xref: /openbsd/gnu/usr.bin/gcc/gcc/cp/init.c (revision a67f0032)
1 /* Handle initialization things in C++.
2    Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3    1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4    Contributed by Michael Tiemann (tiemann@cygnus.com)
5 
6 This file is part of GNU CC.
7 
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12 
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 GNU General Public License for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING.  If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA.  */
22 
23 /* High-level class interface.  */
24 
25 #include "config.h"
26 #include "system.h"
27 #include "tree.h"
28 #include "rtl.h"
29 #include "expr.h"
30 #include "cp-tree.h"
31 #include "flags.h"
32 #include "output.h"
33 #include "except.h"
34 #include "toplev.h"
35 #include "diagnostic.h"
36 #include "ggc.h"
37 
38 static void construct_virtual_base (tree, tree);
39 static void expand_aggr_init_1 PARAMS ((tree, tree, tree, tree, int));
40 static void expand_default_init PARAMS ((tree, tree, tree, tree, int));
41 static tree build_vec_delete_1 PARAMS ((tree, tree, tree, special_function_kind, int));
42 static void perform_member_init (tree, tree);
43 static tree build_builtin_delete_call PARAMS ((tree));
44 static int member_init_ok_or_else PARAMS ((tree, tree, tree));
45 static void expand_virtual_init PARAMS ((tree, tree));
46 static tree sort_mem_initializers (tree, tree);
47 static tree initializing_context PARAMS ((tree));
48 static void expand_cleanup_for_base PARAMS ((tree, tree));
49 static tree get_temp_regvar PARAMS ((tree, tree));
50 static tree dfs_initialize_vtbl_ptrs PARAMS ((tree, void *));
51 static tree build_default_init PARAMS ((tree, tree));
52 static tree build_new_1	PARAMS ((tree));
53 static tree get_cookie_size PARAMS ((tree));
54 static tree build_dtor_call PARAMS ((tree, special_function_kind, int));
55 static tree build_field_list PARAMS ((tree, tree, int *));
56 static tree build_vtbl_address PARAMS ((tree));
57 
58 /* We are about to generate some complex initialization code.
59    Conceptually, it is all a single expression.  However, we may want
60    to include conditionals, loops, and other such statement-level
61    constructs.  Therefore, we build the initialization code inside a
62    statement-expression.  This function starts such an expression.
63    STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
64    pass them back to finish_init_stmts when the expression is
65    complete.  */
66 
67 void
begin_init_stmts(stmt_expr_p,compound_stmt_p)68 begin_init_stmts (stmt_expr_p, compound_stmt_p)
69      tree *stmt_expr_p;
70      tree *compound_stmt_p;
71 {
72   if (building_stmt_tree ())
73     *stmt_expr_p = begin_stmt_expr ();
74   else
75     *stmt_expr_p = begin_global_stmt_expr ();
76 
77   if (building_stmt_tree ())
78     *compound_stmt_p = begin_compound_stmt (/*has_no_scope=*/1);
79 }
80 
81 /* Finish out the statement-expression begun by the previous call to
82    begin_init_stmts.  Returns the statement-expression itself.  */
83 
84 tree
finish_init_stmts(stmt_expr,compound_stmt)85 finish_init_stmts (stmt_expr, compound_stmt)
86      tree stmt_expr;
87      tree compound_stmt;
88 
89 {
90   if (building_stmt_tree ())
91     finish_compound_stmt (/*has_no_scope=*/1, compound_stmt);
92 
93   if (building_stmt_tree ())
94     {
95       stmt_expr = finish_stmt_expr (stmt_expr);
96       STMT_EXPR_NO_SCOPE (stmt_expr) = true;
97     }
98   else
99     stmt_expr = finish_global_stmt_expr (stmt_expr);
100 
101   /* To avoid spurious warnings about unused values, we set
102      TREE_USED.  */
103   if (stmt_expr)
104     TREE_USED (stmt_expr) = 1;
105 
106   return stmt_expr;
107 }
108 
109 /* Constructors */
110 
111 /* Called from initialize_vtbl_ptrs via dfs_walk.  BINFO is the base
112    which we want to initialize the vtable pointer for, DATA is
113    TREE_LIST whose TREE_VALUE is the this ptr expression.  */
114 
115 static tree
dfs_initialize_vtbl_ptrs(binfo,data)116 dfs_initialize_vtbl_ptrs (binfo, data)
117      tree binfo;
118      void *data;
119 {
120   if ((!BINFO_PRIMARY_P (binfo) || TREE_VIA_VIRTUAL (binfo))
121       && CLASSTYPE_VFIELDS (BINFO_TYPE (binfo)))
122     {
123       tree base_ptr = TREE_VALUE ((tree) data);
124 
125       base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1);
126 
127       expand_virtual_init (binfo, base_ptr);
128     }
129 
130   SET_BINFO_MARKED (binfo);
131 
132   return NULL_TREE;
133 }
134 
135 /* Initialize all the vtable pointers in the object pointed to by
136    ADDR.  */
137 
138 void
initialize_vtbl_ptrs(addr)139 initialize_vtbl_ptrs (addr)
140      tree addr;
141 {
142   tree list;
143   tree type;
144 
145   type = TREE_TYPE (TREE_TYPE (addr));
146   list = build_tree_list (type, addr);
147 
148   /* Walk through the hierarchy, initializing the vptr in each base
149      class.  We do these in pre-order because we can't find the virtual
150      bases for a class until we've initialized the vtbl for that
151      class.  */
152   dfs_walk_real (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs,
153 		 NULL, dfs_unmarked_real_bases_queue_p, list);
154   dfs_walk (TYPE_BINFO (type), dfs_unmark,
155 	    dfs_marked_real_bases_queue_p, type);
156 }
157 
158 /* Return an expression for the zero-initialization of an object with
159    type T.  This expression will either be a constant (in the case
160    that T is a scalar), or a CONSTRUCTOR (in the case that T is an
161    aggregate).  In either case, the value can be used as DECL_INITIAL
162    for a decl of the indicated TYPE; it is a valid static initializer.
163    If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS is the
164    number of elements in the array.  If STATIC_STORAGE_P is TRUE,
165    initializers are only generated for entities for which
166    zero-initialization does not simply mean filling the storage with
167    zero bytes.  */
168 
169 tree
build_zero_init(tree type,tree nelts,bool static_storage_p)170 build_zero_init (tree type, tree nelts, bool static_storage_p)
171 {
172   tree init = NULL_TREE;
173 
174   /* [dcl.init]
175 
176      To zero-initialization storage for an object of type T means:
177 
178      -- if T is a scalar type, the storage is set to the value of zero
179         converted to T.
180 
181      -- if T is a non-union class type, the storage for each nonstatic
182         data member and each base-class subobject is zero-initialized.
183 
184      -- if T is a union type, the storage for its first data member is
185         zero-initialized.
186 
187      -- if T is an array type, the storage for each element is
188         zero-initialized.
189 
190      -- if T is a reference type, no initialization is performed.  */
191 
192   my_friendly_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST,
193 		      20030618);
194 
195   if (type == error_mark_node)
196     ;
197   else if (static_storage_p && zero_init_p (type))
198     /* In order to save space, we do not explicitly build initializers
199        for items that do not need them.  GCC's semantics are that
200        items with static storage duration that are not otherwise
201        initialized are initialized to zero.  */
202     ;
203   else if (SCALAR_TYPE_P (type))
204     init = convert (type, integer_zero_node);
205   else if (CLASS_TYPE_P (type))
206     {
207       tree field;
208       tree inits;
209 
210       /* Build a constructor to contain the initializations.  */
211       init = build (CONSTRUCTOR, type, NULL_TREE, NULL_TREE);
212       /* Iterate over the fields, building initializations.  */
213       inits = NULL_TREE;
214       for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
215 	{
216 	  if (TREE_CODE (field) != FIELD_DECL)
217 	    continue;
218 
219 	  /* Note that for class types there will be FIELD_DECLs
220 	     corresponding to base classes as well.  Thus, iterating
221 	     over TYPE_FIELDs will result in correct initialization of
222 	     all of the subobjects.  */
223 	  if (static_storage_p && !zero_init_p (TREE_TYPE (field)))
224 	    inits = tree_cons (field,
225 			       build_zero_init (TREE_TYPE (field),
226 						/*nelts=*/NULL_TREE,
227 						static_storage_p),
228 			       inits);
229 
230 	  /* For unions, only the first field is initialized.  */
231 	  if (TREE_CODE (type) == UNION_TYPE)
232 	    break;
233 	}
234       CONSTRUCTOR_ELTS (init) = nreverse (inits);
235     }
236   else if (TREE_CODE (type) == ARRAY_TYPE)
237     {
238       tree max_index;
239       tree inits;
240 
241       /* Build a constructor to contain the initializations.  */
242       init = build (CONSTRUCTOR, type, NULL_TREE, NULL_TREE);
243       /* Iterate over the array elements, building initializations.  */
244       inits = NULL_TREE;
245       max_index = nelts ? nelts : array_type_nelts (type);
246       my_friendly_assert (TREE_CODE (max_index) == INTEGER_CST, 20030618);
247 
248       /* A zero-sized array, which is accepted as an extension, will
249          have an upper bound of -1.  */
250       if (!tree_int_cst_equal (max_index, integer_minus_one_node))
251  	{
252  	  tree elt_init = build_zero_init (TREE_TYPE (type),
253  					   /*nelts=*/NULL_TREE,
254  					   static_storage_p);
255  	  tree range = build (RANGE_EXPR,
256 			      sizetype, size_zero_node, max_index);
257 
258  	  inits = tree_cons (range, elt_init, inits);
259  	}
260 
261       CONSTRUCTOR_ELTS (init) = nreverse (inits);
262     }
263   else if (TREE_CODE (type) == REFERENCE_TYPE)
264     ;
265   else
266     abort ();
267 
268   /* In all cases, the initializer is a constant.  */
269   if (init)
270     TREE_CONSTANT (init) = 1;
271 
272   return init;
273 }
274 
275 /* Build an expression for the default-initialization of an object of
276    the indicated TYPE.  If NELTS is non-NULL, and TYPE is an
277    ARRAY_TYPE, NELTS is the number of elements in the array.  If
278    initialization of TYPE requires calling constructors, this function
279    returns NULL_TREE; the caller is responsible for arranging for the
280    constructors to be called.  */
281 
282 static tree
build_default_init(type,nelts)283 build_default_init (type, nelts)
284      tree type;
285      tree nelts;
286 {
287   /* [dcl.init]:
288 
289     To default-initialize an object of type T means:
290 
291     --if T is a non-POD class type (clause _class_), the default construc-
292       tor  for  T is called (and the initialization is ill-formed if T has
293       no accessible default constructor);
294 
295     --if T is an array type, each element is default-initialized;
296 
297     --otherwise, the storage for the object is zero-initialized.
298 
299     A program that calls for default-initialization of an entity of refer-
300     ence type is ill-formed.  */
301 
302   /* If TYPE_NEEDS_CONSTRUCTING is true, the caller is responsible for
303      performing the initialization.  This is confusing in that some
304      non-PODs do not have TYPE_NEEDS_CONSTRUCTING set.  (For example,
305      a class with a pointer-to-data member as a non-static data member
306      does not have TYPE_NEEDS_CONSTRUCTING set.)  Therefore, we end up
307      passing non-PODs to build_zero_init below, which is contrary to
308      the semantics quoted above from [dcl.init].
309 
310      It happens, however, that the behavior of the constructor the
311      standard says we should have generated would be precisely the
312      same as that obtained by calling build_zero_init below, so things
313      work out OK.  */
314   if (TYPE_NEEDS_CONSTRUCTING (type)
315       || (nelts && TREE_CODE (nelts) != INTEGER_CST))
316     return NULL_TREE;
317 
318   /* At this point, TYPE is either a POD class type, an array of POD
319      classes, or something even more inoccuous.  */
320   return build_zero_init (type, nelts, /*static_storage_p=*/false);
321 }
322 
323 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
324    arguments.  If TREE_LIST is void_type_node, an empty initializer
325    list was given; if NULL_TREE no initializer was given.  */
326 
327 static void
perform_member_init(tree member,tree init)328 perform_member_init (tree member, tree init)
329 {
330   tree decl;
331   tree type = TREE_TYPE (member);
332   bool explicit;
333 
334   explicit = (init != NULL_TREE);
335 
336   /* Effective C++ rule 12 requires that all data members be
337      initialized.  */
338   if (warn_ecpp && !explicit && TREE_CODE (type) != ARRAY_TYPE)
339     warning ("`%D' should be initialized in the member initialization "
340 	     "list",
341 	     member);
342 
343   if (init == void_type_node)
344     init = NULL_TREE;
345 
346   /* Get an lvalue for the data member.  */
347   decl = build_class_member_access_expr (current_class_ref, member,
348 					 /*access_path=*/NULL_TREE,
349 					 /*preserve_reference=*/true);
350   if (decl == error_mark_node)
351     return;
352 
353   /* Deal with this here, as we will get confused if we try to call the
354      assignment op for an anonymous union.  This can happen in a
355      synthesized copy constructor.  */
356   if (ANON_AGGR_TYPE_P (type))
357     {
358       if (init)
359 	{
360 	  init = build (INIT_EXPR, type, decl, TREE_VALUE (init));
361 	  finish_expr_stmt (init);
362 	}
363     }
364   else if (TYPE_NEEDS_CONSTRUCTING (type)
365 	   || (init && TYPE_HAS_CONSTRUCTOR (type)))
366     {
367       if (explicit
368 	  && TREE_CODE (type) == ARRAY_TYPE
369 	  && init != NULL_TREE
370 	  && TREE_CHAIN (init) == NULL_TREE
371 	  && TREE_CODE (TREE_TYPE (TREE_VALUE (init))) == ARRAY_TYPE)
372 	{
373 	  /* Initialization of one array from another.  */
374 	  finish_expr_stmt (build_vec_init (decl, NULL_TREE, TREE_VALUE (init),
375 					    /* from_array=*/1));
376 	}
377       else
378 	finish_expr_stmt (build_aggr_init (decl, init, 0));
379     }
380   else
381     {
382       if (init == NULL_TREE)
383 	{
384 	  if (explicit)
385 	    {
386 	      init = build_default_init (type, /*nelts=*/NULL_TREE);
387 	      if (TREE_CODE (type) == REFERENCE_TYPE)
388 		warning
389 		  ("default-initialization of `%#D', which has reference type",
390 		   member);
391 	    }
392 	  /* member traversal: note it leaves init NULL */
393 	  else if (TREE_CODE (type) == REFERENCE_TYPE)
394 	    pedwarn ("uninitialized reference member `%D'", member);
395           else if (CP_TYPE_CONST_P (type))
396             pedwarn ("uninitialized member '%D' with 'const' type '%T'",
397                      member, type);
398 	}
399       else if (TREE_CODE (init) == TREE_LIST)
400 	{
401 	  /* There was an explicit member initialization.  Do some
402 	     work in that case.  */
403 	  if (TREE_CHAIN (init))
404 	    {
405 	      warning ("initializer list treated as compound expression");
406 	      init = build_compound_expr (init);
407 	    }
408 	  else
409 	    init = TREE_VALUE (init);
410 	}
411 
412       if (init)
413 	finish_expr_stmt (build_modify_expr (decl, INIT_EXPR, init));
414     }
415 
416   if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
417     {
418       tree expr;
419 
420       expr = build_class_member_access_expr (current_class_ref, member,
421 					     /*access_path=*/NULL_TREE,
422 					     /*preserve_reference=*/false);
423       expr = build_delete (type, expr, sfk_complete_destructor,
424 			   LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0);
425 
426       if (expr != error_mark_node)
427 	finish_eh_cleanup (expr);
428     }
429 }
430 
431 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
432    the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order.  */
433 
434 static tree
build_field_list(t,list,uses_unions_p)435 build_field_list (t, list, uses_unions_p)
436      tree t;
437      tree list;
438      int *uses_unions_p;
439 {
440   tree fields;
441 
442   *uses_unions_p = 0;
443 
444   /* Note whether or not T is a union.  */
445   if (TREE_CODE (t) == UNION_TYPE)
446     *uses_unions_p = 1;
447 
448   for (fields = TYPE_FIELDS (t); fields; fields = TREE_CHAIN (fields))
449     {
450       /* Skip CONST_DECLs for enumeration constants and so forth.  */
451       if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
452 	continue;
453 
454       /* Keep track of whether or not any fields are unions.  */
455       if (TREE_CODE (TREE_TYPE (fields)) == UNION_TYPE)
456 	*uses_unions_p = 1;
457 
458       /* For an anonymous struct or union, we must recursively
459 	 consider the fields of the anonymous type.  They can be
460 	 directly initialized from the constructor.  */
461       if (ANON_AGGR_TYPE_P (TREE_TYPE (fields)))
462 	{
463 	  /* Add this field itself.  Synthesized copy constructors
464 	     initialize the entire aggregate.  */
465 	  list = tree_cons (fields, NULL_TREE, list);
466 	  /* And now add the fields in the anonymous aggregate.  */
467 	  list = build_field_list (TREE_TYPE (fields), list,
468 				   uses_unions_p);
469 	}
470       /* Add this field.  */
471       else if (DECL_NAME (fields))
472 	list = tree_cons (fields, NULL_TREE, list);
473     }
474 
475   return list;
