1 /* $OpenBSD: tblcmp.c,v 1.12 2024/11/09 18:03:44 op Exp $ */
2
3 /* tblcmp - table compression routines */
4
5 /* Copyright (c) 1990 The Regents of the University of California. */
6 /* All rights reserved. */
7
8 /* This code is derived from software contributed to Berkeley by */
9 /* Vern Paxson. */
10
11 /* The United States Government has rights in this work pursuant */
12 /* to contract no. DE-AC03-76SF00098 between the United States */
13 /* Department of Energy and the University of California. */
14
15 /* This file is part of flex. */
16
17 /* Redistribution and use in source and binary forms, with or without */
18 /* modification, are permitted provided that the following conditions */
19 /* are met: */
20
21 /* 1. Redistributions of source code must retain the above copyright */
22 /* notice, this list of conditions and the following disclaimer. */
23 /* 2. Redistributions in binary form must reproduce the above copyright */
24 /* notice, this list of conditions and the following disclaimer in the */
25 /* documentation and/or other materials provided with the distribution. */
26
27 /* Neither the name of the University nor the names of its contributors */
28 /* may be used to endorse or promote products derived from this software */
29 /* without specific prior written permission. */
30
31 /* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR */
32 /* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED */
33 /* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR */
34 /* PURPOSE. */
35
36 #include "flexdef.h"
37
38
39 /* declarations for functions that have forward references */
40
41 void mkentry PROTO((int *, int, int, int, int));
42 void mkprot PROTO((int[], int, int));
43 void mktemplate PROTO((int[], int, int));
44 void mv2front PROTO((int));
45 int tbldiff PROTO((int[], int, int[]));
46
47
48 /* bldtbl - build table entries for dfa state
49 *
50 * synopsis
51 * int state[numecs], statenum, totaltrans, comstate, comfreq;
52 * bldtbl( state, statenum, totaltrans, comstate, comfreq );
53 *
54 * State is the statenum'th dfa state. It is indexed by equivalence class and
55 * gives the number of the state to enter for a given equivalence class.
56 * totaltrans is the total number of transitions out of the state. Comstate
57 * is that state which is the destination of the most transitions out of State.
58 * Comfreq is how many transitions there are out of State to Comstate.
59 *
60 * A note on terminology:
61 * "protos" are transition tables which have a high probability of
62 * either being redundant (a state processed later will have an identical
63 * transition table) or nearly redundant (a state processed later will have
64 * many of the same out-transitions). A "most recently used" queue of
65 * protos is kept around with the hope that most states will find a proto
66 * which is similar enough to be usable, and therefore compacting the
67 * output tables.
68 * "templates" are a special type of proto. If a transition table is
69 * homogeneous or nearly homogeneous (all transitions go to the same
70 * destination) then the odds are good that future states will also go
71 * to the same destination state on basically the same character set.
72 * These homogeneous states are so common when dealing with large rule
73 * sets that they merit special attention. If the transition table were
74 * simply made into a proto, then (typically) each subsequent, similar
75 * state will differ from the proto for two out-transitions. One of these
76 * out-transitions will be that character on which the proto does not go
77 * to the common destination, and one will be that character on which the
78 * state does not go to the common destination. Templates, on the other
79 * hand, go to the common state on EVERY transition character, and therefore
80 * cost only one difference.
81 */
82
83 void
bldtbl(int state[],int statenum,int totaltrans,int comstate,int comfreq)84 bldtbl(int state[], int statenum, int totaltrans, int comstate, int comfreq)
85 {
86 int extptr, extrct[2][CSIZE + 1];
87 int mindiff, minprot, i, d;
88
89 /*
90 * If extptr is 0 then the first array of extrct holds the result of
91 * the "best difference" to date, which is those transitions which
92 * occur in "state" but not in the proto which, to date, has the
93 * fewest differences between itself and "state". If extptr is 1
94 * then the second array of extrct hold the best difference. The two
95 * arrays are toggled between so that the best difference to date can
96 * be kept around and also a difference just created by checking
97 * against a candidate "best" proto.
