1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 /* This file contains the low level primitives for operating on tree nodes,
24 including allocation, list operations, interning of identifiers,
25 construction of data type nodes and statement nodes,
26 and construction of type conversion nodes. It also contains
27 tables index by tree code that describe how to take apart
28 nodes of that code.
29
30 It is intended to be language-independent, but occasionally
31 calls language-dependent routines defined (for C) in typecheck.c. */
32
33 #include "config.h"
34 #include "system.h"
35 #include "coretypes.h"
36 #include "tm.h"
37 #include "flags.h"
38 #include "tree.h"
39 #include "real.h"
40 #include "tm_p.h"
41 #include "function.h"
42 #include "obstack.h"
43 #include "toplev.h"
44 #include "ggc.h"
45 #include "hashtab.h"
46 #include "output.h"
47 #include "target.h"
48 #include "langhooks.h"
49 #include "tree-iterator.h"
50 #include "basic-block.h"
51 #include "tree-flow.h"
52 #include "params.h"
53 #include "pointer-set.h"
54
55 /* Each tree code class has an associated string representation.
56 These must correspond to the tree_code_class entries. */
57
58 const char *const tree_code_class_strings[] =
59 {
60 "exceptional",
61 "constant",
62 "type",
63 "declaration",
64 "reference",
65 "comparison",
66 "unary",
67 "binary",
68 "statement",
69 "expression",
70 };
71
72 /* obstack.[ch] explicitly declined to prototype this. */
73 extern int _obstack_allocated_p (struct obstack *h, void *obj);
74
75 #ifdef GATHER_STATISTICS
76 /* Statistics-gathering stuff. */
77
78 int tree_node_counts[(int) all_kinds];
79 int tree_node_sizes[(int) all_kinds];
80
81 /* Keep in sync with tree.h:enum tree_node_kind. */
82 static const char * const tree_node_kind_names[] = {
83 "decls",
84 "types",
85 "blocks",
86 "stmts",
87 "refs",
88 "exprs",
89 "constants",
90 "identifiers",
91 "perm_tree_lists",
92 "temp_tree_lists",
93 "vecs",
94 "binfos",
95 "phi_nodes",
96 "ssa names",
97 "constructors",
98 "random kinds",
99 "lang_decl kinds",
100 "lang_type kinds",
101 "omp clauses"
102 };
103 #endif /* GATHER_STATISTICS */
104
105 /* Unique id for next decl created. */
106 static GTY(()) int next_decl_uid;
107 /* Unique id for next type created. */
108 static GTY(()) int next_type_uid = 1;
109
110 /* Since we cannot rehash a type after it is in the table, we have to
111 keep the hash code. */
112
113 struct type_hash GTY(())
114 {
115 unsigned long hash;
116 tree type;
117 };
118
119 /* Initial size of the hash table (rounded to next prime). */
120 #define TYPE_HASH_INITIAL_SIZE 1000
121
122 /* Now here is the hash table. When recording a type, it is added to
123 the slot whose index is the hash code. Note that the hash table is
124 used for several kinds of types (function types, array types and
125 array index range types, for now). While all these live in the
126 same table, they are completely independent, and the hash code is
127 computed differently for each of these. */
128
129 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
130 htab_t type_hash_table;
131
132 /* Hash table and temporary node for larger integer const values. */
133 static GTY (()) tree int_cst_node;
134 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
135 htab_t int_cst_hash_table;
136
137 /* General tree->tree mapping structure for use in hash tables. */
138
139
140 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
141 htab_t debug_expr_for_decl;
142
143 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
144 htab_t value_expr_for_decl;
145
146 static GTY ((if_marked ("tree_int_map_marked_p"), param_is (struct tree_int_map)))
147 htab_t init_priority_for_decl;
148
149 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
150 htab_t restrict_base_for_decl;
151
152 struct tree_int_map GTY(())
153 {
154 tree from;
155 unsigned short to;
156 };
157 static unsigned int tree_int_map_hash (const void *);
158 static int tree_int_map_eq (const void *, const void *);
159 static int tree_int_map_marked_p (const void *);
160 static void set_type_quals (tree, int);
161 static int type_hash_eq (const void *, const void *);
162 static hashval_t type_hash_hash (const void *);
163 static hashval_t int_cst_hash_hash (const void *);
164 static int int_cst_hash_eq (const void *, const void *);
165 static void print_type_hash_statistics (void);
166 static void print_debug_expr_statistics (void);
167 static void print_value_expr_statistics (void);
168 static int type_hash_marked_p (const void *);
169 static unsigned int type_hash_list (tree, hashval_t);
170 static unsigned int attribute_hash_list (tree, hashval_t);
171
172 tree global_trees[TI_MAX];
173 tree integer_types[itk_none];
174
175 unsigned char tree_contains_struct[256][64];
176
177 /* Number of operands for each OpenMP clause. */
178 unsigned const char omp_clause_num_ops[] =
179 {
180 0, /* OMP_CLAUSE_ERROR */
181 1, /* OMP_CLAUSE_PRIVATE */
182 1, /* OMP_CLAUSE_SHARED */
183 1, /* OMP_CLAUSE_FIRSTPRIVATE */
184 1, /* OMP_CLAUSE_LASTPRIVATE */
185 4, /* OMP_CLAUSE_REDUCTION */
186 1, /* OMP_CLAUSE_COPYIN */
187 1, /* OMP_CLAUSE_COPYPRIVATE */
188 1, /* OMP_CLAUSE_IF */
189 1, /* OMP_CLAUSE_NUM_THREADS */
190 1, /* OMP_CLAUSE_SCHEDULE */
191 0, /* OMP_CLAUSE_NOWAIT */
192 0, /* OMP_CLAUSE_ORDERED */
193 0 /* OMP_CLAUSE_DEFAULT */
194 };
195
196 const char * const omp_clause_code_name[] =
197 {
198 "error_clause",
199 "private",
200 "shared",
201 "firstprivate",
202 "lastprivate",
203 "reduction",
204 "copyin",
205 "copyprivate",
206 "if",
207 "num_threads",
208 "schedule",
209 "nowait",
210 "ordered",
211 "default"
212 };
213
214 /* Init tree.c. */
215
216 void
init_ttree(void)217 init_ttree (void)
218 {
219 /* Initialize the hash table of types. */
220 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
221 type_hash_eq, 0);
222
223 debug_expr_for_decl = htab_create_ggc (512, tree_map_hash,
224 tree_map_eq, 0);
225
226 value_expr_for_decl = htab_create_ggc (512, tree_map_hash,
227 tree_map_eq, 0);
228 init_priority_for_decl = htab_create_ggc (512, tree_int_map_hash,
229 tree_int_map_eq, 0);
230 restrict_base_for_decl = htab_create_ggc (256, tree_map_hash,
231 tree_map_eq, 0);
232
233 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
234 int_cst_hash_eq, NULL);
235
236 int_cst_node = make_node (INTEGER_CST);
237
238 tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON] = 1;
239 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_NON_COMMON] = 1;
240 tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON] = 1;
241
242
243 tree_contains_struct[CONST_DECL][TS_DECL_COMMON] = 1;
244 tree_contains_struct[VAR_DECL][TS_DECL_COMMON] = 1;
245 tree_contains_struct[PARM_DECL][TS_DECL_COMMON] = 1;
246 tree_contains_struct[RESULT_DECL][TS_DECL_COMMON] = 1;
247 tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON] = 1;
248 tree_contains_struct[TYPE_DECL][TS_DECL_COMMON] = 1;
249 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON] = 1;
250 tree_contains_struct[LABEL_DECL][TS_DECL_COMMON] = 1;
251 tree_contains_struct[FIELD_DECL][TS_DECL_COMMON] = 1;
252
253
254 tree_contains_struct[CONST_DECL][TS_DECL_WRTL] = 1;
255 tree_contains_struct[VAR_DECL][TS_DECL_WRTL] = 1;
256 tree_contains_struct[PARM_DECL][TS_DECL_WRTL] = 1;
257 tree_contains_struct[RESULT_DECL][TS_DECL_WRTL] = 1;
258 tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL] = 1;
259 tree_contains_struct[LABEL_DECL][TS_DECL_WRTL] = 1;
260
261 tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL] = 1;
262 tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL] = 1;
263 tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL] = 1;
264 tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL] = 1;
265 tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL] = 1;
266 tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL] = 1;
267 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL] = 1;
268 tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL] = 1;
269 tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL] = 1;
270 tree_contains_struct[STRUCT_FIELD_TAG][TS_DECL_MINIMAL] = 1;
271 tree_contains_struct[NAME_MEMORY_TAG][TS_DECL_MINIMAL] = 1;
272 tree_contains_struct[SYMBOL_MEMORY_TAG][TS_DECL_MINIMAL] = 1;
273
274 tree_contains_struct[STRUCT_FIELD_TAG][TS_MEMORY_TAG] = 1;
275 tree_contains_struct[NAME_MEMORY_TAG][TS_MEMORY_TAG] = 1;
276 tree_contains_struct[SYMBOL_MEMORY_TAG][TS_MEMORY_TAG] = 1;
277
278 tree_contains_struct[STRUCT_FIELD_TAG][TS_STRUCT_FIELD_TAG] = 1;
279
280 tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS] = 1;
281 tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS] = 1;
282 tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS] = 1;
283 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_WITH_VIS] = 1;
284
285 tree_contains_struct[VAR_DECL][TS_VAR_DECL] = 1;
286 tree_contains_struct[FIELD_DECL][TS_FIELD_DECL] = 1;
287 tree_contains_struct[PARM_DECL][TS_PARM_DECL] = 1;
288 tree_contains_struct[LABEL_DECL][TS_LABEL_DECL] = 1;
289 tree_contains_struct[RESULT_DECL][TS_RESULT_DECL] = 1;
290 tree_contains_struct[CONST_DECL][TS_CONST_DECL] = 1;
291 tree_contains_struct[TYPE_DECL][TS_TYPE_DECL] = 1;
292 tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL] = 1;
293
294 lang_hooks.init_ts ();
295 }
296
297
298 /* The name of the object as the assembler will see it (but before any
299 translations made by ASM_OUTPUT_LABELREF). Often this is the same
300 as DECL_NAME. It is an IDENTIFIER_NODE. */
301 tree
decl_assembler_name(tree decl)302 decl_assembler_name (tree decl)
303 {
304 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
305 lang_hooks.set_decl_assembler_name (decl);
306 return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
307 }
308
309 /* Compute the number of bytes occupied by a tree with code CODE.
310 This function cannot be used for TREE_VEC, PHI_NODE, or STRING_CST
311 codes, which are of variable length. */
312 size_t
tree_code_size(enum tree_code code)313 tree_code_size (enum tree_code code)
314 {
315 switch (TREE_CODE_CLASS (code))
316 {
317 case tcc_declaration: /* A decl node */
318 {
319 switch (code)
320 {
321 case FIELD_DECL:
322 return sizeof (struct tree_field_decl);
323 case PARM_DECL:
324 return sizeof (struct tree_parm_decl);
325 case VAR_DECL:
326 return sizeof (struct tree_var_decl);
327 case LABEL_DECL:
328 return sizeof (struct tree_label_decl);
329 case RESULT_DECL:
330 return sizeof (struct tree_result_decl);
331 case CONST_DECL:
332 return sizeof (struct tree_const_decl);
333 case TYPE_DECL:
334 return sizeof (struct tree_type_decl);
335 case FUNCTION_DECL:
336 return sizeof (struct tree_function_decl);
337 case NAME_MEMORY_TAG:
338 case SYMBOL_MEMORY_TAG:
339 return sizeof (struct tree_memory_tag);
340 case STRUCT_FIELD_TAG:
341 return sizeof (struct tree_struct_field_tag);
342 default:
343 return sizeof (struct tree_decl_non_common);
344 }
345 }
346
347 case tcc_type: /* a type node */
348 return sizeof (struct tree_type);
349
350 case tcc_reference: /* a reference */
351 case tcc_expression: /* an expression */
352 case tcc_statement: /* an expression with side effects */
353 case tcc_comparison: /* a comparison expression */
354 case tcc_unary: /* a unary arithmetic expression */
355 case tcc_binary: /* a binary arithmetic expression */
356 return (sizeof (struct tree_exp)
357 + (TREE_CODE_LENGTH (code) - 1) * sizeof (char *));
358
359 case tcc_constant: /* a constant */
360 switch (code)
361 {
362 case INTEGER_CST: return sizeof (struct tree_int_cst);
363 case REAL_CST: return sizeof (struct tree_real_cst);
364 case COMPLEX_CST: return sizeof (struct tree_complex);
365 case VECTOR_CST: return sizeof (struct tree_vector);
366 case STRING_CST: gcc_unreachable ();
367 default:
368 return lang_hooks.tree_size (code);
369 }
370
371 case tcc_exceptional: /* something random, like an identifier. */
372 switch (code)
373 {
374 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
375 case TREE_LIST: return sizeof (struct tree_list);
376
377 case ERROR_MARK:
378 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
379
380 case TREE_VEC:
381 case OMP_CLAUSE:
382 case PHI_NODE: gcc_unreachable ();
383
384 case SSA_NAME: return sizeof (struct tree_ssa_name);
385
386 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
387 case BLOCK: return sizeof (struct tree_block);
388 case VALUE_HANDLE: return sizeof (struct tree_value_handle);
389 case CONSTRUCTOR: return sizeof (struct tree_constructor);
390
391 default:
392 return lang_hooks.tree_size (code);
393 }
394
395 default:
396 gcc_unreachable ();
397 }
398 }
399
400 /* Compute the number of bytes occupied by NODE. This routine only
401 looks at TREE_CODE, except for PHI_NODE and TREE_VEC nodes. */
402 size_t
tree_size(tree node)403 tree_size (tree node)
404 {
405 enum tree_code code = TREE_CODE (node);
406 switch (code)
407 {
408 case PHI_NODE:
409 return (sizeof (struct tree_phi_node)
410 + (PHI_ARG_CAPACITY (node) - 1) * sizeof (struct phi_arg_d));
411
412 case TREE_BINFO:
413 return (offsetof (struct tree_binfo, base_binfos)
414 + VEC_embedded_size (tree, BINFO_N_BASE_BINFOS (node)));
415
416 case TREE_VEC:
417 return (sizeof (struct tree_vec)
418 + (TREE_VEC_LENGTH (node) - 1) * sizeof(char *));
419
420 case STRING_CST:
421 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
422
423 case OMP_CLAUSE:
424 return (sizeof (struct tree_omp_clause)
425 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
426 * sizeof (tree));
427
428 default:
429 return tree_code_size (code);
430 }
431 }
432
433 /* Return a newly allocated node of code CODE. For decl and type
434 nodes, some other fields are initialized. The rest of the node is
435 initialized to zero. This function cannot be used for PHI_NODE,
436 TREE_VEC or OMP_CLAUSE nodes, which is enforced by asserts in
437 tree_code_size.
438
439 Achoo! I got a code in the node. */
440
441 tree
make_node_stat(enum tree_code code MEM_STAT_DECL)442 make_node_stat (enum tree_code code MEM_STAT_DECL)
443 {
444 tree t;
445 enum tree_code_class type = TREE_CODE_CLASS (code);
446 size_t length = tree_code_size (code);
447 #ifdef GATHER_STATISTICS
448 tree_node_kind kind;
449
450 switch (type)
451 {
452 case tcc_declaration: /* A decl node */
453 kind = d_kind;
454 break;
455
456 case tcc_type: /* a type node */
457 kind = t_kind;
458 break;
459
460 case tcc_statement: /* an expression with side effects */
461 kind = s_kind;
462 break;
463
464 case tcc_reference: /* a reference */
465 kind = r_kind;
466 break;
467
468 case tcc_expression: /* an expression */
469 case tcc_comparison: /* a comparison expression */
470 case tcc_unary: /* a unary arithmetic expression */
471 case tcc_binary: /* a binary arithmetic expression */
472 kind = e_kind;
473 break;
474
475 case tcc_constant: /* a constant */
476 kind = c_kind;
477 break;
478
479 case tcc_exceptional: /* something random, like an identifier. */
480 switch (code)
481 {
482 case IDENTIFIER_NODE:
483 kind = id_kind;
484 break;
485
486 case TREE_VEC:
487 kind = vec_kind;
488 break;
489
490 case TREE_BINFO:
491 kind = binfo_kind;
492 break;
493
494 case PHI_NODE:
495 kind = phi_kind;
496 break;
497
498 case SSA_NAME:
499 kind = ssa_name_kind;
500 break;
501
502 case BLOCK:
503 kind = b_kind;
504 break;
505
506 case CONSTRUCTOR:
507 kind = constr_kind;
508 break;
509
510 default:
511 kind = x_kind;
512 break;
513 }
514 break;
515
516 default:
517 gcc_unreachable ();
518 }
519
520 tree_node_counts[(int) kind]++;
521 tree_node_sizes[(int) kind] += length;
522 #endif
523
524 if (code == IDENTIFIER_NODE)
525 t = ggc_alloc_zone_pass_stat (length, &tree_id_zone);
526 else
527 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
528
529 memset (t, 0, length);
530
531 TREE_SET_CODE (t, code);
532
533 switch (type)
534 {
535 case tcc_statement:
536 TREE_SIDE_EFFECTS (t) = 1;
537 break;
538
539 case tcc_declaration:
540 if (CODE_CONTAINS_STRUCT (code, TS_DECL_WITH_VIS))
541 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
542 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
543 {
544 if (code != FUNCTION_DECL)
545 DECL_ALIGN (t) = 1;
546 DECL_USER_ALIGN (t) = 0;
547 /* We have not yet computed the alias set for this declaration. */
548 DECL_POINTER_ALIAS_SET (t) = -1;
549 }
550 DECL_SOURCE_LOCATION (t) = input_location;
551 DECL_UID (t) = next_decl_uid++;
552
553 break;
554
555 case tcc_type:
556 TYPE_UID (t) = next_type_uid++;
557 TYPE_ALIGN (t) = BITS_PER_UNIT;
558 TYPE_USER_ALIGN (t) = 0;
559 TYPE_MAIN_VARIANT (t) = t;
560
561 /* Default to no attributes for type, but let target change that. */
562 TYPE_ATTRIBUTES (t) = NULL_TREE;
563 targetm.set_default_type_attributes (t);
564
565 /* We have not yet computed the alias set for this type. */
566 TYPE_ALIAS_SET (t) = -1;
567 break;
568
569 case tcc_constant:
570 TREE_CONSTANT (t) = 1;
571 TREE_INVARIANT (t) = 1;
572 break;
573
574 case tcc_expression:
575 switch (code)
576 {
577 case INIT_EXPR:
578 case MODIFY_EXPR:
579 case VA_ARG_EXPR:
580 case PREDECREMENT_EXPR:
581 case PREINCREMENT_EXPR:
582 case POSTDECREMENT_EXPR:
583 case POSTINCREMENT_EXPR:
584 /* All of these have side-effects, no matter what their
585 operands are. */
586 TREE_SIDE_EFFECTS (t) = 1;
587 break;
588
589 default:
590 break;
591 }
592 break;
593
594 default:
595 /* Other classes need no special treatment. */
596 break;
597 }
598
599 return t;
600 }
601
602 /* Return a new node with the same contents as NODE except that its
603 TREE_CHAIN is zero and it has a fresh uid. */
604
605 tree
copy_node_stat(tree node MEM_STAT_DECL)606 copy_node_stat (tree node MEM_STAT_DECL)
607 {
608 tree t;
609 enum tree_code code = TREE_CODE (node);
610 size_t length;
611
612 gcc_assert (code != STATEMENT_LIST);
613
614 length = tree_size (node);
615 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
616 memcpy (t, node, length);
617
618 TREE_CHAIN (t) = 0;
619 TREE_ASM_WRITTEN (t) = 0;
620 TREE_VISITED (t) = 0;
621 t->common.ann = 0;
622
623 if (TREE_CODE_CLASS (code) == tcc_declaration)
624 {
625 DECL_UID (t) = next_decl_uid++;
626 if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
627 && DECL_HAS_VALUE_EXPR_P (node))
628 {
629 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
630 DECL_HAS_VALUE_EXPR_P (t) = 1;
631 }
632 if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
633 {
634 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
635 DECL_HAS_INIT_PRIORITY_P (t) = 1;
636 }
637 if (TREE_CODE (node) == VAR_DECL && DECL_BASED_ON_RESTRICT_P (node))
638 {
639 SET_DECL_RESTRICT_BASE (t, DECL_GET_RESTRICT_BASE (node));
640 DECL_BASED_ON_RESTRICT_P (t) = 1;
641 }
642 }
643 else if (TREE_CODE_CLASS (code) == tcc_type)
644 {
645 TYPE_UID (t) = next_type_uid++;
646 /* The following is so that the debug code for
647 the copy is different from the original type.
648 The two statements usually duplicate each other
649 (because they clear fields of the same union),
650 but the optimizer should catch that. */
651 TYPE_SYMTAB_POINTER (t) = 0;
652 TYPE_SYMTAB_ADDRESS (t) = 0;
653
654 /* Do not copy the values cache. */
655 if (TYPE_CACHED_VALUES_P(t))
656 {
657 TYPE_CACHED_VALUES_P (t) = 0;
658 TYPE_CACHED_VALUES (t) = NULL_TREE;
659 }
660 }
661
662 return t;
663 }
664
665 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
666 For example, this can copy a list made of TREE_LIST nodes. */
667
668 tree
copy_list(tree list)669 copy_list (tree list)
670 {
671 tree head;
672 tree prev, next;
673
674 if (list == 0)
675 return 0;
676
677 head = prev = copy_node (list);
678 next = TREE_CHAIN (list);
679 while (next)
680 {
681 TREE_CHAIN (prev) = copy_node (next);
682 prev = TREE_CHAIN (prev);
683 next = TREE_CHAIN (next);
684 }
685 return head;
686 }
687
688
689 /* Create an INT_CST node with a LOW value sign extended. */
690
691 tree
build_int_cst(tree type,HOST_WIDE_INT low)692 build_int_cst (tree type, HOST_WIDE_INT low)
693 {
694 return build_int_cst_wide (type, low, low < 0 ? -1 : 0);
695 }
696
697 /* Create an INT_CST node with a LOW value zero extended. */
698
699 tree
build_int_cstu(tree type,unsigned HOST_WIDE_INT low)700 build_int_cstu (tree type, unsigned HOST_WIDE_INT low)
701 {
702 return build_int_cst_wide (type, low, 0);
703 }
704
705 /* Create an INT_CST node with a LOW value in TYPE. The value is sign extended
706 if it is negative. This function is similar to build_int_cst, but
707 the extra bits outside of the type precision are cleared. Constants
708 with these extra bits may confuse the fold so that it detects overflows
709 even in cases when they do not occur, and in general should be avoided.
710 We cannot however make this a default behavior of build_int_cst without
711 more intrusive changes, since there are parts of gcc that rely on the extra
712 precision of the integer constants. */
713
714 tree
build_int_cst_type(tree type,HOST_WIDE_INT low)715 build_int_cst_type (tree type, HOST_WIDE_INT low)
716 {
717 unsigned HOST_WIDE_INT val = (unsigned HOST_WIDE_INT) low;
718 unsigned HOST_WIDE_INT hi, mask;
719 unsigned bits;
720 bool signed_p;
721 bool negative;
722
723 if (!type)
724 type = integer_type_node;
725
726 bits = TYPE_PRECISION (type);
727 signed_p = !TYPE_UNSIGNED (type);
728
729 if (bits >= HOST_BITS_PER_WIDE_INT)
730 negative = (low < 0);
731 else
732 {
733 /* If the sign bit is inside precision of LOW, use it to determine
734 the sign of the constant. */
735 negative = ((val >> (bits - 1)) & 1) != 0;
736
737 /* Mask out the bits outside of the precision of the constant. */
738 mask = (((unsigned HOST_WIDE_INT) 2) << (bits - 1)) - 1;
739
740 if (signed_p && negative)
741 val |= ~mask;
742 else
743 val &= mask;
744 }
745
746 /* Determine the high bits. */
747 hi = (negative ? ~(unsigned HOST_WIDE_INT) 0 : 0);
748
749 /* For unsigned type we need to mask out the bits outside of the type
750 precision. */
751 if (!signed_p)
752 {
753 if (bits <= HOST_BITS_PER_WIDE_INT)
754 hi = 0;
755 else
756 {
757 bits -= HOST_BITS_PER_WIDE_INT;
758 mask = (((unsigned HOST_WIDE_INT) 2) << (bits - 1)) - 1;
759 hi &= mask;
760 }
761 }
762
763 return build_int_cst_wide (type, val, hi);
764 }
765
766 /* These are the hash table functions for the hash table of INTEGER_CST
767 nodes of a sizetype. */
768
769 /* Return the hash code code X, an INTEGER_CST. */
770
771 static hashval_t
int_cst_hash_hash(const void * x)772 int_cst_hash_hash (const void *x)
773 {
774 tree t = (tree) x;
775
776 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
777 ^ htab_hash_pointer (TREE_TYPE (t)));
778 }
779
780 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
781 is the same as that given by *Y, which is the same. */
782
783 static int
int_cst_hash_eq(const void * x,const void * y)784 int_cst_hash_eq (const void *x, const void *y)
785 {
786 tree xt = (tree) x;
787 tree yt = (tree) y;
788
789 return (TREE_TYPE (xt) == TREE_TYPE (yt)
790 && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
791 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
792 }
793
794 /* Create an INT_CST node of TYPE and value HI:LOW. If TYPE is NULL,
795 integer_type_node is used. The returned node is always shared.
796 For small integers we use a per-type vector cache, for larger ones
797 we use a single hash table. */
798
799 tree
build_int_cst_wide(tree type,unsigned HOST_WIDE_INT low,HOST_WIDE_INT hi)800 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
801 {
802 tree t;
803 int ix = -1;
804 int limit = 0;
805
806 if (!type)
807 type = integer_type_node;
808
809 switch (TREE_CODE (type))
810 {
811 case POINTER_TYPE:
812 case REFERENCE_TYPE:
813 /* Cache NULL pointer. */
814 if (!hi && !low)
815 {
816 limit = 1;
817 ix = 0;
818 }
819 break;
820
821 case BOOLEAN_TYPE:
822 /* Cache false or true. */
823 limit = 2;
824 if (!hi && low < 2)
825 ix = low;
826 break;
827
828 case INTEGER_TYPE:
829 case OFFSET_TYPE:
830 if (TYPE_UNSIGNED (type))
831 {
832 /* Cache 0..N */
833 limit = INTEGER_SHARE_LIMIT;
834 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
835 ix = low;
836 }
837 else
838 {
839 /* Cache -1..N */
840 limit = INTEGER_SHARE_LIMIT + 1;
841 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
842 ix = low + 1;
843 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
844 ix = 0;
845 }
846 break;
847 default:
848 break;
849 }
850
851 if (ix >= 0)
852 {
853 /* Look for it in the type's vector of small shared ints. */
854 if (!TYPE_CACHED_VALUES_P (type))
855 {
856 TYPE_CACHED_VALUES_P (type) = 1;
857 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
858 }
859
860 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
861 if (t)
862 {
863 /* Make sure no one is clobbering the shared constant. */
864 gcc_assert (TREE_TYPE (t) == type);
865 gcc_assert (TREE_INT_CST_LOW (t) == low);
866 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
867 }
868 else
869 {
870 /* Create a new shared int. */
871 t = make_node (INTEGER_CST);
872
873 TREE_INT_CST_LOW (t) = low;
874 TREE_INT_CST_HIGH (t) = hi;
875 TREE_TYPE (t) = type;
876
877 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
878 }
879 }
880 else
881 {
882 /* Use the cache of larger shared ints. */
883 void **slot;
884
885 TREE_INT_CST_LOW (int_cst_node) = low;
886 TREE_INT_CST_HIGH (int_cst_node) = hi;
887 TREE_TYPE (int_cst_node) = type;
888
889 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
890 t = *slot;
891 if (!t)
892 {
893 /* Insert this one into the hash table. */
894 t = int_cst_node;
895 *slot = t;
896 /* Make a new node for next time round. */
897 int_cst_node = make_node (INTEGER_CST);
898 }
899 }
900
901 return t;
902 }
903
904 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
905 and the rest are zeros. */
906
907 tree
build_low_bits_mask(tree type,unsigned bits)908 build_low_bits_mask (tree type, unsigned bits)
909 {
910 unsigned HOST_WIDE_INT low;
911 HOST_WIDE_INT high;
912 unsigned HOST_WIDE_INT all_ones = ~(unsigned HOST_WIDE_INT) 0;
913
914 gcc_assert (bits <= TYPE_PRECISION (type));
915
916 if (bits == TYPE_PRECISION (type)
917 && !TYPE_UNSIGNED (type))
918 {
919 /* Sign extended all-ones mask. */
920 low = all_ones;
921 high = -1;
922 }
923 else if (bits <= HOST_BITS_PER_WIDE_INT)
924 {
925 low = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
926 high = 0;
927 }
928 else
929 {
930 bits -= HOST_BITS_PER_WIDE_INT;
931 low = all_ones;
932 high = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
933 }
934
935 return build_int_cst_wide (type, low, high);
936 }
937
938 /* Checks that X is integer constant that can be expressed in (unsigned)
939 HOST_WIDE_INT without loss of precision. */
940
941 bool
cst_and_fits_in_hwi(tree x)942 cst_and_fits_in_hwi (tree x)
943 {
944 if (TREE_CODE (x) != INTEGER_CST)
945 return false;
946
947 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
948 return false;
949
950 return (TREE_INT_CST_HIGH (x) == 0
951 || TREE_INT_CST_HIGH (x) == -1);
952 }
953
954 /* Return a new VECTOR_CST node whose type is TYPE and whose values
955 are in a list pointed to by VALS. */
956
957 tree
build_vector(tree type,tree vals)958 build_vector (tree type, tree vals)
959 {
960 tree v = make_node (VECTOR_CST);
961 int over1 = 0, over2 = 0;
962 tree link;
963
964 TREE_VECTOR_CST_ELTS (v) = vals;
965 TREE_TYPE (v) = type;
966
967 /* Iterate through elements and check for overflow. */
968 for (link = vals; link; link = TREE_CHAIN (link))
969 {
970 tree value = TREE_VALUE (link);
971
972 /* Don't crash if we get an address constant. */
973 if (!CONSTANT_CLASS_P (value))
974 continue;
975
976 over1 |= TREE_OVERFLOW (value);
977 over2 |= TREE_CONSTANT_OVERFLOW (value);
978 }
979
980 TREE_OVERFLOW (v) = over1;
981 TREE_CONSTANT_OVERFLOW (v) = over2;
982
983 return v;
984 }
985
986 /* Return a new VECTOR_CST node whose type is TYPE and whose values
987 are extracted from V, a vector of CONSTRUCTOR_ELT. */
988
989 tree
build_vector_from_ctor(tree type,VEC (constructor_elt,gc)* v)990 build_vector_from_ctor (tree type, VEC(constructor_elt,gc) *v)
991 {
992 tree list = NULL_TREE;
993 unsigned HOST_WIDE_INT idx;
994 tree value;
995
996 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
997 list = tree_cons (NULL_TREE, value, list);
998 return build_vector (type, nreverse (list));
999 }
1000
1001 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1002 are in the VEC pointed to by VALS. */
1003 tree
build_constructor(tree type,VEC (constructor_elt,gc)* vals)1004 build_constructor (tree type, VEC(constructor_elt,gc) *vals)
1005 {
1006 tree c = make_node (CONSTRUCTOR);
1007 TREE_TYPE (c) = type;
1008 CONSTRUCTOR_ELTS (c) = vals;
1009 return c;
1010 }
1011
1012 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
1013 INDEX and VALUE. */
1014 tree
build_constructor_single(tree type,tree index,tree value)1015 build_constructor_single (tree type, tree index, tree value)
1016 {
1017 VEC(constructor_elt,gc) *v;
1018 constructor_elt *elt;
1019 tree t;
1020
1021 v = VEC_alloc (constructor_elt, gc, 1);
1022 elt = VEC_quick_push (constructor_elt, v, NULL);
1023 elt->index = index;
1024 elt->value = value;
1025
1026 t = build_constructor (type, v);
1027 TREE_CONSTANT (t) = TREE_CONSTANT (value);
1028 return t;
1029 }
1030
1031
1032 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1033 are in a list pointed to by VALS. */
1034 tree
build_constructor_from_list(tree type,tree vals)1035 build_constructor_from_list (tree type, tree vals)
1036 {
1037 tree t, val;
1038 VEC(constructor_elt,gc) *v = NULL;
1039 bool constant_p = true;
1040
1041 if (vals)
1042 {
1043 v = VEC_alloc (constructor_elt, gc, list_length (vals));
1044 for (t = vals; t; t = TREE_CHAIN (t))
1045 {
1046 constructor_elt *elt = VEC_quick_push (constructor_elt, v, NULL);
1047 val = TREE_VALUE (t);
1048 elt->index = TREE_PURPOSE (t);
1049 elt->value = val;
1050 if (!TREE_CONSTANT (val))
1051 constant_p = false;
1052 }
1053 }
1054
1055 t = build_constructor (type, v);
1056 TREE_CONSTANT (t) = constant_p;
1057 return t;
1058 }
1059
1060
1061 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1062
1063 tree
build_real(tree type,REAL_VALUE_TYPE d)1064 build_real (tree type, REAL_VALUE_TYPE d)
1065 {
1066 tree v;
1067 REAL_VALUE_TYPE *dp;
1068 int overflow = 0;
1069
1070 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1071 Consider doing it via real_convert now. */
1072
1073 v = make_node (REAL_CST);
1074 dp = ggc_alloc (sizeof (REAL_VALUE_TYPE));
1075 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1076
1077 TREE_TYPE (v) = type;
1078 TREE_REAL_CST_PTR (v) = dp;
1079 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
1080 return v;
1081 }
1082
1083 /* Return a new REAL_CST node whose type is TYPE
1084 and whose value is the integer value of the INTEGER_CST node I. */
1085
1086 REAL_VALUE_TYPE
real_value_from_int_cst(tree type,tree i)1087 real_value_from_int_cst (tree type, tree i)
1088 {
1089 REAL_VALUE_TYPE d;
1090
1091 /* Clear all bits of the real value type so that we can later do
1092 bitwise comparisons to see if two values are the same. */
1093 memset (&d, 0, sizeof d);
1094
1095 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
1096 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1097 TYPE_UNSIGNED (TREE_TYPE (i)));
1098 return d;
1099 }
1100
1101 /* Given a tree representing an integer constant I, return a tree
1102 representing the same value as a floating-point constant of type TYPE. */
1103
1104 tree
build_real_from_int_cst(tree type,tree i)1105 build_real_from_int_cst (tree type, tree i)
1106 {
1107 tree v;
1108 int overflow = TREE_OVERFLOW (i);
1109
1110 v = build_real (type, real_value_from_int_cst (type, i));
1111
1112 TREE_OVERFLOW (v) |= overflow;
1113 TREE_CONSTANT_OVERFLOW (v) |= overflow;
1114 return v;
1115 }
1116
1117 /* Return a newly constructed STRING_CST node whose value is
1118 the LEN characters at STR.
