1 /* dfa - DFA construction routines */
2
3 /* Copyright (c) 1990 The Regents of the University of California. */
4 /* All rights reserved. */
5
6 /* This code is derived from software contributed to Berkeley by */
7 /* Vern Paxson. */
8
9 /* The United States Government has rights in this work pursuant */
10 /* to contract no. DE-AC03-76SF00098 between the United States */
11 /* Department of Energy and the University of California. */
12
13 /* Redistribution and use in source and binary forms, with or without */
14 /* modification, are permitted provided that the following conditions */
15 /* are met: */
16
17 /* 1. Redistributions of source code must retain the above copyright */
18 /* notice, this list of conditions and the following disclaimer. */
19 /* 2. Redistributions in binary form must reproduce the above copyright */
20 /* notice, this list of conditions and the following disclaimer in the */
21 /* documentation and/or other materials provided with the distribution. */
22
23 /* Neither the name of the University nor the names of its contributors */
24 /* may be used to endorse or promote products derived from this software */
25 /* without specific prior written permission. */
26
27 /* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR */
28 /* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED */
29 /* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR */
30 /* PURPOSE. */
31 #include "flexdef.h"
32 __RCSID("$NetBSD: dfa.c,v 1.3 2014/10/30 18:44:05 christos Exp $");
33
34 #include "tables.h"
35
36 /* declare functions that have forward references */
37
38 void dump_associated_rules PROTO ((FILE *, int));
39 void dump_transitions PROTO ((FILE *, int[]));
40 void sympartition PROTO ((int[], int, int[], int[]));
41 int symfollowset PROTO ((int[], int, int, int[]));
42
43
44 /* check_for_backing_up - check a DFA state for backing up
45 *
46 * synopsis
47 * void check_for_backing_up( int ds, int state[numecs] );
48 *
49 * ds is the number of the state to check and state[] is its out-transitions,
50 * indexed by equivalence class.
51 */
52
check_for_backing_up(ds,state)53 void check_for_backing_up (ds, state)
54 int ds;
55 int state[];
56 {
57 if ((reject && !dfaacc[ds].dfaacc_set) || (!reject && !dfaacc[ds].dfaacc_state)) { /* state is non-accepting */
58 ++num_backing_up;
59
60 if (backing_up_report) {
61 fprintf (backing_up_file,
62 _("State #%d is non-accepting -\n"), ds);
63
64 /* identify the state */
65 dump_associated_rules (backing_up_file, ds);
66
67 /* Now identify it further using the out- and
68 * jam-transitions.
69 */
70 dump_transitions (backing_up_file, state);
71
72 putc ('\n', backing_up_file);
73 }
74 }
75 }
76
77
78 /* check_trailing_context - check to see if NFA state set constitutes
79 * "dangerous" trailing context
80 *
81 * synopsis
82 * void check_trailing_context( int nfa_states[num_states+1], int num_states,
83 * int accset[nacc+1], int nacc );
84 *
85 * NOTES
86 * Trailing context is "dangerous" if both the head and the trailing
87 * part are of variable size \and/ there's a DFA state which contains
88 * both an accepting state for the head part of the rule and NFA states
89 * which occur after the beginning of the trailing context.
90 *
91 * When such a rule is matched, it's impossible to tell if having been
92 * in the DFA state indicates the beginning of the trailing context or
93 * further-along scanning of the pattern. In these cases, a warning
94 * message is issued.
95 *
96 * nfa_states[1 .. num_states] is the list of NFA states in the DFA.
97 * accset[1 .. nacc] is the list of accepting numbers for the DFA state.
98 */
99
check_trailing_context(nfa_states,num_states,accset,nacc)100 void check_trailing_context (nfa_states, num_states, accset, nacc)
101 int *nfa_states, num_states;
102 int *accset;
103 int nacc;
104 {
105 register int i, j;
106
107 for (i = 1; i <= num_states; ++i) {
108 int ns = nfa_states[i];
109 register int type = state_type[ns];
110 register int ar = assoc_rule[ns];
111
112 if (type == STATE_NORMAL || rule_type[ar] != RULE_VARIABLE) { /* do nothing */
113 }
114
115 else if (type == STATE_TRAILING_CONTEXT) {
116 /* Potential trouble. Scan set of accepting numbers
117 * for the one marking the end of the "head". We
118 * assume that this looping will be fairly cheap
119 * since it's rare that an accepting number set
120 * is large.
