1 //===--- SemaLambda.cpp - Semantic Analysis for C++11 Lambdas -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for C++ lambda expressions.
10 //
11 //===----------------------------------------------------------------------===//
12 #include "clang/Sema/DeclSpec.h"
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTLambda.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/Basic/TargetInfo.h"
17 #include "clang/Sema/Initialization.h"
18 #include "clang/Sema/Lookup.h"
19 #include "clang/Sema/Scope.h"
20 #include "clang/Sema/ScopeInfo.h"
21 #include "clang/Sema/SemaInternal.h"
22 #include "clang/Sema/SemaLambda.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include <optional>
25 using namespace clang;
26 using namespace sema;
27
28 /// Examines the FunctionScopeInfo stack to determine the nearest
29 /// enclosing lambda (to the current lambda) that is 'capture-ready' for
30 /// the variable referenced in the current lambda (i.e. \p VarToCapture).
31 /// If successful, returns the index into Sema's FunctionScopeInfo stack
32 /// of the capture-ready lambda's LambdaScopeInfo.
33 ///
34 /// Climbs down the stack of lambdas (deepest nested lambda - i.e. current
35 /// lambda - is on top) to determine the index of the nearest enclosing/outer
36 /// lambda that is ready to capture the \p VarToCapture being referenced in
37 /// the current lambda.
38 /// As we climb down the stack, we want the index of the first such lambda -
39 /// that is the lambda with the highest index that is 'capture-ready'.
40 ///
41 /// A lambda 'L' is capture-ready for 'V' (var or this) if:
42 /// - its enclosing context is non-dependent
43 /// - and if the chain of lambdas between L and the lambda in which
44 /// V is potentially used (i.e. the lambda at the top of the scope info
45 /// stack), can all capture or have already captured V.
46 /// If \p VarToCapture is 'null' then we are trying to capture 'this'.
47 ///
48 /// Note that a lambda that is deemed 'capture-ready' still needs to be checked
49 /// for whether it is 'capture-capable' (see
50 /// getStackIndexOfNearestEnclosingCaptureCapableLambda), before it can truly
51 /// capture.
52 ///
53 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
54 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda
55 /// is at the top of the stack and has the highest index.
56 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'.
57 ///
58 /// \returns An std::optional<unsigned> Index that if evaluates to 'true'
59 /// contains the index (into Sema's FunctionScopeInfo stack) of the innermost
60 /// lambda which is capture-ready. If the return value evaluates to 'false'
61 /// then no lambda is capture-ready for \p VarToCapture.
62
63 static inline std::optional<unsigned>
getStackIndexOfNearestEnclosingCaptureReadyLambda(ArrayRef<const clang::sema::FunctionScopeInfo * > FunctionScopes,ValueDecl * VarToCapture)64 getStackIndexOfNearestEnclosingCaptureReadyLambda(
65 ArrayRef<const clang::sema::FunctionScopeInfo *> FunctionScopes,
66 ValueDecl *VarToCapture) {
67 // Label failure to capture.
68 const std::optional<unsigned> NoLambdaIsCaptureReady;
69
70 // Ignore all inner captured regions.
71 unsigned CurScopeIndex = FunctionScopes.size() - 1;
72 while (CurScopeIndex > 0 && isa<clang::sema::CapturedRegionScopeInfo>(
73 FunctionScopes[CurScopeIndex]))
74 --CurScopeIndex;
75 assert(
76 isa<clang::sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]) &&
77 "The function on the top of sema's function-info stack must be a lambda");
78
79 // If VarToCapture is null, we are attempting to capture 'this'.
80 const bool IsCapturingThis = !VarToCapture;
81 const bool IsCapturingVariable = !IsCapturingThis;
82
83 // Start with the current lambda at the top of the stack (highest index).
84 DeclContext *EnclosingDC =
85 cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex])->CallOperator;
86
87 do {
88 const clang::sema::LambdaScopeInfo *LSI =
89 cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]);
90 // IF we have climbed down to an intervening enclosing lambda that contains
91 // the variable declaration - it obviously can/must not capture the
92 // variable.
93 // Since its enclosing DC is dependent, all the lambdas between it and the
94 // innermost nested lambda are dependent (otherwise we wouldn't have
95 // arrived here) - so we don't yet have a lambda that can capture the
96 // variable.
97 if (IsCapturingVariable &&
98 VarToCapture->getDeclContext()->Equals(EnclosingDC))
99 return NoLambdaIsCaptureReady;
100
101 // For an enclosing lambda to be capture ready for an entity, all
102 // intervening lambda's have to be able to capture that entity. If even
103 // one of the intervening lambda's is not capable of capturing the entity
104 // then no enclosing lambda can ever capture that entity.
105 // For e.g.
106 // const int x = 10;
107 // [=](auto a) { #1
108 // [](auto b) { #2 <-- an intervening lambda that can never capture 'x'
109 // [=](auto c) { #3
110 // f(x, c); <-- can not lead to x's speculative capture by #1 or #2
111 // }; }; };
112 // If they do not have a default implicit capture, check to see
113 // if the entity has already been explicitly captured.
114 // If even a single dependent enclosing lambda lacks the capability
115 // to ever capture this variable, there is no further enclosing
116 // non-dependent lambda that can capture this variable.
117 if (LSI->ImpCaptureStyle == sema::LambdaScopeInfo::ImpCap_None) {
118 if (IsCapturingVariable && !LSI->isCaptured(VarToCapture))
119 return NoLambdaIsCaptureReady;
120 if (IsCapturingThis && !LSI->isCXXThisCaptured())
121 return NoLambdaIsCaptureReady;
122 }
123 EnclosingDC = getLambdaAwareParentOfDeclContext(EnclosingDC);
124
125 assert(CurScopeIndex);
126 --CurScopeIndex;
127 } while (!EnclosingDC->isTranslationUnit() &&
128 EnclosingDC->isDependentContext() &&
129 isLambdaCallOperator(EnclosingDC));
130
131 assert(CurScopeIndex < (FunctionScopes.size() - 1));
132 // If the enclosingDC is not dependent, then the immediately nested lambda
133 // (one index above) is capture-ready.
134 if (!EnclosingDC->isDependentContext())
135 return CurScopeIndex + 1;
136 return NoLambdaIsCaptureReady;
137 }
138
139 /// Examines the FunctionScopeInfo stack to determine the nearest
140 /// enclosing lambda (to the current lambda) that is 'capture-capable' for
141 /// the variable referenced in the current lambda (i.e. \p VarToCapture).
142 /// If successful, returns the index into Sema's FunctionScopeInfo stack
143 /// of the capture-capable lambda's LambdaScopeInfo.
144 ///
145 /// Given the current stack of lambdas being processed by Sema and
146 /// the variable of interest, to identify the nearest enclosing lambda (to the
147 /// current lambda at the top of the stack) that can truly capture
148 /// a variable, it has to have the following two properties:
149 /// a) 'capture-ready' - be the innermost lambda that is 'capture-ready':
150 /// - climb down the stack (i.e. starting from the innermost and examining
151 /// each outer lambda step by step) checking if each enclosing
152 /// lambda can either implicitly or explicitly capture the variable.
153 /// Record the first such lambda that is enclosed in a non-dependent
154 /// context. If no such lambda currently exists return failure.
155 /// b) 'capture-capable' - make sure the 'capture-ready' lambda can truly
156 /// capture the variable by checking all its enclosing lambdas:
157 /// - check if all outer lambdas enclosing the 'capture-ready' lambda
158 /// identified above in 'a' can also capture the variable (this is done
159 /// via tryCaptureVariable for variables and CheckCXXThisCapture for
160 /// 'this' by passing in the index of the Lambda identified in step 'a')
161 ///
162 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
163 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda
164 /// is at the top of the stack.
165 ///
166 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'.
167 ///
168 ///
169 /// \returns An std::optional<unsigned> Index that if evaluates to 'true'
170 /// contains the index (into Sema's FunctionScopeInfo stack) of the innermost
171 /// lambda which is capture-capable. If the return value evaluates to 'false'
172 /// then no lambda is capture-capable for \p VarToCapture.
173
174 std::optional<unsigned>
getStackIndexOfNearestEnclosingCaptureCapableLambda(ArrayRef<const sema::FunctionScopeInfo * > FunctionScopes,ValueDecl * VarToCapture,Sema & S)175 clang::getStackIndexOfNearestEnclosingCaptureCapableLambda(
176 ArrayRef<const sema::FunctionScopeInfo *> FunctionScopes,
177 ValueDecl *VarToCapture, Sema &S) {
178
179 const std::optional<unsigned> NoLambdaIsCaptureCapable;
180
181 const std::optional<unsigned> OptionalStackIndex =
182 getStackIndexOfNearestEnclosingCaptureReadyLambda(FunctionScopes,
183 VarToCapture);
184 if (!OptionalStackIndex)
185 return NoLambdaIsCaptureCapable;
186
187 const unsigned IndexOfCaptureReadyLambda = *OptionalStackIndex;
188 assert(((IndexOfCaptureReadyLambda != (FunctionScopes.size() - 1)) ||
189 S.getCurGenericLambda()) &&
190 "The capture ready lambda for a potential capture can only be the "
191 "current lambda if it is a generic lambda");
192
193 const sema::LambdaScopeInfo *const CaptureReadyLambdaLSI =
194 cast<sema::LambdaScopeInfo>(FunctionScopes[IndexOfCaptureReadyLambda]);
195
196 // If VarToCapture is null, we are attempting to capture 'this'
197 const bool IsCapturingThis = !VarToCapture;
198 const bool IsCapturingVariable = !IsCapturingThis;
199
200 if (IsCapturingVariable) {
201 // Check if the capture-ready lambda can truly capture the variable, by
202 // checking whether all enclosing lambdas of the capture-ready lambda allow
203 // the capture - i.e. make sure it is capture-capable.
204 QualType CaptureType, DeclRefType;
205 const bool CanCaptureVariable =
206 !S.tryCaptureVariable(VarToCapture,
207 /*ExprVarIsUsedInLoc*/ SourceLocation(),
208 clang::Sema::TryCapture_Implicit,
209 /*EllipsisLoc*/ SourceLocation(),
210 /*BuildAndDiagnose*/ false, CaptureType,
211 DeclRefType, &IndexOfCaptureReadyLambda);
212 if (!CanCaptureVariable)
213 return NoLambdaIsCaptureCapable;
214 } else {
215 // Check if the capture-ready lambda can truly capture 'this' by checking
216 // whether all enclosing lambdas of the capture-ready lambda can capture
217 // 'this'.
218 const bool CanCaptureThis =
219 !S.CheckCXXThisCapture(
220 CaptureReadyLambdaLSI->PotentialThisCaptureLocation,
221 /*Explicit*/ false, /*BuildAndDiagnose*/ false,
222 &IndexOfCaptureReadyLambda);
223 if (!CanCaptureThis)
224 return NoLambdaIsCaptureCapable;
225 }
226 return IndexOfCaptureReadyLambda;
227 }
228
229 static inline TemplateParameterList *
getGenericLambdaTemplateParameterList(LambdaScopeInfo * LSI,Sema & SemaRef)230 getGenericLambdaTemplateParameterList(LambdaScopeInfo *LSI, Sema &SemaRef) {
231 if (!LSI->GLTemplateParameterList && !LSI->TemplateParams.empty()) {
232 LSI->GLTemplateParameterList = TemplateParameterList::Create(
233 SemaRef.Context,
234 /*Template kw loc*/ SourceLocation(),
235 /*L angle loc*/ LSI->ExplicitTemplateParamsRange.getBegin(),
236 LSI->TemplateParams,
237 /*R angle loc*/LSI->ExplicitTemplateParamsRange.getEnd(),
238 LSI->RequiresClause.get());
239 }
240 return LSI->GLTemplateParameterList;
241 }
242
243 CXXRecordDecl *
createLambdaClosureType(SourceRange IntroducerRange,TypeSourceInfo * Info,unsigned LambdaDependencyKind,LambdaCaptureDefault CaptureDefault)244 Sema::createLambdaClosureType(SourceRange IntroducerRange, TypeSourceInfo *Info,
245 unsigned LambdaDependencyKind,
246 LambdaCaptureDefault CaptureDefault) {
247 DeclContext *DC = CurContext;
248 while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
249 DC = DC->getParent();
250 bool IsGenericLambda = getGenericLambdaTemplateParameterList(getCurLambda(),
251 *this);
252 // Start constructing the lambda class.
