1 //===-- AMDGPUSubtarget.cpp - AMDGPU Subtarget Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Implements the AMDGPU specific subclass of TargetSubtarget.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "AMDGPUSubtarget.h"
15 #include "AMDGPUCallLowering.h"
16 #include "AMDGPUInstructionSelector.h"
17 #include "AMDGPULegalizerInfo.h"
18 #include "AMDGPURegisterBankInfo.h"
19 #include "AMDGPUTargetMachine.h"
20 #include "R600Subtarget.h"
21 #include "SIMachineFunctionInfo.h"
22 #include "Utils/AMDGPUBaseInfo.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h"
25 #include "llvm/CodeGen/MachineScheduler.h"
26 #include "llvm/CodeGen/TargetFrameLowering.h"
27 #include "llvm/IR/IntrinsicsAMDGPU.h"
28 #include "llvm/IR/IntrinsicsR600.h"
29 #include "llvm/IR/MDBuilder.h"
30 #include "llvm/MC/MCSubtargetInfo.h"
31 #include <algorithm>
32
33 using namespace llvm;
34
35 #define DEBUG_TYPE "amdgpu-subtarget"
36
37 #define GET_SUBTARGETINFO_TARGET_DESC
38 #define GET_SUBTARGETINFO_CTOR
39 #define AMDGPUSubtarget GCNSubtarget
40 #include "AMDGPUGenSubtargetInfo.inc"
41 #undef AMDGPUSubtarget
42
43 static cl::opt<bool> EnablePowerSched(
44 "amdgpu-enable-power-sched",
45 cl::desc("Enable scheduling to minimize mAI power bursts"),
46 cl::init(false));
47
48 static cl::opt<bool> EnableVGPRIndexMode(
49 "amdgpu-vgpr-index-mode",
50 cl::desc("Use GPR indexing mode instead of movrel for vector indexing"),
51 cl::init(false));
52
53 static cl::opt<bool> UseAA("amdgpu-use-aa-in-codegen",
54 cl::desc("Enable the use of AA during codegen."),
55 cl::init(true));
56
57 static cl::opt<unsigned> NSAThreshold("amdgpu-nsa-threshold",
58 cl::desc("Number of addresses from which to enable MIMG NSA."),
59 cl::init(3), cl::Hidden);
60
61 GCNSubtarget::~GCNSubtarget() = default;
62
63 GCNSubtarget &
initializeSubtargetDependencies(const Triple & TT,StringRef GPU,StringRef FS)64 GCNSubtarget::initializeSubtargetDependencies(const Triple &TT,
65 StringRef GPU, StringRef FS) {
66 // Determine default and user-specified characteristics
67 //
68 // We want to be able to turn these off, but making this a subtarget feature
69 // for SI has the unhelpful behavior that it unsets everything else if you
70 // disable it.
71 //
72 // Similarly we want enable-prt-strict-null to be on by default and not to
73 // unset everything else if it is disabled
74
75 SmallString<256> FullFS("+promote-alloca,+load-store-opt,+enable-ds128,");
76
77 // Turn on features that HSA ABI requires. Also turn on FlatForGlobal by default
78 if (isAmdHsaOS())
79 FullFS += "+flat-for-global,+unaligned-access-mode,+trap-handler,";
80
81 FullFS += "+enable-prt-strict-null,"; // This is overridden by a disable in FS
82
83 // Disable mutually exclusive bits.
84 if (FS.contains_insensitive("+wavefrontsize")) {
85 if (!FS.contains_insensitive("wavefrontsize16"))
86 FullFS += "-wavefrontsize16,";
87 if (!FS.contains_insensitive("wavefrontsize32"))
88 FullFS += "-wavefrontsize32,";
89 if (!FS.contains_insensitive("wavefrontsize64"))
90 FullFS += "-wavefrontsize64,";
91 }
92
93 FullFS += FS;
94
95 ParseSubtargetFeatures(GPU, /*TuneCPU*/ GPU, FullFS);
96
97 // Implement the "generic" processors, which acts as the default when no
98 // generation features are enabled (e.g for -mcpu=''). HSA OS defaults to
99 // the first amdgcn target that supports flat addressing. Other OSes defaults
100 // to the first amdgcn target.
101 if (Gen == AMDGPUSubtarget::INVALID) {
102 Gen = TT.getOS() == Triple::AMDHSA ? AMDGPUSubtarget::SEA_ISLANDS
103 : AMDGPUSubtarget::SOUTHERN_ISLANDS;
104 }
105
106 // We don't support FP64 for EG/NI atm.
107 assert(!hasFP64() || (getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS));
108
109 // Targets must either support 64-bit offsets for MUBUF instructions, and/or
110 // support flat operations, otherwise they cannot access a 64-bit global
111 // address space
112 assert(hasAddr64() || hasFlat());
113 // Unless +-flat-for-global is specified, turn on FlatForGlobal for targets
114 // that do not support ADDR64 variants of MUBUF instructions. Such targets
115 // cannot use a 64 bit offset with a MUBUF instruction to access the global
116 // address space
117 if (!hasAddr64() && !FS.contains("flat-for-global") && !FlatForGlobal) {
118 ToggleFeature(AMDGPU::FeatureFlatForGlobal);
119 FlatForGlobal = true;
120 }
121 // Unless +-flat-for-global is specified, use MUBUF instructions for global
122 // address space access if flat operations are not available.
123 if (!hasFlat() && !FS.contains("flat-for-global") && FlatForGlobal) {
124 ToggleFeature(AMDGPU::FeatureFlatForGlobal);
125 FlatForGlobal = false;
126 }
127
128 // Set defaults if needed.
129 if (MaxPrivateElementSize == 0)
130 MaxPrivateElementSize = 4;
131
132 if (LDSBankCount == 0)
133 LDSBankCount = 32;
134
135 if (TT.getArch() == Triple::amdgcn) {
136 if (LocalMemorySize == 0)
137 LocalMemorySize = 32768;
138
139 // Do something sensible for unspecified target.
140 if (!HasMovrel && !HasVGPRIndexMode)
141 HasMovrel = true;
142 }
143
144 AddressableLocalMemorySize = LocalMemorySize;
145
146 if (AMDGPU::isGFX10Plus(*this) &&
147 !getFeatureBits().test(AMDGPU::FeatureCuMode))
148 LocalMemorySize *= 2;
149
150 // Don't crash on invalid devices.