121 */
122 for (j = 1; j <= nacc; ++j)
123 if (accset[j] & YY_TRAILING_HEAD_MASK) {
124 line_warning (_
125 ("dangerous trailing context"),
126 rule_linenum[ar]);
127 return;
128 }
129 }
130 }
131 }
132
133
134 /* dump_associated_rules - list the rules associated with a DFA state
135 *
136 * Goes through the set of NFA states associated with the DFA and
137 * extracts the first MAX_ASSOC_RULES unique rules, sorts them,
138 * and writes a report to the given file.
139 */
140
dump_associated_rules(file,ds)141 void dump_associated_rules (file, ds)
142 FILE *file;
143 int ds;
144 {
145 register int i, j;
146 register int num_associated_rules = 0;
147 int rule_set[MAX_ASSOC_RULES + 1];
148 int *dset = dss[ds];
149 int size = dfasiz[ds];
150
151 for (i = 1; i <= size; ++i) {
152 register int rule_num = rule_linenum[assoc_rule[dset[i]]];
153
154 for (j = 1; j <= num_associated_rules; ++j)
155 if (rule_num == rule_set[j])
156 break;
157
158 if (j > num_associated_rules) { /* new rule */
159 if (num_associated_rules < MAX_ASSOC_RULES)
160 rule_set[++num_associated_rules] =
161 rule_num;
162 }
163 }
164
165 qsort (&rule_set [1], num_associated_rules, sizeof (rule_set [1]), intcmp);
166
167 fprintf (file, _(" associated rule line numbers:"));
168
169 for (i = 1; i <= num_associated_rules; ++i) {
170 if (i % 8 == 1)
171 putc ('\n', file);
172
173 fprintf (file, "\t%d", rule_set[i]);
174 }
175
176 putc ('\n', file);
177 }
178
179
180 /* dump_transitions - list the transitions associated with a DFA state
181 *
182 * synopsis
183 * dump_transitions( FILE *file, int state[numecs] );
184 *
185 * Goes through the set of out-transitions and lists them in human-readable
186 * form (i.e., not as equivalence classes); also lists jam transitions
187 * (i.e., all those which are not out-transitions, plus EOF). The dump
188 * is done to the given file.
189 */
190
dump_transitions(file,state)191 void dump_transitions (file, state)
192 FILE *file;
193 int state[];
194 {
195 register int i, ec;
196 int out_char_set[CSIZE];
197
198 for (i = 0; i < csize; ++i) {
199 ec = ABS (ecgroup[i]);
200 out_char_set[i] = state[ec];
201 }
202
203 fprintf (file, _(" out-transitions: "));
204
205 list_character_set (file, out_char_set);
206
207 /* now invert the members of the set to get the jam transitions */
208 for (i = 0; i < csize; ++i)
209 out_char_set[i] = !out_char_set[i];
210
211 fprintf (file, _("\n jam-transitions: EOF "));
212
213 list_character_set (file, out_char_set);
214
215 putc ('\n', file);
216 }
217
218
219 /* epsclosure - construct the epsilon closure of a set of ndfa states
220 *
221 * synopsis
222 * int *epsclosure( int t[num_states], int *numstates_addr,
223 * int accset[num_rules+1], int *nacc_addr,
224 * int *hashval_addr );
225 *
226 * NOTES
227 * The epsilon closure is the set of all states reachable by an arbitrary
228 * number of epsilon transitions, which themselves do not have epsilon
229 * transitions going out, unioned with the set of states which have non-null
230 * accepting numbers. t is an array of size numstates of nfa state numbers.
231 * Upon return, t holds the epsilon closure and *numstates_addr is updated.
232 * accset holds a list of the accepting numbers, and the size of accset is
233 * given by *nacc_addr. t may be subjected to reallocation if it is not
234 * large enough to hold the epsilon closure.
235 *
236 * hashval is the hash value for the dfa corresponding to the state set.
