_folios,
373 unsigned int nr_folios,
374 blk_opf_t write_flags,
375 bool writeback)
376 {
377 struct btrfs_inode *inode = ordered->inode;
378 struct btrfs_fs_info *fs_info = inode->root->fs_info;
379 struct compressed_bio *cb;
380
381 ASSERT(IS_ALIGNED(ordered->file_offset, fs_info->sectorsize));
382 ASSERT(IS_ALIGNED(ordered->num_bytes, fs_info->sectorsize));
383
384 cb = alloc_compressed_bio(inode, ordered->file_offset,
385 REQ_OP_WRITE | write_flags,
386 end_bbio_compressed_write);
387 cb->start = ordered->file_offset;
388 cb->len = ordered->num_bytes;
389 cb->compressed_folios = compressed_folios;
390 cb->compressed_len = ordered->disk_num_bytes;
391 cb->writeback = writeback;
392 INIT_WORK(&cb->write_end_work, btrfs_finish_compressed_write_work);
393 cb->nr_folios = nr_folios;
394 cb->bbio.bio.bi_iter.bi_sector = ordered->disk_bytenr >> SECTOR_SHIFT;
395 cb->bbio.ordered = ordered;
396 btrfs_add_compressed_bio_folios(cb);
397
398 btrfs_submit_bbio(&cb->bbio, 0);
399 }
400
401 /*
402 * Add extra pages in the same compressed file extent so that we don't need to
403 * re-read the same extent again and again.
404 *
405 * NOTE: this won't work well for subpage, as for subpage read, we lock the
406 * full page then submit bio for each compressed/regular extents.
407 *
408 * This means, if we have several sectors in the same page points to the same
409 * on-disk compressed data, we will re-read the same extent many times and
410 * this function can only help for the next page.
411 */
add_ra_bio_pages(struct inode * inode,u64 compressed_end,struct compressed_bio * cb,int * memstall,unsigned long * pflags)412 static noinline int add_ra_bio_pages(struct inode *inode,
413 u64 compressed_end,
414 struct compressed_bio *cb,
415 int *memstall, unsigned long *pflags)
416 {
417 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
418 unsigned long end_index;
419 struct bio *orig_bio = &cb->orig_bbio->bio;
420 u64 cur = cb->orig_bbio->file_offset + orig_bio->bi_iter.bi_size;
421 u64 isize = i_size_read(inode);
422 int ret;
423 struct folio *folio;
424 struct extent_map *em;
425 struct address_space *mapping = inode->i_mapping;
426 struct extent_map_tree *em_tree;
427 struct extent_io_tree *tree;
428 int sectors_missed = 0;
429
430 em_tree = &BTRFS_I(inode)->extent_tree;
431 tree = &BTRFS_I(inode)->io_tree;
432
433 if (isize == 0)
434 return 0;
435
436 /*
437 * For current subpage support, we only support 64K page size,
438 * which means maximum compressed extent size (128K) is just 2x page
439 * size.
440 * This makes readahead less effective, so here disable readahead for
441 * subpage for now, until full compressed write is supported.
442 */
443 if (fs_info->sectorsize < PAGE_SIZE)
444 return 0;
445
446 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
447
448 while (cur < compressed_end) {
449 u64 page_end;
450 u64 pg_index = cur >> PAGE_SHIFT;
451 u32 add_size;
452
453 if (pg_index > end_index)
454 break;
455
456 folio = __filemap_get_folio(mapping, pg_index, 0, 0);
457 if (!IS_ERR(folio)) {
458 u64 folio_sz = folio_size(folio);
459 u64 offset = offset_in_folio(folio, cur);
460
461 folio_put(folio);
462 sectors_missed += (folio_sz - offset) >>
463 fs_info->sectorsize_bits;
464
465 /* Beyond threshold, no need to continue */
466 if (sectors_missed > 4)
467 break;
468
469 /*
470 * Jump to next page start as we already have page for
471 * current offset.
472 */
473 cur += (folio_sz - offset);
474 continue;
475 }
476
477 folio = filemap_alloc_folio(mapping_gfp_constraint(mapping,
478 ~__GFP_FS), 0);
479 if (!folio)
480 break;
481
482 if (filemap_add_folio(mapping, folio, pg_index, GFP_NOFS)) {
483 /* There is already a page, skip to page end */
484 cur += folio_size(folio);
485 folio_put(folio);
486 continue;
487 }
488
489 if (!*memstall && folio_test_workingset(folio)) {
490 psi_memstall_enter(pflags);
491 *memstall = 1;
492 }
493
494 ret = set_folio_extent_mapped(folio);
495 if (ret < 0) {
496 folio_unlock(folio);
497 folio_put(folio);
498 break;
499 }
500
501 page_end = (pg_index << PAGE_SHIFT) + folio_size(folio) - 1;
502 lock_extent(tree, cur, page_end, NULL);
503 read_lock(&em_tree->lock);
504 em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur);
505 read_unlock(&em_tree->lock);
506
507 /*
508 * At this point, we have a locked page in the page cache for
509 * these bytes in the file. But, we have to make sure they map
510 * to this compressed extent on disk.