151 if (WavefrontSizeLog2 == 0)
152 WavefrontSizeLog2 = 5;
153
154 HasFminFmaxLegacy = getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS;
155 HasSMulHi = getGeneration() >= AMDGPUSubtarget::GFX9;
156
157 TargetID.setTargetIDFromFeaturesString(FS);
158
159 LLVM_DEBUG(dbgs() << "xnack setting for subtarget: "
160 << TargetID.getXnackSetting() << '\n');
161 LLVM_DEBUG(dbgs() << "sramecc setting for subtarget: "
162 << TargetID.getSramEccSetting() << '\n');
163
164 return *this;
165 }
166
AMDGPUSubtarget(const Triple & TT)167 AMDGPUSubtarget::AMDGPUSubtarget(const Triple &TT) : TargetTriple(TT) {}
168
GCNSubtarget(const Triple & TT,StringRef GPU,StringRef FS,const GCNTargetMachine & TM)169 GCNSubtarget::GCNSubtarget(const Triple &TT, StringRef GPU, StringRef FS,
170 const GCNTargetMachine &TM)
171 : // clang-format off
172 AMDGPUGenSubtargetInfo(TT, GPU, /*TuneCPU*/ GPU, FS),
173 AMDGPUSubtarget(TT),
174 TargetTriple(TT),
175 TargetID(*this),
176 InstrItins(getInstrItineraryForCPU(GPU)),
177 InstrInfo(initializeSubtargetDependencies(TT, GPU, FS)),
178 TLInfo(TM, *this),
179 FrameLowering(TargetFrameLowering::StackGrowsUp, getStackAlignment(), 0) {
180 // clang-format on
181 MaxWavesPerEU = AMDGPU::IsaInfo::getMaxWavesPerEU(this);
182 EUsPerCU = AMDGPU::IsaInfo::getEUsPerCU(this);
183 CallLoweringInfo.reset(new AMDGPUCallLowering(*getTargetLowering()));
184 InlineAsmLoweringInfo.reset(new InlineAsmLowering(getTargetLowering()));
185 Legalizer.reset(new AMDGPULegalizerInfo(*this, TM));
186 RegBankInfo.reset(new AMDGPURegisterBankInfo(*this));
187 InstSelector.reset(new AMDGPUInstructionSelector(
188 *this, *static_cast<AMDGPURegisterBankInfo *>(RegBankInfo.get()), TM));
189 }
190
getConstantBusLimit(unsigned Opcode) const191 unsigned GCNSubtarget::getConstantBusLimit(unsigned Opcode) const {
192 if (getGeneration() < GFX10)
193 return 1;
194
195 switch (Opcode) {
196 case AMDGPU::V_LSHLREV_B64_e64:
197 case AMDGPU::V_LSHLREV_B64_gfx10:
198 case AMDGPU::V_LSHLREV_B64_e64_gfx11:
199 case AMDGPU::V_LSHL_B64_e64:
200 case AMDGPU::V_LSHRREV_B64_e64:
201 case AMDGPU::V_LSHRREV_B64_gfx10:
202 case AMDGPU::V_LSHRREV_B64_e64_gfx11:
203 case AMDGPU::V_LSHR_B64_e64:
204 case AMDGPU::V_ASHRREV_I64_e64:
205 case AMDGPU::V_ASHRREV_I64_gfx10:
206 case AMDGPU::V_ASHRREV_I64_e64_gfx11:
207 case AMDGPU::V_ASHR_I64_e64:
208 return 1;
209 }
210
211 return 2;
212 }
213
214 /// This list was mostly derived from experimentation.
zeroesHigh16BitsOfDest(unsigned Opcode) const215 bool GCNSubtarget::zeroesHigh16BitsOfDest(unsigned Opcode) const {
216 switch (Opcode) {
217 case AMDGPU::V_CVT_F16_F32_e32:
218 case AMDGPU::V_CVT_F16_F32_e64:
219 case AMDGPU::V_CVT_F16_U16_e32:
220 case AMDGPU::V_CVT_F16_U16_e64:
221 case AMDGPU::V_CVT_F16_I16_e32:
222 case AMDGPU::V_CVT_F16_I16_e64:
223 case AMDGPU::V_RCP_F16_e64:
224 case AMDGPU::V_RCP_F16_e32:
225 case AMDGPU::V_RSQ_F16_e64:
226 case AMDGPU::V_RSQ_F16_e32:
227 case AMDGPU::V_SQRT_F16_e64:
228 case AMDGPU::V_SQRT_F16_e32:
229 case AMDGPU::V_LOG_F16_e64:
230 case AMDGPU::V_LOG_F16_e32:
231 case AMDGPU::V_EXP_F16_e64:
232 case AMDGPU::V_EXP_F16_e32:
233 case AMDGPU::V_SIN_F16_e64:
234 case AMDGPU::V_SIN_F16_e32:
235 case AMDGPU::V_COS_F16_e64:
236 case AMDGPU::V_COS_F16_e32:
237 case AMDGPU::V_FLOOR_F16_e64:
238 case AMDGPU::V_FLOOR_F16_e32:
239 case AMDGPU::V_CEIL_F16_e64:
240 case AMDGPU::V_CEIL_F16_e32:
241 case AMDGPU::V_TRUNC_F16_e64:
242 case AMDGPU::V_TRUNC_F16_e32:
243 case AMDGPU::V_RNDNE_F16_e64:
244 case AMDGPU::V_RNDNE_F16_e32:
245 case AMDGPU::V_FRACT_F16_e64:
246 case AMDGPU::V_FRACT_F16_e32:
247 case AMDGPU::V_FREXP_MANT_F16_e64:
248 case AMDGPU::V_FREXP_MANT_F16_e32:
249 case AMDGPU::V_FREXP_EXP_I16_F16_e64:
250 case AMDGPU::V_FREXP_EXP_I16_F16_e32:
251 case AMDGPU::V_LDEXP_F16_e64:
252 case AMDGPU::V_LDEXP_F16_e32:
253 case AMDGPU::V_LSHLREV_B16_e64:
254 case AMDGPU::V_LSHLREV_B16_e32:
255 case AMDGPU::V_LSHRREV_B16_e64:
256 case AMDGPU::V_LSHRREV_B16_e32:
257 case AMDGPU::V_ASHRREV_I16_e64:
258 case AMDGPU::V_ASHRREV_I16_e32:
259 case AMDGPU::V_ADD_U16_e64:
260 case AMDGPU::V_ADD_U16_e32:
261 case AMDGPU::V_SUB_U16_e64:
262 case AMDGPU::V_SUB_U16_e32:
