1 /* $NetBSD: subr_autoconf.c,v 1.247 2016/07/19 07:44:03 msaitoh Exp $ */
2 
3 /*
4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *          This product includes software developed for the
18  *          NetBSD Project.  See http://www.NetBSD.org/ for
19  *          information about NetBSD.
20  * 4. The name of the author may not be used to endorse or promote products
21  *    derived from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35  */
36 
37 /*
38  * Copyright (c) 1992, 1993
39  *	The Regents of the University of California.  All rights reserved.
40  *
41  * This software was developed by the Computer Systems Engineering group
42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43  * contributed to Berkeley.
44  *
45  * All advertising materials mentioning features or use of this software
46  * must display the following acknowledgement:
47  *	This product includes software developed by the University of
48  *	California, Lawrence Berkeley Laboratories.
49  *
50  * Redistribution and use in source and binary forms, with or without
51  * modification, are permitted provided that the following conditions
52  * are met:
53  * 1. Redistributions of source code must retain the above copyright
54  *    notice, this list of conditions and the following disclaimer.
55  * 2. Redistributions in binary form must reproduce the above copyright
56  *    notice, this list of conditions and the following disclaimer in the
57  *    documentation and/or other materials provided with the distribution.
58  * 3. Neither the name of the University nor the names of its contributors
59  *    may be used to endorse or promote products derived from this software
60  *    without specific prior written permission.
61  *
62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72  * SUCH DAMAGE.
73  *
74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
75  *
76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
77  */
78 
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.247 2016/07/19 07:44:03 msaitoh Exp $");
81 
82 #ifdef _KERNEL_OPT
83 #include "opt_ddb.h"
84 #include "drvctl.h"
85 #endif
86 
87 #include <sys/param.h>
88 #include <sys/device.h>
89 #include <sys/disklabel.h>
90 #include <sys/conf.h>
91 #include <sys/kauth.h>
92 #include <sys/kmem.h>
93 #include <sys/systm.h>
94 #include <sys/kernel.h>
95 #include <sys/errno.h>
96 #include <sys/proc.h>
97 #include <sys/reboot.h>
98 #include <sys/kthread.h>
99 #include <sys/buf.h>
100 #include <sys/dirent.h>
101 #include <sys/mount.h>
102 #include <sys/namei.h>
103 #include <sys/unistd.h>
104 #include <sys/fcntl.h>
105 #include <sys/lockf.h>
106 #include <sys/callout.h>
107 #include <sys/devmon.h>
108 #include <sys/cpu.h>
109 #include <sys/sysctl.h>
110 
111 #include <sys/disk.h>
112 
113 #include <sys/rndsource.h>
114 
115 #include <machine/limits.h>
116 
117 /*
118  * Autoconfiguration subroutines.
119  */
120 
121 /*
122  * Device autoconfiguration timings are mixed into the entropy pool.
123  */
124 extern krndsource_t rnd_autoconf_source;
125 
126 /*
127  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
128  * devices and drivers are found via these tables.
129  */
130 extern struct cfdata cfdata[];
131 extern const short cfroots[];
132 
133 /*
134  * List of all cfdriver structures.  We use this to detect duplicates
135  * when other cfdrivers are loaded.
136  */
137 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
138 extern struct cfdriver * const cfdriver_list_initial[];
139 
140 /*
141  * Initial list of cfattach's.
142  */
143 extern const struct cfattachinit cfattachinit[];
144 
145 /*
146  * List of cfdata tables.  We always have one such list -- the one
147  * built statically when the kernel was configured.
148  */
149 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
150 static struct cftable initcftable;
151 
152 #define	ROOT ((device_t)NULL)
153 
154 struct matchinfo {
155 	cfsubmatch_t fn;
156 	device_t parent;
157 	const int *locs;
158 	void	*aux;
159 	struct	cfdata *match;
160 	int	pri;
161 };
162 
163 struct alldevs_foray {
164 	int			af_s;
165 	struct devicelist	af_garbage;
166 };
167 
168 static char *number(char *, int);
169 static void mapply(struct matchinfo *, cfdata_t);
170 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
171 static void config_devdelete(device_t);
172 static void config_devunlink(device_t, struct devicelist *);
173 static void config_makeroom(int, struct cfdriver *);
174 static void config_devlink(device_t);
175 static void config_alldevs_enter(struct alldevs_foray *);
176 static void config_alldevs_exit(struct alldevs_foray *);
177 static void config_add_attrib_dict(device_t);
178 
179 static void config_collect_garbage(struct devicelist *);
180 static void config_dump_garbage(struct devicelist *);
181 
182 static void pmflock_debug(device_t, const char *, int);
183 
184 static device_t deviter_next1(deviter_t *);
185 static void deviter_reinit(deviter_t *);
186 
187 struct deferred_config {
188 	TAILQ_ENTRY(deferred_config) dc_queue;
189 	device_t dc_dev;
190 	void (*dc_func)(device_t);
191 };
192 
193 TAILQ_HEAD(deferred_config_head, deferred_config);
194 
195 struct deferred_config_head deferred_config_queue =
196 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
197 struct deferred_config_head interrupt_config_queue =
198 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
199 int interrupt_config_threads = 8;
200 struct deferred_config_head mountroot_config_queue =
201 	TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
202 int mountroot_config_threads = 2;
203 static lwp_t **mountroot_config_lwpids;
204 static size_t mountroot_config_lwpids_size;
205 static bool root_is_mounted = false;
206 
207 static void config_process_deferred(struct deferred_config_head *, device_t);
208 
209 /* Hooks to finalize configuration once all real devices have been found. */
210 struct finalize_hook {
211 	TAILQ_ENTRY(finalize_hook) f_list;
212 	int (*f_func)(device_t);
213 	device_t f_dev;
214 };
215 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
216 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
217 static int config_finalize_done;
218 
219 /* list of all devices */
220 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
221 static kmutex_t alldevs_mtx;
222 static volatile bool alldevs_garbage = false;
223 static volatile devgen_t alldevs_gen = 1;
224 static volatile int alldevs_nread = 0;
225 static volatile int alldevs_nwrite = 0;
226 
227 static int config_pending;		/* semaphore for mountroot */
228 static kmutex_t config_misc_lock;
229 static kcondvar_t config_misc_cv;
230 
231 static bool detachall = false;
232 
233 #define	STREQ(s1, s2)			\
234 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
235 
236 static bool config_initialized = false;	/* config_init() has been called. */
237 
238 static int config_do_twiddle;
239 static callout_t config_twiddle_ch;
240 
241 static void sysctl_detach_setup(struct sysctllog **);
242 
243 int no_devmon_insert(const char *, prop_dictionary_t);
244 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert;
245 
246 typedef int (*cfdriver_fn)(struct cfdriver *);
247 static int
frob_cfdrivervec(struct cfdriver * const * cfdriverv,cfdriver_fn drv_do,cfdriver_fn drv_undo,const char * style,bool dopanic)248 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
249 	cfdriver_fn drv_do, cfdriver_fn drv_undo,
250 	const char *style, bool dopanic)
251 {
252 	void (*pr)(const char *, ...) __printflike(1, 2) =
253 	    dopanic ? panic : printf;
254 	int i, error = 0, e2 __diagused;
255 
256 	for (i = 0; cfdriverv[i] != NULL; i++) {
257 		if ((error = drv_do(cfdriverv[i])) != 0) {
258 			pr("configure: `%s' driver %s failed: %d",
259 			    cfdriverv[i]->cd_name, style, error);
260 			goto bad;
261 		}
262 	}
263 
264 	KASSERT(error == 0);
265 	return 0;
266 
267  bad:
268 	printf("\n");
269 	for (i--; i >= 0; i--) {
270 		e2 = drv_undo(cfdriverv[i]);
271 		KASSERT(e2 == 0);
272 	}
273 
274 	return error;
275 }
276 
277 typedef int (*cfattach_fn)(const char *, struct cfattach *);
278 static int
frob_cfattachvec(const struct cfattachinit * cfattachv,cfattach_fn att_do,cfattach_fn att_undo,const char * style,bool dopanic)279 frob_cfattachvec(const struct cfattachinit *cfattachv,
280 	cfattach_fn att_do, cfattach_fn att_undo,
281 	const char *style, bool dopanic)
282 {
283 	const struct cfattachinit *cfai = NULL;
284 	void (*pr)(const char *, ...) __printflike(1, 2) =
285 	    dopanic ? panic : printf;
286 	int j = 0, error = 0, e2 __diagused;
287 
288 	for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
289 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
290 			if ((error = att_do(cfai->cfai_name,
291 			    cfai->cfai_list[j])) != 0) {
292 				pr("configure: attachment `%s' "
293 				    "of `%s' driver %s failed: %d",
294 				    cfai->cfai_list[j]->ca_name,
295 				    cfai->cfai_name, style, error);
296 				goto bad;
297 			}
298 		}
299 	}
300 
301 	KASSERT(error == 0);
302 	return 0;
303 
304  bad:
305 	/*
306 	 * Rollback in reverse order.  dunno if super-important, but
307 	 * do that anyway.  Although the code looks a little like
308 	 * someone did a little integration (in the math sense).
309 	 */
310 	printf("\n");
311 	if (cfai) {
312 		bool last;
313 
314 		for (last = false; last == false; ) {
315 			if (cfai == &cfattachv[0])
316 				last = true;
317 			for (j--; j >= 0; j--) {
318 				e2 = att_undo(cfai->cfai_name,
319 				    cfai->cfai_list[j]);
320 				KASSERT(e2 == 0);
321 			}
322 			if (!last) {
323 				cfai--;
324 				for (j = 0; cfai->cfai_list[j] != NULL; j++)
325 					;
326 			}
327 		}
328 	}
329 
330 	return error;
331 }
332 
333 /*
334  * Initialize the autoconfiguration data structures.  Normally this
335  * is done by configure(), but some platforms need to do this very
336  * early (to e.g. initialize the console).
337  */
338 void
config_init(void)339 config_init(void)
340 {
341 
342 	KASSERT(config_initialized == false);
343 
344 	mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_VM);
345 
346 	mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
347 	cv_init(&config_misc_cv, "cfgmisc");
348 
349 	callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
350 
351 	frob_cfdrivervec(cfdriver_list_initial,
352 	    config_cfdriver_attach, NULL, "bootstrap", true);
353 	frob_cfattachvec(cfattachinit,
354 	    config_cfattach_attach, NULL, "bootstrap", true);
355 
356 	initcftable.ct_cfdata = cfdata;
357 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
358 
359 	config_initialized = true;
360 }
361 
362 /*
363  * Init or fini drivers and attachments.  Either all or none
364  * are processed (via rollback).  It would be nice if this were
365  * atomic to outside consumers, but with the current state of
366  * locking ...