476 }
477 
478 /* The MEM_INITS are a TREE_LIST.  The TREE_PURPOSE of each list gives
479    a FIELD_DECL or BINFO in T that needs initialization.  The
480    TREE_VALUE gives the initializer, or list of initializer arguments.
481 
482    Return a TREE_LIST containing all of the initializations required
483    for T, in the order in which they should be performed.  The output
484    list has the same format as the input.  */
485 
486 static tree
sort_mem_initializers(tree t,tree mem_inits)487 sort_mem_initializers (tree t, tree mem_inits)
488 {
489   tree init;
490   tree base;
491   tree sorted_inits;
492   tree next_subobject;
493   int i;
494   int uses_unions_p;
495 
496   /* Build up a list of initializations.  The TREE_PURPOSE of entry
497      will be the subobject (a FIELD_DECL or BINFO) to initialize.  The
498      TREE_VALUE will be the constructor arguments, or NULL if no
499      explicit initialization was provided.  */
500   sorted_inits = NULL_TREE;
501   /* Process the virtual bases.  */
502   for (base = CLASSTYPE_VBASECLASSES (t); base; base = TREE_CHAIN (base))
503     sorted_inits = tree_cons (TREE_VALUE (base), NULL_TREE, sorted_inits);
504   /* Process the direct bases.  */
505   for (i = 0; i < CLASSTYPE_N_BASECLASSES (t); ++i)
506     {
507       base = BINFO_BASETYPE (TYPE_BINFO (t), i);
508       if (!TREE_VIA_VIRTUAL (base))
509 	sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
510     }
511   /* Process the non-static data members.  */
512   sorted_inits = build_field_list (t, sorted_inits, &uses_unions_p);
513   /* Reverse the entire list of initializations, so that they are in
514      the order that they will actually be performed.  */
515   sorted_inits = nreverse (sorted_inits);
516 
517   /* If the user presented the initializers in an order different from
518      that in which they will actually occur, we issue a warning.  Keep
519      track of the next subobject which can be explicitly initialized
520      without issuing a warning.  */
521   next_subobject = sorted_inits;
522 
523   /* Go through the explicit initializers, filling in TREE_PURPOSE in
524      the SORTED_INITS.  */
525   for (init = mem_inits; init; init = TREE_CHAIN (init))
526     {
527       tree subobject;
528       tree subobject_init;
529 
530       subobject = TREE_PURPOSE (init);
531 
532       /* If the explicit initializers are in sorted order, then
533 	 SUBOBJECT will be NEXT_SUBOBJECT, or something following
534 	 it.  */
535       for (subobject_init = next_subobject;
536 	   subobject_init;
537 	   subobject_init = TREE_CHAIN (subobject_init))
538 	if (TREE_PURPOSE (subobject_init) == subobject)
539 	  break;
540 
541       /* Issue a warning if the explicit initializer order does not
542 	 match that which will actually occur.  */
543       if (warn_reorder && !subobject_init)
544 	{
545 	  if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
546 	    cp_warning_at ("`%D' will be initialized after",
547 			   TREE_PURPOSE (next_subobject));
548 	  else
549 	    warning ("base `%T' will be initialized after",
550 		     TREE_PURPOSE (next_subobject));
551 	  if (TREE_CODE (subobject) == FIELD_DECL)
552 	    cp_warning_at ("  `%#D'", subobject);
553 	  else
554 	    warning ("  base `%T'", subobject);
555 	  warning ("  when initialized here");
556 	}
557 
558       /* Look again, from the beginning of the list.  */
559       if (!subobject_init)
560 	{
561 	  subobject_init = sorted_inits;
562 	  while (TREE_PURPOSE (subobject_init) != subobject)
563 	    subobject_init = TREE_CHAIN (subobject_init);
564 	}
565 
566       /* It is invalid to initialize the same subobject more than
567 	 once.  */
568       if (TREE_VALUE (subobject_init))
569 	{
570 	  if (TREE_CODE (subobject) == FIELD_DECL)
571 	    error ("multiple initializations given for `%D'", subobject);
572 	  else
573 	    error ("multiple initializations given for base `%T'",
574 		   subobject);
575 	}
576 
577       /* Record the initialization.  */
578       TREE_VALUE (subobject_init) = TREE_VALUE (init);
579       next_subobject = subobject_init;
580     }
581 
582   /* [class.base.init]
583 
584      If a ctor-initializer specifies more than one mem-initializer for
585      multiple members of the same union (including members of
586      anonymous unions), the ctor-initializer is ill-formed.  */
587   if (uses_unions_p)
588     {
589       tree last_field = NULL_TREE;
590       for (init = sorted_inits; init; init = TREE_CHAIN (init))
591 	{
592 	  tree field;
593 	  tree field_type;
594 	  int done;
595 
596 	  /* Skip uninitialized members and base classes.  */
597 	  if (!TREE_VALUE (init)
598 	      || TREE_CODE (TREE_PURPOSE (init)) != FIELD_DECL)
599 	    continue;
600 	  /* See if this field is a member of a union, or a member of a
601 	     structure contained in a union, etc.  */
602 	  field = TREE_PURPOSE (init);
603 	  for (field_type = DECL_CONTEXT (field);
604 	       !same_type_p (field_type, t);
605 	       field_type = TYPE_CONTEXT (field_type))
606 	    if (TREE_CODE (field_type) == UNION_TYPE)
607 	      break;
608 	  /* If this field is not a member of a union, skip it.  */
609 	  if (TREE_CODE (field_type) != UNION_TYPE)
610 	    continue;
611 
612 	  /* It's only an error if we have two initializers for the same
613 	     union type.  */
614 	  if (!last_field)
615 	    {
616 	      last_field = field;
617 	      continue;
618 	    }
619 
620 	  /* See if LAST_FIELD and the field initialized by INIT are
621 	     members of the same union.  If so, there's a problem,
622 	     unless they're actually members of the same structure
623 	     which is itself a member of a union.  For example, given:
624 
625 	       union { struct { int i; int j; }; };
626 
627 	     initializing both `i' and `j' makes sense.  */
628 	  field_type = DECL_CONTEXT (field);
629 	  done = 0;
630 	  do
631 	    {
632 	      tree last_field_type;
633 
634 	      last_field_type = DECL_CONTEXT (last_field);
635 	      while (1)
636 		{
637 		  if (same_type_p (last_field_type, field_type))
638 		    {
639 		      if (TREE_CODE (field_type) == UNION_TYPE)
640 			error ("initializations for multiple members of `%T'",
641 				  last_field_type);
642 		      done = 1;
643 		      break;
644 		    }
645 
646 		  if (same_type_p (last_field_type, t))
647 		    break;
648 
649 		  last_field_type = TYPE_CONTEXT (last_field_type);
650 		}
651 
652 	      /* If we've reached the outermost class, then we're
653 		 done.  */
654 	      if (same_type_p (field_type, t))
655 		break;
656 
657 	      field_type = TYPE_CONTEXT (field_type);
658 	    }
659 	  while (!done);
660 
661 	  last_field = field;
662 	}
663     }
664 
665   return sorted_inits;
666 }
667 
668 /* Initialize all bases and members of CURRENT_CLASS_TYPE.  MEM_INITS
669    is a TREE_LIST giving the explicit mem-initializer-list for the
670    constructor.  The TREE_PURPOSE of each entry is a subobject (a
671    FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE.  The TREE_VALUE
672    is a TREE_LIST giving the arguments to the constructor or
673    void_type_node for an empty list of arguments.  */
674 
675 void
emit_mem_initializers(tree mem_inits)676 emit_mem_initializers (tree mem_inits)
677 {
678   /* Sort the mem-initializers into the order in which the
679      initializations should be performed.  */
680   mem_inits = sort_mem_initializers (current_class_type, mem_inits);
681 
682   in_base_initializer = 1;
683 
684   /* Initialize base classes.  */
685   while (mem_inits
686 	 && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL)
687     {
688       tree subobject = TREE_PURPOSE (mem_inits);
689       tree arguments = TREE_VALUE (mem_inits);
690 
691       /* If these initializations are taking place in a copy
692 	 constructor, the base class should probably be explicitly
693 	 initialized.  */
694       if (extra_warnings && !arguments
695 	  && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
696 	  && TYPE_NEEDS_CONSTRUCTING (BINFO_TYPE (subobject)))
697 	warning ("base class `%#T' should be explicitly initialized in the "
698 		 "copy constructor",
699 		 BINFO_TYPE (subobject));
700 
701       /* If an explicit -- but empty -- initializer list was present,
702 	 treat it just like default initialization at this point.  */
703       if (arguments == void_type_node)
704 	arguments = NULL_TREE;
705 
706       /* Initialize the base.  */
707       if (TREE_VIA_VIRTUAL (subobject))
708 	construct_virtual_base (subobject, arguments);
709       else
710 	{
711 	  tree base_addr;
712 
713 	  base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
714 				       subobject, 1);
715 	  expand_aggr_init_1 (subobject, NULL_TREE,
716 			      build_indirect_ref (base_addr, NULL),
717 			      arguments,
718 			      LOOKUP_NORMAL);
719 	  expand_cleanup_for_base (subobject, NULL_TREE);
720 	}
721 
722       mem_inits = TREE_CHAIN (mem_inits);
723     }
724   in_base_initializer = 0;
725 
726   /* Initialize the vptrs.  */
727   initialize_vtbl_ptrs (current_class_ptr);
728 
729   /* Initialize the data members.  */
730   while (mem_inits)
731     {
732       perform_member_init (TREE_PURPOSE (mem_inits),
733 			   TREE_VALUE (mem_inits));
734       mem_inits = TREE_CHAIN (mem_inits);
735     }
736 }
737 
738 /* Returns the address of the vtable (i.e., the value that should be
739    assigned to the vptr) for BINFO.  */
740 
741 static tree
build_vtbl_address(binfo)742 build_vtbl_address (binfo)
743      tree binfo;
744 {
745   tree binfo_for = binfo;
746   tree vtbl;
747 
748   if (BINFO_VPTR_INDEX (binfo) && TREE_VIA_VIRTUAL (binfo)
749       && BINFO_PRIMARY_P (binfo))
750     /* If this is a virtual primary base, then the vtable we want to store
751        is that for the base this is being used as the primary base of.  We
752        can't simply skip the initialization, because we may be expanding the
753        inits of a subobject constructor where the virtual base layout
754        can be different.  */
755     while (BINFO_PRIMARY_BASE_OF (binfo_for))
756       binfo_for = BINFO_PRIMARY_BASE_OF (binfo_for);
757 
758   /* Figure out what vtable BINFO's vtable is based on, and mark it as
759      used.  */
760   vtbl = get_vtbl_decl_for_binfo (binfo_for);
761   assemble_external (vtbl);
762   TREE_USED (vtbl) = 1;
763 
764   /* Now compute the address to use when initializing the vptr.  */
765   vtbl = BINFO_VTABLE (binfo_for);
766   if (TREE_CODE (vtbl) == VAR_DECL)
767     {
768       vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
769       TREE_CONSTANT (vtbl) = 1;
770     }
771 
772   return vtbl;
773 }
774 
775 /* This code sets up the virtual function tables appropriate for
776    the pointer DECL.  It is a one-ply initialization.
777 
778    BINFO is the exact type that DECL is supposed to be.  In
779    multiple inheritance, this might mean "C's A" if C : A, B.  */
780 
781 static void
expand_virtual_init(binfo,decl)782 expand_virtual_init (binfo, decl)
783      tree binfo, decl;
784 {
785   tree vtbl, vtbl_ptr;
786   tree vtt_index;
787 
788   /* Compute the initializer for vptr.  */
789   vtbl = build_vtbl_address (binfo);
790 
791   /* We may get this vptr from a VTT, if this is a subobject
792      constructor or subobject destructor.  */
793   vtt_index = BINFO_VPTR_INDEX (binfo);
794   if (vtt_index)
795     {
796       tree vtbl2;
797       tree vtt_parm;
798 
799       /* Compute the value to use, when there's a VTT.  */
800       vtt_parm = current_vtt_parm;
801       vtbl2 = build (PLUS_EXPR,
802 		     TREE_TYPE (vtt_parm),
803 		     vtt_parm,
804 		     vtt_index);
805       vtbl2 = build1 (INDIRECT_REF, TREE_TYPE (vtbl), vtbl2);
806 
807       /* The actual initializer is the VTT value only in the subobject
808 	 constructor.  In maybe_clone_body we'll substitute NULL for
809 	 the vtt_parm in the case of the non-subobject constructor.  */
810       vtbl = build (COND_EXPR,
811 		    TREE_TYPE (vtbl),
812 		    build (EQ_EXPR, boolean_type_node,
813 			   current_in_charge_parm, integer_zero_node),
814 		    vtbl2,
815 		    vtbl);
816     }
817 
818   /* Compute the location of the vtpr.  */
819   vtbl_ptr = build_vfield_ref (build_indirect_ref (decl, NULL),
820 			       TREE_TYPE (binfo));
821   my_friendly_assert (vtbl_ptr != error_mark_node, 20010730);
822 
823   /* Assign the vtable to the vptr.  */
824   vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0);
825   finish_expr_stmt (build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl));
826 }
827 
828 /* If an exception is thrown in a constructor, those base classes already
829    constructed must be destroyed.  This function creates the cleanup
830    for BINFO, which has just been constructed.  If FLAG is non-NULL,
831    it is a DECL which is nonzero when this base needs to be
832    destroyed.  */
833 
834 static void
expand_cleanup_for_base(binfo,flag)835 expand_cleanup_for_base (binfo, flag)
836      tree binfo;
837      tree flag;
838 {
839   tree expr;
840 
841   if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
842     return;
843 
844   /* Call the destructor.  */
845   expr = build_special_member_call (current_class_ref,
846 				    base_dtor_identifier,
847 				    NULL_TREE,
848 				    binfo,
849 				    LOOKUP_NORMAL | LOOKUP_NONVIRTUAL);
850   if (flag)
851     expr = fold (build (COND_EXPR, void_type_node,
852 			c_common_truthvalue_conversion (flag),
853 			expr, integer_zero_node));
854 
855   finish_eh_cleanup (expr);
856 }
857 
858 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
859    constructor.  */
860 
861 static void
construct_virtual_base(tree vbase,tree arguments)862 construct_virtual_base (tree vbase, tree arguments)
863 {
864   tree inner_if_stmt;
865   tree compound_stmt;
866   tree exp;
867   tree flag;
868 
869   /* If there are virtual base classes with destructors, we need to
870      emit cleanups to destroy them if an exception is thrown during
871      the construction process.  These exception regions (i.e., the
872      period during which the cleanups must occur) begin from the time
873      the construction is complete to the end of the function.  If we
874      create a conditional block in which to initialize the
875      base-classes, then the cleanup region for the virtual base begins
876      inside a block, and ends outside of that block.  This situation
877      confuses the sjlj exception-handling code.  Therefore, we do not
878      create a single conditional block, but one for each
879      initialization.  (That way the cleanup regions always begin
880      in the outer block.)  We trust the back-end to figure out
881      that the FLAG will not change across initializations, and
882      avoid doing multiple tests.  */
883   flag = TREE_CHAIN (DECL_ARGUMENTS (current_function_decl));
884   inner_if_stmt = begin_if_stmt ();
885   finish_if_stmt_cond (flag, inner_if_stmt);
886   compound_stmt = begin_compound_stmt (/*has_no_scope=*/1);
887 
888   /* Compute the location of the virtual base.  If we're
889      constructing virtual bases, then we must be the most derived
890      class.  Therefore, we don't have to look up the virtual base;
891      we already know where it is.  */
892   exp = convert_to_base_statically (current_class_ref, vbase);
893 
894   expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
895 		      LOOKUP_COMPLAIN);
896   finish_compound_stmt (/*has_no_scope=*/1, compound_stmt);
897   finish_then_clause (inner_if_stmt);
898   finish_if_stmt ();
899 
900   expand_cleanup_for_base (vbase, flag);
901 }
902 
903 /* Find the context in which this FIELD can be initialized.  */
904 
905 static tree
initializing_context(field)906 initializing_context (field)
907      tree field;
908 {
909   tree t = DECL_CONTEXT (field);
910 
911   /* Anonymous union members can be initialized in the first enclosing
912      non-anonymous union context.  */
913   while (t && ANON_AGGR_TYPE_P (t))
914     t = TYPE_CONTEXT (t);
915   return t;
916 }
917 
918 /* Function to give error message if member initialization specification
919    is erroneous.  FIELD is the member we decided to initialize.