511 */
512 if (!em || cur < em->start ||
513 (cur + fs_info->sectorsize > extent_map_end(em)) ||
514 (extent_map_block_start(em) >> SECTOR_SHIFT) !=
515 orig_bio->bi_iter.bi_sector) {
516 free_extent_map(em);
517 unlock_extent(tree, cur, page_end, NULL);
518 folio_unlock(folio);
519 folio_put(folio);
520 break;
521 }
522 add_size = min(em->start + em->len, page_end + 1) - cur;
523 free_extent_map(em);
524 unlock_extent(tree, cur, page_end, NULL);
525
526 if (folio->index == end_index) {
527 size_t zero_offset = offset_in_folio(folio, isize);
528
529 if (zero_offset) {
530 int zeros;
531 zeros = folio_size(folio) - zero_offset;
532 folio_zero_range(folio, zero_offset, zeros);
533 }
534 }
535
536 if (!bio_add_folio(orig_bio, folio, add_size,
537 offset_in_folio(folio, cur))) {
538 folio_unlock(folio);
539 folio_put(folio);
540 break;
541 }
542 /*
543 * If it's subpage, we also need to increase its
544 * subpage::readers number, as at endio we will decrease
545 * subpage::readers and to unlock the page.
546 */
547 if (fs_info->sectorsize < PAGE_SIZE)
548 btrfs_subpage_start_reader(fs_info, folio, cur,
549 add_size);
550 folio_put(folio);
551 cur += add_size;
552 }
553 return 0;
554 }
555
556 /*
557 * for a compressed read, the bio we get passed has all the inode pages
558 * in it. We don't actually do IO on those pages but allocate new ones
559 * to hold the compressed pages on disk.
560 *
561 * bio->bi_iter.bi_sector points to the compressed extent on disk
562 * bio->bi_io_vec points to all of the inode pages
563 *
564 * After the compressed pages are read, we copy the bytes into the
565 * bio we were passed and then call the bio end_io calls
566 */
btrfs_submit_compressed_read(struct btrfs_bio * bbio)567 void btrfs_submit_compressed_read(struct btrfs_bio *bbio)
568 {
569 struct btrfs_inode *inode = bbio->inode;
570 struct btrfs_fs_info *fs_info = inode->root->fs_info;
571 struct extent_map_tree *em_tree = &inode->extent_tree;
572 struct compressed_bio *cb;
573 unsigned int compressed_len;
574 u64 file_offset = bbio->file_offset;
575 u64 em_len;
576 u64 em_start;
577 struct extent_map *em;
578 unsigned long pflags;
579 int memstall = 0;
580 blk_status_t ret;
581 int ret2;
582
583 /* we need the actual starting offset of this extent in the file */
584 read_lock(&em_tree->lock);
585 em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
586 read_unlock(&em_tree->lock);
587 if (!em) {
588 ret = BLK_STS_IOERR;
589 goto out;
590 }
591
592 ASSERT(extent_map_is_compressed(em));
593 compressed_len = em->disk_num_bytes;
594
595 cb = alloc_compressed_bio(inode, file_offset, REQ_OP_READ,
596 end_bbio_compressed_read);
597
598 cb->start = em->start - em->offset;
599 em_len = em->len;
600 em_start = em->start;
601
602 cb->len = bbio->bio.bi_iter.bi_size;
603 cb->compressed_len = compressed_len;
604 cb->compress_type = extent_map_compression(em);
605 cb->orig_bbio = bbio;
606
607 free_extent_map(em);
608
609 cb->nr_folios = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
610 cb->compressed_folios = kcalloc(cb->nr_folios, sizeof(struct page *), GFP_NOFS);
611 if (!cb->compressed_folios) {
612 ret = BLK_STS_RESOURCE;
613 goto out_free_bio;
614 }
615
616 ret2 = btrfs_alloc_folio_array(cb->nr_folios, cb->compressed_folios);
617 if (ret2) {
618 ret = BLK_STS_RESOURCE;
619 goto out_free_compressed_pages;
620 }
621
622 add_ra_bio_pages(&inode->vfs_inode, em_start + em_len, cb, &memstall,
623 &pflags);
624
625 /* include any pages we added in add_ra-bio_pages */
626 cb->len = bbio->bio.bi_iter.bi_size;
627 cb->bbio.bio.bi_iter.bi_sector = bbio->bio.bi_iter.bi_sector;
628 btrfs_add_compressed_bio_folios(cb);
629
630 if (memstall)
631 psi_memstall_leave(&pflags);
632
633 btrfs_submit_bbio(&cb->bbio, 0);
634 return;
635
636 out_free_compressed_pages:
637 kfree(cb->compressed_folios);
638 out_free_bio:
639 bio_put(&cb->bbio.bio);
640 out:
641 btrfs_bio_end_io(bbio, ret);
642 }
643
644 /*
645 * Heuristic uses systematic sampling to collect data from the input data
646 * range, the logic can be tuned by the following constants:
647 *
648 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
649 * @SAMPLING_INTERVAL - range from which the sampled data can be collected
650 */
651 #define SAMPLING_READ_SIZE (16)
652 #define SAMPLING_INTERVAL (256)
653
654 /*
655 * For statistical analysis of the input data we consider bytes that form a
656 * Galois Field of 256 objects. Each object has an attribute count, ie. how
657 * many times the object appeared in the sample.
658 */
659 #define BUCKET_SIZE (256)
660
661 /*
662 * The size of the sample is based on a statistical sampling rule of thumb.
663 * The common way is to perform sampling tests as long as the number of
664 * elements in each cell is at least 5.
