1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This implements the ScheduleDAGInstrs class, which implements
10 /// re-scheduling of MachineInstrs.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
15
16 #include "llvm/ADT/IntEqClasses.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/SparseSet.h"
20 #include "llvm/ADT/iterator_range.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/CodeGen/LiveIntervals.h"
24 #include "llvm/CodeGen/LivePhysRegs.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineInstr.h"
29 #include "llvm/CodeGen/MachineInstrBundle.h"
30 #include "llvm/CodeGen/MachineMemOperand.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/PseudoSourceValue.h"
34 #include "llvm/CodeGen/RegisterPressure.h"
35 #include "llvm/CodeGen/ScheduleDAG.h"
36 #include "llvm/CodeGen/ScheduleDFS.h"
37 #include "llvm/CodeGen/SlotIndexes.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/Config/llvm-config.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/Type.h"
44 #include "llvm/IR/Value.h"
45 #include "llvm/MC/LaneBitmask.h"
46 #include "llvm/MC/MCRegisterInfo.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/Format.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include <algorithm>
55 #include <cassert>
56 #include <iterator>
57 #include <utility>
58 #include <vector>
59
60 using namespace llvm;
61
62 #define DEBUG_TYPE "machine-scheduler"
63
64 static cl::opt<bool>
65 EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
66 cl::desc("Enable use of AA during MI DAG construction"));
67
68 static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden,
69 cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction"));
70
71 // Note: the two options below might be used in tuning compile time vs
72 // output quality. Setting HugeRegion so large that it will never be
73 // reached means best-effort, but may be slow.
74
75 // When Stores and Loads maps (or NonAliasStores and NonAliasLoads)
76 // together hold this many SUs, a reduction of maps will be done.
77 static cl::opt<unsigned> HugeRegion("dag-maps-huge-region", cl::Hidden,
78 cl::init(1000), cl::desc("The limit to use while constructing the DAG "
79 "prior to scheduling, at which point a trade-off "
80 "is made to avoid excessive compile time."));
81
82 static cl::opt<unsigned> ReductionSize(
83 "dag-maps-reduction-size", cl::Hidden,
84 cl::desc("A huge scheduling region will have maps reduced by this many "
85 "nodes at a time. Defaults to HugeRegion / 2."));
86
87 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
88 static cl::opt<bool> SchedPrintCycles(
89 "sched-print-cycles", cl::Hidden, cl::init(false),
90 cl::desc("Report top/bottom cycles when dumping SUnit instances"));
91 #endif
92
getReductionSize()93 static unsigned getReductionSize() {
94 // Always reduce a huge region with half of the elements, except
95 // when user sets this number explicitly.
96 if (ReductionSize.getNumOccurrences() == 0)
97 return HugeRegion / 2;
98 return ReductionSize;
99 }
100
dumpSUList(const ScheduleDAGInstrs::SUList & L)101 static void dumpSUList(const ScheduleDAGInstrs::SUList &L) {
102 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
103 dbgs() << "{ ";
104 for (const SUnit *SU : L) {
105 dbgs() << "SU(" << SU->NodeNum << ")";
106 if (SU != L.back())
107 dbgs() << ", ";
108 }
109 dbgs() << "}\n";
110 #endif
111 }
112
ScheduleDAGInstrs(MachineFunction & mf,const MachineLoopInfo * mli,bool RemoveKillFlags)113 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
114 const MachineLoopInfo *mli,
115 bool RemoveKillFlags)
116 : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()),
117 RemoveKillFlags(RemoveKillFlags),
118 UnknownValue(UndefValue::get(
119 Type::getVoidTy(mf.getFunction().getContext()))), Topo(SUnits, &ExitSU) {
120 DbgValues.clear();
121
122 const TargetSubtargetInfo &ST = mf.getSubtarget();
123 SchedModel.init(&ST);
124 }
125
126 /// If this machine instr has memory reference information and it can be
127 /// tracked to a normal reference to a known object, return the Value
128 /// for that object. This function returns false the memory location is
129 /// unknown or may alias anything.
getUnderlyingObjectsForInstr(const MachineInstr * MI,const MachineFrameInfo & MFI,UnderlyingObjectsVector & Objects,const DataLayout & DL)130 static bool getUnderlyingObjectsForInstr(const MachineInstr *MI,
131 const MachineFrameInfo &MFI,
132 UnderlyingObjectsVector &Objects,
133 const DataLayout &DL) {
134 auto AllMMOsOkay = [&]() {
135 for (const MachineMemOperand *MMO : MI->memoperands()) {
136 // TODO: Figure out whether isAtomic is really necessary (see D57601).
137 if (MMO->isVolatile() || MMO->isAtomic())
138 return false;
139
140 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) {
141 // Function that contain tail calls don't have unique PseudoSourceValue
142 // objects. Two PseudoSourceValues might refer to the same or
143 // overlapping locations. The client code calling this function assumes
144 // this is not the case. So return a conservative answer of no known
145 // object.
146 if (MFI.hasTailCall())
147 return false;
148
149 // For now, ignore PseudoSourceValues which may alias LLVM IR values
150 // because the code that uses this function has no way to cope with
151 // such aliases.
152 if (PSV->isAliased(&MFI))
153 return false;
154
155 bool MayAlias = PSV->mayAlias(&MFI);
156 Objects.emplace_back(PSV, MayAlias);
157 } else if (const Value *V = MMO->getValue()) {
158 SmallVector<Value *, 4> Objs;
159 if (!getUnderlyingObjectsForCodeGen(V, Objs))
160 return false;
161
162 for (Value *V : Objs) {
163 assert(isIdentifiedObject(V));
164 Objects.emplace_back(V, true);
165 }
166 } else
167 return false;
168 }
169 return true;
170 };
171
172 if (!AllMMOsOkay()) {
173 Objects.clear();
174 return false;
175 }
176
177 return true;
178 }
179
startBlock(MachineBasicBlock * bb)180 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
181 BB = bb;
182 }
183
finishBlock()184 void ScheduleDAGInstrs::finishBlock() {
185 // Subclasses should no longer refer to the old block.
186 BB = nullptr;
187 }
188
enterRegion(MachineBasicBlock * bb,MachineBasicBlock::iterator begin,MachineBasicBlock::iterator end,unsigned regioninstrs)189 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
190 MachineBasicBlock::iterator begin,
191 MachineBasicBlock::iterator end,
192 unsigned regioninstrs) {
193 assert(bb == BB && "startBlock should set BB");
194 RegionBegin = begin;
195 RegionEnd = end;
196 NumRegionInstrs = regioninstrs;
197 }
198
exitRegion()199 void ScheduleDAGInstrs::exitRegion() {
200 // Nothing to do.
201 }
202
addSchedBarrierDeps()203 void ScheduleDAGInstrs::addSchedBarrierDeps() {
204 MachineInstr *ExitMI =
205 RegionEnd != BB->end()
206 ? &*skipDebugInstructionsBackward(RegionEnd, RegionBegin)
207 : nullptr;
208 ExitSU.setInstr(ExitMI);
209 // Add dependencies on the defs and uses of the instruction.
210 if (ExitMI) {
211 for (const MachineOperand &MO : ExitMI->operands()) {
212 if (!MO.isReg() || MO.isDef()) continue;
213 Register Reg = MO.getReg();
214 if (Reg.isPhysical()) {
215 Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
216 } else if (Reg.isVirtual() && MO.readsReg()) {
217 addVRegUseDeps(&ExitSU, ExitMI->getOperandNo(&MO));
218 }
219 }
220 }
221 if (!ExitMI || (!ExitMI->isCall() && !ExitMI->isBarrier())) {
222 // For others, e.g. fallthrough, conditional branch, assume the exit
223 // uses all the registers that are livein to the successor blocks.