237 */
238
epsclosure(t,ns_addr,accset,nacc_addr,hv_addr)239 int *epsclosure (t, ns_addr, accset, nacc_addr, hv_addr)
240 int *t, *ns_addr, accset[], *nacc_addr, *hv_addr;
241 {
242 register int stkpos, ns, tsp;
243 int numstates = *ns_addr, nacc, hashval, transsym, nfaccnum;
244 int stkend, nstate;
245 static int did_stk_init = false, *stk;
246
247 #define MARK_STATE(state) \
248 do{ trans1[state] = trans1[state] - MARKER_DIFFERENCE;} while(0)
249
250 #define IS_MARKED(state) (trans1[state] < 0)
251
252 #define UNMARK_STATE(state) \
253 do{ trans1[state] = trans1[state] + MARKER_DIFFERENCE;} while(0)
254
255 #define CHECK_ACCEPT(state) \
256 do{ \
257 nfaccnum = accptnum[state]; \
258 if ( nfaccnum != NIL ) \
259 accset[++nacc] = nfaccnum; \
260 }while(0)
261
262 #define DO_REALLOCATION() \
263 do { \
264 current_max_dfa_size += MAX_DFA_SIZE_INCREMENT; \
265 ++num_reallocs; \
266 t = reallocate_integer_array( t, current_max_dfa_size ); \
267 stk = reallocate_integer_array( stk, current_max_dfa_size ); \
268 }while(0) \
269
270 #define PUT_ON_STACK(state) \
271 do { \
272 if ( ++stkend >= current_max_dfa_size ) \
273 DO_REALLOCATION(); \
274 stk[stkend] = state; \
275 MARK_STATE(state); \
276 }while(0)
277
278 #define ADD_STATE(state) \
279 do { \
280 if ( ++numstates >= current_max_dfa_size ) \
281 DO_REALLOCATION(); \
282 t[numstates] = state; \
283 hashval += state; \
284 }while(0)
285
286 #define STACK_STATE(state) \
287 do { \
288 PUT_ON_STACK(state); \
289 CHECK_ACCEPT(state); \
290 if ( nfaccnum != NIL || transchar[state] != SYM_EPSILON ) \
291 ADD_STATE(state); \
292 }while(0)
293
294
295 if (!did_stk_init) {
296 stk = allocate_integer_array (current_max_dfa_size);
297 did_stk_init = true;
298 }
299
300 nacc = stkend = hashval = 0;
301
302 for (nstate = 1; nstate <= numstates; ++nstate) {
303 ns = t[nstate];
304
305 /* The state could be marked if we've already pushed it onto
306 * the stack.
307 */
308 if (!IS_MARKED (ns)) {
309 PUT_ON_STACK (ns);
310 CHECK_ACCEPT (ns);
311 hashval += ns;
312 }
313 }
314
315 for (stkpos = 1; stkpos <= stkend; ++stkpos) {
316 ns = stk[stkpos];
317 transsym = transchar[ns];
318
319 if (transsym == SYM_EPSILON) {
320 tsp = trans1[ns] + MARKER_DIFFERENCE;
321
322 if (tsp != NO_TRANSITION) {
323 if (!IS_MARKED (tsp))
324 STACK_STATE (tsp);
325
326 tsp = trans2[ns];
327
328 if (tsp != NO_TRANSITION
329 && !IS_MARKED (tsp))
330 STACK_STATE (tsp);
331 }
332 }
333 }
334
335 /* Clear out "visit" markers. */
336
337 for (stkpos = 1; stkpos <= stkend; ++stkpos) {
338 if (IS_MARKED (stk[stkpos]))
339 UNMARK_STATE (stk[stkpos]);
340 else
341 flexfatal (_
342 ("consistency check failed in epsclosure()"));
343 }
344
345 *ns_addr = numstates;
346 *hv_addr = hashval;
347 *nacc_addr = nacc;
348
349 return t;
350 }
351
352
353 /* increase_max_dfas - increase the maximum number of DFAs */
354
increase_max_dfas()355 void increase_max_dfas ()
356 {
357 current_max_dfas += MAX_DFAS_INCREMENT;
358
359 ++num_reallocs;
360
361 base = reallocate_integer_array (base, current_max_dfas);
362 def = reallocate_integer_array (def, current_max_dfas);
363 dfasiz = reallocate_integer_array (dfasiz, current_max_dfas);
364 accsiz = reallocate_integer_array (accsiz, current_max_dfas);
365 dhash = reallocate_integer_array (dhash, current_max_dfas);
366 dss = reallocate_int_ptr_array (dss, current_max_dfas);
367 dfaacc = reallocate_dfaacc_union (dfaacc, current_max_dfas);
368
369 if (nultrans)
370 nultrans =
371 reallocate_integer_array (nultrans,
372 current_max_dfas);
373 }
374
375
376 /* ntod - convert an ndfa to a dfa
377 *
378 * Creates the dfa corresponding to the ndfa we've constructed. The
379 * dfa starts out in state #1.
