1 /* Chains of recurrences.
2 Copyright (C) 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 /* This file implements operations on chains of recurrences. Chains
23 of recurrences are used for modeling evolution functions of scalar
24 variables.
25 */
26
27 #include "config.h"
28 #include "system.h"
29 #include "coretypes.h"
30 #include "tm.h"
31 #include "ggc.h"
32 #include "tree.h"
33 #include "real.h"
34 #include "diagnostic.h"
35 #include "cfgloop.h"
36 #include "tree-flow.h"
37 #include "tree-chrec.h"
38 #include "tree-pass.h"
39 #include "params.h"
40 #include "tree-scalar-evolution.h"
41
42
43
44 /* Extended folder for chrecs. */
45
46 /* Determines whether CST is not a constant evolution. */
47
48 static inline bool
is_not_constant_evolution(tree cst)49 is_not_constant_evolution (tree cst)
50 {
51 return (TREE_CODE (cst) == POLYNOMIAL_CHREC);
52 }
53
54 /* Fold CODE for a polynomial function and a constant. */
55
56 static inline tree
chrec_fold_poly_cst(enum tree_code code,tree type,tree poly,tree cst)57 chrec_fold_poly_cst (enum tree_code code,
58 tree type,
59 tree poly,
60 tree cst)
61 {
62 gcc_assert (poly);
63 gcc_assert (cst);
64 gcc_assert (TREE_CODE (poly) == POLYNOMIAL_CHREC);
65 gcc_assert (!is_not_constant_evolution (cst));
66 gcc_assert (type == chrec_type (poly));
67
68 switch (code)
69 {
70 case PLUS_EXPR:
71 return build_polynomial_chrec
72 (CHREC_VARIABLE (poly),
73 chrec_fold_plus (type, CHREC_LEFT (poly), cst),
74 CHREC_RIGHT (poly));
75
76 case MINUS_EXPR:
77 return build_polynomial_chrec
78 (CHREC_VARIABLE (poly),
79 chrec_fold_minus (type, CHREC_LEFT (poly), cst),
80 CHREC_RIGHT (poly));
81
82 case MULT_EXPR:
83 return build_polynomial_chrec
84 (CHREC_VARIABLE (poly),
85 chrec_fold_multiply (type, CHREC_LEFT (poly), cst),
86 chrec_fold_multiply (type, CHREC_RIGHT (poly), cst));
87
88 default:
89 return chrec_dont_know;
90 }
91 }
92
93 /* Fold the addition of two polynomial functions. */
94
95 static inline tree
chrec_fold_plus_poly_poly(enum tree_code code,tree type,tree poly0,tree poly1)96 chrec_fold_plus_poly_poly (enum tree_code code,
97 tree type,
98 tree poly0,
99 tree poly1)
100 {
101 tree left, right;
102
103 gcc_assert (poly0);
104 gcc_assert (poly1);
105 gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
106 gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
107 gcc_assert (chrec_type (poly0) == chrec_type (poly1));
108 gcc_assert (type == chrec_type (poly0));
109
110 /*
111 {a, +, b}_1 + {c, +, d}_2 -> {{a, +, b}_1 + c, +, d}_2,
112 {a, +, b}_2 + {c, +, d}_1 -> {{c, +, d}_1 + a, +, b}_2,
113 {a, +, b}_x + {c, +, d}_x -> {a+c, +, b+d}_x. */
114 if (CHREC_VARIABLE (poly0) < CHREC_VARIABLE (poly1))
115 {
116 if (code == PLUS_EXPR)
117 return build_polynomial_chrec
118 (CHREC_VARIABLE (poly1),
119 chrec_fold_plus (type, poly0, CHREC_LEFT (poly1)),
120 CHREC_RIGHT (poly1));
121 else
122 return build_polynomial_chrec
123 (CHREC_VARIABLE (poly1),
124 chrec_fold_minus (type, poly0, CHREC_LEFT (poly1)),
125 chrec_fold_multiply (type, CHREC_RIGHT (poly1),
126 SCALAR_FLOAT_TYPE_P (type)
127 ? build_real (type, dconstm1)
128 : build_int_cst_type (type, -1)));
129 }
130
131 if (CHREC_VARIABLE (poly0) > CHREC_VARIABLE (poly1))
132 {
133 if (code == PLUS_EXPR)
134 return build_polynomial_chrec
135 (CHREC_VARIABLE (poly0),
136 chrec_fold_plus (type, CHREC_LEFT (poly0), poly1),
137 CHREC_RIGHT (poly0));
138 else
139 return build_polynomial_chrec
140 (CHREC_VARIABLE (poly0),
141 chrec_fold_minus (type, CHREC_LEFT (poly0), poly1),
142 CHREC_RIGHT (poly0));
143 }
144
145 if (code == PLUS_EXPR)
146 {
147 left = chrec_fold_plus
148 (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
149 right = chrec_fold_plus
150 (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
151 }
152 else
153 {
154 left = chrec_fold_minus
155 (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
156 right = chrec_fold_minus
157 (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
158 }
159
160 if (chrec_zerop (right))
161 return left;
162 else
163 return build_polynomial_chrec
164 (CHREC_VARIABLE (poly0), left, right);
165 }
166
167
168
169 /* Fold the multiplication of two polynomial functions. */
170
171 static inline tree
chrec_fold_multiply_poly_poly(tree type,tree poly0,tree poly1)172 chrec_fold_multiply_poly_poly (tree type,
173 tree poly0,
174 tree poly1)
175 {
176 tree t0, t1, t2;
177 int var;
178
179 gcc_assert (poly0);
180 gcc_assert (poly1);
181 gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
182 gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
183 gcc_assert (chrec_type (poly0) == chrec_type (poly1));
184 gcc_assert (type == chrec_type (poly0));
185
186 /* {a, +, b}_1 * {c, +, d}_2 -> {c*{a, +, b}_1, +, d}_2,
187 {a, +, b}_2 * {c, +, d}_1 -> {a*{c, +, d}_1, +, b}_2,
