1 //===- llvm/Analysis/ScalarEvolutionExpressions.h - SCEV Exprs --*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the classes used to represent and build scalar expressions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H 14 #define LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H 15 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/FoldingSet.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/iterator_range.h" 21 #include "llvm/Analysis/ScalarEvolution.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/Value.h" 24 #include "llvm/IR/ValueHandle.h" 25 #include "llvm/Support/Casting.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include <cassert> 28 #include <cstddef> 29 30 namespace llvm { 31 32 class APInt; 33 class Constant; 34 class ConstantRange; 35 class Loop; 36 class Type; 37 38 enum SCEVTypes : unsigned short { 39 // These should be ordered in terms of increasing complexity to make the 40 // folders simpler. 41 scConstant, scTruncate, scZeroExtend, scSignExtend, scAddExpr, scMulExpr, 42 scUDivExpr, scAddRecExpr, scUMaxExpr, scSMaxExpr, scUMinExpr, scSMinExpr, 43 scPtrToInt, scUnknown, scCouldNotCompute 44 }; 45 46 /// This class represents a constant integer value. 47 class SCEVConstant : public SCEV { 48 friend class ScalarEvolution; 49 50 ConstantInt *V; 51 SCEVConstant(const FoldingSetNodeIDRef ID,ConstantInt * v)52 SCEVConstant(const FoldingSetNodeIDRef ID, ConstantInt *v) : 53 SCEV(ID, scConstant, 1), V(v) {} 54 55 public: getValue()56 ConstantInt *getValue() const { return V; } getAPInt()57 const APInt &getAPInt() const { return getValue()->getValue(); } 58 getType()59 Type *getType() const { return V->getType(); } 60 61 /// Methods for support type inquiry through isa, cast, and dyn_cast: classof(const SCEV * S)62 static bool classof(const SCEV *S) { 63 return S->getSCEVType() == scConstant; 64 } 65 }; 66 computeExpressionSize(ArrayRef<const SCEV * > Args)67 inline unsigned short computeExpressionSize(ArrayRef<const SCEV *> Args) { 68 APInt Size(16, 1); 69 for (auto *Arg : Args) 70 Size = Size.uadd_sat(APInt(16, Arg->getExpressionSize())); 71 return (unsigned short)Size.getZExtValue(); 72 } 73 74 /// This is the base class for unary cast operator classes. 75 class SCEVCastExpr : public SCEV { 76 protected: 77 std::array<const SCEV *, 1> Operands; 78 Type *Ty; 79 80 SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, const SCEV *op, 81 Type *ty); 82 83 public: getOperand()84 const SCEV *getOperand() const { return Operands[0]; } getOperand(unsigned i)85 const SCEV *getOperand(unsigned i) const { 86 assert(i == 0 && "Operand index out of range!"); 87 return Operands[0]; 88 } 89 using op_iterator = std::array<const SCEV *, 1>::const_iterator; 90 using op_range = iterator_range<op_iterator>; 91 operands()92 op_range operands() const { 93 return make_range(Operands.begin(), Operands.end()); 94 } getNumOperands()95 size_t getNumOperands() const { return 1; } getType()96 Type *getType() const { return Ty; } 97 98 /// Methods for support type inquiry through isa, cast, and dyn_cast: classof(const SCEV * S)99 static bool classof(const SCEV *S) { 100 return S->getSCEVType() == scPtrToInt || S->getSCEVType() == scTruncate || 101 S->getSCEVType() == scZeroExtend || 102 S->getSCEVType() == scSignExtend; 103 } 104 }; 105 106 /// This class represents a cast from a pointer to a pointer-sized integer 107 /// value. 108 class SCEVPtrToIntExpr : public SCEVCastExpr { 109 friend class ScalarEvolution; 110 111 SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op, Type *ITy); 112 113 public: 114 /// Methods for support type inquiry through isa, cast, and dyn_cast: classof(const SCEV * S)115 static bool classof(const SCEV *S) { 116 return S->getSCEVType() == scPtrToInt; 117 } 118 }; 119 120 /// This is the base class for unary integral cast operator classes. 121 class SCEVIntegralCastExpr : public SCEVCastExpr { 122 protected: 123 SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, 124 const SCEV *op, Type *ty); 125 126 public: 127 /// Methods for support type inquiry through isa, cast, and dyn_cast: classof(const SCEV * S)128 static bool classof(const SCEV *S) { 129 return S->getSCEVType() == scTruncate || 130 S->getSCEVType() == scZeroExtend || 131 S->getSCEVType() == scSignExtend; 132 } 133 }; 134 135 /// This class represents a truncation of an integer value to a 136 /// smaller integer value. 