920    TYPE is the type for which the initialization is being performed.
921    FIELD must be a member of TYPE.
922 
923    MEMBER_NAME is the name of the member.  */
924 
925 static int
member_init_ok_or_else(field,type,member_name)926 member_init_ok_or_else (field, type, member_name)
927      tree field;
928      tree type;
929      tree member_name;
930 {
931   if (field == error_mark_node)
932     return 0;
933   if (field == NULL_TREE || initializing_context (field) != type)
934     {
935       error ("class `%T' does not have any field named `%D'", type,
936 		member_name);
937       return 0;
938     }
939   if (TREE_STATIC (field))
940     {
941       error ("field `%#D' is static; the only point of initialization is its definition",
942 		field);
943       return 0;
944     }
945 
946   return 1;
947 }
948 
949 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
950    is a _TYPE node or TYPE_DECL which names a base for that type.
951    Check the validity of NAME, and return either the base _TYPE, base
952    binfo, or the FIELD_DECL of the member.  If NAME is invalid, return
953    NULL_TREE and issue a diagnostic.
954 
955    An old style unnamed direct single base construction is permitted,
956    where NAME is NULL.  */
957 
958 tree
expand_member_init(tree name)959 expand_member_init (tree name)
960 {
961   tree basetype;
962   tree field;
963 
964   if (!current_class_ref)
965     return NULL_TREE;
966 
967   if (!name)
968     {
969       /* This is an obsolete unnamed base class initializer.  The
970 	 parser will already have warned about its use.  */
971       switch (CLASSTYPE_N_BASECLASSES (current_class_type))
972 	{
973 	case 0:
974 	  error ("unnamed initializer for `%T', which has no base classes",
975 		 current_class_type);
976 	  return NULL_TREE;
977 	case 1:
978 	  basetype = TYPE_BINFO_BASETYPE (current_class_type, 0);
979 	  break;
980 	default:
981 	  error ("unnamed initializer for `%T', which uses multiple inheritance",
982 		 current_class_type);
983 	  return NULL_TREE;
984       }
985     }
986   else if (TYPE_P (name))
987     {
988       basetype = TYPE_MAIN_VARIANT (name);
989       name = TYPE_NAME (name);
990     }
991   else if (TREE_CODE (name) == TYPE_DECL)
992     basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
993   else
994     basetype = NULL_TREE;
995 
996   if (basetype)
997     {
998       tree binfo;
999 
1000       if (current_template_parms)
1001 	return basetype;
1002 
1003       binfo = lookup_base (current_class_type, basetype,
1004 			   ba_ignore, NULL);
1005       if (binfo)
1006 	{
1007 	  if (TREE_VIA_VIRTUAL (binfo))
1008 	    binfo = binfo_for_vbase (basetype, current_class_type);
1009 	  else if (BINFO_INHERITANCE_CHAIN (binfo)
1010 		   != TYPE_BINFO (current_class_type))
1011 	    binfo = NULL_TREE;
1012 	}
1013       if (!binfo)
1014 	{
1015 	  if (TYPE_USES_VIRTUAL_BASECLASSES (current_class_type))
1016 	    error ("type `%D' is not a direct or virtual base of `%T'",
1017 		   name, current_class_type);
1018 	  else
1019 	    error ("type `%D' is not a direct base of `%T'",
1020 		   name, current_class_type);
1021 	  return NULL_TREE;
1022 	}
1023 
1024       if (binfo)
1025 	return binfo;
1026     }
1027   else
1028     {
1029       if (TREE_CODE (name) == IDENTIFIER_NODE)
1030 	field = lookup_field (current_class_type, name, 1, 0);
1031       else
1032 	field = name;
1033 
1034       if (member_init_ok_or_else (field, current_class_type, name))
1035 	return field;
1036     }
1037 
1038   return NULL_TREE;
1039 }
1040 
1041 /* This is like `expand_member_init', only it stores one aggregate
1042    value into another.
1043 
1044    INIT comes in two flavors: it is either a value which
1045    is to be stored in EXP, or it is a parameter list
1046    to go to a constructor, which will operate on EXP.
1047    If INIT is not a parameter list for a constructor, then set
1048    LOOKUP_ONLYCONVERTING.
1049    If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1050    the initializer, if FLAGS is 0, then it is the (init) form.
1051    If `init' is a CONSTRUCTOR, then we emit a warning message,
1052    explaining that such initializations are invalid.
1053 
1054    If INIT resolves to a CALL_EXPR which happens to return
1055    something of the type we are looking for, then we know
1056    that we can safely use that call to perform the
1057    initialization.
1058 
1059    The virtual function table pointer cannot be set up here, because
1060    we do not really know its type.
1061 
1062    This never calls operator=().
1063 
1064    When initializing, nothing is CONST.
1065 
1066    A default copy constructor may have to be used to perform the
1067    initialization.
1068 
1069    A constructor or a conversion operator may have to be used to
1070    perform the initialization, but not both, as it would be ambiguous.  */
1071 
1072 tree
build_aggr_init(exp,init,flags)1073 build_aggr_init (exp, init, flags)
1074      tree exp, init;
1075      int flags;
1076 {
1077   tree stmt_expr;
1078   tree compound_stmt;
1079   int destroy_temps;
1080   tree type = TREE_TYPE (exp);
1081   int was_const = TREE_READONLY (exp);
1082   int was_volatile = TREE_THIS_VOLATILE (exp);
1083 
1084   if (init == error_mark_node)
1085     return error_mark_node;
1086 
1087   TREE_READONLY (exp) = 0;
1088   TREE_THIS_VOLATILE (exp) = 0;
1089 
1090   if (init && TREE_CODE (init) != TREE_LIST)
1091     flags |= LOOKUP_ONLYCONVERTING;
1092 
1093   if (TREE_CODE (type) == ARRAY_TYPE)
1094     {
1095       /* Must arrange to initialize each element of EXP
1096 	 from elements of INIT.  */
1097       tree itype = init ? TREE_TYPE (init) : NULL_TREE;
1098 
1099       if (init && !itype)
1100 	{
1101 	  /* Handle bad initializers like:
1102 	     class COMPLEX {
1103 	     public:
1104 	       double re, im;
1105 	       COMPLEX(double r = 0.0, double i = 0.0) {re = r; im = i;};
1106 	       ~COMPLEX() {};
1107 	     };
1108 
1109 	     int main(int argc, char **argv) {
1110 	       COMPLEX zees(1.0, 0.0)[10];
1111 	     }
1112 	  */
1113 	  error ("bad array initializer");
1114 	  return error_mark_node;
1115 	}
1116       if (cp_type_quals (type) != TYPE_UNQUALIFIED)
1117 	TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
1118       if (itype && cp_type_quals (itype) != TYPE_UNQUALIFIED)
1119 	TREE_TYPE (init) = TYPE_MAIN_VARIANT (itype);
1120       stmt_expr = build_vec_init (exp, NULL_TREE, init,
1121 				  init && same_type_p (TREE_TYPE (init),
1122 						       TREE_TYPE (exp)));
1123       TREE_READONLY (exp) = was_const;
1124       TREE_THIS_VOLATILE (exp) = was_volatile;
1125       TREE_TYPE (exp) = type;
1126       if (init)
1127 	TREE_TYPE (init) = itype;
1128       return stmt_expr;
1129     }
1130 
1131   if (TREE_CODE (exp) == VAR_DECL || TREE_CODE (exp) == PARM_DECL)
1132     /* just know that we've seen something for this node */
1133     TREE_USED (exp) = 1;
1134 
1135   TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
1136   begin_init_stmts (&stmt_expr, &compound_stmt);
1137   destroy_temps = stmts_are_full_exprs_p ();
1138   current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1139   expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1140 		      init, LOOKUP_NORMAL|flags);
1141   stmt_expr = finish_init_stmts (stmt_expr, compound_stmt);
1142   current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1143   TREE_TYPE (exp) = type;
1144   TREE_READONLY (exp) = was_const;
1145   TREE_THIS_VOLATILE (exp) = was_volatile;
1146 
1147   return stmt_expr;
1148 }
1149 
1150 /* Like build_aggr_init, but not just for aggregates.  */
1151 
1152 tree
build_init(decl,init,flags)1153 build_init (decl, init, flags)
1154      tree decl, init;
1155      int flags;
1156 {
1157   tree expr;
1158 
1159   if (IS_AGGR_TYPE (TREE_TYPE (decl))
1160       || TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE)
1161     expr = build_aggr_init (decl, init, flags);
1162   else
1163     expr = build (INIT_EXPR, TREE_TYPE (decl), decl, init);
1164 
1165   return expr;
1166 }
1167 
1168 static void
expand_default_init(binfo,true_exp,exp,init,flags)1169 expand_default_init (binfo, true_exp, exp, init, flags)
1170      tree binfo;
1171      tree true_exp, exp;
1172      tree init;
1173      int flags;
1174 {
1175   tree type = TREE_TYPE (exp);
1176   tree ctor_name;
1177 
1178   /* It fails because there may not be a constructor which takes
1179      its own type as the first (or only parameter), but which does
1180      take other types via a conversion.  So, if the thing initializing
1181      the expression is a unit element of type X, first try X(X&),
1182      followed by initialization by X.  If neither of these work
1183      out, then look hard.  */
1184   tree rval;
1185   tree parms;
1186 
1187   if (init && TREE_CODE (init) != TREE_LIST
1188       && (flags & LOOKUP_ONLYCONVERTING))
1189     {
1190       /* Base subobjects should only get direct-initialization.  */
1191       if (true_exp != exp)
1192 	abort ();
1193 
1194       if (flags & DIRECT_BIND)
1195 	/* Do nothing.  We hit this in two cases:  Reference initialization,
1196 	   where we aren't initializing a real variable, so we don't want
1197 	   to run a new constructor; and catching an exception, where we
1198 	   have already built up the constructor call so we could wrap it
1199 	   in an exception region.  */;
1200       else if (TREE_CODE (init) == CONSTRUCTOR
1201 	       && TREE_HAS_CONSTRUCTOR (init))
1202 	{
1203 	  /* A brace-enclosed initializer for an aggregate.  */
1204 	  my_friendly_assert (CP_AGGREGATE_TYPE_P (type), 20021016);
1205 	  init = digest_init (type, init, (tree *)NULL);
1206 	}
1207       else
1208 	init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP, flags);
1209 
1210       if (TREE_CODE (init) == TRY_CATCH_EXPR)
1211 	/* We need to protect the initialization of a catch parm
1212 	   with a call to terminate(), which shows up as a TRY_CATCH_EXPR
1213 	   around the TARGET_EXPR for the copy constructor.  See
1214 	   expand_start_catch_block.  */
1215 	TREE_OPERAND (init, 0) = build (INIT_EXPR, TREE_TYPE (exp), exp,
1216 					TREE_OPERAND (init, 0));
1217       else
1218 	init = build (INIT_EXPR, TREE_TYPE (exp), exp, init);
1219       TREE_SIDE_EFFECTS (init) = 1;
1220       finish_expr_stmt (init);
1221       return;
1222     }
1223 
1224   if (init == NULL_TREE
1225       || (TREE_CODE (init) == TREE_LIST && ! TREE_TYPE (init)))
1226     {
1227       parms = init;
1228       if (parms)
1229 	init = TREE_VALUE (parms);
1230     }
1231   else
1232     parms = build_tree_list (NULL_TREE, init);
1233 
1234   if (true_exp == exp)
1235     ctor_name = complete_ctor_identifier;
1236   else
1237     ctor_name = base_ctor_identifier;
1238 
1239   rval = build_special_member_call (exp, ctor_name, parms, binfo, flags);
1240   if (TREE_SIDE_EFFECTS (rval))
1241     {
1242       if (building_stmt_tree ())
1243 	finish_expr_stmt (rval);
1244       else
1245 	genrtl_expr_stmt (rval);
1246     }
1247 }
1248 
1249 /* This function is responsible for initializing EXP with INIT
1250    (if any).
1251 
1252    BINFO is the binfo of the type for who we are performing the
1253    initialization.  For example, if W is a virtual base class of A and B,
1254    and C : A, B.
1255    If we are initializing B, then W must contain B's W vtable, whereas
1256    were we initializing C, W must contain C's W vtable.
1257 
1258    TRUE_EXP is nonzero if it is the true expression being initialized.
1259    In this case, it may be EXP, or may just contain EXP.  The reason we
1260    need this is because if EXP is a base element of TRUE_EXP, we
1261    don't necessarily know by looking at EXP where its virtual
1262    baseclass fields should really be pointing.  But we do know
1263    from TRUE_EXP.  In constructors, we don't know anything about
1264    the value being initialized.
1265 
1266    FLAGS is just passes to `build_method_call'.  See that function for
1267    its description.  */
1268 
1269 static void
expand_aggr_init_1(binfo,true_exp,exp,init,flags)1270 expand_aggr_init_1 (binfo, true_exp, exp, init, flags)
1271      tree binfo;
1272      tree true_exp, exp;
1273      tree init;
1274      int flags;
1275 {
1276   tree type = TREE_TYPE (exp);
1277 
1278   my_friendly_assert (init != error_mark_node && type != error_mark_node, 211);
1279   my_friendly_assert (building_stmt_tree (), 20021010);
1280 
1281   /* Use a function returning the desired type to initialize EXP for us.