1119 The TREE_TYPE is not initialized. */
1120
1121 tree
build_string(int len,const char * str)1122 build_string (int len, const char *str)
1123 {
1124 tree s;
1125 size_t length;
1126
1127 /* Do not waste bytes provided by padding of struct tree_string. */
1128 length = len + offsetof (struct tree_string, str) + 1;
1129
1130 #ifdef GATHER_STATISTICS
1131 tree_node_counts[(int) c_kind]++;
1132 tree_node_sizes[(int) c_kind] += length;
1133 #endif
1134
1135 s = ggc_alloc_tree (length);
1136
1137 memset (s, 0, sizeof (struct tree_common));
1138 TREE_SET_CODE (s, STRING_CST);
1139 TREE_CONSTANT (s) = 1;
1140 TREE_INVARIANT (s) = 1;
1141 TREE_STRING_LENGTH (s) = len;
1142 memcpy ((char *) TREE_STRING_POINTER (s), str, len);
1143 ((char *) TREE_STRING_POINTER (s))[len] = '\0';
1144
1145 return s;
1146 }
1147
1148 /* Return a newly constructed COMPLEX_CST node whose value is
1149 specified by the real and imaginary parts REAL and IMAG.
1150 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1151 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1152
1153 tree
build_complex(tree type,tree real,tree imag)1154 build_complex (tree type, tree real, tree imag)
1155 {
1156 tree t = make_node (COMPLEX_CST);
1157
1158 TREE_REALPART (t) = real;
1159 TREE_IMAGPART (t) = imag;
1160 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1161 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1162 TREE_CONSTANT_OVERFLOW (t)
1163 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
1164 return t;
1165 }
1166
1167 /* Return a constant of arithmetic type TYPE which is the
1168 multiplicative identity of the set TYPE. */
1169
1170 tree
build_one_cst(tree type)1171 build_one_cst (tree type)
1172 {
1173 switch (TREE_CODE (type))
1174 {
1175 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1176 case POINTER_TYPE: case REFERENCE_TYPE:
1177 case OFFSET_TYPE:
1178 return build_int_cst (type, 1);
1179
1180 case REAL_TYPE:
1181 return build_real (type, dconst1);
1182
1183 case VECTOR_TYPE:
1184 {
1185 tree scalar, cst;
1186 int i;
1187
1188 scalar = build_one_cst (TREE_TYPE (type));
1189
1190 /* Create 'vect_cst_ = {cst,cst,...,cst}' */
1191 cst = NULL_TREE;
1192 for (i = TYPE_VECTOR_SUBPARTS (type); --i >= 0; )
1193 cst = tree_cons (NULL_TREE, scalar, cst);
1194
1195 return build_vector (type, cst);
1196 }
1197
1198 case COMPLEX_TYPE:
1199 return build_complex (type,
1200 build_one_cst (TREE_TYPE (type)),
1201 fold_convert (TREE_TYPE (type), integer_zero_node));
1202
1203 default:
1204 gcc_unreachable ();
1205 }
1206 }
1207
1208 /* Build a BINFO with LEN language slots. */
1209
1210 tree
make_tree_binfo_stat(unsigned base_binfos MEM_STAT_DECL)1211 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
1212 {
1213 tree t;
1214 size_t length = (offsetof (struct tree_binfo, base_binfos)
1215 + VEC_embedded_size (tree, base_binfos));
1216
1217 #ifdef GATHER_STATISTICS
1218 tree_node_counts[(int) binfo_kind]++;
1219 tree_node_sizes[(int) binfo_kind] += length;
1220 #endif
1221
1222 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
1223
1224 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
1225
1226 TREE_SET_CODE (t, TREE_BINFO);
1227
1228 VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
1229
1230 return t;
1231 }
1232
1233
1234 /* Build a newly constructed TREE_VEC node of length LEN. */
1235
1236 tree
make_tree_vec_stat(int len MEM_STAT_DECL)1237 make_tree_vec_stat (int len MEM_STAT_DECL)
1238 {
1239 tree t;
1240 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
1241
1242 #ifdef GATHER_STATISTICS
1243 tree_node_counts[(int) vec_kind]++;
1244 tree_node_sizes[(int) vec_kind] += length;
1245 #endif
1246
1247 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
1248
1249 memset (t, 0, length);
1250
1251 TREE_SET_CODE (t, TREE_VEC);
1252 TREE_VEC_LENGTH (t) = len;
1253
1254 return t;
1255 }
1256
1257 /* Return 1 if EXPR is the integer constant zero or a complex constant
1258 of zero. */
1259
1260 int
integer_zerop(tree expr)1261 integer_zerop (tree expr)
1262 {
1263 STRIP_NOPS (expr);
1264
1265 return ((TREE_CODE (expr) == INTEGER_CST
1266 && TREE_INT_CST_LOW (expr) == 0
1267 && TREE_INT_CST_HIGH (expr) == 0)
1268 || (TREE_CODE (expr) == COMPLEX_CST
1269 && integer_zerop (TREE_REALPART (expr))
1270 && integer_zerop (TREE_IMAGPART (expr))));
1271 }
1272
1273 /* Return 1 if EXPR is the integer constant one or the corresponding
1274 complex constant. */
1275
1276 int
integer_onep(tree expr)1277 integer_onep (tree expr)
1278 {
1279 STRIP_NOPS (expr);
1280
1281 return ((TREE_CODE (expr) == INTEGER_CST
1282 && TREE_INT_CST_LOW (expr) == 1
1283 && TREE_INT_CST_HIGH (expr) == 0)
1284 || (TREE_CODE (expr) == COMPLEX_CST
1285 && integer_onep (TREE_REALPART (expr))
1286 && integer_zerop (TREE_IMAGPART (expr))));
1287 }
1288
1289 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1290 it contains. Likewise for the corresponding complex constant. */
1291
1292 int
integer_all_onesp(tree expr)1293 integer_all_onesp (tree expr)
1294 {
1295 int prec;
1296 int uns;
1297
1298 STRIP_NOPS (expr);
1299
1300 if (TREE_CODE (expr) == COMPLEX_CST
1301 && integer_all_onesp (TREE_REALPART (expr))
1302 && integer_zerop (TREE_IMAGPART (expr)))
1303 return 1;
1304
1305 else if (TREE_CODE (expr) != INTEGER_CST)
1306 return 0;
1307
1308 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
1309 if (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1310 && TREE_INT_CST_HIGH (expr) == -1)
1311 return 1;
1312 if (!uns)
1313 return 0;
1314
1315 /* Note that using TYPE_PRECISION here is wrong. We care about the
1316 actual bits, not the (arbitrary) range of the type. */
1317 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
1318 if (prec >= HOST_BITS_PER_WIDE_INT)
1319 {
1320 HOST_WIDE_INT high_value;
1321 int shift_amount;
1322
1323 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1324
1325 /* Can not handle precisions greater than twice the host int size. */
1326 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
1327 if (shift_amount == HOST_BITS_PER_WIDE_INT)
1328 /* Shifting by the host word size is undefined according to the ANSI
1329 standard, so we must handle this as a special case. */
1330 high_value = -1;
1331 else
1332 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1333
1334 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1335 && TREE_INT_CST_HIGH (expr) == high_value);
1336 }
1337 else
1338 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1339 }
1340
1341 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1342 one bit on). */
1343
1344 int
integer_pow2p(tree expr)1345 integer_pow2p (tree expr)
1346 {
1347 int prec;
1348 HOST_WIDE_INT high, low;
1349
1350 STRIP_NOPS (expr);
1351
1352 if (TREE_CODE (expr) == COMPLEX_CST
1353 && integer_pow2p (TREE_REALPART (expr))
1354 && integer_zerop (TREE_IMAGPART (expr)))
1355 return 1;
1356
1357 if (TREE_CODE (expr) != INTEGER_CST)
1358 return 0;
1359
1360 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1361 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1362 high = TREE_INT_CST_HIGH (expr);
1363 low = TREE_INT_CST_LOW (expr);
1364
1365 /* First clear all bits that are beyond the type's precision in case
1366 we've been sign extended. */
1367
1368 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1369 ;
1370 else if (prec > HOST_BITS_PER_WIDE_INT)
1371 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1372 else
1373 {
1374 high = 0;
1375 if (prec < HOST_BITS_PER_WIDE_INT)
1376 low &= ~((HOST_WIDE_INT) (-1) << prec);
1377 }
1378
1379 if (high == 0 && low == 0)
1380 return 0;
1381
1382 return ((high == 0 && (low & (low - 1)) == 0)
1383 || (low == 0 && (high & (high - 1)) == 0));
1384 }
1385
1386 /* Return 1 if EXPR is an integer constant other than zero or a
1387 complex constant other than zero. */
1388
1389 int
integer_nonzerop(tree expr)1390 integer_nonzerop (tree expr)
1391 {
1392 STRIP_NOPS (expr);
1393
1394 return ((TREE_CODE (expr) == INTEGER_CST
1395 && (TREE_INT_CST_LOW (expr) != 0
1396 || TREE_INT_CST_HIGH (expr) != 0))
1397 || (TREE_CODE (expr) == COMPLEX_CST
1398 && (integer_nonzerop (TREE_REALPART (expr))
1399 || integer_nonzerop (TREE_IMAGPART (expr)))));
1400 }
1401
1402 /* Return the power of two represented by a tree node known to be a
1403 power of two. */
1404
1405 int
tree_log2(tree expr)1406 tree_log2 (tree expr)
1407 {
1408 int prec;
1409 HOST_WIDE_INT high, low;
1410
1411 STRIP_NOPS (expr);
1412
1413 if (TREE_CODE (expr) == COMPLEX_CST)
1414 return tree_log2 (TREE_REALPART (expr));
1415
1416 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1417 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1418
1419 high = TREE_INT_CST_HIGH (expr);
1420 low = TREE_INT_CST_LOW (expr);
1421
1422 /* First clear all bits that are beyond the type's precision in case
1423 we've been sign extended. */
1424
1425 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1426 ;
1427 else if (prec > HOST_BITS_PER_WIDE_INT)
1428 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1429 else
1430 {
1431 high = 0;
1432 if (prec < HOST_BITS_PER_WIDE_INT)
1433 low &= ~((HOST_WIDE_INT) (-1) << prec);
1434 }
1435
1436 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1437 : exact_log2 (low));
1438 }
1439
1440 /* Similar, but return the largest integer Y such that 2 ** Y is less
1441 than or equal to EXPR. */
1442
1443 int
tree_floor_log2(tree expr)1444 tree_floor_log2 (tree expr)
1445 {
1446 int prec;
1447 HOST_WIDE_INT high, low;
1448
1449 STRIP_NOPS (expr);
1450
1451 if (TREE_CODE (expr) == COMPLEX_CST)
1452 return tree_log2 (TREE_REALPART (expr));
1453
1454 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1455 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1456
1457 high = TREE_INT_CST_HIGH (expr);
1458 low = TREE_INT_CST_LOW (expr);
1459
1460 /* First clear all bits that are beyond the type's precision in case
1461 we've been sign extended. Ignore if type's precision hasn't been set
1462 since what we are doing is setting it. */
1463
1464 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
1465 ;
1466 else if (prec > HOST_BITS_PER_WIDE_INT)
1467 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1468 else
1469 {
1470 high = 0;
1471 if (prec < HOST_BITS_PER_WIDE_INT)
1472 low &= ~((HOST_WIDE_INT) (-1) << prec);
1473 }
1474
1475 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1476 : floor_log2 (low));
1477 }
1478
1479 /* Return 1 if EXPR is the real constant zero. */
1480
1481 int
real_zerop(tree expr)1482 real_zerop (tree expr)
1483 {
1484 STRIP_NOPS (expr);
1485
1486 return ((TREE_CODE (expr) == REAL_CST
1487 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
1488 || (TREE_CODE (expr) == COMPLEX_CST
1489 && real_zerop (TREE_REALPART (expr))
1490 && real_zerop (TREE_IMAGPART (expr))));
1491 }
1492
1493 /* Return 1 if EXPR is the real constant one in real or complex form. */
1494
1495 int
real_onep(tree expr)1496 real_onep (tree expr)
1497 {
1498 STRIP_NOPS (expr);
1499
1500 return ((TREE_CODE (expr) == REAL_CST
1501 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
1502 || (TREE_CODE (expr) == COMPLEX_CST
1503 && real_onep (TREE_REALPART (expr))
1504 && real_zerop (TREE_IMAGPART (expr))));
1505 }
1506
1507 /* Return 1 if EXPR is the real constant two. */
1508
1509 int
real_twop(tree expr)1510 real_twop (tree expr)
1511 {
1512 STRIP_NOPS (expr);
1513
1514 return ((TREE_CODE (expr) == REAL_CST
1515 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
1516 || (TREE_CODE (expr) == COMPLEX_CST
1517 && real_twop (TREE_REALPART (expr))
1518 && real_zerop (TREE_IMAGPART (expr))));
1519 }
1520
1521 /* Return 1 if EXPR is the real constant minus one. */
1522
1523 int
real_minus_onep(tree expr)1524 real_minus_onep (tree expr)
1525 {
1526 STRIP_NOPS (expr);
1527
1528 return ((TREE_CODE (expr) == REAL_CST
1529 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1))
1530 || (TREE_CODE (expr) == COMPLEX_CST
1531 && real_minus_onep (TREE_REALPART (expr))
1532 && real_zerop (TREE_IMAGPART (expr))));
1533 }
1534
1535 /* Nonzero if EXP is a constant or a cast of a constant. */
1536
1537 int
really_constant_p(tree exp)1538 really_constant_p (tree exp)
1539 {
1540 /* This is not quite the same as STRIP_NOPS. It does more. */
1541 while (TREE_CODE (exp) == NOP_EXPR
1542 || TREE_CODE (exp) == CONVERT_EXPR
1543 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1544 exp = TREE_OPERAND (exp, 0);
1545 return TREE_CONSTANT (exp);
1546 }
1547
1548 /* Return first list element whose TREE_VALUE is ELEM.
1549 Return 0 if ELEM is not in LIST. */
1550
1551 tree
value_member(tree elem,tree list)1552 value_member (tree elem, tree list)
1553 {
1554 while (list)
1555 {
1556 if (elem == TREE_VALUE (list))
1557 return list;
1558 list = TREE_CHAIN (list);
1559 }
1560 return NULL_TREE;
1561 }
1562
1563 /* Return first list element whose TREE_PURPOSE is ELEM.
1564 Return 0 if ELEM is not in LIST. */
1565
1566 tree
purpose_member(tree elem,tree list)1567 purpose_member (tree elem, tree list)
1568 {
1569 while (list)
1570 {
1571 if (elem == TREE_PURPOSE (list))
1572 return list;
1573 list = TREE_CHAIN (list);
1574 }
1575 return NULL_TREE;
1576 }
1577
1578 /* Return nonzero if ELEM is part of the chain CHAIN. */
1579
1580 int
chain_member(tree elem,tree chain)1581 chain_member (tree elem, tree chain)
1582 {
1583 while (chain)
1584 {
1585 if (elem == chain)
1586 return 1;
1587 chain = TREE_CHAIN (chain);
1588 }
1589
1590 return 0;
1591 }
1592
1593 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1594 We expect a null pointer to mark the end of the chain.
1595 This is the Lisp primitive `length'. */
1596
1597 int
list_length(tree t)1598 list_length (tree t)
1599 {
1600 tree p = t;
1601 #ifdef ENABLE_TREE_CHECKING
1602 tree q = t;
1603 #endif
1604 int len = 0;
1605
1606 while (p)
1607 {
1608 p = TREE_CHAIN (p);
1609 #ifdef ENABLE_TREE_CHECKING
1610 if (len % 2)
1611 q = TREE_CHAIN (q);
1612 gcc_assert (p != q);
1613 #endif
1614 len++;
1615 }
1616
1617 return len;
1618 }
1619
1620 /* Returns the number of FIELD_DECLs in TYPE. */
1621
1622 int
fields_length(tree type)1623 fields_length (tree type)
1624 {
1625 tree t = TYPE_FIELDS (type);
1626 int count = 0;
1627
1628 for (; t; t = TREE_CHAIN (t))
1629 if (TREE_CODE (t) == FIELD_DECL)
1630 ++count;
1631
1632 return count;
1633 }
1634
1635 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1636 by modifying the last node in chain 1 to point to chain 2.
1637 This is the Lisp primitive `nconc'. */
1638
1639 tree
chainon(tree op1,tree op2)1640 chainon (tree op1, tree op2)
1641 {
1642 tree t1;
1643
1644 if (!op1)
1645 return op2;
1646 if (!op2)
1647 return op1;
1648
1649 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1650 continue;
1651 TREE_CHAIN (t1) = op2;
1652
1653 #ifdef ENABLE_TREE_CHECKING
1654 {
1655 tree t2;
1656 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1657 gcc_assert (t2 != t1);
1658 }
1659 #endif
1660
1661 return op1;
1662 }
1663
1664 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1665
1666 tree
tree_last(tree chain)1667 tree_last (tree chain)
1668 {
1669 tree next;
1670 if (chain)
1671 while ((next = TREE_CHAIN (chain)))
1672 chain = next;
1673 return chain;
1674 }
1675
1676 /* Reverse the order of elements in the chain T,
1677 and return the new head of the chain (old last element). */
1678
1679 tree
nreverse(tree t)1680 nreverse (tree t)
1681 {
1682 tree prev = 0, decl, next;
1683 for (decl = t; decl; decl = next)
1684 {
1685 next = TREE_CHAIN (decl);
1686 TREE_CHAIN (decl) = prev;
1687 prev = decl;
1688 }
1689 return prev;
1690 }
1691
1692 /* Return a newly created TREE_LIST node whose
1693 purpose and value fields are PARM and VALUE. */
1694
1695 tree
build_tree_list_stat(tree parm,tree value MEM_STAT_DECL)1696 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
1697 {
1698 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
1699 TREE_PURPOSE (t) = parm;
1700 TREE_VALUE (t) = value;
1701 return t;
1702 }
1703
1704 /* Return a newly created TREE_LIST node whose
1705 purpose and value fields are PURPOSE and VALUE
1706 and whose TREE_CHAIN is CHAIN. */
1707
1708 tree
tree_cons_stat(tree purpose,tree value,tree chain MEM_STAT_DECL)1709 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
1710 {
1711 tree node;
1712
1713 node = ggc_alloc_zone_pass_stat (sizeof (struct tree_list), &tree_zone);
1714
1715 memset (node, 0, sizeof (struct tree_common));
1716
1717 #ifdef GATHER_STATISTICS
1718 tree_node_counts[(int) x_kind]++;
1719 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1720 #endif
1721
1722 TREE_SET_CODE (node, TREE_LIST);
1723 TREE_CHAIN (node) = chain;
1724 TREE_PURPOSE (node) = purpose;
1725 TREE_VALUE (node) = value;
1726 return node;
1727 }
1728
1729
1730 /* Return the size nominally occupied by an object of type TYPE
1731 when it resides in memory. The value is measured in units of bytes,
1732 and its data type is that normally used for type sizes
1733 (which is the first type created by make_signed_type or
1734 make_unsigned_type). */
1735
1736 tree
size_in_bytes(tree type)1737 size_in_bytes (tree type)
1738 {
1739 tree t;
1740
1741 if (type == error_mark_node)
1742 return integer_zero_node;
1743
1744 type = TYPE_MAIN_VARIANT (type);
1745 t = TYPE_SIZE_UNIT (type);
1746
1747 if (t == 0)
1748 {
1749 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
1750 return size_zero_node;
1751 }
1752
1753 if (TREE_CODE (t) == INTEGER_CST)
1754 t = force_fit_type (t, 0, false, false);
1755
1756 return t;
1757 }
1758
1759 /* Return the size of TYPE (in bytes) as a wide integer
1760 or return -1 if the size can vary or is larger than an integer. */
1761
1762 HOST_WIDE_INT
int_size_in_bytes(tree type)1763 int_size_in_bytes (tree type)
1764 {
1765 tree t;
1766
1767 if (type == error_mark_node)
1768 return 0;
1769
1770 type = TYPE_MAIN_VARIANT (type);
1771 t = TYPE_SIZE_UNIT (type);
1772 if (t == 0
1773 || TREE_CODE (t) != INTEGER_CST
1774 || TREE_INT_CST_HIGH (t) != 0
1775 /* If the result would appear negative, it's too big to represent. */
1776 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1777 return -1;
1778
1779 return TREE_INT_CST_LOW (t);
1780 }
1781
1782 /* Return the maximum size of TYPE (in bytes) as a wide integer
1783 or return -1 if the size can vary or is larger than an integer. */
1784
1785 HOST_WIDE_INT
max_int_size_in_bytes(tree type)1786 max_int_size_in_bytes (tree type)
1787 {
1788 HOST_WIDE_INT size = -1;
1789 tree size_tree;
1790
1791 /* If this is an array type, check for a possible MAX_SIZE attached. */
1792
1793 if (TREE_CODE (type) == ARRAY_TYPE)
1794 {
1795 size_tree = TYPE_ARRAY_MAX_SIZE (type);
1796
1797 if (size_tree && host_integerp (size_tree, 1))
1798 size = tree_low_cst (size_tree, 1);
1799 }
1800
1801 /* If we still haven't been able to get a size, see if the language
1802 can compute a maximum size. */
1803
1804 if (size == -1)
1805 {
1806 size_tree = lang_hooks.types.max_size (type);
1807
1808 if (size_tree && host_integerp (size_tree, 1))
1809 size = tree_low_cst (size_tree, 1);
1810 }
1811
1812 return size;
1813 }
1814
1815 /* Return the bit position of FIELD, in bits from the start of the record.
1816 This is a tree of type bitsizetype. */
1817
1818 tree
bit_position(tree field)1819 bit_position (tree field)
1820 {
1821 return bit_from_pos (DECL_FIELD_OFFSET (field),
1822 DECL_FIELD_BIT_OFFSET (field));
1823 }
1824
1825 /* Likewise, but return as an integer. It must be representable in
1826 that way (since it could be a signed value, we don't have the
1827 option of returning -1 like int_size_in_byte can. */
1828
1829 HOST_WIDE_INT
int_bit_position(tree field)1830 int_bit_position (tree field)
1831 {
1832 return tree_low_cst (bit_position (field), 0);
1833 }
1834
1835 /* Return the byte position of FIELD, in bytes from the start of the record.
1836 This is a tree of type sizetype. */
1837
1838 tree
byte_position(tree field)1839 byte_position (tree field)
1840 {
1841 return byte_from_pos (DECL_FIELD_OFFSET (field),
1842 DECL_FIELD_BIT_OFFSET (field));
1843 }
1844
1845 /* Likewise, but return as an integer. It must be representable in
1846 that way (since it could be a signed value, we don't have the
1847 option of returning -1 like int_size_in_byte can. */
1848
1849 HOST_WIDE_INT
int_byte_position(tree field)1850 int_byte_position (tree field)
1851 {
1852 return tree_low_cst (byte_position (field), 0);
1853 }
1854
1855 /* Return the strictest alignment, in bits, that T is known to have. */
1856
1857 unsigned int
expr_align(tree t)1858 expr_align (tree t)
1859 {
1860 unsigned int align0, align1;
1861
1862 switch (TREE_CODE (t))
1863 {
1864 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1865 /* If we have conversions, we know that the alignment of the
1866 object must meet each of the alignments of the types. */
1867 align0 = expr_align (TREE_OPERAND (t, 0));
1868 align1 = TYPE_ALIGN (TREE_TYPE (t));
1869 return MAX (align0, align1);
1870
1871 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
1872 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1873 case CLEANUP_POINT_EXPR:
1874 /* These don't change the alignment of an object. */
1875 return expr_align (TREE_OPERAND (t, 0));
1876
1877 case COND_EXPR:
1878 /* The best we can do is say that the alignment is the least aligned
1879 of the two arms. */
1880 align0 = expr_align (TREE_OPERAND (t, 1));
1881 align1 = expr_align (TREE_OPERAND (t, 2));
1882 return MIN (align0, align1);
1883
1884 case LABEL_DECL: case CONST_DECL:
1885 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1886 if (DECL_ALIGN (t) != 0)
1887 return DECL_ALIGN (t);
1888 break;
1889
1890 case FUNCTION_DECL:
1891 return FUNCTION_BOUNDARY;
1892
1893 default:
1894 break;
1895 }
1896
1897 /* Otherwise take the alignment from that of the type. */
1898 return TYPE_ALIGN (TREE_TYPE (t));
1899 }
1900
1901 /* Return, as a tree node, the number of elements for TYPE (which is an
1902 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1903
1904 tree
array_type_nelts(tree type)1905 array_type_nelts (tree type)
1906 {
1907 tree index_type, min, max;
1908
1909 /* If they did it with unspecified bounds, then we should have already
1910 given an error about it before we got here. */
1911 if (! TYPE_DOMAIN (type))
1912 return error_mark_node;
1913
1914 index_type = TYPE_DOMAIN (type);
1915 min = TYPE_MIN_VALUE (index_type);
1916 max = TYPE_MAX_VALUE (index_type);
1917
1918 return (integer_zerop (min)
1919 ? max
1920 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
1921 }
1922
1923 /* If arg is static -- a reference to an object in static storage -- then
1924 return the object. This is not the same as the C meaning of `static'.
1925 If arg isn't static, return NULL. */
1926
1927 tree
staticp(tree arg)1928 staticp (tree arg)
1929 {
1930 switch (TREE_CODE (arg))
1931 {
1932 case FUNCTION_DECL:
1933 /* Nested functions are static, even though taking their address will
1934 involve a trampoline as we unnest the nested function and create
1935 the trampoline on the tree level. */
1936 return arg;
1937
1938 case VAR_DECL:
1939 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1940 && ! DECL_THREAD_LOCAL_P (arg)
1941 && ! DECL_DLLIMPORT_P (arg)
1942 ? arg : NULL);
1943
1944 case CONST_DECL:
1945 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1946 ? arg : NULL);
1947
1948 case CONSTRUCTOR:
1949 return TREE_STATIC (arg) ? arg : NULL;
1950
1951 case LABEL_DECL:
1952 case STRING_CST:
1953 return arg;
1954
1955 case COMPONENT_REF:
1956 /* If the thing being referenced is not a field, then it is
1957 something language specific. */
1958 if (TREE_CODE (TREE_OPERAND (arg, 1)) != FIELD_DECL)
1959 return (*lang_hooks.staticp) (arg);
1960
1961 /* If we are referencing a bitfield, we can't evaluate an
1962 ADDR_EXPR at compile time and so it isn't a constant. */
1963 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
1964 return NULL;
1965
1966 return staticp (TREE_OPERAND (arg, 0));
1967
1968 case BIT_FIELD_REF:
1969 return NULL;
1970
1971 case MISALIGNED_INDIRECT_REF:
1972 case ALIGN_INDIRECT_REF:
1973 case INDIRECT_REF:
1974 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
1975
1976 case ARRAY_REF:
1977 case ARRAY_RANGE_REF:
1978 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
1979 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
1980 return staticp (TREE_OPERAND (arg, 0));
1981 else
1982 return false;
1983
1984 default:
1985 if ((unsigned int) TREE_CODE (arg)
1986 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
1987 return lang_hooks.staticp (arg);
1988 else
1989 return NULL;
1990 }
1991 }
1992
1993 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
1994 Do this to any expression which may be used in more than one place,
1995 but must be evaluated only once.