137 class SCEVTruncateExpr : public SCEVIntegralCastExpr { 138 friend class ScalarEvolution; 139 140 SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 141 const SCEV *op, Type *ty); 142 143 public: 144 /// Methods for support type inquiry through isa, cast, and dyn_cast: classof(const SCEV * S)145 static bool classof(const SCEV *S) { 146 return S->getSCEVType() == scTruncate; 147 } 148 }; 149 150 /// This class represents a zero extension of a small integer value 151 /// to a larger integer value. 152 class SCEVZeroExtendExpr : public SCEVIntegralCastExpr { 153 friend class ScalarEvolution; 154 155 SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 156 const SCEV *op, Type *ty); 157 158 public: 159 /// Methods for support type inquiry through isa, cast, and dyn_cast: classof(const SCEV * S)160 static bool classof(const SCEV *S) { 161 return S->getSCEVType() == scZeroExtend; 162 } 163 }; 164 165 /// This class represents a sign extension of a small integer value 166 /// to a larger integer value. 167 class SCEVSignExtendExpr : public SCEVIntegralCastExpr { 168 friend class ScalarEvolution; 169 170 SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 171 const SCEV *op, Type *ty); 172 173 public: 174 /// Methods for support type inquiry through isa, cast, and dyn_cast: classof(const SCEV * S)175 static bool classof(const SCEV *S) { 176 return S->getSCEVType() == scSignExtend; 177 } 178 }; 179 180 /// This node is a base class providing common functionality for 181 /// n'ary operators. 182 class SCEVNAryExpr : public SCEV { 183 protected: 184 // Since SCEVs are immutable, ScalarEvolution allocates operand 185 // arrays with its SCEVAllocator, so this class just needs a simple 186 // pointer rather than a more elaborate vector-like data structure. 187 // This also avoids the need for a non-trivial destructor. 188 const SCEV *const *Operands; 189 size_t NumOperands; 190 SCEVNAryExpr(const FoldingSetNodeIDRef ID,enum SCEVTypes T,const SCEV * const * O,size_t N)191 SCEVNAryExpr(const FoldingSetNodeIDRef ID, enum SCEVTypes T, 192 const SCEV *const *O, size_t N) 193 : SCEV(ID, T, computeExpressionSize(makeArrayRef(O, N))), Operands(O), 194 NumOperands(N) {} 195 196 public: getNumOperands()197 size_t getNumOperands() const { return NumOperands; } 198 getOperand(unsigned i)199 const SCEV *getOperand(unsigned i) const { 200 assert(i < NumOperands && "Operand index out of range!"); 201 return Operands[i]; 202 } 203 204 using op_iterator = const SCEV *const *; 205 using op_range = iterator_range<op_iterator>; 206 op_begin()207 op_iterator op_begin() const { return Operands; } op_end()208 op_iterator op_end() const { return Operands + NumOperands; } operands()209 op_range operands() const { 210 return make_range(op_begin(), op_end()); 211 } 212 getType()213 Type *getType() const { return getOperand(0)->getType(); } 214 215 NoWrapFlags getNoWrapFlags(NoWrapFlags Mask = NoWrapMask) const { 216 return (NoWrapFlags)(SubclassData & Mask); 217 } 218 hasNoUnsignedWrap()219 bool hasNoUnsignedWrap() const { 220 return getNoWrapFlags(FlagNUW) != FlagAnyWrap; 221 } 222 hasNoSignedWrap()223 bool hasNoSignedWrap() const { 224 return getNoWrapFlags(FlagNSW) != FlagAnyWrap; 225 } 226 hasNoSelfWrap()227 bool hasNoSelfWrap() const { 228 return getNoWrapFlags(FlagNW) != FlagAnyWrap; 229 } 230 231 /// Methods for support type inquiry through isa, cast, and dyn_cast: classof(const SCEV * S)232 static bool classof(const SCEV *S) { 233 return S->getSCEVType() == scAddExpr || S->getSCEVType() == scMulExpr || 234 S->getSCEVType() == scSMaxExpr || S->getSCEVType() == scUMaxExpr || 235 S->getSCEVType() == scSMinExpr || S->getSCEVType() == scUMinExpr || 236 S->getSCEVType() == scAddRecExpr; 237 } 238 }; 239 240 /// This node is the base class for n'ary commutative operators. 