188 {a, +, b}_x * {c, +, d}_x -> {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x. */
189 if (CHREC_VARIABLE (poly0) < CHREC_VARIABLE (poly1))
190 /* poly0 is a constant wrt. poly1. */
191 return build_polynomial_chrec
192 (CHREC_VARIABLE (poly1),
193 chrec_fold_multiply (type, CHREC_LEFT (poly1), poly0),
194 CHREC_RIGHT (poly1));
195
196 if (CHREC_VARIABLE (poly1) < CHREC_VARIABLE (poly0))
197 /* poly1 is a constant wrt. poly0. */
198 return build_polynomial_chrec
199 (CHREC_VARIABLE (poly0),
200 chrec_fold_multiply (type, CHREC_LEFT (poly0), poly1),
201 CHREC_RIGHT (poly0));
202
203 /* poly0 and poly1 are two polynomials in the same variable,
204 {a, +, b}_x * {c, +, d}_x -> {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x. */
205
206 /* "a*c". */
207 t0 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
208
209 /* "a*d + b*c + b*d". */
210 t1 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_RIGHT (poly1));
211 t1 = chrec_fold_plus (type, t1, chrec_fold_multiply (type,
212 CHREC_RIGHT (poly0),
213 CHREC_LEFT (poly1)));
214 t1 = chrec_fold_plus (type, t1, chrec_fold_multiply (type,
215 CHREC_RIGHT (poly0),
216 CHREC_RIGHT (poly1)));
217 /* "2*b*d". */
218 t2 = chrec_fold_multiply (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
219 t2 = chrec_fold_multiply (type, SCALAR_FLOAT_TYPE_P (type)
220 ? build_real (type, dconst2)
221 : build_int_cst (type, 2), t2);
222
223 var = CHREC_VARIABLE (poly0);
224 return build_polynomial_chrec (var, t0,
225 build_polynomial_chrec (var, t1, t2));
226 }
227
228 /* When the operands are automatically_generated_chrec_p, the fold has
229 to respect the semantics of the operands. */
230
231 static inline tree
chrec_fold_automatically_generated_operands(tree op0,tree op1)232 chrec_fold_automatically_generated_operands (tree op0,
233 tree op1)
234 {
235 if (op0 == chrec_dont_know
236 || op1 == chrec_dont_know)
237 return chrec_dont_know;
238
239 if (op0 == chrec_known
240 || op1 == chrec_known)
241 return chrec_known;
242
243 if (op0 == chrec_not_analyzed_yet
244 || op1 == chrec_not_analyzed_yet)
245 return chrec_not_analyzed_yet;
246
247 /* The default case produces a safe result. */
248 return chrec_dont_know;
249 }
250
251 /* Fold the addition of two chrecs. */
252
253 static tree
chrec_fold_plus_1(enum tree_code code,tree type,tree op0,tree op1)254 chrec_fold_plus_1 (enum tree_code code, tree type,
255 tree op0, tree op1)
256 {
257 if (automatically_generated_chrec_p (op0)
258 || automatically_generated_chrec_p (op1))
259 return chrec_fold_automatically_generated_operands (op0, op1);
260
261 switch (TREE_CODE (op0))
262 {
263 case POLYNOMIAL_CHREC:
264 switch (TREE_CODE (op1))
265 {
266 case POLYNOMIAL_CHREC:
267 return chrec_fold_plus_poly_poly (code, type, op0, op1);
268
269 default:
270 if (code == PLUS_EXPR)
271 return build_polynomial_chrec
272 (CHREC_VARIABLE (op0),
273 chrec_fold_plus (type, CHREC_LEFT (op0), op1),
274 CHREC_RIGHT (op0));
275 else
276 return build_polynomial_chrec
277 (CHREC_VARIABLE (op0),
278 chrec_fold_minus (type, CHREC_LEFT (op0), op1),
279 CHREC_RIGHT (op0));
280 }
281
282 default:
283 switch (TREE_CODE (op1))
284 {
285 case POLYNOMIAL_CHREC:
286 if (code == PLUS_EXPR)
287 return build_polynomial_chrec
288 (CHREC_VARIABLE (op1),
289 chrec_fold_plus (type, op0, CHREC_LEFT (op1)),
290 CHREC_RIGHT (op1));
291 else
292 return build_polynomial_chrec
293 (CHREC_VARIABLE (op1),
294 chrec_fold_minus (type, op0, CHREC_LEFT (op1)),
295 chrec_fold_multiply (type, CHREC_RIGHT (op1),
296 SCALAR_FLOAT_TYPE_P (type)
297 ? build_real (type, dconstm1)
298 : build_int_cst_type (type, -1)));
299
300 default:
301 {
302 int size = 0;
303 if ((tree_contains_chrecs (op0, &size)
304 || tree_contains_chrecs (op1, &size))
305 && size < PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
306 return build2 (code, type, op0, op1);
307 else if (size < PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
308 return fold_build2 (code, type,
309 fold_convert (type, op0),
310 fold_convert (type, op1));
311 else
312 return chrec_dont_know;
313 }
314 }
315 }
316 }
317
318 /* Fold the addition of two chrecs. */
319
320 tree
chrec_fold_plus(tree type,tree op0,tree op1)321 chrec_fold_plus (tree type,
322 tree op0,
323 tree op1)
324 {
325 if (automatically_generated_chrec_p (op0)
326 || automatically_generated_chrec_p (op1))
327 return chrec_fold_automatically_generated_operands (op0, op1);
328
329 if (integer_zerop (op0))
330 return op1;
331 if (integer_zerop (op1))
332 return op0;
333
334 return chrec_fold_plus_1 (PLUS_EXPR, type, op0, op1);
335 }
336
337 /* Fold the subtraction of two chrecs. */
338
339 tree
chrec_fold_minus(tree type,tree op0,tree op1)340 chrec_fold_minus (tree type,
341 tree op0,
342 tree op1)
343 {
344 if (automatically_generated_chrec_p (op0)
345 || automatically_generated_chrec_p (op1))