253 CXXRecordDecl *Class = CXXRecordDecl::CreateLambda(
254 Context, DC, Info, IntroducerRange.getBegin(), LambdaDependencyKind,
255 IsGenericLambda, CaptureDefault);
256 DC->addDecl(Class);
257
258 return Class;
259 }
260
261 /// Determine whether the given context is or is enclosed in an inline
262 /// function.
isInInlineFunction(const DeclContext * DC)263 static bool isInInlineFunction(const DeclContext *DC) {
264 while (!DC->isFileContext()) {
265 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
266 if (FD->isInlined())
267 return true;
268
269 DC = DC->getLexicalParent();
270 }
271
272 return false;
273 }
274
275 std::tuple<MangleNumberingContext *, Decl *>
getCurrentMangleNumberContext(const DeclContext * DC)276 Sema::getCurrentMangleNumberContext(const DeclContext *DC) {
277 // Compute the context for allocating mangling numbers in the current
278 // expression, if the ABI requires them.
279 Decl *ManglingContextDecl = ExprEvalContexts.back().ManglingContextDecl;
280
281 enum ContextKind {
282 Normal,
283 DefaultArgument,
284 DataMember,
285 StaticDataMember,
286 InlineVariable,
287 VariableTemplate,
288 Concept
289 } Kind = Normal;
290
291 // Default arguments of member function parameters that appear in a class
292 // definition, as well as the initializers of data members, receive special
293 // treatment. Identify them.
294 if (ManglingContextDecl) {
295 if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(ManglingContextDecl)) {
296 if (const DeclContext *LexicalDC
297 = Param->getDeclContext()->getLexicalParent())
298 if (LexicalDC->isRecord())
299 Kind = DefaultArgument;
300 } else if (VarDecl *Var = dyn_cast<VarDecl>(ManglingContextDecl)) {
301 if (Var->getDeclContext()->isRecord())
302 Kind = StaticDataMember;
303 else if (Var->getMostRecentDecl()->isInline())
304 Kind = InlineVariable;
305 else if (Var->getDescribedVarTemplate())
306 Kind = VariableTemplate;
307 else if (auto *VTS = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
308 if (!VTS->isExplicitSpecialization())
309 Kind = VariableTemplate;
310 }
311 } else if (isa<FieldDecl>(ManglingContextDecl)) {
312 Kind = DataMember;
313 } else if (isa<ImplicitConceptSpecializationDecl>(ManglingContextDecl)) {
314 Kind = Concept;
315 }
316 }
317
318 // Itanium ABI [5.1.7]:
319 // In the following contexts [...] the one-definition rule requires closure
320 // types in different translation units to "correspond":
321 bool IsInNonspecializedTemplate =
322 inTemplateInstantiation() || CurContext->isDependentContext();
323 switch (Kind) {
324 case Normal: {
325 // -- the bodies of non-exported nonspecialized template functions
326 // -- the bodies of inline functions
327 if ((IsInNonspecializedTemplate &&
328 !(ManglingContextDecl && isa<ParmVarDecl>(ManglingContextDecl))) ||
329 isInInlineFunction(CurContext)) {
330 while (auto *CD = dyn_cast<CapturedDecl>(DC))
331 DC = CD->getParent();
332 return std::make_tuple(&Context.getManglingNumberContext(DC), nullptr);
333 }
334
335 return std::make_tuple(nullptr, nullptr);
336 }
337
338 case Concept:
339 // Concept definitions aren't code generated and thus aren't mangled,
340 // however the ManglingContextDecl is important for the purposes of
341 // re-forming the template argument list of the lambda for constraint
342 // evaluation.
343 case StaticDataMember:
344 // -- the initializers of nonspecialized static members of template classes
345 if (!IsInNonspecializedTemplate)
346 return std::make_tuple(nullptr, ManglingContextDecl);
347 // Fall through to get the current context.
348 [[fallthrough]];
349
350 case DataMember:
351 // -- the in-class initializers of class members
352 case DefaultArgument:
353 // -- default arguments appearing in class definitions
354 case InlineVariable:
355 // -- the initializers of inline variables
356 case VariableTemplate:
357 // -- the initializers of templated variables
358 return std::make_tuple(
359 &Context.getManglingNumberContext(ASTContext::NeedExtraManglingDecl,
360 ManglingContextDecl),
361 ManglingContextDecl);
362 }
363
364 llvm_unreachable("unexpected context");
365 }
366
startLambdaDefinition(CXXRecordDecl * Class,SourceRange IntroducerRange,TypeSourceInfo * MethodTypeInfo,SourceLocation EndLoc,ArrayRef<ParmVarDecl * > Params,ConstexprSpecKind ConstexprKind,StorageClass SC,Expr * TrailingRequiresClause)367 CXXMethodDecl *Sema::startLambdaDefinition(
368 CXXRecordDecl *Class, SourceRange IntroducerRange,
369 TypeSourceInfo *MethodTypeInfo, SourceLocation EndLoc,
370 ArrayRef<ParmVarDecl *> Params, ConstexprSpecKind ConstexprKind,
371 StorageClass SC, Expr *TrailingRequiresClause) {
372 QualType MethodType = MethodTypeInfo->getType();
373 TemplateParameterList *TemplateParams =
374 getGenericLambdaTemplateParameterList(getCurLambda(), *this);
375 // If a lambda appears in a dependent context or is a generic lambda (has
376 // template parameters) and has an 'auto' return type, deduce it to a
377 // dependent type.
378 if (Class->isDependentContext() || TemplateParams) {
379 const FunctionProtoType *FPT = MethodType->castAs<FunctionProtoType>();
380 QualType Result = FPT->getReturnType();
381 if (Result->isUndeducedType()) {
382 Result = SubstAutoTypeDependent(Result);
383 MethodType = Context.getFunctionType(Result, FPT->getParamTypes(),
384 FPT->getExtProtoInfo());
385 }
386 }
387
388 // C++11 [expr.prim.lambda]p5:
389 // The closure type for a lambda-expression has a public inline function
390 // call operator (13.5.4) whose parameters and return type are described by
391 // the lambda-expression's parameter-declaration-clause and
392 // trailing-return-type respectively.
393 DeclarationName MethodName
394 = Context.DeclarationNames.getCXXOperatorName(OO_Call);
395 DeclarationNameLoc MethodNameLoc =
396 DeclarationNameLoc::makeCXXOperatorNameLoc(IntroducerRange);
397 CXXMethodDecl *Method = CXXMethodDecl::Create(
398 Context, Class, EndLoc,
399 DeclarationNameInfo(MethodName, IntroducerRange.getBegin(),
400 MethodNameLoc),
401 MethodType, MethodTypeInfo, SC, getCurFPFeatures().isFPConstrained(),
402 /*isInline=*/true, ConstexprKind, EndLoc, TrailingRequiresClause);
403 Method->setAccess(AS_public);
404 if (!TemplateParams)
405 Class->addDecl(Method);
406
407 // Temporarily set the lexical declaration context to the current
408 // context, so that the Scope stack matches the lexical nesting.
409 Method->setLexicalDeclContext(CurContext);
410 // Create a function template if we have a template parameter list
411 FunctionTemplateDecl *const TemplateMethod = TemplateParams ?
412 FunctionTemplateDecl::Create(Context, Class,
413 Method->getLocation(), MethodName,
414 TemplateParams,
415 Method) : nullptr;
416 if (TemplateMethod) {
417 TemplateMethod->setAccess(AS_public);
418 Method->setDescribedFunctionTemplate(TemplateMethod);
419 Class->addDecl(TemplateMethod);
420 TemplateMethod->setLexicalDeclContext(CurContext);
421 }
422
423 // Add parameters.
424 if (!Params.empty()) {
425 Method->setParams(Params);
426 CheckParmsForFunctionDef(Params,
427 /*CheckParameterNames=*/false);
428
429 for (auto *P : Method->parameters())
430 P->setOwningFunction(Method);
431 }
432
433 return Method;
434 }
435
handleLambdaNumbering(CXXRecordDecl * Class,CXXMethodDecl * Method,std::optional<std::tuple<bool,unsigned,unsigned,Decl * >> Mangling)436 void Sema::handleLambdaNumbering(
437 CXXRecordDecl *Class, CXXMethodDecl *Method,
438 std::optional<std::tuple<bool, unsigned, unsigned, Decl *>> Mangling) {
439 if (Mangling) {
440 bool HasKnownInternalLinkage;
441 unsigned ManglingNumber, DeviceManglingNumber;
442 Decl *ManglingContextDecl;
443 std::tie(HasKnownInternalLinkage, ManglingNumber, DeviceManglingNumber,
444 ManglingContextDecl) = *Mangling;
445 Class->setLambdaMangling(ManglingNumber, ManglingContextDecl,
446 HasKnownInternalLinkage);
447 Class->setDeviceLambdaManglingNumber(DeviceManglingNumber);
448 return;
449 }
450
451 auto getMangleNumberingContext =
452 [this](CXXRecordDecl *Class,
453 Decl *ManglingContextDecl) -> MangleNumberingContext * {
454 // Get mangle numbering context if there's any extra decl context.
455 if (ManglingContextDecl)
456 return &Context.getManglingNumberContext(
457 ASTContext::NeedExtraManglingDecl, ManglingContextDecl);
458 // Otherwise, from that lambda's decl context.
459 auto DC = Class->getDeclContext();
460 while (auto *CD = dyn_cast<CapturedDecl>(DC))
461 DC = CD->getParent();
462 return &Context.getManglingNumberContext(DC);
463 };
464
465 MangleNumberingContext *MCtx;
466 Decl *ManglingContextDecl;
467 std::tie(MCtx, ManglingContextDecl) =
468 getCurrentMangleNumberContext(Class->getDeclContext());
469 bool HasKnownInternalLinkage = false;
470 if (!MCtx && (getLangOpts().CUDA || getLangOpts().SYCLIsDevice ||
471 getLangOpts().SYCLIsHost)) {
472 // Force lambda numbering in CUDA/HIP as we need to name lambdas following
473 // ODR. Both device- and host-compilation need to have a consistent naming
474 // on kernel functions. As lambdas are potential part of these `__global__`
475 // function names, they needs numbering following ODR.
476 // Also force for SYCL, since we need this for the
477 // __builtin_sycl_unique_stable_name implementation, which depends on lambda
478 // mangling.
479 MCtx = getMangleNumberingContext(Class, ManglingContextDecl);
480 assert(MCtx && "Retrieving mangle numbering context failed!");
481 HasKnownInternalLinkage = true;
482 }
483 if (MCtx) {
484 unsigned ManglingNumber = MCtx->getManglingNumber(Method);
485 Class->setLambdaMangling(ManglingNumber, ManglingContextDecl,
486 HasKnownInternalLinkage);
487 Class->setDeviceLambdaManglingNumber(MCtx->getDeviceManglingNumber(Method));
488 }
489 }
490
buildLambdaScope(LambdaScopeInfo * LSI,CXXMethodDecl * CallOperator,SourceRange IntroducerRange,LambdaCaptureDefault CaptureDefault,SourceLocation CaptureDefaultLoc,bool ExplicitParams,bool ExplicitResultType,bool Mutable)491 void Sema::buildLambdaScope(LambdaScopeInfo *LSI,
492 CXXMethodDecl *CallOperator,
493 SourceRange IntroducerRange,
494 LambdaCaptureDefault CaptureDefault,
495 SourceLocation CaptureDefaultLoc,
496 bool ExplicitParams,
497 bool ExplicitResultType,
498 bool Mutable) {
499 LSI->CallOperator = CallOperator;
500 CXXRecordDecl *LambdaClass = CallOperator->getParent();
501 LSI->Lambda = LambdaClass;
502 if (CaptureDefault == LCD_ByCopy)
503 LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByval;
504 else if (CaptureDefault == LCD_ByRef)
505 LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByref;
506 LSI->CaptureDefaultLoc = CaptureDefaultLoc;
507 LSI->IntroducerRange = IntroducerRange;
508 LSI->ExplicitParams = ExplicitParams;
509 LSI->Mutable = Mutable;
510
511 if (ExplicitResultType) {
512 LSI->ReturnType = CallOperator->getReturnType();
513
514 if (!LSI->ReturnType->isDependentType() &&
515 !LSI->ReturnType->isVoidType()) {
516 if (RequireCompleteType(CallOperator->getBeginLoc(), LSI->ReturnType,
517 diag::err_lambda_incomplete_result)) {
518 // Do nothing.