98 */
99
100 extptr = 0;
101
102 /*
103 * If the state has too few out-transitions, don't bother trying to
104 * compact its tables.
105 */
106
107 if ((totaltrans * 100) < (numecs * PROTO_SIZE_PERCENTAGE))
108 mkentry(state, numecs, statenum, JAMSTATE, totaltrans);
109
110 else {
111 /*
112 * "checkcom" is true if we should only check "state" against
113 * protos which have the same "comstate" value.
114 */
115 int checkcom =
116
117 comfreq * 100 > totaltrans * CHECK_COM_PERCENTAGE;
118
119 minprot = firstprot;
120 mindiff = totaltrans;
121
122 if (checkcom) {
123 /* Find first proto which has the same "comstate". */
124 for (i = firstprot; i != NIL; i = protnext[i])
125 if (protcomst[i] == comstate) {
126 minprot = i;
127 mindiff = tbldiff(state, minprot,
128 extrct[extptr]);
129 break;
130 }
131 } else {
132 /*
133 * Since we've decided that the most common
134 * destination out of "state" does not occur with a
135 * high enough frequency, we set the "comstate" to
136 * zero, assuring that if this state is entered into
137 * the proto list, it will not be considered a
138 * template.
139 */
140 comstate = 0;
141
142 if (firstprot != NIL) {
143 minprot = firstprot;
144 mindiff = tbldiff(state, minprot,
145 extrct[extptr]);
146 }
147 }
148
149 /*
150 * We now have the first interesting proto in "minprot". If
151 * it matches within the tolerances set for the first proto,
152 * we don't want to bother scanning the rest of the proto
153 * list to see if we have any other reasonable matches.
154 */
155
156 if (mindiff * 100 >
157 totaltrans * FIRST_MATCH_DIFF_PERCENTAGE) {
158 /*
159 * Not a good enough match. Scan the rest of the
160 * protos.
161 */
162 for (i = minprot; i != NIL; i = protnext[i]) {
163 d = tbldiff(state, i, extrct[1 - extptr]);
164 if (d < mindiff) {
165 extptr = 1 - extptr;
166 mindiff = d;
167 minprot = i;
168 }
169 }
170 }
171 /*
172 * Check if the proto we've decided on as our best bet is
173 * close enough to the state we want to match to be usable.
174 */
175
176 if (mindiff * 100 >
177 totaltrans * ACCEPTABLE_DIFF_PERCENTAGE) {
178 /*
179 * No good. If the state is homogeneous enough, we
180 * make a template out of it. Otherwise, we make a
181 * proto.
182 */
183
184 if (comfreq * 100 >=
185 totaltrans * TEMPLATE_SAME_PERCENTAGE)
186 mktemplate(state, statenum,
187 comstate);
188
189 else {
190 mkprot(state, statenum, comstate);
191 mkentry(state, numecs, statenum,
192 JAMSTATE, totaltrans);
193 }
194 } else { /* use the proto */
195 mkentry(extrct[extptr], numecs, statenum,
196 prottbl[minprot], mindiff);
197
198 /*
199 * If this state was sufficiently different from the
200 * proto we built it from, make it, too, a proto.
201 */
202
203 if (mindiff * 100 >=
204 totaltrans * NEW_PROTO_DIFF_PERCENTAGE)
205 mkprot(state, statenum, comstate);
206
207 /*
208 * Since mkprot added a new proto to the proto queue,
209 * it's possible that "minprot" is no longer on the
210 * proto queue (if it happened to have been the last
211 * entry, it would have been bumped off). If it's
212 * not there, then the new proto took its physical
213 * place (though logically the new proto is at the
214 * beginning of the queue), so in that case the
215 * following call will do nothing.
216 */
217
218 mv2front(minprot);
219 }
220 }
221 }
222
223
224 /* cmptmps - compress template table entries
225 *
226 * Template tables are compressed by using the 'template equivalence
227 * classes', which are collections of transition character equivalence
228 * classes which always appear together in templates - really meta-equivalence
229 * classes.