1282      If the function is a constructor, and its first argument is
1283      NULL_TREE, know that it was meant for us--just slide exp on
1284      in and expand the constructor.  Constructors now come
1285      as TARGET_EXPRs.  */
1286 
1287   if (init && TREE_CODE (exp) == VAR_DECL
1288       && TREE_CODE (init) == CONSTRUCTOR
1289       && TREE_HAS_CONSTRUCTOR (init))
1290     {
1291       /* If store_init_value returns NULL_TREE, the INIT has been
1292 	 record in the DECL_INITIAL for EXP.  That means there's
1293 	 nothing more we have to do.  */
1294       init = store_init_value (exp, init);
1295       if (init)
1296 	finish_expr_stmt (init);
1297       return;
1298     }
1299 
1300   /* We know that expand_default_init can handle everything we want
1301      at this point.  */
1302   expand_default_init (binfo, true_exp, exp, init, flags);
1303 }
1304 
1305 /* Report an error if TYPE is not a user-defined, aggregate type.  If
1306    OR_ELSE is nonzero, give an error message.  */
1307 
1308 int
is_aggr_type(type,or_else)1309 is_aggr_type (type, or_else)
1310      tree type;
1311      int or_else;
1312 {
1313   if (type == error_mark_node)
1314     return 0;
1315 
1316   if (! IS_AGGR_TYPE (type)
1317       && TREE_CODE (type) != TEMPLATE_TYPE_PARM
1318       && TREE_CODE (type) != BOUND_TEMPLATE_TEMPLATE_PARM)
1319     {
1320       if (or_else)
1321 	error ("`%T' is not an aggregate type", type);
1322       return 0;
1323     }
1324   return 1;
1325 }
1326 
1327 /* Like is_aggr_typedef, but returns typedef if successful.  */
1328 
1329 tree
get_aggr_from_typedef(name,or_else)1330 get_aggr_from_typedef (name, or_else)
1331      tree name;
1332      int or_else;
1333 {
1334   tree type;
1335 
1336   if (name == error_mark_node)
1337     return NULL_TREE;
1338 
1339   if (IDENTIFIER_HAS_TYPE_VALUE (name))
1340     type = IDENTIFIER_TYPE_VALUE (name);
1341   else
1342     {
1343       if (or_else)
1344 	error ("`%T' fails to be an aggregate typedef", name);
1345       return NULL_TREE;
1346     }
1347 
1348   if (! IS_AGGR_TYPE (type)
1349       && TREE_CODE (type) != TEMPLATE_TYPE_PARM
1350       && TREE_CODE (type) != BOUND_TEMPLATE_TEMPLATE_PARM)
1351     {
1352       if (or_else)
1353 	error ("type `%T' is of non-aggregate type", type);
1354       return NULL_TREE;
1355     }
1356   return type;
1357 }
1358 
1359 tree
get_type_value(name)1360 get_type_value (name)
1361      tree name;
1362 {
1363   if (name == error_mark_node)
1364     return NULL_TREE;
1365 
1366   if (IDENTIFIER_HAS_TYPE_VALUE (name))
1367     return IDENTIFIER_TYPE_VALUE (name);
1368   else
1369     return NULL_TREE;
1370 }
1371 
1372 
1373 /* This code could just as well go in `class.c', but is placed here for
1374    modularity.  */
1375 
1376 /* For an expression of the form TYPE :: NAME (PARMLIST), build
1377    the appropriate function call.  */
1378 
1379 tree
build_member_call(type,name,parmlist)1380 build_member_call (type, name, parmlist)
1381      tree type, name, parmlist;
1382 {
1383   tree t;
1384   tree method_name;
1385   tree fns;
1386   int dtor = 0;
1387   tree basetype_path, decl;
1388 
1389   if (TREE_CODE (name) == TEMPLATE_ID_EXPR
1390       && TREE_CODE (type) == NAMESPACE_DECL)
1391     {
1392       /* 'name' already refers to the decls from the namespace, since we
1393 	 hit do_identifier for template_ids.  */
1394       method_name = TREE_OPERAND (name, 0);
1395       /* FIXME: Since we don't do independent names right yet, the
1396 	 name might also be a LOOKUP_EXPR. Once we resolve this to a
1397 	 real decl earlier, this can go. This may happen during
1398 	 tsubst'ing.  */
1399       if (TREE_CODE (method_name) == LOOKUP_EXPR)
1400 	{
1401 	  method_name = lookup_namespace_name
1402 	    (type, TREE_OPERAND (method_name, 0));
1403 	  TREE_OPERAND (name, 0) = method_name;
1404 	}
1405       my_friendly_assert (is_overloaded_fn (method_name), 980519);
1406       return finish_call_expr (name, parmlist, /*disallow_virtual=*/true);
1407     }
1408 
1409   if (DECL_P (name))
1410     name = DECL_NAME (name);
1411 
1412   if (TREE_CODE (type) == NAMESPACE_DECL)
1413     return finish_call_expr (lookup_namespace_name (type, name),
1414 			     parmlist,
1415 			     /*disallow_virtual=*/true);
1416 
1417   if (TREE_CODE (name) == TEMPLATE_ID_EXPR)
1418     {
1419       method_name = TREE_OPERAND (name, 0);
1420       if (TREE_CODE (method_name) == COMPONENT_REF)
1421 	method_name = TREE_OPERAND (method_name, 1);
1422       if (is_overloaded_fn (method_name))
1423 	method_name = DECL_NAME (OVL_CURRENT (method_name));
1424       TREE_OPERAND (name, 0) = method_name;
1425     }
1426   else
1427     method_name = name;
1428 
1429   if (TREE_CODE (method_name) == BIT_NOT_EXPR)
1430     {
1431       method_name = TREE_OPERAND (method_name, 0);
1432       dtor = 1;
1433     }
1434 
1435   /* This shouldn't be here, and build_member_call shouldn't appear in
1436      parse.y!  (mrs)  */
1437   if (type && TREE_CODE (type) == IDENTIFIER_NODE
1438       && get_aggr_from_typedef (type, 0) == 0)
1439     {
1440       tree ns = lookup_name (type, 0);
1441       if (ns && TREE_CODE (ns) == NAMESPACE_DECL)
1442 	return finish_call_expr (lookup_namespace_name (ns, name),
1443 				 parmlist,
1444 				 /*disallow_virtual=*/true);
1445     }
1446 
1447   if (type == NULL_TREE || ! is_aggr_type (type, 1))
1448     return error_mark_node;
1449 
1450   /* An operator we did not like.  */
1451   if (name == NULL_TREE)
1452     return error_mark_node;
1453 
1454   if (dtor)
1455     {
1456       error ("cannot call destructor `%T::~%T' without object", type,
1457 		method_name);
1458       return error_mark_node;
1459     }
1460 
1461   decl = maybe_dummy_object (type, &basetype_path);
1462 
1463   fns = lookup_fnfields (basetype_path, method_name, 0);
1464   if (fns)
1465     {
1466       if (TREE_CODE (name) == TEMPLATE_ID_EXPR)
1467 	BASELINK_FUNCTIONS (fns) = build_nt (TEMPLATE_ID_EXPR,
1468 					     BASELINK_FUNCTIONS (fns),
1469 					     TREE_OPERAND (name, 1));
1470       return build_new_method_call (decl, fns, parmlist,
1471 				    /*conversion_path=*/NULL_TREE,
1472 				    LOOKUP_NORMAL|LOOKUP_NONVIRTUAL);
1473     }
1474 
1475   /* Convert 'this' to the specified type to disambiguate conversion
1476      to the function's context.  */
1477   if (decl == current_class_ref
1478       /* ??? this is wrong, but if this conversion is invalid we need to
1479 	 defer it until we know whether we are calling a static or
1480 	 non-static member function.  Be conservative for now.  */
1481       && ACCESSIBLY_UNIQUELY_DERIVED_P (type, current_class_type))
1482     {
1483       basetype_path = NULL_TREE;
1484       decl = build_scoped_ref (decl, type, &basetype_path);
1485       if (decl == error_mark_node)
1486 	return error_mark_node;
1487     }
1488 
1489   if (constructor_name_p (method_name, type))
1490     return build_functional_cast (type, parmlist);
1491   if (TREE_CODE (name) == IDENTIFIER_NODE
1492       && ((t = lookup_field (TYPE_BINFO (type), name, 1, 0))))
1493     {
1494       if (t == error_mark_node)
1495 	return error_mark_node;
1496       if (TREE_CODE (t) == FIELD_DECL)
1497 	{
1498 	  if (is_dummy_object (decl))
1499 	    {
1500 	      error ("invalid use of non-static field `%D'", t);
1501 	      return error_mark_node;
1502 	    }
1503 	  decl = build (COMPONENT_REF, TREE_TYPE (t), decl, t);
1504 	}
1505       else if (TREE_CODE (t) == VAR_DECL)
1506 	decl = t;
1507       else
1508 	{
1509 	  error ("invalid use of member `%D'", t);
1510 	  return error_mark_node;
1511 	}
1512       if (TYPE_LANG_SPECIFIC (TREE_TYPE (decl)))
1513 	return build_opfncall (CALL_EXPR, LOOKUP_NORMAL, decl,
1514 			       parmlist, NULL_TREE);
1515       return build_function_call (decl, parmlist);
1516     }
1517   else
1518     {
1519       error ("no method `%T::%D'", type, name);
1520       return error_mark_node;
1521     }
1522 }
1523 
1524 /* Build a reference to a member of an aggregate.  This is not a
1525    C++ `&', but really something which can have its address taken,
1526    and then act as a pointer to member, for example TYPE :: FIELD
1527    can have its address taken by saying & TYPE :: FIELD.
1528 
1529    @@ Prints out lousy diagnostics for operator <typename>
1530    @@ fields.
1531 
1532    @@ This function should be rewritten and placed in search.c.  */
1533 
1534 tree
build_offset_ref(type,name)1535 build_offset_ref (type, name)
1536      tree type, name;
1537 {
1538   tree decl, t = error_mark_node;
1539   tree member;
1540   tree basebinfo = NULL_TREE;
1541   tree orig_name = name;
1542 
1543   /* class templates can come in as TEMPLATE_DECLs here.  */
1544   if (TREE_CODE (name) == TEMPLATE_DECL)
1545     return name;
1546 
1547   if (processing_template_decl || uses_template_parms (type))
1548     return build_min_nt (SCOPE_REF, type, name);
1549 
1550   if (TREE_CODE (name) == TEMPLATE_ID_EXPR)
1551     {
1552       /* If the NAME is a TEMPLATE_ID_EXPR, we are looking at
1553 	 something like `a.template f<int>' or the like.  For the most
1554 	 part, we treat this just like a.f.  We do remember, however,
1555 	 the template-id that was used.  */
1556       name = TREE_OPERAND (orig_name, 0);
1557 
1558       if (DECL_P (name))
1559 	name = DECL_NAME (name);
1560       else
1561 	{
1562 	  if (TREE_CODE (name) == LOOKUP_EXPR)
1563 	    /* This can happen during tsubst'ing.  */
1564 	    name = TREE_OPERAND (name, 0);
1565 	  else
1566 	    {
1567 	      if (TREE_CODE (name) == COMPONENT_REF)
1568 		name = TREE_OPERAND (name, 1);
1569 	      if (TREE_CODE (name) == OVERLOAD)
1570 		name = DECL_NAME (OVL_CURRENT (name));
1571 	    }
1572 	}
1573 
1574       my_friendly_assert (TREE_CODE (name) == IDENTIFIER_NODE, 0);
1575     }
1576 
1577   if (type == NULL_TREE)
1578     return error_mark_node;
1579 
1580   /* Handle namespace names fully here.  */
1581   if (TREE_CODE (type) == NAMESPACE_DECL)
1582     {
1583       t = lookup_namespace_name (type, name);
1584       if (t == error_mark_node)
1585         return t;
1586       if (TREE_CODE (orig_name) == TEMPLATE_ID_EXPR)
1587         /* Reconstruct the TEMPLATE_ID_EXPR.  */
1588         t = build (TEMPLATE_ID_EXPR, TREE_TYPE (t),
1589                    t, TREE_OPERAND (orig_name, 1));
1590       if (! type_unknown_p (t))
1591 	{
1592 	  mark_used (t);
1593 	  t = convert_from_reference (t);
1594 	}
1595       return t;
1596     }
1597 
1598   if (! is_aggr_type (type, 1))
1599     return error_mark_node;
1600 
1601   if (TREE_CODE (name) == BIT_NOT_EXPR)
1602     {
1603       if (! check_dtor_name (type, name))
1604 	error ("qualified type `%T' does not match destructor name `~%T'",
1605 		  type, TREE_OPERAND (name, 0));
1606       name = dtor_identifier;
1607     }
1608 
1609   if (!COMPLETE_TYPE_P (complete_type (type))
1610       && !TYPE_BEING_DEFINED (type))
1611     {
1612       error ("incomplete type `%T' does not have member `%D'", type,
1613 		name);
1614       return error_mark_node;
1615     }
1616 
1617   decl = maybe_dummy_object (type, &basebinfo);
1618 
1619   if (BASELINK_P (name) || DECL_P (name))
1620     member = name;
1621   else
1622     {
1623       member = lookup_member (basebinfo, name, 1, 0);
1624 
1625       if (member == error_mark_node)
1626 	return error_mark_node;
1627     }
1628 
1629   /* A lot of this logic is now handled in lookup_member.  */
1630   if (member && BASELINK_P (member))
1631     {
1632       /* Go from the TREE_BASELINK to the member function info.  */
1633       tree fnfields = member;
1634       t = BASELINK_FUNCTIONS (fnfields);
1635 
1636       if (TREE_CODE (orig_name) == TEMPLATE_ID_EXPR)
1637 	{
1638 	  /* The FNFIELDS are going to contain functions that aren't
1639 	     necessarily templates, and templates that don't
1640 	     necessarily match the explicit template parameters.  We
1641 	     save all the functions, and the explicit parameters, and
1642 	     then figure out exactly what to instantiate with what
1643 	     arguments in instantiate_type.  */
1644 
1645 	  if (TREE_CODE (t) != OVERLOAD)
1646 	    /* The code in instantiate_type which will process this
1647 	       expects to encounter OVERLOADs, not raw functions.  */
1648 	    t = ovl_cons (t, NULL_TREE);
1649 
1650           t = build (TEMPLATE_ID_EXPR, TREE_TYPE (t), t,
1651 	             TREE_OPERAND (orig_name, 1));
1652 	  t = build (OFFSET_REF, unknown_type_node, decl, t);
1653 
1654           PTRMEM_OK_P (t) = 1;
1655 
1656 	  return t;
1657 	}
1658 
1659       if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
1660 	{
1661 	  /* Get rid of a potential OVERLOAD around it */
1662 	  t = OVL_CURRENT (t);
1663 
1664 	  /* unique functions are handled easily.  */
1665 	  if (!enforce_access (basebinfo, t))
1666 	    return error_mark_node;
1667 	  mark_used (t);
1668 	  if (DECL_STATIC_FUNCTION_P (t))
1669 	    return t;
1670 	  t = build (OFFSET_REF, TREE_TYPE (t), decl, t);
1671 	  PTRMEM_OK_P (t) = 1;
1672 	  return t;
1673 	}
1674 
1675       TREE_TYPE (fnfields) = unknown_type_node;
1676 
1677       t = build (OFFSET_REF, unknown_type_node, decl, fnfields);
1678       PTRMEM_OK_P (t) = 1;
1679       return t;
1680     }
1681 
1682   t = member;
1683 
1684   if (t == NULL_TREE)
1685     {
1686       error ("`%D' is not a member of type `%T'", name, type);
1687       return error_mark_node;
1688     }
1689 
1690   if (TREE_CODE (t) == TYPE_DECL)
1691     {
1692       TREE_USED (t) = 1;
1693       return t;
1694     }
1695   /* static class members and class-specific enum
1696      values can be returned without further ado.  */
1697   if (TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == CONST_DECL)
1698     {
1699       mark_used (t);
1700       return convert_from_reference (t);
1701     }
1702 
1703   if (TREE_CODE (t) == FIELD_DECL && DECL_C_BIT_FIELD (t))
1704     {
1705       error ("invalid pointer to bit-field `%D'", t);
1706       return error_mark_node;
1707     }
1708 
1709   /* static class functions too.  */
1710   if (TREE_CODE (t) == FUNCTION_DECL
1711       && TREE_CODE (TREE_TYPE (t)) == FUNCTION_TYPE)
1712     abort ();
1713 
1714   /* In member functions, the form `type::name' is no longer
1715      equivalent to `this->type::name', at least not until
1716      resolve_offset_ref.  */
1717   t = build (OFFSET_REF, build_offset_type (type, TREE_TYPE (t)), decl, t);
1718   PTRMEM_OK_P (t) = 1;
1719   return t;
1720 }
1721 
1722 /* If a OFFSET_REF made it through to here, then it did
1723    not have its address taken.  */
1724 
1725 tree
resolve_offset_ref(exp)1726 resolve_offset_ref (exp)
1727      tree exp;
1728 {
1729   tree type = TREE_TYPE (exp);
1730   tree base = NULL_TREE;
1731   tree member;
1732   tree basetype, addr;
1733 
1734   if (TREE_CODE (exp) == OFFSET_REF)
1735     {
1736       member = TREE_OPERAND (exp, 1);
1737       base = TREE_OPERAND (exp, 0);
1738     }
1739   else
1740     {
1741       my_friendly_assert (TREE_CODE (type) == OFFSET_TYPE, 214);
1742       if (TYPE_OFFSET_BASETYPE (type) != current_class_type)
1743 	{
1744 	  error ("object missing in use of pointer-to-member construct");
1745 	  return error_mark_node;
1746 	}
1747       member = exp;
1748       type = TREE_TYPE (type);
1749       base = current_class_ref;
1750     }
1751 
1752   if (BASELINK_P (member) || TREE_CODE (member) == TEMPLATE_ID_EXPR)
1753     return build_unary_op (ADDR_EXPR, exp, 0);
1754 
1755   if (TREE_CODE (TREE_TYPE (member)) == METHOD_TYPE)
1756     {
1757       if (!flag_ms_extensions)
1758         /* A single non-static member, make sure we don't allow a
1759            pointer-to-member.  */
1760         exp = ovl_cons (member, NULL_TREE);
1761 
1762       return build_unary_op (ADDR_EXPR, exp, 0);
1763     }
1764 
1765   if ((TREE_CODE (member) == VAR_DECL
1766        && ! TYPE_PTRMEMFUNC_P (TREE_TYPE (member))
1767        && ! TYPE_PTRMEM_P (TREE_TYPE (member)))
1768       || TREE_CODE (TREE_TYPE (member)) == FUNCTION_TYPE)
1769     {
1770       /* These were static members.  */
1771       if (!cxx_mark_addressable (member))
1772 	return error_mark_node;
1773       return member;
1774     }
1775 
1776   if (TREE_CODE (TREE_TYPE (member)) == POINTER_TYPE
1777       && TREE_CODE (TREE_TYPE (TREE_TYPE (member))) == METHOD_TYPE)
1778     return member;
1779 
1780   /* Syntax error can cause a member which should
1781      have been seen as static to be grok'd as non-static.  */
1782   if (TREE_CODE (member) == FIELD_DECL && current_class_ref == NULL_TREE)
1783     {
1784       cp_error_at ("member `%D' is non-static but referenced as a static member",
1785 		   member);
1786       error ("at this point in file");
1787       return error_mark_node;
1788     }
1789 
1790   /* The first case is really just a reference to a member of `this'.  */
1791   if (TREE_CODE (member) == FIELD_DECL
1792       && (base == current_class_ref || is_dummy_object (base)))
1793     {
1794       tree binfo = NULL_TREE;
1795 
1796       /* Try to get to basetype from 'this'; if that doesn't work,
1797          nothing will.  */
1798       base = current_class_ref;
1799 
1800       /* First convert to the intermediate base specified, if appropriate.  */
1801       if (TREE_CODE (exp) == OFFSET_REF && TREE_CODE (type) == OFFSET_TYPE)
1802 	base = build_scoped_ref (base, TYPE_OFFSET_BASETYPE (type), &binfo);
1803 
1804       return build_class_member_access_expr (base, member,
1805 					     /*access_path=*/NULL_TREE,
1806 					     /*preserve_reference=*/false);
1807     }
1808 
1809   /* Ensure that we have an object.  */
1810   if (is_dummy_object (base))
1811     addr = error_mark_node;
1812   else
1813     /* If this is a reference to a member function, then return the
1814        address of the member function (which may involve going
1815        through the object's vtable), otherwise, return an expression
1816        for the dereferenced pointer-to-member construct.  */
1817     addr = build_unary_op (ADDR_EXPR, base, 0);
1818 
1819   if (TYPE_PTRMEM_P (TREE_TYPE (member)))
1820     {
1821       if (addr == error_mark_node)
1822 	{
1823 	  error ("object missing in `%E'", exp);
1824 	  return error_mark_node;
1825 	}
1826 
1827       basetype = TYPE_OFFSET_BASETYPE (TREE_TYPE (TREE_TYPE (member)));
1828       basetype = lookup_base (TREE_TYPE (TREE_TYPE (addr)),
1829 			      basetype, ba_check, NULL);
1830       addr = build_base_path (PLUS_EXPR, addr, basetype, 1);
1831 
1832       member = cp_convert (ptrdiff_type_node, member);
1833 
1834       addr = build (PLUS_EXPR, build_pointer_type (type), addr, member);
1835       return build_indirect_ref (addr, 0);
1836     }
1837   else if (TYPE_PTRMEMFUNC_P (TREE_TYPE (member)))
1838     {
1839       return get_member_function_from_ptrfunc (&addr, member);
1840     }
1841   abort ();
1842   /* NOTREACHED */
1843   return NULL_TREE;
1844 }
1845 
1846 /* If DECL is a `const' declaration, and its value is a known
1847    constant, then return that value.  */
1848 
1849 tree
decl_constant_value(decl)1850 decl_constant_value (decl)
1851      tree decl;
1852 {
1853   if (TREE_READONLY_DECL_P (decl)
1854       && ! TREE_THIS_VOLATILE (decl)
1855       && DECL_INITIAL (decl)
1856       && DECL_INITIAL (decl) != error_mark_node
1857       /* This is invalid if initial value is not constant.