241 class SCEVCommutativeExpr : public SCEVNAryExpr { 242 protected: SCEVCommutativeExpr(const FoldingSetNodeIDRef ID,enum SCEVTypes T,const SCEV * const * O,size_t N)243 SCEVCommutativeExpr(const FoldingSetNodeIDRef ID, 244 enum SCEVTypes T, const SCEV *const *O, size_t N) 245 : SCEVNAryExpr(ID, T, O, N) {} 246 247 public: 248 /// Methods for support type inquiry through isa, cast, and dyn_cast: classof(const SCEV * S)249 static bool classof(const SCEV *S) { 250 return S->getSCEVType() == scAddExpr || S->getSCEVType() == scMulExpr || 251 S->getSCEVType() == scSMaxExpr || S->getSCEVType() == scUMaxExpr || 252 S->getSCEVType() == scSMinExpr || S->getSCEVType() == scUMinExpr; 253 } 254 255 /// Set flags for a non-recurrence without clearing previously set flags. setNoWrapFlags(NoWrapFlags Flags)256 void setNoWrapFlags(NoWrapFlags Flags) { 257 SubclassData |= Flags; 258 } 259 }; 260 261 /// This node represents an addition of some number of SCEVs. 262 class SCEVAddExpr : public SCEVCommutativeExpr { 263 friend class ScalarEvolution; 264 265 Type *Ty; 266 SCEVAddExpr(const FoldingSetNodeIDRef ID,const SCEV * const * O,size_t N)267 SCEVAddExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N) 268 : SCEVCommutativeExpr(ID, scAddExpr, O, N) { 269 auto *FirstPointerTypedOp = find_if(operands(), [](const SCEV *Op) { 270 return Op->getType()->isPointerTy(); 271 }); 272 if (FirstPointerTypedOp != operands().end()) 273 Ty = (*FirstPointerTypedOp)->getType(); 274 else 275 Ty = getOperand(0)->getType(); 276 } 277 278 public: getType()279 Type *getType() const { return Ty; } 280 281 /// Methods for support type inquiry through isa, cast, and dyn_cast: classof(const SCEV * S)282 static bool classof(const SCEV *S) { 283 return S->getSCEVType() == scAddExpr; 284 } 285 }; 286 287 /// This node represents multiplication of some number of SCEVs. 288 class SCEVMulExpr : public SCEVCommutativeExpr { 289 friend class ScalarEvolution; 290 SCEVMulExpr(const FoldingSetNodeIDRef ID,const SCEV * const * O,size_t N)291 SCEVMulExpr(const FoldingSetNodeIDRef ID, 292 const SCEV *const *O, size_t N) 293 : SCEVCommutativeExpr(ID, scMulExpr, O, N) {} 294 295 public: 296 /// Methods for support type inquiry through isa, cast, and dyn_cast: classof(const SCEV * S)297 static bool classof(const SCEV *S) { 298 return S->getSCEVType() == scMulExpr; 299 } 300 }; 301 302 /// This class represents a binary unsigned division operation. 303 class SCEVUDivExpr : public SCEV { 304 friend class ScalarEvolution; 305 306 std::array<const SCEV *, 2> Operands; 307 SCEVUDivExpr(const FoldingSetNodeIDRef ID,const SCEV * lhs,const SCEV * rhs)308 SCEVUDivExpr(const FoldingSetNodeIDRef ID, const SCEV *lhs, const SCEV *rhs) 309 : SCEV(ID, scUDivExpr, computeExpressionSize({lhs, rhs})) { 310 Operands[0] = lhs; 311 Operands[1] = rhs; 312 } 313 314 public: getLHS()315 const SCEV *getLHS() const { return Operands[0]; } getRHS()316 const SCEV *getRHS() const { return Operands[1]; } getNumOperands()317 size_t getNumOperands() const { return 2; } getOperand(unsigned i)318 const SCEV *getOperand(unsigned i) const { 319 assert((i == 0 || i == 1) && "Operand index out of range!"); 320 return i == 0 ? getLHS() : getRHS(); 321 } 322 323 using op_iterator = std::array<const SCEV *, 2>::const_iterator; 324 using op_range = iterator_range<op_iterator>; operands()325 op_range operands() const { 326 return make_range(Operands.begin(), Operands.end()); 327 } 328 getType()329 Type *getType() const { 330 // In most cases the types of LHS and RHS will be the same, but in some 331 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't 332 // depend on the type for correctness, but handling types carefully can 333 // avoid extra casts in the SCEVExpander. The LHS is more likely to be 334 // a pointer type than the RHS, so use the RHS' type here. 335 return getRHS()->getType(); 336 } 337 338 /// Methods for support type inquiry through isa, cast, and dyn_cast: classof(const SCEV * S)339 static bool classof(const SCEV *S) { 340 return S->getSCEVType() == scUDivExpr; 341 } 342 }; 343 344 /// This node represents a polynomial recurrence on the trip count 345 /// of the specified loop. This is the primary focus of the 346 /// ScalarEvolution framework; all the other SCEV subclasses are 347 /// mostly just supporting infrastructure to allow SCEVAddRecExpr 348 /// expressions to be created and analyzed. 