230 */
231
232 void
cmptmps(void)233 cmptmps(void)
234 {
235 int tmpstorage[CSIZE + 1];
236 int *tmp = tmpstorage, i, j;
237 int totaltrans, trans;
238
239 peakpairs = numtemps * numecs + tblend;
240
241 if (usemecs) {
242 /*
243 * Create equivalence classes based on data gathered on
244 * template transitions.
245 */
246 nummecs = cre8ecs(tecfwd, tecbck, numecs);
247 } else
248 nummecs = numecs;
249
250 while (lastdfa + numtemps + 1 >= current_max_dfas)
251 increase_max_dfas();
252
253 /* Loop through each template. */
254
255 for (i = 1; i <= numtemps; ++i) {
256 /* Number of non-jam transitions out of this template. */
257 totaltrans = 0;
258
259 for (j = 1; j <= numecs; ++j) {
260 trans = tnxt[numecs * i + j];
261
262 if (usemecs) {
263 /*
264 * The absolute value of tecbck is the
265 * meta-equivalence class of a given
266 * equivalence class, as set up by cre8ecs().
267 */
268 if (tecbck[j] > 0) {
269 tmp[tecbck[j]] = trans;
270
271 if (trans > 0)
272 ++totaltrans;
273 }
274 } else {
275 tmp[j] = trans;
276
277 if (trans > 0)
278 ++totaltrans;
279 }
280 }
281
282 /*
283 * It is assumed (in a rather subtle way) in the skeleton
284 * that if we're using meta-equivalence classes, the def[]
285 * entry for all templates is the jam template, i.e.,
286 * templates never default to other non-jam table entries
287 * (e.g., another template)
288 */
289
290 /* Leave room for the jam-state after the last real state. */
291 mkentry(tmp, nummecs, lastdfa + i + 1, JAMSTATE,
292 totaltrans);
293 }
294 }
295
296
297
298 /* expand_nxt_chk - expand the next check arrays */
299
300 void
expand_nxt_chk(void)301 expand_nxt_chk(void)
302 {
303 int old_max = current_max_xpairs;
304
305 current_max_xpairs += MAX_XPAIRS_INCREMENT;
306
307 ++num_reallocs;
308
309 nxt = reallocate_integer_array(nxt, current_max_xpairs);
310 chk = reallocate_integer_array(chk, current_max_xpairs);
311
312 memset((chk + old_max), 0, MAX_XPAIRS_INCREMENT * sizeof(int));
313 }
314
315
316 /* find_table_space - finds a space in the table for a state to be placed
317 *
318 * synopsis
319 * int *state, numtrans, block_start;
320 * int find_table_space();
321 *
322 * block_start = find_table_space( state, numtrans );
323 *
324 * State is the state to be added to the full speed transition table.
325 * Numtrans is the number of out-transitions for the state.
326 *
327 * find_table_space() returns the position of the start of the first block (in
328 * chk) able to accommodate the state
329 *
330 * In determining if a state will or will not fit, find_table_space() must take
331 * into account the fact that an end-of-buffer state will be added at [0],
332 * and an action number will be added in [-1].
333 */
334
335 int
find_table_space(int * state,int numtrans)336 find_table_space(int *state, int numtrans)
337 {
338 /*
339 * Firstfree is the position of the first possible occurrence of two
340 * consecutive unused records in the chk and nxt arrays.
341 */
342 int i;
343 int *state_ptr, *chk_ptr;
344 int *ptr_to_last_entry_in_state;
345
346 /*
347 * If there are too many out-transitions, put the state at the end of
348 * nxt and chk.
349 */
350 if (numtrans > MAX_XTIONS_FULL_INTERIOR_FIT) {
351 /*
352 * If table is empty, return the first available spot in
353 * chk/nxt, which should be 1.
354 */
355 if (tblend < 2)
356 return 1;
357
358 /*
359 * Start searching for table space near the end of chk/nxt
360 * arrays.
