1 /*	$NetBSD: chfs_malloc.c,v 1.4 2012/10/19 12:44:39 ttoth Exp $	*/
2 
3 /*-
4  * Copyright (c) 2010 Department of Software Engineering,
5  *		      University of Szeged, Hungary
6  * Copyright (C) 2010 Tamas Toth <ttoth@inf.u-szeged.hu>
7  * Copyright (C) 2010 Adam Hoka <ahoka@NetBSD.org>
8  * All rights reserved.
9  *
10  * This code is derived from software contributed to The NetBSD Foundation
11  * by the Department of Software Engineering, University of Szeged, Hungary
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #include "chfs.h"
36 #include <sys/pool.h>
37 
38 pool_cache_t chfs_vnode_cache;
39 pool_cache_t chfs_nrefs_cache;
40 pool_cache_t chfs_flash_vnode_cache;
41 pool_cache_t chfs_flash_dirent_cache;
42 pool_cache_t chfs_flash_dnode_cache;
43 pool_cache_t chfs_node_frag_cache;
44 pool_cache_t chfs_tmp_dnode_cache;
45 pool_cache_t chfs_tmp_dnode_info_cache;
46 
47 /* chfs_alloc_pool_caches - allocating pool caches */
48 int
chfs_alloc_pool_caches(void)49 chfs_alloc_pool_caches(void)
50 {
51 	chfs_vnode_cache = pool_cache_init(
52 		sizeof(struct chfs_vnode_cache),
53 		0, 0, 0, "chfs_vnode_cache", NULL, IPL_NONE, NULL, NULL,
54 		NULL);
55 	if (!chfs_vnode_cache)
56 		goto err_vnode;
57 
58 	chfs_nrefs_cache = pool_cache_init(
59 		(REFS_BLOCK_LEN + 1) * sizeof(struct chfs_node_ref), 0, 0,
60 		0, "chfs_nrefs_pool", NULL, IPL_NONE, NULL, NULL, NULL);
61 	if (!chfs_nrefs_cache)
62 		goto err_nrefs;
63 
64 	chfs_flash_vnode_cache = pool_cache_init(
65 		sizeof(struct chfs_flash_vnode), 0, 0, 0,
66 		"chfs_flash_vnode_pool", NULL, IPL_NONE, NULL, NULL, NULL);
67 	if (!chfs_flash_vnode_cache)
68 		goto err_flash_vnode;
69 
70 	chfs_flash_dirent_cache = pool_cache_init(
71 		sizeof(struct chfs_flash_dirent_node), 0, 0, 0,
72 		"chfs_flash_dirent_pool", NULL, IPL_NONE, NULL, NULL, NULL);
73 	if (!chfs_flash_dirent_cache)
74 		goto err_flash_dirent;
75 
76 	chfs_flash_dnode_cache = pool_cache_init(
77 		sizeof(struct chfs_flash_data_node), 0, 0, 0,
78 		"chfs_flash_dnode_pool", NULL, IPL_NONE, NULL, NULL, NULL);
79 	if (!chfs_flash_dnode_cache)
80 		goto err_flash_dnode;
81 
82 	chfs_node_frag_cache = pool_cache_init(
83 		sizeof(struct chfs_node_frag), 0, 0, 0,
84 		"chfs_node_frag_pool", NULL, IPL_NONE, NULL, NULL, NULL);
85 	if (!chfs_node_frag_cache)
86 		goto err_node_frag;
87 
88 	chfs_tmp_dnode_cache = pool_cache_init(
89 		sizeof(struct chfs_tmp_dnode), 0, 0, 0,
90 		"chfs_tmp_dnode_pool", NULL, IPL_NONE, NULL, NULL, NULL);
91 	if (!chfs_tmp_dnode_cache)
92 		goto err_tmp_dnode;
93 
94 	chfs_tmp_dnode_info_cache = pool_cache_init(
95 		sizeof(struct chfs_tmp_dnode_info), 0, 0, 0,
96 		"chfs_tmp_dnode_info_pool", NULL, IPL_NONE, NULL, NULL, NULL);
97 	if (!chfs_tmp_dnode_info_cache)
98 		goto err_tmp_dnode_info;
99 
100 	return 0;
101 
102 err_tmp_dnode_info:
103 	pool_cache_destroy(chfs_tmp_dnode_cache);
104 err_tmp_dnode:
105 	pool_cache_destroy(chfs_node_frag_cache);
106 err_node_frag:
107 	pool_cache_destroy(chfs_flash_dnode_cache);
108 err_flash_dnode:
109 	pool_cache_destroy(chfs_flash_dirent_cache);
110 err_flash_dirent:
111 	pool_cache_destroy(chfs_flash_vnode_cache);
