1 //===- LiveInterval.cpp - Live Interval Representation --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the LiveRange and LiveInterval classes. Given some
10 // numbering of each the machine instructions an interval [i, j) is said to be a
11 // live range for register v if there is no instruction with number j' >= j
12 // such that v is live at j' and there is no instruction with number i' < i such
13 // that v is live at i'. In this implementation ranges can have holes,
14 // i.e. a range might look like [1,20), [50,65), [1000,1001). Each
15 // individual segment is represented as an instance of LiveRange::Segment,
16 // and the whole range is represented as an instance of LiveRange.
17 //
18 //===----------------------------------------------------------------------===//
19
20 #include "llvm/CodeGen/LiveInterval.h"
21 #include "LiveRangeUtils.h"
22 #include "RegisterCoalescer.h"
23 #include "llvm/ADT/ArrayRef.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/iterator_range.h"
28 #include "llvm/CodeGen/LiveIntervals.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/SlotIndexes.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/Config/llvm-config.h"
36 #include "llvm/MC/LaneBitmask.h"
37 #include "llvm/Support/Compiler.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include <algorithm>
41 #include <cassert>
42 #include <cstddef>
43 #include <iterator>
44 #include <utility>
45
46 using namespace llvm;
47
48 namespace {
49
50 //===----------------------------------------------------------------------===//
51 // Implementation of various methods necessary for calculation of live ranges.
52 // The implementation of the methods abstracts from the concrete type of the
53 // segment collection.
54 //
55 // Implementation of the class follows the Template design pattern. The base
56 // class contains generic algorithms that call collection-specific methods,
57 // which are provided in concrete subclasses. In order to avoid virtual calls
58 // these methods are provided by means of C++ template instantiation.
59 // The base class calls the methods of the subclass through method impl(),
60 // which casts 'this' pointer to the type of the subclass.
61 //
62 //===----------------------------------------------------------------------===//
63
64 template <typename ImplT, typename IteratorT, typename CollectionT>
65 class CalcLiveRangeUtilBase {
66 protected:
67 LiveRange *LR;
68
69 protected:
CalcLiveRangeUtilBase(LiveRange * LR)70 CalcLiveRangeUtilBase(LiveRange *LR) : LR(LR) {}
71
72 public:
73 using Segment = LiveRange::Segment;
74 using iterator = IteratorT;
75
76 /// A counterpart of LiveRange::createDeadDef: Make sure the range has a
77 /// value defined at @p Def.
78 /// If @p ForVNI is null, and there is no value defined at @p Def, a new
79 /// value will be allocated using @p VNInfoAllocator.
80 /// If @p ForVNI is null, the return value is the value defined at @p Def,
81 /// either a pre-existing one, or the one newly created.
82 /// If @p ForVNI is not null, then @p Def should be the location where
83 /// @p ForVNI is defined. If the range does not have a value defined at
84 /// @p Def, the value @p ForVNI will be used instead of allocating a new
85 /// one. If the range already has a value defined at @p Def, it must be
86 /// same as @p ForVNI. In either case, @p ForVNI will be the return value.
createDeadDef(SlotIndex Def,VNInfo::Allocator * VNInfoAllocator,VNInfo * ForVNI)87 VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator *VNInfoAllocator,
88 VNInfo *ForVNI) {
89 assert(!Def.isDead() && "Cannot define a value at the dead slot");
90 assert((!ForVNI || ForVNI->def == Def) &&
91 "If ForVNI is specified, it must match Def");
92 iterator I = impl().find(Def);
93 if (I == segments().end()) {
94 VNInfo *VNI = ForVNI ? ForVNI : LR->getNextValue(Def, *VNInfoAllocator);
95 impl().insertAtEnd(Segment(Def, Def.getDeadSlot(), VNI));
96 return VNI;
97 }
98
99 Segment *S = segmentAt(I);
100 if (SlotIndex::isSameInstr(Def, S->start)) {
101 assert((!ForVNI || ForVNI == S->valno) && "Value number mismatch");
102 assert(S->valno->def == S->start && "Inconsistent existing value def");
103
104 // It is possible to have both normal and early-clobber defs of the same
105 // register on an instruction. It doesn't make a lot of sense, but it is
106 // possible to specify in inline assembly.
107 //
108 // Just convert everything to early-clobber.
109 Def = std::min(Def, S->start);
110 if (Def != S->start)
111 S->start = S->valno->def = Def;
112 return S->valno;
113 }
114 assert(SlotIndex::isEarlierInstr(Def, S->start) && "Already live at def");
115 VNInfo *VNI = ForVNI ? ForVNI : LR->getNextValue(Def, *VNInfoAllocator);
116 segments().insert(I, Segment(Def, Def.getDeadSlot(), VNI));
117 return VNI;
118 }
119
extendInBlock(SlotIndex StartIdx,SlotIndex Use)120 VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Use) {
121 if (segments().empty())
122 return nullptr;
123 iterator I =
124 impl().findInsertPos(Segment(Use.getPrevSlot(), Use, nullptr));
125 if (I == segments().begin())
126 return nullptr;
127 --I;
128 if (I->end <= StartIdx)
129 return nullptr;
130 if (I->end < Use)
131 extendSegmentEndTo(I, Use);
132 return I->valno;
133 }
134
extendInBlock(ArrayRef<SlotIndex> Undefs,SlotIndex StartIdx,SlotIndex Use)135 std::pair<VNInfo*,bool> extendInBlock(ArrayRef<SlotIndex> Undefs,
136 SlotIndex StartIdx, SlotIndex Use) {
137 if (segments().empty())
138 return std::make_pair(nullptr, false);
139 SlotIndex BeforeUse = Use.getPrevSlot();
140 iterator I = impl().findInsertPos(Segment(BeforeUse, Use, nullptr));
141 if (I == segments().begin())
142 return std::make_pair(nullptr, LR->isUndefIn(Undefs, StartIdx, BeforeUse));
143 --I;
144 if (I->end <= StartIdx)
145 return std::make_pair(nullptr, LR->isUndefIn(Undefs, StartIdx, BeforeUse));
146 if (I->end < Use) {
147 if (LR->isUndefIn(Undefs, I->end, BeforeUse))
148 return std::make_pair(nullptr, true);
149 extendSegmentEndTo(I, Use);
150 }
151 return std::make_pair(I->valno, false);
152 }
153
154 /// This method is used when we want to extend the segment specified
155 /// by I to end at the specified endpoint. To do this, we should
156 /// merge and eliminate all segments that this will overlap
157 /// with. The iterator is not invalidated.
extendSegmentEndTo(iterator I,SlotIndex NewEnd)158 void extendSegmentEndTo(iterator I, SlotIndex NewEnd) {
159 assert(I != segments().end() && "Not a valid segment!");
160 Segment *S = segmentAt(I);
161 VNInfo *ValNo = I->valno;
162
163 // Search for the first segment that we can't merge with.
164 iterator MergeTo = std::next(I);
165 for (; MergeTo != segments().end() && NewEnd >= MergeTo->end; ++MergeTo)
166 assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
167
168 // If NewEnd was in the middle of a segment, make sure to get its endpoint.
169 S->end = std::max(NewEnd, std::prev(MergeTo)->end);
170
171 // If the newly formed segment now touches the segment after it and if they
172 // have the same value number, merge the two segments into one segment.