263 case AMDGPU::V_SUBREV_U16_e64:
264 case AMDGPU::V_SUBREV_U16_e32:
265 case AMDGPU::V_MUL_LO_U16_e64:
266 case AMDGPU::V_MUL_LO_U16_e32:
267 case AMDGPU::V_ADD_F16_e64:
268 case AMDGPU::V_ADD_F16_e32:
269 case AMDGPU::V_SUB_F16_e64:
270 case AMDGPU::V_SUB_F16_e32:
271 case AMDGPU::V_SUBREV_F16_e64:
272 case AMDGPU::V_SUBREV_F16_e32:
273 case AMDGPU::V_MUL_F16_e64:
274 case AMDGPU::V_MUL_F16_e32:
275 case AMDGPU::V_MAX_F16_e64:
276 case AMDGPU::V_MAX_F16_e32:
277 case AMDGPU::V_MIN_F16_e64:
278 case AMDGPU::V_MIN_F16_e32:
279 case AMDGPU::V_MAX_U16_e64:
280 case AMDGPU::V_MAX_U16_e32:
281 case AMDGPU::V_MIN_U16_e64:
282 case AMDGPU::V_MIN_U16_e32:
283 case AMDGPU::V_MAX_I16_e64:
284 case AMDGPU::V_MAX_I16_e32:
285 case AMDGPU::V_MIN_I16_e64:
286 case AMDGPU::V_MIN_I16_e32:
287 case AMDGPU::V_MAD_F16_e64:
288 case AMDGPU::V_MAD_U16_e64:
289 case AMDGPU::V_MAD_I16_e64:
290 case AMDGPU::V_FMA_F16_e64:
291 case AMDGPU::V_DIV_FIXUP_F16_e64:
292 // On gfx10, all 16-bit instructions preserve the high bits.
293 return getGeneration() <= AMDGPUSubtarget::GFX9;
294 case AMDGPU::V_MADAK_F16:
295 case AMDGPU::V_MADMK_F16:
296 case AMDGPU::V_MAC_F16_e64:
297 case AMDGPU::V_MAC_F16_e32:
298 case AMDGPU::V_FMAMK_F16:
299 case AMDGPU::V_FMAAK_F16:
300 case AMDGPU::V_FMAC_F16_e64:
301 case AMDGPU::V_FMAC_F16_e32:
302 // In gfx9, the preferred handling of the unused high 16-bits changed. Most
303 // instructions maintain the legacy behavior of 0ing. Some instructions
304 // changed to preserving the high bits.
305 return getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS;
306 case AMDGPU::V_MAD_MIXLO_F16:
307 case AMDGPU::V_MAD_MIXHI_F16:
308 default:
309 return false;
310 }
311 }
312
313 // Returns the maximum per-workgroup LDS allocation size (in bytes) that still
314 // allows the given function to achieve an occupancy of NWaves waves per
315 // SIMD / EU, taking into account only the function's *maximum* workgroup size.
316 unsigned
getMaxLocalMemSizeWithWaveCount(unsigned NWaves,const Function & F) const317 AMDGPUSubtarget::getMaxLocalMemSizeWithWaveCount(unsigned NWaves,
318 const Function &F) const {
319 const unsigned WaveSize = getWavefrontSize();
320 const unsigned WorkGroupSize = getFlatWorkGroupSizes(F).second;
321 const unsigned WavesPerWorkgroup =
322 std::max(1u, (WorkGroupSize + WaveSize - 1) / WaveSize);
323
324 const unsigned WorkGroupsPerCU =
325 std::max(1u, (NWaves * getEUsPerCU()) / WavesPerWorkgroup);
326
327 return getLocalMemorySize() / WorkGroupsPerCU;
328 }
329
330 // FIXME: Should return min,max range.
331 //
332 // Returns the maximum occupancy, in number of waves per SIMD / EU, that can
333 // be achieved when only the given function is running on the machine; and
334 // taking into account the overall number of wave slots, the (maximum) workgroup
335 // size, and the per-workgroup LDS allocation size.
getOccupancyWithLocalMemSize(uint32_t Bytes,const Function & F) const336 unsigned AMDGPUSubtarget::getOccupancyWithLocalMemSize(uint32_t Bytes,
337 const Function &F) const {
338 const unsigned MaxWorkGroupSize = getFlatWorkGroupSizes(F).second;
339 const unsigned MaxWorkGroupsPerCu = getMaxWorkGroupsPerCU(MaxWorkGroupSize);
340 if (!MaxWorkGroupsPerCu)
341 return 0;
342
343 const unsigned WaveSize = getWavefrontSize();
344
345 // FIXME: Do we need to account for alignment requirement of LDS rounding the
346 // size up?
347 // Compute restriction based on LDS usage
348 unsigned NumGroups = getLocalMemorySize() / (Bytes ? Bytes : 1u);
349
350 // This can be queried with more LDS than is possible, so just assume the
351 // worst.
352 if (NumGroups == 0)
353 return 1;
354
355 NumGroups = std::min(MaxWorkGroupsPerCu, NumGroups);
356
357 // Round to the number of waves per CU.
358 const unsigned MaxGroupNumWaves = divideCeil(MaxWorkGroupSize, WaveSize);
359 unsigned MaxWaves = NumGroups * MaxGroupNumWaves;
360
361 // Number of waves per EU (SIMD).
362 MaxWaves = divideCeil(MaxWaves, getEUsPerCU());
363
364 // Clamp to the maximum possible number of waves.
365 MaxWaves = std::min(MaxWaves, getMaxWavesPerEU());
366
367 // FIXME: Needs to be a multiple of the group size?