1858 	 If it has either a function call, a memory reference,
1859 	 or a variable, then re-evaluating it could give different results.  */
1860       && TREE_CONSTANT (DECL_INITIAL (decl))
1861       /* Check for cases where this is sub-optimal, even though valid.  */
1862       && TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR)
1863     return DECL_INITIAL (decl);
1864   return decl;
1865 }
1866 
1867 /* Common subroutines of build_new and build_vec_delete.  */
1868 
1869 /* Call the global __builtin_delete to delete ADDR.  */
1870 
1871 static tree
build_builtin_delete_call(addr)1872 build_builtin_delete_call (addr)
1873      tree addr;
1874 {
1875   mark_used (global_delete_fndecl);
1876   return build_call (global_delete_fndecl, build_tree_list (NULL_TREE, addr));
1877 }
1878 
1879 /* Generate a C++ "new" expression. DECL is either a TREE_LIST
1880    (which needs to go through some sort of groktypename) or it
1881    is the name of the class we are newing. INIT is an initialization value.
1882    It is either an EXPRLIST, an EXPR_NO_COMMAS, or something in braces.
1883    If INIT is void_type_node, it means do *not* call a constructor
1884    for this instance.
1885 
1886    For types with constructors, the data returned is initialized
1887    by the appropriate constructor.
1888 
1889    Whether the type has a constructor or not, if it has a pointer
1890    to a virtual function table, then that pointer is set up
1891    here.
1892 
1893    Unless I am mistaken, a call to new () will return initialized
1894    data regardless of whether the constructor itself is private or
1895    not.  NOPE; new fails if the constructor is private (jcm).
1896 
1897    Note that build_new does nothing to assure that any special
1898    alignment requirements of the type are met.  Rather, it leaves
1899    it up to malloc to do the right thing.  Otherwise, folding to
1900    the right alignment cal cause problems if the user tries to later
1901    free the memory returned by `new'.
1902 
1903    PLACEMENT is the `placement' list for user-defined operator new ().  */
1904 
1905 tree
build_new(placement,decl,init,use_global_new)1906 build_new (placement, decl, init, use_global_new)
1907      tree placement;
1908      tree decl, init;
1909      int use_global_new;
1910 {
1911   tree type, rval;
1912   tree nelts = NULL_TREE, t;
1913   int has_array = 0;
1914 
1915   if (decl == error_mark_node)
1916     return error_mark_node;
1917 
1918   if (TREE_CODE (decl) == TREE_LIST)
1919     {
1920       tree absdcl = TREE_VALUE (decl);
1921       tree last_absdcl = NULL_TREE;
1922 
1923       if (current_function_decl
1924 	  && DECL_CONSTRUCTOR_P (current_function_decl))
1925 	my_friendly_assert (immediate_size_expand == 0, 19990926);
1926 
1927       nelts = integer_one_node;
1928 
1929       if (absdcl && TREE_CODE (absdcl) == CALL_EXPR)
1930 	abort ();
1931       while (absdcl && TREE_CODE (absdcl) == INDIRECT_REF)
1932 	{
1933 	  last_absdcl = absdcl;
1934 	  absdcl = TREE_OPERAND (absdcl, 0);
1935 	}
1936 
1937       if (absdcl && TREE_CODE (absdcl) == ARRAY_REF)
1938 	{
1939 	  /* probably meant to be a vec new */
1940 	  tree this_nelts;
1941 
1942 	  while (TREE_OPERAND (absdcl, 0)
1943 		 && TREE_CODE (TREE_OPERAND (absdcl, 0)) == ARRAY_REF)
1944 	    {
1945 	      last_absdcl = absdcl;
1946 	      absdcl = TREE_OPERAND (absdcl, 0);
1947 	    }
1948 
1949 	  has_array = 1;
1950 	  this_nelts = TREE_OPERAND (absdcl, 1);
1951 	  if (this_nelts != error_mark_node)
1952 	    {
1953 	      if (this_nelts == NULL_TREE)
1954 		error ("new of array type fails to specify size");
1955 	      else if (processing_template_decl)
1956 		{
1957 		  nelts = this_nelts;
1958 		  absdcl = TREE_OPERAND (absdcl, 0);
1959 		}
1960 	      else
1961 		{
1962 		  if (build_expr_type_conversion (WANT_INT | WANT_ENUM,
1963 						  this_nelts, 0)
1964 		      == NULL_TREE)
1965 		    pedwarn ("size in array new must have integral type");
1966 
1967 		  this_nelts = save_expr (cp_convert (sizetype, this_nelts));
1968 		  absdcl = TREE_OPERAND (absdcl, 0);
1969 	          if (this_nelts == integer_zero_node)
1970 		    {
1971 		      warning ("zero size array reserves no space");
1972 		      nelts = integer_zero_node;
1973 		    }
1974 		  else
1975 		    nelts = cp_build_binary_op (MULT_EXPR, nelts, this_nelts);
1976 		}
1977 	    }
1978 	  else
1979 	    nelts = integer_zero_node;
1980 	}
1981 
1982       if (last_absdcl)
1983 	TREE_OPERAND (last_absdcl, 0) = absdcl;
1984       else
1985 	TREE_VALUE (decl) = absdcl;
1986 
1987       type = groktypename (decl);
1988       if (! type || type == error_mark_node)
1989 	return error_mark_node;
1990     }
1991   else if (TREE_CODE (decl) == IDENTIFIER_NODE)
1992     {
1993       if (IDENTIFIER_HAS_TYPE_VALUE (decl))
1994 	{
1995 	  /* An aggregate type.  */
1996 	  type = IDENTIFIER_TYPE_VALUE (decl);
1997 	  decl = TYPE_MAIN_DECL (type);
1998 	}
1999       else
2000 	{
2001 	  /* A builtin type.  */
2002 	  decl = lookup_name (decl, 1);
2003 	  my_friendly_assert (TREE_CODE (decl) == TYPE_DECL, 215);
2004 	  type = TREE_TYPE (decl);
2005 	}
2006     }
2007   else if (TREE_CODE (decl) == TYPE_DECL)
2008     {
2009       type = TREE_TYPE (decl);
2010     }
2011   else
2012     {
2013       type = decl;
2014       decl = TYPE_MAIN_DECL (type);
2015     }
2016 
2017   if (processing_template_decl)
2018     {
2019       if (has_array)
2020 	t = tree_cons (tree_cons (NULL_TREE, type, NULL_TREE),
2021 		       build_min_nt (ARRAY_REF, NULL_TREE, nelts),
2022 		       NULL_TREE);
2023       else
2024 	t = type;
2025 
2026       rval = build_min_nt (NEW_EXPR, placement, t, init);
2027       NEW_EXPR_USE_GLOBAL (rval) = use_global_new;
2028       return rval;
2029     }
2030 
2031   /* ``A reference cannot be created by the new operator.  A reference
2032      is not an object (8.2.2, 8.4.3), so a pointer to it could not be
2033      returned by new.'' ARM 5.3.3 */
2034   if (TREE_CODE (type) == REFERENCE_TYPE)
2035     {
2036       error ("new cannot be applied to a reference type");
2037       type = TREE_TYPE (type);
2038     }
2039 
2040   if (TREE_CODE (type) == FUNCTION_TYPE)
2041     {
2042       error ("new cannot be applied to a function type");
2043       return error_mark_node;
2044     }
2045 
2046   /* When the object being created is an array, the new-expression yields a
2047      pointer to the initial element (if any) of the array.  For example,
2048      both new int and new int[10] return an int*.  5.3.4.  */
2049   if (TREE_CODE (type) == ARRAY_TYPE && has_array == 0)
2050     {
2051       nelts = array_type_nelts_top (type);
2052       has_array = 1;
2053       type = TREE_TYPE (type);
2054     }
2055 
2056   if (has_array)
2057     t = build_nt (ARRAY_REF, type, nelts);
2058   else
2059     t = type;
2060 
2061   rval = build (NEW_EXPR, build_pointer_type (type), placement, t, init);
2062   NEW_EXPR_USE_GLOBAL (rval) = use_global_new;
2063   TREE_SIDE_EFFECTS (rval) = 1;
2064   rval = build_new_1 (rval);
2065   if (rval == error_mark_node)
2066     return error_mark_node;
2067 
2068   /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain.  */
2069   rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
2070   TREE_NO_UNUSED_WARNING (rval) = 1;
2071 
2072   return rval;
2073 }
2074 
2075 /* Given a Java class, return a decl for the corresponding java.lang.Class.  */
2076 
2077 tree
build_java_class_ref(type)2078 build_java_class_ref (type)
2079      tree type;
2080 {
2081   tree name = NULL_TREE, class_decl;
2082   static tree CL_suffix = NULL_TREE;
2083   if (CL_suffix == NULL_TREE)
2084     CL_suffix = get_identifier("class$");
2085   if (jclass_node == NULL_TREE)
2086     {
2087       jclass_node = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
2088       if (jclass_node == NULL_TREE)
2089 	fatal_error ("call to Java constructor, while `jclass' undefined");
2090 
2091       jclass_node = TREE_TYPE (jclass_node);
2092     }
2093 
2094   /* Mangle the class$ field */
2095   {
2096     tree field;
2097     for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2098       if (DECL_NAME (field) == CL_suffix)
2099 	{
2100 	  mangle_decl (field);
2101 	  name = DECL_ASSEMBLER_NAME (field);
2102 	  break;
2103 	}
2104     if (!field)
2105       internal_error ("can't find class$");
2106     }
2107 
2108   class_decl = IDENTIFIER_GLOBAL_VALUE (name);
2109   if (class_decl == NULL_TREE)
2110     {
2111       class_decl = build_decl (VAR_DECL, name, TREE_TYPE (jclass_node));
2112       TREE_STATIC (class_decl) = 1;
2113       DECL_EXTERNAL (class_decl) = 1;
2114       TREE_PUBLIC (class_decl) = 1;
2115       DECL_ARTIFICIAL (class_decl) = 1;
2116       DECL_IGNORED_P (class_decl) = 1;
2117       pushdecl_top_level (class_decl);
2118       make_decl_rtl (class_decl, NULL);
2119     }
2120   return class_decl;
2121 }
2122 
2123 /* Returns the size of the cookie to use when allocating an array
2124    whose elements have the indicated TYPE.  Assumes that it is already
2125    known that a cookie is needed.  */
2126 
2127 static tree
get_cookie_size(type)2128 get_cookie_size (type)
2129      tree type;
2130 {
2131   tree cookie_size;
2132 
2133   /* We need to allocate an additional max (sizeof (size_t), alignof
2134      (true_type)) bytes.  */
2135   tree sizetype_size;
2136   tree type_align;
2137 
2138   sizetype_size = size_in_bytes (sizetype);
2139   type_align = size_int (TYPE_ALIGN_UNIT (type));
2140   if (INT_CST_LT_UNSIGNED (type_align, sizetype_size))
2141     cookie_size = sizetype_size;
2142   else
2143     cookie_size = type_align;
2144 
2145   return cookie_size;
2146 }
2147 
2148 /* Called from cplus_expand_expr when expanding a NEW_EXPR.  The return
2149    value is immediately handed to expand_expr.  */
2150 
2151 static tree
build_new_1(exp)2152 build_new_1 (exp)
2153      tree exp;
2154 {
2155   tree placement, init;
2156   tree type, true_type, size, rval, t;
2157   tree full_type;
2158   tree outer_nelts = NULL_TREE;
2159   tree nelts = NULL_TREE;
2160   tree alloc_call, alloc_expr, alloc_node;
2161   tree alloc_fn;
2162   tree cookie_expr, init_expr;
2163   int has_array = 0;
2164   enum tree_code code;
2165   int use_cookie, nothrow, check_new;
2166   /* Nonzero if the user wrote `::new' rather than just `new'.  */
2167   int globally_qualified_p;
2168   /* Nonzero if we're going to call a global operator new, rather than
2169      a class-specific version.  */
2170   int use_global_new;
2171   int use_java_new = 0;
2172   /* If non-NULL, the number of extra bytes to allocate at the
2173      beginning of the storage allocated for an array-new expression in
2174      order to store the number of elements.  */
2175   tree cookie_size = NULL_TREE;
2176   /* True if the function we are calling is a placement allocation
2177      function.  */
2178   bool placement_allocation_fn_p;
2179 
2180   placement = TREE_OPERAND (exp, 0);
2181   type = TREE_OPERAND (exp, 1);
2182   init = TREE_OPERAND (exp, 2);
2183   globally_qualified_p = NEW_EXPR_USE_GLOBAL (exp);
2184 
2185   if (TREE_CODE (type) == ARRAY_REF)
2186     {
2187       has_array = 1;
2188       nelts = outer_nelts = TREE_OPERAND (type, 1);
2189       type = TREE_OPERAND (type, 0);
2190 
2191       /* Use an incomplete array type to avoid VLA headaches.  */
2192       full_type = build_cplus_array_type (type, NULL_TREE);
2193     }
2194   else
2195     full_type = type;
2196 
2197   true_type = type;
2198 
2199   code = has_array ? VEC_NEW_EXPR : NEW_EXPR;
2200 
2201   /* If our base type is an array, then make sure we know how many elements
2202      it has.  */
2203   while (TREE_CODE (true_type) == ARRAY_TYPE)
2204     {
2205       tree this_nelts = array_type_nelts_top (true_type);
2206       nelts = cp_build_binary_op (MULT_EXPR, nelts, this_nelts);
2207       true_type = TREE_TYPE (true_type);
2208     }
2209 
2210   if (!complete_type_or_else (true_type, exp))
2211     return error_mark_node;
2212 
2213   size = size_in_bytes (true_type);
2214   if (has_array)
2215     size = size_binop (MULT_EXPR, size, convert (sizetype, nelts));
2216 
2217   if (TREE_CODE (true_type) == VOID_TYPE)
2218     {
2219       error ("invalid type `void' for new");
2220       return error_mark_node;
2221     }
2222 
2223   if (abstract_virtuals_error (NULL_TREE, true_type))
2224     return error_mark_node;
2225 
2226   /* Figure out whether or not we're going to use the global operator
2227      new.  */
2228   if (!globally_qualified_p
2229       && IS_AGGR_TYPE (true_type)
2230       && (has_array
2231 	  ? TYPE_HAS_ARRAY_NEW_OPERATOR (true_type)
2232 	  : TYPE_HAS_NEW_OPERATOR (true_type)))
2233     use_global_new = 0;
2234   else
2235     use_global_new = 1;
2236 
2237   /* We only need cookies for arrays containing types for which we
2238      need cookies.  */