173 if (MergeTo != segments().end() && MergeTo->start <= I->end &&
174 MergeTo->valno == ValNo) {
175 S->end = MergeTo->end;
176 ++MergeTo;
177 }
178
179 // Erase any dead segments.
180 segments().erase(std::next(I), MergeTo);
181 }
182
183 /// This method is used when we want to extend the segment specified
184 /// by I to start at the specified endpoint. To do this, we should
185 /// merge and eliminate all segments that this will overlap with.
extendSegmentStartTo(iterator I,SlotIndex NewStart)186 iterator extendSegmentStartTo(iterator I, SlotIndex NewStart) {
187 assert(I != segments().end() && "Not a valid segment!");
188 Segment *S = segmentAt(I);
189 VNInfo *ValNo = I->valno;
190
191 // Search for the first segment that we can't merge with.
192 iterator MergeTo = I;
193 do {
194 if (MergeTo == segments().begin()) {
195 S->start = NewStart;
196 segments().erase(MergeTo, I);
197 return I;
198 }
199 assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
200 --MergeTo;
201 } while (NewStart <= MergeTo->start);
202
203 // If we start in the middle of another segment, just delete a range and
204 // extend that segment.
205 if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) {
206 segmentAt(MergeTo)->end = S->end;
207 } else {
208 // Otherwise, extend the segment right after.
209 ++MergeTo;
210 Segment *MergeToSeg = segmentAt(MergeTo);
211 MergeToSeg->start = NewStart;
212 MergeToSeg->end = S->end;
213 }
214
215 segments().erase(std::next(MergeTo), std::next(I));
216 return MergeTo;
217 }
218
addSegment(Segment S)219 iterator addSegment(Segment S) {
220 SlotIndex Start = S.start, End = S.end;
221 iterator I = impl().findInsertPos(S);
222
223 // If the inserted segment starts in the middle or right at the end of
224 // another segment, just extend that segment to contain the segment of S.
225 if (I != segments().begin()) {
226 iterator B = std::prev(I);
227 if (S.valno == B->valno) {
228 if (B->start <= Start && B->end >= Start) {
229 extendSegmentEndTo(B, End);
230 return B;
231 }
232 } else {
233 // Check to make sure that we are not overlapping two live segments with
234 // different valno's.
235 assert(B->end <= Start &&
236 "Cannot overlap two segments with differing ValID's"
237 " (did you def the same reg twice in a MachineInstr?)");
238 }
239 }
240
241 // Otherwise, if this segment ends in the middle of, or right next
242 // to, another segment, merge it into that segment.
243 if (I != segments().end()) {
244 if (S.valno == I->valno) {
245 if (I->start <= End) {
246 I = extendSegmentStartTo(I, Start);
247
248 // If S is a complete superset of a segment, we may need to grow its
249 // endpoint as well.
250 if (End > I->end)
251 extendSegmentEndTo(I, End);
252 return I;
253 }
254 } else {
255 // Check to make sure that we are not overlapping two live segments with
256 // different valno's.
257 assert(I->start >= End &&
258 "Cannot overlap two segments with differing ValID's");
259 }
260 }
261
262 // Otherwise, this is just a new segment that doesn't interact with
263 // anything.
264 // Insert it.
265 return segments().insert(I, S);
266 }
267
268 private:
impl()269 ImplT &impl() { return *static_cast<ImplT *>(this); }
270
segments()271 CollectionT &segments() { return impl().segmentsColl(); }
272
segmentAt(iterator I)273 Segment *segmentAt(iterator I) { return const_cast<Segment *>(&(*I)); }
274 };
275
276 //===----------------------------------------------------------------------===//
277 // Instantiation of the methods for calculation of live ranges
278 // based on a segment vector.
279 //===----------------------------------------------------------------------===//
280
281 class CalcLiveRangeUtilVector;
282 using CalcLiveRangeUtilVectorBase =
283 CalcLiveRangeUtilBase<CalcLiveRangeUtilVector, LiveRange::iterator,
284 LiveRange::Segments>;
285
286 class CalcLiveRangeUtilVector : public CalcLiveRangeUtilVectorBase {
287 public:
CalcLiveRangeUtilVector(LiveRange * LR)288 CalcLiveRangeUtilVector(LiveRange *LR) : CalcLiveRangeUtilVectorBase(LR) {}
289
290 private:
291 friend CalcLiveRangeUtilVectorBase;
292
segmentsColl()293 LiveRange::Segments &segmentsColl() { return LR->segments; }
294
insertAtEnd(const Segment & S)295 void insertAtEnd(const Segment &S) { LR->segments.push_back(S); }
296
find(SlotIndex Pos)297 iterator find(SlotIndex Pos) { return LR->find(Pos); }
298
findInsertPos(Segment S)299 iterator findInsertPos(Segment S) { return llvm::upper_bound(*LR, S.start); }
300 };
301
302 //===----------------------------------------------------------------------===//
303 // Instantiation of the methods for calculation of live ranges
304 // based on a segment set.
305 //===----------------------------------------------------------------------===//
306
307 class CalcLiveRangeUtilSet;
308 using CalcLiveRangeUtilSetBase =
309 CalcLiveRangeUtilBase<CalcLiveRangeUtilSet, LiveRange::SegmentSet::iterator,
310 LiveRange::SegmentSet>;
311
312 class CalcLiveRangeUtilSet : public CalcLiveRangeUtilSetBase {
313 public:
CalcLiveRangeUtilSet(LiveRange * LR)314 CalcLiveRangeUtilSet(LiveRange *LR) : CalcLiveRangeUtilSetBase(LR) {}
315
316 private:
317 friend CalcLiveRangeUtilSetBase;
318
segmentsColl()319 LiveRange::SegmentSet &segmentsColl() { return *LR->segmentSet; }
320
insertAtEnd(const Segment & S)321 void insertAtEnd(const Segment &S) {
322 LR->segmentSet->insert(LR->segmentSet->end(), S);
323 }
324
find(SlotIndex Pos)325 iterator find(SlotIndex Pos) {
326 iterator I =
327 LR->segmentSet->upper_bound(Segment(Pos, Pos.getNextSlot(), nullptr));
328 if (I == LR->segmentSet->begin())
329 return I;
330 iterator PrevI = std::prev(I);
331 if (Pos < (*PrevI).end)
332 return PrevI;
333 return I;
334 }
335
findInsertPos(Segment S)336 iterator findInsertPos(Segment S) {
337 iterator I = LR->segmentSet->upper_bound(S);
338 if (I != LR->segmentSet->end() && !(S.start < *I))
339 ++I;
340 return I;
341 }
342 };
343
344 } // end anonymous namespace
345
346 //===----------------------------------------------------------------------===//
347 // LiveRange methods
348 //===----------------------------------------------------------------------===//
349
find(SlotIndex Pos)350 LiveRange::iterator LiveRange::find(SlotIndex Pos) {
351 return llvm::partition_point(*this,
352 [&](const Segment &X) { return X.end <= Pos; });
353 }
354
createDeadDef(SlotIndex Def,VNInfo::Allocator & VNIAlloc)355 VNInfo *LiveRange::createDeadDef(SlotIndex Def, VNInfo::Allocator &VNIAlloc) {
356 // Use the segment set, if it is available.