380 */
381
ntod()382 void ntod ()
383 {
384 int *accset, ds, nacc, newds;
385 int sym, hashval, numstates, dsize;
386 int num_full_table_rows=0; /* used only for -f */
387 int *nset, *dset;
388 int targptr, totaltrans, i, comstate, comfreq, targ;
389 int symlist[CSIZE + 1];
390 int num_start_states;
391 int todo_head, todo_next;
392
393 struct yytbl_data *yynxt_tbl = 0;
394 flex_int32_t *yynxt_data = 0, yynxt_curr = 0;
395
396 /* Note that the following are indexed by *equivalence classes*
397 * and not by characters. Since equivalence classes are indexed
398 * beginning with 1, even if the scanner accepts NUL's, this
399 * means that (since every character is potentially in its own
400 * equivalence class) these arrays must have room for indices
401 * from 1 to CSIZE, so their size must be CSIZE + 1.
402 */
403 int duplist[CSIZE + 1], state[CSIZE + 1];
404 int targfreq[CSIZE + 1], targstate[CSIZE + 1];
405
406 /* accset needs to be large enough to hold all of the rules present
407 * in the input, *plus* their YY_TRAILING_HEAD_MASK variants.
408 */
409 accset = allocate_integer_array ((num_rules + 1) * 2);
410 nset = allocate_integer_array (current_max_dfa_size);
411
412 /* The "todo" queue is represented by the head, which is the DFA
413 * state currently being processed, and the "next", which is the
414 * next DFA state number available (not in use). We depend on the
415 * fact that snstods() returns DFA's \in increasing order/, and thus
416 * need only know the bounds of the dfas to be processed.
417 */
418 todo_head = todo_next = 0;
419
420 for (i = 0; i <= csize; ++i) {
421 duplist[i] = NIL;
422 symlist[i] = false;
423 }
424
425 for (i = 0; i <= num_rules; ++i)
426 accset[i] = NIL;
427
428 if (trace) {
429 dumpnfa (scset[1]);
430 fputs (_("\n\nDFA Dump:\n\n"), stderr);
431 }
432
433 inittbl ();
434
435 /* Check to see whether we should build a separate table for
436 * transitions on NUL characters. We don't do this for full-speed
437 * (-F) scanners, since for them we don't have a simple state
438 * number lying around with which to index the table. We also
439 * don't bother doing it for scanners unless (1) NUL is in its own
440 * equivalence class (indicated by a positive value of
441 * ecgroup[NUL]), (2) NUL's equivalence class is the last
442 * equivalence class, and (3) the number of equivalence classes is
443 * the same as the number of characters. This latter case comes
444 * about when useecs is false or when it's true but every character
445 * still manages to land in its own class (unlikely, but it's
446 * cheap to check for). If all these things are true then the
447 * character code needed to represent NUL's equivalence class for
448 * indexing the tables is going to take one more bit than the
449 * number of characters, and therefore we won't be assured of
450 * being able to fit it into a YY_CHAR variable. This rules out
451 * storing the transitions in a compressed table, since the code
452 * for interpreting them uses a YY_CHAR variable (perhaps it
453 * should just use an integer, though; this is worth pondering ...
454 * ###).
455 *
456 * Finally, for full tables, we want the number of entries in the
457 * table to be a power of two so the array references go fast (it
458 * will just take a shift to compute the major index). If
459 * encoding NUL's transitions in the table will spoil this, we
460 * give it its own table (note that this will be the case if we're
461 * not using equivalence classes).
462 */
463
464 /* Note that the test for ecgroup[0] == numecs below accomplishes
465 * both (1) and (2) above
466 */
467 if (!fullspd && ecgroup[0] == numecs) {
468 /* NUL is alone in its equivalence class, which is the
469 * last one.
470 */
471 int use_NUL_table = (numecs == csize);
472
473 if (fulltbl && !use_NUL_table) {
474 /* We still may want to use the table if numecs
475 * is a power of 2.
476 */
477 int power_of_two;
478
479 for (power_of_two = 1; power_of_two <= csize;
480 power_of_two *= 2)
481 if (numecs == power_of_two) {
482 use_NUL_table = true;
483 break;
484 }
485 }
486
487 if (use_NUL_table)
488 nultrans =
489 allocate_integer_array (current_max_dfas);
490
491 /* From now on, nultrans != nil indicates that we're
492 * saving null transitions for later, separate encoding.