361 */
362 i = tblend - numecs;
363 } else
364 /*
365 * Start searching for table space from the beginning
366 * (skipping only the elements which will definitely not hold
367 * the new state).
368 */
369 i = firstfree;
370
371 while (1) { /* loops until a space is found */
372 while (i + numecs >= current_max_xpairs)
373 expand_nxt_chk();
374
375 /*
376 * Loops until space for end-of-buffer and action number are
377 * found.
378 */
379 while (1) {
380 /* Check for action number space. */
381 if (chk[i - 1] == 0) {
382 /* Check for end-of-buffer space. */
383 if (chk[i] == 0)
384 break;
385
386 else
387 /*
388 * Since i != 0, there is no use
389 * checking to see if (++i) - 1 == 0,
390 * because that's the same as i == 0,
391 * so we skip a space.
392 */
393 i += 2;
394 } else
395 ++i;
396
397 while (i + numecs >= current_max_xpairs)
398 expand_nxt_chk();
399 }
400
401 /*
402 * If we started search from the beginning, store the new
403 * firstfree for the next call of find_table_space().
404 */
405 if (numtrans <= MAX_XTIONS_FULL_INTERIOR_FIT)
406 firstfree = i + 1;
407
408 /*
409 * Check to see if all elements in chk (and therefore nxt)
410 * that are needed for the new state have not yet been taken.
411 */
412
413 state_ptr = &state[1];
414 ptr_to_last_entry_in_state = &chk[i + numecs + 1];
415
416 for (chk_ptr = &chk[i + 1];
417 chk_ptr != ptr_to_last_entry_in_state; ++chk_ptr)
418 if (*(state_ptr++) != 0 && *chk_ptr != 0)
419 break;
420
421 if (chk_ptr == ptr_to_last_entry_in_state)
422 return i;
423
424 else
425 ++i;
426 }
427 }
428
429
430 /* inittbl - initialize transition tables
431 *
432 * Initializes "firstfree" to be one beyond the end of the table. Initializes
433 * all "chk" entries to be zero.
434 */
435 void
inittbl(void)436 inittbl(void)
437 {
438 int i;
439
440 memset(chk, 0, current_max_xpairs * sizeof(int));
441
442 tblend = 0;
443 firstfree = tblend + 1;
444 numtemps = 0;
445
446 if (usemecs) {
447 /*
448 * Set up doubly-linked meta-equivalence classes; these are
449 * sets of equivalence classes which all have identical
450 * transitions out of TEMPLATES.
451 */
452
453 tecbck[1] = NIL;
454
455 for (i = 2; i <= numecs; ++i) {
456 tecbck[i] = i - 1;
457 tecfwd[i - 1] = i;
458 }
459
460 tecfwd[numecs] = NIL;
461 }
462 }
463
464
465 /* mkdeftbl - make the default, "jam" table entries */
466
467 void
mkdeftbl(void)468 mkdeftbl(void)
469 {
470 int i;
471
472 jamstate = lastdfa + 1;
473
474 ++tblend; /* room for transition on end-of-buffer
475 * character */
476
477 while (tblend + numecs >= current_max_xpairs)
478 expand_nxt_chk();
479
480 /* Add in default end-of-buffer transition. */
481 nxt[tblend] = end_of_buffer_state;
482 chk[tblend] = jamstate;
483
484 for (i = 1; i <= numecs; ++i) {
485 nxt[tblend + i] = 0;
486 chk[tblend + i] = jamstate;
487 }
488
489 jambase = tblend;
490
491 base[jamstate] = jambase;
492 def[jamstate] = 0;
493
494 tblend += numecs;
495 ++numtemps;
496 }
497
498
499 /* mkentry - create base/def and nxt/chk entries for transition array
500 *
501 * synopsis
502 * int state[numchars + 1], numchars, statenum, deflink, totaltrans;
503 * mkentry( state, numchars, statenum, deflink, totaltrans );
504 *
505 * "state" is a transition array "numchars" characters in size, "statenum"
506 * is the offset to be used into the base/def tables, and "deflink" is the
507 * entry to put in the "def" table entry. If "deflink" is equal to
508 * "JAMSTATE", then no attempt will be made to fit zero entries of "state"
509 * (i.e., jam entries) into the table. It is assumed that by linking to
510 * "JAMSTATE" they will be taken care of. In any case, entries in "state"
511 * marking transitions to "SAME_TRANS" are treated as though they will be
512 * taken care of by wherever "deflink" points. "totaltrans" is the total
513 * number of transitions out of the state. If it is below a certain threshold,
514 * the tables are searched for an interior spot that will accommodate the
515 * state array.