2239   if (!has_array || !TYPE_VEC_NEW_USES_COOKIE (true_type))
2240     use_cookie = 0;
2241   /* When using placement new, users may not realize that they need
2242      the extra storage.  We require that the operator called be
2243      the global placement operator new[].  */
2244   else if (placement && !TREE_CHAIN (placement)
2245 	   && same_type_p (TREE_TYPE (TREE_VALUE (placement)),
2246 			   ptr_type_node))
2247     use_cookie = !use_global_new;
2248   /* Otherwise, we need the cookie.  */
2249   else
2250     use_cookie = 1;
2251 
2252   /* Compute the number of extra bytes to allocate, now that we know
2253      whether or not we need the cookie.  */
2254   if (use_cookie)
2255     {
2256       cookie_size = get_cookie_size (true_type);
2257       size = size_binop (PLUS_EXPR, size, cookie_size);
2258     }
2259 
2260   /* Allocate the object.  */
2261 
2262   if (! placement && TYPE_FOR_JAVA (true_type))
2263     {
2264       tree class_addr, alloc_decl;
2265       tree class_decl = build_java_class_ref (true_type);
2266       tree class_size = size_in_bytes (true_type);
2267       static const char alloc_name[] = "_Jv_AllocObject";
2268       use_java_new = 1;
2269       alloc_decl = IDENTIFIER_GLOBAL_VALUE (get_identifier (alloc_name));
2270       if (alloc_decl == NULL_TREE)
2271 	fatal_error ("call to Java constructor with `%s' undefined",
2272 		     alloc_name);
2273 
2274       class_addr = build1 (ADDR_EXPR, jclass_node, class_decl);
2275       alloc_call = (build_function_call
2276 		    (alloc_decl,
2277 		     tree_cons (NULL_TREE, class_addr,
2278 				build_tree_list (NULL_TREE, class_size))));
2279     }
2280   else
2281     {
2282       tree fnname;
2283       tree args;
2284 
2285       args = tree_cons (NULL_TREE, size, placement);
2286       fnname = ansi_opname (code);
2287 
2288       if (use_global_new)
2289 	alloc_call = (build_new_function_call
2290 		      (lookup_function_nonclass (fnname, args),
2291 		       args));
2292       else
2293 	alloc_call = build_method_call (build_dummy_object (true_type),
2294 					fnname, args,
2295 					TYPE_BINFO (true_type),
2296 					LOOKUP_NORMAL);
2297     }
2298 
2299   if (alloc_call == error_mark_node)
2300     return error_mark_node;
2301 
2302   /* The ALLOC_CALL should be a CALL_EXPR -- or a COMPOUND_EXPR whose
2303      right-hand-side is ultimately a CALL_EXPR -- and the first
2304      operand should be the address of a known FUNCTION_DECL.  */
2305   t = alloc_call;
2306   while (TREE_CODE (t) == COMPOUND_EXPR)
2307     t = TREE_OPERAND (t, 1);
2308   alloc_fn = get_callee_fndecl (t);
2309   my_friendly_assert (alloc_fn != NULL_TREE, 20020325);
2310   /* Now, check to see if this function is actually a placement
2311      allocation function.  This can happen even when PLACEMENT is NULL
2312      because we might have something like:
2313 
2314        struct S { void* operator new (size_t, int i = 0); };
2315 
2316      A call to `new S' will get this allocation function, even though
2317      there is no explicit placement argument.  If there is more than
2318      one argument, or there are variable arguments, then this is a
2319      placement allocation function.  */
2320   placement_allocation_fn_p
2321     = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
2322        || varargs_function_p (alloc_fn));
2323 
2324   /*        unless an allocation function is declared with an empty  excep-
2325      tion-specification  (_except.spec_),  throw(), it indicates failure to
2326      allocate storage by throwing a bad_alloc exception  (clause  _except_,
2327      _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
2328      cation function is declared  with  an  empty  exception-specification,
2329      throw(), it returns null to indicate failure to allocate storage and a
2330      non-null pointer otherwise.
2331 
2332      So check for a null exception spec on the op new we just called.  */
2333 
2334   nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
2335   check_new = (flag_check_new || nothrow) && ! use_java_new;
2336 
2337   alloc_expr = alloc_call;
2338 
2339   if (use_cookie)
2340     /* Adjust so we're pointing to the start of the object.  */
2341     alloc_expr = build (PLUS_EXPR, TREE_TYPE (alloc_expr),
2342 			alloc_expr, cookie_size);
2343 
2344   /* While we're working, use a pointer to the type we've actually
2345      allocated.  */
2346   alloc_expr = convert (build_pointer_type (full_type), alloc_expr);
2347 
2348   /* Now save the allocation expression so we only evaluate it once.  */
2349   alloc_expr = get_target_expr (alloc_expr);
2350   alloc_node = TREE_OPERAND (alloc_expr, 0);
2351 
2352   /* Now initialize the cookie.  */
2353   if (use_cookie)
2354     {
2355       tree cookie;
2356 
2357       /* Store the number of bytes allocated so that we can know how
2358 	 many elements to destroy later.  We use the last sizeof
2359 	 (size_t) bytes to store the number of elements.  */
2360       cookie = build (MINUS_EXPR, build_pointer_type (sizetype),
2361 		      alloc_node, size_in_bytes (sizetype));
2362       cookie = build_indirect_ref (cookie, NULL);
2363 
2364       cookie_expr = build (MODIFY_EXPR, void_type_node, cookie, nelts);
2365       TREE_SIDE_EFFECTS (cookie_expr) = 1;
2366     }
2367   else
2368     cookie_expr = NULL_TREE;
2369 
2370   /* Now initialize the allocated object.  */
2371   init_expr = NULL_TREE;
2372   if (TYPE_NEEDS_CONSTRUCTING (type) || init)
2373     {
2374       init_expr = build_indirect_ref (alloc_node, NULL);
2375 
2376       if (init == void_zero_node)
2377 	init = build_default_init (full_type, nelts);
2378       else if (init && pedantic && has_array)
2379 	pedwarn ("ISO C++ forbids initialization in array new");
2380 
2381       if (has_array)
2382 	init_expr
2383 	  = build_vec_init (init_expr,
2384 			    cp_build_binary_op (MINUS_EXPR, outer_nelts,
2385 						integer_one_node),
2386 			    init, /*from_array=*/0);
2387       else if (TYPE_NEEDS_CONSTRUCTING (type))
2388 	init_expr = build_special_member_call (init_expr,
2389 					       complete_ctor_identifier,
2390 					       init, TYPE_BINFO (true_type),
2391 					       LOOKUP_NORMAL);
2392       else
2393 	{
2394 	  /* We are processing something like `new int (10)', which
2395 	     means allocate an int, and initialize it with 10.  */
2396 
2397 	  if (TREE_CODE (init) == TREE_LIST)
2398 	    {
2399 	      if (TREE_CHAIN (init) != NULL_TREE)
2400 		pedwarn
2401 		  ("initializer list being treated as compound expression");
2402 	      init = build_compound_expr (init);
2403 	    }
2404 	  else if (TREE_CODE (init) == CONSTRUCTOR
2405 		   && TREE_TYPE (init) == NULL_TREE)
2406 	    {
2407 	      pedwarn ("ISO C++ forbids aggregate initializer to new");
2408 	      init = digest_init (type, init, 0);
2409 	    }
2410 
2411 	  init_expr = build_modify_expr (init_expr, INIT_EXPR, init);
2412 	}
2413 
2414       if (init_expr == error_mark_node)
2415 	return error_mark_node;
2416 
2417       /* If any part of the object initialization terminates by throwing an
2418 	 exception and a suitable deallocation function can be found, the
2419 	 deallocation function is called to free the memory in which the
2420 	 object was being constructed, after which the exception continues
2421 	 to propagate in the context of the new-expression. If no
2422 	 unambiguous matching deallocation function can be found,
2423 	 propagating the exception does not cause the object's memory to be
2424 	 freed.  */
2425       if (flag_exceptions && ! use_java_new)
2426 	{
2427 	  enum tree_code dcode = has_array ? VEC_DELETE_EXPR : DELETE_EXPR;
2428 	  tree cleanup;
2429 	  int flags = (LOOKUP_NORMAL
2430 		       | (globally_qualified_p * LOOKUP_GLOBAL));
2431 	  tree delete_node;
2432 
2433 	  if (use_cookie)
2434 	    /* Subtract the padding back out to get to the pointer returned
2435 	       from operator new.  */
2436 	    delete_node = fold (build (MINUS_EXPR, TREE_TYPE (alloc_node),
2437 				       alloc_node, cookie_size));
2438 	  else
2439 	    delete_node = alloc_node;
2440 
2441 	  /* The Standard is unclear here, but the right thing to do
2442              is to use the same method for finding deallocation
2443              functions that we use for finding allocation functions.  */
2444 	  flags |= LOOKUP_SPECULATIVELY;
2445 
2446 	  cleanup = build_op_delete_call (dcode, delete_node, size, flags,
2447 					  (placement_allocation_fn_p
2448 					   ? alloc_call : NULL_TREE));
2449 
2450 	  /* Ack!  First we allocate the memory.  Then we set our sentry
2451 	     variable to true, and expand a cleanup that deletes the memory
2452 	     if sentry is true.  Then we run the constructor, and finally
2453 	     clear the sentry.
2454 
2455 	     It would be nice to be able to handle this without the sentry
2456 	     variable, perhaps with a TRY_CATCH_EXPR, but this doesn't
2457 	     work.  We allocate the space first, so if there are any
2458 	     temporaries with cleanups in the constructor args we need this
2459 	     EH region to extend until end of full-expression to preserve
2460 	     nesting.
2461 
2462 	     If the backend had some mechanism so that we could force the
2463 	     allocation to be expanded after all the other args to the
2464 	     constructor, that would fix the nesting problem and we could
2465 	     do away with this complexity.  But that would complicate other
2466 	     things; in particular, it would make it difficult to bail out
2467 	     if the allocation function returns null.  Er, no, it wouldn't;
2468 	     we just don't run the constructor.  The standard says it's
2469 	     unspecified whether or not the args are evaluated.  */
2470 
2471 	  if (cleanup)
2472 	    {
2473 	      tree end, sentry, begin;
2474 
2475 	      begin = get_target_expr (boolean_true_node);
2476 	      CLEANUP_EH_ONLY (begin) = 1;
2477 
2478 	      sentry = TARGET_EXPR_SLOT (begin);
2479 
2480 	      TARGET_EXPR_CLEANUP (begin)
2481 		= build (COND_EXPR, void_type_node, sentry,
2482 			 cleanup, void_zero_node);
2483 
2484 	      end = build (MODIFY_EXPR, TREE_TYPE (sentry),
2485 			   sentry, boolean_false_node);
2486 
2487 	      init_expr
2488 		= build (COMPOUND_EXPR, void_type_node, begin,
2489 			 build (COMPOUND_EXPR, void_type_node, init_expr,
2490 				end));
2491 	    }
2492 	}
2493     }
2494   else if (CP_TYPE_CONST_P (true_type))
2495     error ("uninitialized const in `new' of `%#T'", true_type);
2496 
2497   /* Now build up the return value in reverse order.  */
2498 
2499   rval = alloc_node;
2500 
2501   if (init_expr)
2502     rval = build (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
2503   if (cookie_expr)
2504     rval = build (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
2505 
2506   if (rval == alloc_node)
2507     /* If we didn't modify anything, strip the TARGET_EXPR and return the
2508        (adjusted) call.  */
2509     rval = TREE_OPERAND (alloc_expr, 1);
2510   else
2511     {
2512       if (check_new)
2513 	{
2514 	  tree nullexp;
2515 	  tree ifexp;
2516 
2517 	  nullexp = convert (TREE_TYPE (alloc_node),
2518 			     use_cookie ? cookie_size : size_zero_node);
2519 	  ifexp = cp_build_binary_op (NE_EXPR, alloc_node, nullexp);
2520 	  rval = build_conditional_expr (ifexp, rval, alloc_node);
2521 	}
2522 
2523       rval = build (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
2524     }
2525 
2526   /* Now strip the outer ARRAY_TYPE, so we return a pointer to the first
2527      element.  */
2528   rval = convert (build_pointer_type (type), rval);
2529 
2530   /* A new-expression is never an lvalue.  */
2531   if (real_lvalue_p (rval))
2532     rval = build1 (NON_LVALUE_EXPR, TREE_TYPE (rval), rval);
2533 
2534   return rval;
2535 }
2536 
2537 static tree
build_vec_delete_1(base,maxindex,type,auto_delete_vec,use_global_delete)2538 build_vec_delete_1 (base, maxindex, type, auto_delete_vec, use_global_delete)
2539      tree base, maxindex, type;
2540      special_function_kind auto_delete_vec;
2541      int use_global_delete;
2542 {
2543   tree virtual_size;
2544   tree ptype = build_pointer_type (type = complete_type (type));
2545   tree size_exp = size_in_bytes (type);
2546 
2547   /* Temporary variables used by the loop.  */
2548   tree tbase, tbase_init;
2549 
2550   /* This is the body of the loop that implements the deletion of a
2551      single element, and moves temp variables to next elements.  */
2552   tree body;
2553 
2554   /* This is the LOOP_EXPR that governs the deletion of the elements.  */
2555   tree loop;
2556 
2557   /* This is the thing that governs what to do after the loop has run.  */
2558   tree deallocate_expr = 0;
2559 
2560   /* This is the BIND_EXPR which holds the outermost iterator of the
2561      loop.  It is convenient to set this variable up and test it before
2562      executing any other code in the loop.