493 */
494 }
495
496
497 if (fullspd) {
498 for (i = 0; i <= numecs; ++i)
499 state[i] = 0;
500
501 place_state (state, 0, 0);
502 dfaacc[0].dfaacc_state = 0;
503 }
504
505 else if (fulltbl) {
506 if (nultrans)
507 /* We won't be including NUL's transitions in the
508 * table, so build it for entries from 0 .. numecs - 1.
509 */
510 num_full_table_rows = numecs;
511
512 else
513 /* Take into account the fact that we'll be including
514 * the NUL entries in the transition table. Build it
515 * from 0 .. numecs.
516 */
517 num_full_table_rows = numecs + 1;
518
519 /* Begin generating yy_nxt[][]
520 * This spans the entire LONG function.
521 * This table is tricky because we don't know how big it will be.
522 * So we'll have to realloc() on the way...
523 * we'll wait until we can calculate yynxt_tbl->td_hilen.
524 */
525 yynxt_tbl =
526 (struct yytbl_data *) calloc (1,
527 sizeof (struct
528 yytbl_data));
529 yytbl_data_init (yynxt_tbl, YYTD_ID_NXT);
530 yynxt_tbl->td_hilen = 1;
531 yynxt_tbl->td_lolen = num_full_table_rows;
532 yynxt_tbl->td_data = yynxt_data =
533 (flex_int32_t *) calloc (yynxt_tbl->td_lolen *
534 yynxt_tbl->td_hilen,
535 sizeof (flex_int32_t));
536 yynxt_curr = 0;
537
538 buf_prints (&yydmap_buf,
539 "\t{YYTD_ID_NXT, (void**)&yy_nxt, sizeof(%s)},\n",
540 long_align ? "flex_int32_t" : "flex_int16_t");
541
542 /* Unless -Ca, declare it "short" because it's a real
543 * long-shot that that won't be large enough.
544 */
545 if (gentables)
546 out_str_dec
547 ("static yyconst %s yy_nxt[][%d] =\n {\n",
548 long_align ? "flex_int32_t" : "flex_int16_t",
549 num_full_table_rows);
550 else {
551 out_dec ("#undef YY_NXT_LOLEN\n#define YY_NXT_LOLEN (%d)\n", num_full_table_rows);
552 out_str ("static yyconst %s *yy_nxt =0;\n",
553 long_align ? "flex_int32_t" : "flex_int16_t");
554 }
555
556
557 if (gentables)
558 outn (" {");
559
560 /* Generate 0 entries for state #0. */
561 for (i = 0; i < num_full_table_rows; ++i) {
562 mk2data (0);
563 yynxt_data[yynxt_curr++] = 0;
564 }
565
566 dataflush ();
567 if (gentables)
568 outn (" },\n");
569 }
570
571 /* Create the first states. */
572
573 num_start_states = lastsc * 2;
574
575 for (i = 1; i <= num_start_states; ++i) {
576 numstates = 1;
577
578 /* For each start condition, make one state for the case when
579 * we're at the beginning of the line (the '^' operator) and
580 * one for the case when we're not.
581 */
582 if (i % 2 == 1)
583 nset[numstates] = scset[(i / 2) + 1];
584 else
585 nset[numstates] =
586 mkbranch (scbol[i / 2], scset[i / 2]);
587
588 nset = epsclosure (nset, &numstates, accset, &nacc,
589 &hashval);
590
591 if (snstods (nset, numstates, accset, nacc, hashval, &ds)) {
592 numas += nacc;
593 totnst += numstates;
594 ++todo_next;
595
596 if (variable_trailing_context_rules && nacc > 0)
597 check_trailing_context (nset, numstates,
598 accset, nacc);
599 }
600 }
601
602 if (!fullspd) {
603 if (!snstods (nset, 0, accset, 0, 0, &end_of_buffer_state))
604 flexfatal (_
605 ("could not create unique end-of-buffer state"));
606
607 ++numas;
608 ++num_start_states;
609 ++todo_next;
610 }
611
612
613 while (todo_head < todo_next) {
614 targptr = 0;
615 totaltrans = 0;
616
617 for (i = 1; i <= numecs; ++i)
618 state[i] = 0;
619
620 ds = ++todo_head;
621
622 dset = dss[ds];
623 dsize = dfasiz[ds];
624
625 if (trace)
626 fprintf (stderr, _("state # %d:\n"), ds);
627
628 sympartition (dset, dsize, symlist, duplist);
629
630 for (sym = 1; sym <= numecs; ++sym) {
631 if (symlist[sym]) {
632 symlist[sym] = 0;
633
634 if (duplist[sym] == NIL) {
635 /* Symbol has unique out-transitions. */
636 numstates =
637 symfollowset (dset, dsize,
638 sym, nset);
639 nset = epsclosure (nset,
640 &numstates,
641 accset, &nacc,
642 &hashval);
643
644 if (snstods
645 (nset, numstates, accset, nacc,
646 hashval, &newds)) {
647 totnst = totnst +
648 numstates;
649 ++todo_next;
650 numas += nacc;
651
652 if (variable_trailing_context_rules && nacc > 0)
653 check_trailing_context
654 (nset,
655 numstates,
656 accset,
657 nacc);
658 }
659
660 state[sym] = newds;
661
662 if (trace)
663 fprintf (stderr,
664 "\t%d\t%d\n", sym,
665 newds);
666
667 targfreq[++targptr] = 1;
668 targstate[targptr] = newds;
669 ++numuniq;
670 }
671
672 else {
673 /* sym's equivalence class has the same
674 * transitions as duplist(sym)'s
675 * equivalence class.