665 *
666 * Instead of 5, we choose 32 to obtain more accurate results.
667 * If the data contain the maximum number of symbols, which is 256, we obtain a
668 * sample size bound by 8192.
669 *
670 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
671 * from up to 512 locations.
672 */
673 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \
674 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
675
676 struct bucket_item {
677 u32 count;
678 };
679
680 struct heuristic_ws {
681 /* Partial copy of input data */
682 u8 *sample;
683 u32 sample_size;
684 /* Buckets store counters for each byte value */
685 struct bucket_item *bucket;
686 /* Sorting buffer */
687 struct bucket_item *bucket_b;
688 struct list_head list;
689 };
690
691 static struct workspace_manager heuristic_wsm;
692
free_heuristic_ws(struct list_head * ws)693 static void free_heuristic_ws(struct list_head *ws)
694 {
695 struct heuristic_ws *workspace;
696
697 workspace = list_entry(ws, struct heuristic_ws, list);
698
699 kvfree(workspace->sample);
700 kfree(workspace->bucket);
701 kfree(workspace->bucket_b);
702 kfree(workspace);
703 }
704
alloc_heuristic_ws(unsigned int level)705 static struct list_head *alloc_heuristic_ws(unsigned int level)
706 {
707 struct heuristic_ws *ws;
708
709 ws = kzalloc(sizeof(*ws), GFP_KERNEL);
710 if (!ws)
711 return ERR_PTR(-ENOMEM);
712
713 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
714 if (!ws->sample)
715 goto fail;
716
717 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
718 if (!ws->bucket)
719 goto fail;
720
721 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
722 if (!ws->bucket_b)
723 goto fail;
724
725 INIT_LIST_HEAD(&ws->list);
726 return &ws->list;
727 fail:
728 free_heuristic_ws(&ws->list);
729 return ERR_PTR(-ENOMEM);
730 }
731
732 const struct btrfs_compress_op btrfs_heuristic_compress = {
733 .workspace_manager = &heuristic_wsm,
734 };
735
736 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
737 /* The heuristic is represented as compression type 0 */
738 &btrfs_heuristic_compress,
739 &btrfs_zlib_compress,
740 &btrfs_lzo_compress,
741 &btrfs_zstd_compress,
742 };
743
alloc_workspace(int type,unsigned int level)744 static struct list_head *alloc_workspace(int type, unsigned int level)
745 {
746 switch (type) {
747 case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
748 case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
749 case BTRFS_COMPRESS_LZO: return lzo_alloc_workspace(level);
750 case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
751 default:
752 /*
753 * This can't happen, the type is validated several times
754 * before we get here.
755 */
756 BUG();
757 }
758 }
759
free_workspace(int type,struct list_head * ws)760 static void free_workspace(int type, struct list_head *ws)
761 {
762 switch (type) {
763 case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
764 case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
765 case BTRFS_COMPRESS_LZO: return lzo_free_workspace(ws);
766 case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
767 default:
768 /*
769 * This can't happen, the type is validated several times
770 * before we get here.
771 */
772 BUG();
773 }
774 }
775
btrfs_init_workspace_manager(int type)776 static void btrfs_init_workspace_manager(int type)
777 {
778 struct workspace_manager *wsm;
779 struct list_head *workspace;
780
781 wsm = btrfs_compress_op[type]->workspace_manager;
782 INIT_LIST_HEAD(&wsm->idle_ws);
783 spin_lock_init(&wsm->ws_lock);
784 atomic_set(&wsm->total_ws, 0);
785 init_waitqueue_head(&wsm->ws_wait);
786
787 /*
788 * Preallocate one workspace for each compression type so we can
789 * guarantee forward progress in the worst case
790 */
791 workspace = alloc_workspace(type, 0);
792 if (IS_ERR(workspace)) {
793 pr_warn(
794 "BTRFS: cannot preallocate compression workspace, will try later\n");
795 } else {
796 atomic_set(&wsm->total_ws, 1);
797 wsm->free_ws = 1;
798 list_add(workspace, &wsm->idle_ws);
799 }
800 }
801
btrfs_cleanup_workspace_manager(int type)802 static void btrfs_cleanup_workspace_manager(int type)
803 {
804 struct workspace_manager *wsman;
805 struct list_head *ws;
806
807 wsman = btrfs_compress_op[type]->workspace_manager;
808 while (!list_empty(&wsman->idle_ws)) {
809 ws = wsman->idle_ws.next;
810 list_del(ws);
811 free_workspace(type, ws);
812 atomic_dec(&wsman->total_ws);
813 }
814 }
815
816 /*
817 * This finds an available workspace or allocates a new one.
818 * If it's not possible to allocate a new one, waits until there's one.
819 * Preallocation makes a forward progress guarantees and we do not return
820 * errors.