346 return chrec_fold_automatically_generated_operands (op0, op1);
347
348 if (integer_zerop (op1))
349 return op0;
350
351 return chrec_fold_plus_1 (MINUS_EXPR, type, op0, op1);
352 }
353
354 /* Fold the multiplication of two chrecs. */
355
356 tree
chrec_fold_multiply(tree type,tree op0,tree op1)357 chrec_fold_multiply (tree type,
358 tree op0,
359 tree op1)
360 {
361 if (automatically_generated_chrec_p (op0)
362 || automatically_generated_chrec_p (op1))
363 return chrec_fold_automatically_generated_operands (op0, op1);
364
365 switch (TREE_CODE (op0))
366 {
367 case POLYNOMIAL_CHREC:
368 switch (TREE_CODE (op1))
369 {
370 case POLYNOMIAL_CHREC:
371 return chrec_fold_multiply_poly_poly (type, op0, op1);
372
373 default:
374 if (integer_onep (op1))
375 return op0;
376 if (integer_zerop (op1))
377 return build_int_cst (type, 0);
378
379 return build_polynomial_chrec
380 (CHREC_VARIABLE (op0),
381 chrec_fold_multiply (type, CHREC_LEFT (op0), op1),
382 chrec_fold_multiply (type, CHREC_RIGHT (op0), op1));
383 }
384
385 default:
386 if (integer_onep (op0))
387 return op1;
388
389 if (integer_zerop (op0))
390 return build_int_cst (type, 0);
391
392 switch (TREE_CODE (op1))
393 {
394 case POLYNOMIAL_CHREC:
395 return build_polynomial_chrec
396 (CHREC_VARIABLE (op1),
397 chrec_fold_multiply (type, CHREC_LEFT (op1), op0),
398 chrec_fold_multiply (type, CHREC_RIGHT (op1), op0));
399
400 default:
401 if (integer_onep (op1))
402 return op0;
403 if (integer_zerop (op1))
404 return build_int_cst (type, 0);
405 return fold_build2 (MULT_EXPR, type, op0, op1);
406 }
407 }
408 }
409
410
411
412 /* Operations. */
413
414 /* Evaluate the binomial coefficient. Return NULL_TREE if the intermediate
415 calculation overflows, otherwise return C(n,k) with type TYPE. */
416
417 static tree
tree_fold_binomial(tree type,tree n,unsigned int k)418 tree_fold_binomial (tree type, tree n, unsigned int k)
419 {
420 unsigned HOST_WIDE_INT lidx, lnum, ldenom, lres, ldum;
421 HOST_WIDE_INT hidx, hnum, hdenom, hres, hdum;
422 unsigned int i;
423 tree res;
424
425 /* Handle the most frequent cases. */
426 if (k == 0)
427 return build_int_cst (type, 1);
428 if (k == 1)
429 return fold_convert (type, n);
430
431 /* Check that k <= n. */
432 if (TREE_INT_CST_HIGH (n) == 0
433 && TREE_INT_CST_LOW (n) < k)
434 return NULL_TREE;
435
436 /* Numerator = n. */
437 lnum = TREE_INT_CST_LOW (n);
438 hnum = TREE_INT_CST_HIGH (n);
439
440 /* Denominator = 2. */
441 ldenom = 2;
442 hdenom = 0;
443
444 /* Index = Numerator-1. */
445 if (lnum == 0)
446 {
447 hidx = hnum - 1;
448 lidx = ~ (unsigned HOST_WIDE_INT) 0;
449 }
450 else
451 {
452 hidx = hnum;
453 lidx = lnum - 1;
454 }
455
456 /* Numerator = Numerator*Index = n*(n-1). */
457 if (mul_double (lnum, hnum, lidx, hidx, &lnum, &hnum))
458 return NULL_TREE;
459
460 for (i = 3; i <= k; i++)
461 {
462 /* Index--. */
463 if (lidx == 0)
464 {
465 hidx--;
466 lidx = ~ (unsigned HOST_WIDE_INT) 0;
467 }
468 else
469 lidx--;
470
471 /* Numerator *= Index. */
472 if (mul_double (lnum, hnum, lidx, hidx, &lnum, &hnum))
473 return NULL_TREE;
474
475 /* Denominator *= i. */
476 mul_double (ldenom, hdenom, i, 0, &ldenom, &hdenom);
477 }
478
479 /* Result = Numerator / Denominator. */
480 div_and_round_double (EXACT_DIV_EXPR, 1, lnum, hnum, ldenom, hdenom,
481 &lres, &hres, &ldum, &hdum);
482
483 res = build_int_cst_wide (type, lres, hres);
484 return int_fits_type_p (res, type) ? res : NULL_TREE;
485 }
486
487 /* Helper function. Use the Newton's interpolating formula for
488 evaluating the value of the evolution function. */
489
490 static tree
chrec_evaluate(unsigned var,tree chrec,tree n,unsigned int k)491 chrec_evaluate (unsigned var, tree chrec, tree n, unsigned int k)
492 {
493 tree arg0, arg1, binomial_n_k;
494 tree type = TREE_TYPE (chrec);
495
496 while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
497 && CHREC_VARIABLE (chrec) > var)
498 chrec = CHREC_LEFT (chrec);
499
500 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
501 && CHREC_VARIABLE (chrec) == var)
502 {
503 arg0 = chrec_evaluate (var, CHREC_RIGHT (chrec), n, k + 1);
504 if (arg0 == chrec_dont_know)
505 return chrec_dont_know;
506 binomial_n_k = tree_fold_binomial (type, n, k);
507 if (!binomial_n_k)
508 return chrec_dont_know;
509 arg1 = fold_build2 (MULT_EXPR, type,
510 CHREC_LEFT (chrec), binomial_n_k);
511 return chrec_fold_plus (type, arg0, arg1);
512 }
513
514 binomial_n_k = tree_fold_binomial (type, n, k);
515 if (!binomial_n_k)
516 return chrec_dont_know;
517
518 return fold_build2 (MULT_EXPR, type, chrec, binomial_n_k);
519 }
520
521 /* Evaluates "CHREC (X)" when the varying variable is VAR.
522 Example: Given the following parameters,
523
524 var = 1
525 chrec = {3, +, 4}_1
526 x = 10
527
528 The result is given by the Newton's interpolating formula:
529 3 * \binom{10}{0} + 4 * \binom{10}{1}.