357 if (segmentSet != nullptr)
358 return CalcLiveRangeUtilSet(this).createDeadDef(Def, &VNIAlloc, nullptr);
359 // Otherwise use the segment vector.
360 return CalcLiveRangeUtilVector(this).createDeadDef(Def, &VNIAlloc, nullptr);
361 }
362
createDeadDef(VNInfo * VNI)363 VNInfo *LiveRange::createDeadDef(VNInfo *VNI) {
364 // Use the segment set, if it is available.
365 if (segmentSet != nullptr)
366 return CalcLiveRangeUtilSet(this).createDeadDef(VNI->def, nullptr, VNI);
367 // Otherwise use the segment vector.
368 return CalcLiveRangeUtilVector(this).createDeadDef(VNI->def, nullptr, VNI);
369 }
370
371 // overlaps - Return true if the intersection of the two live ranges is
372 // not empty.
373 //
374 // An example for overlaps():
375 //
376 // 0: A = ...
377 // 4: B = ...
378 // 8: C = A + B ;; last use of A
379 //
380 // The live ranges should look like:
381 //
382 // A = [3, 11)
383 // B = [7, x)
384 // C = [11, y)
385 //
386 // A->overlaps(C) should return false since we want to be able to join
387 // A and C.
388 //
overlapsFrom(const LiveRange & other,const_iterator StartPos) const389 bool LiveRange::overlapsFrom(const LiveRange& other,
390 const_iterator StartPos) const {
391 assert(!empty() && "empty range");
392 const_iterator i = begin();
393 const_iterator ie = end();
394 const_iterator j = StartPos;
395 const_iterator je = other.end();
396
397 assert((StartPos->start <= i->start || StartPos == other.begin()) &&
398 StartPos != other.end() && "Bogus start position hint!");
399
400 if (i->start < j->start) {
401 i = std::upper_bound(i, ie, j->start);
402 if (i != begin()) --i;
403 } else if (j->start < i->start) {
404 ++StartPos;
405 if (StartPos != other.end() && StartPos->start <= i->start) {
406 assert(StartPos < other.end() && i < end());
407 j = std::upper_bound(j, je, i->start);
408 if (j != other.begin()) --j;
409 }
410 } else {
411 return true;
412 }
413
414 if (j == je) return false;
415
416 while (i != ie) {
417 if (i->start > j->start) {
418 std::swap(i, j);
419 std::swap(ie, je);
420 }
421
422 if (i->end > j->start)
423 return true;
424 ++i;
425 }
426
427 return false;
428 }
429
overlaps(const LiveRange & Other,const CoalescerPair & CP,const SlotIndexes & Indexes) const430 bool LiveRange::overlaps(const LiveRange &Other, const CoalescerPair &CP,
431 const SlotIndexes &Indexes) const {
432 assert(!empty() && "empty range");
433 if (Other.empty())
434 return false;
435
436 // Use binary searches to find initial positions.
437 const_iterator I = find(Other.beginIndex());
438 const_iterator IE = end();
439 if (I == IE)
440 return false;
441 const_iterator J = Other.find(I->start);
442 const_iterator JE = Other.end();
443 if (J == JE)
444 return false;
445
446 while (true) {
447 // J has just been advanced to satisfy:
448 assert(J->end >= I->start);
449 // Check for an overlap.
450 if (J->start < I->end) {
451 // I and J are overlapping. Find the later start.
452 SlotIndex Def = std::max(I->start, J->start);
453 // Allow the overlap if Def is a coalescable copy.
454 if (Def.isBlock() ||
455 !CP.isCoalescable(Indexes.getInstructionFromIndex(Def)))
456 return true;
457 }
458 // Advance the iterator that ends first to check for more overlaps.
459 if (J->end > I->end) {
460 std::swap(I, J);
461 std::swap(IE, JE);
462 }
463 // Advance J until J->end >= I->start.
464 do
465 if (++J == JE)
466 return false;
467 while (J->end < I->start);
468 }
469 }
470
471 /// overlaps - Return true if the live range overlaps an interval specified
472 /// by [Start, End).
overlaps(SlotIndex Start,SlotIndex End) const473 bool LiveRange::overlaps(SlotIndex Start, SlotIndex End) const {
474 assert(Start < End && "Invalid range");
475 const_iterator I = lower_bound(*this, End);
476 return I != begin() && (--I)->end > Start;
477 }
478
covers(const LiveRange & Other) const479 bool LiveRange::covers(const LiveRange &Other) const {
480 if (empty())
481 return Other.empty();
482
483 const_iterator I = begin();
484 for (const Segment &O : Other.segments) {
485 I = advanceTo(I, O.start);
486 if (I == end() || I->start > O.start)
487 return false;
488
489 // Check adjacent live segments and see if we can get behind O.end.
490 while (I->end < O.end) {
491 const_iterator Last = I;
492 // Get next segment and abort if it was not adjacent.
493 ++I;
494 if (I == end() || Last->end != I->start)
495 return false;
496 }
497 }
498 return true;
499 }
500
501 /// ValNo is dead, remove it. If it is the largest value number, just nuke it
502 /// (and any other deleted values neighboring it), otherwise mark it as ~1U so
503 /// it can be nuked later.
markValNoForDeletion(VNInfo * ValNo)504 void LiveRange::markValNoForDeletion(VNInfo *ValNo) {
505 if (ValNo->id == getNumValNums()-1) {
506 do {
507 valnos.pop_back();
508 } while (!valnos.empty() && valnos.back()->isUnused());
509 } else {
510 ValNo->markUnused();
511 }
512 }
513
514 /// RenumberValues - Renumber all values in order of appearance and delete the
515 /// remaining unused values.
RenumberValues()516 void LiveRange::RenumberValues() {
517 SmallPtrSet<VNInfo*, 8> Seen;
518 valnos.clear();
519 for (const Segment &S : segments) {
520 VNInfo *VNI = S.valno;
521 if (!Seen.insert(VNI).second)
522 continue;
523 assert(!VNI->isUnused() && "Unused valno used by live segment");
524 VNI->id = (unsigned)valnos.size();
525 valnos.push_back(VNI);
526 }
527 }
528
addSegmentToSet(Segment S)529 void LiveRange::addSegmentToSet(Segment S) {
530 CalcLiveRangeUtilSet(this).addSegment(S);
531 }
532
addSegment(Segment S)533 LiveRange::iterator LiveRange::addSegment(Segment S) {
534 // Use the segment set, if it is available.
535 if (segmentSet != nullptr) {
536 addSegmentToSet(S);
537 return end();
538 }
539 // Otherwise use the segment vector.
540 return CalcLiveRangeUtilVector(this).addSegment(S);
541 }
542
append(const Segment S)543 void LiveRange::append(const Segment S) {
544 // Check that the segment belongs to the back of the list.
545 assert(segments.empty() || segments.back().end <= S.start);
546 segments.push_back(S);
547 }
548
extendInBlock(ArrayRef<SlotIndex> Undefs,SlotIndex StartIdx,SlotIndex Kill)549 std::pair<VNInfo*,bool> LiveRange::extendInBlock(ArrayRef<SlotIndex> Undefs,
550 SlotIndex StartIdx, SlotIndex Kill) {
551 // Use the segment set, if it is available.