1996
1997 Normally, expand_expr would reevaluate the expression each time.
1998 Calling save_expr produces something that is evaluated and recorded
1999 the first time expand_expr is called on it. Subsequent calls to
2000 expand_expr just reuse the recorded value.
2001
2002 The call to expand_expr that generates code that actually computes
2003 the value is the first call *at compile time*. Subsequent calls
2004 *at compile time* generate code to use the saved value.
2005 This produces correct result provided that *at run time* control
2006 always flows through the insns made by the first expand_expr
2007 before reaching the other places where the save_expr was evaluated.
2008 You, the caller of save_expr, must make sure this is so.
2009
2010 Constants, and certain read-only nodes, are returned with no
2011 SAVE_EXPR because that is safe. Expressions containing placeholders
2012 are not touched; see tree.def for an explanation of what these
2013 are used for. */
2014
2015 tree
save_expr(tree expr)2016 save_expr (tree expr)
2017 {
2018 tree t = fold (expr);
2019 tree inner;
2020
2021 /* If the tree evaluates to a constant, then we don't want to hide that
2022 fact (i.e. this allows further folding, and direct checks for constants).
2023 However, a read-only object that has side effects cannot be bypassed.
2024 Since it is no problem to reevaluate literals, we just return the
2025 literal node. */
2026 inner = skip_simple_arithmetic (t);
2027
2028 if (TREE_INVARIANT (inner)
2029 || (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
2030 || TREE_CODE (inner) == SAVE_EXPR
2031 || TREE_CODE (inner) == ERROR_MARK)
2032 return t;
2033
2034 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2035 it means that the size or offset of some field of an object depends on
2036 the value within another field.
2037
2038 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2039 and some variable since it would then need to be both evaluated once and
2040 evaluated more than once. Front-ends must assure this case cannot
2041 happen by surrounding any such subexpressions in their own SAVE_EXPR
2042 and forcing evaluation at the proper time. */
2043 if (contains_placeholder_p (inner))
2044 return t;
2045
2046 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
2047
2048 /* This expression might be placed ahead of a jump to ensure that the
2049 value was computed on both sides of the jump. So make sure it isn't
2050 eliminated as dead. */
2051 TREE_SIDE_EFFECTS (t) = 1;
2052 TREE_INVARIANT (t) = 1;
2053 return t;
2054 }
2055
2056 /* Look inside EXPR and into any simple arithmetic operations. Return
2057 the innermost non-arithmetic node. */
2058
2059 tree
skip_simple_arithmetic(tree expr)2060 skip_simple_arithmetic (tree expr)
2061 {
2062 tree inner;
2063
2064 /* We don't care about whether this can be used as an lvalue in this
2065 context. */
2066 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
2067 expr = TREE_OPERAND (expr, 0);
2068
2069 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
2070 a constant, it will be more efficient to not make another SAVE_EXPR since
2071 it will allow better simplification and GCSE will be able to merge the
2072 computations if they actually occur. */
2073 inner = expr;
2074 while (1)
2075 {
2076 if (UNARY_CLASS_P (inner))
2077 inner = TREE_OPERAND (inner, 0);
2078 else if (BINARY_CLASS_P (inner))
2079 {
2080 if (TREE_INVARIANT (TREE_OPERAND (inner, 1)))
2081 inner = TREE_OPERAND (inner, 0);
2082 else if (TREE_INVARIANT (TREE_OPERAND (inner, 0)))
2083 inner = TREE_OPERAND (inner, 1);
2084 else
2085 break;
2086 }
2087 else
2088 break;
2089 }
2090
2091 return inner;
2092 }
2093
2094 /* Return which tree structure is used by T. */
2095
2096 enum tree_node_structure_enum
tree_node_structure(tree t)2097 tree_node_structure (tree t)
2098 {
2099 enum tree_code code = TREE_CODE (t);
2100
2101 switch (TREE_CODE_CLASS (code))
2102 {
2103 case tcc_declaration:
2104 {
2105 switch (code)
2106 {
2107 case FIELD_DECL:
2108 return TS_FIELD_DECL;
2109 case PARM_DECL:
2110 return TS_PARM_DECL;
2111 case VAR_DECL:
2112 return TS_VAR_DECL;
2113 case LABEL_DECL:
2114 return TS_LABEL_DECL;
2115 case RESULT_DECL:
2116 return TS_RESULT_DECL;
2117 case CONST_DECL:
2118 return TS_CONST_DECL;
2119 case TYPE_DECL:
2120 return TS_TYPE_DECL;
2121 case FUNCTION_DECL:
2122 return TS_FUNCTION_DECL;
2123 case SYMBOL_MEMORY_TAG:
2124 case NAME_MEMORY_TAG:
2125 case STRUCT_FIELD_TAG:
2126 return TS_MEMORY_TAG;
2127 default:
2128 return TS_DECL_NON_COMMON;
2129 }
2130 }
2131 case tcc_type:
2132 return TS_TYPE;
2133 case tcc_reference:
2134 case tcc_comparison:
2135 case tcc_unary:
2136 case tcc_binary:
2137 case tcc_expression:
2138 case tcc_statement:
2139 return TS_EXP;
2140 default: /* tcc_constant and tcc_exceptional */
2141 break;
2142 }
2143 switch (code)
2144 {
2145 /* tcc_constant cases. */
2146 case INTEGER_CST: return TS_INT_CST;
2147 case REAL_CST: return TS_REAL_CST;
2148 case COMPLEX_CST: return TS_COMPLEX;
2149 case VECTOR_CST: return TS_VECTOR;
2150 case STRING_CST: return TS_STRING;
2151 /* tcc_exceptional cases. */
2152 case ERROR_MARK: return TS_COMMON;
2153 case IDENTIFIER_NODE: return TS_IDENTIFIER;
2154 case TREE_LIST: return TS_LIST;
2155 case TREE_VEC: return TS_VEC;
2156 case PHI_NODE: return TS_PHI_NODE;
2157 case SSA_NAME: return TS_SSA_NAME;
2158 case PLACEHOLDER_EXPR: return TS_COMMON;
2159 case STATEMENT_LIST: return TS_STATEMENT_LIST;
2160 case BLOCK: return TS_BLOCK;
2161 case CONSTRUCTOR: return TS_CONSTRUCTOR;
2162 case TREE_BINFO: return TS_BINFO;
2163 case VALUE_HANDLE: return TS_VALUE_HANDLE;
2164 case OMP_CLAUSE: return TS_OMP_CLAUSE;
2165
2166 default:
2167 gcc_unreachable ();
2168 }
2169 }
2170
2171 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
2172 or offset that depends on a field within a record. */
2173
2174 bool
contains_placeholder_p(tree exp)2175 contains_placeholder_p (tree exp)
2176 {
2177 enum tree_code code;
2178
2179 if (!exp)
2180 return 0;
2181
2182 code = TREE_CODE (exp);
2183 if (code == PLACEHOLDER_EXPR)
2184 return 1;
2185
2186 switch (TREE_CODE_CLASS (code))
2187 {
2188 case tcc_reference:
2189 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2190 position computations since they will be converted into a
2191 WITH_RECORD_EXPR involving the reference, which will assume
2192 here will be valid. */
2193 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2194
2195 case tcc_exceptional:
2196 if (code == TREE_LIST)
2197 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
2198 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
2199 break;
2200
2201 case tcc_unary:
2202 case tcc_binary:
2203 case tcc_comparison:
2204 case tcc_expression:
2205 switch (code)
2206 {
2207 case COMPOUND_EXPR:
2208 /* Ignoring the first operand isn't quite right, but works best. */
2209 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2210
2211 case COND_EXPR:
2212 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2213 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
2214 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
2215
2216 case CALL_EXPR:
2217 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2218
2219 default:
2220 break;
2221 }
2222
2223 switch (TREE_CODE_LENGTH (code))
2224 {
2225 case 1:
2226 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2227 case 2:
2228 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2229 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
2230 default:
2231 return 0;
2232 }
2233
2234 default:
2235 return 0;
2236 }
2237 return 0;
2238 }
2239
2240 /* Return true if any part of the computation of TYPE involves a
2241 PLACEHOLDER_EXPR. This includes size, bounds, qualifiers
2242 (for QUAL_UNION_TYPE) and field positions. */
2243
2244 static bool
type_contains_placeholder_1(tree type)2245 type_contains_placeholder_1 (tree type)
2246 {
2247 /* If the size contains a placeholder or the parent type (component type in
2248 the case of arrays) type involves a placeholder, this type does. */
2249 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
2250 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
2251 || (TREE_TYPE (type) != 0
2252 && type_contains_placeholder_p (TREE_TYPE (type))))
2253 return true;
2254
2255 /* Now do type-specific checks. Note that the last part of the check above
2256 greatly limits what we have to do below. */
2257 switch (TREE_CODE (type))
2258 {
2259 case VOID_TYPE:
2260 case COMPLEX_TYPE:
2261 case ENUMERAL_TYPE:
2262 case BOOLEAN_TYPE:
2263 case POINTER_TYPE:
2264 case OFFSET_TYPE:
2265 case REFERENCE_TYPE:
2266 case METHOD_TYPE:
2267 case FUNCTION_TYPE:
2268 case VECTOR_TYPE:
2269 return false;
2270
2271 case INTEGER_TYPE:
2272 case REAL_TYPE:
2273 /* Here we just check the bounds. */
2274 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
2275 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
2276
2277 case ARRAY_TYPE:
2278 /* We're already checked the component type (TREE_TYPE), so just check
2279 the index type. */
2280 return type_contains_placeholder_p (TYPE_DOMAIN (type));
2281
2282 case RECORD_TYPE:
2283 case UNION_TYPE:
2284 case QUAL_UNION_TYPE:
2285 {
2286 tree field;
2287
2288 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2289 if (TREE_CODE (field) == FIELD_DECL
2290 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
2291 || (TREE_CODE (type) == QUAL_UNION_TYPE
2292 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
2293 || type_contains_placeholder_p (TREE_TYPE (field))))
2294 return true;
2295
2296 return false;
2297 }
2298
2299 default:
2300 gcc_unreachable ();
2301 }
2302 }
2303
2304 bool
type_contains_placeholder_p(tree type)2305 type_contains_placeholder_p (tree type)
2306 {
2307 bool result;
2308
2309 /* If the contains_placeholder_bits field has been initialized,
2310 then we know the answer. */
2311 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
2312 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
2313
2314 /* Indicate that we've seen this type node, and the answer is false.
2315 This is what we want to return if we run into recursion via fields. */
2316 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
2317
2318 /* Compute the real value. */
2319 result = type_contains_placeholder_1 (type);
2320
2321 /* Store the real value. */
2322 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
2323
2324 return result;
2325 }
2326
2327 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
2328 return a tree with all occurrences of references to F in a
2329 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
2330 contains only arithmetic expressions or a CALL_EXPR with a
2331 PLACEHOLDER_EXPR occurring only in its arglist. */
2332
2333 tree
substitute_in_expr(tree exp,tree f,tree r)2334 substitute_in_expr (tree exp, tree f, tree r)
2335 {
2336 enum tree_code code = TREE_CODE (exp);
2337 tree op0, op1, op2, op3;
2338 tree new;
2339 tree inner;
2340
2341 /* We handle TREE_LIST and COMPONENT_REF separately. */
2342 if (code == TREE_LIST)
2343 {
2344 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
2345 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
2346 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2347 return exp;
2348
2349 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2350 }
2351 else if (code == COMPONENT_REF)
2352 {
2353 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2354 and it is the right field, replace it with R. */
2355 for (inner = TREE_OPERAND (exp, 0);
2356 REFERENCE_CLASS_P (inner);
2357 inner = TREE_OPERAND (inner, 0))
2358 ;
2359 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2360 && TREE_OPERAND (exp, 1) == f)
2361 return r;
2362
2363 /* If this expression hasn't been completed let, leave it alone. */
2364 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && TREE_TYPE (inner) == 0)
2365 return exp;
2366
2367 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2368 if (op0 == TREE_OPERAND (exp, 0))
2369 return exp;
2370
2371 new = fold_build3 (COMPONENT_REF, TREE_TYPE (exp),
2372 op0, TREE_OPERAND (exp, 1), NULL_TREE);
2373 }
2374 else
2375 switch (TREE_CODE_CLASS (code))
2376 {
2377 case tcc_constant:
2378 case tcc_declaration:
2379 return exp;
2380
2381 case tcc_exceptional:
2382 case tcc_unary:
2383 case tcc_binary:
2384 case tcc_comparison:
2385 case tcc_expression:
2386 case tcc_reference:
2387 switch (TREE_CODE_LENGTH (code))
2388 {
2389 case 0:
2390 return exp;
2391
2392 case 1:
2393 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2394 if (op0 == TREE_OPERAND (exp, 0))
2395 return exp;
2396
2397 new = fold_build1 (code, TREE_TYPE (exp), op0);
2398 break;
2399
2400 case 2:
2401 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2402 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2403
2404 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2405 return exp;
2406
2407 new = fold_build2 (code, TREE_TYPE (exp), op0, op1);
2408 break;
2409
2410 case 3:
2411 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2412 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2413 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
2414
2415 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2416 && op2 == TREE_OPERAND (exp, 2))
2417 return exp;
2418
2419 new = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
2420 break;
2421
2422 case 4:
2423 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2424 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2425 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
2426 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
2427
2428 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2429 && op2 == TREE_OPERAND (exp, 2)
2430 && op3 == TREE_OPERAND (exp, 3))
2431 return exp;
2432
2433 new = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
2434 break;
2435
2436 default:
2437 gcc_unreachable ();
2438 }
2439 break;
2440
2441 default:
2442 gcc_unreachable ();
2443 }
2444
2445 TREE_READONLY (new) = TREE_READONLY (exp);
2446 return new;
2447 }
2448
2449 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
2450 for it within OBJ, a tree that is an object or a chain of references. */
2451
2452 tree
substitute_placeholder_in_expr(tree exp,tree obj)2453 substitute_placeholder_in_expr (tree exp, tree obj)
2454 {
2455 enum tree_code code = TREE_CODE (exp);
2456 tree op0, op1, op2, op3;
2457
2458 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
2459 in the chain of OBJ. */
2460 if (code == PLACEHOLDER_EXPR)
2461 {
2462 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
2463 tree elt;
2464
2465 for (elt = obj; elt != 0;
2466 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2467 || TREE_CODE (elt) == COND_EXPR)
2468 ? TREE_OPERAND (elt, 1)
2469 : (REFERENCE_CLASS_P (elt)
2470 || UNARY_CLASS_P (elt)
2471 || BINARY_CLASS_P (elt)
2472 || EXPRESSION_CLASS_P (elt))
2473 ? TREE_OPERAND (elt, 0) : 0))
2474 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
2475 return elt;
2476
2477 for (elt = obj; elt != 0;
2478 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2479 || TREE_CODE (elt) == COND_EXPR)
2480 ? TREE_OPERAND (elt, 1)
2481 : (REFERENCE_CLASS_P (elt)
2482 || UNARY_CLASS_P (elt)
2483 || BINARY_CLASS_P (elt)
2484 || EXPRESSION_CLASS_P (elt))
2485 ? TREE_OPERAND (elt, 0) : 0))
2486 if (POINTER_TYPE_P (TREE_TYPE (elt))
2487 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
2488 == need_type))
2489 return fold_build1 (INDIRECT_REF, need_type, elt);
2490
2491 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
2492 survives until RTL generation, there will be an error. */
2493 return exp;
2494 }
2495
2496 /* TREE_LIST is special because we need to look at TREE_VALUE
2497 and TREE_CHAIN, not TREE_OPERANDS. */
2498 else if (code == TREE_LIST)
2499 {
2500 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
2501 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
2502 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2503 return exp;
2504
2505 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2506 }
2507 else
2508 switch (TREE_CODE_CLASS (code))
2509 {
2510 case tcc_constant:
2511 case tcc_declaration:
2512 return exp;
2513
2514 case tcc_exceptional:
2515 case tcc_unary:
2516 case tcc_binary:
2517 case tcc_comparison:
2518 case tcc_expression:
2519 case tcc_reference:
2520 case tcc_statement:
2521 switch (TREE_CODE_LENGTH (code))
2522 {
2523 case 0:
2524 return exp;
2525
2526 case 1:
2527 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2528 if (op0 == TREE_OPERAND (exp, 0))
2529 return exp;
2530 else
2531 return fold_build1 (code, TREE_TYPE (exp), op0);
2532
2533 case 2:
2534 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2535 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2536
2537 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2538 return exp;
2539 else
2540 return fold_build2 (code, TREE_TYPE (exp), op0, op1);
2541
2542 case 3:
2543 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2544 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2545 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2546
2547 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2548 && op2 == TREE_OPERAND (exp, 2))
2549 return exp;
2550 else
2551 return fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
2552
2553 case 4:
2554 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2555 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2556 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2557 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
2558
2559 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2560 && op2 == TREE_OPERAND (exp, 2)
2561 && op3 == TREE_OPERAND (exp, 3))
2562 return exp;
2563 else
2564 return fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
2565
2566 default:
2567 gcc_unreachable ();
2568 }
2569 break;
2570
2571 default:
2572 gcc_unreachable ();
2573 }
2574 }
2575
2576 /* Stabilize a reference so that we can use it any number of times
2577 without causing its operands to be evaluated more than once.
2578 Returns the stabilized reference. This works by means of save_expr,
2579 so see the caveats in the comments about save_expr.
2580
2581 Also allows conversion expressions whose operands are references.
2582 Any other kind of expression is returned unchanged. */
2583
2584 tree
stabilize_reference(tree ref)2585 stabilize_reference (tree ref)
2586 {
2587 tree result;
2588 enum tree_code code = TREE_CODE (ref);
2589
2590 switch (code)
2591 {
2592 case VAR_DECL:
2593 case PARM_DECL:
2594 case RESULT_DECL:
2595 /* No action is needed in this case. */
2596 return ref;
2597
2598 case NOP_EXPR:
2599 case CONVERT_EXPR:
2600 case FLOAT_EXPR:
2601 case FIX_TRUNC_EXPR:
2602 case FIX_FLOOR_EXPR:
2603 case FIX_ROUND_EXPR:
2604 case FIX_CEIL_EXPR:
2605 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2606 break;
2607
2608 case INDIRECT_REF:
2609 result = build_nt (INDIRECT_REF,
2610 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2611 break;
2612
2613 case COMPONENT_REF:
2614 result = build_nt (COMPONENT_REF,
2615 stabilize_reference (TREE_OPERAND (ref, 0)),
2616 TREE_OPERAND (ref, 1), NULL_TREE);
2617 break;
2618
2619 case BIT_FIELD_REF:
2620 result = build_nt (BIT_FIELD_REF,
2621 stabilize_reference (TREE_OPERAND (ref, 0)),
2622 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2623 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2624 break;
2625
2626 case ARRAY_REF:
2627 result = build_nt (ARRAY_REF,
2628 stabilize_reference (TREE_OPERAND (ref, 0)),
2629 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2630 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2631 break;
2632
2633 case ARRAY_RANGE_REF:
2634 result = build_nt (ARRAY_RANGE_REF,
2635 stabilize_reference (TREE_OPERAND (ref, 0)),
2636 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2637 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2638 break;
2639
2640 case COMPOUND_EXPR:
2641 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2642 it wouldn't be ignored. This matters when dealing with
2643 volatiles. */
2644 return stabilize_reference_1 (ref);
2645
2646 /* If arg isn't a kind of lvalue we recognize, make no change.
2647 Caller should recognize the error for an invalid lvalue. */
2648 default:
2649 return ref;
2650
2651 case ERROR_MARK:
2652 return error_mark_node;
2653 }
2654
2655 TREE_TYPE (result) = TREE_TYPE (ref);
2656 TREE_READONLY (result) = TREE_READONLY (ref);
2657 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2658 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2659
2660 return result;
2661 }
2662
2663 /* Subroutine of stabilize_reference; this is called for subtrees of
2664 references. Any expression with side-effects must be put in a SAVE_EXPR
2665 to ensure that it is only evaluated once.
2666
2667 We don't put SAVE_EXPR nodes around everything, because assigning very
2668 simple expressions to temporaries causes us to miss good opportunities
2669 for optimizations. Among other things, the opportunity to fold in the
2670 addition of a constant into an addressing mode often gets lost, e.g.
2671 "y[i+1] += x;". In general, we take the approach that we should not make
2672 an assignment unless we are forced into it - i.e., that any non-side effect
2673 operator should be allowed, and that cse should take care of coalescing
2674 multiple utterances of the same expression should that prove fruitful. */
2675
2676 tree
stabilize_reference_1(tree e)2677 stabilize_reference_1 (tree e)
2678 {
2679 tree result;
2680 enum tree_code code = TREE_CODE (e);
2681
2682 /* We cannot ignore const expressions because it might be a reference
2683 to a const array but whose index contains side-effects. But we can
2684 ignore things that are actual constant or that already have been
2685 handled by this function. */
2686
2687 if (TREE_INVARIANT (e))
2688 return e;
2689
2690 switch (TREE_CODE_CLASS (code))
2691 {
2692 case tcc_exceptional:
2693 case tcc_type:
2694 case tcc_declaration:
2695 case tcc_comparison:
2696 case tcc_statement:
2697 case tcc_expression:
2698 case tcc_reference:
2699 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2700 so that it will only be evaluated once. */
2701 /* The reference (r) and comparison (<) classes could be handled as
2702 below, but it is generally faster to only evaluate them once. */
2703 if (TREE_SIDE_EFFECTS (e))
2704 return save_expr (e);
2705 return e;
2706
2707 case tcc_constant:
2708 /* Constants need no processing. In fact, we should never reach
2709 here. */
2710 return e;
2711
2712 case tcc_binary:
2713 /* Division is slow and tends to be compiled with jumps,
2714 especially the division by powers of 2 that is often
2715 found inside of an array reference. So do it just once. */
2716 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2717 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2718 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2719 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2720 return save_expr (e);
2721 /* Recursively stabilize each operand. */
2722 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2723 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2724 break;
2725
2726 case tcc_unary:
2727 /* Recursively stabilize each operand. */
2728 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2729 break;
2730
2731 default:
2732 gcc_unreachable ();
2733 }
2734
2735 TREE_TYPE (result) = TREE_TYPE (e);
2736 TREE_READONLY (result) = TREE_READONLY (e);
2737 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2738 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2739 TREE_INVARIANT (result) = 1;
2740
2741 return result;
2742 }
2743
2744 /* Low-level constructors for expressions. */
2745
2746 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
2747 TREE_INVARIANT, and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
2748
2749 void
recompute_tree_invariant_for_addr_expr(tree t)2750 recompute_tree_invariant_for_addr_expr (tree t)
2751 {
2752 tree node;
2753 bool tc = true, ti = true, se = false;
2754
2755 /* We started out assuming this address is both invariant and constant, but
2756 does not have side effects. Now go down any handled components and see if
2757 any of them involve offsets that are either non-constant or non-invariant.
2758 Also check for side-effects.
2759
2760 ??? Note that this code makes no attempt to deal with the case where
2761 taking the address of something causes a copy due to misalignment. */
2762
2763 #define UPDATE_TITCSE(NODE) \
2764 do { tree _node = (NODE); \
2765 if (_node && !TREE_INVARIANT (_node)) ti = false; \
2766 if (_node && !TREE_CONSTANT (_node)) tc = false; \
2767 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
2768
2769 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
2770 node = TREE_OPERAND (node, 0))
2771 {
2772 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
2773 array reference (probably made temporarily by the G++ front end),
2774 so ignore all the operands. */
2775 if ((TREE_CODE (node) == ARRAY_REF
2776 || TREE_CODE (node) == ARRAY_RANGE_REF)
2777 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
2778 {
2779 UPDATE_TITCSE (TREE_OPERAND (node, 1));
2780 if (TREE_OPERAND (node, 2))
2781 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2782 if (TREE_OPERAND (node, 3))
2783 UPDATE_TITCSE (TREE_OPERAND (node, 3));
2784 }
2785 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
2786 FIELD_DECL, apparently. The G++ front end can put something else
2787 there, at least temporarily. */
2788 else if (TREE_CODE (node) == COMPONENT_REF
2789 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
2790 {
2791 if (TREE_OPERAND (node, 2))
2792 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2793 }
2794 else if (TREE_CODE (node) == BIT_FIELD_REF)
2795 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2796 }
2797
2798 node = lang_hooks.expr_to_decl (node, &tc, &ti, &se);
2799
2800 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
2801 the address, since &(*a)->b is a form of addition. If it's a decl, it's
2802 invariant and constant if the decl is static. It's also invariant if it's
2803 a decl in the current function. Taking the address of a volatile variable
2804 is not volatile. If it's a constant, the address is both invariant and
2805 constant. Otherwise it's neither. */
2806 if (TREE_CODE (node) == INDIRECT_REF)
2807 UPDATE_TITCSE (TREE_OPERAND (node, 0));
2808 else if (DECL_P (node))
2809 {
2810 if (staticp (node))
2811 ;
2812 else if (decl_function_context (node) == current_function_decl
2813 /* Addresses of thread-local variables are invariant. */
2814 || (TREE_CODE (node) == VAR_DECL
2815 && DECL_THREAD_LOCAL_P (node)))
2816 tc = false;
2817 else
2818 ti = tc = false;
2819 }
2820 else if (CONSTANT_CLASS_P (node))
2821 ;
2822 else
2823 {
2824 ti = tc = false;
2825 se |= TREE_SIDE_EFFECTS (node);
2826 }
2827
2828 TREE_CONSTANT (t) = tc;
2829 TREE_INVARIANT (t) = ti;
2830 TREE_SIDE_EFFECTS (t) = se;
2831 #undef UPDATE_TITCSE
2832 }
2833
2834 /* Build an expression of code CODE, data type TYPE, and operands as
2835 specified. Expressions and reference nodes can be created this way.