530 */
531
532 tree
chrec_apply(unsigned var,tree chrec,tree x)533 chrec_apply (unsigned var,
534 tree chrec,
535 tree x)
536 {
537 tree type = chrec_type (chrec);
538 tree res = chrec_dont_know;
539
540 if (automatically_generated_chrec_p (chrec)
541 || automatically_generated_chrec_p (x)
542
543 /* When the symbols are defined in an outer loop, it is possible
544 to symbolically compute the apply, since the symbols are
545 constants with respect to the varying loop. */
546 || chrec_contains_symbols_defined_in_loop (chrec, var))
547 return chrec_dont_know;
548
549 if (dump_file && (dump_flags & TDF_DETAILS))
550 fprintf (dump_file, "(chrec_apply \n");
551
552 if (TREE_CODE (x) == INTEGER_CST && SCALAR_FLOAT_TYPE_P (type))
553 x = build_real_from_int_cst (type, x);
554
555 if (evolution_function_is_affine_p (chrec))
556 {
557 /* "{a, +, b} (x)" -> "a + b*x". */
558 x = chrec_convert (type, x, NULL_TREE);
559 res = chrec_fold_multiply (type, CHREC_RIGHT (chrec), x);
560 if (!integer_zerop (CHREC_LEFT (chrec)))
561 res = chrec_fold_plus (type, CHREC_LEFT (chrec), res);
562 }
563
564 else if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
565 res = chrec;
566
567 else if (TREE_CODE (x) == INTEGER_CST
568 && tree_int_cst_sgn (x) == 1)
569 /* testsuite/.../ssa-chrec-38.c. */
570 res = chrec_evaluate (var, chrec, x, 0);
571 else
572 res = chrec_dont_know;
573
574 if (dump_file && (dump_flags & TDF_DETAILS))
575 {
576 fprintf (dump_file, " (varying_loop = %d\n", var);
577 fprintf (dump_file, ")\n (chrec = ");
578 print_generic_expr (dump_file, chrec, 0);
579 fprintf (dump_file, ")\n (x = ");
580 print_generic_expr (dump_file, x, 0);
581 fprintf (dump_file, ")\n (res = ");
582 print_generic_expr (dump_file, res, 0);
583 fprintf (dump_file, "))\n");
584 }
585
586 return res;
587 }
588
589 /* Replaces the initial condition in CHREC with INIT_COND. */
590
591 tree
chrec_replace_initial_condition(tree chrec,tree init_cond)592 chrec_replace_initial_condition (tree chrec,
593 tree init_cond)
594 {
595 if (automatically_generated_chrec_p (chrec))
596 return chrec;
597
598 gcc_assert (chrec_type (chrec) == chrec_type (init_cond));
599
600 switch (TREE_CODE (chrec))
601 {
602 case POLYNOMIAL_CHREC:
603 return build_polynomial_chrec
604 (CHREC_VARIABLE (chrec),
605 chrec_replace_initial_condition (CHREC_LEFT (chrec), init_cond),
606 CHREC_RIGHT (chrec));
607
608 default:
609 return init_cond;
610 }
611 }
612
613 /* Returns the initial condition of a given CHREC. */
614
615 tree
initial_condition(tree chrec)616 initial_condition (tree chrec)
617 {
618 if (automatically_generated_chrec_p (chrec))
619 return chrec;
620
621 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
622 return initial_condition (CHREC_LEFT (chrec));
623 else
624 return chrec;
625 }
626
627 /* Returns a univariate function that represents the evolution in
628 LOOP_NUM. Mask the evolution of any other loop. */
629
630 tree
hide_evolution_in_other_loops_than_loop(tree chrec,unsigned loop_num)631 hide_evolution_in_other_loops_than_loop (tree chrec,
632 unsigned loop_num)
633 {
634 if (automatically_generated_chrec_p (chrec))
635 return chrec;
636
637 switch (TREE_CODE (chrec))
638 {
639 case POLYNOMIAL_CHREC:
640 if (CHREC_VARIABLE (chrec) == loop_num)
641 return build_polynomial_chrec
642 (loop_num,
643 hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec),
644 loop_num),
645 CHREC_RIGHT (chrec));
646
647 else if (CHREC_VARIABLE (chrec) < loop_num)
648 /* There is no evolution in this loop. */
649 return initial_condition (chrec);
650
651 else
652 return hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec),
653 loop_num);
654
655 default:
656 return chrec;
657 }
658 }
659
660 /* Returns the evolution part of CHREC in LOOP_NUM when RIGHT is
661 true, otherwise returns the initial condition in LOOP_NUM. */
662
663 static tree
chrec_component_in_loop_num(tree chrec,unsigned loop_num,bool right)664 chrec_component_in_loop_num (tree chrec,
665 unsigned loop_num,
666 bool right)
667 {
668 tree component;
669
670 if (automatically_generated_chrec_p (chrec))
671 return chrec;
672
673 switch (TREE_CODE (chrec))
674 {
675 case POLYNOMIAL_CHREC:
676 if (CHREC_VARIABLE (chrec) == loop_num)
677 {
678 if (right)
679 component = CHREC_RIGHT (chrec);
680 else
681 component = CHREC_LEFT (chrec);
682
683 if (TREE_CODE (CHREC_LEFT (chrec)) != POLYNOMIAL_CHREC
684 || CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec))
685 return component;
686
687 else
688 return build_polynomial_chrec
689 (loop_num,
690 chrec_component_in_loop_num (CHREC_LEFT (chrec),
691 loop_num,
692 right),
693 component);
694 }
695
696 else if (CHREC_VARIABLE (chrec) < loop_num)
697 /* There is no evolution part in this loop. */
698 return NULL_TREE;
699
700 else
701 return chrec_component_in_loop_num (CHREC_LEFT (chrec),
702 loop_num,
703 right);
704
705 default:
706 if (right)
707 return NULL_TREE;
708 else
709 return chrec;
710 }
711 }
712
713 /* Returns the evolution part in LOOP_NUM. Example: the call
714 evolution_part_in_loop_num ({{0, +, 1}_1, +, 2}_1, 1) returns
715 {1, +, 2}_1 */
716
717 tree
evolution_part_in_loop_num(tree chrec,unsigned loop_num)718 evolution_part_in_loop_num (tree chrec,
719 unsigned loop_num)
720 {
721 return chrec_component_in_loop_num (chrec, loop_num, true);
722 }
723
724 /* Returns the initial condition in LOOP_NUM. Example: the call
725 initial_condition_in_loop_num ({{0, +, 1}_1, +, 2}_2, 2) returns
726 {0, +, 1}_1 */
727
728 tree
initial_condition_in_loop_num(tree chrec,unsigned loop_num)729 initial_condition_in_loop_num (tree chrec,
730 unsigned loop_num)
731 {
732 return chrec_component_in_loop_num (chrec, loop_num, false);
733 }
734
735 /* Set or reset the evolution of CHREC to NEW_EVOL in loop LOOP_NUM.