519 }
520 }
521 } else {
522 LSI->HasImplicitReturnType = true;
523 }
524 }
525
finishLambdaExplicitCaptures(LambdaScopeInfo * LSI)526 void Sema::finishLambdaExplicitCaptures(LambdaScopeInfo *LSI) {
527 LSI->finishedExplicitCaptures();
528 }
529
ActOnLambdaExplicitTemplateParameterList(SourceLocation LAngleLoc,ArrayRef<NamedDecl * > TParams,SourceLocation RAngleLoc,ExprResult RequiresClause)530 void Sema::ActOnLambdaExplicitTemplateParameterList(SourceLocation LAngleLoc,
531 ArrayRef<NamedDecl *> TParams,
532 SourceLocation RAngleLoc,
533 ExprResult RequiresClause) {
534 LambdaScopeInfo *LSI = getCurLambda();
535 assert(LSI && "Expected a lambda scope");
536 assert(LSI->NumExplicitTemplateParams == 0 &&
537 "Already acted on explicit template parameters");
538 assert(LSI->TemplateParams.empty() &&
539 "Explicit template parameters should come "
540 "before invented (auto) ones");
541 assert(!TParams.empty() &&
542 "No template parameters to act on");
543 LSI->TemplateParams.append(TParams.begin(), TParams.end());
544 LSI->NumExplicitTemplateParams = TParams.size();
545 LSI->ExplicitTemplateParamsRange = {LAngleLoc, RAngleLoc};
546 LSI->RequiresClause = RequiresClause;
547 }
548
addLambdaParameters(ArrayRef<LambdaIntroducer::LambdaCapture> Captures,CXXMethodDecl * CallOperator,Scope * CurScope)549 void Sema::addLambdaParameters(
550 ArrayRef<LambdaIntroducer::LambdaCapture> Captures,
551 CXXMethodDecl *CallOperator, Scope *CurScope) {
552 // Introduce our parameters into the function scope
553 for (unsigned p = 0, NumParams = CallOperator->getNumParams();
554 p < NumParams; ++p) {
555 ParmVarDecl *Param = CallOperator->getParamDecl(p);
556
557 // If this has an identifier, add it to the scope stack.
558 if (CurScope && Param->getIdentifier()) {
559 bool Error = false;
560 // Resolution of CWG 2211 in C++17 renders shadowing ill-formed, but we
561 // retroactively apply it.
562 for (const auto &Capture : Captures) {
563 if (Capture.Id == Param->getIdentifier()) {
564 Error = true;
565 Diag(Param->getLocation(), diag::err_parameter_shadow_capture);
566 Diag(Capture.Loc, diag::note_var_explicitly_captured_here)
567 << Capture.Id << true;
568 }
569 }
570 if (!Error)
571 CheckShadow(CurScope, Param);
572
573 PushOnScopeChains(Param, CurScope);
574 }
575 }
576 }
577
578 /// If this expression is an enumerator-like expression of some type
579 /// T, return the type T; otherwise, return null.
580 ///
581 /// Pointer comparisons on the result here should always work because
582 /// it's derived from either the parent of an EnumConstantDecl
583 /// (i.e. the definition) or the declaration returned by
584 /// EnumType::getDecl() (i.e. the definition).
findEnumForBlockReturn(Expr * E)585 static EnumDecl *findEnumForBlockReturn(Expr *E) {
586 // An expression is an enumerator-like expression of type T if,
587 // ignoring parens and parens-like expressions:
588 E = E->IgnoreParens();
589
590 // - it is an enumerator whose enum type is T or
591 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
592 if (EnumConstantDecl *D
593 = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
594 return cast<EnumDecl>(D->getDeclContext());
595 }
596 return nullptr;
597 }
598
599 // - it is a comma expression whose RHS is an enumerator-like
600 // expression of type T or
601 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
602 if (BO->getOpcode() == BO_Comma)
603 return findEnumForBlockReturn(BO->getRHS());
604 return nullptr;
605 }
606
607 // - it is a statement-expression whose value expression is an
608 // enumerator-like expression of type T or
609 if (StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
610 if (Expr *last = dyn_cast_or_null<Expr>(SE->getSubStmt()->body_back()))
611 return findEnumForBlockReturn(last);
612 return nullptr;
613 }
614
615 // - it is a ternary conditional operator (not the GNU ?:
616 // extension) whose second and third operands are
617 // enumerator-like expressions of type T or
618 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
619 if (EnumDecl *ED = findEnumForBlockReturn(CO->getTrueExpr()))
620 if (ED == findEnumForBlockReturn(CO->getFalseExpr()))
621 return ED;
622 return nullptr;
623 }
624
625 // (implicitly:)
626 // - it is an implicit integral conversion applied to an
627 // enumerator-like expression of type T or
628 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
629 // We can sometimes see integral conversions in valid
630 // enumerator-like expressions.
631 if (ICE->getCastKind() == CK_IntegralCast)
632 return findEnumForBlockReturn(ICE->getSubExpr());
633
634 // Otherwise, just rely on the type.
635 }
636
637 // - it is an expression of that formal enum type.
638 if (const EnumType *ET = E->getType()->getAs<EnumType>()) {
639 return ET->getDecl();
640 }
641
642 // Otherwise, nope.
643 return nullptr;
644 }
645
646 /// Attempt to find a type T for which the returned expression of the
647 /// given statement is an enumerator-like expression of that type.
findEnumForBlockReturn(ReturnStmt * ret)648 static EnumDecl *findEnumForBlockReturn(ReturnStmt *ret) {
649 if (Expr *retValue = ret->getRetValue())
650 return findEnumForBlockReturn(retValue);
651 return nullptr;
652 }
653
654 /// Attempt to find a common type T for which all of the returned
655 /// expressions in a block are enumerator-like expressions of that
656 /// type.
findCommonEnumForBlockReturns(ArrayRef<ReturnStmt * > returns)657 static EnumDecl *findCommonEnumForBlockReturns(ArrayRef<ReturnStmt*> returns) {
658 ArrayRef<ReturnStmt*>::iterator i = returns.begin(), e = returns.end();
659
660 // Try to find one for the first return.
661 EnumDecl *ED = findEnumForBlockReturn(*i);
662 if (!ED) return nullptr;
663
664 // Check that the rest of the returns have the same enum.
665 for (++i; i != e; ++i) {
666 if (findEnumForBlockReturn(*i) != ED)
667 return nullptr;
668 }
669
670 // Never infer an anonymous enum type.
671 if (!ED->hasNameForLinkage()) return nullptr;
672
673 return ED;
674 }
675
676 /// Adjust the given return statements so that they formally return
677 /// the given type. It should require, at most, an IntegralCast.
adjustBlockReturnsToEnum(Sema & S,ArrayRef<ReturnStmt * > returns,QualType returnType)678 static void adjustBlockReturnsToEnum(Sema &S, ArrayRef<ReturnStmt*> returns,
679 QualType returnType) {
680 for (ArrayRef<ReturnStmt*>::iterator
681 i = returns.begin(), e = returns.end(); i != e; ++i) {
682 ReturnStmt *ret = *i;
683 Expr *retValue = ret->getRetValue();
684 if (S.Context.hasSameType(retValue->getType(), returnType))
685 continue;
686
687 // Right now we only support integral fixup casts.
688 assert(returnType->isIntegralOrUnscopedEnumerationType());
689 assert(retValue->getType()->isIntegralOrUnscopedEnumerationType());
690
691 ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(retValue);
692
693 Expr *E = (cleanups ? cleanups->getSubExpr() : retValue);
694 E = ImplicitCastExpr::Create(S.Context, returnType, CK_IntegralCast, E,
695 /*base path*/ nullptr, VK_PRValue,
696 FPOptionsOverride());
697 if (cleanups) {
698 cleanups->setSubExpr(E);
699 } else {
700 ret->setRetValue(E);
701 }
702 }
703 }
704
deduceClosureReturnType(CapturingScopeInfo & CSI)705 void Sema::deduceClosureReturnType(CapturingScopeInfo &CSI) {
706 assert(CSI.HasImplicitReturnType);
707 // If it was ever a placeholder, it had to been deduced to DependentTy.
708 assert(CSI.ReturnType.isNull() || !CSI.ReturnType->isUndeducedType());
709 assert((!isa<LambdaScopeInfo>(CSI) || !getLangOpts().CPlusPlus14) &&
710 "lambda expressions use auto deduction in C++14 onwards");
711
712 // C++ core issue 975:
713 // If a lambda-expression does not include a trailing-return-type,
714 // it is as if the trailing-return-type denotes the following type:
715 // - if there are no return statements in the compound-statement,
716 // or all return statements return either an expression of type
717 // void or no expression or braced-init-list, the type void;
718 // - otherwise, if all return statements return an expression
719 // and the types of the returned expressions after
720 // lvalue-to-rvalue conversion (4.1 [conv.lval]),
721 // array-to-pointer conversion (4.2 [conv.array]), and
722 // function-to-pointer conversion (4.3 [conv.func]) are the
723 // same, that common type;
724 // - otherwise, the program is ill-formed.
725 //
726 // C++ core issue 1048 additionally removes top-level cv-qualifiers
727 // from the types of returned expressions to match the C++14 auto
728 // deduction rules.
729 //
730 // In addition, in blocks in non-C++ modes, if all of the return
731 // statements are enumerator-like expressions of some type T, where
732 // T has a name for linkage, then we infer the return type of the
733 // block to be that type.
734
735 // First case: no return statements, implicit void return type.
736 ASTContext &Ctx = getASTContext();
737 if (CSI.Returns.empty()) {
738 // It's possible there were simply no /valid/ return statements.
739 // In this case, the first one we found may have at least given us a type.
740 if (CSI.ReturnType.isNull())
741 CSI.ReturnType = Ctx.VoidTy;
742 return;
743 }
744
745 // Second case: at least one return statement has dependent type.
746 // Delay type checking until instantiation.
747 assert(!CSI.ReturnType.isNull() && "We should have a tentative return type.");
748 if (CSI.ReturnType->isDependentType())
749 return;
750
751 // Try to apply the enum-fuzz rule.
752 if (!getLangOpts().CPlusPlus) {
753 assert(isa<BlockScopeInfo>(CSI));
754 const EnumDecl *ED = findCommonEnumForBlockReturns(CSI.Returns);
755 if (ED) {
756 CSI.ReturnType = Context.getTypeDeclType(ED);
757 adjustBlockReturnsToEnum(*this, CSI.Returns, CSI.ReturnType);
758 return;
759 }
760 }
761
762 // Third case: only one return statement. Don't bother doing extra work!
763 if (CSI.Returns.size() == 1)
764 return;
765
766 // General case: many return statements.
767 // Check that they all have compatible return types.
768
769 // We require the return types to strictly match here.
770 // Note that we've already done the required promotions as part of
771 // processing the return statement.
772 for (const ReturnStmt *RS : CSI.Returns) {
773 const Expr *RetE = RS->getRetValue();
774
775 QualType ReturnType =
776 (RetE ? RetE->getType() : Context.VoidTy).getUnqualifiedType();
777 if (Context.getCanonicalFunctionResultType(ReturnType) ==
778 Context.getCanonicalFunctionResultType(CSI.ReturnType)) {
779 // Use the return type with the strictest possible nullability annotation.
780 auto RetTyNullability = ReturnType->getNullability();
781 auto BlockNullability = CSI.ReturnType->getNullability();
782 if (BlockNullability &&
783 (!RetTyNullability ||
784 hasWeakerNullability(*RetTyNullability, *BlockNullability)))
785 CSI.ReturnType = ReturnType;
786 continue;
787 }
788
789 // FIXME: This is a poor diagnostic for ReturnStmts without expressions.
790 // TODO: It's possible that the *first* return is the divergent one.
791 Diag(RS->getBeginLoc(),
792 diag::err_typecheck_missing_return_type_incompatible)
793 << ReturnType << CSI.ReturnType << isa<LambdaScopeInfo>(CSI);
794 // Continue iterating so that we keep emitting diagnostics.
795 }
796 }
797
buildLambdaInitCaptureInitialization(SourceLocation Loc,bool ByRef,SourceLocation EllipsisLoc,std::optional<unsigned> NumExpansions,IdentifierInfo * Id,bool IsDirectInit,Expr * & Init)798 QualType Sema::buildLambdaInitCaptureInitialization(
799 SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc,
800 std::optional<unsigned> NumExpansions, IdentifierInfo *Id,
801 bool IsDirectInit, Expr *&Init) {
802 // Create an 'auto' or 'auto&' TypeSourceInfo that we can use to
803 // deduce against.