552 if (segmentSet != nullptr)
553 return CalcLiveRangeUtilSet(this).extendInBlock(Undefs, StartIdx, Kill);
554 // Otherwise use the segment vector.
555 return CalcLiveRangeUtilVector(this).extendInBlock(Undefs, StartIdx, Kill);
556 }
557
extendInBlock(SlotIndex StartIdx,SlotIndex Kill)558 VNInfo *LiveRange::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) {
559 // Use the segment set, if it is available.
560 if (segmentSet != nullptr)
561 return CalcLiveRangeUtilSet(this).extendInBlock(StartIdx, Kill);
562 // Otherwise use the segment vector.
563 return CalcLiveRangeUtilVector(this).extendInBlock(StartIdx, Kill);
564 }
565
566 /// Remove the specified segment from this range. Note that the segment must
567 /// be in a single Segment in its entirety.
removeSegment(SlotIndex Start,SlotIndex End,bool RemoveDeadValNo)568 void LiveRange::removeSegment(SlotIndex Start, SlotIndex End,
569 bool RemoveDeadValNo) {
570 // Find the Segment containing this span.
571 iterator I = find(Start);
572 assert(I != end() && "Segment is not in range!");
573 assert(I->containsInterval(Start, End)
574 && "Segment is not entirely in range!");
575
576 // If the span we are removing is at the start of the Segment, adjust it.
577 VNInfo *ValNo = I->valno;
578 if (I->start == Start) {
579 if (I->end == End) {
580 segments.erase(I); // Removed the whole Segment.
581
582 if (RemoveDeadValNo)
583 removeValNoIfDead(ValNo);
584 } else
585 I->start = End;
586 return;
587 }
588
589 // Otherwise if the span we are removing is at the end of the Segment,
590 // adjust the other way.
591 if (I->end == End) {
592 I->end = Start;
593 return;
594 }
595
596 // Otherwise, we are splitting the Segment into two pieces.
597 SlotIndex OldEnd = I->end;
598 I->end = Start; // Trim the old segment.
599
600 // Insert the new one.
601 segments.insert(std::next(I), Segment(End, OldEnd, ValNo));
602 }
603
removeSegment(iterator I,bool RemoveDeadValNo)604 LiveRange::iterator LiveRange::removeSegment(iterator I, bool RemoveDeadValNo) {
605 VNInfo *ValNo = I->valno;
606 I = segments.erase(I);
607 if (RemoveDeadValNo)
608 removeValNoIfDead(ValNo);
609 return I;
610 }
611
removeValNoIfDead(VNInfo * ValNo)612 void LiveRange::removeValNoIfDead(VNInfo *ValNo) {
613 if (none_of(*this, [=](const Segment &S) { return S.valno == ValNo; }))
614 markValNoForDeletion(ValNo);
615 }
616
617 /// removeValNo - Remove all the segments defined by the specified value#.
618 /// Also remove the value# from value# list.
removeValNo(VNInfo * ValNo)619 void LiveRange::removeValNo(VNInfo *ValNo) {
620 if (empty()) return;
621 llvm::erase_if(segments,
622 [ValNo](const Segment &S) { return S.valno == ValNo; });
623 // Now that ValNo is dead, remove it.
624 markValNoForDeletion(ValNo);
625 }
626
join(LiveRange & Other,const int * LHSValNoAssignments,const int * RHSValNoAssignments,SmallVectorImpl<VNInfo * > & NewVNInfo)627 void LiveRange::join(LiveRange &Other,
628 const int *LHSValNoAssignments,
629 const int *RHSValNoAssignments,
630 SmallVectorImpl<VNInfo *> &NewVNInfo) {
631 verify();
632
633 // Determine if any of our values are mapped. This is uncommon, so we want
634 // to avoid the range scan if not.
635 bool MustMapCurValNos = false;
636 unsigned NumVals = getNumValNums();
637 unsigned NumNewVals = NewVNInfo.size();
638 for (unsigned i = 0; i != NumVals; ++i) {
639 unsigned LHSValID = LHSValNoAssignments[i];
640 if (i != LHSValID ||
641 (NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) {
642 MustMapCurValNos = true;
643 break;
644 }
645 }
646
647 // If we have to apply a mapping to our base range assignment, rewrite it now.
648 if (MustMapCurValNos && !empty()) {
649 // Map the first live range.
650
651 iterator OutIt = begin();
652 OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]];
653 for (iterator I = std::next(OutIt), E = end(); I != E; ++I) {
654 VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]];
655 assert(nextValNo && "Huh?");
656
657 // If this live range has the same value # as its immediate predecessor,
658 // and if they are neighbors, remove one Segment. This happens when we
659 // have [0,4:0)[4,7:1) and map 0/1 onto the same value #.
660 if (OutIt->valno == nextValNo && OutIt->end == I->start) {
661 OutIt->end = I->end;
662 } else {
663 // Didn't merge. Move OutIt to the next segment,
664 ++OutIt;
665 OutIt->valno = nextValNo;
666 if (OutIt != I) {
667 OutIt->start = I->start;
668 OutIt->end = I->end;
669 }
670 }
671 }
672 // If we merge some segments, chop off the end.
673 ++OutIt;
674 segments.erase(OutIt, end());
675 }
676
677 // Rewrite Other values before changing the VNInfo ids.
678 // This can leave Other in an invalid state because we're not coalescing
679 // touching segments that now have identical values. That's OK since Other is
680 // not supposed to be valid after calling join();
681 for (Segment &S : Other.segments)
682 S.valno = NewVNInfo[RHSValNoAssignments[S.valno->id]];
683
684 // Update val# info. Renumber them and make sure they all belong to this
685 // LiveRange now. Also remove dead val#'s.
686 unsigned NumValNos = 0;
687 for (unsigned i = 0; i < NumNewVals; ++i) {
688 VNInfo *VNI = NewVNInfo[i];
689 if (VNI) {
690 if (NumValNos >= NumVals)
691 valnos.push_back(VNI);
692 else
693 valnos[NumValNos] = VNI;
694 VNI->id = NumValNos++; // Renumber val#.
695 }
696 }
697 if (NumNewVals < NumVals)
698 valnos.resize(NumNewVals); // shrinkify
699
700 // Okay, now insert the RHS live segments into the LHS.
701 LiveRangeUpdater Updater(this);
702 for (Segment &S : Other.segments)
703 Updater.add(S);
704 }
705
706 /// Merge all of the segments in RHS into this live range as the specified
707 /// value number. The segments in RHS are allowed to overlap with segments in
708 /// the current range, but only if the overlapping segments have the
709 /// specified value number.
MergeSegmentsInAsValue(const LiveRange & RHS,VNInfo * LHSValNo)710 void LiveRange::MergeSegmentsInAsValue(const LiveRange &RHS,
711 VNInfo *LHSValNo) {
712 LiveRangeUpdater Updater(this);
713 for (const Segment &S : RHS.segments)
714 Updater.add(S.start, S.end, LHSValNo);
715 }
716
717 /// MergeValueInAsValue - Merge all of the live segments of a specific val#
718 /// in RHS into this live range as the specified value number.