349 /// 350 /// All operands of an AddRec are required to be loop invariant. 351 /// 352 class SCEVAddRecExpr : public SCEVNAryExpr { 353 friend class ScalarEvolution; 354 355 const Loop *L; 356 SCEVAddRecExpr(const FoldingSetNodeIDRef ID,const SCEV * const * O,size_t N,const Loop * l)357 SCEVAddRecExpr(const FoldingSetNodeIDRef ID, 358 const SCEV *const *O, size_t N, const Loop *l) 359 : SCEVNAryExpr(ID, scAddRecExpr, O, N), L(l) {} 360 361 public: getStart()362 const SCEV *getStart() const { return Operands[0]; } getLoop()363 const Loop *getLoop() const { return L; } 364 365 /// Constructs and returns the recurrence indicating how much this 366 /// expression steps by. If this is a polynomial of degree N, it 367 /// returns a chrec of degree N-1. We cannot determine whether 368 /// the step recurrence has self-wraparound. getStepRecurrence(ScalarEvolution & SE)369 const SCEV *getStepRecurrence(ScalarEvolution &SE) const { 370 if (isAffine()) return getOperand(1); 371 return SE.getAddRecExpr(SmallVector<const SCEV *, 3>(op_begin()+1, 372 op_end()), 373 getLoop(), FlagAnyWrap); 374 } 375 376 /// Return true if this represents an expression A + B*x where A 377 /// and B are loop invariant values. isAffine()378 bool isAffine() const { 379 // We know that the start value is invariant. This expression is thus 380 // affine iff the step is also invariant. 381 return getNumOperands() == 2; 382 } 383 384 /// Return true if this represents an expression A + B*x + C*x^2 385 /// where A, B and C are loop invariant values. This corresponds 386 /// to an addrec of the form {L,+,M,+,N} isQuadratic()387 bool isQuadratic() const { 388 return getNumOperands() == 3; 389 } 390 391 /// Set flags for a recurrence without clearing any previously set flags. 392 /// For AddRec, either NUW or NSW implies NW. Keep track of this fact here 393 /// to make it easier to propagate flags. setNoWrapFlags(NoWrapFlags Flags)394 void setNoWrapFlags(NoWrapFlags Flags) { 395 if (Flags & (FlagNUW | FlagNSW)) 396 Flags = ScalarEvolution::setFlags(Flags, FlagNW); 397 SubclassData |= Flags; 398 } 399 400 /// Return the value of this chain of recurrences at the specified 401 /// iteration number. 402 const SCEV *evaluateAtIteration(const SCEV *It, ScalarEvolution &SE) const; 403 404 /// Return the number of iterations of this loop that produce 405 /// values in the specified constant range. Another way of 406 /// looking at this is that it returns the first iteration number 407 /// where the value is not in the condition, thus computing the 408 /// exit count. If the iteration count can't be computed, an 409 /// instance of SCEVCouldNotCompute is returned. 410 const SCEV *getNumIterationsInRange(const ConstantRange &Range, 411 ScalarEvolution &SE) const; 412 413 /// Return an expression representing the value of this expression 414 /// one iteration of the loop ahead. 415 const SCEVAddRecExpr *getPostIncExpr(ScalarEvolution &SE) const; 416 417 /// Methods for support type inquiry through isa, cast, and dyn_cast: classof(const SCEV * S)418 static bool classof(const SCEV *S) { 419 return S->getSCEVType() == scAddRecExpr; 420 } 421 }; 422 423 /// This node is the base class min/max selections. 424 class SCEVMinMaxExpr : public SCEVCommutativeExpr { 425 friend class ScalarEvolution; 426 isMinMaxType(enum SCEVTypes T)427 static bool isMinMaxType(enum SCEVTypes T) { 428 return T == scSMaxExpr || T == scUMaxExpr || T == scSMinExpr || 429 T == scUMinExpr; 430 } 431 432 protected: 433 /// Note: Constructing subclasses via this constructor is allowed SCEVMinMaxExpr(const FoldingSetNodeIDRef ID,enum SCEVTypes T,const SCEV * const * O,size_t N)434 SCEVMinMaxExpr(const FoldingSetNodeIDRef ID, enum SCEVTypes T, 435 const SCEV *const *O, size_t N) 436 : SCEVCommutativeExpr(ID, T, O, N) { 437 assert(isMinMaxType(T)); 438 // Min and max never overflow 439 setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)); 440 } 441 442 public: classof(const SCEV * S)443 static bool classof(const SCEV *S) { 444 return isMinMaxType(S->getSCEVType()); 445 } 446 negate(enum SCEVTypes T)447 static enum SCEVTypes negate(enum SCEVTypes T) { 448 switch (T) { 449 case scSMaxExpr: 450 return scSMinExpr; 451 case scSMinExpr: 452 return scSMaxExpr; 453 case scUMaxExpr: 454 return scUMinExpr; 455 case scUMinExpr: 456 return scUMaxExpr; 457 default: 458 llvm_unreachable("Not a min or max SCEV type!"); 459 } 460 } 461 }; 462 463 /// This class represents a signed maximum selection. 