368 //MaxWaves = MaxGroupNumWaves * (MaxWaves / MaxGroupNumWaves);
369
370 assert(MaxWaves > 0 && MaxWaves <= getMaxWavesPerEU() &&
371 "computed invalid occupancy");
372 return MaxWaves;
373 }
374
375 unsigned
getOccupancyWithLocalMemSize(const MachineFunction & MF) const376 AMDGPUSubtarget::getOccupancyWithLocalMemSize(const MachineFunction &MF) const {
377 const auto *MFI = MF.getInfo<SIMachineFunctionInfo>();
378 return getOccupancyWithLocalMemSize(MFI->getLDSSize(), MF.getFunction());
379 }
380
381 std::pair<unsigned, unsigned>
getDefaultFlatWorkGroupSize(CallingConv::ID CC) const382 AMDGPUSubtarget::getDefaultFlatWorkGroupSize(CallingConv::ID CC) const {
383 switch (CC) {
384 case CallingConv::AMDGPU_VS:
385 case CallingConv::AMDGPU_LS:
386 case CallingConv::AMDGPU_HS:
387 case CallingConv::AMDGPU_ES:
388 case CallingConv::AMDGPU_GS:
389 case CallingConv::AMDGPU_PS:
390 return std::pair(1, getWavefrontSize());
391 default:
392 return std::pair(1u, getMaxFlatWorkGroupSize());
393 }
394 }
395
getFlatWorkGroupSizes(const Function & F) const396 std::pair<unsigned, unsigned> AMDGPUSubtarget::getFlatWorkGroupSizes(
397 const Function &F) const {
398 // Default minimum/maximum flat work group sizes.
399 std::pair<unsigned, unsigned> Default =
400 getDefaultFlatWorkGroupSize(F.getCallingConv());
401
402 // Requested minimum/maximum flat work group sizes.
403 std::pair<unsigned, unsigned> Requested = AMDGPU::getIntegerPairAttribute(
404 F, "amdgpu-flat-work-group-size", Default);
405
406 // Make sure requested minimum is less than requested maximum.
407 if (Requested.first > Requested.second)
408 return Default;
409
410 // Make sure requested values do not violate subtarget's specifications.
411 if (Requested.first < getMinFlatWorkGroupSize())
412 return Default;
413 if (Requested.second > getMaxFlatWorkGroupSize())
414 return Default;
415
416 return Requested;
417 }
418
getWavesPerEU(const Function & F,std::pair<unsigned,unsigned> FlatWorkGroupSizes) const419 std::pair<unsigned, unsigned> AMDGPUSubtarget::getWavesPerEU(
420 const Function &F, std::pair<unsigned, unsigned> FlatWorkGroupSizes) const {
421 // Default minimum/maximum number of waves per execution unit.
422 std::pair<unsigned, unsigned> Default(1, getMaxWavesPerEU());
423
424 // If minimum/maximum flat work group sizes were explicitly requested using
425 // "amdgpu-flat-work-group-size" attribute, then set default minimum/maximum
426 // number of waves per execution unit to values implied by requested
427 // minimum/maximum flat work group sizes.
428 unsigned MinImpliedByFlatWorkGroupSize =
429 getWavesPerEUForWorkGroup(FlatWorkGroupSizes.second);
430 Default.first = MinImpliedByFlatWorkGroupSize;
431
432 // Requested minimum/maximum number of waves per execution unit.
433 std::pair<unsigned, unsigned> Requested = AMDGPU::getIntegerPairAttribute(
434 F, "amdgpu-waves-per-eu", Default, true);
435
436 // Make sure requested minimum is less than requested maximum.
437 if (Requested.second && Requested.first > Requested.second)
438 return Default;
439
440 // Make sure requested values do not violate subtarget's specifications.
441 if (Requested.first < getMinWavesPerEU() ||
442 Requested.second > getMaxWavesPerEU())
443 return Default;
444
445 // Make sure requested values are compatible with values implied by requested
446 // minimum/maximum flat work group sizes.
447 if (Requested.first < MinImpliedByFlatWorkGroupSize)
448 return Default;
449
450 return Requested;
451 }
452
getReqdWorkGroupSize(const Function & Kernel,unsigned Dim)453 static unsigned getReqdWorkGroupSize(const Function &Kernel, unsigned Dim) {
454 auto Node = Kernel.getMetadata("reqd_work_group_size");
455 if (Node && Node->getNumOperands() == 3)
456 return mdconst::extract<ConstantInt>(Node->getOperand(Dim))->getZExtValue();
457 return std::numeric_limits<unsigned>::max();
458 }
459
isMesaKernel(const Function & F) const460 bool AMDGPUSubtarget::isMesaKernel(const Function &F) const {
461 return isMesa3DOS() && !AMDGPU::isShader(F.getCallingConv());
462 }
463
getMaxWorkitemID(const Function & Kernel,unsigned Dimension) const464 unsigned AMDGPUSubtarget::getMaxWorkitemID(const Function &Kernel,
465 unsigned Dimension) const {
466 unsigned ReqdSize = getReqdWorkGroupSize(Kernel, Dimension);
467 if (ReqdSize != std::numeric_limits<unsigned>::max())
468 return ReqdSize - 1;
469 return getFlatWorkGroupSizes(Kernel).second - 1;
470 }
471
makeLIDRangeMetadata(Instruction * I) const472 bool AMDGPUSubtarget::makeLIDRangeMetadata(Instruction *I) const {
473 Function *Kernel = I->getParent()->getParent();
474 unsigned MinSize = 0;
475 unsigned MaxSize = getFlatWorkGroupSizes(*Kernel).second;
476 bool IdQuery = false;
477
478 // If reqd_work_group_size is present it narrows value down.