367  */
368 int
config_init_component(struct cfdriver * const * cfdriverv,const struct cfattachinit * cfattachv,struct cfdata * cfdatav)369 config_init_component(struct cfdriver * const *cfdriverv,
370 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
371 {
372 	int error;
373 
374 	if ((error = frob_cfdrivervec(cfdriverv,
375 	    config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
376 		return error;
377 	if ((error = frob_cfattachvec(cfattachv,
378 	    config_cfattach_attach, config_cfattach_detach,
379 	    "init", false)) != 0) {
380 		frob_cfdrivervec(cfdriverv,
381 	            config_cfdriver_detach, NULL, "init rollback", true);
382 		return error;
383 	}
384 	if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
385 		frob_cfattachvec(cfattachv,
386 		    config_cfattach_detach, NULL, "init rollback", true);
387 		frob_cfdrivervec(cfdriverv,
388 	            config_cfdriver_detach, NULL, "init rollback", true);
389 		return error;
390 	}
391 
392 	return 0;
393 }
394 
395 int
config_fini_component(struct cfdriver * const * cfdriverv,const struct cfattachinit * cfattachv,struct cfdata * cfdatav)396 config_fini_component(struct cfdriver * const *cfdriverv,
397 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
398 {
399 	int error;
400 
401 	if ((error = config_cfdata_detach(cfdatav)) != 0)
402 		return error;
403 	if ((error = frob_cfattachvec(cfattachv,
404 	    config_cfattach_detach, config_cfattach_attach,
405 	    "fini", false)) != 0) {
406 		if (config_cfdata_attach(cfdatav, 0) != 0)
407 			panic("config_cfdata fini rollback failed");
408 		return error;
409 	}
410 	if ((error = frob_cfdrivervec(cfdriverv,
411 	    config_cfdriver_detach, config_cfdriver_attach,
412 	    "fini", false)) != 0) {
413 		frob_cfattachvec(cfattachv,
414 	            config_cfattach_attach, NULL, "fini rollback", true);
415 		if (config_cfdata_attach(cfdatav, 0) != 0)
416 			panic("config_cfdata fini rollback failed");
417 		return error;
418 	}
419 
420 	return 0;
421 }
422 
423 void
config_init_mi(void)424 config_init_mi(void)
425 {
426 
427 	if (!config_initialized)
428 		config_init();
429 
430 	sysctl_detach_setup(NULL);
431 }
432 
433 void
config_deferred(device_t dev)434 config_deferred(device_t dev)
435 {
436 	config_process_deferred(&deferred_config_queue, dev);
437 	config_process_deferred(&interrupt_config_queue, dev);
438 	config_process_deferred(&mountroot_config_queue, dev);
439 }
440 
441 static void
config_interrupts_thread(void * cookie)442 config_interrupts_thread(void *cookie)
443 {
444 	struct deferred_config *dc;
445 
446 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
447 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
448 		(*dc->dc_func)(dc->dc_dev);
449 		config_pending_decr(dc->dc_dev);
450 		kmem_free(dc, sizeof(*dc));
451 	}
452 	kthread_exit(0);
453 }
454 
455 void
config_create_interruptthreads(void)456 config_create_interruptthreads(void)
457 {
458 	int i;
459 
460 	for (i = 0; i < interrupt_config_threads; i++) {
461 		(void)kthread_create(PRI_NONE, 0, NULL,
462 		    config_interrupts_thread, NULL, NULL, "configintr");
463 	}
464 }
465 
466 static void
config_mountroot_thread(void * cookie)467 config_mountroot_thread(void *cookie)
468 {
469 	struct deferred_config *dc;
470 
471 	while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
472 		TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
473 		(*dc->dc_func)(dc->dc_dev);
474 		kmem_free(dc, sizeof(*dc));
475 	}
476 	kthread_exit(0);
477 }
478 
479 void
config_create_mountrootthreads(void)480 config_create_mountrootthreads(void)
481 {
482 	int i;
483 
484 	if (!root_is_mounted)
485 		root_is_mounted = true;
486 
487 	mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) *
488 				       mountroot_config_threads;
489 	mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size,
490 					     KM_NOSLEEP);
491 	KASSERT(mountroot_config_lwpids);
492 	for (i = 0; i < mountroot_config_threads; i++) {
493 		mountroot_config_lwpids[i] = 0;
494 		(void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN, NULL,
495 				     config_mountroot_thread, NULL,
496 				     &mountroot_config_lwpids[i],
497 				     "configroot");
498 	}
499 }
500 
501 void
config_finalize_mountroot(void)502 config_finalize_mountroot(void)
503 {
504 	int i, error;
505 
506 	for (i = 0; i < mountroot_config_threads; i++) {
507 		if (mountroot_config_lwpids[i] == 0)
508 			continue;
509 
510 		error = kthread_join(mountroot_config_lwpids[i]);
511 		if (error)
512 			printf("%s: thread %x joined with error %d\n",
513 			       __func__, i, error);
514 	}
515 	kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size);
516 }
517 
518 /*
519  * Announce device attach/detach to userland listeners.
520  */
521 
522 int
no_devmon_insert(const char * name,prop_dictionary_t p)523 no_devmon_insert(const char *name, prop_dictionary_t p)
524 {
525 
526 	return ENODEV;
527 }
528 
529 static void
devmon_report_device(device_t dev,bool isattach)530 devmon_report_device(device_t dev, bool isattach)
531 {
532 	prop_dictionary_t ev;
533 	const char *parent;
534 	const char *what;
535 	device_t pdev = device_parent(dev);
536 
537 	/* If currently no drvctl device, just return */
538 	if (devmon_insert_vec == no_devmon_insert)
539 		return;
540 
541 	ev = prop_dictionary_create();
542 	if (ev == NULL)
543 		return;
544 
545 	what = (isattach ? "device-attach" : "device-detach");
546 	parent = (pdev == NULL ? "root" : device_xname(pdev));
547 	if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
548 	    !prop_dictionary_set_cstring(ev, "parent", parent)) {
549 		prop_object_release(ev);
550 		return;
551 	}
552 
553 	if ((*devmon_insert_vec)(what, ev) != 0)
554 		prop_object_release(ev);
555 }
556 
557 /*
558  * Add a cfdriver to the system.
559  */
560 int
config_cfdriver_attach(struct cfdriver * cd)561 config_cfdriver_attach(struct cfdriver *cd)
562 {
563 	struct cfdriver *lcd;
564 
565 	/* Make sure this driver isn't already in the system. */
566 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
567 		if (STREQ(lcd->cd_name, cd->cd_name))
568 			return EEXIST;
569 	}
570 
571 	LIST_INIT(&cd->cd_attach);
572 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
573 
574 	return 0;
575 }
576 
577 /*
578  * Remove a cfdriver from the system.
579  */
580 int
config_cfdriver_detach(struct cfdriver * cd)581 config_cfdriver_detach(struct cfdriver *cd)
582 {
583 	struct alldevs_foray af;
584 	int i, rc = 0;
585 
586 	config_alldevs_enter(&af);
587 	/* Make sure there are no active instances. */
588 	for (i = 0; i < cd->cd_ndevs; i++) {
589 		if (cd->cd_devs[i] != NULL) {
590 			rc = EBUSY;
591 			break;
592 		}
593 	}
594 	config_alldevs_exit(&af);
595 
596 	if (rc != 0)
597 		return rc;
598 
599 	/* ...and no attachments loaded. */
600 	if (LIST_EMPTY(&cd->cd_attach) == 0)
601 		return EBUSY;
602 
603 	LIST_REMOVE(cd, cd_list);
604 
605 	KASSERT(cd->cd_devs == NULL);
606 
607 	return 0;
608 }
609 
610 /*
611  * Look up a cfdriver by name.
612  */
613 struct cfdriver *
config_cfdriver_lookup(const char * name)614 config_cfdriver_lookup(const char *name)
615 {
616 	struct cfdriver *cd;
617 
618 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
619 		if (STREQ(cd->cd_name, name))
620 			return cd;
621 	}
622 
623 	return NULL;
624 }
625 
626 /*
627  * Add a cfattach to the specified driver.
628  */
629 int
config_cfattach_attach(const char * driver,struct cfattach * ca)630 config_cfattach_attach(const char *driver, struct cfattach *ca)
631 {
632 	struct cfattach *lca;
633 	struct cfdriver *cd;
634 
635 	cd = config_cfdriver_lookup(driver);
636 	if (cd == NULL)
637 		return ESRCH;
638 
639 	/* Make sure this attachment isn't already on this driver. */
640 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
641 		if (STREQ(lca->ca_name, ca->ca_name))
642 			return EEXIST;
643 	}
644 
645 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
646 
647 	return 0;
648 }
649 
650 /*
651  * Remove a cfattach from the specified driver.
652  */
653 int
config_cfattach_detach(const char * driver,struct cfattach * ca)654 config_cfattach_detach(const char *driver, struct cfattach *ca)
655 {
656 	struct alldevs_foray af;
657 	struct cfdriver *cd;
658 	device_t dev;
659 	int i, rc = 0;
660 
661 	cd = config_cfdriver_lookup(driver);
662 	if (cd == NULL)
663 		return ESRCH;
664 
665 	config_alldevs_enter(&af);
666 	/* Make sure there are no active instances. */
667 	for (i = 0; i < cd->cd_ndevs; i++) {
668 		if ((dev = cd->cd_devs[i]) == NULL)
669 			continue;
670 		if (dev->dv_cfattach == ca) {
671 			rc = EBUSY;
672 			break;
673 		}
674 	}
675 	config_alldevs_exit(&af);
676 
677 	if (rc != 0)
678 		return rc;
679 
680 	LIST_REMOVE(ca, ca_list);
681 
682 	return 0;
683 }
684 
685 /*
686  * Look up a cfattach by name.
687  */
688 static struct cfattach *
config_cfattach_lookup_cd(struct cfdriver * cd,const char * atname)689 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
690 {
691 	struct cfattach *ca;
692 
693 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
694 		if (STREQ(ca->ca_name, atname))
695 			return ca;
696 	}
697 
698 	return NULL;
699 }
700 
701 /*
702  * Look up a cfattach by driver/attachment name.
703  */
704 struct cfattach *
config_cfattach_lookup(const char * name,const char * atname)705 config_cfattach_lookup(const char *name, const char *atname)
706 {
707 	struct cfdriver *cd;
708 
709 	cd = config_cfdriver_lookup(name);
710 	if (cd == NULL)
711 		return NULL;
712 
713 	return config_cfattach_lookup_cd(cd, atname);
714 }
715 
716 /*
717  * Apply the matching function and choose the best.  This is used
718  * a few times and we want to keep the code small.
719  */
720 static void
mapply(struct matchinfo * m,cfdata_t cf)721 mapply(struct matchinfo *m, cfdata_t cf)
722 {
723 	int pri;
724 
725 	if (m->fn != NULL) {
726 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
727 	} else {
728 		pri = config_match(m->parent, cf, m->aux);
729 	}
730 	if (pri > m->pri) {
731 		m->match = cf;
732 		m->pri = pri;
733 	}
734 }
735 
736 int
config_stdsubmatch(device_t parent,cfdata_t cf,const int * locs,void * aux)737 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
738 {
739 	const struct cfiattrdata *ci;
740 	const struct cflocdesc *cl;
741 	int nlocs, i;
742 
743 	ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
744 	KASSERT(ci);
745 	nlocs = ci->ci_loclen;
746 	KASSERT(!nlocs || locs);
747 	for (i = 0; i < nlocs; i++) {
748 		cl = &ci->ci_locdesc[i];
749 		if (cl->cld_defaultstr != NULL &&
750 		    cf->cf_loc[i] == cl->cld_default)
751 			continue;
752 		if (cf->cf_loc[i] == locs[i])
753 			continue;
754 		return 0;
755 	}
756 
757 	return config_match(parent, cf, aux);
758 }
759 
760 /*
761  * Helper function: check whether the driver supports the interface attribute
762  * and return its descriptor structure.
763  */
764 static const struct cfiattrdata *
cfdriver_get_iattr(const struct cfdriver * cd,const char * ia)765 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
766 {
767 	const struct cfiattrdata * const *cpp;
768 
769 	if (cd->cd_attrs == NULL)
770 		return 0;
771 
772 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
773 		if (STREQ((*cpp)->ci_name, ia)) {
774 			/* Match. */
775 			return *cpp;
776 		}
777 	}
778 	return 0;
779 }
780 
781 /*
782  * Lookup an interface attribute description by name.
783  * If the driver is given, consider only its supported attributes.
784  */
785 const struct cfiattrdata *
cfiattr_lookup(const char * name,const struct cfdriver * cd)786 cfiattr_lookup(const char *name, const struct cfdriver *cd)
787 {
788 	const struct cfdriver *d;
789 	const struct cfiattrdata *ia;
790 
791 	if (cd)
792 		return cfdriver_get_iattr(cd, name);
793 
794 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
795 		ia = cfdriver_get_iattr(d, name);
796 		if (ia)
797 			return ia;
798 	}
799 	return 0;
800 }
801 
802 /*
803  * Determine if `parent' is a potential parent for a device spec based
804  * on `cfp'.