804 QualType DeductType = Context.getAutoDeductType();
805 TypeLocBuilder TLB;
806 AutoTypeLoc TL = TLB.push<AutoTypeLoc>(DeductType);
807 TL.setNameLoc(Loc);
808 if (ByRef) {
809 DeductType = BuildReferenceType(DeductType, true, Loc, Id);
810 assert(!DeductType.isNull() && "can't build reference to auto");
811 TLB.push<ReferenceTypeLoc>(DeductType).setSigilLoc(Loc);
812 }
813 if (EllipsisLoc.isValid()) {
814 if (Init->containsUnexpandedParameterPack()) {
815 Diag(EllipsisLoc, getLangOpts().CPlusPlus20
816 ? diag::warn_cxx17_compat_init_capture_pack
817 : diag::ext_init_capture_pack);
818 DeductType = Context.getPackExpansionType(DeductType, NumExpansions,
819 /*ExpectPackInType=*/false);
820 TLB.push<PackExpansionTypeLoc>(DeductType).setEllipsisLoc(EllipsisLoc);
821 } else {
822 // Just ignore the ellipsis for now and form a non-pack variable. We'll
823 // diagnose this later when we try to capture it.
824 }
825 }
826 TypeSourceInfo *TSI = TLB.getTypeSourceInfo(Context, DeductType);
827
828 // Deduce the type of the init capture.
829 QualType DeducedType = deduceVarTypeFromInitializer(
830 /*VarDecl*/nullptr, DeclarationName(Id), DeductType, TSI,
831 SourceRange(Loc, Loc), IsDirectInit, Init);
832 if (DeducedType.isNull())
833 return QualType();
834
835 // Are we a non-list direct initialization?
836 ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
837
838 // Perform initialization analysis and ensure any implicit conversions
839 // (such as lvalue-to-rvalue) are enforced.
840 InitializedEntity Entity =
841 InitializedEntity::InitializeLambdaCapture(Id, DeducedType, Loc);
842 InitializationKind Kind =
843 IsDirectInit
844 ? (CXXDirectInit ? InitializationKind::CreateDirect(
845 Loc, Init->getBeginLoc(), Init->getEndLoc())
846 : InitializationKind::CreateDirectList(Loc))
847 : InitializationKind::CreateCopy(Loc, Init->getBeginLoc());
848
849 MultiExprArg Args = Init;
850 if (CXXDirectInit)
851 Args =
852 MultiExprArg(CXXDirectInit->getExprs(), CXXDirectInit->getNumExprs());
853 QualType DclT;
854 InitializationSequence InitSeq(*this, Entity, Kind, Args);
855 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
856
857 if (Result.isInvalid())
858 return QualType();
859
860 Init = Result.getAs<Expr>();
861 return DeducedType;
862 }
863
createLambdaInitCaptureVarDecl(SourceLocation Loc,QualType InitCaptureType,SourceLocation EllipsisLoc,IdentifierInfo * Id,unsigned InitStyle,Expr * Init)864 VarDecl *Sema::createLambdaInitCaptureVarDecl(SourceLocation Loc,
865 QualType InitCaptureType,
866 SourceLocation EllipsisLoc,
867 IdentifierInfo *Id,
868 unsigned InitStyle, Expr *Init) {
869 // FIXME: Retain the TypeSourceInfo from buildLambdaInitCaptureInitialization
870 // rather than reconstructing it here.
871 TypeSourceInfo *TSI = Context.getTrivialTypeSourceInfo(InitCaptureType, Loc);
872 if (auto PETL = TSI->getTypeLoc().getAs<PackExpansionTypeLoc>())
873 PETL.setEllipsisLoc(EllipsisLoc);
874
875 // Create a dummy variable representing the init-capture. This is not actually
876 // used as a variable, and only exists as a way to name and refer to the
877 // init-capture.
878 // FIXME: Pass in separate source locations for '&' and identifier.
879 VarDecl *NewVD = VarDecl::Create(Context, CurContext, Loc,
880 Loc, Id, InitCaptureType, TSI, SC_Auto);
881 NewVD->setInitCapture(true);
882 NewVD->setReferenced(true);
883 // FIXME: Pass in a VarDecl::InitializationStyle.
884 NewVD->setInitStyle(static_cast<VarDecl::InitializationStyle>(InitStyle));
885 NewVD->markUsed(Context);
886 NewVD->setInit(Init);
887 if (NewVD->isParameterPack())
888 getCurLambda()->LocalPacks.push_back(NewVD);
889 return NewVD;
890 }
891
addInitCapture(LambdaScopeInfo * LSI,VarDecl * Var,bool isReferenceType)892 void Sema::addInitCapture(LambdaScopeInfo *LSI, VarDecl *Var,
893 bool isReferenceType) {
894 assert(Var->isInitCapture() && "init capture flag should be set");
895 LSI->addCapture(Var, /*isBlock*/ false, isReferenceType,
896 /*isNested*/ false, Var->getLocation(), SourceLocation(),
897 Var->getType(), /*Invalid*/ false);
898 }
899
ActOnStartOfLambdaDefinition(LambdaIntroducer & Intro,Declarator & ParamInfo,Scope * CurScope)900 void Sema::ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro,
901 Declarator &ParamInfo,
902 Scope *CurScope) {
903 LambdaScopeInfo *const LSI = getCurLambda();
904 assert(LSI && "LambdaScopeInfo should be on stack!");
905
906 // Determine if we're within a context where we know that the lambda will
907 // be dependent, because there are template parameters in scope.
908 CXXRecordDecl::LambdaDependencyKind LambdaDependencyKind =
909 CXXRecordDecl::LDK_Unknown;
910 if (LSI->NumExplicitTemplateParams > 0) {
911 auto *TemplateParamScope = CurScope->getTemplateParamParent();
912 assert(TemplateParamScope &&
913 "Lambda with explicit template param list should establish a "
914 "template param scope");
915 assert(TemplateParamScope->getParent());
916 if (TemplateParamScope->getParent()->getTemplateParamParent() != nullptr)
917 LambdaDependencyKind = CXXRecordDecl::LDK_AlwaysDependent;
918 } else if (CurScope->getTemplateParamParent() != nullptr) {
919 LambdaDependencyKind = CXXRecordDecl::LDK_AlwaysDependent;
920 }
921
922 // Determine the signature of the call operator.
923 TypeSourceInfo *MethodTyInfo;
924 bool ExplicitParams = true;
925 bool ExplicitResultType = true;
926 bool ContainsUnexpandedParameterPack = false;
927 SourceLocation EndLoc;
928 SmallVector<ParmVarDecl *, 8> Params;
929
930 assert(
931 (ParamInfo.getDeclSpec().getStorageClassSpec() ==
932 DeclSpec::SCS_unspecified ||
933 ParamInfo.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static) &&
934 "Unexpected storage specifier");
935 bool IsLambdaStatic =
936 ParamInfo.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static;
937
938 if (ParamInfo.getNumTypeObjects() == 0) {
939 // C++11 [expr.prim.lambda]p4:
940 // If a lambda-expression does not include a lambda-declarator, it is as
941 // if the lambda-declarator were ().
942 FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention(
943 /*IsVariadic=*/false, /*IsCXXMethod=*/true));
944 EPI.HasTrailingReturn = true;
945 EPI.TypeQuals.addConst();
946 LangAS AS = getDefaultCXXMethodAddrSpace();
947 if (AS != LangAS::Default)
948 EPI.TypeQuals.addAddressSpace(AS);
949
950 // C++1y [expr.prim.lambda]:
951 // The lambda return type is 'auto', which is replaced by the
952 // trailing-return type if provided and/or deduced from 'return'
953 // statements
954 // We don't do this before C++1y, because we don't support deduced return
955 // types there.
956 QualType DefaultTypeForNoTrailingReturn =
957 getLangOpts().CPlusPlus14 ? Context.getAutoDeductType()
958 : Context.DependentTy;
959 QualType MethodTy = Context.getFunctionType(DefaultTypeForNoTrailingReturn,
960 std::nullopt, EPI);
961 MethodTyInfo = Context.getTrivialTypeSourceInfo(MethodTy);
962 ExplicitParams = false;
963 ExplicitResultType = false;
964 EndLoc = Intro.Range.getEnd();
965 } else {
966 assert(ParamInfo.isFunctionDeclarator() &&
967 "lambda-declarator is a function");
968 DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getFunctionTypeInfo();
969
970 // C++11 [expr.prim.lambda]p5:
971 // This function call operator is declared const (9.3.1) if and only if
972 // the lambda-expression's parameter-declaration-clause is not followed
973 // by mutable. It is neither virtual nor declared volatile. [...]
974 if (!FTI.hasMutableQualifier() && !IsLambdaStatic) {
975 FTI.getOrCreateMethodQualifiers().SetTypeQual(DeclSpec::TQ_const,
976 SourceLocation());
977 }
978
979 MethodTyInfo = GetTypeForDeclarator(ParamInfo, CurScope);
980 assert(MethodTyInfo && "no type from lambda-declarator");
981 EndLoc = ParamInfo.getSourceRange().getEnd();
982
983 ExplicitResultType = FTI.hasTrailingReturnType();
984
985 if (ExplicitResultType && getLangOpts().HLSL) {
986 QualType RetTy = FTI.getTrailingReturnType().get();
987 if (!RetTy.isNull()) {
988 // HLSL does not support specifying an address space on a lambda return
989 // type.
990 LangAS AddressSpace = RetTy.getAddressSpace();
991 if (AddressSpace != LangAS::Default)
992 Diag(FTI.getTrailingReturnTypeLoc(),
993 diag::err_return_value_with_address_space);
994 }
995 }
996
997 if (FTIHasNonVoidParameters(FTI)) {
998 Params.reserve(FTI.NumParams);
999 for (unsigned i = 0, e = FTI.NumParams; i != e; ++i)
1000 Params.push_back(cast<ParmVarDecl>(FTI.Params[i].Param));
1001 }
1002
1003 // Check for unexpanded parameter packs in the method type.
1004 if (MethodTyInfo->getType()->containsUnexpandedParameterPack())
1005 DiagnoseUnexpandedParameterPack(Intro.Range.getBegin(), MethodTyInfo,
1006 UPPC_DeclarationType);
1007 }
1008
1009 CXXRecordDecl *Class = createLambdaClosureType(
1010 Intro.Range, MethodTyInfo, LambdaDependencyKind, Intro.Default);
1011 CXXMethodDecl *Method =
1012 startLambdaDefinition(Class, Intro.Range, MethodTyInfo, EndLoc, Params,
1013 ParamInfo.getDeclSpec().getConstexprSpecifier(),
1014 IsLambdaStatic ? SC_Static : SC_None,
1015 ParamInfo.getTrailingRequiresClause());
1016 if (ExplicitParams)
1017 CheckCXXDefaultArguments(Method);
1018
1019 // This represents the function body for the lambda function, check if we
1020 // have to apply optnone due to a pragma.
1021 AddRangeBasedOptnone(Method);
1022
1023 // code_seg attribute on lambda apply to the method.
1024 if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true))
1025 Method->addAttr(A);
1026
1027 // Attributes on the lambda apply to the method.
1028 ProcessDeclAttributes(CurScope, Method, ParamInfo);
1029
1030 // CUDA lambdas get implicit host and device attributes.
1031 if (getLangOpts().CUDA)
1032 CUDASetLambdaAttrs(Method);
1033
1034 // OpenMP lambdas might get assumumption attributes.
1035 if (LangOpts.OpenMP)
1036 ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(Method);
1037
1038 // Number the lambda for linkage purposes if necessary.
1039 handleLambdaNumbering(Class, Method);
1040
1041 // Introduce the function call operator as the current declaration context.
1042 PushDeclContext(CurScope, Method);
1043
1044 // Build the lambda scope.
1045 buildLambdaScope(LSI, Method, Intro.Range, Intro.Default, Intro.DefaultLoc,
1046 ExplicitParams, ExplicitResultType, !Method->isConst());
1047
1048 // C++11 [expr.prim.lambda]p9:
1049 // A lambda-expression whose smallest enclosing scope is a block scope is a
1050 // local lambda expression; any other lambda expression shall not have a
1051 // capture-default or simple-capture in its lambda-introducer.
1052 //
1053 // For simple-captures, this is covered by the check below that any named
1054 // entity is a variable that can be captured.
1055 //
1056 // For DR1632, we also allow a capture-default in any context where we can
1057 // odr-use 'this' (in particular, in a default initializer for a non-static
1058 // data member).
1059 if (Intro.Default != LCD_None && !Class->getParent()->isFunctionOrMethod() &&
1060 (getCurrentThisType().isNull() ||
1061 CheckCXXThisCapture(SourceLocation(), /*Explicit*/true,
1062 /*BuildAndDiagnose*/false)))
1063 Diag(Intro.DefaultLoc, diag::err_capture_default_non_local);
1064
1065 // Distinct capture names, for diagnostics.
1066 llvm::SmallSet<IdentifierInfo*, 8> CaptureNames;
1067
1068 // Handle explicit captures.