479 if (auto *CI = dyn_cast<CallInst>(I)) {
480 const Function *F = CI->getCalledFunction();
481 if (F) {
482 unsigned Dim = UINT_MAX;
483 switch (F->getIntrinsicID()) {
484 case Intrinsic::amdgcn_workitem_id_x:
485 case Intrinsic::r600_read_tidig_x:
486 IdQuery = true;
487 [[fallthrough]];
488 case Intrinsic::r600_read_local_size_x:
489 Dim = 0;
490 break;
491 case Intrinsic::amdgcn_workitem_id_y:
492 case Intrinsic::r600_read_tidig_y:
493 IdQuery = true;
494 [[fallthrough]];
495 case Intrinsic::r600_read_local_size_y:
496 Dim = 1;
497 break;
498 case Intrinsic::amdgcn_workitem_id_z:
499 case Intrinsic::r600_read_tidig_z:
500 IdQuery = true;
501 [[fallthrough]];
502 case Intrinsic::r600_read_local_size_z:
503 Dim = 2;
504 break;
505 default:
506 break;
507 }
508
509 if (Dim <= 3) {
510 unsigned ReqdSize = getReqdWorkGroupSize(*Kernel, Dim);
511 if (ReqdSize != std::numeric_limits<unsigned>::max())
512 MinSize = MaxSize = ReqdSize;
513 }
514 }
515 }
516
517 if (!MaxSize)
518 return false;
519
520 // Range metadata is [Lo, Hi). For ID query we need to pass max size
521 // as Hi. For size query we need to pass Hi + 1.
522 if (IdQuery)
523 MinSize = 0;
524 else
525 ++MaxSize;
526
527 MDBuilder MDB(I->getContext());
528 MDNode *MaxWorkGroupSizeRange = MDB.createRange(APInt(32, MinSize),
529 APInt(32, MaxSize));
530 I->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange);
531 return true;
532 }
533
getImplicitArgNumBytes(const Function & F) const534 unsigned AMDGPUSubtarget::getImplicitArgNumBytes(const Function &F) const {
535 assert(AMDGPU::isKernel(F.getCallingConv()));
536
537 // We don't allocate the segment if we know the implicit arguments weren't
538 // used, even if the ABI implies we need them.
539 if (F.hasFnAttribute("amdgpu-no-implicitarg-ptr"))
540 return 0;
541
542 if (isMesaKernel(F))
543 return 16;
544
545 // Assume all implicit inputs are used by default
546 unsigned NBytes = (AMDGPU::getAmdhsaCodeObjectVersion() >= 5) ? 256 : 56;
547 return F.getFnAttributeAsParsedInteger("amdgpu-implicitarg-num-bytes",
548 NBytes);
549 }
550
getExplicitKernArgSize(const Function & F,Align & MaxAlign) const551 uint64_t AMDGPUSubtarget::getExplicitKernArgSize(const Function &F,
552 Align &MaxAlign) const {
553 assert(F.getCallingConv() == CallingConv::AMDGPU_KERNEL ||
554 F.getCallingConv() == CallingConv::SPIR_KERNEL);
555
556 const DataLayout &DL = F.getParent()->getDataLayout();
557 uint64_t ExplicitArgBytes = 0;
558 MaxAlign = Align(1);
559
560 for (const Argument &Arg : F.args()) {
561 const bool IsByRef = Arg.hasByRefAttr();
562 Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType();
563 Align Alignment = DL.getValueOrABITypeAlignment(
564 IsByRef ? Arg.getParamAlign() : std::nullopt, ArgTy);
565 uint64_t AllocSize = DL.getTypeAllocSize(ArgTy);
566 ExplicitArgBytes = alignTo(ExplicitArgBytes, Alignment) + AllocSize;
567 MaxAlign = std::max(MaxAlign, Alignment);
568 }
569
570 return ExplicitArgBytes;
571 }
572
getKernArgSegmentSize(const Function & F,Align & MaxAlign) const573 unsigned AMDGPUSubtarget::getKernArgSegmentSize(const Function &F,
574 Align &MaxAlign) const {
575 uint64_t ExplicitArgBytes = getExplicitKernArgSize(F, MaxAlign);
576
577 unsigned ExplicitOffset = getExplicitKernelArgOffset(F);
578
579 uint64_t TotalSize = ExplicitOffset + ExplicitArgBytes;
580 unsigned ImplicitBytes = getImplicitArgNumBytes(F);
581 if (ImplicitBytes != 0) {
582 const Align Alignment = getAlignmentForImplicitArgPtr();
583 TotalSize = alignTo(ExplicitArgBytes, Alignment) + ImplicitBytes;
584 MaxAlign = std::max(MaxAlign, Alignment);
585 }
586
587 // Being able to dereference past the end is useful for emitting scalar loads.
588 return alignTo(TotalSize, 4);
589 }
590
getAMDGPUDwarfFlavour() const591 AMDGPUDwarfFlavour AMDGPUSubtarget::getAMDGPUDwarfFlavour() const {
592 return getWavefrontSize() == 32 ? AMDGPUDwarfFlavour::Wave32
593 : AMDGPUDwarfFlavour::Wave64;
594 }
595
overrideSchedPolicy(MachineSchedPolicy & Policy,unsigned NumRegionInstrs) const596 void GCNSubtarget::overrideSchedPolicy(MachineSchedPolicy &Policy,
597 unsigned NumRegionInstrs) const {
598 // Track register pressure so the scheduler can try to decrease
599 // pressure once register usage is above the threshold defined by
600 // SIRegisterInfo::getRegPressureSetLimit()
601 Policy.ShouldTrackPressure = true;
602
603 // Enabling both top down and bottom up scheduling seems to give us less
604 // register spills than just using one of these approaches on its own.
605 Policy.OnlyTopDown = false;
606 Policy.OnlyBottomUp = false;
607
608 // Enabling ShouldTrackLaneMasks crashes the SI Machine Scheduler.