676 */
677 targ = state[duplist[sym]];
678 state[sym] = targ;
679
680 if (trace)
681 fprintf (stderr,
682 "\t%d\t%d\n", sym,
683 targ);
684
685 /* Update frequency count for
686 * destination state.
687 */
688
689 i = 0;
690 while (targstate[++i] != targ) ;
691
692 ++targfreq[i];
693 ++numdup;
694 }
695
696 ++totaltrans;
697 duplist[sym] = NIL;
698 }
699 }
700
701
702 numsnpairs += totaltrans;
703
704 if (ds > num_start_states)
705 check_for_backing_up (ds, state);
706
707 if (nultrans) {
708 nultrans[ds] = state[NUL_ec];
709 state[NUL_ec] = 0; /* remove transition */
710 }
711
712 if (fulltbl) {
713
714 /* Each time we hit here, it's another td_hilen, so we realloc. */
715 yynxt_tbl->td_hilen++;
716 yynxt_tbl->td_data = yynxt_data =
717 (flex_int32_t *) realloc (yynxt_data,
718 yynxt_tbl->td_hilen *
719 yynxt_tbl->td_lolen *
720 sizeof (flex_int32_t));
721
722
723 if (gentables)
724 outn (" {");
725
726 /* Supply array's 0-element. */
727 if (ds == end_of_buffer_state) {
728 mk2data (-end_of_buffer_state);
729 yynxt_data[yynxt_curr++] =
730 -end_of_buffer_state;
731 }
732 else {
733 mk2data (end_of_buffer_state);
734 yynxt_data[yynxt_curr++] =
735 end_of_buffer_state;
736 }
737
738 for (i = 1; i < num_full_table_rows; ++i) {
739 /* Jams are marked by negative of state
740 * number.
741 */
742 mk2data (state[i] ? state[i] : -ds);
743 yynxt_data[yynxt_curr++] =
744 state[i] ? state[i] : -ds;
745 }
746
747 dataflush ();
748 if (gentables)
749 outn (" },\n");
750 }
751
752 else if (fullspd)
753 place_state (state, ds, totaltrans);
754
755 else if (ds == end_of_buffer_state)
756 /* Special case this state to make sure it does what
757 * it's supposed to, i.e., jam on end-of-buffer.
758 */
759 stack1 (ds, 0, 0, JAMSTATE);
760
761 else { /* normal, compressed state */
762
763 /* Determine which destination state is the most
764 * common, and how many transitions to it there are.
765 */
766
767 comfreq = 0;
768 comstate = 0;
769
770 for (i = 1; i <= targptr; ++i)
771 if (targfreq[i] > comfreq) {
772 comfreq = targfreq[i];
773 comstate = targstate[i];
774 }
775
776 bldtbl (state, ds, totaltrans, comstate, comfreq);
777 }
778 }
779
780 if (fulltbl) {
781 dataend ();
782 if (tablesext) {
783 yytbl_data_compress (yynxt_tbl);
784 if (yytbl_data_fwrite (&tableswr, yynxt_tbl) < 0)
785 flexerror (_
786 ("Could not write yynxt_tbl[][]"));
787 }
788 if (yynxt_tbl) {
789 yytbl_data_destroy (yynxt_tbl);
790 yynxt_tbl = 0;
791 }
792 }
793
794 else if (!fullspd) {
795 cmptmps (); /* create compressed template entries */
796
797 /* Create tables for all the states with only one
798 * out-transition.