2563      This is also the containing expression returned by this function.  */
2564   tree controller = NULL_TREE;
2565 
2566   /* We should only have 1-D arrays here.  */
2567   if (TREE_CODE (type) == ARRAY_TYPE)
2568     abort ();
2569 
2570   if (! IS_AGGR_TYPE (type) || TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
2571     {
2572       loop = integer_zero_node;
2573       goto no_destructor;
2574     }
2575 
2576   /* The below is short by the cookie size.  */
2577   virtual_size = size_binop (MULT_EXPR, size_exp,
2578 			     convert (sizetype, maxindex));
2579 
2580   tbase = create_temporary_var (ptype);
2581   tbase_init = build_modify_expr (tbase, NOP_EXPR,
2582 				  fold (build (PLUS_EXPR, ptype,
2583 					       base,
2584 					       virtual_size)));
2585   DECL_REGISTER (tbase) = 1;
2586   controller = build (BIND_EXPR, void_type_node, tbase, NULL_TREE, NULL_TREE);
2587   TREE_SIDE_EFFECTS (controller) = 1;
2588 
2589   body = NULL_TREE;
2590 
2591   body = tree_cons (NULL_TREE,
2592 		    build_delete (ptype, tbase, sfk_complete_destructor,
2593 				  LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1),
2594 		    body);
2595 
2596   body = tree_cons (NULL_TREE,
2597 		    build_modify_expr (tbase, NOP_EXPR, build (MINUS_EXPR, ptype, tbase, size_exp)),
2598 		    body);
2599 
2600   body = tree_cons (NULL_TREE,
2601 		    build (EXIT_EXPR, void_type_node,
2602 			   build (EQ_EXPR, boolean_type_node, base, tbase)),
2603 		    body);
2604 
2605   loop = build (LOOP_EXPR, void_type_node, build_compound_expr (body));
2606 
2607   loop = tree_cons (NULL_TREE, tbase_init,
2608 		    tree_cons (NULL_TREE, loop, NULL_TREE));
2609   loop = build_compound_expr (loop);
2610 
2611  no_destructor:
2612   /* If the delete flag is one, or anything else with the low bit set,
2613      delete the storage.  */
2614   deallocate_expr = integer_zero_node;
2615   if (auto_delete_vec != sfk_base_destructor)
2616     {
2617       tree base_tbd;
2618 
2619       /* The below is short by the cookie size.  */
2620       virtual_size = size_binop (MULT_EXPR, size_exp,
2621 				 convert (sizetype, maxindex));
2622 
2623       if (! TYPE_VEC_NEW_USES_COOKIE (type))
2624 	/* no header */
2625 	base_tbd = base;
2626       else
2627 	{
2628 	  tree cookie_size;
2629 
2630 	  cookie_size = get_cookie_size (type);
2631 	  base_tbd
2632 	    = cp_convert (ptype,
2633 			  cp_build_binary_op (MINUS_EXPR,
2634 					      cp_convert (string_type_node,
2635 							  base),
2636 					      cookie_size));
2637 	  /* True size with header.  */
2638 	  virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
2639 	}
2640 
2641       if (auto_delete_vec == sfk_deleting_destructor)
2642 	deallocate_expr = build_x_delete (base_tbd,
2643 					  2 | use_global_delete,
2644 					  virtual_size);
2645     }
2646 
2647   if (loop && deallocate_expr != integer_zero_node)
2648     {
2649       body = tree_cons (NULL_TREE, loop,
2650 			tree_cons (NULL_TREE, deallocate_expr, NULL_TREE));
2651       body = build_compound_expr (body);
2652     }
2653   else
2654     body = loop;
2655 
2656   /* Outermost wrapper: If pointer is null, punt.  */
2657   body = fold (build (COND_EXPR, void_type_node,
2658 		      fold (build (NE_EXPR, boolean_type_node, base,
2659 				   integer_zero_node)),
2660 		      body, integer_zero_node));
2661   body = build1 (NOP_EXPR, void_type_node, body);
2662 
2663   if (controller)
2664     {
2665       TREE_OPERAND (controller, 1) = body;
2666       return controller;
2667     }
2668   else
2669     return cp_convert (void_type_node, body);
2670 }
2671 
2672 /* Create an unnamed variable of the indicated TYPE.  */
2673 
2674 tree
create_temporary_var(type)2675 create_temporary_var (type)
2676      tree type;
2677 {
2678   tree decl;
2679 
2680   decl = build_decl (VAR_DECL, NULL_TREE, type);
2681   TREE_USED (decl) = 1;
2682   DECL_ARTIFICIAL (decl) = 1;
2683   DECL_SOURCE_FILE (decl) = input_filename;
2684   DECL_SOURCE_LINE (decl) = lineno;
2685   DECL_IGNORED_P (decl) = 1;
2686   DECL_CONTEXT (decl) = current_function_decl;
2687 
2688   return decl;
2689 }
2690 
2691 /* Create a new temporary variable of the indicated TYPE, initialized
2692    to INIT.
2693 
2694    It is not entered into current_binding_level, because that breaks
2695    things when it comes time to do final cleanups (which take place
2696    "outside" the binding contour of the function).  */
2697 
2698 static tree
get_temp_regvar(type,init)2699 get_temp_regvar (type, init)
2700      tree type, init;
2701 {
2702   tree decl;
2703 
2704   decl = create_temporary_var (type);
2705   if (building_stmt_tree ())
2706     add_decl_stmt (decl);
2707   if (!building_stmt_tree ())
2708     SET_DECL_RTL (decl, assign_temp (type, 2, 0, 1));
2709   finish_expr_stmt (build_modify_expr (decl, INIT_EXPR, init));
2710 
2711   return decl;
2712 }
2713 
2714 /* `build_vec_init' returns tree structure that performs
2715    initialization of a vector of aggregate types.
2716 
2717    BASE is a reference to the vector, of ARRAY_TYPE.
2718    MAXINDEX is the maximum index of the array (one less than the
2719      number of elements).  It is only used if
2720      TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
2721    INIT is the (possibly NULL) initializer.
2722 
2723    FROM_ARRAY is 0 if we should init everything with INIT
2724    (i.e., every element initialized from INIT).
2725    FROM_ARRAY is 1 if we should index into INIT in parallel
2726    with initialization of DECL.
2727    FROM_ARRAY is 2 if we should index into INIT in parallel,
2728    but use assignment instead of initialization.  */
2729 
2730 tree
build_vec_init(base,maxindex,init,from_array)2731 build_vec_init (base, maxindex, init, from_array)
2732      tree base, init, maxindex;
2733      int from_array;
2734 {
2735   tree rval;
2736   tree base2 = NULL_TREE;
2737   tree size;
2738   tree itype = NULL_TREE;
2739   tree iterator;
2740   /* The type of the array.  */
2741   tree atype = TREE_TYPE (base);
2742   /* The type of an element in the array.  */
2743   tree type = TREE_TYPE (atype);
2744   /* The type of a pointer to an element in the array.  */
2745   tree ptype;
2746   tree stmt_expr;
2747   tree compound_stmt;
2748   int destroy_temps;
2749   tree try_block = NULL_TREE;
2750   tree try_body = NULL_TREE;
2751   int num_initialized_elts = 0;
2752 
2753   if (TYPE_DOMAIN (atype))
2754     maxindex = array_type_nelts (atype);
2755 
2756   if (maxindex == NULL_TREE || maxindex == error_mark_node)
2757     return error_mark_node;
2758 
2759   if (init
2760       && (from_array == 2
2761 	  ? (!CLASS_TYPE_P (type) || !TYPE_HAS_COMPLEX_ASSIGN_REF (type))
2762 	  : !TYPE_NEEDS_CONSTRUCTING (type))
2763       && ((TREE_CODE (init) == CONSTRUCTOR
2764 	   /* Don't do this if the CONSTRUCTOR might contain something
2765 	      that might throw and require us to clean up.  */
2766 	   && (CONSTRUCTOR_ELTS (init) == NULL_TREE
2767 	       || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (target_type (type))))
2768 	  || from_array))
2769     {
2770       /* Do non-default initialization of POD arrays resulting from
2771 	 brace-enclosed initializers.  In this case, digest_init and
2772 	 store_constructor will handle the semantics for us.  */
2773 
2774       stmt_expr = build (INIT_EXPR, atype, base, init);
2775       return stmt_expr;
2776     }
2777 
2778   maxindex = cp_convert (ptrdiff_type_node, maxindex);
2779   ptype = build_pointer_type (type);
2780   size = size_in_bytes (type);
2781   if (TREE_CODE (TREE_TYPE (base)) == ARRAY_TYPE)
2782     base = cp_convert (ptype, default_conversion (base));
2783 
2784   /* The code we are generating looks like:
2785 
2786        T* t1 = (T*) base;
2787        T* rval = t1;
2788        ptrdiff_t iterator = maxindex;
2789        try {
2790 	 do {
2791 	   ... initialize *t1 ...
2792 	   ++t1;
2793 	 } while (--iterator != -1);
2794        } catch (...) {
2795          ... destroy elements that were constructed ...
2796        }
2797        return rval;
2798 
2799      We can omit the try and catch blocks if we know that the
2800      initialization will never throw an exception, or if the array
2801      elements do not have destructors.  We can omit the loop completely if
2802      the elements of the array do not have constructors.
2803 
2804      We actually wrap the entire body of the above in a STMT_EXPR, for
2805      tidiness.
2806 
2807      When copying from array to another, when the array elements have
2808      only trivial copy constructors, we should use __builtin_memcpy
2809      rather than generating a loop.  That way, we could take advantage
2810      of whatever cleverness the back-end has for dealing with copies
2811      of blocks of memory.  */
2812 
2813   begin_init_stmts (&stmt_expr, &compound_stmt);
2814   destroy_temps = stmts_are_full_exprs_p ();
2815   current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2816   rval = get_temp_regvar (ptype, base);
2817   base = get_temp_regvar (ptype, rval);
2818   iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
2819 
2820   /* Protect the entire array initialization so that we can destroy
2821      the partially constructed array if an exception is thrown.
2822      But don't do this if we're assigning.  */
2823   if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2824       && from_array != 2)
2825     {
2826       try_block = begin_try_block ();
2827       try_body = begin_compound_stmt (/*has_no_scope=*/1);
2828     }
2829 
2830   if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
2831     {
2832       /* Do non-default initialization of non-POD arrays resulting from
2833 	 brace-enclosed initializers.  */
2834 
2835       tree elts;
2836       from_array = 0;
2837 
2838       for (elts = CONSTRUCTOR_ELTS (init); elts; elts = TREE_CHAIN (elts))
2839 	{
2840 	  tree elt = TREE_VALUE (elts);
2841 	  tree baseref = build1 (INDIRECT_REF, type, base);
2842 
2843 	  num_initialized_elts++;
2844 
2845 	  current_stmt_tree ()->stmts_are_full_exprs_p = 1;
2846 	  if (IS_AGGR_TYPE (type) || TREE_CODE (type) == ARRAY_TYPE)
2847 	    finish_expr_stmt (build_aggr_init (baseref, elt, 0));
2848 	  else
2849 	    finish_expr_stmt (build_modify_expr (baseref, NOP_EXPR,
2850 						 elt));
2851 	  current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2852 
2853 	  finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base, 0));
2854 	  finish_expr_stmt (build_unary_op (PREDECREMENT_EXPR, iterator, 0));
2855 	}
2856 
2857       /* Clear out INIT so that we don't get confused below.  */
2858       init = NULL_TREE;
2859     }
2860   else if (from_array)
2861     {
2862       /* If initializing one array from another, initialize element by
2863 	 element.  We rely upon the below calls the do argument
2864 	 checking.  */
2865       if (init)
2866 	{
2867 	  base2 = default_conversion (init);
2868 	  itype = TREE_TYPE (base2);
2869 	  base2 = get_temp_regvar (itype, base2);
2870 	  itype = TREE_TYPE (itype);
2871 	}
2872       else if (TYPE_LANG_SPECIFIC (type)
2873 	       && TYPE_NEEDS_CONSTRUCTING (type)
2874 	       && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
2875 	{
2876 	  error ("initializer ends prematurely");
2877 	  return error_mark_node;
2878 	}
2879     }
2880 
2881   /* Now, default-initialize any remaining elements.  We don't need to
2882      do that if a) the type does not need constructing, or b) we've
2883      already initialized all the elements.
2884 
2885      We do need to keep going if we're copying an array.  */
2886 
2887   if (from_array
2888       || (TYPE_NEEDS_CONSTRUCTING (type)
2889 	  && ! (host_integerp (maxindex, 0)
2890 		&& (num_initialized_elts
2891 		    == tree_low_cst (maxindex, 0) + 1))))
2892     {
2893       /* If the ITERATOR is equal to -1, then we don't have to loop;
2894 	 we've already initialized all the elements.  */
2895       tree if_stmt;
2896       tree do_stmt;
2897       tree do_body;
2898       tree elt_init;
2899 
2900       if_stmt = begin_if_stmt ();
2901       finish_if_stmt_cond (build (NE_EXPR, boolean_type_node,
2902 				  iterator, integer_minus_one_node),
2903 			   if_stmt);
2904 
2905       /* Otherwise, loop through the elements.  */
2906       do_stmt = begin_do_stmt ();
2907       do_body = begin_compound_stmt (/*has_no_scope=*/1);
2908 
2909       /* When we're not building a statement-tree, things are a little
2910 	 complicated.  If, when we recursively call build_aggr_init,
2911 	 an expression containing a TARGET_EXPR is expanded, then it
2912 	 may get a cleanup.  Then, the result of that expression is
2913 	 passed to finish_expr_stmt, which will call
2914 	 expand_start_target_temps/expand_end_target_temps.  However,
2915 	 the latter call will not cause the cleanup to run because
2916 	 that block will still be on the block stack.  So, we call
2917 	 expand_start_target_temps here manually; the corresponding
2918 	 call to expand_end_target_temps below will cause the cleanup
2919 	 to be performed.  */
2920       if (!building_stmt_tree ())
2921 	expand_start_target_temps ();
2922 
2923       if (from_array)
2924 	{
2925 	  tree to = build1 (INDIRECT_REF, type, base);
2926 	  tree from;
2927 
2928 	  if (base2)
2929 	    from = build1 (INDIRECT_REF, itype, base2);
2930 	  else
2931 	    from = NULL_TREE;
2932 
2933 	  if (from_array == 2)
2934 	    elt_init = build_modify_expr (to, NOP_EXPR, from);
2935 	  else if (TYPE_NEEDS_CONSTRUCTING (type))
2936 	    elt_init = build_aggr_init (to, from, 0);
2937 	  else if (from)
2938 	    elt_init = build_modify_expr (to, NOP_EXPR, from);
2939 	  else
2940 	    abort ();
2941 	}
2942       else if (TREE_CODE (type) == ARRAY_TYPE)
2943 	{
2944 	  if (init != 0)
2945 	    sorry
2946 	      ("cannot initialize multi-dimensional array with initializer");
2947 	  elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
2948 				     0, 0, 0);
2949 	}
2950       else
2951 	elt_init = build_aggr_init (build1 (INDIRECT_REF, type, base),
2952 				    init, 0);
2953 
2954       /* The initialization of each array element is a
2955 	 full-expression, as per core issue 124.  */
2956       if (!building_stmt_tree ())
2957 	{
2958 	  genrtl_expr_stmt (elt_init);
2959 	  expand_end_target_temps ();
2960 	}
2961       else
2962 	{
2963 	  current_stmt_tree ()->stmts_are_full_exprs_p = 1;
2964 	  finish_expr_stmt (elt_init);
2965 	  current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2966 	}
2967 
2968       finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base, 0));
2969       if (base2)
2970 	finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base2, 0));
2971 
2972       finish_compound_stmt (/*has_no_scope=*/1, do_body);
2973       finish_do_body (do_stmt);
2974       finish_do_stmt (build (NE_EXPR, boolean_type_node,
2975 			     build_unary_op (PREDECREMENT_EXPR, iterator, 0),
2976 			     integer_minus_one_node),
2977 		      do_stmt);
2978 
2979       finish_then_clause (if_stmt);
2980       finish_if_stmt ();
2981     }
2982 
2983   /* Make sure to cleanup any partially constructed elements.  */
2984   if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2985       && from_array != 2)
2986     {
2987       tree e;
2988       tree m = cp_build_binary_op (MINUS_EXPR, maxindex, iterator);
2989 
2990       /* Flatten multi-dimensional array since build_vec_delete only
2991 	 expects one-dimensional array.  */
2992       if (TREE_CODE (type) == ARRAY_TYPE)
2993 	{
2994 	  m = cp_build_binary_op (MULT_EXPR, m,
2995 				  array_type_nelts_total (type));
2996 	  type = strip_array_types (type);
2997 	}
2998 
2999       finish_compound_stmt (/*has_no_scope=*/1, try_body);
3000       finish_cleanup_try_block (try_block);
3001       e = build_vec_delete_1 (rval, m,
3002 			      type,
3003 			      sfk_base_destructor,
3004 			      /*use_global_delete=*/0);
3005       finish_cleanup (e, try_block);
3006     }
3007 
3008   /* The value of the array initialization is the address of the
3009      first element in the array.  */
3010   finish_expr_stmt (rval);
3011 
3012   stmt_expr = finish_init_stmts (stmt_expr, compound_stmt);
3013   current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
3014   return stmt_expr;
3015 }
3016 
3017 /* Free up storage of type TYPE, at address ADDR.