516 */
517
518 void
mkentry(int * state,int numchars,int statenum,int deflink,int totaltrans)519 mkentry(int *state, int numchars, int statenum, int deflink, int totaltrans)
520 {
521 int minec, maxec, i, baseaddr;
522 int tblbase, tbllast;
523
524 if (totaltrans == 0) { /* there are no out-transitions */
525 if (deflink == JAMSTATE)
526 base[statenum] = JAMSTATE;
527 else
528 base[statenum] = 0;
529
530 def[statenum] = deflink;
531 return;
532 }
533 for (minec = 1; minec <= numchars; ++minec) {
534 if (state[minec] != SAME_TRANS)
535 if (state[minec] != 0 || deflink != JAMSTATE)
536 break;
537 }
538
539 if (totaltrans == 1) {
540 /*
541 * There's only one out-transition. Save it for later to
542 * fill in holes in the tables.
543 */
544 stack1(statenum, minec, state[minec], deflink);
545 return;
546 }
547 for (maxec = numchars; maxec > 0; --maxec) {
548 if (state[maxec] != SAME_TRANS)
549 if (state[maxec] != 0 || deflink != JAMSTATE)
550 break;
551 }
552
553 /*
554 * Whether we try to fit the state table in the middle of the table
555 * entries we have already generated, or if we just take the state
556 * table at the end of the nxt/chk tables, we must make sure that we
557 * have a valid base address (i.e., non-negative). Note that
558 * negative base addresses dangerous at run-time (because indexing
559 * the nxt array with one and a low-valued character will access
560 * memory before the start of the array.
561 */
562
563 /* Find the first transition of state that we need to worry about. */
564 if (totaltrans * 100 <= numchars * INTERIOR_FIT_PERCENTAGE) {
565 /* Attempt to squeeze it into the middle of the tables. */
566 baseaddr = firstfree;
567
568 while (baseaddr < minec) {
569 /*
570 * Using baseaddr would result in a negative base
571 * address below; find the next free slot.
572 */
573 for (++baseaddr; chk[baseaddr] != 0; ++baseaddr);
574 }
575
576 while (baseaddr + maxec - minec + 1 >= current_max_xpairs)
577 expand_nxt_chk();
578
579 for (i = minec; i <= maxec; ++i)
580 if (state[i] != SAME_TRANS &&
581 (state[i] != 0 || deflink != JAMSTATE) &&
582 chk[baseaddr + i - minec] != 0) { /* baseaddr unsuitable -
583 * find another */
584 for (++baseaddr;
585 baseaddr < current_max_xpairs &&
586 chk[baseaddr] != 0; ++baseaddr);
587
588 while (baseaddr + maxec - minec + 1 >=
589 current_max_xpairs)
590 expand_nxt_chk();
591
592 /*
593 * Reset the loop counter so we'll start all
594 * over again next time it's incremented.
595 */
596
597 i = minec - 1;
598 }
599 } else {
600 /*
601 * Ensure that the base address we eventually generate is
602 * non-negative.