799 */
800 while (onesp > 0) {
801 mk1tbl (onestate[onesp], onesym[onesp],
802 onenext[onesp], onedef[onesp]);
803 --onesp;
804 }
805
806 mkdeftbl ();
807 }
808
809 flex_free ((void *) accset);
810 flex_free ((void *) nset);
811 }
812
813
814 /* snstods - converts a set of ndfa states into a dfa state
815 *
816 * synopsis
817 * is_new_state = snstods( int sns[numstates], int numstates,
818 * int accset[num_rules+1], int nacc,
819 * int hashval, int *newds_addr );
820 *
821 * On return, the dfa state number is in newds.
822 */
823
snstods(sns,numstates,accset,nacc,hashval,newds_addr)824 int snstods (sns, numstates, accset, nacc, hashval, newds_addr)
825 int sns[], numstates, accset[], nacc, hashval, *newds_addr;
826 {
827 int didsort = 0;
828 register int i, j;
829 int newds, *oldsns;
830
831 for (i = 1; i <= lastdfa; ++i)
832 if (hashval == dhash[i]) {
833 if (numstates == dfasiz[i]) {
834 oldsns = dss[i];
835
836 if (!didsort) {
837 /* We sort the states in sns so we
838 * can compare it to oldsns quickly.
839 */
840 qsort (&sns [1], numstates, sizeof (sns [1]), intcmp);
841 didsort = 1;
842 }
843
844 for (j = 1; j <= numstates; ++j)
845 if (sns[j] != oldsns[j])
846 break;
847
848 if (j > numstates) {
849 ++dfaeql;
850 *newds_addr = i;
851 return 0;
852 }
853
854 ++hshcol;
855 }
856
857 else
858 ++hshsave;
859 }
860
861 /* Make a new dfa. */
862
863 if (++lastdfa >= current_max_dfas)
864 increase_max_dfas ();
865
866 newds = lastdfa;
867
868 dss[newds] = allocate_integer_array (numstates + 1);
869
870 /* If we haven't already sorted the states in sns, we do so now,
871 * so that future comparisons with it can be made quickly.
872 */
873
874 if (!didsort)
875 qsort (&sns [1], numstates, sizeof (sns [1]), intcmp);
876
877 for (i = 1; i <= numstates; ++i)
878 dss[newds][i] = sns[i];
879
880 dfasiz[newds] = numstates;
881 dhash[newds] = hashval;
882
883 if (nacc == 0) {
884 if (reject)
885 dfaacc[newds].dfaacc_set = (int *) 0;
886 else
887 dfaacc[newds].dfaacc_state = 0;
888
889 accsiz[newds] = 0;
890 }
891
892 else if (reject) {
893 /* We sort the accepting set in increasing order so the
894 * disambiguating rule that the first rule listed is considered
895 * match in the event of ties will work.
896 */
897
898 qsort (&accset [1], nacc, sizeof (accset [1]), intcmp);
899
900 dfaacc[newds].dfaacc_set =
901 allocate_integer_array (nacc + 1);
902
903 /* Save the accepting set for later */
904 for (i = 1; i <= nacc; ++i) {
905 dfaacc[newds].dfaacc_set[i] = accset[i];
906
907 if (accset[i] <= num_rules)
908 /* Who knows, perhaps a REJECT can yield
909 * this rule.
910 */
911 rule_useful[accset[i]] = true;
912 }
913
914 accsiz[newds] = nacc;
915 }
916
917 else {
918 /* Find lowest numbered rule so the disambiguating rule
919 * will work.
920 */
921 j = num_rules + 1;
922
923 for (i = 1; i <= nacc; ++i)
924 if (accset[i] < j)
925 j = accset[i];
926
927 dfaacc[newds].dfaacc_state = j;
928
929 if (j <= num_rules)
930 rule_useful[j] = true;
931 }
932
933 *newds_addr = newds;
934
935 return 1;
936 }
937
938
939 /* symfollowset - follow the symbol transitions one step
940 *
941 * synopsis
942 * numstates = symfollowset( int ds[current_max_dfa_size], int dsize,
943 * int transsym, int nset[current_max_dfa_size] );
944 */
945
symfollowset(ds,dsize,transsym,nset)946 int symfollowset (ds, dsize, transsym, nset)
947 int ds[], dsize, transsym, nset[];
948 {
949 int ns, tsp, sym, i, j, lenccl, ch, numstates, ccllist;
950
951 numstates = 0;
952
953 for (i = 1; i <= dsize; ++i) { /* for each nfa state ns in the state set of ds */
954 ns = ds[i];
955 sym = transchar[ns];
956 tsp = trans1[ns];
957
958 if (sym < 0) { /* it's a character class */
959 sym = -sym;
960 ccllist = cclmap[sym];
961 lenccl = ccllen[sym];
962
963 if (cclng[sym]) {
964 for (j = 0; j < lenccl; ++j) {
965 /* Loop through negated character
966 * class.