1069 SourceLocation PrevCaptureLoc
1070 = Intro.Default == LCD_None? Intro.Range.getBegin() : Intro.DefaultLoc;
1071 for (auto C = Intro.Captures.begin(), E = Intro.Captures.end(); C != E;
1072 PrevCaptureLoc = C->Loc, ++C) {
1073 if (C->Kind == LCK_This || C->Kind == LCK_StarThis) {
1074 if (C->Kind == LCK_StarThis)
1075 Diag(C->Loc, !getLangOpts().CPlusPlus17
1076 ? diag::ext_star_this_lambda_capture_cxx17
1077 : diag::warn_cxx14_compat_star_this_lambda_capture);
1078
1079 // C++11 [expr.prim.lambda]p8:
1080 // An identifier or this shall not appear more than once in a
1081 // lambda-capture.
1082 if (LSI->isCXXThisCaptured()) {
1083 Diag(C->Loc, diag::err_capture_more_than_once)
1084 << "'this'" << SourceRange(LSI->getCXXThisCapture().getLocation())
1085 << FixItHint::CreateRemoval(
1086 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1087 continue;
1088 }
1089
1090 // C++2a [expr.prim.lambda]p8:
1091 // If a lambda-capture includes a capture-default that is =,
1092 // each simple-capture of that lambda-capture shall be of the form
1093 // "&identifier", "this", or "* this". [ Note: The form [&,this] is
1094 // redundant but accepted for compatibility with ISO C++14. --end note ]
1095 if (Intro.Default == LCD_ByCopy && C->Kind != LCK_StarThis)
1096 Diag(C->Loc, !getLangOpts().CPlusPlus20
1097 ? diag::ext_equals_this_lambda_capture_cxx20
1098 : diag::warn_cxx17_compat_equals_this_lambda_capture);
1099
1100 // C++11 [expr.prim.lambda]p12:
1101 // If this is captured by a local lambda expression, its nearest
1102 // enclosing function shall be a non-static member function.
1103 QualType ThisCaptureType = getCurrentThisType();
1104 if (ThisCaptureType.isNull()) {
1105 Diag(C->Loc, diag::err_this_capture) << true;
1106 continue;
1107 }
1108
1109 CheckCXXThisCapture(C->Loc, /*Explicit=*/true, /*BuildAndDiagnose*/ true,
1110 /*FunctionScopeIndexToStopAtPtr*/ nullptr,
1111 C->Kind == LCK_StarThis);
1112 if (!LSI->Captures.empty())
1113 LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange;
1114 continue;
1115 }
1116
1117 assert(C->Id && "missing identifier for capture");
1118
1119 if (C->Init.isInvalid())
1120 continue;
1121
1122 ValueDecl *Var = nullptr;
1123 if (C->Init.isUsable()) {
1124 Diag(C->Loc, getLangOpts().CPlusPlus14
1125 ? diag::warn_cxx11_compat_init_capture
1126 : diag::ext_init_capture);
1127
1128 // If the initializer expression is usable, but the InitCaptureType
1129 // is not, then an error has occurred - so ignore the capture for now.
1130 // for e.g., [n{0}] { }; <-- if no <initializer_list> is included.
1131 // FIXME: we should create the init capture variable and mark it invalid
1132 // in this case.
1133 if (C->InitCaptureType.get().isNull())
1134 continue;
1135
1136 if (C->Init.get()->containsUnexpandedParameterPack() &&
1137 !C->InitCaptureType.get()->getAs<PackExpansionType>())
1138 DiagnoseUnexpandedParameterPack(C->Init.get(), UPPC_Initializer);
1139
1140 unsigned InitStyle;
1141 switch (C->InitKind) {
1142 case LambdaCaptureInitKind::NoInit:
1143 llvm_unreachable("not an init-capture?");
1144 case LambdaCaptureInitKind::CopyInit:
1145 InitStyle = VarDecl::CInit;
1146 break;
1147 case LambdaCaptureInitKind::DirectInit:
1148 InitStyle = VarDecl::CallInit;
1149 break;
1150 case LambdaCaptureInitKind::ListInit:
1151 InitStyle = VarDecl::ListInit;
1152 break;
1153 }
1154 Var = createLambdaInitCaptureVarDecl(C->Loc, C->InitCaptureType.get(),
1155 C->EllipsisLoc, C->Id, InitStyle,
1156 C->Init.get());
1157 // C++1y [expr.prim.lambda]p11:
1158 // An init-capture behaves as if it declares and explicitly
1159 // captures a variable [...] whose declarative region is the
1160 // lambda-expression's compound-statement
1161 if (Var)
1162 PushOnScopeChains(Var, CurScope, false);
1163 } else {
1164 assert(C->InitKind == LambdaCaptureInitKind::NoInit &&
1165 "init capture has valid but null init?");
1166
1167 // C++11 [expr.prim.lambda]p8:
1168 // If a lambda-capture includes a capture-default that is &, the
1169 // identifiers in the lambda-capture shall not be preceded by &.
1170 // If a lambda-capture includes a capture-default that is =, [...]
1171 // each identifier it contains shall be preceded by &.
1172 if (C->Kind == LCK_ByRef && Intro.Default == LCD_ByRef) {
1173 Diag(C->Loc, diag::err_reference_capture_with_reference_default)
1174 << FixItHint::CreateRemoval(
1175 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1176 continue;
1177 } else if (C->Kind == LCK_ByCopy && Intro.Default == LCD_ByCopy) {
1178 Diag(C->Loc, diag::err_copy_capture_with_copy_default)
1179 << FixItHint::CreateRemoval(
1180 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1181 continue;
1182 }
1183
1184 // C++11 [expr.prim.lambda]p10:
1185 // The identifiers in a capture-list are looked up using the usual
1186 // rules for unqualified name lookup (3.4.1)
1187 DeclarationNameInfo Name(C->Id, C->Loc);
1188 LookupResult R(*this, Name, LookupOrdinaryName);
1189 LookupName(R, CurScope);
1190 if (R.isAmbiguous())
1191 continue;
1192 if (R.empty()) {
1193 // FIXME: Disable corrections that would add qualification?
1194 CXXScopeSpec ScopeSpec;
1195 DeclFilterCCC<VarDecl> Validator{};
1196 if (DiagnoseEmptyLookup(CurScope, ScopeSpec, R, Validator))
1197 continue;
1198 }
1199
1200 if (auto *BD = R.getAsSingle<BindingDecl>())
1201 Var = BD;
1202 else
1203 Var = R.getAsSingle<VarDecl>();
1204 if (Var && DiagnoseUseOfDecl(Var, C->Loc))
1205 continue;
1206 }
1207
1208 // C++11 [expr.prim.lambda]p8:
1209 // An identifier or this shall not appear more than once in a
1210 // lambda-capture.
1211 if (!CaptureNames.insert(C->Id).second) {
1212 if (Var && LSI->isCaptured(Var)) {
1213 Diag(C->Loc, diag::err_capture_more_than_once)
1214 << C->Id << SourceRange(LSI->getCapture(Var).getLocation())
1215 << FixItHint::CreateRemoval(
1216 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1217 } else
1218 // Previous capture captured something different (one or both was
1219 // an init-cpature): no fixit.
1220 Diag(C->Loc, diag::err_capture_more_than_once) << C->Id;
1221 continue;
1222 }
1223
1224 // C++11 [expr.prim.lambda]p10:
1225 // [...] each such lookup shall find a variable with automatic storage
1226 // duration declared in the reaching scope of the local lambda expression.
1227 // Note that the 'reaching scope' check happens in tryCaptureVariable().
1228 if (!Var) {
1229 Diag(C->Loc, diag::err_capture_does_not_name_variable) << C->Id;
1230 continue;
1231 }
1232
1233 // Ignore invalid decls; they'll just confuse the code later.
1234 if (Var->isInvalidDecl())
1235 continue;
1236
1237 VarDecl *Underlying = Var->getPotentiallyDecomposedVarDecl();
1238
1239 if (!Underlying->hasLocalStorage()) {
1240 Diag(C->Loc, diag::err_capture_non_automatic_variable) << C->Id;
1241 Diag(Var->getLocation(), diag::note_previous_decl) << C->Id;
1242 continue;
1243 }
1244
1245 // C++11 [expr.prim.lambda]p23:
1246 // A capture followed by an ellipsis is a pack expansion (14.5.3).
1247 SourceLocation EllipsisLoc;
1248 if (C->EllipsisLoc.isValid()) {
1249 if (Var->isParameterPack()) {
1250 EllipsisLoc = C->EllipsisLoc;
1251 } else {
1252 Diag(C->EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1253 << (C->Init.isUsable() ? C->Init.get()->getSourceRange()
1254 : SourceRange(C->Loc));
1255
1256 // Just ignore the ellipsis.
1257 }
1258 } else if (Var->isParameterPack()) {
1259 ContainsUnexpandedParameterPack = true;
1260 }
1261
1262 if (C->Init.isUsable()) {
1263 addInitCapture(LSI, cast<VarDecl>(Var), C->Kind == LCK_ByRef);
1264 } else {
1265 TryCaptureKind Kind = C->Kind == LCK_ByRef ? TryCapture_ExplicitByRef :
1266 TryCapture_ExplicitByVal;
1267 tryCaptureVariable(Var, C->Loc, Kind, EllipsisLoc);
1268 }
1269 if (!LSI->Captures.empty())
1270 LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange;
1271 }
1272 finishLambdaExplicitCaptures(LSI);
1273
1274 LSI->ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack;
1275
1276 // Add lambda parameters into scope.
1277 addLambdaParameters(Intro.Captures, Method, CurScope);
1278
1279 // Enter a new evaluation context to insulate the lambda from any
1280 // cleanups from the enclosing full-expression.
1281 PushExpressionEvaluationContext(
1282 LSI->CallOperator->isConsteval()
1283 ? ExpressionEvaluationContext::ImmediateFunctionContext
1284 : ExpressionEvaluationContext::PotentiallyEvaluated);
1285 }
1286
ActOnLambdaError(SourceLocation StartLoc,Scope * CurScope,bool IsInstantiation)1287 void Sema::ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope,
1288 bool IsInstantiation) {
1289 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(FunctionScopes.back());
1290
1291 // Leave the expression-evaluation context.
1292 DiscardCleanupsInEvaluationContext();
1293 PopExpressionEvaluationContext();
1294
1295 // Leave the context of the lambda.
1296 if (!IsInstantiation)
1297 PopDeclContext();
1298
1299 // Finalize the lambda.
1300 CXXRecordDecl *Class = LSI->Lambda;
1301 Class->setInvalidDecl();
1302 SmallVector<Decl*, 4> Fields(Class->fields());
1303 ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
1304 SourceLocation(), ParsedAttributesView());
1305 CheckCompletedCXXClass(nullptr, Class);
1306
1307 PopFunctionScopeInfo();
1308 }
1309
1310 template <typename Func>
repeatForLambdaConversionFunctionCallingConvs(Sema & S,const FunctionProtoType & CallOpProto,Func F)1311 static void repeatForLambdaConversionFunctionCallingConvs(
1312 Sema &S, const FunctionProtoType &CallOpProto, Func F) {
1313 CallingConv DefaultFree = S.Context.getDefaultCallingConvention(
1314 CallOpProto.isVariadic(), /*IsCXXMethod=*/false);
1315 CallingConv DefaultMember = S.Context.getDefaultCallingConvention(
1316 CallOpProto.isVariadic(), /*IsCXXMethod=*/true);
1317 CallingConv CallOpCC = CallOpProto.getCallConv();
1318
1319 /// Implement emitting a version of the operator for many of the calling
1320 /// conventions for MSVC, as described here:
1321 /// https://devblogs.microsoft.com/oldnewthing/20150220-00/?p=44623.
1322 /// Experimentally, we determined that cdecl, stdcall, fastcall, and
1323 /// vectorcall are generated by MSVC when it is supported by the target.
1324 /// Additionally, we are ensuring that the default-free/default-member and
1325 /// call-operator calling convention are generated as well.
1326 /// NOTE: We intentionally generate a 'thiscall' on Win32 implicitly from the
1327 /// 'member default', despite MSVC not doing so. We do this in order to ensure
1328 /// that someone who intentionally places 'thiscall' on the lambda call
1329 /// operator will still get that overload, since we don't have the a way of
1330 /// detecting the attribute by the time we get here.