805  */
806 static int
cfparent_match(const device_t parent,const struct cfparent * cfp)807 cfparent_match(const device_t parent, const struct cfparent *cfp)
808 {
809 	struct cfdriver *pcd;
810 
811 	/* We don't match root nodes here. */
812 	if (cfp == NULL)
813 		return 0;
814 
815 	pcd = parent->dv_cfdriver;
816 	KASSERT(pcd != NULL);
817 
818 	/*
819 	 * First, ensure this parent has the correct interface
820 	 * attribute.
821 	 */
822 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
823 		return 0;
824 
825 	/*
826 	 * If no specific parent device instance was specified (i.e.
827 	 * we're attaching to the attribute only), we're done!
828 	 */
829 	if (cfp->cfp_parent == NULL)
830 		return 1;
831 
832 	/*
833 	 * Check the parent device's name.
834 	 */
835 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
836 		return 0;	/* not the same parent */
837 
838 	/*
839 	 * Make sure the unit number matches.
840 	 */
841 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
842 	    cfp->cfp_unit == parent->dv_unit)
843 		return 1;
844 
845 	/* Unit numbers don't match. */
846 	return 0;
847 }
848 
849 /*
850  * Helper for config_cfdata_attach(): check all devices whether it could be
851  * parent any attachment in the config data table passed, and rescan.
852  */
853 static void
rescan_with_cfdata(const struct cfdata * cf)854 rescan_with_cfdata(const struct cfdata *cf)
855 {
856 	device_t d;
857 	const struct cfdata *cf1;
858 	deviter_t di;
859 
860 
861 	/*
862 	 * "alldevs" is likely longer than a modules's cfdata, so make it
863 	 * the outer loop.
864 	 */
865 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
866 
867 		if (!(d->dv_cfattach->ca_rescan))
868 			continue;
869 
870 		for (cf1 = cf; cf1->cf_name; cf1++) {
871 
872 			if (!cfparent_match(d, cf1->cf_pspec))
873 				continue;
874 
875 			(*d->dv_cfattach->ca_rescan)(d,
876 				cfdata_ifattr(cf1), cf1->cf_loc);
877 
878 			config_deferred(d);
879 		}
880 	}
881 	deviter_release(&di);
882 }
883 
884 /*
885  * Attach a supplemental config data table and rescan potential
886  * parent devices if required.
887  */
888 int
config_cfdata_attach(cfdata_t cf,int scannow)889 config_cfdata_attach(cfdata_t cf, int scannow)
890 {
891 	struct cftable *ct;
892 
893 	ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
894 	ct->ct_cfdata = cf;
895 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
896 
897 	if (scannow)
898 		rescan_with_cfdata(cf);
899 
900 	return 0;
901 }
902 
903 /*
904  * Helper for config_cfdata_detach: check whether a device is
905  * found through any attachment in the config data table.
906  */
907 static int
dev_in_cfdata(device_t d,cfdata_t cf)908 dev_in_cfdata(device_t d, cfdata_t cf)
909 {
910 	const struct cfdata *cf1;
911 
912 	for (cf1 = cf; cf1->cf_name; cf1++)
913 		if (d->dv_cfdata == cf1)
914 			return 1;
915 
916 	return 0;
917 }
918 
919 /*
920  * Detach a supplemental config data table. Detach all devices found
921  * through that table (and thus keeping references to it) before.
922  */
923 int
config_cfdata_detach(cfdata_t cf)924 config_cfdata_detach(cfdata_t cf)
925 {
926 	device_t d;
927 	int error = 0;
928 	struct cftable *ct;
929 	deviter_t di;
930 
931 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
932 	     d = deviter_next(&di)) {
933 		if (!dev_in_cfdata(d, cf))
934 			continue;
935 		if ((error = config_detach(d, 0)) != 0)
936 			break;
937 	}
938 	deviter_release(&di);
939 	if (error) {
940 		aprint_error_dev(d, "unable to detach instance\n");
941 		return error;
942 	}
943 
944 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
945 		if (ct->ct_cfdata == cf) {
946 			TAILQ_REMOVE(&allcftables, ct, ct_list);
947 			kmem_free(ct, sizeof(*ct));
948 			return 0;
949 		}
950 	}
951 
952 	/* not found -- shouldn't happen */
953 	return EINVAL;
954 }
955 
956 /*
957  * Invoke the "match" routine for a cfdata entry on behalf of
958  * an external caller, usually a "submatch" routine.
959  */
960 int
config_match(device_t parent,cfdata_t cf,void * aux)961 config_match(device_t parent, cfdata_t cf, void *aux)
962 {
963 	struct cfattach *ca;
964 
965 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
966 	if (ca == NULL) {
967 		/* No attachment for this entry, oh well. */
968 		return 0;
969 	}
970 
971 	return (*ca->ca_match)(parent, cf, aux);
972 }
973 
974 /*
975  * Iterate over all potential children of some device, calling the given
976  * function (default being the child's match function) for each one.
977  * Nonzero returns are matches; the highest value returned is considered
978  * the best match.  Return the `found child' if we got a match, or NULL
979  * otherwise.  The `aux' pointer is simply passed on through.
980  *
981  * Note that this function is designed so that it can be used to apply
982  * an arbitrary function to all potential children (its return value
983  * can be ignored).
984  */
985 cfdata_t
config_search_loc(cfsubmatch_t fn,device_t parent,const char * ifattr,const int * locs,void * aux)986 config_search_loc(cfsubmatch_t fn, device_t parent,
987 		  const char *ifattr, const int *locs, void *aux)
988 {
989 	struct cftable *ct;
990 	cfdata_t cf;
991 	struct matchinfo m;
992 
993 	KASSERT(config_initialized);
994 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
995 
996 	m.fn = fn;
997 	m.parent = parent;
998 	m.locs = locs;
999 	m.aux = aux;
1000 	m.match = NULL;
1001 	m.pri = 0;
1002 
1003 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1004 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1005 
1006 			/* We don't match root nodes here. */
1007 			if (!cf->cf_pspec)
1008 				continue;
1009 
1010 			/*
1011 			 * Skip cf if no longer eligible, otherwise scan
1012 			 * through parents for one matching `parent', and
1013 			 * try match function.
1014 			 */
1015 			if (cf->cf_fstate == FSTATE_FOUND)
1016 				continue;
1017 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
1018 			    cf->cf_fstate == FSTATE_DSTAR)
1019 				continue;
1020 
1021 			/*
1022 			 * If an interface attribute was specified,
1023 			 * consider only children which attach to
1024 			 * that attribute.
1025 			 */
1026 			if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
1027 				continue;
1028 
1029 			if (cfparent_match(parent, cf->cf_pspec))
1030 				mapply(&m, cf);
1031 		}
1032 	}
1033 	return m.match;
1034 }
1035 
1036 cfdata_t
config_search_ia(cfsubmatch_t fn,device_t parent,const char * ifattr,void * aux)1037 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
1038     void *aux)
1039 {
1040 
1041 	return config_search_loc(fn, parent, ifattr, NULL, aux);
1042 }
1043 
1044 /*
1045  * Find the given root device.
1046  * This is much like config_search, but there is no parent.
1047  * Don't bother with multiple cfdata tables; the root node
1048  * must always be in the initial table.
1049  */
1050 cfdata_t
config_rootsearch(cfsubmatch_t fn,const char * rootname,void * aux)1051 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
1052 {
1053 	cfdata_t cf;
1054 	const short *p;
1055 	struct matchinfo m;
1056 
1057 	m.fn = fn;
1058 	m.parent = ROOT;
1059 	m.aux = aux;
1060 	m.match = NULL;
1061 	m.pri = 0;
1062 	m.locs = 0;
1063 	/*
1064 	 * Look at root entries for matching name.  We do not bother
1065 	 * with found-state here since only one root should ever be
1066 	 * searched (and it must be done first).
1067 	 */
1068 	for (p = cfroots; *p >= 0; p++) {
1069 		cf = &cfdata[*p];
1070 		if (strcmp(cf->cf_name, rootname) == 0)
1071 			mapply(&m, cf);
1072 	}
1073 	return m.match;
1074 }
1075 
1076 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
1077 
1078 /*
1079  * The given `aux' argument describes a device that has been found
1080  * on the given parent, but not necessarily configured.  Locate the
1081  * configuration data for that device (using the submatch function
1082  * provided, or using candidates' cd_match configuration driver
1083  * functions) and attach it, and return its device_t.  If the device was
1084  * not configured, call the given `print' function and return NULL.
1085  */
1086 device_t
config_found_sm_loc(device_t parent,const char * ifattr,const int * locs,void * aux,cfprint_t print,cfsubmatch_t submatch)1087 config_found_sm_loc(device_t parent,
1088 		const char *ifattr, const int *locs, void *aux,
1089 		cfprint_t print, cfsubmatch_t submatch)
1090 {
1091 	cfdata_t cf;
1092 
1093 	if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
1094 		return(config_attach_loc(parent, cf, locs, aux, print));
1095 	if (print) {
1096 		if (config_do_twiddle && cold)
1097 			twiddle();
1098 		aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
1099 	}
1100 
1101 	/*
1102 	 * This has the effect of mixing in a single timestamp to the
1103 	 * entropy pool.  Experiments indicate the estimator will almost
1104 	 * always attribute one bit of entropy to this sample; analysis
1105 	 * of device attach/detach timestamps on FreeBSD indicates 4
1106 	 * bits of entropy/sample so this seems appropriately conservative.
1107 	 */
1108 	rnd_add_uint32(&rnd_autoconf_source, 0);
1109 	return NULL;
1110 }
1111 
1112 device_t
config_found_ia(device_t parent,const char * ifattr,void * aux,cfprint_t print)1113 config_found_ia(device_t parent, const char *ifattr, void *aux,
1114     cfprint_t print)
1115 {
1116 
1117 	return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
1118 }
1119 
1120 device_t
config_found(device_t parent,void * aux,cfprint_t print)1121 config_found(device_t parent, void *aux, cfprint_t print)
1122 {
1123 
1124 	return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
1125 }
1126 
1127 /*
1128  * As above, but for root devices.
1129  */
1130 device_t
config_rootfound(const char * rootname,void * aux)1131 config_rootfound(const char *rootname, void *aux)
1132 {
1133 	cfdata_t cf;
1134 
1135 	if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
1136 		return config_attach(ROOT, cf, aux, NULL);
1137 	aprint_error("root device %s not configured\n", rootname);
1138 	return NULL;
1139 }
1140 
1141 /* just like sprintf(buf, "%d") except that it works from the end */
1142 static char *
number(char * ep,int n)1143 number(char *ep, int n)
1144 {
1145 
1146 	*--ep = 0;
1147 	while (n >= 10) {
1148 		*--ep = (n % 10) + '0';
1149 		n /= 10;
1150 	}
1151 	*--ep = n + '0';
1152 	return ep;
1153 }
1154 
1155 /*
1156  * Expand the size of the cd_devs array if necessary.
1157  *
1158  * The caller must hold alldevs_mtx. config_makeroom() may release and
1159  * re-acquire alldevs_mtx, so callers should re-check conditions such
1160  * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
1161  * returns.
1162  */
1163 static void
config_makeroom(int n,struct cfdriver * cd)1164 config_makeroom(int n, struct cfdriver *cd)
1165 {
1166 	int ondevs, nndevs;
1167 	device_t *osp, *nsp;
1168 
1169 	alldevs_nwrite++;
1170 
1171 	for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs)
1172 		;
1173 
1174 	while (n >= cd->cd_ndevs) {
1175 		/*
1176 		 * Need to expand the array.
1177 		 */
1178 		ondevs = cd->cd_ndevs;
1179 		osp = cd->cd_devs;
1180 
1181 		/* Release alldevs_mtx around allocation, which may
1182 		 * sleep.