112 err_flash_vnode:
113 	pool_cache_destroy(chfs_nrefs_cache);
114 err_nrefs:
115 	pool_cache_destroy(chfs_vnode_cache);
116 err_vnode:
117 
118 	return ENOMEM;
119 }
120 
121 /* chfs_destroy_pool_caches - destroying pool caches */
122 void
chfs_destroy_pool_caches(void)123 chfs_destroy_pool_caches(void)
124 {
125 	if (chfs_vnode_cache)
126 		pool_cache_destroy(chfs_vnode_cache);
127 
128 	if (chfs_nrefs_cache)
129 		pool_cache_destroy(chfs_nrefs_cache);
130 
131 	if (chfs_flash_vnode_cache)
132 		pool_cache_destroy(chfs_flash_vnode_cache);
133 
134 	if (chfs_flash_dirent_cache)
135 		pool_cache_destroy(chfs_flash_dirent_cache);
136 
137 	if (chfs_flash_dnode_cache)
138 		pool_cache_destroy(chfs_flash_dnode_cache);
139 
140 	if (chfs_node_frag_cache)
141 		pool_cache_destroy(chfs_node_frag_cache);
142 
143 	if (chfs_tmp_dnode_cache)
144 		pool_cache_destroy(chfs_tmp_dnode_cache);
145 
146 	if (chfs_tmp_dnode_info_cache)
147 		pool_cache_destroy(chfs_tmp_dnode_info_cache);
148 }
149 
150 /* chfs_vnode_cache_alloc - allocating and initializing a vnode cache */
151 struct chfs_vnode_cache *
chfs_vnode_cache_alloc(ino_t vno)152 chfs_vnode_cache_alloc(ino_t vno)
153 {
154 	struct chfs_vnode_cache* vc;
155 	vc = pool_cache_get(chfs_vnode_cache, PR_WAITOK);
156 
157 	memset(vc, 0, sizeof(*vc));
158 	vc->vno = vno;
159 	/* vnode cache is the last element of all chain */
160 	vc->v = (void *)vc;
161 	vc->dirents = (void *)vc;
162 	vc->dnode = (void *)vc;
163 	TAILQ_INIT(&vc->scan_dirents);
164 	vc->highest_version = 0;
165 
166 	return vc;
167 }
168 
169 /* chfs_vnode_cache_free - freeing a vnode cache */
170 void
chfs_vnode_cache_free(struct chfs_vnode_cache * vc)171 chfs_vnode_cache_free(struct chfs_vnode_cache *vc)
172 {
173 	pool_cache_put(chfs_vnode_cache, vc);
174 }
175 
176 /*
177  * chfs_alloc_refblock - allocating a refblock
178  *
179  * Returns a pointer of the first element in the block.
180  *
181  * We are not allocating just one node ref, instead we allocating REFS_BLOCK_LEN
182  * number of node refs, the last element will be a pointer to the next block.
183  * We do this, because we need a chain of nodes which have been ordered by the
184  * physical address of them.
185  *
186  */
187 struct chfs_node_ref*
chfs_alloc_refblock(void)188 chfs_alloc_refblock(void)
189 {
190 	int i;
191 	struct chfs_node_ref *nref;
192 	nref = pool_cache_get(chfs_nrefs_cache, PR_WAITOK);
193 
194 	for (i = 0; i < REFS_BLOCK_LEN; i++) {
195 		nref[i].nref_lnr = REF_EMPTY_NODE;
196 		nref[i].nref_next = NULL;
197 	}
198 	i = REFS_BLOCK_LEN;
199 	nref[i].nref_lnr = REF_LINK_TO_NEXT;
200 	nref[i].nref_next = NULL;
201 
202 	return nref;
203 }
204 
205 /* chfs_free_refblock - freeing a refblock */
206 void
chfs_free_refblock(struct chfs_node_ref * nref)207 chfs_free_refblock(struct chfs_node_ref *nref)
208 {
209 	pool_cache_put(chfs_nrefs_cache, nref);
210 }
211 
212 /*
213  * chfs_alloc_node_ref - allocating a node ref from a refblock
214  *
215  * Allocating a node ref from a refblock, it there isn't any free element in the
216  * block, a new block will be allocated and be linked to the current block.