719 /// The segments in RHS are allowed to overlap with segments in the
720 /// current range, it will replace the value numbers of the overlaped
721 /// segments with the specified value number.
MergeValueInAsValue(const LiveRange & RHS,const VNInfo * RHSValNo,VNInfo * LHSValNo)722 void LiveRange::MergeValueInAsValue(const LiveRange &RHS,
723 const VNInfo *RHSValNo,
724 VNInfo *LHSValNo) {
725 LiveRangeUpdater Updater(this);
726 for (const Segment &S : RHS.segments)
727 if (S.valno == RHSValNo)
728 Updater.add(S.start, S.end, LHSValNo);
729 }
730
731 /// MergeValueNumberInto - This method is called when two value nubmers
732 /// are found to be equivalent. This eliminates V1, replacing all
733 /// segments with the V1 value number with the V2 value number. This can
734 /// cause merging of V1/V2 values numbers and compaction of the value space.
MergeValueNumberInto(VNInfo * V1,VNInfo * V2)735 VNInfo *LiveRange::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) {
736 assert(V1 != V2 && "Identical value#'s are always equivalent!");
737
738 // This code actually merges the (numerically) larger value number into the
739 // smaller value number, which is likely to allow us to compactify the value
740 // space. The only thing we have to be careful of is to preserve the
741 // instruction that defines the result value.
742
743 // Make sure V2 is smaller than V1.
744 if (V1->id < V2->id) {
745 V1->copyFrom(*V2);
746 std::swap(V1, V2);
747 }
748
749 // Merge V1 segments into V2.
750 for (iterator I = begin(); I != end(); ) {
751 iterator S = I++;
752 if (S->valno != V1) continue; // Not a V1 Segment.
753
754 // Okay, we found a V1 live range. If it had a previous, touching, V2 live
755 // range, extend it.
756 if (S != begin()) {
757 iterator Prev = S-1;
758 if (Prev->valno == V2 && Prev->end == S->start) {
759 Prev->end = S->end;
760
761 // Erase this live-range.
762 segments.erase(S);
763 I = Prev+1;
764 S = Prev;
765 }
766 }
767
768 // Okay, now we have a V1 or V2 live range that is maximally merged forward.
769 // Ensure that it is a V2 live-range.
770 S->valno = V2;
771
772 // If we can merge it into later V2 segments, do so now. We ignore any
773 // following V1 segments, as they will be merged in subsequent iterations
774 // of the loop.
775 if (I != end()) {
776 if (I->start == S->end && I->valno == V2) {
777 S->end = I->end;
778 segments.erase(I);
779 I = S+1;
780 }
781 }
782 }
783
784 // Now that V1 is dead, remove it.
785 markValNoForDeletion(V1);
786
787 return V2;
788 }
789
flushSegmentSet()790 void LiveRange::flushSegmentSet() {
791 assert(segmentSet != nullptr && "segment set must have been created");
792 assert(
793 segments.empty() &&
794 "segment set can be used only initially before switching to the array");
795 segments.append(segmentSet->begin(), segmentSet->end());
796 segmentSet = nullptr;
797 verify();
798 }
799
isLiveAtIndexes(ArrayRef<SlotIndex> Slots) const800 bool LiveRange::isLiveAtIndexes(ArrayRef<SlotIndex> Slots) const {
801 ArrayRef<SlotIndex>::iterator SlotI = Slots.begin();
802 ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
803
804 // If there are no regmask slots, we have nothing to search.
805 if (SlotI == SlotE)
806 return false;
807
808 // Start our search at the first segment that ends after the first slot.
809 const_iterator SegmentI = find(*SlotI);
810 const_iterator SegmentE = end();
811
812 // If there are no segments that end after the first slot, we're done.
813 if (SegmentI == SegmentE)
814 return false;
815
816 // Look for each slot in the live range.
817 for ( ; SlotI != SlotE; ++SlotI) {
818 // Go to the next segment that ends after the current slot.
819 // The slot may be within a hole in the range.
820 SegmentI = advanceTo(SegmentI, *SlotI);
821 if (SegmentI == SegmentE)
822 return false;
823
824 // If this segment contains the slot, we're done.
825 if (SegmentI->contains(*SlotI))
826 return true;
827 // Otherwise, look for the next slot.
828 }
829
830 // We didn't find a segment containing any of the slots.
831 return false;
832 }
833
freeSubRange(SubRange * S)834 void LiveInterval::freeSubRange(SubRange *S) {
835 S->~SubRange();
836 // Memory was allocated with BumpPtr allocator and is not freed here.
837 }
838
removeEmptySubRanges()839 void LiveInterval::removeEmptySubRanges() {
840 SubRange **NextPtr = &SubRanges;
841 SubRange *I = *NextPtr;
842 while (I != nullptr) {
843 if (!I->empty()) {
844 NextPtr = &I->Next;
845 I = *NextPtr;
846 continue;
847 }
848 // Skip empty subranges until we find the first nonempty one.
849 do {
850 SubRange *Next = I->Next;
851 freeSubRange(I);
852 I = Next;
853 } while (I != nullptr && I->empty());
854 *NextPtr = I;
855 }
856 }
857
clearSubRanges()858 void LiveInterval::clearSubRanges() {
859 for (SubRange *I = SubRanges, *Next; I != nullptr; I = Next) {
860 Next = I->Next;
861 freeSubRange(I);
862 }
863 SubRanges = nullptr;
864 }
865
866 /// For each VNI in \p SR, check whether or not that value defines part
867 /// of the mask describe by \p LaneMask and if not, remove that value
868 /// from \p SR.
stripValuesNotDefiningMask(unsigned Reg,LiveInterval::SubRange & SR,LaneBitmask LaneMask,const SlotIndexes & Indexes,const TargetRegisterInfo & TRI,unsigned ComposeSubRegIdx)869 static void stripValuesNotDefiningMask(unsigned Reg, LiveInterval::SubRange &SR,
870 LaneBitmask LaneMask,
871 const SlotIndexes &Indexes,
872 const TargetRegisterInfo &TRI,
873 unsigned ComposeSubRegIdx) {
874 // Phys reg should not be tracked at subreg level.
875 // Same for noreg (Reg == 0).
876 if (!Register::isVirtualRegister(Reg) || !Reg)
877 return;
878 // Remove the values that don't define those lanes.
879 SmallVector<VNInfo *, 8> ToBeRemoved;
880 for (VNInfo *VNI : SR.valnos) {
881 if (VNI->isUnused())
882 continue;
883 // PHI definitions don't have MI attached, so there is nothing
884 // we can use to strip the VNI.
885 if (VNI->isPHIDef())
886 continue;
887 const MachineInstr *MI = Indexes.getInstructionFromIndex(VNI->def);
888 assert(MI && "Cannot find the definition of a value");
889 bool hasDef = false;
890 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
891 if (!MOI->isReg() || !MOI->isDef())
892 continue;
893 if (MOI->getReg() != Reg)
894 continue;
895 LaneBitmask OrigMask = TRI.getSubRegIndexLaneMask(MOI->getSubReg());
896 LaneBitmask ExpectedDefMask =
897 ComposeSubRegIdx
898 ? TRI.composeSubRegIndexLaneMask(ComposeSubRegIdx, OrigMask)
899 : OrigMask;
900 if ((ExpectedDefMask & LaneMask).none())
901 continue;
902 hasDef = true;
903 break;
904 }
905
906 if (!hasDef)
907 ToBeRemoved.push_back(VNI);
908 }
909 for (VNInfo *VNI : ToBeRemoved)
910 SR.removeValNo(VNI);
911
912 // If the subrange is empty at this point, the MIR is invalid. Do not assert
913 // and let the verifier catch this case.