821 */
btrfs_get_workspace(int type,unsigned int level)822 struct list_head *btrfs_get_workspace(int type, unsigned int level)
823 {
824 struct workspace_manager *wsm;
825 struct list_head *workspace;
826 int cpus = num_online_cpus();
827 unsigned nofs_flag;
828 struct list_head *idle_ws;
829 spinlock_t *ws_lock;
830 atomic_t *total_ws;
831 wait_queue_head_t *ws_wait;
832 int *free_ws;
833
834 wsm = btrfs_compress_op[type]->workspace_manager;
835 idle_ws = &wsm->idle_ws;
836 ws_lock = &wsm->ws_lock;
837 total_ws = &wsm->total_ws;
838 ws_wait = &wsm->ws_wait;
839 free_ws = &wsm->free_ws;
840
841 again:
842 spin_lock(ws_lock);
843 if (!list_empty(idle_ws)) {
844 workspace = idle_ws->next;
845 list_del(workspace);
846 (*free_ws)--;
847 spin_unlock(ws_lock);
848 return workspace;
849
850 }
851 if (atomic_read(total_ws) > cpus) {
852 DEFINE_WAIT(wait);
853
854 spin_unlock(ws_lock);
855 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
856 if (atomic_read(total_ws) > cpus && !*free_ws)
857 schedule();
858 finish_wait(ws_wait, &wait);
859 goto again;
860 }
861 atomic_inc(total_ws);
862 spin_unlock(ws_lock);
863
864 /*
865 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
866 * to turn it off here because we might get called from the restricted
867 * context of btrfs_compress_bio/btrfs_compress_pages
868 */
869 nofs_flag = memalloc_nofs_save();
870 workspace = alloc_workspace(type, level);
871 memalloc_nofs_restore(nofs_flag);
872
873 if (IS_ERR(workspace)) {
874 atomic_dec(total_ws);
875 wake_up(ws_wait);
876
877 /*
878 * Do not return the error but go back to waiting. There's a
879 * workspace preallocated for each type and the compression
880 * time is bounded so we get to a workspace eventually. This
881 * makes our caller's life easier.
882 *
883 * To prevent silent and low-probability deadlocks (when the
884 * initial preallocation fails), check if there are any
885 * workspaces at all.
886 */
887 if (atomic_read(total_ws) == 0) {
888 static DEFINE_RATELIMIT_STATE(_rs,
889 /* once per minute */ 60 * HZ,
890 /* no burst */ 1);
891
892 if (__ratelimit(&_rs)) {
893 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
894 }
895 }
896 goto again;
897 }
898 return workspace;
899 }
900
get_workspace(int type,int level)901 static struct list_head *get_workspace(int type, int level)
902 {
903 switch (type) {
904 case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
905 case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
906 case BTRFS_COMPRESS_LZO: return btrfs_get_workspace(type, level);
907 case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
908 default:
909 /*
910 * This can't happen, the type is validated several times
911 * before we get here.
912 */
913 BUG();
914 }
915 }
916
917 /*
918 * put a workspace struct back on the list or free it if we have enough
919 * idle ones sitting around
920 */
btrfs_put_workspace(int type,struct list_head * ws)921 void btrfs_put_workspace(int type, struct list_head *ws)
922 {
923 struct workspace_manager *wsm;
924 struct list_head *idle_ws;
925 spinlock_t *ws_lock;
926 atomic_t *total_ws;
927 wait_queue_head_t *ws_wait;
928 int *free_ws;
929
930 wsm = btrfs_compress_op[type]->workspace_manager;
931 idle_ws = &wsm->idle_ws;
932 ws_lock = &wsm->ws_lock;
933 total_ws = &wsm->total_ws;
934 ws_wait = &wsm->ws_wait;
935 free_ws = &wsm->free_ws;
936
937 spin_lock(ws_lock);
938 if (*free_ws <= num_online_cpus()) {
939 list_add(ws, idle_ws);
940 (*free_ws)++;
941 spin_unlock(ws_lock);
942 goto wake;
943 }
944 spin_unlock(ws_lock);
945
946 free_workspace(type, ws);
947 atomic_dec(total_ws);
948 wake:
949 cond_wake_up(ws_wait);
950 }
951
put_workspace(int type,struct list_head * ws)952 static void put_workspace(int type, struct list_head *ws)
953 {
954 switch (type) {
955 case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
956 case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
957 case BTRFS_COMPRESS_LZO: return btrfs_put_workspace(type, ws);
958 case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
959 default:
960 /*
961 * This can't happen, the type is validated several times
962 * before we get here.
963 */
964 BUG();
965 }
966 }
967
968 /*
969 * Adjust @level according to the limits of the compression algorithm or
970 * fallback to default
971 */
btrfs_compress_set_level(int type,unsigned level)972 static unsigned int btrfs_compress_set_level(int type, unsigned level)
973 {
974 const struct btrfs_compress_op *ops = btrfs_compress_op[type];
975
976 if (level == 0)
977 level = ops->default_level;
978 else
979 level = min(level, ops->max_level);
980
981 return level;
982 }
983
984 /* Wrapper around find_get_page(), with extra error message. */
btrfs_compress_filemap_get_folio(struct address_space * mapping,u64 start,struct folio ** in_folio_ret)985 int btrfs_compress_filemap_get_folio(struct address_space *mapping, u64 start,
986 struct folio **in_folio_ret)
987 {
988 struct folio *in_folio;
989
990 /*
991 * The compressed write path should have the folio locked already, thus
992 * we only need to grab one reference.
993 */
994 in_folio = filemap_get_folio(mapping, start >> PAGE_SHIFT);
995 if (IS_ERR(in_folio)) {
996 struct btrfs_inode *inode = BTRFS_I(mapping->host);
997
998 btrfs_crit(inode->root->fs_info,
999 "failed to get page cache, root %lld ino %llu file offset %llu",
1000 btrfs_root_id(inode->root), btrfs_ino(inode), start);
1001 return -ENOENT;
1002 }
1003 *in_folio_ret = in_folio;
1004 return 0;
1005 }
1006
1007 /*
1008 * Given an address space and start and length, compress the bytes into @pages
1009 * that are allocated on demand.