736 This function is essentially used for setting the evolution to
737 chrec_dont_know, for example after having determined that it is
738 impossible to say how many times a loop will execute. */
739
740 tree
reset_evolution_in_loop(unsigned loop_num,tree chrec,tree new_evol)741 reset_evolution_in_loop (unsigned loop_num,
742 tree chrec,
743 tree new_evol)
744 {
745 gcc_assert (chrec_type (chrec) == chrec_type (new_evol));
746
747 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
748 && CHREC_VARIABLE (chrec) > loop_num)
749 {
750 tree left = reset_evolution_in_loop (loop_num, CHREC_LEFT (chrec),
751 new_evol);
752 tree right = reset_evolution_in_loop (loop_num, CHREC_RIGHT (chrec),
753 new_evol);
754 return build3 (POLYNOMIAL_CHREC, TREE_TYPE (left),
755 build_int_cst (NULL_TREE, CHREC_VARIABLE (chrec)),
756 left, right);
757 }
758
759 while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
760 && CHREC_VARIABLE (chrec) == loop_num)
761 chrec = CHREC_LEFT (chrec);
762
763 return build_polynomial_chrec (loop_num, chrec, new_evol);
764 }
765
766 /* Merges two evolution functions that were found by following two
767 alternate paths of a conditional expression. */
768
769 tree
chrec_merge(tree chrec1,tree chrec2)770 chrec_merge (tree chrec1,
771 tree chrec2)
772 {
773 if (chrec1 == chrec_dont_know
774 || chrec2 == chrec_dont_know)
775 return chrec_dont_know;
776
777 if (chrec1 == chrec_known
778 || chrec2 == chrec_known)
779 return chrec_known;
780
781 if (chrec1 == chrec_not_analyzed_yet)
782 return chrec2;
783 if (chrec2 == chrec_not_analyzed_yet)
784 return chrec1;
785
786 if (eq_evolutions_p (chrec1, chrec2))
787 return chrec1;
788
789 return chrec_dont_know;
790 }
791
792
793
794 /* Observers. */
795
796 /* Helper function for is_multivariate_chrec. */
797
798 static bool
is_multivariate_chrec_rec(tree chrec,unsigned int rec_var)799 is_multivariate_chrec_rec (tree chrec, unsigned int rec_var)
800 {
801 if (chrec == NULL_TREE)
802 return false;
803
804 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
805 {
806 if (CHREC_VARIABLE (chrec) != rec_var)
807 return true;
808 else
809 return (is_multivariate_chrec_rec (CHREC_LEFT (chrec), rec_var)
810 || is_multivariate_chrec_rec (CHREC_RIGHT (chrec), rec_var));
811 }
812 else
813 return false;
814 }
815
816 /* Determine whether the given chrec is multivariate or not. */
817
818 bool
is_multivariate_chrec(tree chrec)819 is_multivariate_chrec (tree chrec)
820 {
821 if (chrec == NULL_TREE)
822 return false;
823
824 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
825 return (is_multivariate_chrec_rec (CHREC_LEFT (chrec),
826 CHREC_VARIABLE (chrec))
827 || is_multivariate_chrec_rec (CHREC_RIGHT (chrec),
828 CHREC_VARIABLE (chrec)));
829 else
830 return false;
831 }
832
833 /* Determines whether the chrec contains symbolic names or not. */
834
835 bool
chrec_contains_symbols(tree chrec)836 chrec_contains_symbols (tree chrec)
837 {
838 if (chrec == NULL_TREE)
839 return false;
840
841 if (TREE_CODE (chrec) == SSA_NAME
842 || TREE_CODE (chrec) == VAR_DECL
843 || TREE_CODE (chrec) == PARM_DECL
844 || TREE_CODE (chrec) == FUNCTION_DECL
845 || TREE_CODE (chrec) == LABEL_DECL
846 || TREE_CODE (chrec) == RESULT_DECL
847 || TREE_CODE (chrec) == FIELD_DECL)
848 return true;
849
850 switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
851 {
852 case 3:
853 if (chrec_contains_symbols (TREE_OPERAND (chrec, 2)))
854 return true;
855
856 case 2:
857 if (chrec_contains_symbols (TREE_OPERAND (chrec, 1)))
858 return true;
859
860 case 1:
861 if (chrec_contains_symbols (TREE_OPERAND (chrec, 0)))
862 return true;
863
864 default:
865 return false;
866 }
867 }
868
869 /* Determines whether the chrec contains undetermined coefficients. */
870
871 bool
chrec_contains_undetermined(tree chrec)872 chrec_contains_undetermined (tree chrec)
873 {
874 if (chrec == chrec_dont_know
875 || chrec == chrec_not_analyzed_yet
876 || chrec == NULL_TREE)
877 return true;
878
879 switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
880 {
881 case 3:
882 if (chrec_contains_undetermined (TREE_OPERAND (chrec, 2)))
883 return true;
884
885 case 2:
886 if (chrec_contains_undetermined (TREE_OPERAND (chrec, 1)))
887 return true;
888
889 case 1:
890 if (chrec_contains_undetermined (TREE_OPERAND (chrec, 0)))
891 return true;
892
893 default:
894 return false;
895 }
896 }
897
898 /* Determines whether the tree EXPR contains chrecs, and increment
899 SIZE if it is not a NULL pointer by an estimation of the depth of
900 the tree. */
901
902 bool
tree_contains_chrecs(tree expr,int * size)903 tree_contains_chrecs (tree expr, int *size)
904 {
905 if (expr == NULL_TREE)
906 return false;
907
908 if (size)
909 (*size)++;
910
911 if (tree_is_chrec (expr))
912 return true;
913
914 switch (TREE_CODE_LENGTH (TREE_CODE (expr)))
915 {
916 case 3:
917 if (tree_contains_chrecs (TREE_OPERAND (expr, 2), size))
918 return true;
919
920 case 2:
921 if (tree_contains_chrecs (TREE_OPERAND (expr, 1), size))
922 return true;
923
924 case 1:
925 if (tree_contains_chrecs (TREE_OPERAND (expr, 0), size))
926 return true;
927
928 default:
929 return false;
930 }
931 }
932
933 /* Recursive helper function. */
934
935 static bool
evolution_function_is_invariant_rec_p(tree chrec,int loopnum)936 evolution_function_is_invariant_rec_p (tree chrec, int loopnum)
937 {
938 if (evolution_function_is_constant_p (chrec))
939 return true;
940
941 if (TREE_CODE (chrec) == SSA_NAME
942 && expr_invariant_in_loop_p (current_loops->parray[loopnum],
943 chrec))
944 return true;
945
946 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