224 for (const MachineBasicBlock *Succ : BB->successors()) {
225 for (const auto &LI : Succ->liveins()) {
226 if (!Uses.contains(LI.PhysReg))
227 Uses.insert(PhysRegSUOper(&ExitSU, -1, LI.PhysReg));
228 }
229 }
230 }
231 }
232
233 /// MO is an operand of SU's instruction that defines a physical register. Adds
234 /// data dependencies from SU to any uses of the physical register.
addPhysRegDataDeps(SUnit * SU,unsigned OperIdx)235 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
236 const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx);
237 assert(MO.isDef() && "expect physreg def");
238
239 // Ask the target if address-backscheduling is desirable, and if so how much.
240 const TargetSubtargetInfo &ST = MF.getSubtarget();
241
242 // Only use any non-zero latency for real defs/uses, in contrast to
243 // "fake" operands added by regalloc.
244 const MCInstrDesc *DefMIDesc = &SU->getInstr()->getDesc();
245 bool ImplicitPseudoDef = (OperIdx >= DefMIDesc->getNumOperands() &&
246 !DefMIDesc->hasImplicitDefOfPhysReg(MO.getReg()));
247 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
248 Alias.isValid(); ++Alias) {
249 for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) {
250 SUnit *UseSU = I->SU;
251 if (UseSU == SU)
252 continue;
253
254 // Adjust the dependence latency using operand def/use information,
255 // then allow the target to perform its own adjustments.
256 int UseOp = I->OpIdx;
257 MachineInstr *RegUse = nullptr;
258 SDep Dep;
259 if (UseOp < 0)
260 Dep = SDep(SU, SDep::Artificial);
261 else {
262 // Set the hasPhysRegDefs only for physreg defs that have a use within
263 // the scheduling region.
264 SU->hasPhysRegDefs = true;
265 Dep = SDep(SU, SDep::Data, *Alias);
266 RegUse = UseSU->getInstr();
267 }
268 const MCInstrDesc *UseMIDesc =
269 (RegUse ? &UseSU->getInstr()->getDesc() : nullptr);
270 bool ImplicitPseudoUse =
271 (UseMIDesc && UseOp >= ((int)UseMIDesc->getNumOperands()) &&
272 !UseMIDesc->hasImplicitUseOfPhysReg(*Alias));
273 if (!ImplicitPseudoDef && !ImplicitPseudoUse) {
274 Dep.setLatency(SchedModel.computeOperandLatency(SU->getInstr(), OperIdx,
275 RegUse, UseOp));
276 } else {
277 Dep.setLatency(0);
278 }
279 ST.adjustSchedDependency(SU, OperIdx, UseSU, UseOp, Dep);
280 UseSU->addPred(Dep);
281 }
282 }
283 }
284
285 /// Adds register dependencies (data, anti, and output) from this SUnit
286 /// to following instructions in the same scheduling region that depend the
287 /// physical register referenced at OperIdx.
addPhysRegDeps(SUnit * SU,unsigned OperIdx)288 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
289 MachineInstr *MI = SU->getInstr();
290 MachineOperand &MO = MI->getOperand(OperIdx);
291 Register Reg = MO.getReg();
292 // We do not need to track any dependencies for constant registers.
293 if (MRI.isConstantPhysReg(Reg))
294 return;
295
296 const TargetSubtargetInfo &ST = MF.getSubtarget();
297
298 // Optionally add output and anti dependencies. For anti
299 // dependencies we use a latency of 0 because for a multi-issue
300 // target we want to allow the defining instruction to issue
301 // in the same cycle as the using instruction.
302 // TODO: Using a latency of 1 here for output dependencies assumes
303 // there's no cost for reusing registers.
304 SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
305 for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) {
306 if (!Defs.contains(*Alias))
307 continue;
308 for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) {
309 SUnit *DefSU = I->SU;
310 if (DefSU == &ExitSU)
311 continue;
312 if (DefSU != SU &&
313 (Kind != SDep::Output || !MO.isDead() ||
314 !DefSU->getInstr()->registerDefIsDead(*Alias))) {
315 SDep Dep(SU, Kind, /*Reg=*/*Alias);
316 if (Kind != SDep::Anti)
317 Dep.setLatency(
318 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
319 ST.adjustSchedDependency(SU, OperIdx, DefSU, I->OpIdx, Dep);
320 DefSU->addPred(Dep);
321 }
322 }
323 }
324
325 if (!MO.isDef()) {
326 SU->hasPhysRegUses = true;
327 // Either insert a new Reg2SUnits entry with an empty SUnits list, or
328 // retrieve the existing SUnits list for this register's uses.
329 // Push this SUnit on the use list.
330 Uses.insert(PhysRegSUOper(SU, OperIdx, Reg));
331 if (RemoveKillFlags)
332 MO.setIsKill(false);
333 } else {
334 addPhysRegDataDeps(SU, OperIdx);
335
336 // Clear previous uses and defs of this register and its subergisters.
337 for (MCSubRegIterator SubReg(Reg, TRI, true); SubReg.isValid(); ++SubReg) {
338 if (Uses.contains(*SubReg))
339 Uses.eraseAll(*SubReg);
340 if (!MO.isDead())
341 Defs.eraseAll(*SubReg);
342 }
343 if (MO.isDead() && SU->isCall) {
344 // Calls will not be reordered because of chain dependencies (see
345 // below). Since call operands are dead, calls may continue to be added
346 // to the DefList making dependence checking quadratic in the size of
347 // the block. Instead, we leave only one call at the back of the
348 // DefList.
349 Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg);
350 Reg2SUnitsMap::iterator B = P.first;
351 Reg2SUnitsMap::iterator I = P.second;
352 for (bool isBegin = I == B; !isBegin; /* empty */) {
353 isBegin = (--I) == B;
354 if (!I->SU->isCall)
355 break;
356 I = Defs.erase(I);
357 }
358 }
359
360 // Defs are pushed in the order they are visited and never reordered.
361 Defs.insert(PhysRegSUOper(SU, OperIdx, Reg));
362 }
363 }
364
getLaneMaskForMO(const MachineOperand & MO) const365 LaneBitmask ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand &MO) const
366 {
367 Register Reg = MO.getReg();
368 // No point in tracking lanemasks if we don't have interesting subregisters.
369 const TargetRegisterClass &RC = *MRI.getRegClass(Reg);
370 if (!RC.HasDisjunctSubRegs)
371 return LaneBitmask::getAll();
372
373 unsigned SubReg = MO.getSubReg();
374 if (SubReg == 0)
375 return RC.getLaneMask();
376 return TRI->getSubRegIndexLaneMask(SubReg);
377 }
378
deadDefHasNoUse(const MachineOperand & MO)379 bool ScheduleDAGInstrs::deadDefHasNoUse(const MachineOperand &MO) {
380 auto RegUse = CurrentVRegUses.find(MO.getReg());
381 if (RegUse == CurrentVRegUses.end())
382 return true;
383 return (RegUse->LaneMask & getLaneMaskForMO(MO)).none();
384 }
385
386 /// Adds register output and data dependencies from this SUnit to instructions
387 /// that occur later in the same scheduling region if they read from or write to
388 /// the virtual register defined at OperIdx.
389 ///
390 /// TODO: Hoist loop induction variable increments. This has to be
391 /// reevaluated. Generally, IV scheduling should be done before coalescing.
addVRegDefDeps(SUnit * SU,unsigned OperIdx)392 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
393 MachineInstr *MI = SU->getInstr();
394 MachineOperand &MO = MI->getOperand(OperIdx);
395 Register Reg = MO.getReg();
396
397 LaneBitmask DefLaneMask;
398 LaneBitmask KillLaneMask;
399 if (TrackLaneMasks) {
400 bool IsKill = MO.getSubReg() == 0 || MO.isUndef();
401 DefLaneMask = getLaneMaskForMO(MO);
402 // If we have a <read-undef> flag, none of the lane values comes from an
403 // earlier instruction.
404 KillLaneMask = IsKill ? LaneBitmask::getAll() : DefLaneMask;
405
406 if (MO.getSubReg() != 0 && MO.isUndef()) {
407 // There may be other subregister defs on the same instruction of the same
408 // register in later operands. The lanes of other defs will now be live
409 // after this instruction, so these should not be treated as killed by the
410 // instruction even though they appear to be killed in this one operand.