1010 *
1011 * @type_level is encoded algorithm and level, where level 0 means whatever
1012 * default the algorithm chooses and is opaque here;
1013 * - compression algo are 0-3
1014 * - the level are bits 4-7
1015 *
1016 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1017 * and returns number of actually allocated pages
1018 *
1019 * @total_in is used to return the number of bytes actually read. It
1020 * may be smaller than the input length if we had to exit early because we
1021 * ran out of room in the pages array or because we cross the
1022 * max_out threshold.
1023 *
1024 * @total_out is an in/out parameter, must be set to the input length and will
1025 * be also used to return the total number of compressed bytes
1026 */
btrfs_compress_folios(unsigned int type_level,struct address_space * mapping,u64 start,struct folio ** folios,unsigned long * out_folios,unsigned long * total_in,unsigned long * total_out)1027 int btrfs_compress_folios(unsigned int type_level, struct address_space *mapping,
1028 u64 start, struct folio **folios, unsigned long *out_folios,
1029 unsigned long *total_in, unsigned long *total_out)
1030 {
1031 int type = btrfs_compress_type(type_level);
1032 int level = btrfs_compress_level(type_level);
1033 struct list_head *workspace;
1034 int ret;
1035
1036 level = btrfs_compress_set_level(type, level);
1037 workspace = get_workspace(type, level);
1038 ret = compression_compress_pages(type, workspace, mapping, start, folios,
1039 out_folios, total_in, total_out);
1040 put_workspace(type, workspace);
1041 return ret;
1042 }
1043
btrfs_decompress_bio(struct compressed_bio * cb)1044 static int btrfs_decompress_bio(struct compressed_bio *cb)
1045 {
1046 struct list_head *workspace;
1047 int ret;
1048 int type = cb->compress_type;
1049
1050 workspace = get_workspace(type, 0);
1051 ret = compression_decompress_bio(workspace, cb);
1052 put_workspace(type, workspace);
1053
1054 if (!ret)
1055 zero_fill_bio(&cb->orig_bbio->bio);
1056 return ret;
1057 }
1058
1059 /*
1060 * a less complex decompression routine. Our compressed data fits in a
1061 * single page, and we want to read a single page out of it.
1062 * start_byte tells us the offset into the compressed data we're interested in
1063 */
btrfs_decompress(int type,const u8 * data_in,struct folio * dest_folio,unsigned long dest_pgoff,size_t srclen,size_t destlen)1064 int btrfs_decompress(int type, const u8 *data_in, struct folio *dest_folio,
1065 unsigned long dest_pgoff, size_t srclen, size_t destlen)
1066 {
1067 struct btrfs_fs_info *fs_info = folio_to_fs_info(dest_folio);
1068 struct list_head *workspace;
1069 const u32 sectorsize = fs_info->sectorsize;
1070 int ret;
1071
1072 /*
1073 * The full destination page range should not exceed the page size.
1074 * And the @destlen should not exceed sectorsize, as this is only called for
1075 * inline file extents, which should not exceed sectorsize.
1076 */
1077 ASSERT(dest_pgoff + destlen <= PAGE_SIZE && destlen <= sectorsize);
1078
1079 workspace = get_workspace(type, 0);
1080 ret = compression_decompress(type, workspace, data_in, dest_folio,
1081 dest_pgoff, srclen, destlen);
1082 put_workspace(type, workspace);
1083
1084 return ret;
1085 }
1086
btrfs_init_compress(void)1087 int __init btrfs_init_compress(void)
1088 {
1089 if (bioset_init(&btrfs_compressed_bioset, BIO_POOL_SIZE,
1090 offsetof(struct compressed_bio, bbio.bio),
1091 BIOSET_NEED_BVECS))
1092 return -ENOMEM;
1093
1094 compr_pool.shrinker = shrinker_alloc(SHRINKER_NONSLAB, "btrfs-compr-pages");
1095 if (!compr_pool.shrinker)
1096 return -ENOMEM;
1097
1098 btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1099 btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1100 btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1101 zstd_init_workspace_manager();
1102
1103 spin_lock_init(&compr_pool.lock);
1104 INIT_LIST_HEAD(&compr_pool.list);
1105 compr_pool.count = 0;
1106 /* 128K / 4K = 32, for 8 threads is 256 pages. */
1107 compr_pool.thresh = BTRFS_MAX_COMPRESSED / PAGE_SIZE * 8;
1108 compr_pool.shrinker->count_objects = btrfs_compr_pool_count;
1109 compr_pool.shrinker->scan_objects = btrfs_compr_pool_scan;
1110 compr_pool.shrinker->batch = 32;
1111 compr_pool.shrinker->seeks = DEFAULT_SEEKS;
1112 shrinker_register(compr_pool.shrinker);
1113
1114 return 0;
1115 }
1116
btrfs_exit_compress(void)1117 void __cold btrfs_exit_compress(void)
1118 {
1119 /* For now scan drains all pages and does not touch the parameters. */
1120 btrfs_compr_pool_scan(NULL, NULL);
1121 shrinker_free(compr_pool.shrinker);
1122
1123 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1124 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1125 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1126 zstd_cleanup_workspace_manager();
1127 bioset_exit(&btrfs_compressed_bioset);
1128 }
1129
1130 /*
1131 * Copy decompressed data from working buffer to pages.