914 }
915
refineSubRanges(BumpPtrAllocator & Allocator,LaneBitmask LaneMask,std::function<void (LiveInterval::SubRange &)> Apply,const SlotIndexes & Indexes,const TargetRegisterInfo & TRI,unsigned ComposeSubRegIdx)916 void LiveInterval::refineSubRanges(
917 BumpPtrAllocator &Allocator, LaneBitmask LaneMask,
918 std::function<void(LiveInterval::SubRange &)> Apply,
919 const SlotIndexes &Indexes, const TargetRegisterInfo &TRI,
920 unsigned ComposeSubRegIdx) {
921 LaneBitmask ToApply = LaneMask;
922 for (SubRange &SR : subranges()) {
923 LaneBitmask SRMask = SR.LaneMask;
924 LaneBitmask Matching = SRMask & LaneMask;
925 if (Matching.none())
926 continue;
927
928 SubRange *MatchingRange;
929 if (SRMask == Matching) {
930 // The subrange fits (it does not cover bits outside \p LaneMask).
931 MatchingRange = &SR;
932 } else {
933 // We have to split the subrange into a matching and non-matching part.
934 // Reduce lanemask of existing lane to non-matching part.
935 SR.LaneMask = SRMask & ~Matching;
936 // Create a new subrange for the matching part
937 MatchingRange = createSubRangeFrom(Allocator, Matching, SR);
938 // Now that the subrange is split in half, make sure we
939 // only keep in the subranges the VNIs that touch the related half.
940 stripValuesNotDefiningMask(reg(), *MatchingRange, Matching, Indexes, TRI,
941 ComposeSubRegIdx);
942 stripValuesNotDefiningMask(reg(), SR, SR.LaneMask, Indexes, TRI,
943 ComposeSubRegIdx);
944 }
945 Apply(*MatchingRange);
946 ToApply &= ~Matching;
947 }
948 // Create a new subrange if there are uncovered bits left.
949 if (ToApply.any()) {
950 SubRange *NewRange = createSubRange(Allocator, ToApply);
951 Apply(*NewRange);
952 }
953 }
954
getSize() const955 unsigned LiveInterval::getSize() const {
956 unsigned Sum = 0;
957 for (const Segment &S : segments)
958 Sum += S.start.distance(S.end);
959 return Sum;
960 }
961
computeSubRangeUndefs(SmallVectorImpl<SlotIndex> & Undefs,LaneBitmask LaneMask,const MachineRegisterInfo & MRI,const SlotIndexes & Indexes) const962 void LiveInterval::computeSubRangeUndefs(SmallVectorImpl<SlotIndex> &Undefs,
963 LaneBitmask LaneMask,
964 const MachineRegisterInfo &MRI,
965 const SlotIndexes &Indexes) const {
966 assert(reg().isVirtual());
967 LaneBitmask VRegMask = MRI.getMaxLaneMaskForVReg(reg());
968 assert((VRegMask & LaneMask).any());
969 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
970 for (const MachineOperand &MO : MRI.def_operands(reg())) {
971 if (!MO.isUndef())
972 continue;
973 unsigned SubReg = MO.getSubReg();
974 assert(SubReg != 0 && "Undef should only be set on subreg defs");
975 LaneBitmask DefMask = TRI.getSubRegIndexLaneMask(SubReg);
976 LaneBitmask UndefMask = VRegMask & ~DefMask;
977 if ((UndefMask & LaneMask).any()) {
978 const MachineInstr &MI = *MO.getParent();
979 bool EarlyClobber = MO.isEarlyClobber();
980 SlotIndex Pos = Indexes.getInstructionIndex(MI).getRegSlot(EarlyClobber);
981 Undefs.push_back(Pos);
982 }
983 }
984 }
985
operator <<(raw_ostream & OS,const LiveRange::Segment & S)986 raw_ostream& llvm::operator<<(raw_ostream& OS, const LiveRange::Segment &S) {
987 return OS << '[' << S.start << ',' << S.end << ':' << S.valno->id << ')';
988 }
989
990 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const991 LLVM_DUMP_METHOD void LiveRange::Segment::dump() const {
992 dbgs() << *this << '\n';
993 }
994 #endif
995
print(raw_ostream & OS) const996 void LiveRange::print(raw_ostream &OS) const {
997 if (empty())
998 OS << "EMPTY";
999 else {
1000 for (const Segment &S : segments) {
1001 OS << S;
1002 assert(S.valno == getValNumInfo(S.valno->id) && "Bad VNInfo");
1003 }
1004 }
1005
1006 // Print value number info.
1007 if (getNumValNums()) {
1008 OS << ' ';
1009 unsigned vnum = 0;
1010 for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e;
1011 ++i, ++vnum) {
1012 const VNInfo *vni = *i;
1013 if (vnum) OS << ' ';
1014 OS << vnum << '@';
1015 if (vni->isUnused()) {
1016 OS << 'x';
1017 } else {
1018 OS << vni->def;
1019 if (vni->isPHIDef())
1020 OS << "-phi";
1021 }
1022 }
1023 }
1024 }
1025
print(raw_ostream & OS) const1026 void LiveInterval::SubRange::print(raw_ostream &OS) const {
1027 OS << " L" << PrintLaneMask(LaneMask) << ' '
1028 << static_cast<const LiveRange &>(*this);
1029 }
1030
print(raw_ostream & OS) const1031 void LiveInterval::print(raw_ostream &OS) const {
1032 OS << printReg(reg()) << ' ';
1033 super::print(OS);
1034 // Print subranges
1035 for (const SubRange &SR : subranges())
1036 OS << SR;
1037 OS << " weight:" << Weight;
1038 }
1039
1040 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const1041 LLVM_DUMP_METHOD void LiveRange::dump() const {
1042 dbgs() << *this << '\n';
1043 }
1044
dump() const1045 LLVM_DUMP_METHOD void LiveInterval::SubRange::dump() const {
1046 dbgs() << *this << '\n';
1047 }
1048
dump() const1049 LLVM_DUMP_METHOD void LiveInterval::dump() const {
1050 dbgs() << *this << '\n';
1051 }
1052 #endif
1053
1054 #ifndef NDEBUG
verify() const1055 void LiveRange::verify() const {
1056 for (const_iterator I = begin(), E = end(); I != E; ++I) {
1057 assert(I->start.isValid());
1058 assert(I->end.isValid());
1059 assert(I->start < I->end);
1060 assert(I->valno != nullptr);
1061 assert(I->valno->id < valnos.size());
1062 assert(I->valno == valnos[I->valno->id]);
1063 if (std::next(I) != E) {
1064 assert(I->end <= std::next(I)->start);
1065 if (I->end == std::next(I)->start)
1066 assert(I->valno != std::next(I)->valno);
1067 }
1068 }
1069 }
1070
verify(const MachineRegisterInfo * MRI) const1071 void LiveInterval::verify(const MachineRegisterInfo *MRI) const {
1072 super::verify();
1073
1074 // Make sure SubRanges are fine and LaneMasks are disjunct.