464 class SCEVSMaxExpr : public SCEVMinMaxExpr { 465 friend class ScalarEvolution; 466 SCEVSMaxExpr(const FoldingSetNodeIDRef ID,const SCEV * const * O,size_t N)467 SCEVSMaxExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N) 468 : SCEVMinMaxExpr(ID, scSMaxExpr, O, N) {} 469 470 public: 471 /// Methods for support type inquiry through isa, cast, and dyn_cast: classof(const SCEV * S)472 static bool classof(const SCEV *S) { 473 return S->getSCEVType() == scSMaxExpr; 474 } 475 }; 476 477 /// This class represents an unsigned maximum selection. 478 class SCEVUMaxExpr : public SCEVMinMaxExpr { 479 friend class ScalarEvolution; 480 SCEVUMaxExpr(const FoldingSetNodeIDRef ID,const SCEV * const * O,size_t N)481 SCEVUMaxExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N) 482 : SCEVMinMaxExpr(ID, scUMaxExpr, O, N) {} 483 484 public: 485 /// Methods for support type inquiry through isa, cast, and dyn_cast: classof(const SCEV * S)486 static bool classof(const SCEV *S) { 487 return S->getSCEVType() == scUMaxExpr; 488 } 489 }; 490 491 /// This class represents a signed minimum selection. 492 class SCEVSMinExpr : public SCEVMinMaxExpr { 493 friend class ScalarEvolution; 494 SCEVSMinExpr(const FoldingSetNodeIDRef ID,const SCEV * const * O,size_t N)495 SCEVSMinExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N) 496 : SCEVMinMaxExpr(ID, scSMinExpr, O, N) {} 497 498 public: 499 /// Methods for support type inquiry through isa, cast, and dyn_cast: classof(const SCEV * S)500 static bool classof(const SCEV *S) { 501 return S->getSCEVType() == scSMinExpr; 502 } 503 }; 504 505 /// This class represents an unsigned minimum selection. 506 class SCEVUMinExpr : public SCEVMinMaxExpr { 507 friend class ScalarEvolution; 508 SCEVUMinExpr(const FoldingSetNodeIDRef ID,const SCEV * const * O,size_t N)509 SCEVUMinExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N) 510 : SCEVMinMaxExpr(ID, scUMinExpr, O, N) {} 511 512 public: 513 /// Methods for support type inquiry through isa, cast, and dyn_cast: classof(const SCEV * S)514 static bool classof(const SCEV *S) { 515 return S->getSCEVType() == scUMinExpr; 516 } 517 }; 518 519 /// This means that we are dealing with an entirely unknown SCEV 520 /// value, and only represent it as its LLVM Value. This is the 521 /// "bottom" value for the analysis. 522 class SCEVUnknown final : public SCEV, private CallbackVH { 523 friend class ScalarEvolution; 524 525 /// The parent ScalarEvolution value. This is used to update the 526 /// parent's maps when the value associated with a SCEVUnknown is 527 /// deleted or RAUW'd. 528 ScalarEvolution *SE; 529 530 /// The next pointer in the linked list of all SCEVUnknown 531 /// instances owned by a ScalarEvolution. 532 SCEVUnknown *Next; 533 SCEVUnknown(const FoldingSetNodeIDRef ID,Value * V,ScalarEvolution * se,SCEVUnknown * next)534 SCEVUnknown(const FoldingSetNodeIDRef ID, Value *V, 535 ScalarEvolution *se, SCEVUnknown *next) : 536 SCEV(ID, scUnknown, 1), CallbackVH(V), SE(se), Next(next) {} 537 538 // Implement CallbackVH. 539 void deleted() override; 540 void allUsesReplacedWith(Value *New) override; 541 542 public: getValue()543 Value *getValue() const { return getValPtr(); } 544 545 /// @{ 546 /// Test whether this is a special constant representing a type 547 /// size, alignment, or field offset in a target-independent 548 /// manner, and hasn't happened to have been folded with other 549 /// operations into something unrecognizable. This is mainly only 550 /// useful for pretty-printing and other situations where it isn't 551 /// absolutely required for these to succeed. 552 bool isSizeOf(Type *&AllocTy) const; 553 bool isAlignOf(Type *&AllocTy) const; 554 bool isOffsetOf(Type *&STy, Constant *&FieldNo) const; 555 /// @} 556 getType()557 Type *getType() const { return getValPtr()->getType(); } 558 559 /// Methods for support type inquiry through isa, cast, and dyn_cast: classof(const SCEV * S)560 static bool classof(const SCEV *S) { 561 return S->getSCEVType() == scUnknown; 562 } 563 }; 564 565 /// This class defines a simple visitor class that may be used for 566 /// various SCEV analysis purposes. 