967 */
968 ch = ccltbl[ccllist + j];
969
970 if (ch == 0)
971 ch = NUL_ec;
972
973 if (ch > transsym)
974 /* Transsym isn't in negated
975 * ccl.
976 */
977 break;
978
979 else if (ch == transsym)
980 /* next 2 */
981 goto bottom;
982 }
983
984 /* Didn't find transsym in ccl. */
985 nset[++numstates] = tsp;
986 }
987
988 else
989 for (j = 0; j < lenccl; ++j) {
990 ch = ccltbl[ccllist + j];
991
992 if (ch == 0)
993 ch = NUL_ec;
994
995 if (ch > transsym)
996 break;
997 else if (ch == transsym) {
998 nset[++numstates] = tsp;
999 break;
1000 }
1001 }
1002 }
1003
1004 else if (sym == SYM_EPSILON) { /* do nothing */
1005 }
1006
1007 else if (ABS (ecgroup[sym]) == transsym)
1008 nset[++numstates] = tsp;
1009
1010 bottom:;
1011 }
1012
1013 return numstates;
1014 }
1015
1016
1017 /* sympartition - partition characters with same out-transitions
1018 *
1019 * synopsis
1020 * sympartition( int ds[current_max_dfa_size], int numstates,
1021 * int symlist[numecs], int duplist[numecs] );
1022 */
1023
sympartition(ds,numstates,symlist,duplist)1024 void sympartition (ds, numstates, symlist, duplist)
1025 int ds[], numstates;
1026 int symlist[], duplist[];
1027 {
1028 int tch, i, j, k, ns, dupfwd[CSIZE + 1], lenccl, cclp, ich;
1029
1030 /* Partitioning is done by creating equivalence classes for those
1031 * characters which have out-transitions from the given state. Thus
1032 * we are really creating equivalence classes of equivalence classes.
1033 */
1034
1035 for (i = 1; i <= numecs; ++i) { /* initialize equivalence class list */
1036 duplist[i] = i - 1;
1037 dupfwd[i] = i + 1;
1038 }
1039
1040 duplist[1] = NIL;
1041 dupfwd[numecs] = NIL;
1042
1043 for (i = 1; i <= numstates; ++i) {
1044 ns = ds[i];
1045 tch = transchar[ns];
1046
1047 if (tch != SYM_EPSILON) {
1048 if (tch < -lastccl || tch >= csize) {
1049 flexfatal (_
1050 ("bad transition character detected in sympartition()"));
1051 }
1052
1053 if (tch >= 0) { /* character transition */
1054 int ec = ecgroup[tch];
1055
1056 mkechar (ec, dupfwd, duplist);
1057 symlist[ec] = 1;
1058 }
1059
1060 else { /* character class */
1061 tch = -tch;
1062
1063 lenccl = ccllen[tch];
1064 cclp = cclmap[tch];
1065 mkeccl (ccltbl + cclp, lenccl, dupfwd,
1066 duplist, numecs, NUL_ec);
1067
1068 if (cclng[tch]) {
1069 j = 0;
1070
1071 for (k = 0; k < lenccl; ++k) {
1072 ich = ccltbl[cclp + k];
1073
1074 if (ich == 0)
1075 ich = NUL_ec;
1076
1077 for (++j; j < ich; ++j)
1078 symlist[j] = 1;
1079 }
1080
1081 for (++j; j <= numecs; ++j)
1082 symlist[j] = 1;
1083 }
1084
1085 else
1086 for (k = 0; k < lenccl; ++k) {
1087 ich = ccltbl[cclp + k];
1088
1089 if (ich == 0)
1090 ich = NUL_ec;
1091
1092 symlist[ich] = 1;
1093 }
1094 }
1095 }
1096 }
1097 }
1098