411 for (const MachineOperand &OtherMO :
412 llvm::drop_begin(MI->operands(), OperIdx + 1))
413 if (OtherMO.isReg() && OtherMO.isDef() && OtherMO.getReg() == Reg)
414 KillLaneMask &= ~getLaneMaskForMO(OtherMO);
415 }
416
417 // Clear undef flag, we'll re-add it later once we know which subregister
418 // Def is first.
419 MO.setIsUndef(false);
420 } else {
421 DefLaneMask = LaneBitmask::getAll();
422 KillLaneMask = LaneBitmask::getAll();
423 }
424
425 if (MO.isDead()) {
426 assert(deadDefHasNoUse(MO) && "Dead defs should have no uses");
427 } else {
428 // Add data dependence to all uses we found so far.
429 const TargetSubtargetInfo &ST = MF.getSubtarget();
430 for (VReg2SUnitOperIdxMultiMap::iterator I = CurrentVRegUses.find(Reg),
431 E = CurrentVRegUses.end(); I != E; /*empty*/) {
432 LaneBitmask LaneMask = I->LaneMask;
433 // Ignore uses of other lanes.
434 if ((LaneMask & KillLaneMask).none()) {
435 ++I;
436 continue;
437 }
438
439 if ((LaneMask & DefLaneMask).any()) {
440 SUnit *UseSU = I->SU;
441 MachineInstr *Use = UseSU->getInstr();
442 SDep Dep(SU, SDep::Data, Reg);
443 Dep.setLatency(SchedModel.computeOperandLatency(MI, OperIdx, Use,
444 I->OperandIndex));
445 ST.adjustSchedDependency(SU, OperIdx, UseSU, I->OperandIndex, Dep);
446 UseSU->addPred(Dep);
447 }
448
449 LaneMask &= ~KillLaneMask;
450 // If we found a Def for all lanes of this use, remove it from the list.
451 if (LaneMask.any()) {
452 I->LaneMask = LaneMask;
453 ++I;
454 } else
455 I = CurrentVRegUses.erase(I);
456 }
457 }
458
459 // Shortcut: Singly defined vregs do not have output/anti dependencies.
460 if (MRI.hasOneDef(Reg))
461 return;
462
463 // Add output dependence to the next nearest defs of this vreg.
464 //
465 // Unless this definition is dead, the output dependence should be
466 // transitively redundant with antidependencies from this definition's
467 // uses. We're conservative for now until we have a way to guarantee the uses
468 // are not eliminated sometime during scheduling. The output dependence edge
469 // is also useful if output latency exceeds def-use latency.
470 LaneBitmask LaneMask = DefLaneMask;
471 for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
472 CurrentVRegDefs.end())) {
473 // Ignore defs for other lanes.
474 if ((V2SU.LaneMask & LaneMask).none())
475 continue;
476 // Add an output dependence.
477 SUnit *DefSU = V2SU.SU;
478 // Ignore additional defs of the same lanes in one instruction. This can
479 // happen because lanemasks are shared for targets with too many
480 // subregisters. We also use some representration tricks/hacks where we
481 // add super-register defs/uses, to imply that although we only access parts
482 // of the reg we care about the full one.
483 if (DefSU == SU)
484 continue;
485 SDep Dep(SU, SDep::Output, Reg);
486 Dep.setLatency(
487 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
488 DefSU->addPred(Dep);
489
490 // Update current definition. This can get tricky if the def was about a
491 // bigger lanemask before. We then have to shrink it and create a new
492 // VReg2SUnit for the non-overlapping part.
493 LaneBitmask OverlapMask = V2SU.LaneMask & LaneMask;
494 LaneBitmask NonOverlapMask = V2SU.LaneMask & ~LaneMask;
495 V2SU.SU = SU;
496 V2SU.LaneMask = OverlapMask;
497 if (NonOverlapMask.any())
498 CurrentVRegDefs.insert(VReg2SUnit(Reg, NonOverlapMask, DefSU));
499 }
500 // If there was no CurrentVRegDefs entry for some lanes yet, create one.
501 if (LaneMask.any())
502 CurrentVRegDefs.insert(VReg2SUnit(Reg, LaneMask, SU));
503 }
504
505 /// Adds a register data dependency if the instruction that defines the
506 /// virtual register used at OperIdx is mapped to an SUnit. Add a register
507 /// antidependency from this SUnit to instructions that occur later in the same
508 /// scheduling region if they write the virtual register.
509 ///
510 /// TODO: Handle ExitSU "uses" properly.
addVRegUseDeps(SUnit * SU,unsigned OperIdx)511 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
512 const MachineInstr *MI = SU->getInstr();
513 assert(!MI->isDebugOrPseudoInstr());
514
515 const MachineOperand &MO = MI->getOperand(OperIdx);
516 Register Reg = MO.getReg();
517
518 // Remember the use. Data dependencies will be added when we find the def.
519 LaneBitmask LaneMask = TrackLaneMasks ? getLaneMaskForMO(MO)
520 : LaneBitmask::getAll();
521 CurrentVRegUses.insert(VReg2SUnitOperIdx(Reg, LaneMask, OperIdx, SU));
522
523 // Add antidependences to the following defs of the vreg.
524 for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
525 CurrentVRegDefs.end())) {
526 // Ignore defs for unrelated lanes.
527 LaneBitmask PrevDefLaneMask = V2SU.LaneMask;
528 if ((PrevDefLaneMask & LaneMask).none())
529 continue;
530 if (V2SU.SU == SU)
531 continue;
532
533 V2SU.SU->addPred(SDep(SU, SDep::Anti, Reg));
534 }
535 }
536
537 /// Returns true if MI is an instruction we are unable to reason about
538 /// (like a call or something with unmodeled side effects).
isGlobalMemoryObject(MachineInstr * MI)539 static inline bool isGlobalMemoryObject(MachineInstr *MI) {
540 return MI->isCall() || MI->hasUnmodeledSideEffects() ||
541 (MI->hasOrderedMemoryRef() && !MI->isDereferenceableInvariantLoad());
542 }
543
addChainDependency(SUnit * SUa,SUnit * SUb,unsigned Latency)544 void ScheduleDAGInstrs::addChainDependency (SUnit *SUa, SUnit *SUb,
545 unsigned Latency) {
546 if (SUa->getInstr()->mayAlias(AAForDep, *SUb->getInstr(), UseTBAA)) {
547 SDep Dep(SUa, SDep::MayAliasMem);
548 Dep.setLatency(Latency);
549 SUb->addPred(Dep);
550 }
551 }
552
553 /// Creates an SUnit for each real instruction, numbered in top-down
554 /// topological order. The instruction order A < B, implies that no edge exists
555 /// from B to A.
556 ///
557 /// Map each real instruction to its SUnit.
558 ///
559 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may
560 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
561 /// instead of pointers.
562 ///
563 /// MachineScheduler relies on initSUnits numbering the nodes by their order in
564 /// the original instruction list.
initSUnits()565 void ScheduleDAGInstrs::initSUnits() {
566 // We'll be allocating one SUnit for each real instruction in the region,
567 // which is contained within a basic block.
568 SUnits.reserve(NumRegionInstrs);
569
570 for (MachineInstr &MI : make_range(RegionBegin, RegionEnd)) {
571 if (MI.isDebugOrPseudoInstr())
572 continue;
573
574 SUnit *SU = newSUnit(&MI);
575 MISUnitMap[&MI] = SU;
576
577 SU->isCall = MI.isCall();
578 SU->isCommutable = MI.isCommutable();
579
580 // Assign the Latency field of SU using target-provided information.
581 SU->Latency = SchedModel.computeInstrLatency(SU->getInstr());
582
583 // If this SUnit uses a reserved or unbuffered resource, mark it as such.
584 //
585 // Reserved resources block an instruction from issuing and stall the
586 // entire pipeline. These are identified by BufferSize=0.
587 //
588 // Unbuffered resources prevent execution of subsequent instructions that
589 // require the same resources. This is used for in-order execution pipelines
590 // within an out-of-order core. These are identified by BufferSize=1.