947 {
948 if (CHREC_VARIABLE (chrec) == (unsigned) loopnum
949 || !evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec),
950 loopnum)
951 || !evolution_function_is_invariant_rec_p (CHREC_LEFT (chrec),
952 loopnum))
953 return false;
954 return true;
955 }
956
957 switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
958 {
959 case 2:
960 if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 1),
961 loopnum))
962 return false;
963
964 case 1:
965 if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 0),
966 loopnum))
967 return false;
968 return true;
969
970 default:
971 return false;
972 }
973
974 return false;
975 }
976
977 /* Return true if CHREC is invariant in loop LOOPNUM, false otherwise. */
978
979 bool
evolution_function_is_invariant_p(tree chrec,int loopnum)980 evolution_function_is_invariant_p (tree chrec, int loopnum)
981 {
982 if (evolution_function_is_constant_p (chrec))
983 return true;
984
985 if (current_loops != NULL)
986 return evolution_function_is_invariant_rec_p (chrec, loopnum);
987
988 return false;
989 }
990
991 /* Determine whether the given tree is an affine multivariate
992 evolution. */
993
994 bool
evolution_function_is_affine_multivariate_p(tree chrec)995 evolution_function_is_affine_multivariate_p (tree chrec)
996 {
997 if (chrec == NULL_TREE)
998 return false;
999
1000 switch (TREE_CODE (chrec))
1001 {
1002 case POLYNOMIAL_CHREC:
1003 if (evolution_function_is_constant_p (CHREC_LEFT (chrec)))
1004 {
1005 if (evolution_function_is_constant_p (CHREC_RIGHT (chrec)))
1006 return true;
1007 else
1008 {
1009 if (TREE_CODE (CHREC_RIGHT (chrec)) == POLYNOMIAL_CHREC
1010 && CHREC_VARIABLE (CHREC_RIGHT (chrec))
1011 != CHREC_VARIABLE (chrec)
1012 && evolution_function_is_affine_multivariate_p
1013 (CHREC_RIGHT (chrec)))
1014 return true;
1015 else
1016 return false;
1017 }
1018 }
1019 else
1020 {
1021 if (evolution_function_is_constant_p (CHREC_RIGHT (chrec))
1022 && TREE_CODE (CHREC_LEFT (chrec)) == POLYNOMIAL_CHREC
1023 && CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec)
1024 && evolution_function_is_affine_multivariate_p
1025 (CHREC_LEFT (chrec)))
1026 return true;
1027 else
1028 return false;
1029 }
1030
1031 default:
1032 return false;
1033 }
1034 }
1035
1036 /* Determine whether the given tree is a function in zero or one
1037 variables. */
1038
1039 bool
evolution_function_is_univariate_p(tree chrec)1040 evolution_function_is_univariate_p (tree chrec)
1041 {
1042 if (chrec == NULL_TREE)
1043 return true;
1044
1045 switch (TREE_CODE (chrec))
1046 {
1047 case POLYNOMIAL_CHREC:
1048 switch (TREE_CODE (CHREC_LEFT (chrec)))
1049 {
1050 case POLYNOMIAL_CHREC:
1051 if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (CHREC_LEFT (chrec)))
1052 return false;
1053 if (!evolution_function_is_univariate_p (CHREC_LEFT (chrec)))
1054 return false;
1055 break;
1056
1057 default:
1058 break;
1059 }
1060
1061 switch (TREE_CODE (CHREC_RIGHT (chrec)))
1062 {
1063 case POLYNOMIAL_CHREC:
1064 if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (CHREC_RIGHT (chrec)))
1065 return false;
1066 if (!evolution_function_is_univariate_p (CHREC_RIGHT (chrec)))
1067 return false;
1068 break;
1069
1070 default:
1071 break;
1072 }
1073
1074 default:
1075 return true;
1076 }
1077 }
1078
1079 /* Returns the number of variables of CHREC. Example: the call
1080 nb_vars_in_chrec ({{0, +, 1}_5, +, 2}_6) returns 2. */
1081
1082 unsigned
nb_vars_in_chrec(tree chrec)1083 nb_vars_in_chrec (tree chrec)
1084 {
1085 if (chrec == NULL_TREE)
1086 return 0;
1087
1088 switch (TREE_CODE (chrec))
1089 {
1090 case POLYNOMIAL_CHREC:
1091 return 1 + nb_vars_in_chrec
1092 (initial_condition_in_loop_num (chrec, CHREC_VARIABLE (chrec)));
1093
1094 default:
1095 return 0;
1096 }
1097 }
1098
1099 /* Returns true if TYPE is a type in that we cannot directly perform
1100 arithmetics, even though it is a scalar type. */
1101
1102 static bool
avoid_arithmetics_in_type_p(tree type)1103 avoid_arithmetics_in_type_p (tree type)
1104 {
1105 /* Ada frontend uses subtypes -- an arithmetic cannot be directly performed
1106 in the subtype, but a base type must be used, and the result then can
1107 be casted to the subtype. */
1108 if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != NULL_TREE)
1109 return true;
1110
1111 return false;
1112 }
1113
1114 static tree chrec_convert_1 (tree, tree, tree, bool);
1115
1116 /* Converts BASE and STEP of affine scev to TYPE. LOOP is the loop whose iv
1117 the scev corresponds to. AT_STMT is the statement at that the scev is
1118 evaluated. USE_OVERFLOW_SEMANTICS is true if this function should assume that
1119 the rules for overflow of the given language apply (e.g., that signed
1120 arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary
1121 tests, but also to enforce that the result follows them. Returns true if the
1122 conversion succeeded, false otherwise. */
1123
1124 bool
convert_affine_scev(struct loop * loop,tree type,tree * base,tree * step,tree at_stmt,bool use_overflow_semantics)1125 convert_affine_scev (struct loop *loop, tree type,
1126 tree *base, tree *step, tree at_stmt,
1127 bool use_overflow_semantics)
1128 {
1129 tree ct = TREE_TYPE (*step);
1130 bool enforce_overflow_semantics;
1131 bool must_check_src_overflow, must_check_rslt_overflow;
1132 tree new_base, new_step;
1133
1134 /* If we cannot perform arithmetic in TYPE, avoid creating an scev. */
1135 if (avoid_arithmetics_in_type_p (type))
1136 return false;
1137
1138 /* In general,
1139 (TYPE) (BASE + STEP * i) = (TYPE) BASE + (TYPE -- sign extend) STEP * i,
1140 but we must check some assumptions.