609 if (!enableSIScheduler())
610 Policy.ShouldTrackLaneMasks = true;
611 }
612
hasMadF16() const613 bool GCNSubtarget::hasMadF16() const {
614 return InstrInfo.pseudoToMCOpcode(AMDGPU::V_MAD_F16_e64) != -1;
615 }
616
useVGPRIndexMode() const617 bool GCNSubtarget::useVGPRIndexMode() const {
618 return !hasMovrel() || (EnableVGPRIndexMode && hasVGPRIndexMode());
619 }
620
useAA() const621 bool GCNSubtarget::useAA() const { return UseAA; }
622
getOccupancyWithNumSGPRs(unsigned SGPRs) const623 unsigned GCNSubtarget::getOccupancyWithNumSGPRs(unsigned SGPRs) const {
624 if (getGeneration() >= AMDGPUSubtarget::GFX10)
625 return getMaxWavesPerEU();
626
627 if (getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
628 if (SGPRs <= 80)
629 return 10;
630 if (SGPRs <= 88)
631 return 9;
632 if (SGPRs <= 100)
633 return 8;
634 return 7;
635 }
636 if (SGPRs <= 48)
637 return 10;
638 if (SGPRs <= 56)
639 return 9;
640 if (SGPRs <= 64)
641 return 8;
642 if (SGPRs <= 72)
643 return 7;
644 if (SGPRs <= 80)
645 return 6;
646 return 5;
647 }
648
getOccupancyWithNumVGPRs(unsigned NumVGPRs) const649 unsigned GCNSubtarget::getOccupancyWithNumVGPRs(unsigned NumVGPRs) const {
650 return AMDGPU::IsaInfo::getNumWavesPerEUWithNumVGPRs(this, NumVGPRs);
651 }
652
653 unsigned
getBaseReservedNumSGPRs(const bool HasFlatScratch) const654 GCNSubtarget::getBaseReservedNumSGPRs(const bool HasFlatScratch) const {
655 if (getGeneration() >= AMDGPUSubtarget::GFX10)
656 return 2; // VCC. FLAT_SCRATCH and XNACK are no longer in SGPRs.
657
658 if (HasFlatScratch || HasArchitectedFlatScratch) {
659 if (getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
660 return 6; // FLAT_SCRATCH, XNACK, VCC (in that order).
661 if (getGeneration() == AMDGPUSubtarget::SEA_ISLANDS)
662 return 4; // FLAT_SCRATCH, VCC (in that order).
663 }
664
665 if (isXNACKEnabled())
666 return 4; // XNACK, VCC (in that order).
667 return 2; // VCC.
668 }
669
getReservedNumSGPRs(const MachineFunction & MF) const670 unsigned GCNSubtarget::getReservedNumSGPRs(const MachineFunction &MF) const {
671 const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();
672 return getBaseReservedNumSGPRs(MFI.hasFlatScratchInit());
673 }
674
getReservedNumSGPRs(const Function & F) const675 unsigned GCNSubtarget::getReservedNumSGPRs(const Function &F) const {
676 // In principle we do not need to reserve SGPR pair used for flat_scratch if
677 // we know flat instructions do not access the stack anywhere in the
678 // program. For now assume it's needed if we have flat instructions.
679 const bool KernelUsesFlatScratch = hasFlatAddressSpace();
680 return getBaseReservedNumSGPRs(KernelUsesFlatScratch);
681 }
682
computeOccupancy(const Function & F,unsigned LDSSize,unsigned NumSGPRs,unsigned NumVGPRs) const683 unsigned GCNSubtarget::computeOccupancy(const Function &F, unsigned LDSSize,
684 unsigned NumSGPRs,
685 unsigned NumVGPRs) const {
686 unsigned Occupancy =
687 std::min(getMaxWavesPerEU(),
688 getOccupancyWithLocalMemSize(LDSSize, F));
689 if (NumSGPRs)
690 Occupancy = std::min(Occupancy, getOccupancyWithNumSGPRs(NumSGPRs));
691 if (NumVGPRs)
692 Occupancy = std::min(Occupancy, getOccupancyWithNumVGPRs(NumVGPRs));
693 return Occupancy;
694 }
695
getBaseMaxNumSGPRs(const Function & F,std::pair<unsigned,unsigned> WavesPerEU,unsigned PreloadedSGPRs,unsigned ReservedNumSGPRs) const696 unsigned GCNSubtarget::getBaseMaxNumSGPRs(
697 const Function &F, std::pair<unsigned, unsigned> WavesPerEU,
698 unsigned PreloadedSGPRs, unsigned ReservedNumSGPRs) const {
699 // Compute maximum number of SGPRs function can use using default/requested
700 // minimum number of waves per execution unit.
701 unsigned MaxNumSGPRs = getMaxNumSGPRs(WavesPerEU.first, false);
702 unsigned MaxAddressableNumSGPRs = getMaxNumSGPRs(WavesPerEU.first, true);
703
704 // Check if maximum number of SGPRs was explicitly requested using
705 // "amdgpu-num-sgpr" attribute.
706 if (F.hasFnAttribute("amdgpu-num-sgpr")) {
707 unsigned Requested =
708 F.getFnAttributeAsParsedInteger("amdgpu-num-sgpr", MaxNumSGPRs);
709
710 // Make sure requested value does not violate subtarget's specifications.
711 if (Requested && (Requested <= ReservedNumSGPRs))
712 Requested = 0;
713
714 // If more SGPRs are required to support the input user/system SGPRs,
715 // increase to accommodate them.
716 //
717 // FIXME: This really ends up using the requested number of SGPRs + number
718 // of reserved special registers in total. Theoretically you could re-use
719 // the last input registers for these special registers, but this would
720 // require a lot of complexity to deal with the weird aliasing.
721 unsigned InputNumSGPRs = PreloadedSGPRs;
722 if (Requested && Requested < InputNumSGPRs)
723 Requested = InputNumSGPRs;
724
725 // Make sure requested value is compatible with values implied by
726 // default/requested minimum/maximum number of waves per execution unit.