591 if (SchedModel.hasInstrSchedModel()) {
592 const MCSchedClassDesc *SC = getSchedClass(SU);
593 for (const MCWriteProcResEntry &PRE :
594 make_range(SchedModel.getWriteProcResBegin(SC),
595 SchedModel.getWriteProcResEnd(SC))) {
596 switch (SchedModel.getProcResource(PRE.ProcResourceIdx)->BufferSize) {
597 case 0:
598 SU->hasReservedResource = true;
599 break;
600 case 1:
601 SU->isUnbuffered = true;
602 break;
603 default:
604 break;
605 }
606 }
607 }
608 }
609 }
610
611 class ScheduleDAGInstrs::Value2SUsMap : public MapVector<ValueType, SUList> {
612 /// Current total number of SUs in map.
613 unsigned NumNodes = 0;
614
615 /// 1 for loads, 0 for stores. (see comment in SUList)
616 unsigned TrueMemOrderLatency;
617
618 public:
Value2SUsMap(unsigned lat=0)619 Value2SUsMap(unsigned lat = 0) : TrueMemOrderLatency(lat) {}
620
621 /// To keep NumNodes up to date, insert() is used instead of
622 /// this operator w/ push_back().
operator [](const SUList & Key)623 ValueType &operator[](const SUList &Key) {
624 llvm_unreachable("Don't use. Use insert() instead."); };
625
626 /// Adds SU to the SUList of V. If Map grows huge, reduce its size by calling
627 /// reduce().
insert(SUnit * SU,ValueType V)628 void inline insert(SUnit *SU, ValueType V) {
629 MapVector::operator[](V).push_back(SU);
630 NumNodes++;
631 }
632
633 /// Clears the list of SUs mapped to V.
clearList(ValueType V)634 void inline clearList(ValueType V) {
635 iterator Itr = find(V);
636 if (Itr != end()) {
637 assert(NumNodes >= Itr->second.size());
638 NumNodes -= Itr->second.size();
639
640 Itr->second.clear();
641 }
642 }
643
644 /// Clears map from all contents.
clear()645 void clear() {
646 MapVector<ValueType, SUList>::clear();
647 NumNodes = 0;
648 }
649
size() const650 unsigned inline size() const { return NumNodes; }
651
652 /// Counts the number of SUs in this map after a reduction.
reComputeSize()653 void reComputeSize() {
654 NumNodes = 0;
655 for (auto &I : *this)
656 NumNodes += I.second.size();
657 }
658
getTrueMemOrderLatency() const659 unsigned inline getTrueMemOrderLatency() const {
660 return TrueMemOrderLatency;
661 }
662
663 void dump();
664 };
665
addChainDependencies(SUnit * SU,Value2SUsMap & Val2SUsMap)666 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU,
667 Value2SUsMap &Val2SUsMap) {
668 for (auto &I : Val2SUsMap)
669 addChainDependencies(SU, I.second,
670 Val2SUsMap.getTrueMemOrderLatency());
671 }
672
addChainDependencies(SUnit * SU,Value2SUsMap & Val2SUsMap,ValueType V)673 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU,
674 Value2SUsMap &Val2SUsMap,
675 ValueType V) {
676 Value2SUsMap::iterator Itr = Val2SUsMap.find(V);
677 if (Itr != Val2SUsMap.end())
678 addChainDependencies(SU, Itr->second,
679 Val2SUsMap.getTrueMemOrderLatency());
680 }
681
addBarrierChain(Value2SUsMap & map)682 void ScheduleDAGInstrs::addBarrierChain(Value2SUsMap &map) {
683 assert(BarrierChain != nullptr);
684
685 for (auto &[V, SUs] : map) {
686 (void)V;
687 for (auto *SU : SUs)
688 SU->addPredBarrier(BarrierChain);
689 }
690 map.clear();
691 }
692
insertBarrierChain(Value2SUsMap & map)693 void ScheduleDAGInstrs::insertBarrierChain(Value2SUsMap &map) {
694 assert(BarrierChain != nullptr);
695
696 // Go through all lists of SUs.
697 for (Value2SUsMap::iterator I = map.begin(), EE = map.end(); I != EE;) {
698 Value2SUsMap::iterator CurrItr = I++;
699 SUList &sus = CurrItr->second;
700 SUList::iterator SUItr = sus.begin(), SUEE = sus.end();
701 for (; SUItr != SUEE; ++SUItr) {
702 // Stop on BarrierChain or any instruction above it.
703 if ((*SUItr)->NodeNum <= BarrierChain->NodeNum)
704 break;
705
706 (*SUItr)->addPredBarrier(BarrierChain);
707 }
708
709 // Remove also the BarrierChain from list if present.
710 if (SUItr != SUEE && *SUItr == BarrierChain)
711 SUItr++;
712
713 // Remove all SUs that are now successors of BarrierChain.
714 if (SUItr != sus.begin())
715 sus.erase(sus.begin(), SUItr);
716 }
717
718 // Remove all entries with empty su lists.
719 map.remove_if([&](std::pair<ValueType, SUList> &mapEntry) {
720 return (mapEntry.second.empty()); });
721
722 // Recompute the size of the map (NumNodes).
723 map.reComputeSize();
724 }
725
buildSchedGraph(AAResults * AA,RegPressureTracker * RPTracker,PressureDiffs * PDiffs,LiveIntervals * LIS,bool TrackLaneMasks)726 void ScheduleDAGInstrs::buildSchedGraph(AAResults *AA,
727 RegPressureTracker *RPTracker,
728 PressureDiffs *PDiffs,
729 LiveIntervals *LIS,
730 bool TrackLaneMasks) {
731 const TargetSubtargetInfo &ST = MF.getSubtarget();
732 bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI
733 : ST.useAA();
734 AAForDep = UseAA ? AA : nullptr;
735
736 BarrierChain = nullptr;
737
738 this->TrackLaneMasks = TrackLaneMasks;
739 MISUnitMap.clear();
740 ScheduleDAG::clearDAG();
741
742 // Create an SUnit for each real instruction.
743 initSUnits();
744
745 if (PDiffs)
746 PDiffs->init(SUnits.size());
747
748 // We build scheduling units by walking a block's instruction list
749 // from bottom to top.
750
751 // Each MIs' memory operand(s) is analyzed to a list of underlying
752 // objects. The SU is then inserted in the SUList(s) mapped from the
753 // Value(s). Each Value thus gets mapped to lists of SUs depending
754 // on it, stores and loads kept separately. Two SUs are trivially
755 // non-aliasing if they both depend on only identified Values and do
756 // not share any common Value.
757 Value2SUsMap Stores, Loads(1 /*TrueMemOrderLatency*/);
758
759 // Certain memory accesses are known to not alias any SU in Stores
760 // or Loads, and have therefore their own 'NonAlias'
761 // domain. E.g. spill / reload instructions never alias LLVM I/R
762 // Values. It would be nice to assume that this type of memory
763 // accesses always have a proper memory operand modelling, and are
764 // therefore never unanalyzable, but this is conservatively not
765 // done.
766 Value2SUsMap NonAliasStores, NonAliasLoads(1 /*TrueMemOrderLatency*/);
767
768 // Track all instructions that may raise floating-point exceptions.
769 // These do not depend on one other (or normal loads or stores), but
770 // must not be rescheduled across global barriers. Note that we don't
771 // really need a "map" here since we don't track those MIs by value;
772 // using the same Value2SUsMap data type here is simply a matter of
773 // convenience.
774 Value2SUsMap FPExceptions;
775
776 // Remove any stale debug info; sometimes BuildSchedGraph is called again
777 // without emitting the info from the previous call.