1183 		 */
1184 		mutex_exit(&alldevs_mtx);
1185 		nsp = kmem_alloc(sizeof(device_t[nndevs]), KM_SLEEP);
1186 		if (nsp == NULL)
1187 			panic("%s: could not expand cd_devs", __func__);
1188 		mutex_enter(&alldevs_mtx);
1189 
1190 		/* If another thread moved the array while we did
1191 		 * not hold alldevs_mtx, try again.
1192 		 */
1193 		if (cd->cd_devs != osp) {
1194 			mutex_exit(&alldevs_mtx);
1195 			kmem_free(nsp, sizeof(device_t[nndevs]));
1196 			mutex_enter(&alldevs_mtx);
1197 			continue;
1198 		}
1199 
1200 		memset(nsp + ondevs, 0, sizeof(device_t[nndevs - ondevs]));
1201 		if (ondevs != 0)
1202 			memcpy(nsp, cd->cd_devs, sizeof(device_t[ondevs]));
1203 
1204 		cd->cd_ndevs = nndevs;
1205 		cd->cd_devs = nsp;
1206 		if (ondevs != 0) {
1207 			mutex_exit(&alldevs_mtx);
1208 			kmem_free(osp, sizeof(device_t[ondevs]));
1209 			mutex_enter(&alldevs_mtx);
1210 		}
1211 	}
1212 	alldevs_nwrite--;
1213 }
1214 
1215 /*
1216  * Put dev into the devices list.
1217  */
1218 static void
config_devlink(device_t dev)1219 config_devlink(device_t dev)
1220 {
1221 
1222 	mutex_enter(&alldevs_mtx);
1223 
1224 	KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
1225 
1226 	dev->dv_add_gen = alldevs_gen;
1227 	/* It is safe to add a device to the tail of the list while
1228 	 * readers and writers are in the list.
1229 	 */
1230 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
1231 	mutex_exit(&alldevs_mtx);
1232 }
1233 
1234 static void
config_devfree(device_t dev)1235 config_devfree(device_t dev)
1236 {
1237 	int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
1238 
1239 	if (dev->dv_cfattach->ca_devsize > 0)
1240 		kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1241 	if (priv)
1242 		kmem_free(dev, sizeof(*dev));
1243 }
1244 
1245 /*
1246  * Caller must hold alldevs_mtx.
1247  */
1248 static void
config_devunlink(device_t dev,struct devicelist * garbage)1249 config_devunlink(device_t dev, struct devicelist *garbage)
1250 {
1251 	struct device_garbage *dg = &dev->dv_garbage;
1252 	cfdriver_t cd = device_cfdriver(dev);
1253 	int i;
1254 
1255 	KASSERT(mutex_owned(&alldevs_mtx));
1256 
1257  	/* Unlink from device list.  Link to garbage list. */
1258 	TAILQ_REMOVE(&alldevs, dev, dv_list);
1259 	TAILQ_INSERT_TAIL(garbage, dev, dv_list);
1260 
1261 	/* Remove from cfdriver's array. */
1262 	cd->cd_devs[dev->dv_unit] = NULL;
1263 
1264 	/*
1265 	 * If the device now has no units in use, unlink its softc array.
1266 	 */
1267 	for (i = 0; i < cd->cd_ndevs; i++) {
1268 		if (cd->cd_devs[i] != NULL)
1269 			break;
1270 	}
1271 	/* Nothing found.  Unlink, now.  Deallocate, later. */
1272 	if (i == cd->cd_ndevs) {
1273 		dg->dg_ndevs = cd->cd_ndevs;
1274 		dg->dg_devs = cd->cd_devs;
1275 		cd->cd_devs = NULL;
1276 		cd->cd_ndevs = 0;
1277 	}
1278 }
1279 
1280 static void
config_devdelete(device_t dev)1281 config_devdelete(device_t dev)
1282 {
1283 	struct device_garbage *dg = &dev->dv_garbage;
1284 	device_lock_t dvl = device_getlock(dev);
1285 
1286 	if (dg->dg_devs != NULL)
1287 		kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs]));
1288 
1289 	cv_destroy(&dvl->dvl_cv);
1290 	mutex_destroy(&dvl->dvl_mtx);
1291 
1292 	KASSERT(dev->dv_properties != NULL);
1293 	prop_object_release(dev->dv_properties);
1294 
1295 	if (dev->dv_activity_handlers)
1296 		panic("%s with registered handlers", __func__);
1297 
1298 	if (dev->dv_locators) {
1299 		size_t amount = *--dev->dv_locators;
1300 		kmem_free(dev->dv_locators, amount);
1301 	}
1302 
1303 	config_devfree(dev);
1304 }
1305 
1306 static int
config_unit_nextfree(cfdriver_t cd,cfdata_t cf)1307 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
1308 {
1309 	int unit;
1310 
1311 	if (cf->cf_fstate == FSTATE_STAR) {
1312 		for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
1313 			if (cd->cd_devs[unit] == NULL)
1314 				break;
1315 		/*
1316 		 * unit is now the unit of the first NULL device pointer,
1317 		 * or max(cd->cd_ndevs,cf->cf_unit).
1318 		 */
1319 	} else {
1320 		unit = cf->cf_unit;
1321 		if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
1322 			unit = -1;
1323 	}
1324 	return unit;
1325 }
1326 
1327 static int
config_unit_alloc(device_t dev,cfdriver_t cd,cfdata_t cf)1328 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
1329 {
1330 	struct alldevs_foray af;
1331 	int unit;
1332 
1333 	config_alldevs_enter(&af);
1334 	for (;;) {
1335 		unit = config_unit_nextfree(cd, cf);
1336 		if (unit == -1)
1337 			break;
1338 		if (unit < cd->cd_ndevs) {
1339 			cd->cd_devs[unit] = dev;
1340 			dev->dv_unit = unit;
1341 			break;
1342 		}
1343 		config_makeroom(unit, cd);
1344 	}
1345 	config_alldevs_exit(&af);
1346 
1347 	return unit;
1348 }
1349 
1350 static device_t
config_devalloc(const device_t parent,const cfdata_t cf,const int * locs)1351 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1352 {
1353 	cfdriver_t cd;
1354 	cfattach_t ca;
1355 	size_t lname, lunit;
1356 	const char *xunit;
1357 	int myunit;
1358 	char num[10];
1359 	device_t dev;
1360 	void *dev_private;
1361 	const struct cfiattrdata *ia;
1362 	device_lock_t dvl;
1363 
1364 	cd = config_cfdriver_lookup(cf->cf_name);
1365 	if (cd == NULL)
1366 		return NULL;
1367 
1368 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1369 	if (ca == NULL)
1370 		return NULL;
1371 
1372 	/* get memory for all device vars */
1373 	KASSERTMSG((ca->ca_flags & DVF_PRIV_ALLOC)
1374 	    || ca->ca_devsize >= sizeof(struct device),
1375 	    "%s: %s (%zu < %zu)", __func__, cf->cf_atname, ca->ca_devsize,
1376 	    sizeof(struct device));
1377 	if (ca->ca_devsize > 0) {
1378 		dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1379 		if (dev_private == NULL)
1380 			panic("config_devalloc: memory allocation for device "
1381 			    "softc failed");
1382 	} else {
1383 		KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1384 		dev_private = NULL;
1385 	}
1386 
1387 	if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1388 		dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1389 	} else {
1390 		dev = dev_private;
1391 #ifdef DIAGNOSTIC
1392 		printf("%s has not been converted to device_t\n", cd->cd_name);
1393 #endif
1394 	}
1395 	if (dev == NULL)
1396 		panic("config_devalloc: memory allocation for device_t failed");
1397 
1398 	dev->dv_class = cd->cd_class;
1399 	dev->dv_cfdata = cf;
1400 	dev->dv_cfdriver = cd;
1401 	dev->dv_cfattach = ca;
1402 	dev->dv_activity_count = 0;
1403 	dev->dv_activity_handlers = NULL;
1404 	dev->dv_private = dev_private;
1405 	dev->dv_flags = ca->ca_flags;	/* inherit flags from class */
1406 
1407 	myunit = config_unit_alloc(dev, cd, cf);
1408 	if (myunit == -1) {
1409 		config_devfree(dev);
1410 		return NULL;
1411 	}
1412 
1413 	/* compute length of name and decimal expansion of unit number */
1414 	lname = strlen(cd->cd_name);
1415 	xunit = number(&num[sizeof(num)], myunit);
1416 	lunit = &num[sizeof(num)] - xunit;
1417 	if (lname + lunit > sizeof(dev->dv_xname))
1418 		panic("config_devalloc: device name too long");
1419 
1420 	dvl = device_getlock(dev);
1421 
1422 	mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
1423 	cv_init(&dvl->dvl_cv, "pmfsusp");
1424 
1425 	memcpy(dev->dv_xname, cd->cd_name, lname);
1426 	memcpy(dev->dv_xname + lname, xunit, lunit);
1427 	dev->dv_parent = parent;
1428 	if (parent != NULL)
1429 		dev->dv_depth = parent->dv_depth + 1;
1430 	else
1431 		dev->dv_depth = 0;
1432 	dev->dv_flags |= DVF_ACTIVE;	/* always initially active */
1433 	if (locs) {
1434 		KASSERT(parent); /* no locators at root */
1435 		ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
1436 		dev->dv_locators =
1437 		    kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
1438 		*dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
1439 		memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
1440 	}
1441 	dev->dv_properties = prop_dictionary_create();
1442 	KASSERT(dev->dv_properties != NULL);
1443 
1444 	prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1445 	    "device-driver", dev->dv_cfdriver->cd_name);
1446 	prop_dictionary_set_uint16(dev->dv_properties,
1447 	    "device-unit", dev->dv_unit);
1448 	if (parent != NULL) {
1449 		prop_dictionary_set_cstring(dev->dv_properties,
1450 		    "device-parent", device_xname(parent));
1451 	}
1452 
1453 	if (dev->dv_cfdriver->cd_attrs != NULL)
1454 		config_add_attrib_dict(dev);
1455 
1456 	return dev;
1457 }
1458 
1459 /*
1460  * Create an array of device attach attributes and add it
1461  * to the device's dv_properties dictionary.
1462  *
1463  * <key>interface-attributes</key>
1464  * <array>
1465  *    <dict>
1466  *       <key>attribute-name</key>
1467  *       <string>foo</string>
1468  *       <key>locators</key>
1469  *       <array>
1470  *          <dict>
1471  *             <key>loc-name</key>
1472  *             <string>foo-loc1</string>
1473  *          </dict>
1474  *          <dict>
1475  *             <key>loc-name</key>
1476  *             <string>foo-loc2</string>
1477  *             <key>default</key>
1478  *             <string>foo-loc2-default</string>
1479  *          </dict>
1480  *          ...
1481  *       </array>
1482  *    </dict>
1483  *    ...
1484  * </array>
1485  */
1486 
1487 static void
config_add_attrib_dict(device_t dev)1488 config_add_attrib_dict(device_t dev)
1489 {
1490 	int i, j;
1491 	const struct cfiattrdata *ci;
1492 	prop_dictionary_t attr_dict, loc_dict;
1493 	prop_array_t attr_array, loc_array;
1494 
1495 	if ((attr_array = prop_array_create()) == NULL)
1496 		return;
1497 
1498 	for (i = 0; ; i++) {
1499 		if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
1500 			break;
1501 		if ((attr_dict = prop_dictionary_create()) == NULL)
1502 			break;
1503 		prop_dictionary_set_cstring_nocopy(attr_dict, "attribute-name",
1504 		    ci->ci_name);
1505 
1506 		/* Create an array of the locator names and defaults */
1507 
1508 		if (ci->ci_loclen != 0 &&
1509 		    (loc_array = prop_array_create()) != NULL) {
1510 			for (j = 0; j < ci->ci_loclen; j++) {
1511 				loc_dict = prop_dictionary_create();
1512 				if (loc_dict == NULL)
1513 					continue;
1514 				prop_dictionary_set_cstring_nocopy(loc_dict,
1515 				    "loc-name", ci->ci_locdesc[j].cld_name);
1516 				if (ci->ci_locdesc[j].cld_defaultstr != NULL)
1517 					prop_dictionary_set_cstring_nocopy(
1518 					    loc_dict, "default",
1519 					    ci->ci_locdesc[j].cld_defaultstr);
1520 				prop_array_set(loc_array, j, loc_dict);
1521 				prop_object_release(loc_dict);
1522 			}
1523 			prop_dictionary_set_and_rel(attr_dict, "locators",
1524 			    loc_array);
1525 		}
1526 		prop_array_add(attr_array, attr_dict);
1527 		prop_object_release(attr_dict);
1528 	}
1529 	if (i == 0)
1530 		prop_object_release(attr_array);
1531 	else
1532 		prop_dictionary_set_and_rel(dev->dv_properties,
1533 		    "interface-attributes", attr_array);
1534 
1535 	return;
1536 }
1537 
1538 /*
1539  * Attach a found device.