1132 *
1133 * @buf: The decompressed data buffer
1134 * @buf_len: The decompressed data length
1135 * @decompressed: Number of bytes that are already decompressed inside the
1136 * compressed extent
1137 * @cb: The compressed extent descriptor
1138 * @orig_bio: The original bio that the caller wants to read for
1139 *
1140 * An easier to understand graph is like below:
1141 *
1142 * |<- orig_bio ->| |<- orig_bio->|
1143 * |<------- full decompressed extent ----->|
1144 * |<----------- @cb range ---->|
1145 * | |<-- @buf_len -->|
1146 * |<--- @decompressed --->|
1147 *
1148 * Note that, @cb can be a subpage of the full decompressed extent, but
1149 * @cb->start always has the same as the orig_file_offset value of the full
1150 * decompressed extent.
1151 *
1152 * When reading compressed extent, we have to read the full compressed extent,
1153 * while @orig_bio may only want part of the range.
1154 * Thus this function will ensure only data covered by @orig_bio will be copied
1155 * to.
1156 *
1157 * Return 0 if we have copied all needed contents for @orig_bio.
1158 * Return >0 if we need continue decompress.
1159 */
btrfs_decompress_buf2page(const char * buf,u32 buf_len,struct compressed_bio * cb,u32 decompressed)1160 int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
1161 struct compressed_bio *cb, u32 decompressed)
1162 {
1163 struct bio *orig_bio = &cb->orig_bbio->bio;
1164 /* Offset inside the full decompressed extent */
1165 u32 cur_offset;
1166
1167 cur_offset = decompressed;
1168 /* The main loop to do the copy */
1169 while (cur_offset < decompressed + buf_len) {
1170 struct bio_vec bvec;
1171 size_t copy_len;
1172 u32 copy_start;
1173 /* Offset inside the full decompressed extent */
1174 u32 bvec_offset;
1175
1176 bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
1177 /*
1178 * cb->start may underflow, but subtracting that value can still
1179 * give us correct offset inside the full decompressed extent.
1180 */
1181 bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start;
1182
1183 /* Haven't reached the bvec range, exit */
1184 if (decompressed + buf_len <= bvec_offset)
1185 return 1;
1186
1187 copy_start = max(cur_offset, bvec_offset);
1188 copy_len = min(bvec_offset + bvec.bv_len,
1189 decompressed + buf_len) - copy_start;
1190 ASSERT(copy_len);
1191
1192 /*
1193 * Extra range check to ensure we didn't go beyond
1194 * @buf + @buf_len.
1195 */
1196 ASSERT(copy_start - decompressed < buf_len);
1197 memcpy_to_page(bvec.bv_page, bvec.bv_offset,
1198 buf + copy_start - decompressed, copy_len);
1199 cur_offset += copy_len;
1200
1201 bio_advance(orig_bio, copy_len);
1202 /* Finished the bio */
1203 if (!orig_bio->bi_iter.bi_size)
1204 return 0;
1205 }
1206 return 1;
1207 }
1208
1209 /*
1210 * Shannon Entropy calculation
1211 *
1212 * Pure byte distribution analysis fails to determine compressibility of data.
1213 * Try calculating entropy to estimate the average minimum number of bits
1214 * needed to encode the sampled data.
1215 *
1216 * For convenience, return the percentage of needed bits, instead of amount of
1217 * bits directly.
1218 *
1219 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1220 * and can be compressible with high probability
1221 *
1222 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1223 *
1224 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1225 */
1226 #define ENTROPY_LVL_ACEPTABLE (65)
1227 #define ENTROPY_LVL_HIGH (80)
1228
1229 /*
1230 * For increasead precision in shannon_entropy calculation,
1231 * let's do pow(n, M) to save more digits after comma:
1232 *
1233 * - maximum int bit length is 64
1234 * - ilog2(MAX_SAMPLE_SIZE) -> 13
1235 * - 13 * 4 = 52 < 64 -> M = 4
1236 *
1237 * So use pow(n, 4).