1075 LaneBitmask Mask;
1076 LaneBitmask MaxMask = MRI != nullptr ? MRI->getMaxLaneMaskForVReg(reg())
1077 : LaneBitmask::getAll();
1078 for (const SubRange &SR : subranges()) {
1079 // Subrange lanemask should be disjunct to any previous subrange masks.
1080 assert((Mask & SR.LaneMask).none());
1081 Mask |= SR.LaneMask;
1082
1083 // subrange mask should not contained in maximum lane mask for the vreg.
1084 assert((Mask & ~MaxMask).none());
1085 // empty subranges must be removed.
1086 assert(!SR.empty());
1087
1088 SR.verify();
1089 // Main liverange should cover subrange.
1090 assert(covers(SR));
1091 }
1092 }
1093 #endif
1094
1095 //===----------------------------------------------------------------------===//
1096 // LiveRangeUpdater class
1097 //===----------------------------------------------------------------------===//
1098 //
1099 // The LiveRangeUpdater class always maintains these invariants:
1100 //
1101 // - When LastStart is invalid, Spills is empty and the iterators are invalid.
1102 // This is the initial state, and the state created by flush().
1103 // In this state, isDirty() returns false.
1104 //
1105 // Otherwise, segments are kept in three separate areas:
1106 //
1107 // 1. [begin; WriteI) at the front of LR.
1108 // 2. [ReadI; end) at the back of LR.
1109 // 3. Spills.
1110 //
1111 // - LR.begin() <= WriteI <= ReadI <= LR.end().
1112 // - Segments in all three areas are fully ordered and coalesced.
1113 // - Segments in area 1 precede and can't coalesce with segments in area 2.
1114 // - Segments in Spills precede and can't coalesce with segments in area 2.
1115 // - No coalescing is possible between segments in Spills and segments in area
1116 // 1, and there are no overlapping segments.
1117 //
1118 // The segments in Spills are not ordered with respect to the segments in area
1119 // 1. They need to be merged.
1120 //
1121 // When they exist, Spills.back().start <= LastStart,
1122 // and WriteI[-1].start <= LastStart.
1123
1124 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
print(raw_ostream & OS) const1125 void LiveRangeUpdater::print(raw_ostream &OS) const {
1126 if (!isDirty()) {
1127 if (LR)
1128 OS << "Clean updater: " << *LR << '\n';
1129 else
1130 OS << "Null updater.\n";
1131 return;
1132 }
1133 assert(LR && "Can't have null LR in dirty updater.");
1134 OS << " updater with gap = " << (ReadI - WriteI)
1135 << ", last start = " << LastStart
1136 << ":\n Area 1:";
1137 for (const auto &S : make_range(LR->begin(), WriteI))
1138 OS << ' ' << S;
1139 OS << "\n Spills:";
1140 for (unsigned I = 0, E = Spills.size(); I != E; ++I)
1141 OS << ' ' << Spills[I];
1142 OS << "\n Area 2:";
1143 for (const auto &S : make_range(ReadI, LR->end()))
1144 OS << ' ' << S;
1145 OS << '\n';
1146 }
1147
dump() const1148 LLVM_DUMP_METHOD void LiveRangeUpdater::dump() const {
1149 print(errs());
1150 }
1151 #endif
1152
1153 // Determine if A and B should be coalesced.
coalescable(const LiveRange::Segment & A,const LiveRange::Segment & B)1154 static inline bool coalescable(const LiveRange::Segment &A,
1155 const LiveRange::Segment &B) {
1156 assert(A.start <= B.start && "Unordered live segments.");
1157 if (A.end == B.start)
1158 return A.valno == B.valno;
1159 if (A.end < B.start)
1160 return false;
1161 assert(A.valno == B.valno && "Cannot overlap different values");
1162 return true;
1163 }
1164
add(LiveRange::Segment Seg)1165 void LiveRangeUpdater::add(LiveRange::Segment Seg) {
1166 assert(LR && "Cannot add to a null destination");
1167
1168 // Fall back to the regular add method if the live range
1169 // is using the segment set instead of the segment vector.
1170 if (LR->segmentSet != nullptr) {
1171 LR->addSegmentToSet(Seg);
1172 return;
1173 }
1174
1175 // Flush the state if Start moves backwards.
1176 if (!LastStart.isValid() || LastStart > Seg.start) {
1177 if (isDirty())
1178 flush();
1179 // This brings us to an uninitialized state. Reinitialize.
1180 assert(Spills.empty() && "Leftover spilled segments");
1181 WriteI = ReadI = LR->begin();
1182 }
1183
1184 // Remember start for next time.
1185 LastStart = Seg.start;
1186
1187 // Advance ReadI until it ends after Seg.start.
1188 LiveRange::iterator E = LR->end();
1189 if (ReadI != E && ReadI->end <= Seg.start) {
1190 // First try to close the gap between WriteI and ReadI with spills.
1191 if (ReadI != WriteI)
1192 mergeSpills();
1193 // Then advance ReadI.
1194 if (ReadI == WriteI)
1195 ReadI = WriteI = LR->find(Seg.start);
1196 else
1197 while (ReadI != E && ReadI->end <= Seg.start)
1198 *WriteI++ = *ReadI++;
1199 }
1200
1201 assert(ReadI == E || ReadI->end > Seg.start);
1202
1203 // Check if the ReadI segment begins early.
1204 if (ReadI != E && ReadI->start <= Seg.start) {
1205 assert(ReadI->valno == Seg.valno && "Cannot overlap different values");
1206 // Bail if Seg is completely contained in ReadI.
1207 if (ReadI->end >= Seg.end)
1208 return;
1209 // Coalesce into Seg.
1210 Seg.start = ReadI->start;
1211 ++ReadI;
1212 }
1213
1214 // Coalesce as much as possible from ReadI into Seg.
1215 while (ReadI != E && coalescable(Seg, *ReadI)) {
1216 Seg.end = std::max(Seg.end, ReadI->end);
1217 ++ReadI;
1218 }
1219
1220 // Try coalescing Spills.back() into Seg.
1221 if (!Spills.empty() && coalescable(Spills.back(), Seg)) {
1222 Seg.start = Spills.back().start;
1223 Seg.end = std::max(Spills.back().end, Seg.end);
1224 Spills.pop_back();
1225 }
1226
1227 // Try coalescing Seg into WriteI[-1].
1228 if (WriteI != LR->begin() && coalescable(WriteI[-1], Seg)) {
1229 WriteI[-1].end = std::max(WriteI[-1].end, Seg.end);
1230 return;
1231 }
1232
1233 // Seg doesn't coalesce with anything, and needs to be inserted somewhere.
1234 if (WriteI != ReadI) {
1235 *WriteI++ = Seg;
1236 return;
1237 }
1238
1239 // Finally, append to LR or Spills.
1240 if (WriteI == E) {
1241 LR->segments.push_back(Seg);
1242 WriteI = ReadI = LR->end();
1243 } else
1244 Spills.push_back(Seg);
1245 }
1246
1247 // Merge as many spilled segments as possible into the gap between WriteI
1248 // and ReadI. Advance WriteI to reflect the inserted instructions.
mergeSpills()1249 void LiveRangeUpdater::mergeSpills() {
1250 // Perform a backwards merge of Spills and [SpillI;WriteI).