1540  */
1541 device_t
config_attach_loc(device_t parent,cfdata_t cf,const int * locs,void * aux,cfprint_t print)1542 config_attach_loc(device_t parent, cfdata_t cf,
1543 	const int *locs, void *aux, cfprint_t print)
1544 {
1545 	device_t dev;
1546 	struct cftable *ct;
1547 	const char *drvname;
1548 
1549 	dev = config_devalloc(parent, cf, locs);
1550 	if (!dev)
1551 		panic("config_attach: allocation of device softc failed");
1552 
1553 	/* XXX redundant - see below? */
1554 	if (cf->cf_fstate != FSTATE_STAR) {
1555 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1556 		cf->cf_fstate = FSTATE_FOUND;
1557 	}
1558 
1559 	config_devlink(dev);
1560 
1561 	if (config_do_twiddle && cold)
1562 		twiddle();
1563 	else
1564 		aprint_naive("Found ");
1565 	/*
1566 	 * We want the next two printfs for normal, verbose, and quiet,
1567 	 * but not silent (in which case, we're twiddling, instead).
1568 	 */
1569 	if (parent == ROOT) {
1570 		aprint_naive("%s (root)", device_xname(dev));
1571 		aprint_normal("%s (root)", device_xname(dev));
1572 	} else {
1573 		aprint_naive("%s at %s", device_xname(dev),
1574 		    device_xname(parent));
1575 		aprint_normal("%s at %s", device_xname(dev),
1576 		    device_xname(parent));
1577 		if (print)
1578 			(void) (*print)(aux, NULL);
1579 	}
1580 
1581 	/*
1582 	 * Before attaching, clobber any unfound devices that are
1583 	 * otherwise identical.
1584 	 * XXX code above is redundant?
1585 	 */
1586 	drvname = dev->dv_cfdriver->cd_name;
1587 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1588 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1589 			if (STREQ(cf->cf_name, drvname) &&
1590 			    cf->cf_unit == dev->dv_unit) {
1591 				if (cf->cf_fstate == FSTATE_NOTFOUND)
1592 					cf->cf_fstate = FSTATE_FOUND;
1593 			}
1594 		}
1595 	}
1596 	device_register(dev, aux);
1597 
1598 	/* Let userland know */
1599 	devmon_report_device(dev, true);
1600 
1601 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1602 
1603 	if (!device_pmf_is_registered(dev))
1604 		aprint_debug_dev(dev, "WARNING: power management not "
1605 		    "supported\n");
1606 
1607 	config_process_deferred(&deferred_config_queue, dev);
1608 
1609 	device_register_post_config(dev, aux);
1610 	return dev;
1611 }
1612 
1613 device_t
config_attach(device_t parent,cfdata_t cf,void * aux,cfprint_t print)1614 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1615 {
1616 
1617 	return config_attach_loc(parent, cf, NULL, aux, print);
1618 }
1619 
1620 /*
1621  * As above, but for pseudo-devices.  Pseudo-devices attached in this
1622  * way are silently inserted into the device tree, and their children
1623  * attached.
1624  *
1625  * Note that because pseudo-devices are attached silently, any information
1626  * the attach routine wishes to print should be prefixed with the device
1627  * name by the attach routine.
1628  */
1629 device_t
config_attach_pseudo(cfdata_t cf)1630 config_attach_pseudo(cfdata_t cf)
1631 {
1632 	device_t dev;
1633 
1634 	dev = config_devalloc(ROOT, cf, NULL);
1635 	if (!dev)
1636 		return NULL;
1637 
1638 	/* XXX mark busy in cfdata */
1639 
1640 	if (cf->cf_fstate != FSTATE_STAR) {
1641 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1642 		cf->cf_fstate = FSTATE_FOUND;
1643 	}
1644 
1645 	config_devlink(dev);
1646 
1647 #if 0	/* XXXJRT not yet */
1648 	device_register(dev, NULL);	/* like a root node */
1649 #endif
1650 
1651 	/* Let userland know */
1652 	devmon_report_device(dev, true);
1653 
1654 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1655 
1656 	config_process_deferred(&deferred_config_queue, dev);
1657 	return dev;
1658 }
1659 
1660 /*
1661  * Caller must hold alldevs_mtx.
1662  */
1663 static void
config_collect_garbage(struct devicelist * garbage)1664 config_collect_garbage(struct devicelist *garbage)
1665 {
1666 	device_t dv;
1667 
1668 	KASSERT(!cpu_intr_p());
1669 	KASSERT(!cpu_softintr_p());
1670 	KASSERT(mutex_owned(&alldevs_mtx));
1671 
1672 	while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
1673 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
1674 			if (dv->dv_del_gen != 0)
1675 				break;
1676 		}
1677 		if (dv == NULL) {
1678 			alldevs_garbage = false;
1679 			break;
1680 		}
1681 		config_devunlink(dv, garbage);
1682 	}
1683 	KASSERT(mutex_owned(&alldevs_mtx));
1684 }
1685 
1686 static void
config_dump_garbage(struct devicelist * garbage)1687 config_dump_garbage(struct devicelist *garbage)
1688 {
1689 	device_t dv;
1690 
1691 	while ((dv = TAILQ_FIRST(garbage)) != NULL) {
1692 		TAILQ_REMOVE(garbage, dv, dv_list);
1693 		config_devdelete(dv);
1694 	}
1695 }
1696 
1697 /*
1698  * Detach a device.  Optionally forced (e.g. because of hardware
1699  * removal) and quiet.  Returns zero if successful, non-zero
1700  * (an error code) otherwise.
1701  *
1702  * Note that this code wants to be run from a process context, so
1703  * that the detach can sleep to allow processes which have a device
1704  * open to run and unwind their stacks.
1705  */
1706 int
config_detach(device_t dev,int flags)1707 config_detach(device_t dev, int flags)
1708 {
1709 	struct alldevs_foray af;
1710 	struct cftable *ct;
1711 	cfdata_t cf;
1712 	const struct cfattach *ca;
1713 	struct cfdriver *cd;
1714 #ifdef DIAGNOSTIC
1715 	device_t d;
1716 #endif
1717 	int rv = 0;
1718 
1719 #ifdef DIAGNOSTIC
1720 	cf = dev->dv_cfdata;
1721 	if (cf != NULL && cf->cf_fstate != FSTATE_FOUND &&
1722 	    cf->cf_fstate != FSTATE_STAR)
1723 		panic("config_detach: %s: bad device fstate %d",
1724 		    device_xname(dev), cf ? cf->cf_fstate : -1);
1725 #endif
1726 	cd = dev->dv_cfdriver;
1727 	KASSERT(cd != NULL);
1728 
1729 	ca = dev->dv_cfattach;
1730 	KASSERT(ca != NULL);
1731 
1732 	mutex_enter(&alldevs_mtx);
1733 	if (dev->dv_del_gen != 0) {
1734 		mutex_exit(&alldevs_mtx);
1735 #ifdef DIAGNOSTIC
1736 		printf("%s: %s is already detached\n", __func__,
1737 		    device_xname(dev));
1738 #endif /* DIAGNOSTIC */
1739 		return ENOENT;
1740 	}
1741 	alldevs_nwrite++;
1742 	mutex_exit(&alldevs_mtx);
1743 
1744 	if (!detachall &&
1745 	    (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
1746 	    (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
1747 		rv = EOPNOTSUPP;
1748 	} else if (ca->ca_detach != NULL) {
1749 		rv = (*ca->ca_detach)(dev, flags);
1750 	} else
1751 		rv = EOPNOTSUPP;
1752 
1753 	/*
1754 	 * If it was not possible to detach the device, then we either
1755 	 * panic() (for the forced but failed case), or return an error.
1756 	 *
1757 	 * If it was possible to detach the device, ensure that the
1758 	 * device is deactivated.
1759 	 */
1760 	if (rv == 0)
1761 		dev->dv_flags &= ~DVF_ACTIVE;
1762 	else if ((flags & DETACH_FORCE) == 0)
1763 		goto out;
1764 	else {
1765 		panic("config_detach: forced detach of %s failed (%d)",
1766 		    device_xname(dev), rv);
1767 	}
1768 
1769 	/*
1770 	 * The device has now been successfully detached.
1771 	 */
1772 
1773 	/* Let userland know */
1774 	devmon_report_device(dev, false);
1775 
1776 #ifdef DIAGNOSTIC
1777 	/*
1778 	 * Sanity: If you're successfully detached, you should have no
1779 	 * children.  (Note that because children must be attached
1780 	 * after parents, we only need to search the latter part of
1781 	 * the list.)
1782 	 */
1783 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1784 	    d = TAILQ_NEXT(d, dv_list)) {
1785 		if (d->dv_parent == dev && d->dv_del_gen == 0) {
1786 			printf("config_detach: detached device %s"
1787 			    " has children %s\n", device_xname(dev),
1788 			    device_xname(d));
1789 			panic("config_detach");
1790 		}
1791 	}
1792 #endif
1793 
1794 	/* notify the parent that the child is gone */
1795 	if (dev->dv_parent) {
1796 		device_t p = dev->dv_parent;
1797 		if (p->dv_cfattach->ca_childdetached)
1798 			(*p->dv_cfattach->ca_childdetached)(p, dev);
1799 	}
1800 
1801 	/*
1802 	 * Mark cfdata to show that the unit can be reused, if possible.