727 if (Requested && Requested > getMaxNumSGPRs(WavesPerEU.first, false))
728 Requested = 0;
729 if (WavesPerEU.second &&
730 Requested && Requested < getMinNumSGPRs(WavesPerEU.second))
731 Requested = 0;
732
733 if (Requested)
734 MaxNumSGPRs = Requested;
735 }
736
737 if (hasSGPRInitBug())
738 MaxNumSGPRs = AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG;
739
740 return std::min(MaxNumSGPRs - ReservedNumSGPRs, MaxAddressableNumSGPRs);
741 }
742
getMaxNumSGPRs(const MachineFunction & MF) const743 unsigned GCNSubtarget::getMaxNumSGPRs(const MachineFunction &MF) const {
744 const Function &F = MF.getFunction();
745 const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();
746 return getBaseMaxNumSGPRs(F, MFI.getWavesPerEU(), MFI.getNumPreloadedSGPRs(),
747 getReservedNumSGPRs(MF));
748 }
749
getMaxNumPreloadedSGPRs()750 static unsigned getMaxNumPreloadedSGPRs() {
751 // Max number of user SGPRs
752 unsigned MaxUserSGPRs = 4 + // private segment buffer
753 2 + // Dispatch ptr
754 2 + // queue ptr
755 2 + // kernel segment ptr
756 2 + // dispatch ID
757 2 + // flat scratch init
758 2; // Implicit buffer ptr
759
760 // Max number of system SGPRs
761 unsigned MaxSystemSGPRs = 1 + // WorkGroupIDX
762 1 + // WorkGroupIDY
763 1 + // WorkGroupIDZ
764 1 + // WorkGroupInfo
765 1; // private segment wave byte offset
766
767 // Max number of synthetic SGPRs
768 unsigned SyntheticSGPRs = 1; // LDSKernelId
769
770 return MaxUserSGPRs + MaxSystemSGPRs + SyntheticSGPRs;
771 }
772
getMaxNumSGPRs(const Function & F) const773 unsigned GCNSubtarget::getMaxNumSGPRs(const Function &F) const {
774 return getBaseMaxNumSGPRs(F, getWavesPerEU(F), getMaxNumPreloadedSGPRs(),
775 getReservedNumSGPRs(F));
776 }
777
getBaseMaxNumVGPRs(const Function & F,std::pair<unsigned,unsigned> WavesPerEU) const778 unsigned GCNSubtarget::getBaseMaxNumVGPRs(
779 const Function &F, std::pair<unsigned, unsigned> WavesPerEU) const {
780 // Compute maximum number of VGPRs function can use using default/requested
781 // minimum number of waves per execution unit.
782 unsigned MaxNumVGPRs = getMaxNumVGPRs(WavesPerEU.first);
783
784 // Check if maximum number of VGPRs was explicitly requested using
785 // "amdgpu-num-vgpr" attribute.
786 if (F.hasFnAttribute("amdgpu-num-vgpr")) {
787 unsigned Requested =
788 F.getFnAttributeAsParsedInteger("amdgpu-num-vgpr", MaxNumVGPRs);
789
790 if (hasGFX90AInsts())
791 Requested *= 2;
792
793 // Make sure requested value is compatible with values implied by
794 // default/requested minimum/maximum number of waves per execution unit.
795 if (Requested && Requested > getMaxNumVGPRs(WavesPerEU.first))
796 Requested = 0;
797 if (WavesPerEU.second &&
798 Requested && Requested < getMinNumVGPRs(WavesPerEU.second))
799 Requested = 0;
800
801 if (Requested)
802 MaxNumVGPRs = Requested;
803 }
804
805 return MaxNumVGPRs;
806 }
807
getMaxNumVGPRs(const Function & F) const808 unsigned GCNSubtarget::getMaxNumVGPRs(const Function &F) const {
809 return getBaseMaxNumVGPRs(F, getWavesPerEU(F));
810 }
811
getMaxNumVGPRs(const MachineFunction & MF) const812 unsigned GCNSubtarget::getMaxNumVGPRs(const MachineFunction &MF) const {
813 const Function &F = MF.getFunction();
814 const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();
815 return getBaseMaxNumVGPRs(F, MFI.getWavesPerEU());
816 }
817
adjustSchedDependency(SUnit * Def,int DefOpIdx,SUnit * Use,int UseOpIdx,SDep & Dep) const818 void GCNSubtarget::adjustSchedDependency(SUnit *Def, int DefOpIdx, SUnit *Use,
819 int UseOpIdx, SDep &Dep) const {
820 if (Dep.getKind() != SDep::Kind::Data || !Dep.getReg() ||
821 !Def->isInstr() || !Use->isInstr())
822 return;
823
824 MachineInstr *DefI = Def->getInstr();
825 MachineInstr *UseI = Use->getInstr();
826
827 if (DefI->isBundle()) {
828 const SIRegisterInfo *TRI = getRegisterInfo();
829 auto Reg = Dep.getReg();
830 MachineBasicBlock::const_instr_iterator I(DefI->getIterator());
831 MachineBasicBlock::const_instr_iterator E(DefI->getParent()->instr_end());
832 unsigned Lat = 0;
833 for (++I; I != E && I->isBundledWithPred(); ++I) {
834 if (I->modifiesRegister(Reg, TRI))
835 Lat = InstrInfo.getInstrLatency(getInstrItineraryData(), *I);
836 else if (Lat)
837 --Lat;
838 }
839 Dep.setLatency(Lat);
840 } else if (UseI->isBundle()) {
841 const SIRegisterInfo *TRI = getRegisterInfo();
842 auto Reg = Dep.getReg();
843 MachineBasicBlock::const_instr_iterator I(UseI->getIterator());
844 MachineBasicBlock::const_instr_iterator E(UseI->getParent()->instr_end());
845 unsigned Lat = InstrInfo.getInstrLatency(getInstrItineraryData(), *DefI);
846 for (++I; I != E && I->isBundledWithPred() && Lat; ++I) {
847 if (I->readsRegister(Reg, TRI))
848 break;
849 --Lat;
850 }
851 Dep.setLatency(Lat);
852 } else if (Dep.getLatency() == 0 && Dep.getReg() == AMDGPU::VCC_LO) {
853 // Work around the fact that SIInstrInfo::fixImplicitOperands modifies
854 // implicit operands which come from the MCInstrDesc, which can fool
855 // ScheduleDAGInstrs::addPhysRegDataDeps into treating them as implicit
856 // pseudo operands.