603 */
604 baseaddr = MAX(tblend + 1, minec);
605 }
606
607 tblbase = baseaddr - minec;
608 tbllast = tblbase + maxec;
609
610 while (tbllast + 1 >= current_max_xpairs)
611 expand_nxt_chk();
612
613 base[statenum] = tblbase;
614 def[statenum] = deflink;
615
616 for (i = minec; i <= maxec; ++i)
617 if (state[i] != SAME_TRANS)
618 if (state[i] != 0 || deflink != JAMSTATE) {
619 nxt[tblbase + i] = state[i];
620 chk[tblbase + i] = statenum;
621 }
622 if (baseaddr == firstfree)
623 /* Find next free slot in tables. */
624 for (++firstfree; chk[firstfree] != 0; ++firstfree);
625
626 tblend = MAX(tblend, tbllast);
627 }
628
629
630 /* mk1tbl - create table entries for a state (or state fragment) which
631 * has only one out-transition
632 */
633
634 void
mk1tbl(int state,int sym,int onenxt,int onedef)635 mk1tbl(int state, int sym, int onenxt, int onedef)
636 {
637 if (firstfree < sym)
638 firstfree = sym;
639
640 while (chk[firstfree] != 0)
641 if (++firstfree >= current_max_xpairs)
642 expand_nxt_chk();
643
644 base[state] = firstfree - sym;
645 def[state] = onedef;
646 chk[firstfree] = state;
647 nxt[firstfree] = onenxt;
648
649 if (firstfree > tblend) {
650 tblend = firstfree++;
651
652 if (firstfree >= current_max_xpairs)
653 expand_nxt_chk();
654 }
655 }
656
657
658 /* mkprot - create new proto entry */
659
660 void
mkprot(int state[],int statenum,int comstate)661 mkprot(int state[], int statenum, int comstate)
662 {
663 int i, slot, tblbase;
664
665 if (++numprots >= MSP || numecs * numprots >= PROT_SAVE_SIZE) {
666 /*
667 * Gotta make room for the new proto by dropping last entry
668 * in the queue.
669 */
670 slot = lastprot;
671 lastprot = protprev[lastprot];
672 protnext[lastprot] = NIL;
673 } else
674 slot = numprots;
675
676 protnext[slot] = firstprot;
677
678 if (firstprot != NIL)
679 protprev[firstprot] = slot;
680
681 firstprot = slot;
682 prottbl[slot] = statenum;
683 protcomst[slot] = comstate;
684
685 /* Copy state into save area so it can be compared with rapidly. */
686 tblbase = numecs * (slot - 1);
687
688 for (i = 1; i <= numecs; ++i)
689 protsave[tblbase + i] = state[i];
690 }
691
692
693 /* mktemplate - create a template entry based on a state, and connect the state
694 * to it
695 */
696
697 void
mktemplate(int state[],int statenum,int comstate)698 mktemplate(int state[], int statenum, int comstate)
699 {
700 int i, numdiff, tmpbase, tmp[CSIZE + 1];
701 u_char transset[CSIZE + 1];
702 int tsptr;
703
704 ++numtemps;
705
706 tsptr = 0;
707
708 /*
709 * Calculate where we will temporarily store the transition table of
710 * the template in the tnxt[] array. The final transition table gets
711 * created by cmptmps().
712 */
713
714 tmpbase = numtemps * numecs;
715
716 if (tmpbase + numecs >= current_max_template_xpairs) {
717 current_max_template_xpairs +=
718 MAX_TEMPLATE_XPAIRS_INCREMENT;
719
720 ++num_reallocs;
721
722 tnxt = reallocate_integer_array(tnxt,
723 current_max_template_xpairs);
724 }
725 for (i = 1; i <= numecs; ++i)
726 if (state[i] == 0)
727 tnxt[tmpbase + i] = 0;
728 else {
729 transset[tsptr++] = i;
730 tnxt[tmpbase + i] = comstate;
731 }
732
733 if (usemecs)
734 mkeccl(transset, tsptr, tecfwd, tecbck, numecs, 0);
735
736 mkprot(tnxt + tmpbase, -numtemps, comstate);
737
738 /*
739 * We rely on the fact that mkprot adds things to the beginning of
740 * the proto queue.