1141
1142 1) If [BASE, +, STEP] wraps, the equation is not valid when precision
1143 of CT is smaller than the precision of TYPE. For example, when we
1144 cast unsigned char [254, +, 1] to unsigned, the values on left side
1145 are 254, 255, 0, 1, ..., but those on the right side are
1146 254, 255, 256, 257, ...
1147 2) In case that we must also preserve the fact that signed ivs do not
1148 overflow, we must additionally check that the new iv does not wrap.
1149 For example, unsigned char [125, +, 1] casted to signed char could
1150 become a wrapping variable with values 125, 126, 127, -128, -127, ...,
1151 which would confuse optimizers that assume that this does not
1152 happen. */
1153 must_check_src_overflow = TYPE_PRECISION (ct) < TYPE_PRECISION (type);
1154
1155 enforce_overflow_semantics = (use_overflow_semantics
1156 && nowrap_type_p (type));
1157 if (enforce_overflow_semantics)
1158 {
1159 /* We can avoid checking whether the result overflows in the following
1160 cases:
1161
1162 -- must_check_src_overflow is true, and the range of TYPE is superset
1163 of the range of CT -- i.e., in all cases except if CT signed and
1164 TYPE unsigned.
1165 -- both CT and TYPE have the same precision and signedness, and we
1166 verify instead that the source does not overflow (this may be
1167 easier than verifying it for the result, as we may use the
1168 information about the semantics of overflow in CT). */
1169 if (must_check_src_overflow)
1170 {
1171 if (TYPE_UNSIGNED (type) && !TYPE_UNSIGNED (ct))
1172 must_check_rslt_overflow = true;
1173 else
1174 must_check_rslt_overflow = false;
1175 }
1176 else if (TYPE_UNSIGNED (ct) == TYPE_UNSIGNED (type)
1177 && TYPE_PRECISION (ct) == TYPE_PRECISION (type))
1178 {
1179 must_check_rslt_overflow = false;
1180 must_check_src_overflow = true;
1181 }
1182 else
1183 must_check_rslt_overflow = true;
1184 }
1185 else
1186 must_check_rslt_overflow = false;
1187
1188 if (must_check_src_overflow
1189 && scev_probably_wraps_p (*base, *step, at_stmt, loop,
1190 use_overflow_semantics))
1191 return false;
1192
1193 new_base = chrec_convert_1 (type, *base, at_stmt,
1194 use_overflow_semantics);
1195 /* The step must be sign extended, regardless of the signedness
1196 of CT and TYPE. This only needs to be handled specially when
1197 CT is unsigned -- to avoid e.g. unsigned char [100, +, 255]
1198 (with values 100, 99, 98, ...) from becoming signed or unsigned
1199 [100, +, 255] with values 100, 355, ...; the sign-extension is
1200 performed by default when CT is signed. */
1201 new_step = *step;
1202 if (TYPE_PRECISION (type) > TYPE_PRECISION (ct) && TYPE_UNSIGNED (ct))
1203 new_step = chrec_convert_1 (signed_type_for (ct), new_step, at_stmt,
1204 use_overflow_semantics);
1205 new_step = chrec_convert_1 (type, new_step, at_stmt, use_overflow_semantics);
1206
1207 if (automatically_generated_chrec_p (new_base)
1208 || automatically_generated_chrec_p (new_step))
1209 return false;
1210
1211 if (must_check_rslt_overflow
1212 /* Note that in this case we cannot use the fact that signed variables
1213 do not overflow, as this is what we are verifying for the new iv. */
1214 && scev_probably_wraps_p (new_base, new_step, at_stmt, loop, false))
1215 return false;
1216
1217 *base = new_base;
1218 *step = new_step;
1219 return true;
1220 }
1221
1222
1223 /* Convert CHREC to TYPE. When the analyzer knows the context in
1224 which the CHREC is built, it sets AT_STMT to the statement that
1225 contains the definition of the analyzed variable, otherwise the
1226 conversion is less accurate: the information is used for
1227 determining a more accurate estimation of the number of iterations.
1228 By default AT_STMT could be safely set to NULL_TREE.
1229
1230 The following rule is always true: TREE_TYPE (chrec) ==
1231 TREE_TYPE (CHREC_LEFT (chrec)) == TREE_TYPE (CHREC_RIGHT (chrec)).
1232 An example of what could happen when adding two chrecs and the type
1233 of the CHREC_RIGHT is different than CHREC_LEFT is:
1234
1235 {(uint) 0, +, (uchar) 10} +
1236 {(uint) 0, +, (uchar) 250}
1237
1238 that would produce a wrong result if CHREC_RIGHT is not (uint):
1239
1240 {(uint) 0, +, (uchar) 4}
1241
1242 instead of
1243
1244 {(uint) 0, +, (uint) 260}
1245 */
1246
1247 tree
chrec_convert(tree type,tree chrec,tree at_stmt)1248 chrec_convert (tree type, tree chrec, tree at_stmt)
1249 {
1250 return chrec_convert_1 (type, chrec, at_stmt, true);
1251 }
1252
1253 /* Convert CHREC to TYPE. When the analyzer knows the context in
1254 which the CHREC is built, it sets AT_STMT to the statement that
1255 contains the definition of the analyzed variable, otherwise the
1256 conversion is less accurate: the information is used for
1257 determining a more accurate estimation of the number of iterations.