1803 	 */
1804 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
1805 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1806 			if (STREQ(cf->cf_name, cd->cd_name)) {
1807 				if (cf->cf_fstate == FSTATE_FOUND &&
1808 				    cf->cf_unit == dev->dv_unit)
1809 					cf->cf_fstate = FSTATE_NOTFOUND;
1810 			}
1811 		}
1812 	}
1813 
1814 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1815 		aprint_normal_dev(dev, "detached\n");
1816 
1817 out:
1818 	config_alldevs_enter(&af);
1819 	KASSERT(alldevs_nwrite != 0);
1820 	--alldevs_nwrite;
1821 	if (rv == 0 && dev->dv_del_gen == 0) {
1822 		if (alldevs_nwrite == 0 && alldevs_nread == 0)
1823 			config_devunlink(dev, &af.af_garbage);
1824 		else {
1825 			dev->dv_del_gen = alldevs_gen;
1826 			alldevs_garbage = true;
1827 		}
1828 	}
1829 	config_alldevs_exit(&af);
1830 
1831 	return rv;
1832 }
1833 
1834 int
config_detach_children(device_t parent,int flags)1835 config_detach_children(device_t parent, int flags)
1836 {
1837 	device_t dv;
1838 	deviter_t di;
1839 	int error = 0;
1840 
1841 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1842 	     dv = deviter_next(&di)) {
1843 		if (device_parent(dv) != parent)
1844 			continue;
1845 		if ((error = config_detach(dv, flags)) != 0)
1846 			break;
1847 	}
1848 	deviter_release(&di);
1849 	return error;
1850 }
1851 
1852 device_t
shutdown_first(struct shutdown_state * s)1853 shutdown_first(struct shutdown_state *s)
1854 {
1855 	if (!s->initialized) {
1856 		deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
1857 		s->initialized = true;
1858 	}
1859 	return shutdown_next(s);
1860 }
1861 
1862 device_t
shutdown_next(struct shutdown_state * s)1863 shutdown_next(struct shutdown_state *s)
1864 {
1865 	device_t dv;
1866 
1867 	while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
1868 		;
1869 
1870 	if (dv == NULL)
1871 		s->initialized = false;
1872 
1873 	return dv;
1874 }
1875 
1876 bool
config_detach_all(int how)1877 config_detach_all(int how)
1878 {
1879 	static struct shutdown_state s;
1880 	device_t curdev;
1881 	bool progress = false;
1882 	int flags;
1883 
1884 	if ((how & (RB_NOSYNC|RB_DUMP)) != 0)
1885 		return false;
1886 
1887 	if ((how & RB_POWERDOWN) == RB_POWERDOWN)
1888 		flags = DETACH_SHUTDOWN | DETACH_POWEROFF;
1889 	else
1890 		flags = DETACH_SHUTDOWN;
1891 
1892 	for (curdev = shutdown_first(&s); curdev != NULL;
1893 	     curdev = shutdown_next(&s)) {
1894 		aprint_debug(" detaching %s, ", device_xname(curdev));
1895 		if (config_detach(curdev, flags) == 0) {
1896 			progress = true;
1897 			aprint_debug("success.");
1898 		} else
1899 			aprint_debug("failed.");
1900 	}
1901 	return progress;
1902 }
1903 
1904 static bool
device_is_ancestor_of(device_t ancestor,device_t descendant)1905 device_is_ancestor_of(device_t ancestor, device_t descendant)
1906 {
1907 	device_t dv;
1908 
1909 	for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
1910 		if (device_parent(dv) == ancestor)
1911 			return true;
1912 	}
1913 	return false;
1914 }
1915 
1916 int
config_deactivate(device_t dev)1917 config_deactivate(device_t dev)
1918 {
1919 	deviter_t di;
1920 	const struct cfattach *ca;
1921 	device_t descendant;
1922 	int s, rv = 0, oflags;
1923 
1924 	for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
1925 	     descendant != NULL;
1926 	     descendant = deviter_next(&di)) {
1927 		if (dev != descendant &&
1928 		    !device_is_ancestor_of(dev, descendant))
1929 			continue;
1930 
1931 		if ((descendant->dv_flags & DVF_ACTIVE) == 0)
1932 			continue;
1933 
1934 		ca = descendant->dv_cfattach;
1935 		oflags = descendant->dv_flags;
1936 
1937 		descendant->dv_flags &= ~DVF_ACTIVE;
1938 		if (ca->ca_activate == NULL)
1939 			continue;
1940 		s = splhigh();
1941 		rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
1942 		splx(s);
1943 		if (rv != 0)
1944 			descendant->dv_flags = oflags;
1945 	}
1946 	deviter_release(&di);
1947 	return rv;
1948 }
1949 
1950 /*
1951  * Defer the configuration of the specified device until all
1952  * of its parent's devices have been attached.
1953  */
1954 void
config_defer(device_t dev,void (* func)(device_t))1955 config_defer(device_t dev, void (*func)(device_t))
1956 {
1957 	struct deferred_config *dc;
1958 
1959 	if (dev->dv_parent == NULL)
1960 		panic("config_defer: can't defer config of a root device");
1961 
1962 #ifdef DIAGNOSTIC
1963 	TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) {
1964 		if (dc->dc_dev == dev)
1965 			panic("config_defer: deferred twice");
1966 	}
1967 #endif
1968 
1969 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1970 	if (dc == NULL)
1971 		panic("config_defer: unable to allocate callback");
1972 
1973 	dc->dc_dev = dev;
1974 	dc->dc_func = func;
1975 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1976 	config_pending_incr(dev);
1977 }
1978 
1979 /*
1980  * Defer some autoconfiguration for a device until after interrupts
1981  * are enabled.
1982  */
1983 void
config_interrupts(device_t dev,void (* func)(device_t))1984 config_interrupts(device_t dev, void (*func)(device_t))
1985 {
1986 	struct deferred_config *dc;
1987 
1988 	/*
1989 	 * If interrupts are enabled, callback now.
1990 	 */
1991 	if (cold == 0) {
1992 		(*func)(dev);
1993 		return;
1994 	}
1995 
1996 #ifdef DIAGNOSTIC
1997 	TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) {
1998 		if (dc->dc_dev == dev)
1999 			panic("config_interrupts: deferred twice");
2000 	}
2001 #endif
2002 
2003 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2004 	if (dc == NULL)
2005 		panic("config_interrupts: unable to allocate callback");
2006 
2007 	dc->dc_dev = dev;
2008 	dc->dc_func = func;
2009 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
2010 	config_pending_incr(dev);
2011 }
2012 
2013 /*
2014  * Defer some autoconfiguration for a device until after root file system
2015  * is mounted (to load firmware etc).
2016  */
2017 void
config_mountroot(device_t dev,void (* func)(device_t))2018 config_mountroot(device_t dev, void (*func)(device_t))
2019 {
2020 	struct deferred_config *dc;
2021 
2022 	/*
2023 	 * If root file system is mounted, callback now.
2024 	 */
2025 	if (root_is_mounted) {
2026 		(*func)(dev);
2027 		return;
2028 	}
2029 
2030 #ifdef DIAGNOSTIC
2031 	TAILQ_FOREACH(dc, &mountroot_config_queue, dc_queue) {
2032 		if (dc->dc_dev == dev)
2033 			panic("%s: deferred twice", __func__);
2034 	}
2035 #endif
2036 
2037 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2038 	if (dc == NULL)
2039 		panic("%s: unable to allocate callback", __func__);
2040 
2041 	dc->dc_dev = dev;
2042 	dc->dc_func = func;
2043 	TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
2044 }
2045 
2046 /*
2047  * Process a deferred configuration queue.
2048  */
2049 static void
config_process_deferred(struct deferred_config_head * queue,device_t parent)2050 config_process_deferred(struct deferred_config_head *queue, device_t parent)
2051 {
2052 	struct deferred_config *dc, *ndc;
2053 
2054 	for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
2055 		ndc = TAILQ_NEXT(dc, dc_queue);
2056 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
2057 			TAILQ_REMOVE(queue, dc, dc_queue);
2058 			(*dc->dc_func)(dc->dc_dev);
2059 			config_pending_decr(dc->dc_dev);
2060 			kmem_free(dc, sizeof(*dc));
2061 		}
2062 	}
2063 }
2064 
2065 /*
2066  * Manipulate the config_pending semaphore.
2067  */
2068 void
config_pending_incr(device_t dev)2069 config_pending_incr(device_t dev)
2070 {
2071 
2072 	mutex_enter(&config_misc_lock);
2073 	config_pending++;
2074 #ifdef DEBUG_AUTOCONF
2075 	printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
2076 #endif
2077 	mutex_exit(&config_misc_lock);
2078 }
2079 
2080 void
config_pending_decr(device_t dev)2081 config_pending_decr(device_t dev)
2082 {
2083 
2084 #ifdef DIAGNOSTIC
2085 	if (config_pending == 0)
2086 		panic("config_pending_decr: config_pending == 0");
2087 #endif
2088 	mutex_enter(&config_misc_lock);
2089 	config_pending--;
2090 #ifdef DEBUG_AUTOCONF
2091 	printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
2092 #endif
2093 	if (config_pending == 0)
2094 		cv_broadcast(&config_misc_cv);
2095 	mutex_exit(&config_misc_lock);
2096 }
2097 
2098 /*
2099  * Register a "finalization" routine.  Finalization routines are
2100  * called iteratively once all real devices have been found during
2101  * autoconfiguration, for as long as any one finalizer has done
2102  * any work.
2103  */
2104 int
config_finalize_register(device_t dev,int (* fn)(device_t))2105 config_finalize_register(device_t dev, int (*fn)(device_t))
2106 {
2107 	struct finalize_hook *f;
2108 
2109 	/*
2110 	 * If finalization has already been done, invoke the
2111 	 * callback function now.
2112 	 */
2113 	if (config_finalize_done) {
2114 		while ((*fn)(dev) != 0)
2115 			/* loop */ ;
2116 		return 0;
2117 	}
2118 
2119 	/* Ensure this isn't already on the list. */
2120 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
2121 		if (f->f_func == fn && f->f_dev == dev)
2122 			return EEXIST;
2123 	}
2124 
2125 	f = kmem_alloc(sizeof(*f), KM_SLEEP);
2126 	f->f_func = fn;
2127 	f->f_dev = dev;
2128 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
2129 
2130 	return 0;
2131 }
2132 
2133 void
config_finalize(void)2134 config_finalize(void)
2135 {
2136 	struct finalize_hook *f;
2137 	struct pdevinit *pdev;
2138 	extern struct pdevinit pdevinit[];
2139 	int errcnt, rv;
2140 
2141 	/*
2142 	 * Now that device driver threads have been created, wait for
2143 	 * them to finish any deferred autoconfiguration.
2144 	 */
2145 	mutex_enter(&config_misc_lock);
2146 	while (config_pending != 0)
2147 		cv_wait(&config_misc_cv, &config_misc_lock);
2148 	mutex_exit(&config_misc_lock);
2149 
2150 	KERNEL_LOCK(1, NULL);
2151 
2152 	/* Attach pseudo-devices. */
2153 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
2154 		(*pdev->pdev_attach)(pdev->pdev_count);
2155 
2156 	/* Run the hooks until none of them does any work. */
2157 	do {
2158 		rv = 0;
2159 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
2160 			rv |= (*f->f_func)(f->f_dev);
2161 	} while (rv != 0);
2162 
2163 	config_finalize_done = 1;
2164 
2165 	/* Now free all the hooks. */
2166 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
2167 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
2168 		kmem_free(f, sizeof(*f));
2169 	}
2170 
2171 	KERNEL_UNLOCK_ONE(NULL);
2172 
2173 	errcnt = aprint_get_error_count();
2174 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
2175 	    (boothowto & AB_VERBOSE) == 0) {
2176 		mutex_enter(&config_misc_lock);
2177 		if (config_do_twiddle) {
2178 			config_do_twiddle = 0;
2179 			printf_nolog(" done.\n");
2180 		}
2181 		mutex_exit(&config_misc_lock);
2182 	}
2183 	if (errcnt != 0) {
2184 		printf("WARNING: %d error%s while detecting hardware; "
2185 		    "check system log.\n", errcnt,
2186 		    errcnt == 1 ? "" : "s");
2187 	}
2188 }
2189 
2190 void
config_twiddle_init(void)2191 config_twiddle_init(void)
2192 {
2193 
2194 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
2195 		config_do_twiddle = 1;
2196 	}
2197 	callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
2198 }
2199 
2200 void
config_twiddle_fn(void * cookie)2201 config_twiddle_fn(void *cookie)
2202 {
2203 
2204 	mutex_enter(&config_misc_lock);
2205 	if (config_do_twiddle) {
2206 		twiddle();
2207 		callout_schedule(&config_twiddle_ch, mstohz(100));
2208 	}
2209 	mutex_exit(&config_misc_lock);
2210 }
2211 
2212 static void
config_alldevs_enter(struct alldevs_foray * af)2213 config_alldevs_enter(struct alldevs_foray *af)
2214 {
2215 	TAILQ_INIT(&af->af_garbage);
2216 	mutex_enter(&alldevs_mtx);
2217 	config_collect_garbage(&af->af_garbage);
2218 }
2219 
2220 static void
config_alldevs_exit(struct alldevs_foray * af)2221 config_alldevs_exit(struct alldevs_foray *af)
2222 {
2223 	mutex_exit(&alldevs_mtx);
2224 	config_dump_garbage(&af->af_garbage);
2225 }
2226 
2227 /*
2228  * device_lookup:
2229  *
2230  *	Look up a device instance for a given driver.