2836 Constants, decls, types and misc nodes cannot be.
2837
2838 We define 5 non-variadic functions, from 0 to 4 arguments. This is
2839 enough for all extant tree codes. */
2840
2841 tree
build0_stat(enum tree_code code,tree tt MEM_STAT_DECL)2842 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
2843 {
2844 tree t;
2845
2846 gcc_assert (TREE_CODE_LENGTH (code) == 0);
2847
2848 t = make_node_stat (code PASS_MEM_STAT);
2849 TREE_TYPE (t) = tt;
2850
2851 return t;
2852 }
2853
2854 tree
build1_stat(enum tree_code code,tree type,tree node MEM_STAT_DECL)2855 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
2856 {
2857 int length = sizeof (struct tree_exp);
2858 #ifdef GATHER_STATISTICS
2859 tree_node_kind kind;
2860 #endif
2861 tree t;
2862
2863 #ifdef GATHER_STATISTICS
2864 switch (TREE_CODE_CLASS (code))
2865 {
2866 case tcc_statement: /* an expression with side effects */
2867 kind = s_kind;
2868 break;
2869 case tcc_reference: /* a reference */
2870 kind = r_kind;
2871 break;
2872 default:
2873 kind = e_kind;
2874 break;
2875 }
2876
2877 tree_node_counts[(int) kind]++;
2878 tree_node_sizes[(int) kind] += length;
2879 #endif
2880
2881 gcc_assert (TREE_CODE_LENGTH (code) == 1);
2882
2883 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
2884
2885 memset (t, 0, sizeof (struct tree_common));
2886
2887 TREE_SET_CODE (t, code);
2888
2889 TREE_TYPE (t) = type;
2890 #ifdef USE_MAPPED_LOCATION
2891 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
2892 #else
2893 SET_EXPR_LOCUS (t, NULL);
2894 #endif
2895 TREE_COMPLEXITY (t) = 0;
2896 TREE_OPERAND (t, 0) = node;
2897 TREE_BLOCK (t) = NULL_TREE;
2898 if (node && !TYPE_P (node))
2899 {
2900 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2901 TREE_READONLY (t) = TREE_READONLY (node);
2902 }
2903
2904 if (TREE_CODE_CLASS (code) == tcc_statement)
2905 TREE_SIDE_EFFECTS (t) = 1;
2906 else switch (code)
2907 {
2908 case VA_ARG_EXPR:
2909 /* All of these have side-effects, no matter what their
2910 operands are. */
2911 TREE_SIDE_EFFECTS (t) = 1;
2912 TREE_READONLY (t) = 0;
2913 break;
2914
2915 case MISALIGNED_INDIRECT_REF:
2916 case ALIGN_INDIRECT_REF:
2917 case INDIRECT_REF:
2918 /* Whether a dereference is readonly has nothing to do with whether
2919 its operand is readonly. */
2920 TREE_READONLY (t) = 0;
2921 break;
2922
2923 case ADDR_EXPR:
2924 if (node)
2925 recompute_tree_invariant_for_addr_expr (t);
2926 break;
2927
2928 default:
2929 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
2930 && node && !TYPE_P (node)
2931 && TREE_CONSTANT (node))
2932 TREE_CONSTANT (t) = 1;
2933 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
2934 && node && TREE_INVARIANT (node))
2935 TREE_INVARIANT (t) = 1;
2936 if (TREE_CODE_CLASS (code) == tcc_reference
2937 && node && TREE_THIS_VOLATILE (node))
2938 TREE_THIS_VOLATILE (t) = 1;
2939 break;
2940 }
2941
2942 return t;
2943 }
2944
2945 #define PROCESS_ARG(N) \
2946 do { \
2947 TREE_OPERAND (t, N) = arg##N; \
2948 if (arg##N &&!TYPE_P (arg##N)) \
2949 { \
2950 if (TREE_SIDE_EFFECTS (arg##N)) \
2951 side_effects = 1; \
2952 if (!TREE_READONLY (arg##N)) \
2953 read_only = 0; \
2954 if (!TREE_CONSTANT (arg##N)) \
2955 constant = 0; \
2956 if (!TREE_INVARIANT (arg##N)) \
2957 invariant = 0; \
2958 } \
2959 } while (0)
2960
2961 tree
build2_stat(enum tree_code code,tree tt,tree arg0,tree arg1 MEM_STAT_DECL)2962 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
2963 {
2964 bool constant, read_only, side_effects, invariant;
2965 tree t;
2966
2967 gcc_assert (TREE_CODE_LENGTH (code) == 2);
2968
2969 t = make_node_stat (code PASS_MEM_STAT);
2970 TREE_TYPE (t) = tt;
2971
2972 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2973 result based on those same flags for the arguments. But if the
2974 arguments aren't really even `tree' expressions, we shouldn't be trying
2975 to do this. */
2976
2977 /* Expressions without side effects may be constant if their
2978 arguments are as well. */
2979 constant = (TREE_CODE_CLASS (code) == tcc_comparison
2980 || TREE_CODE_CLASS (code) == tcc_binary);
2981 read_only = 1;
2982 side_effects = TREE_SIDE_EFFECTS (t);
2983 invariant = constant;
2984
2985 PROCESS_ARG(0);
2986 PROCESS_ARG(1);
2987
2988 TREE_READONLY (t) = read_only;
2989 TREE_CONSTANT (t) = constant;
2990 TREE_INVARIANT (t) = invariant;
2991 TREE_SIDE_EFFECTS (t) = side_effects;
2992 TREE_THIS_VOLATILE (t)
2993 = (TREE_CODE_CLASS (code) == tcc_reference
2994 && arg0 && TREE_THIS_VOLATILE (arg0));
2995
2996 return t;
2997 }
2998
2999 tree
build3_stat(enum tree_code code,tree tt,tree arg0,tree arg1,tree arg2 MEM_STAT_DECL)3000 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3001 tree arg2 MEM_STAT_DECL)
3002 {
3003 bool constant, read_only, side_effects, invariant;
3004 tree t;
3005
3006 gcc_assert (TREE_CODE_LENGTH (code) == 3);
3007
3008 t = make_node_stat (code PASS_MEM_STAT);
3009 TREE_TYPE (t) = tt;
3010
3011 side_effects = TREE_SIDE_EFFECTS (t);
3012
3013 PROCESS_ARG(0);
3014 PROCESS_ARG(1);
3015 PROCESS_ARG(2);
3016
3017 if (code == CALL_EXPR && !side_effects)
3018 {
3019 tree node;
3020 int i;
3021
3022 /* Calls have side-effects, except those to const or
3023 pure functions. */
3024 i = call_expr_flags (t);
3025 if (!(i & (ECF_CONST | ECF_PURE)))
3026 side_effects = 1;
3027
3028 /* And even those have side-effects if their arguments do. */
3029 else for (node = arg1; node; node = TREE_CHAIN (node))
3030 if (TREE_SIDE_EFFECTS (TREE_VALUE (node)))
3031 {
3032 side_effects = 1;
3033 break;
3034 }
3035 }
3036
3037 TREE_SIDE_EFFECTS (t) = side_effects;
3038 TREE_THIS_VOLATILE (t)
3039 = (TREE_CODE_CLASS (code) == tcc_reference
3040 && arg0 && TREE_THIS_VOLATILE (arg0));
3041
3042 return t;
3043 }
3044
3045 tree
build4_stat(enum tree_code code,tree tt,tree arg0,tree arg1,tree arg2,tree arg3 MEM_STAT_DECL)3046 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3047 tree arg2, tree arg3 MEM_STAT_DECL)
3048 {
3049 bool constant, read_only, side_effects, invariant;
3050 tree t;
3051
3052 gcc_assert (TREE_CODE_LENGTH (code) == 4);
3053
3054 t = make_node_stat (code PASS_MEM_STAT);
3055 TREE_TYPE (t) = tt;
3056
3057 side_effects = TREE_SIDE_EFFECTS (t);
3058
3059 PROCESS_ARG(0);
3060 PROCESS_ARG(1);
3061 PROCESS_ARG(2);
3062 PROCESS_ARG(3);
3063
3064 TREE_SIDE_EFFECTS (t) = side_effects;
3065 TREE_THIS_VOLATILE (t)
3066 = (TREE_CODE_CLASS (code) == tcc_reference
3067 && arg0 && TREE_THIS_VOLATILE (arg0));
3068
3069 return t;
3070 }
3071
3072 tree
build5_stat(enum tree_code code,tree tt,tree arg0,tree arg1,tree arg2,tree arg3,tree arg4 MEM_STAT_DECL)3073 build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3074 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
3075 {
3076 bool constant, read_only, side_effects, invariant;
3077 tree t;
3078
3079 gcc_assert (TREE_CODE_LENGTH (code) == 5);
3080
3081 t = make_node_stat (code PASS_MEM_STAT);
3082 TREE_TYPE (t) = tt;
3083
3084 side_effects = TREE_SIDE_EFFECTS (t);
3085
3086 PROCESS_ARG(0);
3087 PROCESS_ARG(1);
3088 PROCESS_ARG(2);
3089 PROCESS_ARG(3);
3090 PROCESS_ARG(4);
3091
3092 TREE_SIDE_EFFECTS (t) = side_effects;
3093 TREE_THIS_VOLATILE (t)
3094 = (TREE_CODE_CLASS (code) == tcc_reference
3095 && arg0 && TREE_THIS_VOLATILE (arg0));
3096
3097 return t;
3098 }
3099
3100 tree
build7_stat(enum tree_code code,tree tt,tree arg0,tree arg1,tree arg2,tree arg3,tree arg4,tree arg5,tree arg6 MEM_STAT_DECL)3101 build7_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3102 tree arg2, tree arg3, tree arg4, tree arg5,
3103 tree arg6 MEM_STAT_DECL)
3104 {
3105 bool constant, read_only, side_effects, invariant;
3106 tree t;
3107
3108 gcc_assert (code == TARGET_MEM_REF);
3109
3110 t = make_node_stat (code PASS_MEM_STAT);
3111 TREE_TYPE (t) = tt;
3112
3113 side_effects = TREE_SIDE_EFFECTS (t);
3114
3115 PROCESS_ARG(0);
3116 PROCESS_ARG(1);
3117 PROCESS_ARG(2);
3118 PROCESS_ARG(3);
3119 PROCESS_ARG(4);
3120 PROCESS_ARG(5);
3121 PROCESS_ARG(6);
3122
3123 TREE_SIDE_EFFECTS (t) = side_effects;
3124 TREE_THIS_VOLATILE (t) = 0;
3125
3126 return t;
3127 }
3128
3129 /* Similar except don't specify the TREE_TYPE
3130 and leave the TREE_SIDE_EFFECTS as 0.
3131 It is permissible for arguments to be null,
3132 or even garbage if their values do not matter. */
3133
3134 tree
build_nt(enum tree_code code,...)3135 build_nt (enum tree_code code, ...)
3136 {
3137 tree t;
3138 int length;
3139 int i;
3140 va_list p;
3141
3142 va_start (p, code);
3143
3144 t = make_node (code);
3145 length = TREE_CODE_LENGTH (code);
3146
3147 for (i = 0; i < length; i++)
3148 TREE_OPERAND (t, i) = va_arg (p, tree);
3149
3150 va_end (p);
3151 return t;
3152 }
3153
3154 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
3155 We do NOT enter this node in any sort of symbol table.
3156
3157 layout_decl is used to set up the decl's storage layout.
3158 Other slots are initialized to 0 or null pointers. */
3159
3160 tree
build_decl_stat(enum tree_code code,tree name,tree type MEM_STAT_DECL)3161 build_decl_stat (enum tree_code code, tree name, tree type MEM_STAT_DECL)
3162 {
3163 tree t;
3164
3165 t = make_node_stat (code PASS_MEM_STAT);
3166
3167 /* if (type == error_mark_node)
3168 type = integer_type_node; */
3169 /* That is not done, deliberately, so that having error_mark_node
3170 as the type can suppress useless errors in the use of this variable. */
3171
3172 DECL_NAME (t) = name;
3173 TREE_TYPE (t) = type;
3174
3175 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
3176 layout_decl (t, 0);
3177 else if (code == FUNCTION_DECL)
3178 DECL_MODE (t) = FUNCTION_MODE;
3179
3180 return t;
3181 }
3182
3183 /* Builds and returns function declaration with NAME and TYPE. */
3184
3185 tree
build_fn_decl(const char * name,tree type)3186 build_fn_decl (const char *name, tree type)
3187 {
3188 tree id = get_identifier (name);
3189 tree decl = build_decl (FUNCTION_DECL, id, type);
3190
3191 DECL_EXTERNAL (decl) = 1;
3192 TREE_PUBLIC (decl) = 1;
3193 DECL_ARTIFICIAL (decl) = 1;
3194 TREE_NOTHROW (decl) = 1;
3195
3196 return decl;
3197 }
3198
3199
3200 /* BLOCK nodes are used to represent the structure of binding contours
3201 and declarations, once those contours have been exited and their contents
3202 compiled. This information is used for outputting debugging info. */
3203
3204 tree
build_block(tree vars,tree subblocks,tree supercontext,tree chain)3205 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
3206 {
3207 tree block = make_node (BLOCK);
3208
3209 BLOCK_VARS (block) = vars;
3210 BLOCK_SUBBLOCKS (block) = subblocks;
3211 BLOCK_SUPERCONTEXT (block) = supercontext;
3212 BLOCK_CHAIN (block) = chain;
3213 return block;
3214 }
3215
3216 #if 1 /* ! defined(USE_MAPPED_LOCATION) */
3217 /* ??? gengtype doesn't handle conditionals */
3218 static GTY(()) source_locus last_annotated_node;
3219 #endif
3220
3221 #ifdef USE_MAPPED_LOCATION
3222
3223 expanded_location
expand_location(source_location loc)3224 expand_location (source_location loc)
3225 {
3226 expanded_location xloc;
3227 if (loc == 0) { xloc.file = NULL; xloc.line = 0; xloc.column = 0; }
3228 else
3229 {
3230 const struct line_map *map = linemap_lookup (&line_table, loc);
3231 xloc.file = map->to_file;
3232 xloc.line = SOURCE_LINE (map, loc);
3233 xloc.column = SOURCE_COLUMN (map, loc);
3234 };
3235 return xloc;
3236 }
3237
3238 #else
3239
3240 /* Record the exact location where an expression or an identifier were
3241 encountered. */
3242
3243 void
annotate_with_file_line(tree node,const char * file,int line)3244 annotate_with_file_line (tree node, const char *file, int line)
3245 {
3246 /* Roughly one percent of the calls to this function are to annotate
3247 a node with the same information already attached to that node!
3248 Just return instead of wasting memory. */
3249 if (EXPR_LOCUS (node)
3250 && EXPR_LINENO (node) == line
3251 && (EXPR_FILENAME (node) == file
3252 || !strcmp (EXPR_FILENAME (node), file)))
3253 {
3254 last_annotated_node = EXPR_LOCUS (node);
3255 return;
3256 }
3257
3258 /* In heavily macroized code (such as GCC itself) this single
3259 entry cache can reduce the number of allocations by more
3260 than half. */
3261 if (last_annotated_node
3262 && last_annotated_node->line == line
3263 && (last_annotated_node->file == file
3264 || !strcmp (last_annotated_node->file, file)))
3265 {
3266 SET_EXPR_LOCUS (node, last_annotated_node);
3267 return;
3268 }
3269
3270 SET_EXPR_LOCUS (node, ggc_alloc (sizeof (location_t)));
3271 EXPR_LINENO (node) = line;
3272 EXPR_FILENAME (node) = file;
3273 last_annotated_node = EXPR_LOCUS (node);
3274 }
3275
3276 void
annotate_with_locus(tree node,location_t locus)3277 annotate_with_locus (tree node, location_t locus)
3278 {
3279 annotate_with_file_line (node, locus.file, locus.line);
3280 }
3281 #endif
3282
3283 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
3284 is ATTRIBUTE. */
3285
3286 tree
build_decl_attribute_variant(tree ddecl,tree attribute)3287 build_decl_attribute_variant (tree ddecl, tree attribute)
3288 {
3289 DECL_ATTRIBUTES (ddecl) = attribute;
3290 return ddecl;
3291 }
3292
3293 /* Borrowed from hashtab.c iterative_hash implementation. */
3294 #define mix(a,b,c) \
3295 { \
3296 a -= b; a -= c; a ^= (c>>13); \
3297 b -= c; b -= a; b ^= (a<< 8); \
3298 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
3299 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
3300 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
3301 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
3302 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
3303 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
3304 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
3305 }
3306
3307
3308 /* Produce good hash value combining VAL and VAL2. */
3309 static inline hashval_t
iterative_hash_hashval_t(hashval_t val,hashval_t val2)3310 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
3311 {
3312 /* the golden ratio; an arbitrary value. */
3313 hashval_t a = 0x9e3779b9;
3314
3315 mix (a, val, val2);
3316 return val2;
3317 }
3318
3319 /* Produce good hash value combining PTR and VAL2. */
3320 static inline hashval_t
iterative_hash_pointer(void * ptr,hashval_t val2)3321 iterative_hash_pointer (void *ptr, hashval_t val2)
3322 {
3323 if (sizeof (ptr) == sizeof (hashval_t))
3324 return iterative_hash_hashval_t ((size_t) ptr, val2);
3325 else
3326 {
3327 hashval_t a = (hashval_t) (size_t) ptr;
3328 /* Avoid warnings about shifting of more than the width of the type on
3329 hosts that won't execute this path. */
3330 int zero = 0;
3331 hashval_t b = (hashval_t) ((size_t) ptr >> (sizeof (hashval_t) * 8 + zero));
3332 mix (a, b, val2);
3333 return val2;
3334 }
3335 }
3336
3337 /* Produce good hash value combining VAL and VAL2. */
3338 static inline hashval_t
iterative_hash_host_wide_int(HOST_WIDE_INT val,hashval_t val2)3339 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
3340 {
3341 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
3342 return iterative_hash_hashval_t (val, val2);
3343 else
3344 {
3345 hashval_t a = (hashval_t) val;
3346 /* Avoid warnings about shifting of more than the width of the type on
3347 hosts that won't execute this path. */
3348 int zero = 0;
3349 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
3350 mix (a, b, val2);
3351 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
3352 {
3353 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
3354 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
3355 mix (a, b, val2);
3356 }
3357 return val2;
3358 }
3359 }
3360
3361 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
3362 is ATTRIBUTE and its qualifiers are QUALS.
3363
3364 Record such modified types already made so we don't make duplicates. */
3365
3366 static tree
build_type_attribute_qual_variant(tree ttype,tree attribute,int quals)3367 build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
3368 {
3369 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
3370 {
3371 hashval_t hashcode = 0;
3372 tree ntype;
3373 enum tree_code code = TREE_CODE (ttype);
3374
3375 ntype = copy_node (ttype);
3376
3377 TYPE_POINTER_TO (ntype) = 0;
3378 TYPE_REFERENCE_TO (ntype) = 0;
3379 TYPE_ATTRIBUTES (ntype) = attribute;
3380
3381 /* Create a new main variant of TYPE. */
3382 TYPE_MAIN_VARIANT (ntype) = ntype;
3383 TYPE_NEXT_VARIANT (ntype) = 0;
3384 set_type_quals (ntype, TYPE_UNQUALIFIED);
3385
3386 hashcode = iterative_hash_object (code, hashcode);
3387 if (TREE_TYPE (ntype))
3388 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
3389 hashcode);
3390 hashcode = attribute_hash_list (attribute, hashcode);
3391
3392 switch (TREE_CODE (ntype))
3393 {
3394 case FUNCTION_TYPE:
3395 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
3396 break;
3397 case ARRAY_TYPE:
3398 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
3399 hashcode);
3400 break;
3401 case INTEGER_TYPE:
3402 hashcode = iterative_hash_object
3403 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
3404 hashcode = iterative_hash_object
3405 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
3406 break;
3407 case REAL_TYPE:
3408 {
3409 unsigned int precision = TYPE_PRECISION (ntype);
3410 hashcode = iterative_hash_object (precision, hashcode);
3411 }
3412 break;
3413 default:
3414 break;
3415 }
3416
3417 ntype = type_hash_canon (hashcode, ntype);
3418 ttype = build_qualified_type (ntype, quals);
3419 }
3420
3421 return ttype;
3422 }
3423
3424
3425 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
3426 is ATTRIBUTE.
3427
3428 Record such modified types already made so we don't make duplicates. */
3429
3430 tree
build_type_attribute_variant(tree ttype,tree attribute)3431 build_type_attribute_variant (tree ttype, tree attribute)
3432 {
3433 return build_type_attribute_qual_variant (ttype, attribute,
3434 TYPE_QUALS (ttype));
3435 }
3436
3437 /* Return nonzero if IDENT is a valid name for attribute ATTR,
3438 or zero if not.
3439
3440 We try both `text' and `__text__', ATTR may be either one. */
3441 /* ??? It might be a reasonable simplification to require ATTR to be only
3442 `text'. One might then also require attribute lists to be stored in
3443 their canonicalized form. */
3444
3445 static int
is_attribute_with_length_p(const char * attr,int attr_len,tree ident)3446 is_attribute_with_length_p (const char *attr, int attr_len, tree ident)
3447 {
3448 int ident_len;
3449 const char *p;
3450
3451 if (TREE_CODE (ident) != IDENTIFIER_NODE)
3452 return 0;
3453
3454 p = IDENTIFIER_POINTER (ident);
3455 ident_len = IDENTIFIER_LENGTH (ident);
3456
3457 if (ident_len == attr_len
3458 && strcmp (attr, p) == 0)
3459 return 1;
3460
3461 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
3462 if (attr[0] == '_')
3463 {
3464 gcc_assert (attr[1] == '_');
3465 gcc_assert (attr[attr_len - 2] == '_');
3466 gcc_assert (attr[attr_len - 1] == '_');
3467 if (ident_len == attr_len - 4
3468 && strncmp (attr + 2, p, attr_len - 4) == 0)
3469 return 1;
3470 }
3471 else
3472 {
3473 if (ident_len == attr_len + 4
3474 && p[0] == '_' && p[1] == '_'
3475 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
3476 && strncmp (attr, p + 2, attr_len) == 0)
3477 return 1;
3478 }
3479
3480 return 0;
3481 }
3482
3483 /* Return nonzero if IDENT is a valid name for attribute ATTR,
3484 or zero if not.
3485
3486 We try both `text' and `__text__', ATTR may be either one. */
3487
3488 int
is_attribute_p(const char * attr,tree ident)3489 is_attribute_p (const char *attr, tree ident)
3490 {
3491 return is_attribute_with_length_p (attr, strlen (attr), ident);
3492 }
3493
3494 /* Given an attribute name and a list of attributes, return a pointer to the
3495 attribute's list element if the attribute is part of the list, or NULL_TREE
3496 if not found. If the attribute appears more than once, this only
3497 returns the first occurrence; the TREE_CHAIN of the return value should
3498 be passed back in if further occurrences are wanted. */
3499
3500 tree
lookup_attribute(const char * attr_name,tree list)3501 lookup_attribute (const char *attr_name, tree list)
3502 {
3503 tree l;
3504 size_t attr_len = strlen (attr_name);
3505
3506 for (l = list; l; l = TREE_CHAIN (l))
3507 {
3508 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
3509 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
3510 return l;
3511 }
3512
3513 return NULL_TREE;
3514 }
3515
3516 /* Remove any instances of attribute ATTR_NAME in LIST and return the
3517 modified list. */
3518
3519 tree
remove_attribute(const char * attr_name,tree list)3520 remove_attribute (const char *attr_name, tree list)
3521 {
3522 tree *p;
3523 size_t attr_len = strlen (attr_name);
3524
3525 for (p = &list; *p; )
3526 {
3527 tree l = *p;
3528 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
3529 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
3530 *p = TREE_CHAIN (l);
3531 else
3532 p = &TREE_CHAIN (l);
3533 }
3534
3535 return list;
3536 }
3537
3538 /* Return an attribute list that is the union of a1 and a2. */
3539
3540 tree
merge_attributes(tree a1,tree a2)3541 merge_attributes (tree a1, tree a2)
3542 {
3543 tree attributes;
3544
3545 /* Either one unset? Take the set one. */
3546
3547 if ((attributes = a1) == 0)
3548 attributes = a2;
3549
3550 /* One that completely contains the other? Take it. */
3551
3552 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
3553 {
3554 if (attribute_list_contained (a2, a1))
3555 attributes = a2;
3556 else
3557 {
3558 /* Pick the longest list, and hang on the other list. */
3559
3560 if (list_length (a1) < list_length (a2))
3561 attributes = a2, a2 = a1;
3562
3563 for (; a2 != 0; a2 = TREE_CHAIN (a2))
3564 {
3565 tree a;
3566 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3567 attributes);
3568 a != NULL_TREE;
3569 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3570 TREE_CHAIN (a)))
3571 {
3572 if (TREE_VALUE (a) != NULL
3573 && TREE_CODE (TREE_VALUE (a)) == TREE_LIST
3574 && TREE_VALUE (a2) != NULL
3575 && TREE_CODE (TREE_VALUE (a2)) == TREE_LIST)
3576 {
3577 if (simple_cst_list_equal (TREE_VALUE (a),
3578 TREE_VALUE (a2)) == 1)
3579 break;
3580 }
3581 else if (simple_cst_equal (TREE_VALUE (a),
3582 TREE_VALUE (a2)) == 1)
3583 break;
3584 }
3585 if (a == NULL_TREE)
3586 {
3587 a1 = copy_node (a2);
3588 TREE_CHAIN (a1) = attributes;
3589 attributes = a1;
3590 }
3591 }
3592 }
3593 }
3594 return attributes;
3595 }
3596
3597 /* Given types T1 and T2, merge their attributes and return
3598 the result. */
3599
3600 tree
merge_type_attributes(tree t1,tree t2)3601 merge_type_attributes (tree t1, tree t2)
3602 {
3603 return merge_attributes (TYPE_ATTRIBUTES (t1),
3604 TYPE_ATTRIBUTES (t2));
3605 }
3606
3607 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
3608 the result. */
3609
3610 tree
merge_decl_attributes(tree olddecl,tree newdecl)3611 merge_decl_attributes (tree olddecl, tree newdecl)
3612 {
3613 return merge_attributes (DECL_ATTRIBUTES (olddecl),
3614 DECL_ATTRIBUTES (newdecl));
3615 }
3616
3617 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
3618
3619 /* Specialization of merge_decl_attributes for various Windows targets.
3620
3621 This handles the following situation:
3622
3623 __declspec (dllimport) int foo;
3624 int foo;
3625
3626 The second instance of `foo' nullifies the dllimport. */
3627
3628 tree
merge_dllimport_decl_attributes(tree old,tree new)3629 merge_dllimport_decl_attributes (tree old, tree new)
3630 {
3631 tree a;
3632 int delete_dllimport_p = 1;
3633
3634 /* What we need to do here is remove from `old' dllimport if it doesn't
3635 appear in `new'. dllimport behaves like extern: if a declaration is
3636 marked dllimport and a definition appears later, then the object
3637 is not dllimport'd. We also remove a `new' dllimport if the old list
3638 contains dllexport: dllexport always overrides dllimport, regardless
3639 of the order of declaration. */
3640 if (!VAR_OR_FUNCTION_DECL_P (new))
3641 delete_dllimport_p = 0;
3642 else if (DECL_DLLIMPORT_P (new)
3643 && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
3644 {
3645 DECL_DLLIMPORT_P (new) = 0;
3646 warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
3647 "dllimport ignored", new);
3648 }
3649 else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new))
3650 {
3651 /* Warn about overriding a symbol that has already been used. eg:
3652 extern int __attribute__ ((dllimport)) foo;
3653 int* bar () {return &foo;}
3654 int foo;
3655 */
3656 if (TREE_USED (old))
3657 {
3658 warning (0, "%q+D redeclared without dllimport attribute "
3659 "after being referenced with dll linkage", new);
3660 /* If we have used a variable's address with dllimport linkage,
3661 keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
3662 decl may already have had TREE_INVARIANT and TREE_CONSTANT
3663 computed.
3664 We still remove the attribute so that assembler code refers
3665 to '&foo rather than '_imp__foo'. */
3666 if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
3667 DECL_DLLIMPORT_P (new) = 1;
3668 }
3669
3670 /* Let an inline definition silently override the external reference,
3671 but otherwise warn about attribute inconsistency. */
3672 else if (TREE_CODE (new) == VAR_DECL
3673 || !DECL_DECLARED_INLINE_P (new))
3674 warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
3675 "previous dllimport ignored", new);
3676 }
3677 else
3678 delete_dllimport_p = 0;
3679
3680 a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new));
3681
3682 if (delete_dllimport_p)
3683 {
3684 tree prev, t;
3685 const size_t attr_len = strlen ("dllimport");
3686
3687 /* Scan the list for dllimport and delete it. */
3688 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
3689 {
3690 if (is_attribute_with_length_p ("dllimport", attr_len,
3691 TREE_PURPOSE (t)))
3692 {
3693 if (prev == NULL_TREE)
3694 a = TREE_CHAIN (a);
3695 else
3696 TREE_CHAIN (prev) = TREE_CHAIN (t);
3697 break;
3698 }
3699 }
3700 }
3701
3702 return a;
3703 }
3704
3705 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
3706 struct attribute_spec.handler. */
3707
3708 tree
handle_dll_attribute(tree * pnode,tree name,tree args,int flags,bool * no_add_attrs)3709 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
3710 bool *no_add_attrs)
3711 {
3712 tree node = *pnode;
3713
3714 /* These attributes may apply to structure and union types being created,
3715 but otherwise should pass to the declaration involved. */
3716 if (!DECL_P (node))
3717 {
3718 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
3719 | (int) ATTR_FLAG_ARRAY_NEXT))
3720 {
3721 *no_add_attrs = true;
3722 return tree_cons (name, args, NULL_TREE);
3723 }
3724 if (TREE_CODE (node) != RECORD_TYPE && TREE_CODE (node) != UNION_TYPE)
3725 {
3726 warning (OPT_Wattributes, "%qs attribute ignored",
3727 IDENTIFIER_POINTER (name));
3728 *no_add_attrs = true;
3729 }
3730
3731 return NULL_TREE;
3732 }
3733
3734 if (TREE_CODE (node) != FUNCTION_DECL
3735 && TREE_CODE (node) != VAR_DECL)
3736 {
3737 *no_add_attrs = true;
3738 warning (OPT_Wattributes, "%qs attribute ignored",
3739 IDENTIFIER_POINTER (name));
3740 return NULL_TREE;
3741 }
3742
3743 /* Report error on dllimport ambiguities seen now before they cause
3744 any damage. */
3745 else if (is_attribute_p ("dllimport", name))
3746 {
3747 /* Honor any target-specific overrides. */
3748 if (!targetm.valid_dllimport_attribute_p (node))
3749 *no_add_attrs = true;
3750
3751 else if (TREE_CODE (node) == FUNCTION_DECL
3752 && DECL_DECLARED_INLINE_P (node))
3753 {
3754 warning (OPT_Wattributes, "inline function %q+D declared as "
3755 " dllimport: attribute ignored", node);
3756 *no_add_attrs = true;
3757 }
3758 /* Like MS, treat definition of dllimported variables and
3759 non-inlined functions on declaration as syntax errors. */
3760 else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
3761 {
3762 error ("function %q+D definition is marked dllimport", node);
3763 *no_add_attrs = true;
3764 }
3765
3766 else if (TREE_CODE (node) == VAR_DECL)
3767 {
3768 if (DECL_INITIAL (node))
3769 {
3770 error ("variable %q+D definition is marked dllimport",
3771 node);
3772 *no_add_attrs = true;
3773 }
3774
3775 /* `extern' needn't be specified with dllimport.
3776 Specify `extern' now and hope for the best. Sigh. */
3777 DECL_EXTERNAL (node) = 1;
3778 /* Also, implicitly give dllimport'd variables declared within
3779 a function global scope, unless declared static. */
3780 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
3781 TREE_PUBLIC (node) = 1;
3782 }
3783
3784 if (*no_add_attrs == false)
3785 DECL_DLLIMPORT_P (node) = 1;
3786 }
3787
3788 /* Report error if symbol is not accessible at global scope. */
3789 if (!TREE_PUBLIC (node)
3790 && (TREE_CODE (node) == VAR_DECL
3791 || TREE_CODE (node) == FUNCTION_DECL))
3792 {
3793 error ("external linkage required for symbol %q+D because of "
3794 "%qs attribute", node, IDENTIFIER_POINTER (name));
3795 *no_add_attrs = true;
3796 }
3797
3798 return NULL_TREE;
3799 }
3800
3801 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
3802
3803 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
3804 of the various TYPE_QUAL values. */
3805
3806 static void
set_type_quals(tree type,int type_quals)3807 set_type_quals (tree type, int type_quals)
3808 {
3809 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
3810 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
3811 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
3812 }
3813
3814 /* Returns true iff cand is equivalent to base with type_quals. */
3815
3816 bool
check_qualified_type(tree cand,tree base,int type_quals)3817 check_qualified_type (tree cand, tree base, int type_quals)
3818 {
3819 return (TYPE_QUALS (cand) == type_quals
3820 && TYPE_NAME (cand) == TYPE_NAME (base)
3821 /* Apparently this is needed for Objective-C. */
3822 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
3823 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
3824 TYPE_ATTRIBUTES (base)));
3825 }
3826
3827 /* Return a version of the TYPE, qualified as indicated by the
3828 TYPE_QUALS, if one exists. If no qualified version exists yet,
3829 return NULL_TREE. */
3830
3831 tree
get_qualified_type(tree type,int type_quals)3832 get_qualified_type (tree type, int type_quals)
3833 {
3834 tree t;
3835
3836 if (TYPE_QUALS (type) == type_quals)
3837 return type;
3838
3839 /* Search the chain of variants to see if there is already one there just
3840 like the one we need to have. If so, use that existing one. We must
3841 preserve the TYPE_NAME, since there is code that depends on this. */
3842 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
3843 if (check_qualified_type (t, type, type_quals))
3844 return t;
3845
3846 return NULL_TREE;
3847 }
3848
3849 /* Like get_qualified_type, but creates the type if it does not
3850 exist. This function never returns NULL_TREE. */
3851
3852 tree
build_qualified_type(tree type,int type_quals)3853 build_qualified_type (tree type, int type_quals)
3854 {
3855 tree t;
3856
3857 /* See if we already have the appropriate qualified variant. */
3858 t = get_qualified_type (type, type_quals);
3859
3860 /* If not, build it. */
3861 if (!t)
3862 {
3863 t = build_variant_type_copy (type);
3864 set_type_quals (t, type_quals);
3865 }
3866
3867 return t;
3868 }
3869
3870 /* Create a new distinct copy of TYPE. The new type is made its own
3871 MAIN_VARIANT. */
3872
3873 tree
build_distinct_type_copy(tree type)3874 build_distinct_type_copy (tree type)
3875 {
3876 tree t = copy_node (type);
3877
3878 TYPE_POINTER_TO (t) = 0;
3879 TYPE_REFERENCE_TO (t) = 0;
3880
3881 /* Make it its own variant. */
3882 TYPE_MAIN_VARIANT (t) = t;
3883 TYPE_NEXT_VARIANT (t) = 0;
3884
3885 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
3886 whose TREE_TYPE is not t. This can also happen in the Ada
3887 frontend when using subtypes. */
3888
3889 return t;
3890 }
3891
3892 /* Create a new variant of TYPE, equivalent but distinct.