1258 By default AT_STMT could be safely set to NULL_TREE.
1259
1260 USE_OVERFLOW_SEMANTICS is true if this function should assume that
1261 the rules for overflow of the given language apply (e.g., that signed
1262 arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary
1263 tests, but also to enforce that the result follows them. */
1264
1265 static tree
chrec_convert_1(tree type,tree chrec,tree at_stmt,bool use_overflow_semantics)1266 chrec_convert_1 (tree type, tree chrec, tree at_stmt,
1267 bool use_overflow_semantics)
1268 {
1269 tree ct, res;
1270 tree base, step;
1271 struct loop *loop;
1272
1273 if (automatically_generated_chrec_p (chrec))
1274 return chrec;
1275
1276 ct = chrec_type (chrec);
1277 if (ct == type)
1278 return chrec;
1279
1280 if (!evolution_function_is_affine_p (chrec))
1281 goto keep_cast;
1282
1283 loop = current_loops->parray[CHREC_VARIABLE (chrec)];
1284 base = CHREC_LEFT (chrec);
1285 step = CHREC_RIGHT (chrec);
1286
1287 if (convert_affine_scev (loop, type, &base, &step, at_stmt,
1288 use_overflow_semantics))
1289 return build_polynomial_chrec (loop->num, base, step);
1290
1291 /* If we cannot propagate the cast inside the chrec, just keep the cast. */
1292 keep_cast:
1293 res = fold_convert (type, chrec);
1294
1295 /* Don't propagate overflows. */
1296 if (CONSTANT_CLASS_P (res))
1297 {
1298 TREE_CONSTANT_OVERFLOW (res) = 0;
1299 TREE_OVERFLOW (res) = 0;
1300 }
1301
1302 /* But reject constants that don't fit in their type after conversion.
1303 This can happen if TYPE_MIN_VALUE or TYPE_MAX_VALUE are not the
1304 natural values associated with TYPE_PRECISION and TYPE_UNSIGNED,
1305 and can cause problems later when computing niters of loops. Note
1306 that we don't do the check before converting because we don't want
1307 to reject conversions of negative chrecs to unsigned types. */
1308 if (TREE_CODE (res) == INTEGER_CST
1309 && TREE_CODE (type) == INTEGER_TYPE
1310 && !int_fits_type_p (res, type))
1311 res = chrec_dont_know;
1312
1313 return res;
1314 }
1315
1316 /* Convert CHREC to TYPE, without regard to signed overflows. Returns the new
1317 chrec if something else than what chrec_convert would do happens, NULL_TREE
1318 otherwise. */
1319
1320 tree
chrec_convert_aggressive(tree type,tree chrec)1321 chrec_convert_aggressive (tree type, tree chrec)
1322 {
1323 tree inner_type, left, right, lc, rc;
1324
1325 if (automatically_generated_chrec_p (chrec)
1326 || TREE_CODE (chrec) != POLYNOMIAL_CHREC)
1327 return NULL_TREE;
1328
1329 inner_type = TREE_TYPE (chrec);
1330 if (TYPE_PRECISION (type) > TYPE_PRECISION (inner_type))
1331 return NULL_TREE;
1332
1333 /* If we cannot perform arithmetic in TYPE, avoid creating an scev. */
1334 if (avoid_arithmetics_in_type_p (type))
1335 return NULL_TREE;
1336
1337 left = CHREC_LEFT (chrec);
1338 right = CHREC_RIGHT (chrec);
1339 lc = chrec_convert_aggressive (type, left);
1340 if (!lc)
1341 lc = chrec_convert (type, left, NULL_TREE);
1342 rc = chrec_convert_aggressive (type, right);
1343 if (!rc)
1344 rc = chrec_convert (type, right, NULL_TREE);
1345
1346 return build_polynomial_chrec (CHREC_VARIABLE (chrec), lc, rc);
1347 }
1348
1349 /* Returns true when CHREC0 == CHREC1. */
1350
1351 bool
eq_evolutions_p(tree chrec0,tree chrec1)1352 eq_evolutions_p (tree chrec0,
1353 tree chrec1)
1354 {
1355 if (chrec0 == NULL_TREE
1356 || chrec1 == NULL_TREE
1357 || TREE_CODE (chrec0) != TREE_CODE (chrec1))
1358 return false;
1359
1360 if (chrec0 == chrec1)
1361 return true;
1362
1363 switch (TREE_CODE (chrec0))
1364 {
1365 case INTEGER_CST:
1366 return operand_equal_p (chrec0, chrec1, 0);
1367
1368 case POLYNOMIAL_CHREC:
1369 return (CHREC_VARIABLE (chrec0) == CHREC_VARIABLE (chrec1)
1370 && eq_evolutions_p (CHREC_LEFT (chrec0), CHREC_LEFT (chrec1))
1371 && eq_evolutions_p (CHREC_RIGHT (chrec0), CHREC_RIGHT (chrec1)));
1372 default:
1373 return false;
1374 }
1375 }
1376
1377 /* Returns EV_GROWS if CHREC grows (assuming that it does not overflow),
1378 EV_DECREASES if it decreases, and EV_UNKNOWN if we cannot determine
1379 which of these cases happens. */
1380
1381 enum ev_direction
scev_direction(tree chrec)1382 scev_direction (tree chrec)
1383 {
1384 tree step;
1385
1386 if (!evolution_function_is_affine_p (chrec))
1387 return EV_DIR_UNKNOWN;
1388
1389 step = CHREC_RIGHT (chrec);
1390 if (TREE_CODE (step) != INTEGER_CST)
1391 return EV_DIR_UNKNOWN;
1392
1393 if (tree_int_cst_sign_bit (step))
1394 return EV_DIR_DECREASES;
1395 else
1396 return EV_DIR_GROWS;
1397 }
1398