2231  */
2232 device_t
device_lookup(cfdriver_t cd,int unit)2233 device_lookup(cfdriver_t cd, int unit)
2234 {
2235 	device_t dv;
2236 
2237 	mutex_enter(&alldevs_mtx);
2238 	if (unit < 0 || unit >= cd->cd_ndevs)
2239 		dv = NULL;
2240 	else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
2241 		dv = NULL;
2242 	mutex_exit(&alldevs_mtx);
2243 
2244 	return dv;
2245 }
2246 
2247 /*
2248  * device_lookup_private:
2249  *
2250  *	Look up a softc instance for a given driver.
2251  */
2252 void *
device_lookup_private(cfdriver_t cd,int unit)2253 device_lookup_private(cfdriver_t cd, int unit)
2254 {
2255 
2256 	return device_private(device_lookup(cd, unit));
2257 }
2258 
2259 /*
2260  * device_find_by_xname:
2261  *
2262  *	Returns the device of the given name or NULL if it doesn't exist.
2263  */
2264 device_t
device_find_by_xname(const char * name)2265 device_find_by_xname(const char *name)
2266 {
2267 	device_t dv;
2268 	deviter_t di;
2269 
2270 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2271 		if (strcmp(device_xname(dv), name) == 0)
2272 			break;
2273 	}
2274 	deviter_release(&di);
2275 
2276 	return dv;
2277 }
2278 
2279 /*
2280  * device_find_by_driver_unit:
2281  *
2282  *	Returns the device of the given driver name and unit or
2283  *	NULL if it doesn't exist.
2284  */
2285 device_t
device_find_by_driver_unit(const char * name,int unit)2286 device_find_by_driver_unit(const char *name, int unit)
2287 {
2288 	struct cfdriver *cd;
2289 
2290 	if ((cd = config_cfdriver_lookup(name)) == NULL)
2291 		return NULL;
2292 	return device_lookup(cd, unit);
2293 }
2294 
2295 /*
2296  * Power management related functions.
2297  */
2298 
2299 bool
device_pmf_is_registered(device_t dev)2300 device_pmf_is_registered(device_t dev)
2301 {
2302 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2303 }
2304 
2305 bool
device_pmf_driver_suspend(device_t dev,const pmf_qual_t * qual)2306 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
2307 {
2308 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2309 		return true;
2310 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2311 		return false;
2312 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2313 	    dev->dv_driver_suspend != NULL &&
2314 	    !(*dev->dv_driver_suspend)(dev, qual))
2315 		return false;
2316 
2317 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2318 	return true;
2319 }
2320 
2321 bool
device_pmf_driver_resume(device_t dev,const pmf_qual_t * qual)2322 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
2323 {
2324 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2325 		return true;
2326 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2327 		return false;
2328 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2329 	    dev->dv_driver_resume != NULL &&
2330 	    !(*dev->dv_driver_resume)(dev, qual))
2331 		return false;
2332 
2333 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2334 	return true;
2335 }
2336 
2337 bool
device_pmf_driver_shutdown(device_t dev,int how)2338 device_pmf_driver_shutdown(device_t dev, int how)
2339 {
2340 
2341 	if (*dev->dv_driver_shutdown != NULL &&
2342 	    !(*dev->dv_driver_shutdown)(dev, how))
2343 		return false;
2344 	return true;
2345 }
2346 
2347 bool
device_pmf_driver_register(device_t dev,bool (* suspend)(device_t,const pmf_qual_t *),bool (* resume)(device_t,const pmf_qual_t *),bool (* shutdown)(device_t,int))2348 device_pmf_driver_register(device_t dev,
2349     bool (*suspend)(device_t, const pmf_qual_t *),
2350     bool (*resume)(device_t, const pmf_qual_t *),
2351     bool (*shutdown)(device_t, int))
2352 {
2353 	dev->dv_driver_suspend = suspend;
2354 	dev->dv_driver_resume = resume;
2355 	dev->dv_driver_shutdown = shutdown;
2356 	dev->dv_flags |= DVF_POWER_HANDLERS;
2357 	return true;
2358 }
2359 
2360 static const char *
curlwp_name(void)2361 curlwp_name(void)
2362 {
2363 	if (curlwp->l_name != NULL)
2364 		return curlwp->l_name;
2365 	else
2366 		return curlwp->l_proc->p_comm;
2367 }
2368 
2369 void
device_pmf_driver_deregister(device_t dev)2370 device_pmf_driver_deregister(device_t dev)
2371 {
2372 	device_lock_t dvl = device_getlock(dev);
2373 
2374 	dev->dv_driver_suspend = NULL;
2375 	dev->dv_driver_resume = NULL;
2376 
2377 	mutex_enter(&dvl->dvl_mtx);
2378 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
2379 	while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
2380 		/* Wake a thread that waits for the lock.  That
2381 		 * thread will fail to acquire the lock, and then
2382 		 * it will wake the next thread that waits for the
2383 		 * lock, or else it will wake us.
2384 		 */
2385 		cv_signal(&dvl->dvl_cv);
2386 		pmflock_debug(dev, __func__, __LINE__);
2387 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2388 		pmflock_debug(dev, __func__, __LINE__);
2389 	}
2390 	mutex_exit(&dvl->dvl_mtx);
2391 }
2392 
2393 bool
device_pmf_driver_child_register(device_t dev)2394 device_pmf_driver_child_register(device_t dev)
2395 {
2396 	device_t parent = device_parent(dev);
2397 
2398 	if (parent == NULL || parent->dv_driver_child_register == NULL)
2399 		return true;
2400 	return (*parent->dv_driver_child_register)(dev);
2401 }
2402 
2403 void
device_pmf_driver_set_child_register(device_t dev,bool (* child_register)(device_t))2404 device_pmf_driver_set_child_register(device_t dev,
2405     bool (*child_register)(device_t))
2406 {
2407 	dev->dv_driver_child_register = child_register;
2408 }
2409 
2410 static void
pmflock_debug(device_t dev,const char * func,int line)2411 pmflock_debug(device_t dev, const char *func, int line)
2412 {
2413 	device_lock_t dvl = device_getlock(dev);
2414 
2415 	aprint_debug_dev(dev,
2416 	    "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line,
2417 	    curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags);
2418 }
2419 
2420 static bool
device_pmf_lock1(device_t dev)2421 device_pmf_lock1(device_t dev)
2422 {
2423 	device_lock_t dvl = device_getlock(dev);
2424 
2425 	while (device_pmf_is_registered(dev) &&
2426 	    dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
2427 		dvl->dvl_nwait++;
2428 		pmflock_debug(dev, __func__, __LINE__);
2429 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2430 		pmflock_debug(dev, __func__, __LINE__);
2431 		dvl->dvl_nwait--;
2432 	}
2433 	if (!device_pmf_is_registered(dev)) {
2434 		pmflock_debug(dev, __func__, __LINE__);
2435 		/* We could not acquire the lock, but some other thread may
2436 		 * wait for it, also.  Wake that thread.
2437 		 */
2438 		cv_signal(&dvl->dvl_cv);
2439 		return false;
2440 	}
2441 	dvl->dvl_nlock++;
2442 	dvl->dvl_holder = curlwp;
2443 	pmflock_debug(dev, __func__, __LINE__);
2444 	return true;
2445 }
2446 
2447 bool
device_pmf_lock(device_t dev)2448 device_pmf_lock(device_t dev)
2449 {
2450 	bool rc;
2451 	device_lock_t dvl = device_getlock(dev);
2452 
2453 	mutex_enter(&dvl->dvl_mtx);
2454 	rc = device_pmf_lock1(dev);
2455 	mutex_exit(&dvl->dvl_mtx);
2456 
2457 	return rc;
2458 }
2459 
2460 void
device_pmf_unlock(device_t dev)2461 device_pmf_unlock(device_t dev)
2462 {
2463 	device_lock_t dvl = device_getlock(dev);
2464 
2465 	KASSERT(dvl->dvl_nlock > 0);
2466 	mutex_enter(&dvl->dvl_mtx);
2467 	if (--dvl->dvl_nlock == 0)
2468 		dvl->dvl_holder = NULL;
2469 	cv_signal(&dvl->dvl_cv);
2470 	pmflock_debug(dev, __func__, __LINE__);
2471 	mutex_exit(&dvl->dvl_mtx);
2472 }
2473 
2474 device_lock_t
device_getlock(device_t dev)2475 device_getlock(device_t dev)
2476 {
2477 	return &dev->dv_lock;
2478 }
2479 
2480 void *
device_pmf_bus_private(device_t dev)2481 device_pmf_bus_private(device_t dev)
2482 {
2483 	return dev->dv_bus_private;
2484 }
2485 
2486 bool
device_pmf_bus_suspend(device_t dev,const pmf_qual_t * qual)2487 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
2488 {
2489 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2490 		return true;
2491 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2492 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2493 		return false;
2494 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2495 	    dev->dv_bus_suspend != NULL &&
2496 	    !(*dev->dv_bus_suspend)(dev, qual))
2497 		return false;
2498 
2499 	dev->dv_flags |= DVF_BUS_SUSPENDED;
2500 	return true;
2501 }
2502 
2503 bool
device_pmf_bus_resume(device_t dev,const pmf_qual_t * qual)2504 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
2505 {
2506 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2507 		return true;
2508 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2509 	    dev->dv_bus_resume != NULL &&
2510 	    !(*dev->dv_bus_resume)(dev, qual))
2511 		return false;
2512 
2513 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2514 	return true;
2515 }
2516 
2517 bool
device_pmf_bus_shutdown(device_t dev,int how)2518 device_pmf_bus_shutdown(device_t dev, int how)
2519 {
2520 
2521 	if (*dev->dv_bus_shutdown != NULL &&
2522 	    !(*dev->dv_bus_shutdown)(dev, how))
2523 		return false;
2524 	return true;
2525 }
2526 
2527 void
device_pmf_bus_register(device_t dev,void * priv,bool (* suspend)(device_t,const pmf_qual_t *),bool (* resume)(device_t,const pmf_qual_t *),bool (* shutdown)(device_t,int),void (* deregister)(device_t))2528 device_pmf_bus_register(device_t dev, void *priv,
2529     bool (*suspend)(device_t, const pmf_qual_t *),
2530     bool (*resume)(device_t, const pmf_qual_t *),
2531     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2532 {
2533 	dev->dv_bus_private = priv;
2534 	dev->dv_bus_resume = resume;
2535 	dev->dv_bus_suspend = suspend;
2536 	dev->dv_bus_shutdown = shutdown;
2537 	dev->dv_bus_deregister = deregister;
2538 }
2539 
2540 void
device_pmf_bus_deregister(device_t dev)2541 device_pmf_bus_deregister(device_t dev)
2542 {
2543 	if (dev->dv_bus_deregister == NULL)
2544 		return;
2545 	(*dev->dv_bus_deregister)(dev);
2546 	dev->dv_bus_private = NULL;
2547 	dev->dv_bus_suspend = NULL;
2548 	dev->dv_bus_resume = NULL;
2549 	dev->dv_bus_deregister = NULL;
2550 }
2551 
2552 void *
device_pmf_class_private(device_t dev)2553 device_pmf_class_private(device_t dev)
2554 {
2555 	return dev->dv_class_private;
2556 }
2557 
2558 bool
device_pmf_class_suspend(device_t dev,const pmf_qual_t * qual)2559 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
2560 {
2561 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2562 		return true;
2563 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2564 	    dev->dv_class_suspend != NULL &&
2565 	    !(*dev->dv_class_suspend)(dev, qual))
2566 		return false;
2567 
2568 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
2569 	return true;
2570 }
2571 
2572 bool
device_pmf_class_resume(device_t dev,const pmf_qual_t * qual)2573 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
2574 {
2575 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2576 		return true;
2577 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2578 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2579 		return false;