3893 This is so the caller can modify it. */
3894
3895 tree
build_variant_type_copy(tree type)3896 build_variant_type_copy (tree type)
3897 {
3898 tree t, m = TYPE_MAIN_VARIANT (type);
3899
3900 t = build_distinct_type_copy (type);
3901
3902 /* Add the new type to the chain of variants of TYPE. */
3903 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
3904 TYPE_NEXT_VARIANT (m) = t;
3905 TYPE_MAIN_VARIANT (t) = m;
3906
3907 return t;
3908 }
3909
3910 /* Return true if the from tree in both tree maps are equal. */
3911
3912 int
tree_map_eq(const void * va,const void * vb)3913 tree_map_eq (const void *va, const void *vb)
3914 {
3915 const struct tree_map *a = va, *b = vb;
3916 return (a->from == b->from);
3917 }
3918
3919 /* Hash a from tree in a tree_map. */
3920
3921 unsigned int
tree_map_hash(const void * item)3922 tree_map_hash (const void *item)
3923 {
3924 return (((const struct tree_map *) item)->hash);
3925 }
3926
3927 /* Return true if this tree map structure is marked for garbage collection
3928 purposes. We simply return true if the from tree is marked, so that this
3929 structure goes away when the from tree goes away. */
3930
3931 int
tree_map_marked_p(const void * p)3932 tree_map_marked_p (const void *p)
3933 {
3934 tree from = ((struct tree_map *) p)->from;
3935
3936 return ggc_marked_p (from);
3937 }
3938
3939 /* Return true if the trees in the tree_int_map *'s VA and VB are equal. */
3940
3941 static int
tree_int_map_eq(const void * va,const void * vb)3942 tree_int_map_eq (const void *va, const void *vb)
3943 {
3944 const struct tree_int_map *a = va, *b = vb;
3945 return (a->from == b->from);
3946 }
3947
3948 /* Hash a from tree in the tree_int_map * ITEM. */
3949
3950 static unsigned int
tree_int_map_hash(const void * item)3951 tree_int_map_hash (const void *item)
3952 {
3953 return htab_hash_pointer (((const struct tree_int_map *)item)->from);
3954 }
3955
3956 /* Return true if this tree int map structure is marked for garbage collection
3957 purposes. We simply return true if the from tree_int_map *P's from tree is marked, so that this
3958 structure goes away when the from tree goes away. */
3959
3960 static int
tree_int_map_marked_p(const void * p)3961 tree_int_map_marked_p (const void *p)
3962 {
3963 tree from = ((struct tree_int_map *) p)->from;
3964
3965 return ggc_marked_p (from);
3966 }
3967 /* Lookup an init priority for FROM, and return it if we find one. */
3968
3969 unsigned short
decl_init_priority_lookup(tree from)3970 decl_init_priority_lookup (tree from)
3971 {
3972 struct tree_int_map *h, in;
3973 in.from = from;
3974
3975 h = htab_find_with_hash (init_priority_for_decl,
3976 &in, htab_hash_pointer (from));
3977 if (h)
3978 return h->to;
3979 return 0;
3980 }
3981
3982 /* Insert a mapping FROM->TO in the init priority hashtable. */
3983
3984 void
decl_init_priority_insert(tree from,unsigned short to)3985 decl_init_priority_insert (tree from, unsigned short to)
3986 {
3987 struct tree_int_map *h;
3988 void **loc;
3989
3990 h = ggc_alloc (sizeof (struct tree_int_map));
3991 h->from = from;
3992 h->to = to;
3993 loc = htab_find_slot_with_hash (init_priority_for_decl, h,
3994 htab_hash_pointer (from), INSERT);
3995 *(struct tree_int_map **) loc = h;
3996 }
3997
3998 /* Look up a restrict qualified base decl for FROM. */
3999
4000 tree
decl_restrict_base_lookup(tree from)4001 decl_restrict_base_lookup (tree from)
4002 {
4003 struct tree_map *h;
4004 struct tree_map in;
4005
4006 in.from = from;
4007 h = htab_find_with_hash (restrict_base_for_decl, &in,
4008 htab_hash_pointer (from));
4009 return h ? h->to : NULL_TREE;
4010 }
4011
4012 /* Record the restrict qualified base TO for FROM. */
4013
4014 void
decl_restrict_base_insert(tree from,tree to)4015 decl_restrict_base_insert (tree from, tree to)
4016 {
4017 struct tree_map *h;
4018 void **loc;
4019
4020 h = ggc_alloc (sizeof (struct tree_map));
4021 h->hash = htab_hash_pointer (from);
4022 h->from = from;
4023 h->to = to;
4024 loc = htab_find_slot_with_hash (restrict_base_for_decl, h, h->hash, INSERT);
4025 *(struct tree_map **) loc = h;
4026 }
4027
4028 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
4029
4030 static void
print_debug_expr_statistics(void)4031 print_debug_expr_statistics (void)
4032 {
4033 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
4034 (long) htab_size (debug_expr_for_decl),
4035 (long) htab_elements (debug_expr_for_decl),
4036 htab_collisions (debug_expr_for_decl));
4037 }
4038
4039 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
4040
4041 static void
print_value_expr_statistics(void)4042 print_value_expr_statistics (void)
4043 {
4044 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
4045 (long) htab_size (value_expr_for_decl),
4046 (long) htab_elements (value_expr_for_decl),
4047 htab_collisions (value_expr_for_decl));
4048 }
4049
4050 /* Print out statistics for the RESTRICT_BASE_FOR_DECL hash table, but
4051 don't print anything if the table is empty. */
4052
4053 static void
print_restrict_base_statistics(void)4054 print_restrict_base_statistics (void)
4055 {
4056 if (htab_elements (restrict_base_for_decl) != 0)
4057 fprintf (stderr,
4058 "RESTRICT_BASE hash: size %ld, %ld elements, %f collisions\n",
4059 (long) htab_size (restrict_base_for_decl),
4060 (long) htab_elements (restrict_base_for_decl),
4061 htab_collisions (restrict_base_for_decl));
4062 }
4063
4064 /* Lookup a debug expression for FROM, and return it if we find one. */
4065
4066 tree
decl_debug_expr_lookup(tree from)4067 decl_debug_expr_lookup (tree from)
4068 {
4069 struct tree_map *h, in;
4070 in.from = from;
4071
4072 h = htab_find_with_hash (debug_expr_for_decl, &in, htab_hash_pointer (from));
4073 if (h)
4074 return h->to;
4075 return NULL_TREE;
4076 }
4077
4078 /* Insert a mapping FROM->TO in the debug expression hashtable. */
4079
4080 void
decl_debug_expr_insert(tree from,tree to)4081 decl_debug_expr_insert (tree from, tree to)
4082 {
4083 struct tree_map *h;
4084 void **loc;
4085
4086 h = ggc_alloc (sizeof (struct tree_map));
4087 h->hash = htab_hash_pointer (from);
4088 h->from = from;
4089 h->to = to;
4090 loc = htab_find_slot_with_hash (debug_expr_for_decl, h, h->hash, INSERT);
4091 *(struct tree_map **) loc = h;
4092 }
4093
4094 /* Lookup a value expression for FROM, and return it if we find one. */
4095
4096 tree
decl_value_expr_lookup(tree from)4097 decl_value_expr_lookup (tree from)
4098 {
4099 struct tree_map *h, in;
4100 in.from = from;
4101
4102 h = htab_find_with_hash (value_expr_for_decl, &in, htab_hash_pointer (from));
4103 if (h)
4104 return h->to;
4105 return NULL_TREE;
4106 }
4107
4108 /* Insert a mapping FROM->TO in the value expression hashtable. */
4109
4110 void
decl_value_expr_insert(tree from,tree to)4111 decl_value_expr_insert (tree from, tree to)
4112 {
4113 struct tree_map *h;
4114 void **loc;
4115
4116 h = ggc_alloc (sizeof (struct tree_map));
4117 h->hash = htab_hash_pointer (from);
4118 h->from = from;
4119 h->to = to;
4120 loc = htab_find_slot_with_hash (value_expr_for_decl, h, h->hash, INSERT);
4121 *(struct tree_map **) loc = h;
4122 }
4123
4124 /* Hashing of types so that we don't make duplicates.
4125 The entry point is `type_hash_canon'. */
4126
4127 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
4128 with types in the TREE_VALUE slots), by adding the hash codes
4129 of the individual types. */
4130
4131 unsigned int
type_hash_list(tree list,hashval_t hashcode)4132 type_hash_list (tree list, hashval_t hashcode)
4133 {
4134 tree tail;
4135
4136 for (tail = list; tail; tail = TREE_CHAIN (tail))
4137 if (TREE_VALUE (tail) != error_mark_node)
4138 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
4139 hashcode);
4140
4141 return hashcode;
4142 }
4143
4144 /* These are the Hashtable callback functions. */
4145
4146 /* Returns true iff the types are equivalent. */
4147
4148 static int
type_hash_eq(const void * va,const void * vb)4149 type_hash_eq (const void *va, const void *vb)
4150 {
4151 const struct type_hash *a = va, *b = vb;
4152
4153 /* First test the things that are the same for all types. */
4154 if (a->hash != b->hash
4155 || TREE_CODE (a->type) != TREE_CODE (b->type)
4156 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
4157 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
4158 TYPE_ATTRIBUTES (b->type))
4159 || TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
4160 || TYPE_MODE (a->type) != TYPE_MODE (b->type))
4161 return 0;
4162
4163 switch (TREE_CODE (a->type))
4164 {
4165 case VOID_TYPE:
4166 case COMPLEX_TYPE:
4167 case POINTER_TYPE:
4168 case REFERENCE_TYPE:
4169 return 1;
4170
4171 case VECTOR_TYPE:
4172 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
4173
4174 case ENUMERAL_TYPE:
4175 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
4176 && !(TYPE_VALUES (a->type)
4177 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
4178 && TYPE_VALUES (b->type)
4179 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
4180 && type_list_equal (TYPE_VALUES (a->type),
4181 TYPE_VALUES (b->type))))
4182 return 0;
4183
4184 /* ... fall through ... */
4185
4186 case INTEGER_TYPE:
4187 case REAL_TYPE:
4188 case BOOLEAN_TYPE:
4189 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
4190 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
4191 TYPE_MAX_VALUE (b->type)))
4192 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
4193 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
4194 TYPE_MIN_VALUE (b->type))));
4195
4196 case OFFSET_TYPE:
4197 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
4198
4199 case METHOD_TYPE:
4200 return (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
4201 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
4202 || (TYPE_ARG_TYPES (a->type)
4203 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
4204 && TYPE_ARG_TYPES (b->type)
4205 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
4206 && type_list_equal (TYPE_ARG_TYPES (a->type),
4207 TYPE_ARG_TYPES (b->type)))));
4208
4209 case ARRAY_TYPE:
4210 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
4211
4212 case RECORD_TYPE:
4213 case UNION_TYPE:
4214 case QUAL_UNION_TYPE:
4215 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
4216 || (TYPE_FIELDS (a->type)
4217 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
4218 && TYPE_FIELDS (b->type)
4219 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
4220 && type_list_equal (TYPE_FIELDS (a->type),
4221 TYPE_FIELDS (b->type))));
4222
4223 case FUNCTION_TYPE:
4224 return (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
4225 || (TYPE_ARG_TYPES (a->type)
4226 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
4227 && TYPE_ARG_TYPES (b->type)
4228 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
4229 && type_list_equal (TYPE_ARG_TYPES (a->type),
4230 TYPE_ARG_TYPES (b->type))));
4231
4232 default:
4233 return 0;
4234 }
4235 }
4236
4237 /* Return the cached hash value. */
4238
4239 static hashval_t
type_hash_hash(const void * item)4240 type_hash_hash (const void *item)
4241 {
4242 return ((const struct type_hash *) item)->hash;
4243 }
4244
4245 /* Look in the type hash table for a type isomorphic to TYPE.
4246 If one is found, return it. Otherwise return 0. */
4247
4248 tree
type_hash_lookup(hashval_t hashcode,tree type)4249 type_hash_lookup (hashval_t hashcode, tree type)
4250 {
4251 struct type_hash *h, in;
4252
4253 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
4254 must call that routine before comparing TYPE_ALIGNs. */
4255 layout_type (type);
4256
4257 in.hash = hashcode;
4258 in.type = type;
4259
4260 h = htab_find_with_hash (type_hash_table, &in, hashcode);
4261 if (h)
4262 return h->type;
4263 return NULL_TREE;
4264 }
4265
4266 /* Add an entry to the type-hash-table
4267 for a type TYPE whose hash code is HASHCODE. */
4268
4269 void
type_hash_add(hashval_t hashcode,tree type)4270 type_hash_add (hashval_t hashcode, tree type)
4271 {
4272 struct type_hash *h;
4273 void **loc;
4274
4275 h = ggc_alloc (sizeof (struct type_hash));
4276 h->hash = hashcode;
4277 h->type = type;
4278 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
4279 *(struct type_hash **) loc = h;
4280 }
4281
4282 /* Given TYPE, and HASHCODE its hash code, return the canonical
4283 object for an identical type if one already exists.
4284 Otherwise, return TYPE, and record it as the canonical object.
4285
4286 To use this function, first create a type of the sort you want.
4287 Then compute its hash code from the fields of the type that
4288 make it different from other similar types.
4289 Then call this function and use the value. */
4290
4291 tree
type_hash_canon(unsigned int hashcode,tree type)4292 type_hash_canon (unsigned int hashcode, tree type)
4293 {
4294 tree t1;
4295
4296 /* The hash table only contains main variants, so ensure that's what we're
4297 being passed. */
4298 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
4299
4300 if (!lang_hooks.types.hash_types)
4301 return type;
4302
4303 /* See if the type is in the hash table already. If so, return it.
4304 Otherwise, add the type. */
4305 t1 = type_hash_lookup (hashcode, type);
4306 if (t1 != 0)
4307 {
4308 #ifdef GATHER_STATISTICS
4309 tree_node_counts[(int) t_kind]--;
4310 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
4311 #endif
4312 return t1;
4313 }
4314 else
4315 {
4316 type_hash_add (hashcode, type);
4317 return type;
4318 }
4319 }
4320
4321 /* See if the data pointed to by the type hash table is marked. We consider
4322 it marked if the type is marked or if a debug type number or symbol
4323 table entry has been made for the type. This reduces the amount of
4324 debugging output and eliminates that dependency of the debug output on
4325 the number of garbage collections. */
4326
4327 static int
type_hash_marked_p(const void * p)4328 type_hash_marked_p (const void *p)
4329 {
4330 tree type = ((struct type_hash *) p)->type;
4331
4332 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
4333 }
4334
4335 static void
print_type_hash_statistics(void)4336 print_type_hash_statistics (void)
4337 {
4338 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
4339 (long) htab_size (type_hash_table),
4340 (long) htab_elements (type_hash_table),
4341 htab_collisions (type_hash_table));
4342 }
4343
4344 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
4345 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
4346 by adding the hash codes of the individual attributes. */
4347
4348 unsigned int
attribute_hash_list(tree list,hashval_t hashcode)4349 attribute_hash_list (tree list, hashval_t hashcode)
4350 {
4351 tree tail;
4352
4353 for (tail = list; tail; tail = TREE_CHAIN (tail))
4354 /* ??? Do we want to add in TREE_VALUE too? */
4355 hashcode = iterative_hash_object
4356 (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
4357 return hashcode;
4358 }
4359
4360 /* Given two lists of attributes, return true if list l2 is
4361 equivalent to l1. */
4362
4363 int
attribute_list_equal(tree l1,tree l2)4364 attribute_list_equal (tree l1, tree l2)
4365 {
4366 return attribute_list_contained (l1, l2)
4367 && attribute_list_contained (l2, l1);
4368 }
4369
4370 /* Given two lists of attributes, return true if list L2 is
4371 completely contained within L1. */
4372 /* ??? This would be faster if attribute names were stored in a canonicalized
4373 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
4374 must be used to show these elements are equivalent (which they are). */
4375 /* ??? It's not clear that attributes with arguments will always be handled
4376 correctly. */
4377
4378 int
attribute_list_contained(tree l1,tree l2)4379 attribute_list_contained (tree l1, tree l2)
4380 {
4381 tree t1, t2;
4382
4383 /* First check the obvious, maybe the lists are identical. */
4384 if (l1 == l2)
4385 return 1;
4386
4387 /* Maybe the lists are similar. */
4388 for (t1 = l1, t2 = l2;
4389 t1 != 0 && t2 != 0
4390 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
4391 && TREE_VALUE (t1) == TREE_VALUE (t2);
4392 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
4393
4394 /* Maybe the lists are equal. */
4395 if (t1 == 0 && t2 == 0)
4396 return 1;
4397
4398 for (; t2 != 0; t2 = TREE_CHAIN (t2))
4399 {
4400 tree attr;
4401 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
4402 attr != NULL_TREE;
4403 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
4404 TREE_CHAIN (attr)))
4405 {
4406 if (TREE_VALUE (t2) != NULL
4407 && TREE_CODE (TREE_VALUE (t2)) == TREE_LIST
4408 && TREE_VALUE (attr) != NULL
4409 && TREE_CODE (TREE_VALUE (attr)) == TREE_LIST)
4410 {
4411 if (simple_cst_list_equal (TREE_VALUE (t2),
4412 TREE_VALUE (attr)) == 1)
4413 break;
4414 }
4415 else if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
4416 break;
4417 }
4418
4419 if (attr == 0)
4420 return 0;
4421 }
4422
4423 return 1;
4424 }
4425
4426 /* Given two lists of types
4427 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
4428 return 1 if the lists contain the same types in the same order.
4429 Also, the TREE_PURPOSEs must match. */
4430
4431 int
type_list_equal(tree l1,tree l2)4432 type_list_equal (tree l1, tree l2)
4433 {
4434 tree t1, t2;
4435
4436 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
4437 if (TREE_VALUE (t1) != TREE_VALUE (t2)
4438 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
4439 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
4440 && (TREE_TYPE (TREE_PURPOSE (t1))
4441 == TREE_TYPE (TREE_PURPOSE (t2))))))
4442 return 0;
4443
4444 return t1 == t2;
4445 }
4446
4447 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
4448 given by TYPE. If the argument list accepts variable arguments,
4449 then this function counts only the ordinary arguments. */
4450
4451 int
type_num_arguments(tree type)4452 type_num_arguments (tree type)
4453 {
4454 int i = 0;
4455 tree t;
4456
4457 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
4458 /* If the function does not take a variable number of arguments,
4459 the last element in the list will have type `void'. */
4460 if (VOID_TYPE_P (TREE_VALUE (t)))
4461 break;
4462 else
4463 ++i;
4464
4465 return i;
4466 }
4467
4468 /* Nonzero if integer constants T1 and T2
4469 represent the same constant value. */
4470
4471 int
tree_int_cst_equal(tree t1,tree t2)4472 tree_int_cst_equal (tree t1, tree t2)
4473 {
4474 if (t1 == t2)
4475 return 1;
4476
4477 if (t1 == 0 || t2 == 0)
4478 return 0;
4479
4480 if (TREE_CODE (t1) == INTEGER_CST
4481 && TREE_CODE (t2) == INTEGER_CST
4482 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
4483 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
4484 return 1;
4485
4486 return 0;
4487 }
4488
4489 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
4490 The precise way of comparison depends on their data type. */
4491
4492 int
tree_int_cst_lt(tree t1,tree t2)4493 tree_int_cst_lt (tree t1, tree t2)
4494 {
4495 if (t1 == t2)
4496 return 0;
4497
4498 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
4499 {
4500 int t1_sgn = tree_int_cst_sgn (t1);
4501 int t2_sgn = tree_int_cst_sgn (t2);
4502
4503 if (t1_sgn < t2_sgn)
4504 return 1;
4505 else if (t1_sgn > t2_sgn)
4506 return 0;
4507 /* Otherwise, both are non-negative, so we compare them as
4508 unsigned just in case one of them would overflow a signed
4509 type. */
4510 }
4511 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
4512 return INT_CST_LT (t1, t2);
4513
4514 return INT_CST_LT_UNSIGNED (t1, t2);
4515 }
4516
4517 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
4518
4519 int
tree_int_cst_compare(tree t1,tree t2)4520 tree_int_cst_compare (tree t1, tree t2)
4521 {
4522 if (tree_int_cst_lt (t1, t2))
4523 return -1;
4524 else if (tree_int_cst_lt (t2, t1))
4525 return 1;
4526 else
4527 return 0;
4528 }
4529
4530 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
4531 the host. If POS is zero, the value can be represented in a single
4532 HOST_WIDE_INT. If POS is nonzero, the value must be non-negative and can
4533 be represented in a single unsigned HOST_WIDE_INT. */
4534
4535 int
host_integerp(tree t,int pos)4536 host_integerp (tree t, int pos)
4537 {
4538 return (TREE_CODE (t) == INTEGER_CST
4539 && ((TREE_INT_CST_HIGH (t) == 0
4540 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
4541 || (! pos && TREE_INT_CST_HIGH (t) == -1
4542 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
4543 && !TYPE_UNSIGNED (TREE_TYPE (t)))
4544 || (pos && TREE_INT_CST_HIGH (t) == 0)));
4545 }
4546
4547 /* Return the HOST_WIDE_INT least significant bits of T if it is an
4548 INTEGER_CST and there is no overflow. POS is nonzero if the result must
4549 be non-negative. We must be able to satisfy the above conditions. */
4550
4551 HOST_WIDE_INT
tree_low_cst(tree t,int pos)4552 tree_low_cst (tree t, int pos)
4553 {
4554 gcc_assert (host_integerp (t, pos));
4555 return TREE_INT_CST_LOW (t);
4556 }
4557
4558 /* Return the most significant bit of the integer constant T. */
4559
4560 int
tree_int_cst_msb(tree t)4561 tree_int_cst_msb (tree t)
4562 {
4563 int prec;
4564 HOST_WIDE_INT h;
4565 unsigned HOST_WIDE_INT l;
4566
4567 /* Note that using TYPE_PRECISION here is wrong. We care about the
4568 actual bits, not the (arbitrary) range of the type. */
4569 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
4570 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
4571 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
4572 return (l & 1) == 1;
4573 }
4574
4575 /* Return an indication of the sign of the integer constant T.
4576 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
4577 Note that -1 will never be returned if T's type is unsigned. */
4578
4579 int
tree_int_cst_sgn(tree t)4580 tree_int_cst_sgn (tree t)
4581 {
4582 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
4583 return 0;
4584 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
4585 return 1;
4586 else if (TREE_INT_CST_HIGH (t) < 0)
4587 return -1;
4588 else
4589 return 1;
4590 }
4591
4592 /* Compare two constructor-element-type constants. Return 1 if the lists
4593 are known to be equal; otherwise return 0. */
4594
4595 int
simple_cst_list_equal(tree l1,tree l2)4596 simple_cst_list_equal (tree l1, tree l2)
4597 {
4598 while (l1 != NULL_TREE && l2 != NULL_TREE)
4599 {
4600 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
4601 return 0;
4602
4603 l1 = TREE_CHAIN (l1);
4604 l2 = TREE_CHAIN (l2);
4605 }
4606
4607 return l1 == l2;
4608 }
4609
4610 /* Return truthvalue of whether T1 is the same tree structure as T2.
4611 Return 1 if they are the same.
4612 Return 0 if they are understandably different.
4613 Return -1 if either contains tree structure not understood by
4614 this function. */
4615
4616 int
simple_cst_equal(tree t1,tree t2)4617 simple_cst_equal (tree t1, tree t2)
4618 {
4619 enum tree_code code1, code2;
4620 int cmp;
4621 int i;
4622
4623 if (t1 == t2)
4624 return 1;
4625 if (t1 == 0 || t2 == 0)
4626 return 0;
4627
4628 code1 = TREE_CODE (t1);
4629 code2 = TREE_CODE (t2);
4630
4631 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
4632 {
4633 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
4634 || code2 == NON_LVALUE_EXPR)
4635 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4636 else
4637 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
4638 }
4639
4640 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
4641 || code2 == NON_LVALUE_EXPR)
4642 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
4643
4644 if (code1 != code2)
4645 return 0;
4646
4647 switch (code1)
4648 {
4649 case INTEGER_CST:
4650 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
4651 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
4652
4653 case REAL_CST:
4654 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
4655
4656 case STRING_CST:
4657 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
4658 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
4659 TREE_STRING_LENGTH (t1)));
4660
4661 case CONSTRUCTOR:
4662 {
4663 unsigned HOST_WIDE_INT idx;
4664 VEC(constructor_elt, gc) *v1 = CONSTRUCTOR_ELTS (t1);
4665 VEC(constructor_elt, gc) *v2 = CONSTRUCTOR_ELTS (t2);
4666
4667 if (VEC_length (constructor_elt, v1) != VEC_length (constructor_elt, v2))
4668 return false;
4669
4670 for (idx = 0; idx < VEC_length (constructor_elt, v1); ++idx)
4671 /* ??? Should we handle also fields here? */
4672 if (!simple_cst_equal (VEC_index (constructor_elt, v1, idx)->value,
4673 VEC_index (constructor_elt, v2, idx)->value))
4674 return false;
4675 return true;
4676 }
4677
4678 case SAVE_EXPR:
4679 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4680
4681 case CALL_EXPR:
4682 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4683 if (cmp <= 0)
4684 return cmp;
4685 return
4686 simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
4687
4688 case TARGET_EXPR:
4689 /* Special case: if either target is an unallocated VAR_DECL,
4690 it means that it's going to be unified with whatever the
4691 TARGET_EXPR is really supposed to initialize, so treat it
4692 as being equivalent to anything. */
4693 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
4694 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
4695 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
4696 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
4697 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
4698 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
4699 cmp = 1;
4700 else
4701 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4702
4703 if (cmp <= 0)
4704 return cmp;
4705
4706 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
4707
4708 case WITH_CLEANUP_EXPR:
4709 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4710 if (cmp <= 0)
4711 return cmp;
4712
4713 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
4714
4715 case COMPONENT_REF:
4716 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
4717 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4718
4719 return 0;
4720
4721 case VAR_DECL:
4722 case PARM_DECL:
4723 case CONST_DECL:
4724 case FUNCTION_DECL:
4725 return 0;
4726
4727 default:
4728 break;
4729 }
4730
4731 /* This general rule works for most tree codes. All exceptions should be
4732 handled above. If this is a language-specific tree code, we can't
4733 trust what might be in the operand, so say we don't know
4734 the situation. */
4735 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
4736 return -1;
4737
4738 switch (TREE_CODE_CLASS (code1))
4739 {
4740 case tcc_unary:
4741 case tcc_binary:
4742 case tcc_comparison:
4743 case tcc_expression:
4744 case tcc_reference:
4745 case tcc_statement:
4746 cmp = 1;
4747 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
4748 {
4749 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
4750 if (cmp <= 0)
4751 return cmp;
4752 }
4753
4754 return cmp;
4755
4756 default:
4757 return -1;
4758 }
4759 }
4760
4761 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
4762 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
4763 than U, respectively. */
4764
4765 int
compare_tree_int(tree t,unsigned HOST_WIDE_INT u)4766 compare_tree_int (tree t, unsigned HOST_WIDE_INT u)
4767 {
4768 if (tree_int_cst_sgn (t) < 0)
4769 return -1;
4770 else if (TREE_INT_CST_HIGH (t) != 0)
4771 return 1;
4772 else if (TREE_INT_CST_LOW (t) == u)
4773 return 0;
4774 else if (TREE_INT_CST_LOW (t) < u)
4775 return -1;
4776 else
4777 return 1;
4778 }
4779
4780 /* Return true if CODE represents an associative tree code. Otherwise
4781 return false. */
4782 bool
associative_tree_code(enum tree_code code)4783 associative_tree_code (enum tree_code code)
4784 {
4785 switch (code)
4786 {
4787 case BIT_IOR_EXPR:
4788 case BIT_AND_EXPR:
4789 case BIT_XOR_EXPR:
4790 case PLUS_EXPR:
4791 case MULT_EXPR:
4792 case MIN_EXPR:
4793 case MAX_EXPR:
4794 return true;
4795
4796 default:
4797 break;
4798 }
4799 return false;
4800 }
4801
4802 /* Return true if CODE represents a commutative tree code. Otherwise
4803 return false. */
4804 bool
commutative_tree_code(enum tree_code code)4805 commutative_tree_code (enum tree_code code)
4806 {
4807 switch (code)
4808 {
4809 case PLUS_EXPR:
4810 case MULT_EXPR:
4811 case MIN_EXPR:
4812 case MAX_EXPR:
4813 case BIT_IOR_EXPR:
4814 case BIT_XOR_EXPR:
4815 case BIT_AND_EXPR:
4816 case NE_EXPR:
4817 case EQ_EXPR:
4818 case UNORDERED_EXPR:
4819 case ORDERED_EXPR:
4820 case UNEQ_EXPR:
4821 case LTGT_EXPR:
4822 case TRUTH_AND_EXPR:
4823 case TRUTH_XOR_EXPR:
4824 case TRUTH_OR_EXPR:
4825 return true;
4826
4827 default:
4828 break;
4829 }
4830 return false;
4831 }
4832
4833 /* Generate a hash value for an expression. This can be used iteratively
4834 by passing a previous result as the "val" argument.
4835
4836 This function is intended to produce the same hash for expressions which
4837 would compare equal using operand_equal_p. */
4838
4839 hashval_t
iterative_hash_expr(tree t,hashval_t val)4840 iterative_hash_expr (tree t, hashval_t val)
4841 {
4842 int i;
4843 enum tree_code code;
4844 char class;
4845
4846 if (t == NULL_TREE)
4847 return iterative_hash_pointer (t, val);
4848
4849 code = TREE_CODE (t);
4850
4851 switch (code)
4852 {
4853 /* Alas, constants aren't shared, so we can't rely on pointer
4854 identity. */
4855 case INTEGER_CST:
4856 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
4857 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
4858 case REAL_CST:
4859 {
4860 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
4861
4862 return iterative_hash_hashval_t (val2, val);
4863 }
4864 case STRING_CST:
4865 return iterative_hash (TREE_STRING_POINTER (t),
4866 TREE_STRING_LENGTH (t), val);
4867 case COMPLEX_CST:
4868 val = iterative_hash_expr (TREE_REALPART (t), val);
4869 return iterative_hash_expr (TREE_IMAGPART (t), val);
4870 case VECTOR_CST:
4871 return iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
4872
4873 case SSA_NAME:
4874 case VALUE_HANDLE:
4875 /* we can just compare by pointer. */
4876 return iterative_hash_pointer (t, val);
4877
4878 case TREE_LIST:
4879 /* A list of expressions, for a CALL_EXPR or as the elements of a
4880 VECTOR_CST. */
4881 for (; t; t = TREE_CHAIN (t))
4882 val = iterative_hash_expr (TREE_VALUE (t), val);
4883 return val;
4884 case CONSTRUCTOR:
4885 {
4886 unsigned HOST_WIDE_INT idx;
4887 tree field, value;
4888 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
4889 {
4890 val = iterative_hash_expr (field, val);
4891 val = iterative_hash_expr (value, val);
4892 }
4893 return val;
4894 }
4895 case FUNCTION_DECL:
4896 /* When referring to a built-in FUNCTION_DECL, use the
4897 __builtin__ form. Otherwise nodes that compare equal
4898 according to operand_equal_p might get different
4899 hash codes. */
4900 if (DECL_BUILT_IN (t))
4901 {
4902 val = iterative_hash_pointer (built_in_decls[DECL_FUNCTION_CODE (t)],
4903 val);
4904 return val;
4905 }
4906 /* else FALL THROUGH */
4907 default:
4908 class = TREE_CODE_CLASS (code);
4909
4910 if (class == tcc_declaration)
4911 {
4912 /* DECL's have a unique ID */
4913 val = iterative_hash_host_wide_int (DECL_UID (t), val);
4914 }
4915 else
4916 {
4917 gcc_assert (IS_EXPR_CODE_CLASS (class));
4918
4919 val = iterative_hash_object (code, val);
4920
4921 /* Don't hash the type, that can lead to having nodes which
4922 compare equal according to operand_equal_p, but which
4923 have different hash codes. */
4924 if (code == NOP_EXPR
4925 || code == CONVERT_EXPR
4926 || code == NON_LVALUE_EXPR)
4927 {
4928 /* Make sure to include signness in the hash computation. */
4929 val += TYPE_UNSIGNED (TREE_TYPE (t));
4930 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
4931 }
4932
4933 else if (commutative_tree_code (code))
4934 {
4935 /* It's a commutative expression. We want to hash it the same
4936 however it appears. We do this by first hashing both operands
4937 and then rehashing based on the order of their independent
4938 hashes. */
4939 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
4940 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
4941 hashval_t t;
4942
4943 if (one > two)
4944 t = one, one = two, two = t;
4945
4946 val = iterative_hash_hashval_t (one, val);
4947 val = iterative_hash_hashval_t (two, val);
4948 }
4949 else
4950 for (i = TREE_CODE_LENGTH (code) - 1; i >= 0; --i)
4951 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
4952 }
4953 return val;
4954 break;
4955 }
4956 }
4957
4958 /* Constructors for pointer, array and function types.