1331 if (S.getLangOpts().MSVCCompat) {
1332 CallingConv Convs[] = {
1333 CC_C, CC_X86StdCall, CC_X86FastCall, CC_X86VectorCall,
1334 DefaultFree, DefaultMember, CallOpCC};
1335 llvm::sort(Convs);
1336 llvm::iterator_range<CallingConv *> Range(
1337 std::begin(Convs), std::unique(std::begin(Convs), std::end(Convs)));
1338 const TargetInfo &TI = S.getASTContext().getTargetInfo();
1339
1340 for (CallingConv C : Range) {
1341 if (TI.checkCallingConvention(C) == TargetInfo::CCCR_OK)
1342 F(C);
1343 }
1344 return;
1345 }
1346
1347 if (CallOpCC == DefaultMember && DefaultMember != DefaultFree) {
1348 F(DefaultFree);
1349 F(DefaultMember);
1350 } else {
1351 F(CallOpCC);
1352 }
1353 }
1354
1355 // Returns the 'standard' calling convention to be used for the lambda
1356 // conversion function, that is, the 'free' function calling convention unless
1357 // it is overridden by a non-default calling convention attribute.
1358 static CallingConv
getLambdaConversionFunctionCallConv(Sema & S,const FunctionProtoType * CallOpProto)1359 getLambdaConversionFunctionCallConv(Sema &S,
1360 const FunctionProtoType *CallOpProto) {
1361 CallingConv DefaultFree = S.Context.getDefaultCallingConvention(
1362 CallOpProto->isVariadic(), /*IsCXXMethod=*/false);
1363 CallingConv DefaultMember = S.Context.getDefaultCallingConvention(
1364 CallOpProto->isVariadic(), /*IsCXXMethod=*/true);
1365 CallingConv CallOpCC = CallOpProto->getCallConv();
1366
1367 // If the call-operator hasn't been changed, return both the 'free' and
1368 // 'member' function calling convention.
1369 if (CallOpCC == DefaultMember && DefaultMember != DefaultFree)
1370 return DefaultFree;
1371 return CallOpCC;
1372 }
1373
getLambdaConversionFunctionResultType(const FunctionProtoType * CallOpProto,CallingConv CC)1374 QualType Sema::getLambdaConversionFunctionResultType(
1375 const FunctionProtoType *CallOpProto, CallingConv CC) {
1376 const FunctionProtoType::ExtProtoInfo CallOpExtInfo =
1377 CallOpProto->getExtProtoInfo();
1378 FunctionProtoType::ExtProtoInfo InvokerExtInfo = CallOpExtInfo;
1379 InvokerExtInfo.ExtInfo = InvokerExtInfo.ExtInfo.withCallingConv(CC);
1380 InvokerExtInfo.TypeQuals = Qualifiers();
1381 assert(InvokerExtInfo.RefQualifier == RQ_None &&
1382 "Lambda's call operator should not have a reference qualifier");
1383 return Context.getFunctionType(CallOpProto->getReturnType(),
1384 CallOpProto->getParamTypes(), InvokerExtInfo);
1385 }
1386
1387 /// Add a lambda's conversion to function pointer, as described in
1388 /// C++11 [expr.prim.lambda]p6.
addFunctionPointerConversion(Sema & S,SourceRange IntroducerRange,CXXRecordDecl * Class,CXXMethodDecl * CallOperator,QualType InvokerFunctionTy)1389 static void addFunctionPointerConversion(Sema &S, SourceRange IntroducerRange,
1390 CXXRecordDecl *Class,
1391 CXXMethodDecl *CallOperator,
1392 QualType InvokerFunctionTy) {
1393 // This conversion is explicitly disabled if the lambda's function has
1394 // pass_object_size attributes on any of its parameters.
1395 auto HasPassObjectSizeAttr = [](const ParmVarDecl *P) {
1396 return P->hasAttr<PassObjectSizeAttr>();
1397 };
1398 if (llvm::any_of(CallOperator->parameters(), HasPassObjectSizeAttr))
1399 return;
1400
1401 // Add the conversion to function pointer.
1402 QualType PtrToFunctionTy = S.Context.getPointerType(InvokerFunctionTy);
1403
1404 // Create the type of the conversion function.
1405 FunctionProtoType::ExtProtoInfo ConvExtInfo(
1406 S.Context.getDefaultCallingConvention(
1407 /*IsVariadic=*/false, /*IsCXXMethod=*/true));
1408 // The conversion function is always const and noexcept.
1409 ConvExtInfo.TypeQuals = Qualifiers();
1410 ConvExtInfo.TypeQuals.addConst();
1411 ConvExtInfo.ExceptionSpec.Type = EST_BasicNoexcept;
1412 QualType ConvTy =
1413 S.Context.getFunctionType(PtrToFunctionTy, std::nullopt, ConvExtInfo);
1414
1415 SourceLocation Loc = IntroducerRange.getBegin();
1416 DeclarationName ConversionName
1417 = S.Context.DeclarationNames.getCXXConversionFunctionName(
1418 S.Context.getCanonicalType(PtrToFunctionTy));
1419 // Construct a TypeSourceInfo for the conversion function, and wire
1420 // all the parameters appropriately for the FunctionProtoTypeLoc
1421 // so that everything works during transformation/instantiation of
1422 // generic lambdas.
1423 // The main reason for wiring up the parameters of the conversion
1424 // function with that of the call operator is so that constructs
1425 // like the following work:
1426 // auto L = [](auto b) { <-- 1
1427 // return [](auto a) -> decltype(a) { <-- 2
1428 // return a;
1429 // };
1430 // };
1431 // int (*fp)(int) = L(5);
1432 // Because the trailing return type can contain DeclRefExprs that refer
1433 // to the original call operator's variables, we hijack the call
1434 // operators ParmVarDecls below.
1435 TypeSourceInfo *ConvNamePtrToFunctionTSI =
1436 S.Context.getTrivialTypeSourceInfo(PtrToFunctionTy, Loc);
1437 DeclarationNameLoc ConvNameLoc =
1438 DeclarationNameLoc::makeNamedTypeLoc(ConvNamePtrToFunctionTSI);
1439
1440 // The conversion function is a conversion to a pointer-to-function.
1441 TypeSourceInfo *ConvTSI = S.Context.getTrivialTypeSourceInfo(ConvTy, Loc);
1442 FunctionProtoTypeLoc ConvTL =
1443 ConvTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>();
1444 // Get the result of the conversion function which is a pointer-to-function.
1445 PointerTypeLoc PtrToFunctionTL =
1446 ConvTL.getReturnLoc().getAs<PointerTypeLoc>();
1447 // Do the same for the TypeSourceInfo that is used to name the conversion
1448 // operator.
1449 PointerTypeLoc ConvNamePtrToFunctionTL =
1450 ConvNamePtrToFunctionTSI->getTypeLoc().getAs<PointerTypeLoc>();
1451
1452 // Get the underlying function types that the conversion function will
1453 // be converting to (should match the type of the call operator).
1454 FunctionProtoTypeLoc CallOpConvTL =
1455 PtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
1456 FunctionProtoTypeLoc CallOpConvNameTL =
1457 ConvNamePtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
1458
1459 // Wire up the FunctionProtoTypeLocs with the call operator's parameters.
1460 // These parameter's are essentially used to transform the name and
1461 // the type of the conversion operator. By using the same parameters
1462 // as the call operator's we don't have to fix any back references that
1463 // the trailing return type of the call operator's uses (such as
1464 // decltype(some_type<decltype(a)>::type{} + decltype(a){}) etc.)
1465 // - we can simply use the return type of the call operator, and
1466 // everything should work.
1467 SmallVector<ParmVarDecl *, 4> InvokerParams;
1468 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
1469 ParmVarDecl *From = CallOperator->getParamDecl(I);
1470
1471 InvokerParams.push_back(ParmVarDecl::Create(
1472 S.Context,
1473 // Temporarily add to the TU. This is set to the invoker below.
1474 S.Context.getTranslationUnitDecl(), From->getBeginLoc(),
1475 From->getLocation(), From->getIdentifier(), From->getType(),
1476 From->getTypeSourceInfo(), From->getStorageClass(),
1477 /*DefArg=*/nullptr));
1478 CallOpConvTL.setParam(I, From);
1479 CallOpConvNameTL.setParam(I, From);
1480 }
1481
1482 CXXConversionDecl *Conversion = CXXConversionDecl::Create(
1483 S.Context, Class, Loc,
1484 DeclarationNameInfo(ConversionName, Loc, ConvNameLoc), ConvTy, ConvTSI,
1485 S.getCurFPFeatures().isFPConstrained(),
1486 /*isInline=*/true, ExplicitSpecifier(),
1487 S.getLangOpts().CPlusPlus17 ? ConstexprSpecKind::Constexpr
1488 : ConstexprSpecKind::Unspecified,
1489 CallOperator->getBody()->getEndLoc());
1490 Conversion->setAccess(AS_public);
1491 Conversion->setImplicit(true);
1492
1493 if (Class->isGenericLambda()) {
1494 // Create a template version of the conversion operator, using the template
1495 // parameter list of the function call operator.
1496 FunctionTemplateDecl *TemplateCallOperator =
1497 CallOperator->getDescribedFunctionTemplate();
1498 FunctionTemplateDecl *ConversionTemplate =
1499 FunctionTemplateDecl::Create(S.Context, Class,
1500 Loc, ConversionName,
1501 TemplateCallOperator->getTemplateParameters(),
1502 Conversion);
1503 ConversionTemplate->setAccess(AS_public);
1504 ConversionTemplate->setImplicit(true);
1505 Conversion->setDescribedFunctionTemplate(ConversionTemplate);
1506 Class->addDecl(ConversionTemplate);
1507 } else
1508 Class->addDecl(Conversion);
1509
1510 // If the lambda is not static, we need to add a static member
1511 // function that will be the result of the conversion with a
1512 // certain unique ID.
1513 // When it is static we just return the static call operator instead.
1514 if (CallOperator->isInstance()) {
1515 DeclarationName InvokerName =
1516 &S.Context.Idents.get(getLambdaStaticInvokerName());
1517 // FIXME: Instead of passing in the CallOperator->getTypeSourceInfo()
1518 // we should get a prebuilt TrivialTypeSourceInfo from Context
1519 // using FunctionTy & Loc and get its TypeLoc as a FunctionProtoTypeLoc
1520 // then rewire the parameters accordingly, by hoisting up the InvokeParams
1521 // loop below and then use its Params to set Invoke->setParams(...) below.
1522 // This would avoid the 'const' qualifier of the calloperator from
1523 // contaminating the type of the invoker, which is currently adjusted
1524 // in SemaTemplateDeduction.cpp:DeduceTemplateArguments. Fixing the
1525 // trailing return type of the invoker would require a visitor to rebuild
1526 // the trailing return type and adjusting all back DeclRefExpr's to refer
1527 // to the new static invoker parameters - not the call operator's.
1528 CXXMethodDecl *Invoke = CXXMethodDecl::Create(
1529 S.Context, Class, Loc, DeclarationNameInfo(InvokerName, Loc),
1530 InvokerFunctionTy, CallOperator->getTypeSourceInfo(), SC_Static,
1531 S.getCurFPFeatures().isFPConstrained(),
1532 /*isInline=*/true, ConstexprSpecKind::Unspecified,
1533 CallOperator->getBody()->getEndLoc());
1534 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I)
1535 InvokerParams[I]->setOwningFunction(Invoke);
1536 Invoke->setParams(InvokerParams);
1537 Invoke->setAccess(AS_private);
1538 Invoke->setImplicit(true);
1539 if (Class->isGenericLambda()) {
1540 FunctionTemplateDecl *TemplateCallOperator =
1541 CallOperator->getDescribedFunctionTemplate();
1542 FunctionTemplateDecl *StaticInvokerTemplate =
1543 FunctionTemplateDecl::Create(
1544 S.Context, Class, Loc, InvokerName,
1545 TemplateCallOperator->getTemplateParameters(), Invoke);
1546 StaticInvokerTemplate->setAccess(AS_private);
1547 StaticInvokerTemplate->setImplicit(true);
1548 Invoke->setDescribedFunctionTemplate(StaticInvokerTemplate);
1549 Class->addDecl(StaticInvokerTemplate);
1550 } else
1551 Class->addDecl(Invoke);
1552 }
1553 }
1554
1555 /// Add a lambda's conversion to function pointers, as described in
1556 /// C++11 [expr.prim.lambda]p6. Note that in most cases, this should emit only a
1557 /// single pointer conversion. In the event that the default calling convention
1558 /// for free and member functions is different, it will emit both conventions.