1238 */
ilog2_w(u64 n)1239 static inline u32 ilog2_w(u64 n)
1240 {
1241 return ilog2(n * n * n * n);
1242 }
1243
shannon_entropy(struct heuristic_ws * ws)1244 static u32 shannon_entropy(struct heuristic_ws *ws)
1245 {
1246 const u32 entropy_max = 8 * ilog2_w(2);
1247 u32 entropy_sum = 0;
1248 u32 p, p_base, sz_base;
1249 u32 i;
1250
1251 sz_base = ilog2_w(ws->sample_size);
1252 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1253 p = ws->bucket[i].count;
1254 p_base = ilog2_w(p);
1255 entropy_sum += p * (sz_base - p_base);
1256 }
1257
1258 entropy_sum /= ws->sample_size;
1259 return entropy_sum * 100 / entropy_max;
1260 }
1261
1262 #define RADIX_BASE 4U
1263 #define COUNTERS_SIZE (1U << RADIX_BASE)
1264
get4bits(u64 num,int shift)1265 static u8 get4bits(u64 num, int shift) {
1266 u8 low4bits;
1267
1268 num >>= shift;
1269 /* Reverse order */
1270 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1271 return low4bits;
1272 }
1273
1274 /*
1275 * Use 4 bits as radix base
1276 * Use 16 u32 counters for calculating new position in buf array
1277 *
1278 * @array - array that will be sorted
1279 * @array_buf - buffer array to store sorting results
1280 * must be equal in size to @array
1281 * @num - array size
1282 */
radix_sort(struct bucket_item * array,struct bucket_item * array_buf,int num)1283 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1284 int num)
1285 {
1286 u64 max_num;
1287 u64 buf_num;
1288 u32 counters[COUNTERS_SIZE];
1289 u32 new_addr;
1290 u32 addr;
1291 int bitlen;
1292 int shift;
1293 int i;
1294
1295 /*
1296 * Try avoid useless loop iterations for small numbers stored in big
1297 * counters. Example: 48 33 4 ... in 64bit array
1298 */
1299 max_num = array[0].count;
1300 for (i = 1; i < num; i++) {
1301 buf_num = array[i].count;
1302 if (buf_num > max_num)
1303 max_num = buf_num;
1304 }
1305
1306 buf_num = ilog2(max_num);
1307 bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1308
1309 shift = 0;
1310 while (shift < bitlen) {
1311 memset(counters, 0, sizeof(counters));
1312
1313 for (i = 0; i < num; i++) {
1314 buf_num = array[i].count;
1315 addr = get4bits(buf_num, shift);
1316 counters[addr]++;
1317 }
1318
1319 for (i = 1; i < COUNTERS_SIZE; i++)
1320 counters[i] += counters[i - 1];
1321
1322 for (i = num - 1; i >= 0; i--) {
1323 buf_num = array[i].count;
1324 addr = get4bits(buf_num, shift);
1325 counters[addr]--;
1326 new_addr = counters[addr];
1327 array_buf[new_addr] = array[i];
1328 }
1329
1330 shift += RADIX_BASE;
1331
1332 /*
1333 * Normal radix expects to move data from a temporary array, to
1334 * the main one. But that requires some CPU time. Avoid that
1335 * by doing another sort iteration to original array instead of
1336 * memcpy()
1337 */
1338 memset(counters, 0, sizeof(counters));
1339
1340 for (i = 0; i < num; i ++) {
1341 buf_num = array_buf[i].count;
1342 addr = get4bits(buf_num, shift);
1343 counters[addr]++;
1344 }
1345
1346 for (i = 1; i < COUNTERS_SIZE; i++)
1347 counters[i] += counters[i - 1];
1348
1349 for (i = num - 1; i >= 0; i--) {
1350 buf_num = array_buf[i].count;
1351 addr = get4bits(buf_num, shift);
1352 counters[addr]--;
1353 new_addr = counters[addr];
1354 array[new_addr] = array_buf[i];
1355 }
1356
1357 shift += RADIX_BASE;
1358 }
1359 }
1360
1361 /*
1362 * Size of the core byte set - how many bytes cover 90% of the sample
1363 *
1364 * There are several types of structured binary data that use nearly all byte
1365 * values. The distribution can be uniform and counts in all buckets will be
1366 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1367 *
1368 * Other possibility is normal (Gaussian) distribution, where the data could
1369 * be potentially compressible, but we have to take a few more steps to decide
1370 * how much.
1371 *
1372 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently,
1373 * compression algo can easy fix that
1374 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1375 * probability is not compressible
1376 */
1377 #define BYTE_CORE_SET_LOW (64)
1378 #define BYTE_CORE_SET_HIGH (200)
1379
byte_core_set_size(struct heuristic_ws * ws)1380 static int byte_core_set_size(struct heuristic_ws *ws)
1381 {
1382 u32 i;
1383 u32 coreset_sum = 0;
1384 const u32 core_set_threshold = ws->sample_size * 90 / 100;
1385 struct bucket_item *bucket = ws->bucket;
1386
1387 /* Sort in reverse order */
1388 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1389
1390 for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1391 coreset_sum += bucket[i].count;
1392
1393 if (coreset_sum > core_set_threshold)
1394 return i;
1395
1396 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1397 coreset_sum += bucket[i].count;
1398 if (coreset_sum > core_set_threshold)
1399 break;
1400 }
1401
1402 return i;
1403 }
1404
1405 /*
1406 * Count byte values in buckets.
1407 * This heuristic can detect textual data (configs, xml, json, html, etc).
1408 * Because in most text-like data byte set is restricted to limited number of
1409 * possible characters, and that restriction in most cases makes data easy to
1410 * compress.
1411 *
1412 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1413 * less - compressible
1414 * more - need additional analysis
1415 */
1416 #define BYTE_SET_THRESHOLD (64)
1417
byte_set_size(const struct heuristic_ws * ws)1418 static u32 byte_set_size(const struct heuristic_ws *ws)
1419 {
1420 u32 i;
1421 u32 byte_set_size = 0;
1422
1423 for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1424 if (ws->bucket[i].count > 0)
1425 byte_set_size++;
1426 }
1427
1428 /*
1429 * Continue collecting count of byte values in buckets. If the byte
1430 * set size is bigger then the threshold, it's pointless to continue,
1431 * the detection technique would fail for this type of data.