778 DbgValues.clear();
779 FirstDbgValue = nullptr;
780
781 assert(Defs.empty() && Uses.empty() &&
782 "Only BuildGraph should update Defs/Uses");
783 Defs.setUniverse(TRI->getNumRegs());
784 Uses.setUniverse(TRI->getNumRegs());
785
786 assert(CurrentVRegDefs.empty() && "nobody else should use CurrentVRegDefs");
787 assert(CurrentVRegUses.empty() && "nobody else should use CurrentVRegUses");
788 unsigned NumVirtRegs = MRI.getNumVirtRegs();
789 CurrentVRegDefs.setUniverse(NumVirtRegs);
790 CurrentVRegUses.setUniverse(NumVirtRegs);
791
792 // Model data dependencies between instructions being scheduled and the
793 // ExitSU.
794 addSchedBarrierDeps();
795
796 // Walk the list of instructions, from bottom moving up.
797 MachineInstr *DbgMI = nullptr;
798 for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
799 MII != MIE; --MII) {
800 MachineInstr &MI = *std::prev(MII);
801 if (DbgMI) {
802 DbgValues.emplace_back(DbgMI, &MI);
803 DbgMI = nullptr;
804 }
805
806 if (MI.isDebugValue() || MI.isDebugPHI()) {
807 DbgMI = &MI;
808 continue;
809 }
810
811 if (MI.isDebugLabel() || MI.isDebugRef() || MI.isPseudoProbe())
812 continue;
813
814 SUnit *SU = MISUnitMap[&MI];
815 assert(SU && "No SUnit mapped to this MI");
816
817 if (RPTracker) {
818 RegisterOperands RegOpers;
819 RegOpers.collect(MI, *TRI, MRI, TrackLaneMasks, false);
820 if (TrackLaneMasks) {
821 SlotIndex SlotIdx = LIS->getInstructionIndex(MI);
822 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx);
823 }
824 if (PDiffs != nullptr)
825 PDiffs->addInstruction(SU->NodeNum, RegOpers, MRI);
826
827 if (RPTracker->getPos() == RegionEnd || &*RPTracker->getPos() != &MI)
828 RPTracker->recedeSkipDebugValues();
829 assert(&*RPTracker->getPos() == &MI && "RPTracker in sync");
830 RPTracker->recede(RegOpers);
831 }
832
833 assert(
834 (CanHandleTerminators || (!MI.isTerminator() && !MI.isPosition())) &&
835 "Cannot schedule terminators or labels!");
836
837 // Add register-based dependencies (data, anti, and output).
838 // For some instructions (calls, returns, inline-asm, etc.) there can
839 // be explicit uses and implicit defs, in which case the use will appear
840 // on the operand list before the def. Do two passes over the operand
841 // list to make sure that defs are processed before any uses.
842 bool HasVRegDef = false;
843 for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) {
844 const MachineOperand &MO = MI.getOperand(j);
845 if (!MO.isReg() || !MO.isDef())
846 continue;
847 Register Reg = MO.getReg();
848 if (Reg.isPhysical()) {
849 addPhysRegDeps(SU, j);
850 } else if (Reg.isVirtual()) {
851 HasVRegDef = true;
852 addVRegDefDeps(SU, j);
853 }
854 }
855 // Now process all uses.
856 for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) {
857 const MachineOperand &MO = MI.getOperand(j);
858 // Only look at use operands.
859 // We do not need to check for MO.readsReg() here because subsequent
860 // subregister defs will get output dependence edges and need no
861 // additional use dependencies.
862 if (!MO.isReg() || !MO.isUse())
863 continue;
864 Register Reg = MO.getReg();
865 if (Reg.isPhysical()) {
866 addPhysRegDeps(SU, j);
867 } else if (Reg.isVirtual() && MO.readsReg()) {
868 addVRegUseDeps(SU, j);
869 }
870 }
871
872 // If we haven't seen any uses in this scheduling region, create a
873 // dependence edge to ExitSU to model the live-out latency. This is required
874 // for vreg defs with no in-region use, and prefetches with no vreg def.
875 //
876 // FIXME: NumDataSuccs would be more precise than NumSuccs here. This
877 // check currently relies on being called before adding chain deps.
878 if (SU->NumSuccs == 0 && SU->Latency > 1 && (HasVRegDef || MI.mayLoad())) {
879 SDep Dep(SU, SDep::Artificial);
880 Dep.setLatency(SU->Latency - 1);
881 ExitSU.addPred(Dep);
882 }
883
884 // Add memory dependencies (Note: isStoreToStackSlot and
885 // isLoadFromStackSLot are not usable after stack slots are lowered to
886 // actual addresses).
887
888 // This is a barrier event that acts as a pivotal node in the DAG.
889 if (isGlobalMemoryObject(&MI)) {
890
891 // Become the barrier chain.
892 if (BarrierChain)
893 BarrierChain->addPredBarrier(SU);
894 BarrierChain = SU;
895
896 LLVM_DEBUG(dbgs() << "Global memory object and new barrier chain: SU("
897 << BarrierChain->NodeNum << ").\n";);
898
899 // Add dependencies against everything below it and clear maps.
900 addBarrierChain(Stores);
901 addBarrierChain(Loads);
902 addBarrierChain(NonAliasStores);
903 addBarrierChain(NonAliasLoads);
904 addBarrierChain(FPExceptions);
905
906 continue;
907 }
908
909 // Instructions that may raise FP exceptions may not be moved
910 // across any global barriers.
911 if (MI.mayRaiseFPException()) {
912 if (BarrierChain)
913 BarrierChain->addPredBarrier(SU);
914
915 FPExceptions.insert(SU, UnknownValue);
916
917 if (FPExceptions.size() >= HugeRegion) {
918 LLVM_DEBUG(dbgs() << "Reducing FPExceptions map.\n";);
919 Value2SUsMap empty;
920 reduceHugeMemNodeMaps(FPExceptions, empty, getReductionSize());
921 }
922 }
923
924 // If it's not a store or a variant load, we're done.
925 if (!MI.mayStore() &&
926 !(MI.mayLoad() && !MI.isDereferenceableInvariantLoad()))
927 continue;
928
929 // Always add dependecy edge to BarrierChain if present.
930 if (BarrierChain)
931 BarrierChain->addPredBarrier(SU);
932
933 // Find the underlying objects for MI. The Objs vector is either
934 // empty, or filled with the Values of memory locations which this
935 // SU depends on.
936 UnderlyingObjectsVector Objs;
937 bool ObjsFound = getUnderlyingObjectsForInstr(&MI, MFI, Objs,
938 MF.getDataLayout());
939
940 if (MI.mayStore()) {
941 if (!ObjsFound) {
942 // An unknown store depends on all stores and loads.
943 addChainDependencies(SU, Stores);
944 addChainDependencies(SU, NonAliasStores);
945 addChainDependencies(SU, Loads);
946 addChainDependencies(SU, NonAliasLoads);
947
948 // Map this store to 'UnknownValue'.
949 Stores.insert(SU, UnknownValue);
950 } else {
951 // Add precise dependencies against all previously seen memory
952 // accesses mapped to the same Value(s).
953 for (const UnderlyingObject &UnderlObj : Objs) {
954 ValueType V = UnderlObj.getValue();
955 bool ThisMayAlias = UnderlObj.mayAlias();
956
957 // Add dependencies to previous stores and loads mapped to V.
958 addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V);
959 addChainDependencies(SU, (ThisMayAlias ? Loads : NonAliasLoads), V);
960 }
961 // Update the store map after all chains have been added to avoid adding
962 // self-loop edge if multiple underlying objects are present.
963 for (const UnderlyingObject &UnderlObj : Objs) {
964 ValueType V = UnderlObj.getValue();
965 bool ThisMayAlias = UnderlObj.mayAlias();
966
967 // Map this store to V.
968 (ThisMayAlias ? Stores : NonAliasStores).insert(SU, V);
969 }
970 // The store may have dependencies to unanalyzable loads and
971 // stores.
972 addChainDependencies(SU, Loads, UnknownValue);
973 addChainDependencies(SU, Stores, UnknownValue);
974 }
975 } else { // SU is a load.
976 if (!ObjsFound) {
977 // An unknown load depends on all stores.