741 */
742
743 numdiff = tbldiff(state, firstprot, tmp);
744 mkentry(tmp, numecs, statenum, -numtemps, numdiff);
745 }
746
747
748 /* mv2front - move proto queue element to front of queue */
749
750 void
mv2front(int qelm)751 mv2front(int qelm)
752 {
753 if (firstprot != qelm) {
754 if (qelm == lastprot)
755 lastprot = protprev[lastprot];
756
757 protnext[protprev[qelm]] = protnext[qelm];
758
759 if (protnext[qelm] != NIL)
760 protprev[protnext[qelm]] = protprev[qelm];
761
762 protprev[qelm] = NIL;
763 protnext[qelm] = firstprot;
764 protprev[firstprot] = qelm;
765 firstprot = qelm;
766 }
767 }
768
769
770 /* place_state - place a state into full speed transition table
771 *
772 * State is the statenum'th state. It is indexed by equivalence class and
773 * gives the number of the state to enter for a given equivalence class.
774 * Transnum is the number of out-transitions for the state.
775 */
776
777 void
place_state(int * state,int statenum,int transnum)778 place_state(int *state, int statenum, int transnum)
779 {
780 int i;
781 int *state_ptr;
782 int position = find_table_space(state, transnum);
783
784 /* "base" is the table of start positions. */
785 base[statenum] = position;
786
787 /*
788 * Put in action number marker; this non-zero number makes sure that
789 * find_table_space() knows that this position in chk/nxt is taken
790 * and should not be used for another accepting number in another
791 * state.
792 */
793 chk[position - 1] = 1;
794
795 /*
796 * Put in end-of-buffer marker; this is for the same purposes as
797 * above.
798 */
799 chk[position] = 1;
800
801 /* Place the state into chk and nxt. */
802 state_ptr = &state[1];
803
804 for (i = 1; i <= numecs; ++i, ++state_ptr)
805 if (*state_ptr != 0) {
806 chk[position + i] = i;
807 nxt[position + i] = *state_ptr;
808 }
809 if (position + numecs > tblend)
810 tblend = position + numecs;
811 }
812
813
814 /* stack1 - save states with only one out-transition to be processed later
815 *
816 * If there's room for another state on the "one-transition" stack, the
817 * state is pushed onto it, to be processed later by mk1tbl. If there's
818 * no room, we process the sucker right now.
819 */
820
821 void
stack1(int statenum,int sym,int nextstate,int deflink)822 stack1(int statenum, int sym, int nextstate, int deflink)
823 {
824 if (onesp >= ONE_STACK_SIZE - 1)
825 mk1tbl(statenum, sym, nextstate, deflink);
826
827 else {
828 ++onesp;
829 onestate[onesp] = statenum;
830 onesym[onesp] = sym;
831 onenext[onesp] = nextstate;
832 onedef[onesp] = deflink;
833 }
834 }
835
836
837 /* tbldiff - compute differences between two state tables
838 *
839 * "state" is the state array which is to be extracted from the pr'th
840 * proto. "pr" is both the number of the proto we are extracting from
841 * and an index into the save area where we can find the proto's complete
842 * state table. Each entry in "state" which differs from the corresponding
843 * entry of "pr" will appear in "ext".
844 *
845 * Entries which are the same in both "state" and "pr" will be marked
846 * as transitions to "SAME_TRANS" in "ext". The total number of differences
847 * between "state" and "pr" is returned as function value. Note that this
848 * number is "numecs" minus the number of "SAME_TRANS" entries in "ext".
849 */
850
851 int
tbldiff(int state[],int pr,int ext[])852 tbldiff(int state[], int pr, int ext[])
853 {
854 int i, *sp = state, *ep = ext, *protp;
855 int numdiff = 0;
856
857 protp = &protsave[numecs * (pr - 1)];
858
859 for (i = numecs; i > 0; --i) {
860 if (*++protp == *++sp)
861 *++ep = SAME_TRANS;
862 else {
863 *++ep = *sp;
864 ++numdiff;
865 }
866 }
867
868 return numdiff;
869 }
870