1251 size_t GapSize = ReadI - WriteI;
1252 size_t NumMoved = std::min(Spills.size(), GapSize);
1253 LiveRange::iterator Src = WriteI;
1254 LiveRange::iterator Dst = Src + NumMoved;
1255 LiveRange::iterator SpillSrc = Spills.end();
1256 LiveRange::iterator B = LR->begin();
1257
1258 // This is the new WriteI position after merging spills.
1259 WriteI = Dst;
1260
1261 // Now merge Src and Spills backwards.
1262 while (Src != Dst) {
1263 if (Src != B && Src[-1].start > SpillSrc[-1].start)
1264 *--Dst = *--Src;
1265 else
1266 *--Dst = *--SpillSrc;
1267 }
1268 assert(NumMoved == size_t(Spills.end() - SpillSrc));
1269 Spills.erase(SpillSrc, Spills.end());
1270 }
1271
flush()1272 void LiveRangeUpdater::flush() {
1273 if (!isDirty())
1274 return;
1275 // Clear the dirty state.
1276 LastStart = SlotIndex();
1277
1278 assert(LR && "Cannot add to a null destination");
1279
1280 // Nothing to merge?
1281 if (Spills.empty()) {
1282 LR->segments.erase(WriteI, ReadI);
1283 LR->verify();
1284 return;
1285 }
1286
1287 // Resize the WriteI - ReadI gap to match Spills.
1288 size_t GapSize = ReadI - WriteI;
1289 if (GapSize < Spills.size()) {
1290 // The gap is too small. Make some room.
1291 size_t WritePos = WriteI - LR->begin();
1292 LR->segments.insert(ReadI, Spills.size() - GapSize, LiveRange::Segment());
1293 // This also invalidated ReadI, but it is recomputed below.
1294 WriteI = LR->begin() + WritePos;
1295 } else {
1296 // Shrink the gap if necessary.
1297 LR->segments.erase(WriteI + Spills.size(), ReadI);
1298 }
1299 ReadI = WriteI + Spills.size();
1300 mergeSpills();
1301 LR->verify();
1302 }
1303
Classify(const LiveRange & LR)1304 unsigned ConnectedVNInfoEqClasses::Classify(const LiveRange &LR) {
1305 // Create initial equivalence classes.
1306 EqClass.clear();
1307 EqClass.grow(LR.getNumValNums());
1308
1309 const VNInfo *used = nullptr, *unused = nullptr;
1310
1311 // Determine connections.
1312 for (const VNInfo *VNI : LR.valnos) {
1313 // Group all unused values into one class.
1314 if (VNI->isUnused()) {
1315 if (unused)
1316 EqClass.join(unused->id, VNI->id);
1317 unused = VNI;
1318 continue;
1319 }
1320 used = VNI;
1321 if (VNI->isPHIDef()) {
1322 const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
1323 assert(MBB && "Phi-def has no defining MBB");
1324 // Connect to values live out of predecessors.
1325 for (MachineBasicBlock *Pred : MBB->predecessors())
1326 if (const VNInfo *PVNI = LR.getVNInfoBefore(LIS.getMBBEndIdx(Pred)))
1327 EqClass.join(VNI->id, PVNI->id);
1328 } else {
1329 // Normal value defined by an instruction. Check for two-addr redef.
1330 // FIXME: This could be coincidental. Should we really check for a tied
1331 // operand constraint?
1332 // Note that VNI->def may be a use slot for an early clobber def.
1333 if (const VNInfo *UVNI = LR.getVNInfoBefore(VNI->def))
1334 EqClass.join(VNI->id, UVNI->id);
1335 }
1336 }
1337
1338 // Lump all the unused values in with the last used value.
1339 if (used && unused)
1340 EqClass.join(used->id, unused->id);
1341
1342 EqClass.compress();
1343 return EqClass.getNumClasses();
1344 }
1345
Distribute(LiveInterval & LI,LiveInterval * LIV[],MachineRegisterInfo & MRI)1346 void ConnectedVNInfoEqClasses::Distribute(LiveInterval &LI, LiveInterval *LIV[],
1347 MachineRegisterInfo &MRI) {
1348 // Rewrite instructions.
1349 for (MachineOperand &MO :
1350 llvm::make_early_inc_range(MRI.reg_operands(LI.reg()))) {
1351 MachineInstr *MI = MO.getParent();
1352 const VNInfo *VNI;
1353 if (MI->isDebugValue()) {
1354 // DBG_VALUE instructions don't have slot indexes, so get the index of
1355 // the instruction before them. The value is defined there too.
1356 SlotIndex Idx = LIS.getSlotIndexes()->getIndexBefore(*MI);
1357 VNI = LI.Query(Idx).valueOut();
1358 } else {
1359 SlotIndex Idx = LIS.getInstructionIndex(*MI);
1360 LiveQueryResult LRQ = LI.Query(Idx);
1361 VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined();
1362 }
1363 // In the case of an <undef> use that isn't tied to any def, VNI will be
1364 // NULL. If the use is tied to a def, VNI will be the defined value.
1365 if (!VNI)
1366 continue;
1367 if (unsigned EqClass = getEqClass(VNI))
1368 MO.setReg(LIV[EqClass - 1]->reg());
1369 }
1370
1371 // Distribute subregister liveranges.
1372 if (LI.hasSubRanges()) {
1373 unsigned NumComponents = EqClass.getNumClasses();
1374 SmallVector<unsigned, 8> VNIMapping;
1375 SmallVector<LiveInterval::SubRange*, 8> SubRanges;
1376 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
1377 for (LiveInterval::SubRange &SR : LI.subranges()) {
1378 // Create new subranges in the split intervals and construct a mapping
1379 // for the VNInfos in the subrange.
1380 unsigned NumValNos = SR.valnos.size();
1381 VNIMapping.clear();
1382 VNIMapping.reserve(NumValNos);
1383 SubRanges.clear();
1384 SubRanges.resize(NumComponents-1, nullptr);
1385 for (unsigned I = 0; I < NumValNos; ++I) {
1386 const VNInfo &VNI = *SR.valnos[I];
1387 unsigned ComponentNum;
1388 if (VNI.isUnused()) {
1389 ComponentNum = 0;
1390 } else {
1391 const VNInfo *MainRangeVNI = LI.getVNInfoAt(VNI.def);
1392 assert(MainRangeVNI != nullptr
1393 && "SubRange def must have corresponding main range def");
1394 ComponentNum = getEqClass(MainRangeVNI);
1395 if (ComponentNum > 0 && SubRanges[ComponentNum-1] == nullptr) {
1396 SubRanges[ComponentNum-1]
1397 = LIV[ComponentNum-1]->createSubRange(Allocator, SR.LaneMask);
1398 }
1399 }
1400 VNIMapping.push_back(ComponentNum);
1401 }
1402 DistributeRange(SR, SubRanges.data(), VNIMapping);
1403 }
1404 LI.removeEmptySubRanges();
1405 }
1406
1407 // Distribute main liverange.
1408 DistributeRange(LI, LIV, EqClass);
1409 }
1410