978 addChainDependencies(SU, Stores);
979 addChainDependencies(SU, NonAliasStores);
980
981 Loads.insert(SU, UnknownValue);
982 } else {
983 for (const UnderlyingObject &UnderlObj : Objs) {
984 ValueType V = UnderlObj.getValue();
985 bool ThisMayAlias = UnderlObj.mayAlias();
986
987 // Add precise dependencies against all previously seen stores
988 // mapping to the same Value(s).
989 addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V);
990
991 // Map this load to V.
992 (ThisMayAlias ? Loads : NonAliasLoads).insert(SU, V);
993 }
994 // The load may have dependencies to unanalyzable stores.
995 addChainDependencies(SU, Stores, UnknownValue);
996 }
997 }
998
999 // Reduce maps if they grow huge.
1000 if (Stores.size() + Loads.size() >= HugeRegion) {
1001 LLVM_DEBUG(dbgs() << "Reducing Stores and Loads maps.\n";);
1002 reduceHugeMemNodeMaps(Stores, Loads, getReductionSize());
1003 }
1004 if (NonAliasStores.size() + NonAliasLoads.size() >= HugeRegion) {
1005 LLVM_DEBUG(
1006 dbgs() << "Reducing NonAliasStores and NonAliasLoads maps.\n";);
1007 reduceHugeMemNodeMaps(NonAliasStores, NonAliasLoads, getReductionSize());
1008 }
1009 }
1010
1011 if (DbgMI)
1012 FirstDbgValue = DbgMI;
1013
1014 Defs.clear();
1015 Uses.clear();
1016 CurrentVRegDefs.clear();
1017 CurrentVRegUses.clear();
1018
1019 Topo.MarkDirty();
1020 }
1021
operator <<(raw_ostream & OS,const PseudoSourceValue * PSV)1022 raw_ostream &llvm::operator<<(raw_ostream &OS, const PseudoSourceValue* PSV) {
1023 PSV->printCustom(OS);
1024 return OS;
1025 }
1026
dump()1027 void ScheduleDAGInstrs::Value2SUsMap::dump() {
1028 for (const auto &[ValType, SUs] : *this) {
1029 if (ValType.is<const Value*>()) {
1030 const Value *V = ValType.get<const Value*>();
1031 if (isa<UndefValue>(V))
1032 dbgs() << "Unknown";
1033 else
1034 V->printAsOperand(dbgs());
1035 }
1036 else if (ValType.is<const PseudoSourceValue*>())
1037 dbgs() << ValType.get<const PseudoSourceValue*>();
1038 else
1039 llvm_unreachable("Unknown Value type.");
1040
1041 dbgs() << " : ";
1042 dumpSUList(SUs);
1043 }
1044 }
1045
reduceHugeMemNodeMaps(Value2SUsMap & stores,Value2SUsMap & loads,unsigned N)1046 void ScheduleDAGInstrs::reduceHugeMemNodeMaps(Value2SUsMap &stores,
1047 Value2SUsMap &loads, unsigned N) {
1048 LLVM_DEBUG(dbgs() << "Before reduction:\nStoring SUnits:\n"; stores.dump();
1049 dbgs() << "Loading SUnits:\n"; loads.dump());
1050
1051 // Insert all SU's NodeNums into a vector and sort it.
1052 std::vector<unsigned> NodeNums;
1053 NodeNums.reserve(stores.size() + loads.size());
1054 for (const auto &[V, SUs] : stores) {
1055 (void)V;
1056 for (const auto *SU : SUs)
1057 NodeNums.push_back(SU->NodeNum);
1058 }
1059 for (const auto &[V, SUs] : loads) {
1060 (void)V;
1061 for (const auto *SU : SUs)
1062 NodeNums.push_back(SU->NodeNum);
1063 }
1064 llvm::sort(NodeNums);
1065
1066 // The N last elements in NodeNums will be removed, and the SU with
1067 // the lowest NodeNum of them will become the new BarrierChain to
1068 // let the not yet seen SUs have a dependency to the removed SUs.
1069 assert(N <= NodeNums.size());
1070 SUnit *newBarrierChain = &SUnits[*(NodeNums.end() - N)];
1071 if (BarrierChain) {
1072 // The aliasing and non-aliasing maps reduce independently of each
1073 // other, but share a common BarrierChain. Check if the
1074 // newBarrierChain is above the former one. If it is not, it may
1075 // introduce a loop to use newBarrierChain, so keep the old one.
1076 if (newBarrierChain->NodeNum < BarrierChain->NodeNum) {
1077 BarrierChain->addPredBarrier(newBarrierChain);
1078 BarrierChain = newBarrierChain;
1079 LLVM_DEBUG(dbgs() << "Inserting new barrier chain: SU("
1080 << BarrierChain->NodeNum << ").\n";);
1081 }
1082 else
1083 LLVM_DEBUG(dbgs() << "Keeping old barrier chain: SU("
1084 << BarrierChain->NodeNum << ").\n";);
1085 }
1086 else
1087 BarrierChain = newBarrierChain;
1088
1089 insertBarrierChain(stores);
1090 insertBarrierChain(loads);
1091
1092 LLVM_DEBUG(dbgs() << "After reduction:\nStoring SUnits:\n"; stores.dump();
1093 dbgs() << "Loading SUnits:\n"; loads.dump());
1094 }
1095
toggleKills(const MachineRegisterInfo & MRI,LivePhysRegs & LiveRegs,MachineInstr & MI,bool addToLiveRegs)1096 static void toggleKills(const MachineRegisterInfo &MRI, LivePhysRegs &LiveRegs,
1097 MachineInstr &MI, bool addToLiveRegs) {
1098 for (MachineOperand &MO : MI.operands()) {
1099 if (!MO.isReg() || !MO.readsReg())
1100 continue;
1101 Register Reg = MO.getReg();
1102 if (!Reg)
1103 continue;
1104
1105 // Things that are available after the instruction are killed by it.
1106 bool IsKill = LiveRegs.available(MRI, Reg);
1107 MO.setIsKill(IsKill);
1108 if (addToLiveRegs)
1109 LiveRegs.addReg(Reg);
1110 }
1111 }
1112
fixupKills(MachineBasicBlock & MBB)1113 void ScheduleDAGInstrs::fixupKills(MachineBasicBlock &MBB) {
1114 LLVM_DEBUG(dbgs() << "Fixup kills for " << printMBBReference(MBB) << '\n');
1115
1116 LiveRegs.init(*TRI);
1117 LiveRegs.addLiveOuts(MBB);
1118
1119 // Examine block from end to start...
1120 for (MachineInstr &MI : llvm::reverse(MBB)) {
1121 if (MI.isDebugOrPseudoInstr())
1122 continue;
1123
1124 // Update liveness. Registers that are defed but not used in this
1125 // instruction are now dead. Mark register and all subregs as they
1126 // are completely defined.
1127 for (ConstMIBundleOperands O(MI); O.isValid(); ++O) {
1128 const MachineOperand &MO = *O;
1129 if (MO.isReg()) {
1130 if (!MO.isDef())
1131 continue;
1132 Register Reg = MO.getReg();
1133 if (!Reg)
1134 continue;
1135 LiveRegs.removeReg(Reg);
1136 } else if (MO.isRegMask()) {
1137 LiveRegs.removeRegsInMask(MO);
1138 }
1139 }
1140
1141 // If there is a bundle header fix it up first.
1142 if (!MI.isBundled()) {
1143 toggleKills(MRI, LiveRegs, MI, true);
1144 } else {
1145 MachineBasicBlock::instr_iterator Bundle = MI.getIterator();
1146 if (MI.isBundle())
1147 toggleKills(MRI, LiveRegs, MI, false);
1148
1149 // Some targets make the (questionable) assumtion that the instructions
1150 // inside the bundle are ordered and consequently only the last use of
1151 // a register inside the bundle can kill it.