4959 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
4960 constructed by language-dependent code, not here.) */
4961
4962 /* Construct, lay out and return the type of pointers to TO_TYPE with
4963 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
4964 reference all of memory. If such a type has already been
4965 constructed, reuse it. */
4966
4967 tree
build_pointer_type_for_mode(tree to_type,enum machine_mode mode,bool can_alias_all)4968 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
4969 bool can_alias_all)
4970 {
4971 tree t;
4972
4973 if (to_type == error_mark_node)
4974 return error_mark_node;
4975
4976 /* In some cases, languages will have things that aren't a POINTER_TYPE
4977 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
4978 In that case, return that type without regard to the rest of our
4979 operands.
4980
4981 ??? This is a kludge, but consistent with the way this function has
4982 always operated and there doesn't seem to be a good way to avoid this
4983 at the moment. */
4984 if (TYPE_POINTER_TO (to_type) != 0
4985 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
4986 return TYPE_POINTER_TO (to_type);
4987
4988 /* First, if we already have a type for pointers to TO_TYPE and it's
4989 the proper mode, use it. */
4990 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
4991 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
4992 return t;
4993
4994 t = make_node (POINTER_TYPE);
4995
4996 TREE_TYPE (t) = to_type;
4997 TYPE_MODE (t) = mode;
4998 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
4999 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
5000 TYPE_POINTER_TO (to_type) = t;
5001
5002 /* Lay out the type. This function has many callers that are concerned
5003 with expression-construction, and this simplifies them all. */
5004 layout_type (t);
5005
5006 return t;
5007 }
5008
5009 /* By default build pointers in ptr_mode. */
5010
5011 tree
build_pointer_type(tree to_type)5012 build_pointer_type (tree to_type)
5013 {
5014 return build_pointer_type_for_mode (to_type, ptr_mode, false);
5015 }
5016
5017 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
5018
5019 tree
build_reference_type_for_mode(tree to_type,enum machine_mode mode,bool can_alias_all)5020 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
5021 bool can_alias_all)
5022 {
5023 tree t;
5024
5025 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
5026 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
5027 In that case, return that type without regard to the rest of our
5028 operands.
5029
5030 ??? This is a kludge, but consistent with the way this function has
5031 always operated and there doesn't seem to be a good way to avoid this
5032 at the moment. */
5033 if (TYPE_REFERENCE_TO (to_type) != 0
5034 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
5035 return TYPE_REFERENCE_TO (to_type);
5036
5037 /* First, if we already have a type for pointers to TO_TYPE and it's
5038 the proper mode, use it. */
5039 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
5040 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
5041 return t;
5042
5043 t = make_node (REFERENCE_TYPE);
5044
5045 TREE_TYPE (t) = to_type;
5046 TYPE_MODE (t) = mode;
5047 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
5048 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
5049 TYPE_REFERENCE_TO (to_type) = t;
5050
5051 layout_type (t);
5052
5053 return t;
5054 }
5055
5056
5057 /* Build the node for the type of references-to-TO_TYPE by default
5058 in ptr_mode. */
5059
5060 tree
build_reference_type(tree to_type)5061 build_reference_type (tree to_type)
5062 {
5063 return build_reference_type_for_mode (to_type, ptr_mode, false);
5064 }
5065
5066 /* Build a type that is compatible with t but has no cv quals anywhere
5067 in its type, thus
5068
5069 const char *const *const * -> char ***. */
5070
5071 tree
build_type_no_quals(tree t)5072 build_type_no_quals (tree t)
5073 {
5074 switch (TREE_CODE (t))
5075 {
5076 case POINTER_TYPE:
5077 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
5078 TYPE_MODE (t),
5079 TYPE_REF_CAN_ALIAS_ALL (t));
5080 case REFERENCE_TYPE:
5081 return
5082 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
5083 TYPE_MODE (t),
5084 TYPE_REF_CAN_ALIAS_ALL (t));
5085 default:
5086 return TYPE_MAIN_VARIANT (t);
5087 }
5088 }
5089
5090 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
5091 MAXVAL should be the maximum value in the domain
5092 (one less than the length of the array).
5093
5094 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
5095 We don't enforce this limit, that is up to caller (e.g. language front end).
5096 The limit exists because the result is a signed type and we don't handle
5097 sizes that use more than one HOST_WIDE_INT. */
5098
5099 tree
build_index_type(tree maxval)5100 build_index_type (tree maxval)
5101 {
5102 tree itype = make_node (INTEGER_TYPE);
5103
5104 TREE_TYPE (itype) = sizetype;
5105 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
5106 TYPE_MIN_VALUE (itype) = size_zero_node;
5107 TYPE_MAX_VALUE (itype) = fold_convert (sizetype, maxval);
5108 TYPE_MODE (itype) = TYPE_MODE (sizetype);
5109 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
5110 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
5111 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
5112 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
5113
5114 if (host_integerp (maxval, 1))
5115 return type_hash_canon (tree_low_cst (maxval, 1), itype);
5116 else
5117 return itype;
5118 }
5119
5120 /* Builds a signed or unsigned integer type of precision PRECISION.
5121 Used for C bitfields whose precision does not match that of
5122 built-in target types. */
5123 tree
build_nonstandard_integer_type(unsigned HOST_WIDE_INT precision,int unsignedp)5124 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
5125 int unsignedp)
5126 {
5127 tree itype = make_node (INTEGER_TYPE);
5128
5129 TYPE_PRECISION (itype) = precision;
5130
5131 if (unsignedp)
5132 fixup_unsigned_type (itype);
5133 else
5134 fixup_signed_type (itype);
5135
5136 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
5137 return type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
5138
5139 return itype;
5140 }
5141
5142 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
5143 ENUMERAL_TYPE or BOOLEAN_TYPE), with low bound LOWVAL and
5144 high bound HIGHVAL. If TYPE is NULL, sizetype is used. */
5145
5146 tree
build_range_type(tree type,tree lowval,tree highval)5147 build_range_type (tree type, tree lowval, tree highval)
5148 {
5149 tree itype = make_node (INTEGER_TYPE);
5150
5151 TREE_TYPE (itype) = type;
5152 if (type == NULL_TREE)
5153 type = sizetype;
5154
5155 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
5156 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
5157
5158 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
5159 TYPE_MODE (itype) = TYPE_MODE (type);
5160 TYPE_SIZE (itype) = TYPE_SIZE (type);
5161 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
5162 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
5163 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
5164
5165 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
5166 return type_hash_canon (tree_low_cst (highval, 0)
5167 - tree_low_cst (lowval, 0),
5168 itype);
5169 else
5170 return itype;
5171 }
5172
5173 /* Just like build_index_type, but takes lowval and highval instead
5174 of just highval (maxval). */
5175
5176 tree
build_index_2_type(tree lowval,tree highval)5177 build_index_2_type (tree lowval, tree highval)
5178 {
5179 return build_range_type (sizetype, lowval, highval);
5180 }
5181
5182 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
5183 and number of elements specified by the range of values of INDEX_TYPE.
5184 If such a type has already been constructed, reuse it. */
5185
5186 tree
build_array_type(tree elt_type,tree index_type)5187 build_array_type (tree elt_type, tree index_type)
5188 {
5189 tree t;
5190 hashval_t hashcode = 0;
5191
5192 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
5193 {
5194 error ("arrays of functions are not meaningful");
5195 elt_type = integer_type_node;
5196 }
5197
5198 t = make_node (ARRAY_TYPE);
5199 TREE_TYPE (t) = elt_type;
5200 TYPE_DOMAIN (t) = index_type;
5201
5202 if (index_type == 0)
5203 {
5204 tree save = t;
5205 hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
5206 t = type_hash_canon (hashcode, t);
5207 if (save == t)
5208 layout_type (t);
5209 return t;
5210 }
5211
5212 hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
5213 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
5214 t = type_hash_canon (hashcode, t);
5215
5216 if (!COMPLETE_TYPE_P (t))
5217 layout_type (t);
5218 return t;
5219 }
5220
5221 /* Return the TYPE of the elements comprising
5222 the innermost dimension of ARRAY. */
5223
5224 tree
get_inner_array_type(tree array)5225 get_inner_array_type (tree array)
5226 {
5227 tree type = TREE_TYPE (array);
5228
5229 while (TREE_CODE (type) == ARRAY_TYPE)
5230 type = TREE_TYPE (type);
5231
5232 return type;
5233 }
5234
5235 /* Construct, lay out and return
5236 the type of functions returning type VALUE_TYPE
5237 given arguments of types ARG_TYPES.
5238 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
5239 are data type nodes for the arguments of the function.
5240 If such a type has already been constructed, reuse it. */
5241
5242 tree
build_function_type(tree value_type,tree arg_types)5243 build_function_type (tree value_type, tree arg_types)
5244 {
5245 tree t;
5246 hashval_t hashcode = 0;
5247
5248 if (TREE_CODE (value_type) == FUNCTION_TYPE)
5249 {
5250 error ("function return type cannot be function");
5251 value_type = integer_type_node;
5252 }
5253
5254 /* Make a node of the sort we want. */
5255 t = make_node (FUNCTION_TYPE);
5256 TREE_TYPE (t) = value_type;
5257 TYPE_ARG_TYPES (t) = arg_types;
5258
5259 /* If we already have such a type, use the old one. */
5260 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
5261 hashcode = type_hash_list (arg_types, hashcode);
5262 t = type_hash_canon (hashcode, t);
5263
5264 if (!COMPLETE_TYPE_P (t))
5265 layout_type (t);
5266 return t;
5267 }
5268
5269 /* Build a function type. The RETURN_TYPE is the type returned by the
5270 function. If additional arguments are provided, they are
5271 additional argument types. The list of argument types must always
5272 be terminated by NULL_TREE. */
5273
5274 tree
build_function_type_list(tree return_type,...)5275 build_function_type_list (tree return_type, ...)
5276 {
5277 tree t, args, last;
5278 va_list p;
5279
5280 va_start (p, return_type);
5281
5282 t = va_arg (p, tree);
5283 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (p, tree))
5284 args = tree_cons (NULL_TREE, t, args);
5285
5286 if (args == NULL_TREE)
5287 args = void_list_node;
5288 else
5289 {
5290 last = args;
5291 args = nreverse (args);
5292 TREE_CHAIN (last) = void_list_node;
5293 }
5294 args = build_function_type (return_type, args);
5295
5296 va_end (p);
5297 return args;
5298 }
5299
5300 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
5301 and ARGTYPES (a TREE_LIST) are the return type and arguments types
5302 for the method. An implicit additional parameter (of type
5303 pointer-to-BASETYPE) is added to the ARGTYPES. */
5304
5305 tree
build_method_type_directly(tree basetype,tree rettype,tree argtypes)5306 build_method_type_directly (tree basetype,
5307 tree rettype,
5308 tree argtypes)
5309 {
5310 tree t;
5311 tree ptype;
5312 int hashcode = 0;
5313
5314 /* Make a node of the sort we want. */
5315 t = make_node (METHOD_TYPE);
5316
5317 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
5318 TREE_TYPE (t) = rettype;
5319 ptype = build_pointer_type (basetype);
5320
5321 /* The actual arglist for this function includes a "hidden" argument
5322 which is "this". Put it into the list of argument types. */
5323 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
5324 TYPE_ARG_TYPES (t) = argtypes;
5325
5326 /* If we already have such a type, use the old one. */
5327 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
5328 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
5329 hashcode = type_hash_list (argtypes, hashcode);
5330 t = type_hash_canon (hashcode, t);
5331
5332 if (!COMPLETE_TYPE_P (t))
5333 layout_type (t);
5334
5335 return t;
5336 }
5337
5338 /* Construct, lay out and return the type of methods belonging to class
5339 BASETYPE and whose arguments and values are described by TYPE.
5340 If that type exists already, reuse it.
5341 TYPE must be a FUNCTION_TYPE node. */
5342
5343 tree
build_method_type(tree basetype,tree type)5344 build_method_type (tree basetype, tree type)
5345 {
5346 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
5347
5348 return build_method_type_directly (basetype,
5349 TREE_TYPE (type),
5350 TYPE_ARG_TYPES (type));
5351 }
5352
5353 /* Construct, lay out and return the type of offsets to a value
5354 of type TYPE, within an object of type BASETYPE.
5355 If a suitable offset type exists already, reuse it. */
5356
5357 tree
build_offset_type(tree basetype,tree type)5358 build_offset_type (tree basetype, tree type)
5359 {
5360 tree t;
5361 hashval_t hashcode = 0;
5362
5363 /* Make a node of the sort we want. */
5364 t = make_node (OFFSET_TYPE);
5365
5366 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
5367 TREE_TYPE (t) = type;
5368
5369 /* If we already have such a type, use the old one. */
5370 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
5371 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
5372 t = type_hash_canon (hashcode, t);
5373
5374 if (!COMPLETE_TYPE_P (t))
5375 layout_type (t);
5376
5377 return t;
5378 }
5379
5380 /* Create a complex type whose components are COMPONENT_TYPE. */
5381
5382 tree
build_complex_type(tree component_type)5383 build_complex_type (tree component_type)
5384 {
5385 tree t;
5386 hashval_t hashcode;
5387
5388 /* Make a node of the sort we want. */
5389 t = make_node (COMPLEX_TYPE);
5390
5391 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
5392
5393 /* If we already have such a type, use the old one. */
5394 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
5395 t = type_hash_canon (hashcode, t);
5396
5397 if (!COMPLETE_TYPE_P (t))
5398 layout_type (t);
5399
5400 /* If we are writing Dwarf2 output we need to create a name,
5401 since complex is a fundamental type. */
5402 if ((write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
5403 && ! TYPE_NAME (t))
5404 {
5405 const char *name;
5406 if (component_type == char_type_node)
5407 name = "complex char";
5408 else if (component_type == signed_char_type_node)
5409 name = "complex signed char";
5410 else if (component_type == unsigned_char_type_node)
5411 name = "complex unsigned char";
5412 else if (component_type == short_integer_type_node)
5413 name = "complex short int";
5414 else if (component_type == short_unsigned_type_node)
5415 name = "complex short unsigned int";
5416 else if (component_type == integer_type_node)
5417 name = "complex int";
5418 else if (component_type == unsigned_type_node)
5419 name = "complex unsigned int";
5420 else if (component_type == long_integer_type_node)
5421 name = "complex long int";
5422 else if (component_type == long_unsigned_type_node)
5423 name = "complex long unsigned int";
5424 else if (component_type == long_long_integer_type_node)
5425 name = "complex long long int";
5426 else if (component_type == long_long_unsigned_type_node)
5427 name = "complex long long unsigned int";
5428 else
5429 name = 0;
5430
5431 if (name != 0)
5432 TYPE_NAME (t) = get_identifier (name);
5433 }
5434
5435 return build_qualified_type (t, TYPE_QUALS (component_type));
5436 }
5437
5438 /* Return OP, stripped of any conversions to wider types as much as is safe.
5439 Converting the value back to OP's type makes a value equivalent to OP.
5440
5441 If FOR_TYPE is nonzero, we return a value which, if converted to
5442 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
5443
5444 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
5445 narrowest type that can hold the value, even if they don't exactly fit.
5446 Otherwise, bit-field references are changed to a narrower type
5447 only if they can be fetched directly from memory in that type.
5448
5449 OP must have integer, real or enumeral type. Pointers are not allowed!
5450
5451 There are some cases where the obvious value we could return
5452 would regenerate to OP if converted to OP's type,
5453 but would not extend like OP to wider types.
5454 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
5455 For example, if OP is (unsigned short)(signed char)-1,
5456 we avoid returning (signed char)-1 if FOR_TYPE is int,
5457 even though extending that to an unsigned short would regenerate OP,
5458 since the result of extending (signed char)-1 to (int)
5459 is different from (int) OP. */
5460
5461 tree
get_unwidened(tree op,tree for_type)5462 get_unwidened (tree op, tree for_type)
5463 {
5464 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
5465 tree type = TREE_TYPE (op);
5466 unsigned final_prec
5467 = TYPE_PRECISION (for_type != 0 ? for_type : type);
5468 int uns
5469 = (for_type != 0 && for_type != type
5470 && final_prec > TYPE_PRECISION (type)
5471 && TYPE_UNSIGNED (type));
5472 tree win = op;
5473
5474 while (TREE_CODE (op) == NOP_EXPR
5475 || TREE_CODE (op) == CONVERT_EXPR)
5476 {
5477 int bitschange;
5478
5479 /* TYPE_PRECISION on vector types has different meaning
5480 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
5481 so avoid them here. */
5482 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
5483 break;
5484
5485 bitschange = TYPE_PRECISION (TREE_TYPE (op))
5486 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
5487
5488 /* Truncations are many-one so cannot be removed.
5489 Unless we are later going to truncate down even farther. */
5490 if (bitschange < 0
5491 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
5492 break;
5493
5494 /* See what's inside this conversion. If we decide to strip it,
5495 we will set WIN. */
5496 op = TREE_OPERAND (op, 0);
5497
5498 /* If we have not stripped any zero-extensions (uns is 0),
5499 we can strip any kind of extension.
5500 If we have previously stripped a zero-extension,
5501 only zero-extensions can safely be stripped.
5502 Any extension can be stripped if the bits it would produce
5503 are all going to be discarded later by truncating to FOR_TYPE. */
5504
5505 if (bitschange > 0)
5506 {
5507 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
5508 win = op;
5509 /* TYPE_UNSIGNED says whether this is a zero-extension.
5510 Let's avoid computing it if it does not affect WIN
5511 and if UNS will not be needed again. */
5512 if ((uns
5513 || TREE_CODE (op) == NOP_EXPR
5514 || TREE_CODE (op) == CONVERT_EXPR)
5515 && TYPE_UNSIGNED (TREE_TYPE (op)))
5516 {
5517 uns = 1;
5518 win = op;
5519 }
5520 }
5521 }
5522
5523 if (TREE_CODE (op) == COMPONENT_REF
5524 /* Since type_for_size always gives an integer type. */
5525 && TREE_CODE (type) != REAL_TYPE
5526 /* Don't crash if field not laid out yet. */
5527 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
5528 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
5529 {
5530 unsigned int innerprec
5531 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
5532 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
5533 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
5534 type = lang_hooks.types.type_for_size (innerprec, unsignedp);
5535
5536 /* We can get this structure field in the narrowest type it fits in.
5537 If FOR_TYPE is 0, do this only for a field that matches the
5538 narrower type exactly and is aligned for it
5539 The resulting extension to its nominal type (a fullword type)
5540 must fit the same conditions as for other extensions. */
5541
5542 if (type != 0
5543 && INT_CST_LT_UNSIGNED (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (op)))
5544 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
5545 && (! uns || final_prec <= innerprec || unsignedp))
5546 {
5547 win = build3 (COMPONENT_REF, type, TREE_OPERAND (op, 0),
5548 TREE_OPERAND (op, 1), NULL_TREE);
5549 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
5550 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
5551 }
5552 }
5553
5554 return win;
5555 }
5556
5557 /* Return OP or a simpler expression for a narrower value
5558 which can be sign-extended or zero-extended to give back OP.
5559 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
5560 or 0 if the value should be sign-extended. */
5561
5562 tree
get_narrower(tree op,int * unsignedp_ptr)5563 get_narrower (tree op, int *unsignedp_ptr)
5564 {
5565 int uns = 0;
5566 int first = 1;
5567 tree win = op;
5568 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
5569
5570 while (TREE_CODE (op) == NOP_EXPR)
5571 {
5572 int bitschange
5573 = (TYPE_PRECISION (TREE_TYPE (op))
5574 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
5575
5576 /* Truncations are many-one so cannot be removed. */
5577 if (bitschange < 0)
5578 break;
5579
5580 /* See what's inside this conversion. If we decide to strip it,
5581 we will set WIN. */
5582
5583 if (bitschange > 0)
5584 {
5585 op = TREE_OPERAND (op, 0);
5586 /* An extension: the outermost one can be stripped,
5587 but remember whether it is zero or sign extension. */
5588 if (first)
5589 uns = TYPE_UNSIGNED (TREE_TYPE (op));
5590 /* Otherwise, if a sign extension has been stripped,
5591 only sign extensions can now be stripped;
5592 if a zero extension has been stripped, only zero-extensions. */
5593 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
5594 break;
5595 first = 0;
5596 }
5597 else /* bitschange == 0 */
5598 {
5599 /* A change in nominal type can always be stripped, but we must
5600 preserve the unsignedness. */
5601 if (first)
5602 uns = TYPE_UNSIGNED (TREE_TYPE (op));
5603 first = 0;
5604 op = TREE_OPERAND (op, 0);
5605 /* Keep trying to narrow, but don't assign op to win if it
5606 would turn an integral type into something else. */
5607 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
5608 continue;
5609 }
5610
5611 win = op;
5612 }
5613
5614 if (TREE_CODE (op) == COMPONENT_REF
5615 /* Since type_for_size always gives an integer type. */
5616 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
5617 /* Ensure field is laid out already. */
5618 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
5619 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
5620 {
5621 unsigned HOST_WIDE_INT innerprec
5622 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
5623 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
5624 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
5625 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
5626
5627 /* We can get this structure field in a narrower type that fits it,
5628 but the resulting extension to its nominal type (a fullword type)
5629 must satisfy the same conditions as for other extensions.
5630
5631 Do this only for fields that are aligned (not bit-fields),
5632 because when bit-field insns will be used there is no
5633 advantage in doing this. */
5634
5635 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
5636 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
5637 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
5638 && type != 0)
5639 {
5640 if (first)
5641 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
5642 win = fold_convert (type, op);
5643 }
5644 }
5645
5646 *unsignedp_ptr = uns;
5647 return win;
5648 }
5649
5650 /* Nonzero if integer constant C has a value that is permissible
5651 for type TYPE (an INTEGER_TYPE). */
5652
5653 int
int_fits_type_p(tree c,tree type)5654 int_fits_type_p (tree c, tree type)
5655 {
5656 tree type_low_bound = TYPE_MIN_VALUE (type);
5657 tree type_high_bound = TYPE_MAX_VALUE (type);
5658 bool ok_for_low_bound, ok_for_high_bound;
5659 tree tmp;
5660
5661 /* If at least one bound of the type is a constant integer, we can check
5662 ourselves and maybe make a decision. If no such decision is possible, but
5663 this type is a subtype, try checking against that. Otherwise, use
5664 force_fit_type, which checks against the precision.
5665
5666 Compute the status for each possibly constant bound, and return if we see
5667 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
5668 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
5669 for "constant known to fit". */
5670
5671 /* Check if C >= type_low_bound. */
5672 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
5673 {
5674 if (tree_int_cst_lt (c, type_low_bound))
5675 return 0;
5676 ok_for_low_bound = true;
5677 }
5678 else
5679 ok_for_low_bound = false;
5680
5681 /* Check if c <= type_high_bound. */
5682 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
5683 {
5684 if (tree_int_cst_lt (type_high_bound, c))
5685 return 0;
5686 ok_for_high_bound = true;
5687 }
5688 else
5689 ok_for_high_bound = false;
5690
5691 /* If the constant fits both bounds, the result is known. */
5692 if (ok_for_low_bound && ok_for_high_bound)
5693 return 1;
5694
5695 /* Perform some generic filtering which may allow making a decision
5696 even if the bounds are not constant. First, negative integers
5697 never fit in unsigned types, */
5698 if (TYPE_UNSIGNED (type) && tree_int_cst_sgn (c) < 0)
5699 return 0;
5700
5701 /* Second, narrower types always fit in wider ones. */
5702 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
5703 return 1;
5704
5705 /* Third, unsigned integers with top bit set never fit signed types. */
5706 if (! TYPE_UNSIGNED (type)
5707 && TYPE_UNSIGNED (TREE_TYPE (c))
5708 && tree_int_cst_msb (c))
5709 return 0;
5710
5711 /* If we haven't been able to decide at this point, there nothing more we
5712 can check ourselves here. Look at the base type if we have one and it
5713 has the same precision. */
5714 if (TREE_CODE (type) == INTEGER_TYPE
5715 && TREE_TYPE (type) != 0
5716 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
5717 return int_fits_type_p (c, TREE_TYPE (type));
5718
5719 /* Or to force_fit_type, if nothing else. */
5720 tmp = copy_node (c);
5721 TREE_TYPE (tmp) = type;
5722 tmp = force_fit_type (tmp, -1, false, false);
5723 return TREE_INT_CST_HIGH (tmp) == TREE_INT_CST_HIGH (c)
5724 && TREE_INT_CST_LOW (tmp) == TREE_INT_CST_LOW (c);
5725 }
5726
5727 /* Subprogram of following function. Called by walk_tree.
5728
5729 Return *TP if it is an automatic variable or parameter of the
5730 function passed in as DATA. */
5731
5732 static tree
find_var_from_fn(tree * tp,int * walk_subtrees,void * data)5733 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
5734 {
5735 tree fn = (tree) data;
5736
5737 if (TYPE_P (*tp))
5738 *walk_subtrees = 0;
5739
5740 else if (DECL_P (*tp)
5741 && lang_hooks.tree_inlining.auto_var_in_fn_p (*tp, fn))
5742 return *tp;
5743
5744 return NULL_TREE;
5745 }
5746
5747 /* Returns true if T is, contains, or refers to a type with variable
5748 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
5749 arguments, but not the return type. If FN is nonzero, only return
5750 true if a modifier of the type or position of FN is a variable or
5751 parameter inside FN.
5752
5753 This concept is more general than that of C99 'variably modified types':
5754 in C99, a struct type is never variably modified because a VLA may not
5755 appear as a structure member. However, in GNU C code like:
5756
5757 struct S { int i[f()]; };
5758
5759 is valid, and other languages may define similar constructs. */
5760
5761 bool
variably_modified_type_p(tree type,tree fn)5762 variably_modified_type_p (tree type, tree fn)
5763 {
5764 tree t;
5765
5766 /* Test if T is either variable (if FN is zero) or an expression containing
5767 a variable in FN. */
5768 #define RETURN_TRUE_IF_VAR(T) \
5769 do { tree _t = (T); \
5770 if (_t && _t != error_mark_node && TREE_CODE (_t) != INTEGER_CST \
5771 && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
5772 return true; } while (0)
5773
5774 if (type == error_mark_node)
5775 return false;
5776
5777 /* If TYPE itself has variable size, it is variably modified. */
5778 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
5779 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
5780
5781 switch (TREE_CODE (type))
5782 {
5783 case POINTER_TYPE:
5784 case REFERENCE_TYPE:
5785 case VECTOR_TYPE:
5786 if (variably_modified_type_p (TREE_TYPE (type), fn))
5787 return true;
5788 break;
5789
5790 case FUNCTION_TYPE:
5791 case METHOD_TYPE:
5792 /* If TYPE is a function type, it is variably modified if the
5793 return type is variably modified. */
5794 if (variably_modified_type_p (TREE_TYPE (type), fn))
5795 return true;
5796 break;
5797
5798 case INTEGER_TYPE:
5799 case REAL_TYPE:
5800 case ENUMERAL_TYPE:
5801 case BOOLEAN_TYPE:
5802 /* Scalar types are variably modified if their end points
5803 aren't constant. */
5804 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
5805 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
5806 break;
5807
5808 case RECORD_TYPE:
5809 case UNION_TYPE:
5810 case QUAL_UNION_TYPE:
5811 /* We can't see if any of the fields are variably-modified by the
5812 definition we normally use, since that would produce infinite
5813 recursion via pointers. */
5814 /* This is variably modified if some field's type is. */
5815 for (t = TYPE_FIELDS (type); t; t = TREE_CHAIN (t))
5816 if (TREE_CODE (t) == FIELD_DECL)
5817 {
5818 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
5819 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
5820 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
5821
5822 if (TREE_CODE (type) == QUAL_UNION_TYPE)
5823 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
5824 }
5825 break;
5826
5827 case ARRAY_TYPE:
5828 /* Do not call ourselves to avoid infinite recursion. This is
5829 variably modified if the element type is. */
5830 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
5831 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
5832 break;
5833
5834 default:
5835 break;
5836 }
5837
5838 /* The current language may have other cases to check, but in general,
5839 all other types are not variably modified. */
5840 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
5841
5842 #undef RETURN_TRUE_IF_VAR
5843 }
5844
5845 /* Given a DECL or TYPE, return the scope in which it was declared, or
5846 NULL_TREE if there is no containing scope. */
5847
5848 tree
get_containing_scope(tree t)5849 get_containing_scope (tree t)
5850 {
5851 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
5852 }
5853
5854 /* Return the innermost context enclosing DECL that is
5855 a FUNCTION_DECL, or zero if none. */
5856
5857 tree
decl_function_context(tree decl)5858 decl_function_context (tree decl)
5859 {
5860 tree context;
5861
5862 if (TREE_CODE (decl) == ERROR_MARK)
5863 return 0;
5864
5865 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
5866 where we look up the function at runtime. Such functions always take
5867 a first argument of type 'pointer to real context'.