567 template<typename SC, typename RetVal=void> 568 struct SCEVVisitor { visitSCEVVisitor569 RetVal visit(const SCEV *S) { 570 switch (S->getSCEVType()) { 571 case scConstant: 572 return ((SC*)this)->visitConstant((const SCEVConstant*)S); 573 case scPtrToInt: 574 return ((SC *)this)->visitPtrToIntExpr((const SCEVPtrToIntExpr *)S); 575 case scTruncate: 576 return ((SC*)this)->visitTruncateExpr((const SCEVTruncateExpr*)S); 577 case scZeroExtend: 578 return ((SC*)this)->visitZeroExtendExpr((const SCEVZeroExtendExpr*)S); 579 case scSignExtend: 580 return ((SC*)this)->visitSignExtendExpr((const SCEVSignExtendExpr*)S); 581 case scAddExpr: 582 return ((SC*)this)->visitAddExpr((const SCEVAddExpr*)S); 583 case scMulExpr: 584 return ((SC*)this)->visitMulExpr((const SCEVMulExpr*)S); 585 case scUDivExpr: 586 return ((SC*)this)->visitUDivExpr((const SCEVUDivExpr*)S); 587 case scAddRecExpr: 588 return ((SC*)this)->visitAddRecExpr((const SCEVAddRecExpr*)S); 589 case scSMaxExpr: 590 return ((SC*)this)->visitSMaxExpr((const SCEVSMaxExpr*)S); 591 case scUMaxExpr: 592 return ((SC*)this)->visitUMaxExpr((const SCEVUMaxExpr*)S); 593 case scSMinExpr: 594 return ((SC *)this)->visitSMinExpr((const SCEVSMinExpr *)S); 595 case scUMinExpr: 596 return ((SC *)this)->visitUMinExpr((const SCEVUMinExpr *)S); 597 case scUnknown: 598 return ((SC*)this)->visitUnknown((const SCEVUnknown*)S); 599 case scCouldNotCompute: 600 return ((SC*)this)->visitCouldNotCompute((const SCEVCouldNotCompute*)S); 601 } 602 llvm_unreachable("Unknown SCEV kind!"); 603 } 604 visitCouldNotComputeSCEVVisitor605 RetVal visitCouldNotCompute(const SCEVCouldNotCompute *S) { 606 llvm_unreachable("Invalid use of SCEVCouldNotCompute!"); 607 } 608 }; 609 610 /// Visit all nodes in the expression tree using worklist traversal. 611 /// 612 /// Visitor implements: 613 /// // return true to follow this node. 614 /// bool follow(const SCEV *S); 615 /// // return true to terminate the search. 616 /// bool isDone(); 617 template<typename SV> 618 class SCEVTraversal { 619 SV &Visitor; 620 SmallVector<const SCEV *, 8> Worklist; 621 SmallPtrSet<const SCEV *, 8> Visited; 622 push(const SCEV * S)623 void push(const SCEV *S) { 624 if (Visited.insert(S).second && Visitor.follow(S)) 625 Worklist.push_back(S); 626 } 627 628 public: SCEVTraversal(SV & V)629 SCEVTraversal(SV& V): Visitor(V) {} 630 visitAll(const SCEV * Root)631 void visitAll(const SCEV *Root) { 632 push(Root); 633 while (!Worklist.empty() && !Visitor.isDone()) { 634 const SCEV *S = Worklist.pop_back_val(); 635 636 switch (S->getSCEVType()) { 637 case scConstant: 638 case scUnknown: 639 continue; 640 case scPtrToInt: 641 case scTruncate: 642 case scZeroExtend: 643 case scSignExtend: 644 push(cast<SCEVCastExpr>(S)->getOperand()); 645 continue; 646 case scAddExpr: 647 case scMulExpr: 648 case scSMaxExpr: 649 case scUMaxExpr: 650 case scSMinExpr: 651 case scUMinExpr: 652 case scAddRecExpr: 653 for (const auto *Op : cast<SCEVNAryExpr>(S)->operands()) 654 push(Op); 655 continue; 656 case scUDivExpr: { 657 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 658 push(UDiv->getLHS()); 659 push(UDiv->getRHS()); 660 continue; 661 } 662 case scCouldNotCompute: 663 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 664 } 665 llvm_unreachable("Unknown SCEV kind!"); 666 } 667 } 668 }; 669 670 /// Use SCEVTraversal to visit all nodes in the given expression tree. 671 template<typename SV> visitAll(const SCEV * Root,SV & Visitor)672 void visitAll(const SCEV *Root, SV& Visitor) { 673 SCEVTraversal<SV> T(Visitor); 674 T.visitAll(Root); 675 } 676 677 /// Return true if any node in \p Root satisfies the predicate \p Pred. 678 template <typename PredTy> SCEVExprContains(const SCEV * Root,PredTy Pred)679 bool SCEVExprContains(const SCEV *Root, PredTy Pred) { 680 struct FindClosure { 681 bool Found = false; 682 PredTy Pred; 683 684 FindClosure(PredTy Pred) : Pred(Pred) {} 685 686 bool follow(const SCEV *S) { 687 if (!Pred(S)) 688 return true; 689 690 Found = true; 691 return false; 692 } 693 694 bool isDone() const { return Found; } 695 }; 696 697 FindClosure FC(Pred); 698 visitAll(Root, FC); 699 return FC.Found; 700 } 701 702 /// This visitor recursively visits a SCEV expression and re-writes it. 703 /// The result from each visit is cached, so it will return the same 704 /// SCEV for the same input. 