217  */
218 struct chfs_node_ref*
chfs_alloc_node_ref(struct chfs_eraseblock * cheb)219 chfs_alloc_node_ref(struct chfs_eraseblock *cheb)
220 {
221 	struct chfs_node_ref *nref, *new, *old;
222 	old = cheb->last_node;
223 	nref = cheb->last_node;
224 
225 	if (!nref) {
226 		/* There haven't been any nref allocated for this block yet */
227 		nref = chfs_alloc_refblock();
228 
229 		cheb->first_node = nref;
230 		cheb->last_node = nref;
231 		nref->nref_lnr = cheb->lnr;
232 		KASSERT(cheb->lnr == nref->nref_lnr);
233 
234 		return nref;
235 	}
236 
237 	nref++;
238 	if (nref->nref_lnr == REF_LINK_TO_NEXT) {
239 		/* this was the last element, allocate a new block */
240 		new = chfs_alloc_refblock();
241 		nref->nref_next = new;
242 		nref = new;
243 	}
244 
245 	cheb->last_node = nref;
246 	nref->nref_lnr = cheb->lnr;
247 
248 	KASSERT(old->nref_lnr == nref->nref_lnr &&
249 	    nref->nref_lnr == cheb->lnr);
250 
251 	return nref;
252 }
253 
254 /* chfs_free_node_refs - freeing an eraseblock's node refs */
255 void
chfs_free_node_refs(struct chfs_eraseblock * cheb)256 chfs_free_node_refs(struct chfs_eraseblock *cheb)
257 {
258 	struct chfs_node_ref *nref, *block;
259 
260 	block = nref = cheb->first_node;
261 
262 	while (nref) {
263 		if (nref->nref_lnr == REF_LINK_TO_NEXT) {
264 			nref = nref->nref_next;
265 			chfs_free_refblock(block);
266 			block = nref;
267 			continue;
268 		}
269 		nref++;
270 	}
271 }
272 
273 /* chfs_alloc_dirent - allocating a directory entry */
274 struct chfs_dirent*
chfs_alloc_dirent(int namesize)275 chfs_alloc_dirent(int namesize)
276 {
277 	struct chfs_dirent *ret;
278 	size_t size = sizeof(struct chfs_dirent) + namesize;
279 
280 	ret = kmem_alloc(size, KM_SLEEP);
281 
282 	return ret;
283 }
284 
285 /* chfs_free_dirent - freeing a directory entry */
286 void
chfs_free_dirent(struct chfs_dirent * dirent)287 chfs_free_dirent(struct chfs_dirent *dirent)
288 {
289 	size_t size = sizeof(struct chfs_dirent) + dirent->nsize + 1;
290 
291 	kmem_free(dirent, size);
292 }
293 
294 /* chfs_alloc_full_dnode - allocating a full data node */
295 struct chfs_full_dnode*
chfs_alloc_full_dnode(void)296 chfs_alloc_full_dnode(void)
297 {
298 	struct chfs_full_dnode *ret;
299 	ret = kmem_alloc(sizeof(struct chfs_full_dnode), KM_SLEEP);
300 	ret->nref = NULL;
301 	ret->frags = 0;
302 	return ret;
303 }
304 
305 /* chfs_free_full_dnode - freeing a full data node */
306 void
chfs_free_full_dnode(struct chfs_full_dnode * fd)307 chfs_free_full_dnode(struct chfs_full_dnode *fd)
308 {
309 	kmem_free(fd,(sizeof(struct chfs_full_dnode)));
310 }
311 
312 /* chfs_alloc_flash_vnode - allocating vnode info (used on flash) */
313 struct chfs_flash_vnode*
chfs_alloc_flash_vnode(void)314 chfs_alloc_flash_vnode(void)
315 {
316 	struct chfs_flash_vnode *ret;
317 	ret = pool_cache_get(chfs_flash_vnode_cache, 0);
318 	return ret;
319 }
320 
321 /* chfs_free_flash_vnode - freeing vnode info */
322 void