5868
5869 C++ should really be fixed to use DECL_CONTEXT for the real context,
5870 and use something else for the "virtual context". */
5871 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
5872 context
5873 = TYPE_MAIN_VARIANT
5874 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
5875 else
5876 context = DECL_CONTEXT (decl);
5877
5878 while (context && TREE_CODE (context) != FUNCTION_DECL)
5879 {
5880 if (TREE_CODE (context) == BLOCK)
5881 context = BLOCK_SUPERCONTEXT (context);
5882 else
5883 context = get_containing_scope (context);
5884 }
5885
5886 return context;
5887 }
5888
5889 /* Return the innermost context enclosing DECL that is
5890 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
5891 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
5892
5893 tree
decl_type_context(tree decl)5894 decl_type_context (tree decl)
5895 {
5896 tree context = DECL_CONTEXT (decl);
5897
5898 while (context)
5899 switch (TREE_CODE (context))
5900 {
5901 case NAMESPACE_DECL:
5902 case TRANSLATION_UNIT_DECL:
5903 return NULL_TREE;
5904
5905 case RECORD_TYPE:
5906 case UNION_TYPE:
5907 case QUAL_UNION_TYPE:
5908 return context;
5909
5910 case TYPE_DECL:
5911 case FUNCTION_DECL:
5912 context = DECL_CONTEXT (context);
5913 break;
5914
5915 case BLOCK:
5916 context = BLOCK_SUPERCONTEXT (context);
5917 break;
5918
5919 default:
5920 gcc_unreachable ();
5921 }
5922
5923 return NULL_TREE;
5924 }
5925
5926 /* CALL is a CALL_EXPR. Return the declaration for the function
5927 called, or NULL_TREE if the called function cannot be
5928 determined. */
5929
5930 tree
get_callee_fndecl(tree call)5931 get_callee_fndecl (tree call)
5932 {
5933 tree addr;
5934
5935 if (call == error_mark_node)
5936 return call;
5937
5938 /* It's invalid to call this function with anything but a
5939 CALL_EXPR. */
5940 gcc_assert (TREE_CODE (call) == CALL_EXPR);
5941
5942 /* The first operand to the CALL is the address of the function
5943 called. */
5944 addr = TREE_OPERAND (call, 0);
5945
5946 STRIP_NOPS (addr);
5947
5948 /* If this is a readonly function pointer, extract its initial value. */
5949 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
5950 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
5951 && DECL_INITIAL (addr))
5952 addr = DECL_INITIAL (addr);
5953
5954 /* If the address is just `&f' for some function `f', then we know
5955 that `f' is being called. */
5956 if (TREE_CODE (addr) == ADDR_EXPR
5957 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
5958 return TREE_OPERAND (addr, 0);
5959
5960 /* We couldn't figure out what was being called. Maybe the front
5961 end has some idea. */
5962 return lang_hooks.lang_get_callee_fndecl (call);
5963 }
5964
5965 /* Print debugging information about tree nodes generated during the compile,
5966 and any language-specific information. */
5967
5968 void
dump_tree_statistics(void)5969 dump_tree_statistics (void)
5970 {
5971 #ifdef GATHER_STATISTICS
5972 int i;
5973 int total_nodes, total_bytes;
5974 #endif
5975
5976 fprintf (stderr, "\n??? tree nodes created\n\n");
5977 #ifdef GATHER_STATISTICS
5978 fprintf (stderr, "Kind Nodes Bytes\n");
5979 fprintf (stderr, "---------------------------------------\n");
5980 total_nodes = total_bytes = 0;
5981 for (i = 0; i < (int) all_kinds; i++)
5982 {
5983 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
5984 tree_node_counts[i], tree_node_sizes[i]);
5985 total_nodes += tree_node_counts[i];
5986 total_bytes += tree_node_sizes[i];
5987 }
5988 fprintf (stderr, "---------------------------------------\n");
5989 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
5990 fprintf (stderr, "---------------------------------------\n");
5991 ssanames_print_statistics ();
5992 phinodes_print_statistics ();
5993 #else
5994 fprintf (stderr, "(No per-node statistics)\n");
5995 #endif
5996 print_type_hash_statistics ();
5997 print_debug_expr_statistics ();
5998 print_value_expr_statistics ();
5999 print_restrict_base_statistics ();
6000 lang_hooks.print_statistics ();
6001 }
6002
6003 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
6004
6005 /* Generate a crc32 of a string. */
6006
6007 unsigned
crc32_string(unsigned chksum,const char * string)6008 crc32_string (unsigned chksum, const char *string)
6009 {
6010 do
6011 {
6012 unsigned value = *string << 24;
6013 unsigned ix;
6014
6015 for (ix = 8; ix--; value <<= 1)
6016 {
6017 unsigned feedback;
6018
6019 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
6020 chksum <<= 1;
6021 chksum ^= feedback;
6022 }
6023 }
6024 while (*string++);
6025 return chksum;
6026 }
6027
6028 /* P is a string that will be used in a symbol. Mask out any characters
6029 that are not valid in that context. */
6030
6031 void
clean_symbol_name(char * p)6032 clean_symbol_name (char *p)
6033 {
6034 for (; *p; p++)
6035 if (! (ISALNUM (*p)
6036 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
6037 || *p == '$'
6038 #endif
6039 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
6040 || *p == '.'
6041 #endif
6042 ))
6043 *p = '_';
6044 }
6045
6046 /* Generate a name for a function unique to this translation unit.
6047 TYPE is some string to identify the purpose of this function to the
6048 linker or collect2. */
6049
6050 tree
get_file_function_name_long(const char * type)6051 get_file_function_name_long (const char *type)
6052 {
6053 char *buf;
6054 const char *p;
6055 char *q;
6056
6057 if (first_global_object_name)
6058 {
6059 p = first_global_object_name;
6060
6061 /* For type 'F', the generated name must be unique not only to this
6062 translation unit but also to any given link. Since global names
6063 can be overloaded, we concatenate the first global object name
6064 with a string derived from the file name of this object. */
6065 if (!strcmp (type, "F"))
6066 {
6067 const char *file = main_input_filename;
6068
6069 if (! file)
6070 file = input_filename;
6071
6072 q = alloca (strlen (p) + 10);
6073 sprintf (q, "%s_%08X", p, crc32_string (0, file));
6074
6075 p = q;
6076 }
6077 }
6078 else
6079 {
6080 /* We don't have anything that we know to be unique to this translation
6081 unit, so use what we do have and throw in some randomness. */
6082 unsigned len;
6083 const char *name = weak_global_object_name;
6084 const char *file = main_input_filename;
6085
6086 if (! name)
6087 name = "";
6088 if (! file)
6089 file = input_filename;
6090
6091 len = strlen (file);
6092 q = alloca (9 * 2 + len + 1);
6093 memcpy (q, file, len + 1);
6094 clean_symbol_name (q);
6095
6096 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
6097 crc32_string (0, flag_random_seed));
6098
6099 p = q;
6100 }
6101
6102 buf = alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p) + strlen (type));
6103
6104 /* Set up the name of the file-level functions we may need.
6105 Use a global object (which is already required to be unique over
6106 the program) rather than the file name (which imposes extra
6107 constraints). */
6108 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
6109
6110 return get_identifier (buf);
6111 }
6112
6113 /* If KIND=='I', return a suitable global initializer (constructor) name.
6114 If KIND=='D', return a suitable global clean-up (destructor) name. */
6115
6116 tree
get_file_function_name(int kind)6117 get_file_function_name (int kind)
6118 {
6119 char p[2];
6120
6121 p[0] = kind;
6122 p[1] = 0;
6123
6124 return get_file_function_name_long (p);
6125 }
6126
6127 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
6128
6129 /* Complain that the tree code of NODE does not match the expected 0
6130 terminated list of trailing codes. The trailing code list can be
6131 empty, for a more vague error message. FILE, LINE, and FUNCTION
6132 are of the caller. */
6133
6134 void
tree_check_failed(const tree node,const char * file,int line,const char * function,...)6135 tree_check_failed (const tree node, const char *file,
6136 int line, const char *function, ...)
6137 {
6138 va_list args;
6139 char *buffer;
6140 unsigned length = 0;
6141 int code;
6142
6143 va_start (args, function);
6144 while ((code = va_arg (args, int)))
6145 length += 4 + strlen (tree_code_name[code]);
6146 va_end (args);
6147 if (length)
6148 {
6149 va_start (args, function);
6150 length += strlen ("expected ");
6151 buffer = alloca (length);
6152 length = 0;
6153 while ((code = va_arg (args, int)))
6154 {
6155 const char *prefix = length ? " or " : "expected ";
6156
6157 strcpy (buffer + length, prefix);
6158 length += strlen (prefix);
6159 strcpy (buffer + length, tree_code_name[code]);
6160 length += strlen (tree_code_name[code]);
6161 }
6162 va_end (args);
6163 }
6164 else
6165 buffer = (char *)"unexpected node";
6166
6167 internal_error ("tree check: %s, have %s in %s, at %s:%d",
6168 buffer, tree_code_name[TREE_CODE (node)],
6169 function, trim_filename (file), line);
6170 }
6171
6172 /* Complain that the tree code of NODE does match the expected 0
6173 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
6174 the caller. */
6175
6176 void
tree_not_check_failed(const tree node,const char * file,int line,const char * function,...)6177 tree_not_check_failed (const tree node, const char *file,
6178 int line, const char *function, ...)
6179 {
6180 va_list args;
6181 char *buffer;
6182 unsigned length = 0;
6183 int code;
6184
6185 va_start (args, function);
6186 while ((code = va_arg (args, int)))
6187 length += 4 + strlen (tree_code_name[code]);
6188 va_end (args);
6189 va_start (args, function);
6190 buffer = alloca (length);
6191 length = 0;
6192 while ((code = va_arg (args, int)))
6193 {
6194 if (length)
6195 {
6196 strcpy (buffer + length, " or ");
6197 length += 4;
6198 }
6199 strcpy (buffer + length, tree_code_name[code]);
6200 length += strlen (tree_code_name[code]);
6201 }
6202 va_end (args);
6203
6204 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
6205 buffer, tree_code_name[TREE_CODE (node)],
6206 function, trim_filename (file), line);
6207 }
6208
6209 /* Similar to tree_check_failed, except that we check for a class of tree
6210 code, given in CL. */
6211
6212 void
tree_class_check_failed(const tree node,const enum tree_code_class cl,const char * file,int line,const char * function)6213 tree_class_check_failed (const tree node, const enum tree_code_class cl,
6214 const char *file, int line, const char *function)
6215 {
6216 internal_error
6217 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
6218 TREE_CODE_CLASS_STRING (cl),
6219 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
6220 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
6221 }
6222
6223 /* Similar to tree_check_failed, except that instead of specifying a
6224 dozen codes, use the knowledge that they're all sequential. */
6225
6226 void
tree_range_check_failed(const tree node,const char * file,int line,const char * function,enum tree_code c1,enum tree_code c2)6227 tree_range_check_failed (const tree node, const char *file, int line,
6228 const char *function, enum tree_code c1,
6229 enum tree_code c2)
6230 {
6231 char *buffer;
6232 unsigned length = 0;
6233 enum tree_code c;
6234
6235 for (c = c1; c <= c2; ++c)
6236 length += 4 + strlen (tree_code_name[c]);
6237
6238 length += strlen ("expected ");
6239 buffer = alloca (length);
6240 length = 0;
6241
6242 for (c = c1; c <= c2; ++c)
6243 {
6244 const char *prefix = length ? " or " : "expected ";
6245
6246 strcpy (buffer + length, prefix);
6247 length += strlen (prefix);
6248 strcpy (buffer + length, tree_code_name[c]);
6249 length += strlen (tree_code_name[c]);
6250 }
6251
6252 internal_error ("tree check: %s, have %s in %s, at %s:%d",
6253 buffer, tree_code_name[TREE_CODE (node)],
6254 function, trim_filename (file), line);
6255 }
6256
6257
6258 /* Similar to tree_check_failed, except that we check that a tree does
6259 not have the specified code, given in CL. */
6260
6261 void
tree_not_class_check_failed(const tree node,const enum tree_code_class cl,const char * file,int line,const char * function)6262 tree_not_class_check_failed (const tree node, const enum tree_code_class cl,
6263 const char *file, int line, const char *function)
6264 {
6265 internal_error
6266 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
6267 TREE_CODE_CLASS_STRING (cl),
6268 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
6269 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
6270 }
6271
6272
6273 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
6274
6275 void
omp_clause_check_failed(const tree node,const char * file,int line,const char * function,enum omp_clause_code code)6276 omp_clause_check_failed (const tree node, const char *file, int line,
6277 const char *function, enum omp_clause_code code)
6278 {
6279 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
6280 omp_clause_code_name[code], tree_code_name[TREE_CODE (node)],
6281 function, trim_filename (file), line);
6282 }
6283
6284
6285 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
6286
6287 void
omp_clause_range_check_failed(const tree node,const char * file,int line,const char * function,enum omp_clause_code c1,enum omp_clause_code c2)6288 omp_clause_range_check_failed (const tree node, const char *file, int line,
6289 const char *function, enum omp_clause_code c1,
6290 enum omp_clause_code c2)
6291 {
6292 char *buffer;
6293 unsigned length = 0;
6294 enum omp_clause_code c;
6295
6296 for (c = c1; c <= c2; ++c)
6297 length += 4 + strlen (omp_clause_code_name[c]);
6298
6299 length += strlen ("expected ");
6300 buffer = alloca (length);
6301 length = 0;
6302
6303 for (c = c1; c <= c2; ++c)
6304 {
6305 const char *prefix = length ? " or " : "expected ";
6306
6307 strcpy (buffer + length, prefix);
6308 length += strlen (prefix);
6309 strcpy (buffer + length, omp_clause_code_name[c]);
6310 length += strlen (omp_clause_code_name[c]);
6311 }
6312
6313 internal_error ("tree check: %s, have %s in %s, at %s:%d",
6314 buffer, omp_clause_code_name[TREE_CODE (node)],
6315 function, trim_filename (file), line);
6316 }
6317
6318
6319 #undef DEFTREESTRUCT
6320 #define DEFTREESTRUCT(VAL, NAME) NAME,
6321
6322 static const char *ts_enum_names[] = {
6323 #include "treestruct.def"
6324 };
6325 #undef DEFTREESTRUCT
6326
6327 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
6328
6329 /* Similar to tree_class_check_failed, except that we check for
6330 whether CODE contains the tree structure identified by EN. */
6331
6332 void
tree_contains_struct_check_failed(const tree node,const enum tree_node_structure_enum en,const char * file,int line,const char * function)6333 tree_contains_struct_check_failed (const tree node,
6334 const enum tree_node_structure_enum en,
6335 const char *file, int line,
6336 const char *function)
6337 {
6338 internal_error
6339 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
6340 TS_ENUM_NAME(en),
6341 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
6342 }
6343
6344
6345 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
6346 (dynamically sized) vector. */
6347
6348 void
tree_vec_elt_check_failed(int idx,int len,const char * file,int line,const char * function)6349 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
6350 const char *function)
6351 {
6352 internal_error
6353 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
6354 idx + 1, len, function, trim_filename (file), line);
6355 }
6356
6357 /* Similar to above, except that the check is for the bounds of a PHI_NODE's
6358 (dynamically sized) vector. */
6359
6360 void
phi_node_elt_check_failed(int idx,int len,const char * file,int line,const char * function)6361 phi_node_elt_check_failed (int idx, int len, const char *file, int line,
6362 const char *function)
6363 {
6364 internal_error
6365 ("tree check: accessed elt %d of phi_node with %d elts in %s, at %s:%d",
6366 idx + 1, len, function, trim_filename (file), line);
6367 }
6368
6369 /* Similar to above, except that the check is for the bounds of the operand
6370 vector of an expression node. */
6371
6372 void
tree_operand_check_failed(int idx,enum tree_code code,const char * file,int line,const char * function)6373 tree_operand_check_failed (int idx, enum tree_code code, const char *file,
6374 int line, const char *function)
6375 {
6376 internal_error
6377 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
6378 idx + 1, tree_code_name[code], TREE_CODE_LENGTH (code),
6379 function, trim_filename (file), line);
6380 }
6381
6382 /* Similar to above, except that the check is for the number of
6383 operands of an OMP_CLAUSE node. */
6384
6385 void
omp_clause_operand_check_failed(int idx,tree t,const char * file,int line,const char * function)6386 omp_clause_operand_check_failed (int idx, tree t, const char *file,
6387 int line, const char *function)
6388 {
6389 internal_error
6390 ("tree check: accessed operand %d of omp_clause %s with %d operands "
6391 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
6392 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
6393 trim_filename (file), line);
6394 }
6395 #endif /* ENABLE_TREE_CHECKING */
6396
6397 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
6398 and mapped to the machine mode MODE. Initialize its fields and build
6399 the information necessary for debugging output. */
6400
6401 static tree
make_vector_type(tree innertype,int nunits,enum machine_mode mode)6402 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
6403 {
6404 tree t;
6405 hashval_t hashcode = 0;
6406
6407 /* Build a main variant, based on the main variant of the inner type, then
6408 use it to build the variant we return. */
6409 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
6410 && TYPE_MAIN_VARIANT (innertype) != innertype)
6411 return build_type_attribute_qual_variant (
6412 make_vector_type (TYPE_MAIN_VARIANT (innertype), nunits, mode),
6413 TYPE_ATTRIBUTES (innertype),
6414 TYPE_QUALS (innertype));
6415
6416 t = make_node (VECTOR_TYPE);
6417 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
6418 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
6419 TYPE_MODE (t) = mode;
6420 TYPE_READONLY (t) = TYPE_READONLY (innertype);
6421 TYPE_VOLATILE (t) = TYPE_VOLATILE (innertype);
6422
6423 layout_type (t);
6424
6425 {
6426 tree index = build_int_cst (NULL_TREE, nunits - 1);
6427 tree array = build_array_type (innertype, build_index_type (index));
6428 tree rt = make_node (RECORD_TYPE);
6429
6430 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
6431 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
6432 layout_type (rt);
6433 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
6434 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
6435 the representation type, and we want to find that die when looking up
6436 the vector type. This is most easily achieved by making the TYPE_UID
6437 numbers equal. */
6438 TYPE_UID (rt) = TYPE_UID (t);
6439 }
6440
6441 hashcode = iterative_hash_host_wide_int (VECTOR_TYPE, hashcode);
6442 hashcode = iterative_hash_host_wide_int (mode, hashcode);
6443 hashcode = iterative_hash_object (TYPE_HASH (innertype), hashcode);
6444 return type_hash_canon (hashcode, t);
6445 }
6446
6447 static tree
make_or_reuse_type(unsigned size,int unsignedp)6448 make_or_reuse_type (unsigned size, int unsignedp)
6449 {
6450 if (size == INT_TYPE_SIZE)
6451 return unsignedp ? unsigned_type_node : integer_type_node;
6452 if (size == CHAR_TYPE_SIZE)
6453 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
6454 if (size == SHORT_TYPE_SIZE)
6455 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
6456 if (size == LONG_TYPE_SIZE)
6457 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
6458 if (size == LONG_LONG_TYPE_SIZE)
6459 return (unsignedp ? long_long_unsigned_type_node
6460 : long_long_integer_type_node);
6461
6462 if (unsignedp)
6463 return make_unsigned_type (size);
6464 else
6465 return make_signed_type (size);
6466 }
6467
6468 /* Create nodes for all integer types (and error_mark_node) using the sizes
6469 of C datatypes. The caller should call set_sizetype soon after calling
6470 this function to select one of the types as sizetype. */
6471
6472 void
build_common_tree_nodes(bool signed_char,bool signed_sizetype)6473 build_common_tree_nodes (bool signed_char, bool signed_sizetype)
6474 {
6475 error_mark_node = make_node (ERROR_MARK);
6476 TREE_TYPE (error_mark_node) = error_mark_node;
6477
6478 initialize_sizetypes (signed_sizetype);
6479
6480 /* Define both `signed char' and `unsigned char'. */
6481 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
6482 TYPE_STRING_FLAG (signed_char_type_node) = 1;
6483 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
6484 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
6485
6486 /* Define `char', which is like either `signed char' or `unsigned char'
6487 but not the same as either. */
6488 char_type_node
6489 = (signed_char
6490 ? make_signed_type (CHAR_TYPE_SIZE)
6491 : make_unsigned_type (CHAR_TYPE_SIZE));
6492 TYPE_STRING_FLAG (char_type_node) = 1;
6493
6494 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
6495 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
6496 integer_type_node = make_signed_type (INT_TYPE_SIZE);
6497 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
6498 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
6499 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
6500 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
6501 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
6502
6503 /* Define a boolean type. This type only represents boolean values but
6504 may be larger than char depending on the value of BOOL_TYPE_SIZE.
6505 Front ends which want to override this size (i.e. Java) can redefine
6506 boolean_type_node before calling build_common_tree_nodes_2. */
6507 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
6508 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
6509 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
6510 TYPE_PRECISION (boolean_type_node) = 1;
6511
6512 /* Fill in the rest of the sized types. Reuse existing type nodes
6513 when possible. */
6514 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
6515 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
6516 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
6517 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
6518 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
6519
6520 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
6521 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
6522 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
6523 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
6524 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
6525
6526 access_public_node = get_identifier ("public");
6527 access_protected_node = get_identifier ("protected");
6528 access_private_node = get_identifier ("private");
6529 }
6530
6531 /* Call this function after calling build_common_tree_nodes and set_sizetype.
6532 It will create several other common tree nodes. */
6533
6534 void
build_common_tree_nodes_2(int short_double)6535 build_common_tree_nodes_2 (int short_double)
6536 {
6537 /* Define these next since types below may used them. */
6538 integer_zero_node = build_int_cst (NULL_TREE, 0);
6539 integer_one_node = build_int_cst (NULL_TREE, 1);
6540 integer_minus_one_node = build_int_cst (NULL_TREE, -1);
6541
6542 size_zero_node = size_int (0);
6543 size_one_node = size_int (1);
6544 bitsize_zero_node = bitsize_int (0);
6545 bitsize_one_node = bitsize_int (1);
6546 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
6547
6548 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
6549 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
6550
6551 void_type_node = make_node (VOID_TYPE);
6552 layout_type (void_type_node);
6553
6554 /* We are not going to have real types in C with less than byte alignment,
6555 so we might as well not have any types that claim to have it. */
6556 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
6557 TYPE_USER_ALIGN (void_type_node) = 0;
6558
6559 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
6560 layout_type (TREE_TYPE (null_pointer_node));
6561
6562 ptr_type_node = build_pointer_type (void_type_node);
6563 const_ptr_type_node
6564 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
6565 fileptr_type_node = ptr_type_node;
6566
6567 float_type_node = make_node (REAL_TYPE);
6568 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
6569 layout_type (float_type_node);
6570
6571 double_type_node = make_node (REAL_TYPE);
6572 if (short_double)
6573 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
6574 else
6575 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
6576 layout_type (double_type_node);
6577
6578 long_double_type_node = make_node (REAL_TYPE);
6579 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
6580 layout_type (long_double_type_node);
6581
6582 float_ptr_type_node = build_pointer_type (float_type_node);
6583 double_ptr_type_node = build_pointer_type (double_type_node);
6584 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
6585 integer_ptr_type_node = build_pointer_type (integer_type_node);
6586
6587 /* Decimal float types. */
6588 dfloat32_type_node = make_node (REAL_TYPE);
6589 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
6590 layout_type (dfloat32_type_node);
6591 TYPE_MODE (dfloat32_type_node) = SDmode;
6592 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
6593
6594 dfloat64_type_node = make_node (REAL_TYPE);
6595 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
6596 layout_type (dfloat64_type_node);
6597 TYPE_MODE (dfloat64_type_node) = DDmode;
6598 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
6599
6600 dfloat128_type_node = make_node (REAL_TYPE);
6601 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
6602 layout_type (dfloat128_type_node);
6603 TYPE_MODE (dfloat128_type_node) = TDmode;
6604 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
6605
6606 complex_integer_type_node = make_node (COMPLEX_TYPE);
6607 TREE_TYPE (complex_integer_type_node) = integer_type_node;
6608 layout_type (complex_integer_type_node);
6609
6610 complex_float_type_node = make_node (COMPLEX_TYPE);
6611 TREE_TYPE (complex_float_type_node) = float_type_node;
6612 layout_type (complex_float_type_node);
6613
6614 complex_double_type_node = make_node (COMPLEX_TYPE);
6615 TREE_TYPE (complex_double_type_node) = double_type_node;
6616 layout_type (complex_double_type_node);
6617
6618 complex_long_double_type_node = make_node (COMPLEX_TYPE);
6619 TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
6620 layout_type (complex_long_double_type_node);
6621
6622 {
6623 tree t = targetm.build_builtin_va_list ();
6624
6625 /* Many back-ends define record types without setting TYPE_NAME.
6626 If we copied the record type here, we'd keep the original
6627 record type without a name. This breaks name mangling. So,
6628 don't copy record types and let c_common_nodes_and_builtins()
6629 declare the type to be __builtin_va_list. */
6630 if (TREE_CODE (t) != RECORD_TYPE)
6631 t = build_variant_type_copy (t);
6632
6633 va_list_type_node = t;
6634 }
6635 }
6636
6637 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
6638
6639 static void
local_define_builtin(const char * name,tree type,enum built_in_function code,const char * library_name,int ecf_flags)6640 local_define_builtin (const char *name, tree type, enum built_in_function code,
6641 const char *library_name, int ecf_flags)
6642 {
6643 tree decl;
6644
6645 decl = lang_hooks.builtin_function (name, type, code, BUILT_IN_NORMAL,
6646 library_name, NULL_TREE);
6647 if (ecf_flags & ECF_CONST)
6648 TREE_READONLY (decl) = 1;
6649 if (ecf_flags & ECF_PURE)
6650 DECL_IS_PURE (decl) = 1;
6651 if (ecf_flags & ECF_NORETURN)
6652 TREE_THIS_VOLATILE (decl) = 1;
6653 if (ecf_flags & ECF_NOTHROW)
6654 TREE_NOTHROW (decl) = 1;
6655 if (ecf_flags & ECF_MALLOC)
6656 DECL_IS_MALLOC (decl) = 1;
6657
6658 built_in_decls[code] = decl;
6659 implicit_built_in_decls[code] = decl;
6660 }
6661
6662 /* Call this function after instantiating all builtins that the language
6663 front end cares about. This will build the rest of the builtins that
6664 are relied upon by the tree optimizers and the middle-end. */
6665
6666 void
build_common_builtin_nodes(void)6667 build_common_builtin_nodes (void)
6668 {
6669 tree tmp, ftype;
6670
6671 if (built_in_decls[BUILT_IN_MEMCPY] == NULL
6672 || built_in_decls[BUILT_IN_MEMMOVE] == NULL)
6673 {
6674 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
6675 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
6676 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
6677 ftype = build_function_type (ptr_type_node, tmp);
6678
6679 if (built_in_decls[BUILT_IN_MEMCPY] == NULL)
6680 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
6681 "memcpy", ECF_NOTHROW);
6682 if (built_in_decls[BUILT_IN_MEMMOVE] == NULL)
6683 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
6684 "memmove", ECF_NOTHROW);
6685 }
6686
6687 if (built_in_decls[BUILT_IN_MEMCMP] == NULL)
6688 {
6689 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
6690 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
6691 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
6692 ftype = build_function_type (integer_type_node, tmp);
6693 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
6694 "memcmp", ECF_PURE | ECF_NOTHROW);
6695 }
6696
6697 if (built_in_decls[BUILT_IN_MEMSET] == NULL)
6698 {
6699 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
6700 tmp = tree_cons (NULL_TREE, integer_type_node, tmp);
6701 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
6702 ftype = build_function_type (ptr_type_node, tmp);
6703 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
6704 "memset", ECF_NOTHROW);
6705 }
6706
6707 if (built_in_decls[BUILT_IN_ALLOCA] == NULL)
6708 {
6709 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
6710 ftype = build_function_type (ptr_type_node, tmp);
6711 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
6712 "alloca", ECF_NOTHROW | ECF_MALLOC);
6713 }
6714
6715 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
6716 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
6717 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
6718 ftype = build_function_type (void_type_node, tmp);
6719 local_define_builtin ("__builtin_init_trampoline", ftype,
6720 BUILT_IN_INIT_TRAMPOLINE,
6721 "__builtin_init_trampoline", ECF_NOTHROW);
6722
6723 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
6724 ftype = build_function_type (ptr_type_node, tmp);
6725 local_define_builtin ("__builtin_adjust_trampoline", ftype,
6726 BUILT_IN_ADJUST_TRAMPOLINE,
6727 "__builtin_adjust_trampoline",
6728 ECF_CONST | ECF_NOTHROW);
6729
6730 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
6731 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
6732 ftype = build_function_type (void_type_node, tmp);
6733 local_define_builtin ("__builtin_nonlocal_goto", ftype,
6734 BUILT_IN_NONLOCAL_GOTO,
6735 "__builtin_nonlocal_goto",
6736 ECF_NORETURN | ECF_NOTHROW);
6737
6738 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
6739 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
6740 ftype = build_function_type (void_type_node, tmp);
6741 local_define_builtin ("__builtin_setjmp_setup", ftype,
6742 BUILT_IN_SETJMP_SETUP,
6743 "__builtin_setjmp_setup", ECF_NOTHROW);
6744
6745 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
6746 ftype = build_function_type (ptr_type_node, tmp);
6747 local_define_builtin ("__builtin_setjmp_dispatcher", ftype,
6748 BUILT_IN_SETJMP_DISPATCHER,
6749 "__builtin_setjmp_dispatcher",
6750 ECF_PURE | ECF_NOTHROW);
6751
6752 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
6753 ftype = build_function_type (void_type_node, tmp);
6754 local_define_builtin ("__builtin_setjmp_receiver", ftype,
6755 BUILT_IN_SETJMP_RECEIVER,
6756 "__builtin_setjmp_receiver", ECF_NOTHROW);
6757
6758 ftype = build_function_type (ptr_type_node, void_list_node);
6759 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
6760 "__builtin_stack_save", ECF_NOTHROW);
6761
6762 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
6763 ftype = build_function_type (void_type_node, tmp);
6764 local_define_builtin ("__builtin_stack_restore", ftype,
6765 BUILT_IN_STACK_RESTORE,
6766 "__builtin_stack_restore", ECF_NOTHROW);
6767
6768 ftype = build_function_type (void_type_node, void_list_node);
6769 local_define_builtin ("__builtin_profile_func_enter", ftype,
6770 BUILT_IN_PROFILE_FUNC_ENTER, "profile_func_enter", 0);
6771 local_define_builtin ("__builtin_profile_func_exit", ftype,
6772 BUILT_IN_PROFILE_FUNC_EXIT, "profile_func_exit", 0);
6773
6774 /* Complex multiplication and division. These are handled as builtins
6775 rather than optabs because emit_library_call_value doesn't support
6776 complex. Further, we can do slightly better with folding these
6777 beasties if the real and complex parts of the arguments are separate. */
6778 {
6779 enum machine_mode mode;
6780
6781 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
6782 {
6783 char mode_name_buf[4], *q;
6784 const char *p;
6785 enum built_in_function mcode, dcode;
6786 tree type, inner_type;
6787
6788 type = lang_hooks.types.type_for_mode (mode, 0);
6789 if (type == NULL)
6790 continue;
6791 inner_type = TREE_TYPE (type);
6792
6793 tmp = tree_cons (NULL_TREE, inner_type, void_list_node);
6794 tmp = tree_cons (NULL_TREE, inner_type, tmp);
6795 tmp = tree_cons (NULL_TREE, inner_type, tmp);
6796 tmp = tree_cons (NULL_TREE, inner_type, tmp);
6797 ftype = build_function_type (type, tmp);
6798
6799 mcode = BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT;
6800 dcode = BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT;
6801
6802 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
6803 *q = TOLOWER (*p);
6804 *q = '\0';
6805
6806 built_in_names[mcode] = concat ("__mul", mode_name_buf, "3", NULL);
6807 local_define_builtin (built_in_names[mcode], ftype, mcode,
6808 built_in_names[mcode], ECF_CONST | ECF_NOTHROW);
6809
6810 built_in_names[dcode] = concat ("__div", mode_name_buf, "3", NULL);
6811 local_define_builtin (built_in_names[dcode], ftype, dcode,
6812 built_in_names[dcode], ECF_CONST | ECF_NOTHROW);
6813 }
6814 }
6815 }
6816
6817 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
6818 better way.