addFunctionPointerConversions(Sema & S,SourceRange IntroducerRange,CXXRecordDecl * Class,CXXMethodDecl * CallOperator)1559 static void addFunctionPointerConversions(Sema &S, SourceRange IntroducerRange,
1560 CXXRecordDecl *Class,
1561 CXXMethodDecl *CallOperator) {
1562 const FunctionProtoType *CallOpProto =
1563 CallOperator->getType()->castAs<FunctionProtoType>();
1564
1565 repeatForLambdaConversionFunctionCallingConvs(
1566 S, *CallOpProto, [&](CallingConv CC) {
1567 QualType InvokerFunctionTy =
1568 S.getLambdaConversionFunctionResultType(CallOpProto, CC);
1569 addFunctionPointerConversion(S, IntroducerRange, Class, CallOperator,
1570 InvokerFunctionTy);
1571 });
1572 }
1573
1574 /// Add a lambda's conversion to block pointer.
addBlockPointerConversion(Sema & S,SourceRange IntroducerRange,CXXRecordDecl * Class,CXXMethodDecl * CallOperator)1575 static void addBlockPointerConversion(Sema &S,
1576 SourceRange IntroducerRange,
1577 CXXRecordDecl *Class,
1578 CXXMethodDecl *CallOperator) {
1579 const FunctionProtoType *CallOpProto =
1580 CallOperator->getType()->castAs<FunctionProtoType>();
1581 QualType FunctionTy = S.getLambdaConversionFunctionResultType(
1582 CallOpProto, getLambdaConversionFunctionCallConv(S, CallOpProto));
1583 QualType BlockPtrTy = S.Context.getBlockPointerType(FunctionTy);
1584
1585 FunctionProtoType::ExtProtoInfo ConversionEPI(
1586 S.Context.getDefaultCallingConvention(
1587 /*IsVariadic=*/false, /*IsCXXMethod=*/true));
1588 ConversionEPI.TypeQuals = Qualifiers();
1589 ConversionEPI.TypeQuals.addConst();
1590 QualType ConvTy =
1591 S.Context.getFunctionType(BlockPtrTy, std::nullopt, ConversionEPI);
1592
1593 SourceLocation Loc = IntroducerRange.getBegin();
1594 DeclarationName Name
1595 = S.Context.DeclarationNames.getCXXConversionFunctionName(
1596 S.Context.getCanonicalType(BlockPtrTy));
1597 DeclarationNameLoc NameLoc = DeclarationNameLoc::makeNamedTypeLoc(
1598 S.Context.getTrivialTypeSourceInfo(BlockPtrTy, Loc));
1599 CXXConversionDecl *Conversion = CXXConversionDecl::Create(
1600 S.Context, Class, Loc, DeclarationNameInfo(Name, Loc, NameLoc), ConvTy,
1601 S.Context.getTrivialTypeSourceInfo(ConvTy, Loc),
1602 S.getCurFPFeatures().isFPConstrained(),
1603 /*isInline=*/true, ExplicitSpecifier(), ConstexprSpecKind::Unspecified,
1604 CallOperator->getBody()->getEndLoc());
1605 Conversion->setAccess(AS_public);
1606 Conversion->setImplicit(true);
1607 Class->addDecl(Conversion);
1608 }
1609
BuildCaptureInit(const Capture & Cap,SourceLocation ImplicitCaptureLoc,bool IsOpenMPMapping)1610 ExprResult Sema::BuildCaptureInit(const Capture &Cap,
1611 SourceLocation ImplicitCaptureLoc,
1612 bool IsOpenMPMapping) {
1613 // VLA captures don't have a stored initialization expression.
1614 if (Cap.isVLATypeCapture())
1615 return ExprResult();
1616
1617 // An init-capture is initialized directly from its stored initializer.
1618 if (Cap.isInitCapture())
1619 return cast<VarDecl>(Cap.getVariable())->getInit();
1620
1621 // For anything else, build an initialization expression. For an implicit
1622 // capture, the capture notionally happens at the capture-default, so use
1623 // that location here.
1624 SourceLocation Loc =
1625 ImplicitCaptureLoc.isValid() ? ImplicitCaptureLoc : Cap.getLocation();
1626
1627 // C++11 [expr.prim.lambda]p21:
1628 // When the lambda-expression is evaluated, the entities that
1629 // are captured by copy are used to direct-initialize each
1630 // corresponding non-static data member of the resulting closure
1631 // object. (For array members, the array elements are
1632 // direct-initialized in increasing subscript order.) These
1633 // initializations are performed in the (unspecified) order in
1634 // which the non-static data members are declared.
1635
1636 // C++ [expr.prim.lambda]p12:
1637 // An entity captured by a lambda-expression is odr-used (3.2) in
1638 // the scope containing the lambda-expression.
1639 ExprResult Init;
1640 IdentifierInfo *Name = nullptr;
1641 if (Cap.isThisCapture()) {
1642 QualType ThisTy = getCurrentThisType();
1643 Expr *This = BuildCXXThisExpr(Loc, ThisTy, ImplicitCaptureLoc.isValid());
1644 if (Cap.isCopyCapture())
1645 Init = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
1646 else
1647 Init = This;
1648 } else {
1649 assert(Cap.isVariableCapture() && "unknown kind of capture");
1650 ValueDecl *Var = Cap.getVariable();
1651 Name = Var->getIdentifier();
1652 Init = BuildDeclarationNameExpr(
1653 CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
1654 }
1655
1656 // In OpenMP, the capture kind doesn't actually describe how to capture:
1657 // variables are "mapped" onto the device in a process that does not formally
1658 // make a copy, even for a "copy capture".
1659 if (IsOpenMPMapping)
1660 return Init;
1661
1662 if (Init.isInvalid())
1663 return ExprError();
1664
1665 Expr *InitExpr = Init.get();
1666 InitializedEntity Entity = InitializedEntity::InitializeLambdaCapture(
1667 Name, Cap.getCaptureType(), Loc);
1668 InitializationKind InitKind =
1669 InitializationKind::CreateDirect(Loc, Loc, Loc);
1670 InitializationSequence InitSeq(*this, Entity, InitKind, InitExpr);
1671 return InitSeq.Perform(*this, Entity, InitKind, InitExpr);
1672 }
1673
ActOnLambdaExpr(SourceLocation StartLoc,Stmt * Body,Scope * CurScope)1674 ExprResult Sema::ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body,
1675 Scope *CurScope) {
1676 LambdaScopeInfo LSI = *cast<LambdaScopeInfo>(FunctionScopes.back());
1677 ActOnFinishFunctionBody(LSI.CallOperator, Body);
1678 return BuildLambdaExpr(StartLoc, Body->getEndLoc(), &LSI);
1679 }
1680
1681 static LambdaCaptureDefault
mapImplicitCaptureStyle(CapturingScopeInfo::ImplicitCaptureStyle ICS)1682 mapImplicitCaptureStyle(CapturingScopeInfo::ImplicitCaptureStyle ICS) {
1683 switch (ICS) {
1684 case CapturingScopeInfo::ImpCap_None:
1685 return LCD_None;
1686 case CapturingScopeInfo::ImpCap_LambdaByval:
1687 return LCD_ByCopy;
1688 case CapturingScopeInfo::ImpCap_CapturedRegion:
1689 case CapturingScopeInfo::ImpCap_LambdaByref:
1690 return LCD_ByRef;
1691 case CapturingScopeInfo::ImpCap_Block:
1692 llvm_unreachable("block capture in lambda");
1693 }
1694 llvm_unreachable("Unknown implicit capture style");
1695 }
1696
CaptureHasSideEffects(const Capture & From)1697 bool Sema::CaptureHasSideEffects(const Capture &From) {
1698 if (From.isInitCapture()) {
1699 Expr *Init = cast<VarDecl>(From.getVariable())->getInit();
1700 if (Init && Init->HasSideEffects(Context))
1701 return true;
1702 }
1703
1704 if (!From.isCopyCapture())
1705 return false;
1706
1707 const QualType T = From.isThisCapture()
1708 ? getCurrentThisType()->getPointeeType()
1709 : From.getCaptureType();
1710
1711 if (T.isVolatileQualified())
1712 return true;
1713
1714 const Type *BaseT = T->getBaseElementTypeUnsafe();
1715 if (const CXXRecordDecl *RD = BaseT->getAsCXXRecordDecl())
1716 return !RD->isCompleteDefinition() || !RD->hasTrivialCopyConstructor() ||
1717 !RD->hasTrivialDestructor();
1718
1719 return false;
1720 }
1721
DiagnoseUnusedLambdaCapture(SourceRange CaptureRange,const Capture & From)1722 bool Sema::DiagnoseUnusedLambdaCapture(SourceRange CaptureRange,
1723 const Capture &From) {
1724 if (CaptureHasSideEffects(From))
1725 return false;
1726
1727 if (From.isVLATypeCapture())
1728 return false;
1729
1730 auto diag = Diag(From.getLocation(), diag::warn_unused_lambda_capture);
1731 if (From.isThisCapture())
1732 diag << "'this'";
1733 else
1734 diag << From.getVariable();
1735 diag << From.isNonODRUsed();
1736 diag << FixItHint::CreateRemoval(CaptureRange);
1737 return true;
1738 }
1739
1740 /// Create a field within the lambda class or captured statement record for the
1741 /// given capture.
BuildCaptureField(RecordDecl * RD,const sema::Capture & Capture)1742 FieldDecl *Sema::BuildCaptureField(RecordDecl *RD,
1743 const sema::Capture &Capture) {
1744 SourceLocation Loc = Capture.getLocation();
1745 QualType FieldType = Capture.getCaptureType();
1746
1747 TypeSourceInfo *TSI = nullptr;
1748 if (Capture.isVariableCapture()) {
1749 const auto *Var = dyn_cast_or_null<VarDecl>(Capture.getVariable());
1750 if (Var && Var->isInitCapture())
1751 TSI = Var->getTypeSourceInfo();
1752 }
1753
1754 // FIXME: Should we really be doing this? A null TypeSourceInfo seems more
1755 // appropriate, at least for an implicit capture.
1756 if (!TSI)
1757 TSI = Context.getTrivialTypeSourceInfo(FieldType, Loc);
1758
1759 // Build the non-static data member.
1760 FieldDecl *Field =
1761 FieldDecl::Create(Context, RD, /*StartLoc=*/Loc, /*IdLoc=*/Loc,
1762 /*Id=*/nullptr, FieldType, TSI, /*BW=*/nullptr,
1763 /*Mutable=*/false, ICIS_NoInit);
1764 // If the variable being captured has an invalid type, mark the class as
1765 // invalid as well.
1766 if (!FieldType->isDependentType()) {
1767 if (RequireCompleteSizedType(Loc, FieldType,
1768 diag::err_field_incomplete_or_sizeless)) {
1769 RD->setInvalidDecl();
1770 Field->setInvalidDecl();
1771 } else {
1772 NamedDecl *Def;
1773 FieldType->isIncompleteType(&Def);
1774 if (Def && Def->isInvalidDecl()) {
1775 RD->setInvalidDecl();
1776 Field->setInvalidDecl();
1777 }
1778 }
1779 }
1780 Field->setImplicit(true);
1781 Field->setAccess(AS_private);
1782 RD->addDecl(Field);
1783
1784 if (Capture.isVLATypeCapture())
1785 Field->setCapturedVLAType(Capture.getCapturedVLAType());
1786
1787 return Field;
1788 }
1789
BuildLambdaExpr(SourceLocation StartLoc,SourceLocation EndLoc,LambdaScopeInfo * LSI)1790 ExprResult Sema::BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc,
1791 LambdaScopeInfo *LSI) {
1792 // Collect information from the lambda scope.
1793 SmallVector<LambdaCapture, 4> Captures;
1794 SmallVector<Expr *, 4> CaptureInits;
1795 SourceLocation CaptureDefaultLoc = LSI->CaptureDefaultLoc;
1796 LambdaCaptureDefault CaptureDefault =
1797 mapImplicitCaptureStyle(LSI->ImpCaptureStyle);
1798 CXXRecordDecl *Class;
1799 CXXMethodDecl *CallOperator;
1800 SourceRange IntroducerRange;
1801 bool ExplicitParams;
1802 bool ExplicitResultType;
1803 CleanupInfo LambdaCleanup;
1804 bool ContainsUnexpandedParameterPack;
1805 bool IsGenericLambda;
1806 {
1807 CallOperator = LSI->CallOperator;
1808 Class = LSI->Lambda;
1809 IntroducerRange = LSI->IntroducerRange;
1810 ExplicitParams = LSI->ExplicitParams;
1811 ExplicitResultType = !LSI->HasImplicitReturnType;
1812 LambdaCleanup = LSI->Cleanup;
1813 ContainsUnexpandedParameterPack = LSI->ContainsUnexpandedParameterPack;
1814 IsGenericLambda = Class->isGenericLambda();
1815
1816 CallOperator->setLexicalDeclContext(Class);
1817 Decl *TemplateOrNonTemplateCallOperatorDecl =
1818 CallOperator->getDescribedFunctionTemplate()
1819 ? CallOperator->getDescribedFunctionTemplate()
1820 : cast<Decl>(CallOperator);
1821
1822 // FIXME: Is this really the best choice? Keeping the lexical decl context
1823 // set as CurContext seems more faithful to the source.