chfs_free_flash_vnode(struct chfs_flash_vnode * fvnode)323 chfs_free_flash_vnode(struct chfs_flash_vnode *fvnode)
324 {
325 	pool_cache_put(chfs_flash_vnode_cache, fvnode);
326 }
327 
328 /* chfs_alloc_flash_dirent - allocating a directory entry (used on flash) */
329 struct chfs_flash_dirent_node*
chfs_alloc_flash_dirent(void)330 chfs_alloc_flash_dirent(void)
331 {
332 	struct chfs_flash_dirent_node *ret;
333 	ret = pool_cache_get(chfs_flash_dirent_cache, 0);
334 	return ret;
335 }
336 
337 /* chfs_free_flash_dirent - freeing a (flash) directory entry */
338 void
chfs_free_flash_dirent(struct chfs_flash_dirent_node * fdnode)339 chfs_free_flash_dirent(struct chfs_flash_dirent_node *fdnode)
340 {
341 	pool_cache_put(chfs_flash_dirent_cache, fdnode);
342 }
343 
344 /* chfs_alloc_flash_dnode - allocating a data node (used on flash) */
345 struct chfs_flash_data_node*
chfs_alloc_flash_dnode(void)346 chfs_alloc_flash_dnode(void)
347 {
348 	struct chfs_flash_data_node *ret;
349 	ret = pool_cache_get(chfs_flash_dnode_cache, 0);
350 	return ret;
351 }
352 
353 /* chfs_free_flash_dnode - freeing a (flash) data node */
354 void
chfs_free_flash_dnode(struct chfs_flash_data_node * fdnode)355 chfs_free_flash_dnode(struct chfs_flash_data_node *fdnode)
356 {
357 	pool_cache_put(chfs_flash_dnode_cache, fdnode);
358 }
359 
360 /* chfs_alloc_node_frag - allocating a fragment of a node */
361 struct chfs_node_frag*
chfs_alloc_node_frag(void)362 chfs_alloc_node_frag(void)
363 {
364 	struct chfs_node_frag *ret;
365 	ret = pool_cache_get(chfs_node_frag_cache, 0);
366 	return ret;
367 }
368 
369 /* chfs_free_node_frag - freeing a fragment of a node */
370 void
chfs_free_node_frag(struct chfs_node_frag * frag)371 chfs_free_node_frag(struct chfs_node_frag *frag)
372 {
373 	pool_cache_put(chfs_node_frag_cache, frag);
374 }
375 
376 /* chfs_alloc_tmp_dnode - allocating a temporarly used dnode */
377 struct chfs_tmp_dnode *
chfs_alloc_tmp_dnode(void)378 chfs_alloc_tmp_dnode(void)
379 {
380 	struct chfs_tmp_dnode *ret;
381 	ret = pool_cache_get(chfs_tmp_dnode_cache, 0);
382 	ret->next = NULL;
383 	return ret;
384 }
385 
386 /* chfs_free_tmp_dnode - freeing a temporarly used dnode */
387 void
chfs_free_tmp_dnode(struct chfs_tmp_dnode * td)388 chfs_free_tmp_dnode(struct chfs_tmp_dnode *td)
389 {
390 	pool_cache_put(chfs_tmp_dnode_cache, td);
391 }
392 
393 /* chfs_alloc_tmp_dnode_info - allocating a temporarly used dnode descriptor */
394 struct chfs_tmp_dnode_info *
chfs_alloc_tmp_dnode_info(void)395 chfs_alloc_tmp_dnode_info(void)
396 {
397 	struct chfs_tmp_dnode_info *ret;
398 	ret = pool_cache_get(chfs_tmp_dnode_info_cache, 0);
399 	ret->tmpnode = NULL;
400 	return ret;
401 }
402 
403 /* chfs_free_tmp_dnode_info - freeing a temporarly used dnode descriptor */
404 void
chfs_free_tmp_dnode_info(struct chfs_tmp_dnode_info * di)405 chfs_free_tmp_dnode_info(struct chfs_tmp_dnode_info *di)
406 {
407 	pool_cache_put(chfs_tmp_dnode_info_cache, di);
408 }
409 
410