6819
6820 If we requested a pointer to a vector, build up the pointers that
6821 we stripped off while looking for the inner type. Similarly for
6822 return values from functions.
6823
6824 The argument TYPE is the top of the chain, and BOTTOM is the
6825 new type which we will point to. */
6826
6827 tree
reconstruct_complex_type(tree type,tree bottom)6828 reconstruct_complex_type (tree type, tree bottom)
6829 {
6830 tree inner, outer;
6831
6832 if (POINTER_TYPE_P (type))
6833 {
6834 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
6835 outer = build_pointer_type (inner);
6836 }
6837 else if (TREE_CODE (type) == ARRAY_TYPE)
6838 {
6839 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
6840 outer = build_array_type (inner, TYPE_DOMAIN (type));
6841 }
6842 else if (TREE_CODE (type) == FUNCTION_TYPE)
6843 {
6844 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
6845 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
6846 }
6847 else if (TREE_CODE (type) == METHOD_TYPE)
6848 {
6849 tree argtypes;
6850 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
6851 /* The build_method_type_directly() routine prepends 'this' to argument list,
6852 so we must compensate by getting rid of it. */
6853 argtypes = TYPE_ARG_TYPES (type);
6854 outer = build_method_type_directly (TYPE_METHOD_BASETYPE (type),
6855 inner,
6856 TYPE_ARG_TYPES (type));
6857 TYPE_ARG_TYPES (outer) = argtypes;
6858 }
6859 else
6860 return bottom;
6861
6862 TYPE_READONLY (outer) = TYPE_READONLY (type);
6863 TYPE_VOLATILE (outer) = TYPE_VOLATILE (type);
6864
6865 return outer;
6866 }
6867
6868 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
6869 the inner type. */
6870 tree
build_vector_type_for_mode(tree innertype,enum machine_mode mode)6871 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
6872 {
6873 int nunits;
6874
6875 switch (GET_MODE_CLASS (mode))
6876 {
6877 case MODE_VECTOR_INT:
6878 case MODE_VECTOR_FLOAT:
6879 nunits = GET_MODE_NUNITS (mode);
6880 break;
6881
6882 case MODE_INT:
6883 /* Check that there are no leftover bits. */
6884 gcc_assert (GET_MODE_BITSIZE (mode)
6885 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
6886
6887 nunits = GET_MODE_BITSIZE (mode)
6888 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
6889 break;
6890
6891 default:
6892 gcc_unreachable ();
6893 }
6894
6895 return make_vector_type (innertype, nunits, mode);
6896 }
6897
6898 /* Similarly, but takes the inner type and number of units, which must be
6899 a power of two. */
6900
6901 tree
build_vector_type(tree innertype,int nunits)6902 build_vector_type (tree innertype, int nunits)
6903 {
6904 return make_vector_type (innertype, nunits, VOIDmode);
6905 }
6906
6907
6908 /* Build RESX_EXPR with given REGION_NUMBER. */
6909 tree
build_resx(int region_number)6910 build_resx (int region_number)
6911 {
6912 tree t;
6913 t = build1 (RESX_EXPR, void_type_node,
6914 build_int_cst (NULL_TREE, region_number));
6915 return t;
6916 }
6917
6918 /* Given an initializer INIT, return TRUE if INIT is zero or some
6919 aggregate of zeros. Otherwise return FALSE. */
6920 bool
initializer_zerop(tree init)6921 initializer_zerop (tree init)
6922 {
6923 tree elt;
6924
6925 STRIP_NOPS (init);
6926
6927 switch (TREE_CODE (init))
6928 {
6929 case INTEGER_CST:
6930 return integer_zerop (init);
6931
6932 case REAL_CST:
6933 /* ??? Note that this is not correct for C4X float formats. There,
6934 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
6935 negative exponent. */
6936 return real_zerop (init)
6937 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
6938
6939 case COMPLEX_CST:
6940 return integer_zerop (init)
6941 || (real_zerop (init)
6942 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
6943 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
6944
6945 case VECTOR_CST:
6946 for (elt = TREE_VECTOR_CST_ELTS (init); elt; elt = TREE_CHAIN (elt))
6947 if (!initializer_zerop (TREE_VALUE (elt)))
6948 return false;
6949 return true;
6950
6951 case CONSTRUCTOR:
6952 {
6953 unsigned HOST_WIDE_INT idx;
6954
6955 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
6956 if (!initializer_zerop (elt))
6957 return false;
6958 return true;
6959 }
6960
6961 default:
6962 return false;
6963 }
6964 }
6965
6966 /* Build an empty statement. */
6967
6968 tree
build_empty_stmt(void)6969 build_empty_stmt (void)
6970 {
6971 return build1 (NOP_EXPR, void_type_node, size_zero_node);
6972 }
6973
6974
6975 /* Build an OpenMP clause with code CODE. */
6976
6977 tree
build_omp_clause(enum omp_clause_code code)6978 build_omp_clause (enum omp_clause_code code)
6979 {
6980 tree t;
6981 int size, length;
6982
6983 length = omp_clause_num_ops[code];
6984 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
6985
6986 t = ggc_alloc (size);
6987 memset (t, 0, size);
6988 TREE_SET_CODE (t, OMP_CLAUSE);
6989 OMP_CLAUSE_SET_CODE (t, code);
6990
6991 #ifdef GATHER_STATISTICS
6992 tree_node_counts[(int) omp_clause_kind]++;
6993 tree_node_sizes[(int) omp_clause_kind] += size;
6994 #endif
6995
6996 return t;
6997 }
6998
6999
7000 /* Returns true if it is possible to prove that the index of
7001 an array access REF (an ARRAY_REF expression) falls into the
7002 array bounds. */
7003
7004 bool
in_array_bounds_p(tree ref)7005 in_array_bounds_p (tree ref)
7006 {
7007 tree idx = TREE_OPERAND (ref, 1);
7008 tree min, max;
7009
7010 if (TREE_CODE (idx) != INTEGER_CST)
7011 return false;
7012
7013 min = array_ref_low_bound (ref);
7014 max = array_ref_up_bound (ref);
7015 if (!min
7016 || !max
7017 || TREE_CODE (min) != INTEGER_CST
7018 || TREE_CODE (max) != INTEGER_CST)
7019 return false;
7020
7021 if (tree_int_cst_lt (idx, min)
7022 || tree_int_cst_lt (max, idx))
7023 return false;
7024
7025 return true;
7026 }
7027
7028 /* Returns true if it is possible to prove that the range of
7029 an array access REF (an ARRAY_RANGE_REF expression) falls
7030 into the array bounds. */
7031
7032 bool
range_in_array_bounds_p(tree ref)7033 range_in_array_bounds_p (tree ref)
7034 {
7035 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
7036 tree range_min, range_max, min, max;
7037
7038 range_min = TYPE_MIN_VALUE (domain_type);
7039 range_max = TYPE_MAX_VALUE (domain_type);
7040 if (!range_min
7041 || !range_max
7042 || TREE_CODE (range_min) != INTEGER_CST
7043 || TREE_CODE (range_max) != INTEGER_CST)
7044 return false;
7045
7046 min = array_ref_low_bound (ref);
7047 max = array_ref_up_bound (ref);
7048 if (!min
7049 || !max
7050 || TREE_CODE (min) != INTEGER_CST
7051 || TREE_CODE (max) != INTEGER_CST)
7052 return false;
7053
7054 if (tree_int_cst_lt (range_min, min)
7055 || tree_int_cst_lt (max, range_max))
7056 return false;
7057
7058 return true;
7059 }
7060
7061 /* Return true if T (assumed to be a DECL) is a global variable. */
7062
7063 bool
is_global_var(tree t)7064 is_global_var (tree t)
7065 {
7066 if (MTAG_P (t))
7067 return (TREE_STATIC (t) || MTAG_GLOBAL (t));
7068 else
7069 return (TREE_STATIC (t) || DECL_EXTERNAL (t));
7070 }
7071
7072 /* Return true if T (assumed to be a DECL) must be assigned a memory
7073 location. */
7074
7075 bool
needs_to_live_in_memory(tree t)7076 needs_to_live_in_memory (tree t)
7077 {
7078 return (TREE_ADDRESSABLE (t)
7079 || is_global_var (t)
7080 || (TREE_CODE (t) == RESULT_DECL
7081 && aggregate_value_p (t, current_function_decl)));
7082 }
7083
7084 /* There are situations in which a language considers record types
7085 compatible which have different field lists. Decide if two fields
7086 are compatible. It is assumed that the parent records are compatible. */
7087
7088 bool
fields_compatible_p(tree f1,tree f2)7089 fields_compatible_p (tree f1, tree f2)
7090 {
7091 if (!operand_equal_p (DECL_FIELD_BIT_OFFSET (f1),
7092 DECL_FIELD_BIT_OFFSET (f2), OEP_ONLY_CONST))
7093 return false;
7094
7095 if (!operand_equal_p (DECL_FIELD_OFFSET (f1),
7096 DECL_FIELD_OFFSET (f2), OEP_ONLY_CONST))
7097 return false;
7098
7099 if (!lang_hooks.types_compatible_p (TREE_TYPE (f1), TREE_TYPE (f2)))
7100 return false;
7101
7102 return true;
7103 }
7104
7105 /* Locate within RECORD a field that is compatible with ORIG_FIELD. */
7106
7107 tree
find_compatible_field(tree record,tree orig_field)7108 find_compatible_field (tree record, tree orig_field)
7109 {
7110 tree f;
7111
7112 for (f = TYPE_FIELDS (record); f ; f = TREE_CHAIN (f))
7113 if (TREE_CODE (f) == FIELD_DECL
7114 && fields_compatible_p (f, orig_field))
7115 return f;
7116
7117 /* ??? Why isn't this on the main fields list? */
7118 f = TYPE_VFIELD (record);
7119 if (f && TREE_CODE (f) == FIELD_DECL
7120 && fields_compatible_p (f, orig_field))
7121 return f;
7122
7123 /* ??? We should abort here, but Java appears to do Bad Things
7124 with inherited fields. */
7125 return orig_field;
7126 }
7127
7128 /* Return value of a constant X. */
7129
7130 HOST_WIDE_INT
int_cst_value(tree x)7131 int_cst_value (tree x)
7132 {
7133 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
7134 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
7135 bool negative = ((val >> (bits - 1)) & 1) != 0;
7136
7137 gcc_assert (bits <= HOST_BITS_PER_WIDE_INT);
7138
7139 if (negative)
7140 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
7141 else
7142 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
7143
7144 return val;
7145 }
7146
7147 /* Returns the greatest common divisor of A and B, which must be
7148 INTEGER_CSTs. */
7149
7150 tree
tree_fold_gcd(tree a,tree b)7151 tree_fold_gcd (tree a, tree b)
7152 {
7153 tree a_mod_b;
7154 tree type = TREE_TYPE (a);
7155
7156 gcc_assert (TREE_CODE (a) == INTEGER_CST);
7157 gcc_assert (TREE_CODE (b) == INTEGER_CST);
7158
7159 if (integer_zerop (a))
7160 return b;
7161
7162 if (integer_zerop (b))
7163 return a;
7164
7165 if (tree_int_cst_sgn (a) == -1)
7166 a = fold_build2 (MULT_EXPR, type, a,
7167 build_int_cst (type, -1));
7168
7169 if (tree_int_cst_sgn (b) == -1)
7170 b = fold_build2 (MULT_EXPR, type, b,
7171 build_int_cst (type, -1));
7172
7173 while (1)
7174 {
7175 a_mod_b = fold_build2 (FLOOR_MOD_EXPR, type, a, b);
7176
7177 if (!TREE_INT_CST_LOW (a_mod_b)
7178 && !TREE_INT_CST_HIGH (a_mod_b))
7179 return b;
7180
7181 a = b;
7182 b = a_mod_b;
7183 }
7184 }
7185
7186 /* Returns unsigned variant of TYPE. */
7187
7188 tree
unsigned_type_for(tree type)7189 unsigned_type_for (tree type)
7190 {
7191 if (POINTER_TYPE_P (type))
7192 return lang_hooks.types.unsigned_type (size_type_node);
7193 return lang_hooks.types.unsigned_type (type);
7194 }
7195
7196 /* Returns signed variant of TYPE. */
7197
7198 tree
signed_type_for(tree type)7199 signed_type_for (tree type)
7200 {
7201 if (POINTER_TYPE_P (type))
7202 return lang_hooks.types.signed_type (size_type_node);
7203 return lang_hooks.types.signed_type (type);
7204 }
7205
7206 /* Returns the largest value obtainable by casting something in INNER type to
7207 OUTER type. */
7208
7209 tree
upper_bound_in_type(tree outer,tree inner)7210 upper_bound_in_type (tree outer, tree inner)
7211 {
7212 unsigned HOST_WIDE_INT lo, hi;
7213 unsigned int det = 0;
7214 unsigned oprec = TYPE_PRECISION (outer);
7215 unsigned iprec = TYPE_PRECISION (inner);
7216 unsigned prec;
7217
7218 /* Compute a unique number for every combination. */
7219 det |= (oprec > iprec) ? 4 : 0;
7220 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
7221 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
7222
7223 /* Determine the exponent to use. */
7224 switch (det)
7225 {
7226 case 0:
7227 case 1:
7228 /* oprec <= iprec, outer: signed, inner: don't care. */
7229 prec = oprec - 1;
7230 break;
7231 case 2:
7232 case 3:
7233 /* oprec <= iprec, outer: unsigned, inner: don't care. */
7234 prec = oprec;
7235 break;
7236 case 4:
7237 /* oprec > iprec, outer: signed, inner: signed. */
7238 prec = iprec - 1;
7239 break;
7240 case 5:
7241 /* oprec > iprec, outer: signed, inner: unsigned. */
7242 prec = iprec;
7243 break;
7244 case 6:
7245 /* oprec > iprec, outer: unsigned, inner: signed. */
7246 prec = oprec;
7247 break;
7248 case 7:
7249 /* oprec > iprec, outer: unsigned, inner: unsigned. */
7250 prec = iprec;
7251 break;
7252 default:
7253 gcc_unreachable ();
7254 }
7255
7256 /* Compute 2^^prec - 1. */
7257 if (prec <= HOST_BITS_PER_WIDE_INT)
7258 {
7259 hi = 0;
7260 lo = ((~(unsigned HOST_WIDE_INT) 0)
7261 >> (HOST_BITS_PER_WIDE_INT - prec));
7262 }
7263 else
7264 {
7265 hi = ((~(unsigned HOST_WIDE_INT) 0)
7266 >> (2 * HOST_BITS_PER_WIDE_INT - prec));
7267 lo = ~(unsigned HOST_WIDE_INT) 0;
7268 }
7269
7270 return build_int_cst_wide (outer, lo, hi);
7271 }
7272
7273 /* Returns the smallest value obtainable by casting something in INNER type to
7274 OUTER type. */
7275
7276 tree
lower_bound_in_type(tree outer,tree inner)7277 lower_bound_in_type (tree outer, tree inner)
7278 {
7279 unsigned HOST_WIDE_INT lo, hi;
7280 unsigned oprec = TYPE_PRECISION (outer);
7281 unsigned iprec = TYPE_PRECISION (inner);
7282
7283 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
7284 and obtain 0. */
7285 if (TYPE_UNSIGNED (outer)
7286 /* If we are widening something of an unsigned type, OUTER type
7287 contains all values of INNER type. In particular, both INNER
7288 and OUTER types have zero in common. */
7289 || (oprec > iprec && TYPE_UNSIGNED (inner)))
7290 lo = hi = 0;
7291 else
7292 {
7293 /* If we are widening a signed type to another signed type, we
7294 want to obtain -2^^(iprec-1). If we are keeping the
7295 precision or narrowing to a signed type, we want to obtain
7296 -2^(oprec-1). */
7297 unsigned prec = oprec > iprec ? iprec : oprec;
7298
7299 if (prec <= HOST_BITS_PER_WIDE_INT)
7300 {
7301 hi = ~(unsigned HOST_WIDE_INT) 0;
7302 lo = (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
7303 }
7304 else
7305 {
7306 hi = ((~(unsigned HOST_WIDE_INT) 0)
7307 << (prec - HOST_BITS_PER_WIDE_INT - 1));
7308 lo = 0;
7309 }
7310 }
7311
7312 return build_int_cst_wide (outer, lo, hi);
7313 }
7314
7315 /* Return nonzero if two operands that are suitable for PHI nodes are
7316 necessarily equal. Specifically, both ARG0 and ARG1 must be either
7317 SSA_NAME or invariant. Note that this is strictly an optimization.
7318 That is, callers of this function can directly call operand_equal_p
7319 and get the same result, only slower. */
7320
7321 int
operand_equal_for_phi_arg_p(tree arg0,tree arg1)7322 operand_equal_for_phi_arg_p (tree arg0, tree arg1)
7323 {
7324 if (arg0 == arg1)
7325 return 1;
7326 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
7327 return 0;
7328 return operand_equal_p (arg0, arg1, 0);
7329 }
7330
7331 /* Returns number of zeros at the end of binary representation of X.
7332
7333 ??? Use ffs if available? */
7334
7335 tree
num_ending_zeros(tree x)7336 num_ending_zeros (tree x)
7337 {
7338 unsigned HOST_WIDE_INT fr, nfr;
7339 unsigned num, abits;
7340 tree type = TREE_TYPE (x);
7341
7342 if (TREE_INT_CST_LOW (x) == 0)
7343 {
7344 num = HOST_BITS_PER_WIDE_INT;
7345 fr = TREE_INT_CST_HIGH (x);
7346 }
7347 else
7348 {
7349 num = 0;
7350 fr = TREE_INT_CST_LOW (x);
7351 }
7352
7353 for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2)
7354 {
7355 nfr = fr >> abits;
7356 if (nfr << abits == fr)
7357 {
7358 num += abits;
7359 fr = nfr;
7360 }
7361 }
7362
7363 if (num > TYPE_PRECISION (type))
7364 num = TYPE_PRECISION (type);
7365
7366 return build_int_cst_type (type, num);
7367 }
7368
7369
7370 #define WALK_SUBTREE(NODE) \
7371 do \
7372 { \
7373 result = walk_tree (&(NODE), func, data, pset); \
7374 if (result) \
7375 return result; \
7376 } \
7377 while (0)
7378
7379 /* This is a subroutine of walk_tree that walks field of TYPE that are to
7380 be walked whenever a type is seen in the tree. Rest of operands and return
7381 value are as for walk_tree. */
7382
7383 static tree
walk_type_fields(tree type,walk_tree_fn func,void * data,struct pointer_set_t * pset)7384 walk_type_fields (tree type, walk_tree_fn func, void *data,
7385 struct pointer_set_t *pset)
7386 {
7387 tree result = NULL_TREE;
7388
7389 switch (TREE_CODE (type))
7390 {
7391 case POINTER_TYPE:
7392 case REFERENCE_TYPE:
7393 /* We have to worry about mutually recursive pointers. These can't
7394 be written in C. They can in Ada. It's pathological, but
7395 there's an ACATS test (c38102a) that checks it. Deal with this
7396 by checking if we're pointing to another pointer, that one
7397 points to another pointer, that one does too, and we have no htab.
7398 If so, get a hash table. We check three levels deep to avoid
7399 the cost of the hash table if we don't need one. */
7400 if (POINTER_TYPE_P (TREE_TYPE (type))
7401 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
7402 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
7403 && !pset)
7404 {
7405 result = walk_tree_without_duplicates (&TREE_TYPE (type),
7406 func, data);
7407 if (result)
7408 return result;
7409
7410 break;
7411 }
7412
7413 /* ... fall through ... */
7414
7415 case COMPLEX_TYPE:
7416 WALK_SUBTREE (TREE_TYPE (type));
7417 break;
7418
7419 case METHOD_TYPE:
7420 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
7421
7422 /* Fall through. */
7423
7424 case FUNCTION_TYPE:
7425 WALK_SUBTREE (TREE_TYPE (type));
7426 {
7427 tree arg;
7428
7429 /* We never want to walk into default arguments. */
7430 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
7431 WALK_SUBTREE (TREE_VALUE (arg));
7432 }
7433 break;
7434
7435 case ARRAY_TYPE:
7436 /* Don't follow this nodes's type if a pointer for fear that
7437 we'll have infinite recursion. If we have a PSET, then we
7438 need not fear. */
7439 if (pset
7440 || (!POINTER_TYPE_P (TREE_TYPE (type))
7441 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
7442 WALK_SUBTREE (TREE_TYPE (type));
7443 WALK_SUBTREE (TYPE_DOMAIN (type));
7444 break;
7445
7446 case BOOLEAN_TYPE:
7447 case ENUMERAL_TYPE:
7448 case INTEGER_TYPE:
7449 case REAL_TYPE:
7450 WALK_SUBTREE (TYPE_MIN_VALUE (type));
7451 WALK_SUBTREE (TYPE_MAX_VALUE (type));
7452 break;
7453
7454 case OFFSET_TYPE:
7455 WALK_SUBTREE (TREE_TYPE (type));
7456 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
7457 break;
7458
7459 default:
7460 break;
7461 }
7462
7463 return NULL_TREE;
7464 }
7465
7466 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
7467 called with the DATA and the address of each sub-tree. If FUNC returns a
7468 non-NULL value, the traversal is stopped, and the value returned by FUNC
7469 is returned. If PSET is non-NULL it is used to record the nodes visited,
7470 and to avoid visiting a node more than once. */
7471
7472 tree
walk_tree(tree * tp,walk_tree_fn func,void * data,struct pointer_set_t * pset)7473 walk_tree (tree *tp, walk_tree_fn func, void *data, struct pointer_set_t *pset)
7474 {
7475 enum tree_code code;
7476 int walk_subtrees;
7477 tree result;
7478
7479 #define WALK_SUBTREE_TAIL(NODE) \
7480 do \
7481 { \
7482 tp = & (NODE); \
7483 goto tail_recurse; \
7484 } \
7485 while (0)
7486
7487 tail_recurse:
7488 /* Skip empty subtrees. */
7489 if (!*tp)
7490 return NULL_TREE;
7491
7492 /* Don't walk the same tree twice, if the user has requested
7493 that we avoid doing so. */
7494 if (pset && pointer_set_insert (pset, *tp))
7495 return NULL_TREE;
7496
7497 /* Call the function. */
7498 walk_subtrees = 1;
7499 result = (*func) (tp, &walk_subtrees, data);
7500
7501 /* If we found something, return it. */
7502 if (result)
7503 return result;
7504
7505 code = TREE_CODE (*tp);
7506
7507 /* Even if we didn't, FUNC may have decided that there was nothing
7508 interesting below this point in the tree. */
7509 if (!walk_subtrees)
7510 {
7511 /* But we still need to check our siblings. */
7512 if (code == TREE_LIST)
7513 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
7514 else if (code == OMP_CLAUSE)
7515 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
7516 else
7517 return NULL_TREE;
7518 }
7519
7520 result = lang_hooks.tree_inlining.walk_subtrees (tp, &walk_subtrees, func,
7521 data, pset);
7522 if (result || ! walk_subtrees)
7523 return result;
7524
7525 switch (code)
7526 {
7527 case ERROR_MARK:
7528 case IDENTIFIER_NODE:
7529 case INTEGER_CST:
7530 case REAL_CST:
7531 case VECTOR_CST:
7532 case STRING_CST:
7533 case BLOCK:
7534 case PLACEHOLDER_EXPR:
7535 case SSA_NAME:
7536 case FIELD_DECL:
7537 case RESULT_DECL:
7538 /* None of these have subtrees other than those already walked
7539 above. */
7540 break;
7541
7542 case TREE_LIST:
7543 WALK_SUBTREE (TREE_VALUE (*tp));
7544 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
7545 break;
7546
7547 case TREE_VEC:
7548 {
7549 int len = TREE_VEC_LENGTH (*tp);
7550
7551 if (len == 0)
7552 break;
7553
7554 /* Walk all elements but the first. */
7555 while (--len)
7556 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
7557
7558 /* Now walk the first one as a tail call. */
7559 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
7560 }
7561
7562 case COMPLEX_CST:
7563 WALK_SUBTREE (TREE_REALPART (*tp));
7564 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
7565
7566 case CONSTRUCTOR:
7567 {
7568 unsigned HOST_WIDE_INT idx;
7569 constructor_elt *ce;
7570
7571 for (idx = 0;
7572 VEC_iterate(constructor_elt, CONSTRUCTOR_ELTS (*tp), idx, ce);
7573 idx++)
7574 WALK_SUBTREE (ce->value);
7575 }
7576 break;
7577
7578 case SAVE_EXPR:
7579 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
7580
7581 case BIND_EXPR:
7582 {
7583 tree decl;
7584 for (decl = BIND_EXPR_VARS (*tp); decl; decl = TREE_CHAIN (decl))
7585 {
7586 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
7587 into declarations that are just mentioned, rather than
7588 declared; they don't really belong to this part of the tree.
7589 And, we can see cycles: the initializer for a declaration
7590 can refer to the declaration itself. */
7591 WALK_SUBTREE (DECL_INITIAL (decl));
7592 WALK_SUBTREE (DECL_SIZE (decl));
7593 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
7594 }
7595 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
7596 }
7597
7598 case STATEMENT_LIST:
7599 {
7600 tree_stmt_iterator i;
7601 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
7602 WALK_SUBTREE (*tsi_stmt_ptr (i));
7603 }
7604 break;
7605
7606 case OMP_CLAUSE:
7607 switch (OMP_CLAUSE_CODE (*tp))
7608 {
7609 case OMP_CLAUSE_PRIVATE:
7610 case OMP_CLAUSE_SHARED:
7611 case OMP_CLAUSE_FIRSTPRIVATE:
7612 case OMP_CLAUSE_LASTPRIVATE:
7613 case OMP_CLAUSE_COPYIN:
7614 case OMP_CLAUSE_COPYPRIVATE:
7615 case OMP_CLAUSE_IF:
7616 case OMP_CLAUSE_NUM_THREADS:
7617 case OMP_CLAUSE_SCHEDULE:
7618 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
7619 /* FALLTHRU */
7620
7621 case OMP_CLAUSE_NOWAIT:
7622 case OMP_CLAUSE_ORDERED:
7623 case OMP_CLAUSE_DEFAULT:
7624 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
7625
7626 case OMP_CLAUSE_REDUCTION:
7627 {
7628 int i;
7629 for (i = 0; i < 4; i++)
7630 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
7631 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
7632 }
7633
7634 default:
7635 gcc_unreachable ();
7636 }
7637 break;
7638
7639 case TARGET_EXPR:
7640 {
7641 int i, len;
7642
7643 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
7644 But, we only want to walk once. */
7645 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
7646 for (i = 0; i < len; ++i)
7647 WALK_SUBTREE (TREE_OPERAND (*tp, i));
7648 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
7649 }
7650
7651 case DECL_EXPR:
7652 /* Walk into various fields of the type that it's defining. We only
7653 want to walk into these fields of a type in this case. Note that
7654 decls get walked as part of the processing of a BIND_EXPR.
7655
7656 ??? Precisely which fields of types that we are supposed to walk in
7657 this case vs. the normal case aren't well defined. */
7658 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL
7659 && TREE_CODE (TREE_TYPE (DECL_EXPR_DECL (*tp))) != ERROR_MARK)
7660 {
7661 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
7662
7663 /* Call the function for the type. See if it returns anything or
7664 doesn't want us to continue. If we are to continue, walk both
7665 the normal fields and those for the declaration case. */
7666 result = (*func) (type_p, &walk_subtrees, data);
7667 if (result || !walk_subtrees)
7668 return NULL_TREE;
7669
7670 result = walk_type_fields (*type_p, func, data, pset);
7671 if (result)
7672 return result;
7673
7674 /* If this is a record type, also walk the fields. */
7675 if (TREE_CODE (*type_p) == RECORD_TYPE
7676 || TREE_CODE (*type_p) == UNION_TYPE
7677 || TREE_CODE (*type_p) == QUAL_UNION_TYPE)
7678 {
7679 tree field;
7680
7681 for (field = TYPE_FIELDS (*type_p); field;
7682 field = TREE_CHAIN (field))
7683 {
7684 /* We'd like to look at the type of the field, but we can
7685 easily get infinite recursion. So assume it's pointed
7686 to elsewhere in the tree. Also, ignore things that
7687 aren't fields. */
7688 if (TREE_CODE (field) != FIELD_DECL)
7689 continue;
7690
7691 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
7692 WALK_SUBTREE (DECL_SIZE (field));
7693 WALK_SUBTREE (DECL_SIZE_UNIT (field));
7694 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
7695 WALK_SUBTREE (DECL_QUALIFIER (field));
7696 }
7697 }
7698
7699 WALK_SUBTREE (TYPE_SIZE (*type_p));
7700 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
7701 }
7702 /* FALLTHRU */
7703
7704 default:
7705 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
7706 {
7707 int i, len;
7708
7709 /* Walk over all the sub-trees of this operand. */
7710 len = TREE_CODE_LENGTH (code);
7711
7712 /* Go through the subtrees. We need to do this in forward order so
7713 that the scope of a FOR_EXPR is handled properly. */
7714 if (len)
7715 {
7716 for (i = 0; i < len - 1; ++i)
7717 WALK_SUBTREE (TREE_OPERAND (*tp, i));
7718 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
7719 }
7720 }
7721
7722 /* If this is a type, walk the needed fields in the type. */
7723 else if (TYPE_P (*tp))
7724 return walk_type_fields (*tp, func, data, pset);
7725 break;
7726 }
7727
7728 /* We didn't find what we were looking for. */
7729 return NULL_TREE;
7730
7731 #undef WALK_SUBTREE_TAIL
7732 }
7733 #undef WALK_SUBTREE
7734
7735 /* Like walk_tree, but does not walk duplicate nodes more than once. */
7736
7737 tree
walk_tree_without_duplicates(tree * tp,walk_tree_fn func,void * data)7738 walk_tree_without_duplicates (tree *tp, walk_tree_fn func, void *data)
7739 {
7740 tree result;
7741 struct pointer_set_t *pset;
7742
7743 pset = pointer_set_create ();
7744 result = walk_tree (tp, func, data, pset);
7745 pointer_set_destroy (pset);
7746 return result;
7747 }
7748
7749
7750 /* Return true if STMT is an empty statement or contains nothing but
7751 empty statements. */
7752
7753 bool
empty_body_p(tree stmt)7754 empty_body_p (tree stmt)
7755 {
7756 tree_stmt_iterator i;
7757 tree body;
7758
7759 if (IS_EMPTY_STMT (stmt))
7760 return true;
7761 else if (TREE_CODE (stmt) == BIND_EXPR)
7762 body = BIND_EXPR_BODY (stmt);
7763 else if (TREE_CODE (stmt) == STATEMENT_LIST)
7764 body = stmt;
7765 else
7766 return false;
7767
7768 for (i = tsi_start (body); !tsi_end_p (i); tsi_next (&i))
7769 if (!empty_body_p (tsi_stmt (i)))
7770 return false;
7771
7772 return true;
7773 }
7774
7775 #include "gt-tree.h"
7776