705 template<typename SC> 706 class SCEVRewriteVisitor : public SCEVVisitor<SC, const SCEV *> { 707 protected: 708 ScalarEvolution &SE; 709 // Memoize the result of each visit so that we only compute once for 710 // the same input SCEV. This is to avoid redundant computations when 711 // a SCEV is referenced by multiple SCEVs. Without memoization, this 712 // visit algorithm would have exponential time complexity in the worst 713 // case, causing the compiler to hang on certain tests. 714 DenseMap<const SCEV *, const SCEV *> RewriteResults; 715 716 public: SCEVRewriteVisitor(ScalarEvolution & SE)717 SCEVRewriteVisitor(ScalarEvolution &SE) : SE(SE) {} 718 visit(const SCEV * S)719 const SCEV *visit(const SCEV *S) { 720 auto It = RewriteResults.find(S); 721 if (It != RewriteResults.end()) 722 return It->second; 723 auto* Visited = SCEVVisitor<SC, const SCEV *>::visit(S); 724 auto Result = RewriteResults.try_emplace(S, Visited); 725 assert(Result.second && "Should insert a new entry"); 726 return Result.first->second; 727 } 728 visitConstant(const SCEVConstant * Constant)729 const SCEV *visitConstant(const SCEVConstant *Constant) { 730 return Constant; 731 } 732 visitPtrToIntExpr(const SCEVPtrToIntExpr * Expr)733 const SCEV *visitPtrToIntExpr(const SCEVPtrToIntExpr *Expr) { 734 const SCEV *Operand = ((SC *)this)->visit(Expr->getOperand()); 735 return Operand == Expr->getOperand() 736 ? Expr 737 : SE.getPtrToIntExpr(Operand, Expr->getType()); 738 } 739 visitTruncateExpr(const SCEVTruncateExpr * Expr)740 const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) { 741 const SCEV *Operand = ((SC*)this)->visit(Expr->getOperand()); 742 return Operand == Expr->getOperand() 743 ? Expr 744 : SE.getTruncateExpr(Operand, Expr->getType()); 745 } 746 visitZeroExtendExpr(const SCEVZeroExtendExpr * Expr)747 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 748 const SCEV *Operand = ((SC*)this)->visit(Expr->getOperand()); 749 return Operand == Expr->getOperand() 750 ? Expr 751 : SE.getZeroExtendExpr(Operand, Expr->getType()); 752 } 753 visitSignExtendExpr(const SCEVSignExtendExpr * Expr)754 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 755 const SCEV *Operand = ((SC*)this)->visit(Expr->getOperand()); 756 return Operand == Expr->getOperand() 757 ? Expr 758 : SE.getSignExtendExpr(Operand, Expr->getType()); 759 } 760 visitAddExpr(const SCEVAddExpr * Expr)761 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { 762 SmallVector<const SCEV *, 2> Operands; 763 bool Changed = false; 764 for (auto *Op : Expr->operands()) { 765 Operands.push_back(((SC*)this)->visit(Op)); 766 Changed |= Op != Operands.back(); 767 } 768 return !Changed ? Expr : SE.getAddExpr(Operands); 769 } 770 visitMulExpr(const SCEVMulExpr * Expr)771 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { 772 SmallVector<const SCEV *, 2> Operands; 773 bool Changed = false; 774 for (auto *Op : Expr->operands()) { 775 Operands.push_back(((SC*)this)->visit(Op)); 776 Changed |= Op != Operands.back(); 777 } 778 return !Changed ? Expr : SE.getMulExpr(Operands); 779 } 780 visitUDivExpr(const SCEVUDivExpr * Expr)781 const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) { 782 auto *LHS = ((SC *)this)->visit(Expr->getLHS()); 783 auto *RHS = ((SC *)this)->visit(Expr->getRHS()); 784 bool Changed = LHS != Expr->getLHS() || RHS != Expr->getRHS(); 785 return !Changed ? Expr : SE.getUDivExpr(LHS, RHS); 786 } 787 visitAddRecExpr(const SCEVAddRecExpr * Expr)788 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 789 SmallVector<const SCEV *, 2> Operands; 790 bool Changed = false; 791 for (auto *Op : Expr->operands()) { 792 Operands.push_back(((SC*)this)->visit(Op)); 793 Changed |= Op != Operands.back(); 794 } 795 return !Changed ? Expr 796 : SE.getAddRecExpr(Operands, Expr->getLoop(), 797 Expr->getNoWrapFlags()); 798 } 