1432 */
1433 for (; i < BUCKET_SIZE; i++) {
1434 if (ws->bucket[i].count > 0) {
1435 byte_set_size++;
1436 if (byte_set_size > BYTE_SET_THRESHOLD)
1437 return byte_set_size;
1438 }
1439 }
1440
1441 return byte_set_size;
1442 }
1443
sample_repeated_patterns(struct heuristic_ws * ws)1444 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1445 {
1446 const u32 half_of_sample = ws->sample_size / 2;
1447 const u8 *data = ws->sample;
1448
1449 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1450 }
1451
heuristic_collect_sample(struct inode * inode,u64 start,u64 end,struct heuristic_ws * ws)1452 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1453 struct heuristic_ws *ws)
1454 {
1455 struct page *page;
1456 u64 index, index_end;
1457 u32 i, curr_sample_pos;
1458 u8 *in_data;
1459
1460 /*
1461 * Compression handles the input data by chunks of 128KiB
1462 * (defined by BTRFS_MAX_UNCOMPRESSED)
1463 *
1464 * We do the same for the heuristic and loop over the whole range.
1465 *
1466 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1467 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1468 */
1469 if (end - start > BTRFS_MAX_UNCOMPRESSED)
1470 end = start + BTRFS_MAX_UNCOMPRESSED;
1471
1472 index = start >> PAGE_SHIFT;
1473 index_end = end >> PAGE_SHIFT;
1474
1475 /* Don't miss unaligned end */
1476 if (!PAGE_ALIGNED(end))
1477 index_end++;
1478
1479 curr_sample_pos = 0;
1480 while (index < index_end) {
1481 page = find_get_page(inode->i_mapping, index);
1482 in_data = kmap_local_page(page);
1483 /* Handle case where the start is not aligned to PAGE_SIZE */
1484 i = start % PAGE_SIZE;
1485 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1486 /* Don't sample any garbage from the last page */
1487 if (start > end - SAMPLING_READ_SIZE)
1488 break;
1489 memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1490 SAMPLING_READ_SIZE);
1491 i += SAMPLING_INTERVAL;
1492 start += SAMPLING_INTERVAL;
1493 curr_sample_pos += SAMPLING_READ_SIZE;
1494 }
1495 kunmap_local(in_data);
1496 put_page(page);
1497
1498 index++;
1499 }
1500
1501 ws->sample_size = curr_sample_pos;
1502 }
1503
1504 /*
1505 * Compression heuristic.
1506 *
1507 * The following types of analysis can be performed:
1508 * - detect mostly zero data
1509 * - detect data with low "byte set" size (text, etc)
1510 * - detect data with low/high "core byte" set
1511 *
1512 * Return non-zero if the compression should be done, 0 otherwise.
1513 */
btrfs_compress_heuristic(struct btrfs_inode * inode,u64 start,u64 end)1514 int btrfs_compress_heuristic(struct btrfs_inode *inode, u64 start, u64 end)
1515 {
1516 struct list_head *ws_list = get_workspace(0, 0);
1517 struct heuristic_ws *ws;
1518 u32 i;
1519 u8 byte;
1520 int ret = 0;
1521
1522 ws = list_entry(ws_list, struct heuristic_ws, list);
1523
1524 heuristic_collect_sample(&inode->vfs_inode, start, end, ws);
1525
1526 if (sample_repeated_patterns(ws)) {
1527 ret = 1;
1528 goto out;
1529 }
1530
1531 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1532
1533 for (i = 0; i < ws->sample_size; i++) {
1534 byte = ws->sample[i];
1535 ws->bucket[byte].count++;
1536 }
1537
1538 i = byte_set_size(ws);
1539 if (i < BYTE_SET_THRESHOLD) {
1540 ret = 2;
1541 goto out;
1542 }
1543
1544 i = byte_core_set_size(ws);
1545 if (i <= BYTE_CORE_SET_LOW) {
1546 ret = 3;
1547 goto out;
1548 }
1549
1550 if (i >= BYTE_CORE_SET_HIGH) {
1551 ret = 0;
1552 goto out;
1553 }
1554
1555 i = shannon_entropy(ws);
1556 if (i <= ENTROPY_LVL_ACEPTABLE) {
1557 ret = 4;
1558 goto out;
1559 }
1560
1561 /*
1562 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1563 * needed to give green light to compression.
1564 *
1565 * For now just assume that compression at that level is not worth the
1566 * resources because:
1567 *
1568 * 1. it is possible to defrag the data later
1569 *
1570 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1571 * values, every bucket has counter at level ~54. The heuristic would
1572 * be confused. This can happen when data have some internal repeated
1573 * patterns like "abbacbbc...". This can be detected by analyzing
1574 * pairs of bytes, which is too costly.
1575 */
1576 if (i < ENTROPY_LVL_HIGH) {
1577 ret = 5;
1578 goto out;
1579 } else {
1580 ret = 0;
1581 goto out;
1582 }
1583
1584 out:
1585 put_workspace(0, ws_list);
1586 return ret;
1587 }
1588
1589 /*
1590 * Convert the compression suffix (eg. after "zlib" starting with ":") to
1591 * level, unrecognized string will set the default level
1592 */
btrfs_compress_str2level(unsigned int type,const char * str)1593 unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1594 {
1595 unsigned int level = 0;
1596 int ret;
1597
1598 if (!type)
1599 return 0;
1600
1601 if (str[0] == ':') {
1602 ret = kstrtouint(str + 1, 10, &level);
1603 if (ret)
1604 level = 0;
1605 }
1606
1607 level = btrfs_compress_set_level(type, level);
1608
1609 return level;
1610 }
1611