1824 TemplateOrNonTemplateCallOperatorDecl->setLexicalDeclContext(Class);
1825
1826 PopExpressionEvaluationContext();
1827
1828 // True if the current capture has a used capture or default before it.
1829 bool CurHasPreviousCapture = CaptureDefault != LCD_None;
1830 SourceLocation PrevCaptureLoc = CurHasPreviousCapture ?
1831 CaptureDefaultLoc : IntroducerRange.getBegin();
1832
1833 for (unsigned I = 0, N = LSI->Captures.size(); I != N; ++I) {
1834 const Capture &From = LSI->Captures[I];
1835
1836 if (From.isInvalid())
1837 return ExprError();
1838
1839 assert(!From.isBlockCapture() && "Cannot capture __block variables");
1840 bool IsImplicit = I >= LSI->NumExplicitCaptures;
1841 SourceLocation ImplicitCaptureLoc =
1842 IsImplicit ? CaptureDefaultLoc : SourceLocation();
1843
1844 // Use source ranges of explicit captures for fixits where available.
1845 SourceRange CaptureRange = LSI->ExplicitCaptureRanges[I];
1846
1847 // Warn about unused explicit captures.
1848 bool IsCaptureUsed = true;
1849 if (!CurContext->isDependentContext() && !IsImplicit &&
1850 !From.isODRUsed()) {
1851 // Initialized captures that are non-ODR used may not be eliminated.
1852 // FIXME: Where did the IsGenericLambda here come from?
1853 bool NonODRUsedInitCapture =
1854 IsGenericLambda && From.isNonODRUsed() && From.isInitCapture();
1855 if (!NonODRUsedInitCapture) {
1856 bool IsLast = (I + 1) == LSI->NumExplicitCaptures;
1857 SourceRange FixItRange;
1858 if (CaptureRange.isValid()) {
1859 if (!CurHasPreviousCapture && !IsLast) {
1860 // If there are no captures preceding this capture, remove the
1861 // following comma.
1862 FixItRange = SourceRange(CaptureRange.getBegin(),
1863 getLocForEndOfToken(CaptureRange.getEnd()));
1864 } else {
1865 // Otherwise, remove the comma since the last used capture.
1866 FixItRange = SourceRange(getLocForEndOfToken(PrevCaptureLoc),
1867 CaptureRange.getEnd());
1868 }
1869 }
1870
1871 IsCaptureUsed = !DiagnoseUnusedLambdaCapture(FixItRange, From);
1872 }
1873 }
1874
1875 if (CaptureRange.isValid()) {
1876 CurHasPreviousCapture |= IsCaptureUsed;
1877 PrevCaptureLoc = CaptureRange.getEnd();
1878 }
1879
1880 // Map the capture to our AST representation.
1881 LambdaCapture Capture = [&] {
1882 if (From.isThisCapture()) {
1883 // Capturing 'this' implicitly with a default of '[=]' is deprecated,
1884 // because it results in a reference capture. Don't warn prior to
1885 // C++2a; there's nothing that can be done about it before then.
1886 if (getLangOpts().CPlusPlus20 && IsImplicit &&
1887 CaptureDefault == LCD_ByCopy) {
1888 Diag(From.getLocation(), diag::warn_deprecated_this_capture);
1889 Diag(CaptureDefaultLoc, diag::note_deprecated_this_capture)
1890 << FixItHint::CreateInsertion(
1891 getLocForEndOfToken(CaptureDefaultLoc), ", this");
1892 }
1893 return LambdaCapture(From.getLocation(), IsImplicit,
1894 From.isCopyCapture() ? LCK_StarThis : LCK_This);
1895 } else if (From.isVLATypeCapture()) {
1896 return LambdaCapture(From.getLocation(), IsImplicit, LCK_VLAType);
1897 } else {
1898 assert(From.isVariableCapture() && "unknown kind of capture");
1899 ValueDecl *Var = From.getVariable();
1900 LambdaCaptureKind Kind =
1901 From.isCopyCapture() ? LCK_ByCopy : LCK_ByRef;
1902 return LambdaCapture(From.getLocation(), IsImplicit, Kind, Var,
1903 From.getEllipsisLoc());
1904 }
1905 }();
1906
1907 // Form the initializer for the capture field.
1908 ExprResult Init = BuildCaptureInit(From, ImplicitCaptureLoc);
1909
1910 // FIXME: Skip this capture if the capture is not used, the initializer
1911 // has no side-effects, the type of the capture is trivial, and the
1912 // lambda is not externally visible.
1913
1914 // Add a FieldDecl for the capture and form its initializer.
1915 BuildCaptureField(Class, From);
1916 Captures.push_back(Capture);
1917 CaptureInits.push_back(Init.get());
1918
1919 if (LangOpts.CUDA)
1920 CUDACheckLambdaCapture(CallOperator, From);
1921 }
1922
1923 Class->setCaptures(Context, Captures);
1924
1925 // C++11 [expr.prim.lambda]p6:
1926 // The closure type for a lambda-expression with no lambda-capture
1927 // has a public non-virtual non-explicit const conversion function
1928 // to pointer to function having the same parameter and return
1929 // types as the closure type's function call operator.
1930 if (Captures.empty() && CaptureDefault == LCD_None)
1931 addFunctionPointerConversions(*this, IntroducerRange, Class,
1932 CallOperator);
1933
1934 // Objective-C++:
1935 // The closure type for a lambda-expression has a public non-virtual
1936 // non-explicit const conversion function to a block pointer having the
1937 // same parameter and return types as the closure type's function call
1938 // operator.
1939 // FIXME: Fix generic lambda to block conversions.
1940 if (getLangOpts().Blocks && getLangOpts().ObjC && !IsGenericLambda)
1941 addBlockPointerConversion(*this, IntroducerRange, Class, CallOperator);
1942
1943 // Finalize the lambda class.
1944 SmallVector<Decl*, 4> Fields(Class->fields());
1945 ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
1946 SourceLocation(), ParsedAttributesView());
1947 CheckCompletedCXXClass(nullptr, Class);
1948 }
1949
1950 Cleanup.mergeFrom(LambdaCleanup);
1951
1952 LambdaExpr *Lambda = LambdaExpr::Create(Context, Class, IntroducerRange,
1953 CaptureDefault, CaptureDefaultLoc,
1954 ExplicitParams, ExplicitResultType,
1955 CaptureInits, EndLoc,
1956 ContainsUnexpandedParameterPack);
1957 // If the lambda expression's call operator is not explicitly marked constexpr
1958 // and we are not in a dependent context, analyze the call operator to infer
1959 // its constexpr-ness, suppressing diagnostics while doing so.
1960 if (getLangOpts().CPlusPlus17 && !CallOperator->isInvalidDecl() &&
1961 !CallOperator->isConstexpr() &&
1962 !isa<CoroutineBodyStmt>(CallOperator->getBody()) &&
1963 !Class->getDeclContext()->isDependentContext()) {
1964 CallOperator->setConstexprKind(
1965 CheckConstexprFunctionDefinition(CallOperator,
1966 CheckConstexprKind::CheckValid)
1967 ? ConstexprSpecKind::Constexpr
1968 : ConstexprSpecKind::Unspecified);
1969 }
1970
1971 // Emit delayed shadowing warnings now that the full capture list is known.
1972 DiagnoseShadowingLambdaDecls(LSI);
1973
1974 if (!CurContext->isDependentContext()) {
1975 switch (ExprEvalContexts.back().Context) {
1976 // C++11 [expr.prim.lambda]p2:
1977 // A lambda-expression shall not appear in an unevaluated operand
1978 // (Clause 5).
1979 case ExpressionEvaluationContext::Unevaluated:
1980 case ExpressionEvaluationContext::UnevaluatedList:
1981 case ExpressionEvaluationContext::UnevaluatedAbstract:
1982 // C++1y [expr.const]p2:
1983 // A conditional-expression e is a core constant expression unless the
1984 // evaluation of e, following the rules of the abstract machine, would
1985 // evaluate [...] a lambda-expression.
1986 //
1987 // This is technically incorrect, there are some constant evaluated contexts
1988 // where this should be allowed. We should probably fix this when DR1607 is
1989 // ratified, it lays out the exact set of conditions where we shouldn't
1990 // allow a lambda-expression.
1991 case ExpressionEvaluationContext::ConstantEvaluated:
1992 case ExpressionEvaluationContext::ImmediateFunctionContext:
1993 // We don't actually diagnose this case immediately, because we
1994 // could be within a context where we might find out later that
1995 // the expression is potentially evaluated (e.g., for typeid).
1996 ExprEvalContexts.back().Lambdas.push_back(Lambda);
1997 break;
1998
1999 case ExpressionEvaluationContext::DiscardedStatement:
2000 case ExpressionEvaluationContext::PotentiallyEvaluated:
2001 case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
2002 break;
2003 }
2004 }
2005
2006 return MaybeBindToTemporary(Lambda);
2007 }
2008
BuildBlockForLambdaConversion(SourceLocation CurrentLocation,SourceLocation ConvLocation,CXXConversionDecl * Conv,Expr * Src)2009 ExprResult Sema::BuildBlockForLambdaConversion(SourceLocation CurrentLocation,
2010 SourceLocation ConvLocation,
2011 CXXConversionDecl *Conv,
2012 Expr *Src) {
2013 // Make sure that the lambda call operator is marked used.
2014 CXXRecordDecl *Lambda = Conv->getParent();
2015 CXXMethodDecl *CallOperator
2016 = cast<CXXMethodDecl>(
2017 Lambda->lookup(
2018 Context.DeclarationNames.getCXXOperatorName(OO_Call)).front());
2019 CallOperator->setReferenced();
2020 CallOperator->markUsed(Context);
2021
2022 ExprResult Init = PerformCopyInitialization(
2023 InitializedEntity::InitializeLambdaToBlock(ConvLocation, Src->getType()),
2024 CurrentLocation, Src);
2025 if (!Init.isInvalid())
2026 Init = ActOnFinishFullExpr(Init.get(), /*DiscardedValue*/ false);
2027
2028 if (Init.isInvalid())
2029 return ExprError();
2030
2031 // Create the new block to be returned.
2032 BlockDecl *Block = BlockDecl::Create(Context, CurContext, ConvLocation);
2033
2034 // Set the type information.
2035 Block->setSignatureAsWritten(CallOperator->getTypeSourceInfo());
2036 Block->setIsVariadic(CallOperator->isVariadic());
2037 Block->setBlockMissingReturnType(false);
2038
2039 // Add parameters.
2040 SmallVector<ParmVarDecl *, 4> BlockParams;
2041 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
2042 ParmVarDecl *From = CallOperator->getParamDecl(I);
2043 BlockParams.push_back(ParmVarDecl::Create(
2044 Context, Block, From->getBeginLoc(), From->getLocation(),
2045 From->getIdentifier(), From->getType(), From->getTypeSourceInfo(),
2046 From->getStorageClass(),
2047 /*DefArg=*/nullptr));
2048 }
2049 Block->setParams(BlockParams);
2050
2051 Block->setIsConversionFromLambda(true);
2052
2053 // Add capture. The capture uses a fake variable, which doesn't correspond
2054 // to any actual memory location. However, the initializer copy-initializes
2055 // the lambda object.
2056 TypeSourceInfo *CapVarTSI =
2057 Context.getTrivialTypeSourceInfo(Src->getType());
2058 VarDecl *CapVar = VarDecl::Create(Context, Block, ConvLocation,
2059 ConvLocation, nullptr,
2060 Src->getType(), CapVarTSI,
2061 SC_None);
2062 BlockDecl::Capture Capture(/*variable=*/CapVar, /*byRef=*/false,
2063 /*nested=*/false, /*copy=*/Init.get());
2064 Block->setCaptures(Context, Capture, /*CapturesCXXThis=*/false);
2065
2066 // Add a fake function body to the block. IR generation is responsible
2067 // for filling in the actual body, which cannot be expressed as an AST.
2068 Block->setBody(new (Context) CompoundStmt(ConvLocation));
2069
2070 // Create the block literal expression.
2071 Expr *BuildBlock = new (Context) BlockExpr(Block, Conv->getConversionType());
2072 ExprCleanupObjects.push_back(Block);
2073 Cleanup.setExprNeedsCleanups(true);
2074
2075 return BuildBlock;
2076 }
2077