857 Dep.setLatency(InstrInfo.getSchedModel().computeOperandLatency(
858 DefI, DefOpIdx, UseI, UseOpIdx));
859 }
860 }
861
862 namespace {
863 struct FillMFMAShadowMutation : ScheduleDAGMutation {
864 const SIInstrInfo *TII;
865
866 ScheduleDAGMI *DAG;
867
FillMFMAShadowMutation__anon697d588f0111::FillMFMAShadowMutation868 FillMFMAShadowMutation(const SIInstrInfo *tii) : TII(tii) {}
869
isSALU__anon697d588f0111::FillMFMAShadowMutation870 bool isSALU(const SUnit *SU) const {
871 const MachineInstr *MI = SU->getInstr();
872 return MI && TII->isSALU(*MI) && !MI->isTerminator();
873 }
874
isVALU__anon697d588f0111::FillMFMAShadowMutation875 bool isVALU(const SUnit *SU) const {
876 const MachineInstr *MI = SU->getInstr();
877 return MI && TII->isVALU(*MI);
878 }
879
880 // Link as many SALU instructions in chain as possible. Return the size
881 // of the chain. Links up to MaxChain instructions.
linkSALUChain__anon697d588f0111::FillMFMAShadowMutation882 unsigned linkSALUChain(SUnit *From, SUnit *To, unsigned MaxChain,
883 SmallPtrSetImpl<SUnit *> &Visited) const {
884 SmallVector<SUnit *, 8> Worklist({To});
885 unsigned Linked = 0;
886
887 while (!Worklist.empty() && MaxChain-- > 0) {
888 SUnit *SU = Worklist.pop_back_val();
889 if (!Visited.insert(SU).second)
890 continue;
891
892 LLVM_DEBUG(dbgs() << "Inserting edge from\n" ; DAG->dumpNode(*From);
893 dbgs() << "to\n"; DAG->dumpNode(*SU); dbgs() << '\n');
894
895 if (SU != From && From != &DAG->ExitSU && DAG->canAddEdge(SU, From))
896 if (DAG->addEdge(SU, SDep(From, SDep::Artificial)))
897 ++Linked;
898
899 for (SDep &SI : From->Succs) {
900 SUnit *SUv = SI.getSUnit();
901 if (SUv != From && SU != &DAG->ExitSU && isVALU(SUv) &&
902 DAG->canAddEdge(SUv, SU))
903 DAG->addEdge(SUv, SDep(SU, SDep::Artificial));
904 }
905
906 for (SDep &SI : SU->Succs) {
907 SUnit *Succ = SI.getSUnit();
908 if (Succ != SU && isSALU(Succ))
909 Worklist.push_back(Succ);
910 }
911 }
912
913 return Linked;
914 }
915
apply__anon697d588f0111::FillMFMAShadowMutation916 void apply(ScheduleDAGInstrs *DAGInstrs) override {
917 const GCNSubtarget &ST = DAGInstrs->MF.getSubtarget<GCNSubtarget>();
918 if (!ST.hasMAIInsts())
919 return;
920 DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
921 const TargetSchedModel *TSchedModel = DAGInstrs->getSchedModel();
922 if (!TSchedModel || DAG->SUnits.empty())
923 return;
924
925 // Scan for MFMA long latency instructions and try to add a dependency
926 // of available SALU instructions to give them a chance to fill MFMA
927 // shadow. That is desirable to fill MFMA shadow with SALU instructions
928 // rather than VALU to prevent power consumption bursts and throttle.
929 auto LastSALU = DAG->SUnits.begin();
930 auto E = DAG->SUnits.end();
931 SmallPtrSet<SUnit*, 32> Visited;
932 for (SUnit &SU : DAG->SUnits) {
933 MachineInstr &MAI = *SU.getInstr();
934 if (!TII->isMAI(MAI) ||
935 MAI.getOpcode() == AMDGPU::V_ACCVGPR_WRITE_B32_e64 ||
936 MAI.getOpcode() == AMDGPU::V_ACCVGPR_READ_B32_e64)
937 continue;
938
939 unsigned Lat = TSchedModel->computeInstrLatency(&MAI) - 1;
940
941 LLVM_DEBUG(dbgs() << "Found MFMA: "; DAG->dumpNode(SU);
942 dbgs() << "Need " << Lat
943 << " instructions to cover latency.\n");
944
945 // Find up to Lat independent scalar instructions as early as
946 // possible such that they can be scheduled after this MFMA.
947 for ( ; Lat && LastSALU != E; ++LastSALU) {
948 if (Visited.count(&*LastSALU))
949 continue;
950
951 if (&SU == &DAG->ExitSU || &SU == &*LastSALU || !isSALU(&*LastSALU) ||
952 !DAG->canAddEdge(&*LastSALU, &SU))
953 continue;
954
955 Lat -= linkSALUChain(&SU, &*LastSALU, Lat, Visited);
956 }
957 }
958 }
959 };
960 } // namespace
961
getPostRAMutations(std::vector<std::unique_ptr<ScheduleDAGMutation>> & Mutations) const962 void GCNSubtarget::getPostRAMutations(
963 std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
964 Mutations.push_back(std::make_unique<FillMFMAShadowMutation>(&InstrInfo));
965 }
966
967 std::unique_ptr<ScheduleDAGMutation>
createFillMFMAShadowMutation(const TargetInstrInfo * TII) const968 GCNSubtarget::createFillMFMAShadowMutation(const TargetInstrInfo *TII) const {
969 return EnablePowerSched ? std::make_unique<FillMFMAShadowMutation>(&InstrInfo)
970 : nullptr;
971 }
972
getNSAThreshold(const MachineFunction & MF) const973 unsigned GCNSubtarget::getNSAThreshold(const MachineFunction &MF) const {
974 if (NSAThreshold.getNumOccurrences() > 0)
975 return std::max(NSAThreshold.getValue(), 2u);
976
977 int Value = MF.getFunction().getFnAttributeAsParsedInteger(
978 "amdgpu-nsa-threshold", -1);
979 if (Value > 0)
980 return std::max(Value, 2);
981
982 return 3;
983 }
984
get(const MachineFunction & MF)985 const AMDGPUSubtarget &AMDGPUSubtarget::get(const MachineFunction &MF) {
986 if (MF.getTarget().getTargetTriple().getArch() == Triple::amdgcn)
987 return static_cast<const AMDGPUSubtarget&>(MF.getSubtarget<GCNSubtarget>());
988 else
989 return static_cast<const AMDGPUSubtarget&>(MF.getSubtarget<R600Subtarget>());
990 }
991
get(const TargetMachine & TM,const Function & F)992 const AMDGPUSubtarget &AMDGPUSubtarget::get(const TargetMachine &TM, const Function &F) {
993 if (TM.getTargetTriple().getArch() == Triple::amdgcn)
994 return static_cast<const AMDGPUSubtarget&>(TM.getSubtarget<GCNSubtarget>(F));
995 else
996 return static_cast<const AMDGPUSubtarget&>(TM.getSubtarget<R600Subtarget>(F));
997 }
998