1152 MachineBasicBlock::instr_iterator I = std::next(Bundle);
1153 while (I->isBundledWithSucc())
1154 ++I;
1155 do {
1156 if (!I->isDebugOrPseudoInstr())
1157 toggleKills(MRI, LiveRegs, *I, true);
1158 --I;
1159 } while (I != Bundle);
1160 }
1161 }
1162 }
1163
dumpNode(const SUnit & SU) const1164 void ScheduleDAGInstrs::dumpNode(const SUnit &SU) const {
1165 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1166 dumpNodeName(SU);
1167 if (SchedPrintCycles)
1168 dbgs() << " [TopReadyCycle = " << SU.TopReadyCycle
1169 << ", BottomReadyCycle = " << SU.BotReadyCycle << "]";
1170 dbgs() << ": ";
1171 SU.getInstr()->dump();
1172 #endif
1173 }
1174
dump() const1175 void ScheduleDAGInstrs::dump() const {
1176 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1177 if (EntrySU.getInstr() != nullptr)
1178 dumpNodeAll(EntrySU);
1179 for (const SUnit &SU : SUnits)
1180 dumpNodeAll(SU);
1181 if (ExitSU.getInstr() != nullptr)
1182 dumpNodeAll(ExitSU);
1183 #endif
1184 }
1185
getGraphNodeLabel(const SUnit * SU) const1186 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
1187 std::string s;
1188 raw_string_ostream oss(s);
1189 if (SU == &EntrySU)
1190 oss << "<entry>";
1191 else if (SU == &ExitSU)
1192 oss << "<exit>";
1193 else
1194 SU->getInstr()->print(oss, /*IsStandalone=*/true);
1195 return oss.str();
1196 }
1197
1198 /// Return the basic block label. It is not necessarilly unique because a block
1199 /// contains multiple scheduling regions. But it is fine for visualization.
getDAGName() const1200 std::string ScheduleDAGInstrs::getDAGName() const {
1201 return "dag." + BB->getFullName();
1202 }
1203
canAddEdge(SUnit * SuccSU,SUnit * PredSU)1204 bool ScheduleDAGInstrs::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
1205 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
1206 }
1207
addEdge(SUnit * SuccSU,const SDep & PredDep)1208 bool ScheduleDAGInstrs::addEdge(SUnit *SuccSU, const SDep &PredDep) {
1209 if (SuccSU != &ExitSU) {
1210 // Do not use WillCreateCycle, it assumes SD scheduling.
1211 // If Pred is reachable from Succ, then the edge creates a cycle.
1212 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
1213 return false;
1214 Topo.AddPredQueued(SuccSU, PredDep.getSUnit());
1215 }
1216 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
1217 // Return true regardless of whether a new edge needed to be inserted.
1218 return true;
1219 }
1220
1221 //===----------------------------------------------------------------------===//
1222 // SchedDFSResult Implementation
1223 //===----------------------------------------------------------------------===//
1224
1225 namespace llvm {
1226
1227 /// Internal state used to compute SchedDFSResult.
1228 class SchedDFSImpl {
1229 SchedDFSResult &R;
1230
1231 /// Join DAG nodes into equivalence classes by their subtree.
1232 IntEqClasses SubtreeClasses;
1233 /// List PredSU, SuccSU pairs that represent data edges between subtrees.
1234 std::vector<std::pair<const SUnit *, const SUnit*>> ConnectionPairs;
1235
1236 struct RootData {
1237 unsigned NodeID;
1238 unsigned ParentNodeID; ///< Parent node (member of the parent subtree).
1239 unsigned SubInstrCount = 0; ///< Instr count in this tree only, not
1240 /// children.
1241
RootDatallvm::SchedDFSImpl::RootData1242 RootData(unsigned id): NodeID(id),
1243 ParentNodeID(SchedDFSResult::InvalidSubtreeID) {}
1244
getSparseSetIndexllvm::SchedDFSImpl::RootData1245 unsigned getSparseSetIndex() const { return NodeID; }
1246 };
1247
1248 SparseSet<RootData> RootSet;
1249
1250 public:
SchedDFSImpl(SchedDFSResult & r)1251 SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) {
1252 RootSet.setUniverse(R.DFSNodeData.size());
1253 }
1254
1255 /// Returns true if this node been visited by the DFS traversal.
1256 ///
1257 /// During visitPostorderNode the Node's SubtreeID is assigned to the Node
1258 /// ID. Later, SubtreeID is updated but remains valid.
isVisited(const SUnit * SU) const1259 bool isVisited(const SUnit *SU) const {
1260 return R.DFSNodeData[SU->NodeNum].SubtreeID
1261 != SchedDFSResult::InvalidSubtreeID;
1262 }
1263
1264 /// Initializes this node's instruction count. We don't need to flag the node
1265 /// visited until visitPostorder because the DAG cannot have cycles.
visitPreorder(const SUnit * SU)1266 void visitPreorder(const SUnit *SU) {
1267 R.DFSNodeData[SU->NodeNum].InstrCount =
1268 SU->getInstr()->isTransient() ? 0 : 1;
1269 }
1270
1271 /// Called once for each node after all predecessors are visited. Revisit this
1272 /// node's predecessors and potentially join them now that we know the ILP of
1273 /// the other predecessors.
visitPostorderNode(const SUnit * SU)1274 void visitPostorderNode(const SUnit *SU) {
1275 // Mark this node as the root of a subtree. It may be joined with its
1276 // successors later.
1277 R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum;
1278 RootData RData(SU->NodeNum);
1279 RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1;
1280
1281 // If any predecessors are still in their own subtree, they either cannot be
1282 // joined or are large enough to remain separate. If this parent node's
1283 // total instruction count is not greater than a child subtree by at least
1284 // the subtree limit, then try to join it now since splitting subtrees is
1285 // only useful if multiple high-pressure paths are possible.
1286 unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount;
1287 for (const SDep &PredDep : SU->Preds) {
1288 if (PredDep.getKind() != SDep::Data)
1289 continue;
1290 unsigned PredNum = PredDep.getSUnit()->NodeNum;
1291 if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit)
1292 joinPredSubtree(PredDep, SU, /*CheckLimit=*/false);
1293
1294 // Either link or merge the TreeData entry from the child to the parent.
1295 if (R.DFSNodeData[PredNum].SubtreeID == PredNum) {
1296 // If the predecessor's parent is invalid, this is a tree edge and the
1297 // current node is the parent.
1298 if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID)
1299 RootSet[PredNum].ParentNodeID = SU->NodeNum;
1300 }
1301 else if (RootSet.count(PredNum)) {
1302 // The predecessor is not a root, but is still in the root set. This
1303 // must be the new parent that it was just joined to. Note that
1304 // RootSet[PredNum].ParentNodeID may either be invalid or may still be
1305 // set to the original parent.
1306 RData.SubInstrCount += RootSet[PredNum].SubInstrCount;
1307 RootSet.erase(PredNum);
1308 }
1309 }
1310 RootSet[SU->NodeNum] = RData;
1311 }
1312
1313 /// Called once for each tree edge after calling visitPostOrderNode on
1314 /// the predecessor. Increment the parent node's instruction count and
1315 /// preemptively join this subtree to its parent's if it is small enough.
visitPostorderEdge(const SDep & PredDep,const SUnit * Succ)1316 void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) {
1317 R.DFSNodeData[Succ->NodeNum].InstrCount
1318 += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount;
1319 joinPredSubtree(PredDep, Succ);
1320 }
1321
1322 /// Adds a connection for cross edges.
visitCrossEdge(const SDep & PredDep,const SUnit * Succ)1323 void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) {
1324 ConnectionPairs.emplace_back(PredDep.getSUnit(), Succ);
1325 }
1326
1327 /// Sets each node's subtree ID to the representative ID and record
1328 /// connections between trees.
finalize()1329 void finalize() {
1330 SubtreeClasses.compress();
1331 R.DFSTreeData.resize(SubtreeClasses.getNumClasses());
1332 assert(SubtreeClasses.getNumClasses() == RootSet.size()
1333 && "number of roots should match trees");
1334 for (const RootData &Root : RootSet) {
1335 unsigned TreeID = SubtreeClasses[Root.NodeID];
1336 if (Root.ParentNodeID != SchedDFSResult::InvalidSubtreeID)
1337 R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[Root.ParentNodeID];
1338 R.DFSTreeData[TreeID].SubInstrCount = Root.SubInstrCount;
1339 // Note that SubInstrCount may be greater than InstrCount if we joined
1340 // subtrees across a cross edge. InstrCount will be attributed to the
1341 // original parent, while SubInstrCount will be attributed to the joined
1342 // parent.