799 visitSMaxExpr(const SCEVSMaxExpr * Expr)800 const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) { 801 SmallVector<const SCEV *, 2> Operands; 802 bool Changed = false; 803 for (auto *Op : Expr->operands()) { 804 Operands.push_back(((SC *)this)->visit(Op)); 805 Changed |= Op != Operands.back(); 806 } 807 return !Changed ? Expr : SE.getSMaxExpr(Operands); 808 } 809 visitUMaxExpr(const SCEVUMaxExpr * Expr)810 const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) { 811 SmallVector<const SCEV *, 2> Operands; 812 bool Changed = false; 813 for (auto *Op : Expr->operands()) { 814 Operands.push_back(((SC*)this)->visit(Op)); 815 Changed |= Op != Operands.back(); 816 } 817 return !Changed ? Expr : SE.getUMaxExpr(Operands); 818 } 819 visitSMinExpr(const SCEVSMinExpr * Expr)820 const SCEV *visitSMinExpr(const SCEVSMinExpr *Expr) { 821 SmallVector<const SCEV *, 2> Operands; 822 bool Changed = false; 823 for (auto *Op : Expr->operands()) { 824 Operands.push_back(((SC *)this)->visit(Op)); 825 Changed |= Op != Operands.back(); 826 } 827 return !Changed ? Expr : SE.getSMinExpr(Operands); 828 } 829 visitUMinExpr(const SCEVUMinExpr * Expr)830 const SCEV *visitUMinExpr(const SCEVUMinExpr *Expr) { 831 SmallVector<const SCEV *, 2> Operands; 832 bool Changed = false; 833 for (auto *Op : Expr->operands()) { 834 Operands.push_back(((SC *)this)->visit(Op)); 835 Changed |= Op != Operands.back(); 836 } 837 return !Changed ? Expr : SE.getUMinExpr(Operands); 838 } 839 visitUnknown(const SCEVUnknown * Expr)840 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 841 return Expr; 842 } 843 visitCouldNotCompute(const SCEVCouldNotCompute * Expr)844 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 845 return Expr; 846 } 847 }; 848 849 using ValueToValueMap = DenseMap<const Value *, Value *>; 850 using ValueToSCEVMapTy = DenseMap<const Value *, const SCEV *>; 851 852 /// The SCEVParameterRewriter takes a scalar evolution expression and updates 853 /// the SCEVUnknown components following the Map (Value -> SCEV). 854 class SCEVParameterRewriter : public SCEVRewriteVisitor<SCEVParameterRewriter> { 855 public: rewrite(const SCEV * Scev,ScalarEvolution & SE,ValueToSCEVMapTy & Map)856 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE, 857 ValueToSCEVMapTy &Map) { 858 SCEVParameterRewriter Rewriter(SE, Map); 859 return Rewriter.visit(Scev); 860 } 861 SCEVParameterRewriter(ScalarEvolution & SE,ValueToSCEVMapTy & M)862 SCEVParameterRewriter(ScalarEvolution &SE, ValueToSCEVMapTy &M) 863 : SCEVRewriteVisitor(SE), Map(M) {} 864 visitUnknown(const SCEVUnknown * Expr)865 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 866 auto I = Map.find(Expr->getValue()); 867 if (I == Map.end()) 868 return Expr; 869 return I->second; 870 } 871 872 private: 873 ValueToSCEVMapTy ⤅ 874 }; 875 876 using LoopToScevMapT = DenseMap<const Loop *, const SCEV *>; 877 878 /// The SCEVLoopAddRecRewriter takes a scalar evolution expression and applies 879 /// the Map (Loop -> SCEV) to all AddRecExprs. 880 class SCEVLoopAddRecRewriter 881 : public SCEVRewriteVisitor<SCEVLoopAddRecRewriter> { 882 public: SCEVLoopAddRecRewriter(ScalarEvolution & SE,LoopToScevMapT & M)883 SCEVLoopAddRecRewriter(ScalarEvolution &SE, LoopToScevMapT &M) 884 : SCEVRewriteVisitor(SE), Map(M) {} 885 rewrite(const SCEV * Scev,LoopToScevMapT & Map,ScalarEvolution & SE)886 static const SCEV *rewrite(const SCEV *Scev, LoopToScevMapT &Map, 887 ScalarEvolution &SE) { 888 SCEVLoopAddRecRewriter Rewriter(SE, Map); 889 return Rewriter.visit(Scev); 890 } 891 visitAddRecExpr(const SCEVAddRecExpr * Expr)892 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 893 SmallVector<const SCEV *, 2> Operands; 894 for (const SCEV *Op : Expr->operands()) 895 Operands.push_back(visit(Op)); 896 897 const Loop *L = Expr->getLoop(); 898 const SCEV *Res = SE.getAddRecExpr(Operands, L, Expr->getNoWrapFlags()); 899 900 if (0 == Map.count(L)) 901 return Res; 902 903 const SCEVAddRecExpr *Rec = cast<SCEVAddRecExpr>(Res); 904 return Rec->evaluateAtIteration(Map[L], SE); 905 } 906 907 private: 908 LoopToScevMapT ⤅ 909 }; 910 911 } // end namespace llvm 912 913 #endif // LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H 914