3018 
3019    TYPE is a POINTER_TYPE and can be ptr_type_node for no special type
3020    of pointer.
3021 
3022    VIRTUAL_SIZE is the amount of storage that was allocated, and is
3023    used as the second argument to operator delete.  It can include
3024    things like padding and magic size cookies.  It has virtual in it,
3025    because if you have a base pointer and you delete through a virtual
3026    destructor, it should be the size of the dynamic object, not the
3027    static object, see Free Store 12.5 ISO C++.
3028 
3029    This does not call any destructors.  */
3030 
3031 tree
build_x_delete(addr,which_delete,virtual_size)3032 build_x_delete (addr, which_delete, virtual_size)
3033      tree addr;
3034      int which_delete;
3035      tree virtual_size;
3036 {
3037   int use_global_delete = which_delete & 1;
3038   int use_vec_delete = !!(which_delete & 2);
3039   enum tree_code code = use_vec_delete ? VEC_DELETE_EXPR : DELETE_EXPR;
3040   int flags = LOOKUP_NORMAL | (use_global_delete * LOOKUP_GLOBAL);
3041 
3042   return build_op_delete_call (code, addr, virtual_size, flags, NULL_TREE);
3043 }
3044 
3045 /* Call the DTOR_KIND destructor for EXP.  FLAGS are as for
3046    build_delete.  */
3047 
3048 static tree
build_dtor_call(exp,dtor_kind,flags)3049 build_dtor_call (exp, dtor_kind, flags)
3050      tree exp;
3051      special_function_kind dtor_kind;
3052      int flags;
3053 {
3054   tree name;
3055 
3056   switch (dtor_kind)
3057     {
3058     case sfk_complete_destructor:
3059       name = complete_dtor_identifier;
3060       break;
3061 
3062     case sfk_base_destructor:
3063       name = base_dtor_identifier;
3064       break;
3065 
3066     case sfk_deleting_destructor:
3067       name = deleting_dtor_identifier;
3068       break;
3069 
3070     default:
3071       abort ();
3072     }
3073   return build_method_call (exp, name, NULL_TREE,
3074 			    TYPE_BINFO (TREE_TYPE (exp)), flags);
3075 }
3076 
3077 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
3078    ADDR is an expression which yields the store to be destroyed.
3079    AUTO_DELETE is the name of the destructor to call, i.e., either
3080    sfk_complete_destructor, sfk_base_destructor, or
3081    sfk_deleting_destructor.
3082 
3083    FLAGS is the logical disjunction of zero or more LOOKUP_
3084    flags.  See cp-tree.h for more info.  */
3085 
3086 tree
build_delete(type,addr,auto_delete,flags,use_global_delete)3087 build_delete (type, addr, auto_delete, flags, use_global_delete)
3088      tree type, addr;
3089      special_function_kind auto_delete;
3090      int flags;
3091      int use_global_delete;
3092 {
3093   tree expr;
3094 
3095   if (addr == error_mark_node)
3096     return error_mark_node;
3097 
3098   /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
3099      set to `error_mark_node' before it gets properly cleaned up.  */
3100   if (type == error_mark_node)
3101     return error_mark_node;
3102 
3103   type = TYPE_MAIN_VARIANT (type);
3104 
3105   if (TREE_CODE (type) == POINTER_TYPE)
3106     {
3107       bool complete_p = true;
3108 
3109       type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
3110       if (TREE_CODE (type) == ARRAY_TYPE)
3111 	goto handle_array;
3112 
3113       /* We don't want to warn about delete of void*, only other
3114 	  incomplete types.  Deleting other incomplete types
3115 	  invokes undefined behavior, but it is not ill-formed, so
3116 	  compile to something that would even do The Right Thing
3117 	  (TM) should the type have a trivial dtor and no delete
3118 	  operator.  */
3119       if (!VOID_TYPE_P (type))
3120 	{
3121 	  complete_type (type);
3122 	  if (!COMPLETE_TYPE_P (type))
3123 	    {
3124 	      warning ("possible problem detected in invocation of "
3125 		       "delete operator:");
3126 	      cxx_incomplete_type_diagnostic (addr, type, 1);
3127 	      inform ("neither the destructor nor the class-specific "
3128 		      "operator delete will be called, even if they are "
3129 		      "declared when the class is defined.");
3130 	      complete_p = false;
3131 	    }
3132 	}
3133       if (VOID_TYPE_P (type) || !complete_p || !IS_AGGR_TYPE (type))
3134 	/* Call the builtin operator delete.  */
3135 	return build_builtin_delete_call (addr);
3136       if (TREE_SIDE_EFFECTS (addr))
3137 	addr = save_expr (addr);
3138 
3139       /* throw away const and volatile on target type of addr */
3140       addr = convert_force (build_pointer_type (type), addr, 0);
3141     }
3142   else if (TREE_CODE (type) == ARRAY_TYPE)
3143     {
3144     handle_array:
3145 
3146       if (TYPE_DOMAIN (type) == NULL_TREE)
3147 	{
3148 	  error ("unknown array size in delete");
3149 	  return error_mark_node;
3150 	}
3151       return build_vec_delete (addr, array_type_nelts (type),
3152 			       auto_delete, use_global_delete);
3153     }
3154   else
3155     {
3156       /* Don't check PROTECT here; leave that decision to the
3157 	 destructor.  If the destructor is accessible, call it,
3158 	 else report error.  */
3159       addr = build_unary_op (ADDR_EXPR, addr, 0);
3160       if (TREE_SIDE_EFFECTS (addr))
3161 	addr = save_expr (addr);
3162 
3163       addr = convert_force (build_pointer_type (type), addr, 0);
3164     }
3165 
3166   my_friendly_assert (IS_AGGR_TYPE (type), 220);
3167 
3168   if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
3169     {
3170       if (auto_delete != sfk_deleting_destructor)
3171 	return void_zero_node;
3172 
3173       return build_op_delete_call
3174 	(DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
3175 	 LOOKUP_NORMAL | (use_global_delete * LOOKUP_GLOBAL),
3176 	 NULL_TREE);
3177     }
3178   else
3179     {
3180       tree do_delete = NULL_TREE;
3181       tree ifexp;
3182 
3183       my_friendly_assert (TYPE_HAS_DESTRUCTOR (type), 20011213);
3184 
3185       /* For `::delete x', we must not use the deleting destructor
3186 	 since then we would not be sure to get the global `operator
3187 	 delete'.  */
3188       if (use_global_delete && auto_delete == sfk_deleting_destructor)
3189 	{
3190 	  /* We will use ADDR multiple times so we must save it.  */
3191 	  addr = save_expr (addr);
3192 	  /* Delete the object.  */
3193 	  do_delete = build_builtin_delete_call (addr);
3194 	  /* Otherwise, treat this like a complete object destructor
3195 	     call.  */
3196 	  auto_delete = sfk_complete_destructor;
3197 	}
3198       /* If the destructor is non-virtual, there is no deleting
3199 	 variant.  Instead, we must explicitly call the appropriate
3200 	 `operator delete' here.  */
3201       else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
3202 	       && auto_delete == sfk_deleting_destructor)
3203 	{
3204 	  /* We will use ADDR multiple times so we must save it.  */
3205 	  addr = save_expr (addr);
3206 	  /* Build the call.  */
3207 	  do_delete = build_op_delete_call (DELETE_EXPR,
3208 					    addr,
3209 					    cxx_sizeof_nowarn (type),
3210 					    LOOKUP_NORMAL,
3211 					    NULL_TREE);
3212 	  /* Call the complete object destructor.  */
3213 	  auto_delete = sfk_complete_destructor;
3214 	}
3215       else if (auto_delete == sfk_deleting_destructor
3216 	       && TYPE_GETS_REG_DELETE (type))
3217 	{
3218 	  /* Make sure we have access to the member op delete, even though
3219 	     we'll actually be calling it from the destructor.  */
3220 	  build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
3221 				LOOKUP_NORMAL, NULL_TREE);
3222 	}
3223 
3224       expr = build_dtor_call (build_indirect_ref (addr, NULL),
3225 			      auto_delete, flags);
3226       if (do_delete)
3227 	expr = build (COMPOUND_EXPR, void_type_node, expr, do_delete);
3228 
3229       if (flags & LOOKUP_DESTRUCTOR)
3230 	/* Explicit destructor call; don't check for null pointer.  */
3231 	ifexp = integer_one_node;
3232       else
3233 	/* Handle deleting a null pointer.  */
3234 	ifexp = fold (cp_build_binary_op (NE_EXPR, addr, integer_zero_node));
3235 
3236       if (ifexp != integer_one_node)
3237 	expr = build (COND_EXPR, void_type_node,
3238 		      ifexp, expr, void_zero_node);
3239 
3240       return expr;
3241     }
3242 }
3243 
3244 /* At the beginning of a destructor, push cleanups that will call the
3245    destructors for our base classes and members.
3246 
3247    Called from begin_destructor_body.  */
3248 
3249 void
push_base_cleanups()3250 push_base_cleanups ()
3251 {
3252   tree binfos;
3253   int i, n_baseclasses;
3254   tree member;
3255   tree expr;
3256 
3257   /* Run destructors for all virtual baseclasses.  */
3258   if (TYPE_USES_VIRTUAL_BASECLASSES (current_class_type))
3259     {
3260       tree vbases;
3261       tree cond = (condition_conversion
3262 		   (build (BIT_AND_EXPR, integer_type_node,
3263 			   current_in_charge_parm,
3264 			   integer_two_node)));
3265 
3266       vbases = CLASSTYPE_VBASECLASSES (current_class_type);
3267       /* The CLASSTYPE_VBASECLASSES list is in initialization
3268 	 order, which is also the right order for pushing cleanups.  */
3269       for (; vbases;
3270 	   vbases = TREE_CHAIN (vbases))
3271 	{
3272 	  tree vbase = TREE_VALUE (vbases);
3273 	  tree base_type = BINFO_TYPE (vbase);
3274 
3275 	  if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (base_type))
3276 	    {
3277 	      expr = build_special_member_call (current_class_ref,
3278 						base_dtor_identifier,
3279 						NULL_TREE,
3280 						vbase,
3281 						(LOOKUP_NORMAL
3282 						 | LOOKUP_NONVIRTUAL));
3283 	      expr = build (COND_EXPR, void_type_node, cond,
3284 			    expr, void_zero_node);
3285 	      finish_decl_cleanup (NULL_TREE, expr);
3286 	    }
3287 	}
3288     }
3289 
3290   binfos = BINFO_BASETYPES (TYPE_BINFO (current_class_type));
3291   n_baseclasses = CLASSTYPE_N_BASECLASSES (current_class_type);
3292 
3293   /* Take care of the remaining baseclasses.  */
3294   for (i = 0; i < n_baseclasses; i++)
3295     {
3296       tree base_binfo = TREE_VEC_ELT (binfos, i);
3297       if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo))
3298 	  || TREE_VIA_VIRTUAL (base_binfo))
3299 	continue;
3300 
3301       expr = build_special_member_call (current_class_ref,
3302 					base_dtor_identifier,
3303 					NULL_TREE, base_binfo,
3304 					LOOKUP_NORMAL | LOOKUP_NONVIRTUAL);
3305       finish_decl_cleanup (NULL_TREE, expr);
3306     }
3307 
3308   for (member = TYPE_FIELDS (current_class_type); member;
3309        member = TREE_CHAIN (member))
3310     {
3311       if (TREE_CODE (member) != FIELD_DECL || DECL_ARTIFICIAL (member))
3312 	continue;
3313       if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (member)))
3314 	{
3315 	  tree this_member = (build_class_member_access_expr
3316 			      (current_class_ref, member,
3317 			       /*access_path=*/NULL_TREE,
3318 			       /*preserve_reference=*/false));
3319 	  tree this_type = TREE_TYPE (member);
3320 	  expr = build_delete (this_type, this_member,
3321 			       sfk_complete_destructor,
3322 			       LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
3323 			       0);
3324 	  finish_decl_cleanup (NULL_TREE, expr);
3325 	}
3326     }
3327 }
3328 
3329 /* For type TYPE, delete the virtual baseclass objects of DECL.  */
3330 
3331 tree
build_vbase_delete(type,decl)3332 build_vbase_delete (type, decl)
3333      tree type, decl;
3334 {
3335   tree vbases = CLASSTYPE_VBASECLASSES (type);
3336   tree result = NULL_TREE;
3337   tree addr = build_unary_op (ADDR_EXPR, decl, 0);
3338 
3339   my_friendly_assert (addr != error_mark_node, 222);
3340 
3341   while (vbases)
3342     {
3343       tree this_addr
3344 	= convert_force (build_pointer_type (BINFO_TYPE (TREE_VALUE (vbases))),
3345 			 addr, 0);
3346       result = tree_cons (NULL_TREE,
3347 			  build_delete (TREE_TYPE (this_addr), this_addr,
3348 					sfk_base_destructor,
3349 					LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 0),
3350 			  result);
3351       vbases = TREE_CHAIN (vbases);
3352     }
3353   return build_compound_expr (nreverse (result));
3354 }
3355 
3356 /* Build a C++ vector delete expression.
3357    MAXINDEX is the number of elements to be deleted.
3358    ELT_SIZE is the nominal size of each element in the vector.
3359    BASE is the expression that should yield the store to be deleted.
3360    This function expands (or synthesizes) these calls itself.
3361    AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
3362 
3363    This also calls delete for virtual baseclasses of elements of the vector.
3364 
3365    Update: MAXINDEX is no longer needed.  The size can be extracted from the
3366    start of the vector for pointers, and from the type for arrays.  We still
3367    use MAXINDEX for arrays because it happens to already have one of the
3368    values we'd have to extract.  (We could use MAXINDEX with pointers to
3369    confirm the size, and trap if the numbers differ; not clear that it'd
3370    be worth bothering.)  */
3371 
3372 tree
build_vec_delete(base,maxindex,auto_delete_vec,use_global_delete)3373 build_vec_delete (base, maxindex, auto_delete_vec, use_global_delete)
3374      tree base, maxindex;
3375      special_function_kind auto_delete_vec;
3376      int use_global_delete;
3377 {
3378   tree type;
3379 
3380   if (TREE_CODE (base) == OFFSET_REF)
3381     base = resolve_offset_ref (base);
3382 
3383   type = TREE_TYPE (base);
3384 
3385   base = stabilize_reference (base);
3386 
3387   if (TREE_CODE (type) == POINTER_TYPE)
3388     {
3389       /* Step back one from start of vector, and read dimension.  */
3390       tree cookie_addr;
3391 
3392       if (TREE_SIDE_EFFECTS (base))
3393 	base = save_expr (base);
3394       type = strip_array_types (TREE_TYPE (type));
3395       cookie_addr = build (MINUS_EXPR,
3396 			   build_pointer_type (sizetype),
3397 			   base,
3398 			   TYPE_SIZE_UNIT (sizetype));
3399       maxindex = build_indirect_ref (cookie_addr, NULL);
3400     }
3401   else if (TREE_CODE (type) == ARRAY_TYPE)
3402     {
3403       /* get the total number of things in the array, maxindex is a bad name */
3404       maxindex = array_type_nelts_total (type);
3405       type = strip_array_types (type);
3406       base = build_unary_op (ADDR_EXPR, base, 1);
3407       if (TREE_SIDE_EFFECTS (base))
3408 	base = save_expr (base);
3409     }
3410   else
3411     {
3412       if (base != error_mark_node)
3413 	error ("type to vector delete is neither pointer or array type");
3414       return error_mark_node;
3415     }
3416 
3417   return build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
3418 			     use_global_delete);
3419 }
3420