1343 }
1344 R.SubtreeConnections.resize(SubtreeClasses.getNumClasses());
1345 R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses());
1346 LLVM_DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n");
1347 for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) {
1348 R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx];
1349 LLVM_DEBUG(dbgs() << " SU(" << Idx << ") in tree "
1350 << R.DFSNodeData[Idx].SubtreeID << '\n');
1351 }
1352 for (const auto &[Pred, Succ] : ConnectionPairs) {
1353 unsigned PredTree = SubtreeClasses[Pred->NodeNum];
1354 unsigned SuccTree = SubtreeClasses[Succ->NodeNum];
1355 if (PredTree == SuccTree)
1356 continue;
1357 unsigned Depth = Pred->getDepth();
1358 addConnection(PredTree, SuccTree, Depth);
1359 addConnection(SuccTree, PredTree, Depth);
1360 }
1361 }
1362
1363 protected:
1364 /// Joins the predecessor subtree with the successor that is its DFS parent.
1365 /// Applies some heuristics before joining.
joinPredSubtree(const SDep & PredDep,const SUnit * Succ,bool CheckLimit=true)1366 bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ,
1367 bool CheckLimit = true) {
1368 assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges");
1369
1370 // Check if the predecessor is already joined.
1371 const SUnit *PredSU = PredDep.getSUnit();
1372 unsigned PredNum = PredSU->NodeNum;
1373 if (R.DFSNodeData[PredNum].SubtreeID != PredNum)
1374 return false;
1375
1376 // Four is the magic number of successors before a node is considered a
1377 // pinch point.
1378 unsigned NumDataSucs = 0;
1379 for (const SDep &SuccDep : PredSU->Succs) {
1380 if (SuccDep.getKind() == SDep::Data) {
1381 if (++NumDataSucs >= 4)
1382 return false;
1383 }
1384 }
1385 if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit)
1386 return false;
1387 R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum;
1388 SubtreeClasses.join(Succ->NodeNum, PredNum);
1389 return true;
1390 }
1391
1392 /// Called by finalize() to record a connection between trees.
addConnection(unsigned FromTree,unsigned ToTree,unsigned Depth)1393 void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) {
1394 if (!Depth)
1395 return;
1396
1397 do {
1398 SmallVectorImpl<SchedDFSResult::Connection> &Connections =
1399 R.SubtreeConnections[FromTree];
1400 for (SchedDFSResult::Connection &C : Connections) {
1401 if (C.TreeID == ToTree) {
1402 C.Level = std::max(C.Level, Depth);
1403 return;
1404 }
1405 }
1406 Connections.push_back(SchedDFSResult::Connection(ToTree, Depth));
1407 FromTree = R.DFSTreeData[FromTree].ParentTreeID;
1408 } while (FromTree != SchedDFSResult::InvalidSubtreeID);
1409 }
1410 };
1411
1412 } // end namespace llvm
1413
1414 namespace {
1415
1416 /// Manage the stack used by a reverse depth-first search over the DAG.
1417 class SchedDAGReverseDFS {
1418 std::vector<std::pair<const SUnit *, SUnit::const_pred_iterator>> DFSStack;
1419
1420 public:
isComplete() const1421 bool isComplete() const { return DFSStack.empty(); }
1422
follow(const SUnit * SU)1423 void follow(const SUnit *SU) {
1424 DFSStack.emplace_back(SU, SU->Preds.begin());
1425 }
advance()1426 void advance() { ++DFSStack.back().second; }
1427
backtrack()1428 const SDep *backtrack() {
1429 DFSStack.pop_back();
1430 return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second);
1431 }
1432
getCurr() const1433 const SUnit *getCurr() const { return DFSStack.back().first; }
1434
getPred() const1435 SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; }
1436
getPredEnd() const1437 SUnit::const_pred_iterator getPredEnd() const {
1438 return getCurr()->Preds.end();
1439 }
1440 };
1441
1442 } // end anonymous namespace
1443
hasDataSucc(const SUnit * SU)1444 static bool hasDataSucc(const SUnit *SU) {
1445 for (const SDep &SuccDep : SU->Succs) {
1446 if (SuccDep.getKind() == SDep::Data &&
1447 !SuccDep.getSUnit()->isBoundaryNode())
1448 return true;
1449 }
1450 return false;
1451 }
1452
1453 /// Computes an ILP metric for all nodes in the subDAG reachable via depth-first
1454 /// search from this root.
compute(ArrayRef<SUnit> SUnits)1455 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) {
1456 if (!IsBottomUp)
1457 llvm_unreachable("Top-down ILP metric is unimplemented");
1458
1459 SchedDFSImpl Impl(*this);
1460 for (const SUnit &SU : SUnits) {
1461 if (Impl.isVisited(&SU) || hasDataSucc(&SU))
1462 continue;
1463
1464 SchedDAGReverseDFS DFS;
1465 Impl.visitPreorder(&SU);
1466 DFS.follow(&SU);
1467 while (true) {
1468 // Traverse the leftmost path as far as possible.
1469 while (DFS.getPred() != DFS.getPredEnd()) {
1470 const SDep &PredDep = *DFS.getPred();
1471 DFS.advance();
1472 // Ignore non-data edges.
1473 if (PredDep.getKind() != SDep::Data
1474 || PredDep.getSUnit()->isBoundaryNode()) {
1475 continue;
1476 }
1477 // An already visited edge is a cross edge, assuming an acyclic DAG.
1478 if (Impl.isVisited(PredDep.getSUnit())) {
1479 Impl.visitCrossEdge(PredDep, DFS.getCurr());
1480 continue;
1481 }
1482 Impl.visitPreorder(PredDep.getSUnit());
1483 DFS.follow(PredDep.getSUnit());
1484 }
1485 // Visit the top of the stack in postorder and backtrack.
1486 const SUnit *Child = DFS.getCurr();
1487 const SDep *PredDep = DFS.backtrack();
1488 Impl.visitPostorderNode(Child);
1489 if (PredDep)
1490 Impl.visitPostorderEdge(*PredDep, DFS.getCurr());
1491 if (DFS.isComplete())
1492 break;
1493 }
1494 }
1495 Impl.finalize();
1496 }
1497
1498 /// The root of the given SubtreeID was just scheduled. For all subtrees
1499 /// connected to this tree, record the depth of the connection so that the
1500 /// nearest connected subtrees can be prioritized.
scheduleTree(unsigned SubtreeID)1501 void SchedDFSResult::scheduleTree(unsigned SubtreeID) {
1502 for (const Connection &C : SubtreeConnections[SubtreeID]) {
1503 SubtreeConnectLevels[C.TreeID] =
1504 std::max(SubtreeConnectLevels[C.TreeID], C.Level);
1505 LLVM_DEBUG(dbgs() << " Tree: " << C.TreeID << " @"
1506 << SubtreeConnectLevels[C.TreeID] << '\n');
1507 }
1508 }
1509
1510 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
print(raw_ostream & OS) const1511 LLVM_DUMP_METHOD void ILPValue::print(raw_ostream &OS) const {
1512 OS << InstrCount << " / " << Length << " = ";
1513 if (!Length)
1514 OS << "BADILP";
1515 else
1516 OS << format("%g", ((double)InstrCount / Length));
1517 }
1518
dump() const1519 LLVM_DUMP_METHOD void ILPValue::dump() const {
1520 dbgs() << *this << '\n';
1521 }
1522
1523 namespace llvm {
1524
1525 LLVM_DUMP_METHOD
operator <<(raw_ostream & OS,const ILPValue & Val)1526 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) {
1527 Val.print(OS);
1528 return OS;
1529 }
1530
1531 } // end namespace llvm
1532
1533 #endif
1534