2580 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2581 	    dev->dv_class_resume != NULL &&
2582 	    !(*dev->dv_class_resume)(dev, qual))
2583 		return false;
2584 
2585 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2586 	return true;
2587 }
2588 
2589 void
device_pmf_class_register(device_t dev,void * priv,bool (* suspend)(device_t,const pmf_qual_t *),bool (* resume)(device_t,const pmf_qual_t *),void (* deregister)(device_t))2590 device_pmf_class_register(device_t dev, void *priv,
2591     bool (*suspend)(device_t, const pmf_qual_t *),
2592     bool (*resume)(device_t, const pmf_qual_t *),
2593     void (*deregister)(device_t))
2594 {
2595 	dev->dv_class_private = priv;
2596 	dev->dv_class_suspend = suspend;
2597 	dev->dv_class_resume = resume;
2598 	dev->dv_class_deregister = deregister;
2599 }
2600 
2601 void
device_pmf_class_deregister(device_t dev)2602 device_pmf_class_deregister(device_t dev)
2603 {
2604 	if (dev->dv_class_deregister == NULL)
2605 		return;
2606 	(*dev->dv_class_deregister)(dev);
2607 	dev->dv_class_private = NULL;
2608 	dev->dv_class_suspend = NULL;
2609 	dev->dv_class_resume = NULL;
2610 	dev->dv_class_deregister = NULL;
2611 }
2612 
2613 bool
device_active(device_t dev,devactive_t type)2614 device_active(device_t dev, devactive_t type)
2615 {
2616 	size_t i;
2617 
2618 	if (dev->dv_activity_count == 0)
2619 		return false;
2620 
2621 	for (i = 0; i < dev->dv_activity_count; ++i) {
2622 		if (dev->dv_activity_handlers[i] == NULL)
2623 			break;
2624 		(*dev->dv_activity_handlers[i])(dev, type);
2625 	}
2626 
2627 	return true;
2628 }
2629 
2630 bool
device_active_register(device_t dev,void (* handler)(device_t,devactive_t))2631 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2632 {
2633 	void (**new_handlers)(device_t, devactive_t);
2634 	void (**old_handlers)(device_t, devactive_t);
2635 	size_t i, old_size, new_size;
2636 	int s;
2637 
2638 	old_handlers = dev->dv_activity_handlers;
2639 	old_size = dev->dv_activity_count;
2640 
2641 	KASSERT(old_size == 0 || old_handlers != NULL);
2642 
2643 	for (i = 0; i < old_size; ++i) {
2644 		KASSERT(old_handlers[i] != handler);
2645 		if (old_handlers[i] == NULL) {
2646 			old_handlers[i] = handler;
2647 			return true;
2648 		}
2649 	}
2650 
2651 	new_size = old_size + 4;
2652 	new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
2653 
2654 	for (i = 0; i < old_size; ++i)
2655 		new_handlers[i] = old_handlers[i];
2656 	new_handlers[old_size] = handler;
2657 	for (i = old_size+1; i < new_size; ++i)
2658 		new_handlers[i] = NULL;
2659 
2660 	s = splhigh();
2661 	dev->dv_activity_count = new_size;
2662 	dev->dv_activity_handlers = new_handlers;
2663 	splx(s);
2664 
2665 	if (old_size > 0)
2666 		kmem_free(old_handlers, sizeof(void * [old_size]));
2667 
2668 	return true;
2669 }
2670 
2671 void
device_active_deregister(device_t dev,void (* handler)(device_t,devactive_t))2672 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2673 {
2674 	void (**old_handlers)(device_t, devactive_t);
2675 	size_t i, old_size;
2676 	int s;
2677 
2678 	old_handlers = dev->dv_activity_handlers;
2679 	old_size = dev->dv_activity_count;
2680 
2681 	for (i = 0; i < old_size; ++i) {
2682 		if (old_handlers[i] == handler)
2683 			break;
2684 		if (old_handlers[i] == NULL)
2685 			return; /* XXX panic? */
2686 	}
2687 
2688 	if (i == old_size)
2689 		return; /* XXX panic? */
2690 
2691 	for (; i < old_size - 1; ++i) {
2692 		if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
2693 			continue;
2694 
2695 		if (i == 0) {
2696 			s = splhigh();
2697 			dev->dv_activity_count = 0;
2698 			dev->dv_activity_handlers = NULL;
2699 			splx(s);
2700 			kmem_free(old_handlers, sizeof(void *[old_size]));
2701 		}
2702 		return;
2703 	}
2704 	old_handlers[i] = NULL;
2705 }
2706 
2707 /* Return true iff the device_t `dev' exists at generation `gen'. */
2708 static bool
device_exists_at(device_t dv,devgen_t gen)2709 device_exists_at(device_t dv, devgen_t gen)
2710 {
2711 	return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
2712 	    dv->dv_add_gen <= gen;
2713 }
2714 
2715 static bool
deviter_visits(const deviter_t * di,device_t dv)2716 deviter_visits(const deviter_t *di, device_t dv)
2717 {
2718 	return device_exists_at(dv, di->di_gen);
2719 }
2720 
2721 /*
2722  * Device Iteration
2723  *
2724  * deviter_t: a device iterator.  Holds state for a "walk" visiting
2725  *     each device_t's in the device tree.
2726  *
2727  * deviter_init(di, flags): initialize the device iterator `di'
2728  *     to "walk" the device tree.  deviter_next(di) will return
2729  *     the first device_t in the device tree, or NULL if there are
2730  *     no devices.
2731  *
2732  *     `flags' is one or more of DEVITER_F_RW, indicating that the
2733  *     caller intends to modify the device tree by calling
2734  *     config_detach(9) on devices in the order that the iterator
2735  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2736  *     nearest the "root" of the device tree to be returned, first;
2737  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2738  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2739  *     indicating both that deviter_init() should not respect any
2740  *     locks on the device tree, and that deviter_next(di) may run
2741  *     in more than one LWP before the walk has finished.
2742  *
2743  *     Only one DEVITER_F_RW iterator may be in the device tree at
2744  *     once.
2745  *
2746  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2747  *
2748  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2749  *     DEVITER_F_LEAVES_FIRST are used in combination.
2750  *
2751  * deviter_first(di, flags): initialize the device iterator `di'
2752  *     and return the first device_t in the device tree, or NULL
2753  *     if there are no devices.  The statement
2754  *
2755  *         dv = deviter_first(di);
2756  *
2757  *     is shorthand for
2758  *
2759  *         deviter_init(di);
2760  *         dv = deviter_next(di);
2761  *
2762  * deviter_next(di): return the next device_t in the device tree,
2763  *     or NULL if there are no more devices.  deviter_next(di)
2764  *     is undefined if `di' was not initialized with deviter_init() or
2765  *     deviter_first().
2766  *
2767  * deviter_release(di): stops iteration (subsequent calls to
2768  *     deviter_next() will return NULL), releases any locks and
2769  *     resources held by the device iterator.
2770  *
2771  * Device iteration does not return device_t's in any particular
2772  * order.  An iterator will never return the same device_t twice.
2773  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2774  * is called repeatedly on the same `di', it will eventually return
2775  * NULL.  It is ok to attach/detach devices during device iteration.
2776  */
2777 void
deviter_init(deviter_t * di,deviter_flags_t flags)2778 deviter_init(deviter_t *di, deviter_flags_t flags)
2779 {
2780 	device_t dv;
2781 
2782 	memset(di, 0, sizeof(*di));
2783 
2784 	mutex_enter(&alldevs_mtx);
2785 	if ((flags & DEVITER_F_SHUTDOWN) != 0)
2786 		flags |= DEVITER_F_RW;
2787 
2788 	if ((flags & DEVITER_F_RW) != 0)
2789 		alldevs_nwrite++;
2790 	else
2791 		alldevs_nread++;
2792 	di->di_gen = alldevs_gen++;
2793 	mutex_exit(&alldevs_mtx);
2794 
2795 	di->di_flags = flags;
2796 
2797 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2798 	case DEVITER_F_LEAVES_FIRST:
2799 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
2800 			if (!deviter_visits(di, dv))
2801 				continue;
2802 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2803 		}
2804 		break;
2805 	case DEVITER_F_ROOT_FIRST:
2806 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
2807 			if (!deviter_visits(di, dv))
2808 				continue;
2809 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2810 		}
2811 		break;
2812 	default:
2813 		break;
2814 	}
2815 
2816 	deviter_reinit(di);
2817 }
2818 
2819 static void
deviter_reinit(deviter_t * di)2820 deviter_reinit(deviter_t *di)
2821 {
2822 	if ((di->di_flags & DEVITER_F_RW) != 0)
2823 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
2824 	else
2825 		di->di_prev = TAILQ_FIRST(&alldevs);
2826 }
2827 
2828 device_t
deviter_first(deviter_t * di,deviter_flags_t flags)2829 deviter_first(deviter_t *di, deviter_flags_t flags)
2830 {
2831 	deviter_init(di, flags);
2832 	return deviter_next(di);
2833 }
2834 
2835 static device_t
deviter_next2(deviter_t * di)2836 deviter_next2(deviter_t *di)
2837 {
2838 	device_t dv;
2839 
2840 	dv = di->di_prev;
2841 
2842 	if (dv == NULL)
2843 		return NULL;
2844 
2845 	if ((di->di_flags & DEVITER_F_RW) != 0)
2846 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2847 	else
2848 		di->di_prev = TAILQ_NEXT(dv, dv_list);
2849 
2850 	return dv;
2851 }
2852 
2853 static device_t
deviter_next1(deviter_t * di)2854 deviter_next1(deviter_t *di)
2855 {
2856 	device_t dv;
2857 
2858 	do {
2859 		dv = deviter_next2(di);
2860 	} while (dv != NULL && !deviter_visits(di, dv));
2861 
2862 	return dv;
2863 }
2864 
2865 device_t
deviter_next(deviter_t * di)2866 deviter_next(deviter_t *di)
2867 {
2868 	device_t dv = NULL;
2869 
2870 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2871 	case 0:
2872 		return deviter_next1(di);
2873 	case DEVITER_F_LEAVES_FIRST:
2874 		while (di->di_curdepth >= 0) {
2875 			if ((dv = deviter_next1(di)) == NULL) {
2876 				di->di_curdepth--;
2877 				deviter_reinit(di);
2878 			} else if (dv->dv_depth == di->di_curdepth)
2879 				break;
2880 		}
2881 		return dv;
2882 	case DEVITER_F_ROOT_FIRST:
2883 		while (di->di_curdepth <= di->di_maxdepth) {
2884 			if ((dv = deviter_next1(di)) == NULL) {
2885 				di->di_curdepth++;
2886 				deviter_reinit(di);
2887 			} else if (dv->dv_depth == di->di_curdepth)
2888 				break;
2889 		}
2890 		return dv;
2891 	default:
2892 		return NULL;
2893 	}
2894 }
2895 
2896 void
deviter_release(deviter_t * di)2897 deviter_release(deviter_t *di)
2898 {
2899 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2900 
2901 	mutex_enter(&alldevs_mtx);
2902 	if (rw)
2903 		--alldevs_nwrite;
2904 	else
2905 		--alldevs_nread;
2906 	/* XXX wake a garbage-collection thread */
2907 	mutex_exit(&alldevs_mtx);
2908 }
2909 
2910 const char *
cfdata_ifattr(const struct cfdata * cf)2911 cfdata_ifattr(const struct cfdata *cf)
2912 {
2913 	return cf->cf_pspec->cfp_iattr;
2914 }
2915 
2916 bool
ifattr_match(const char * snull,const char * t)2917 ifattr_match(const char *snull, const char *t)
2918 {
2919 	return (snull == NULL) || strcmp(snull, t) == 0;
2920 }
2921 
2922 void
null_childdetached(device_t self,device_t child)2923 null_childdetached(device_t self, device_t child)
2924 {
2925 	/* do nothing */
2926 }
2927 
2928 static void
sysctl_detach_setup(struct sysctllog ** clog)2929 sysctl_detach_setup(struct sysctllog **clog)
2930 {
2931 
2932 	sysctl_createv(clog, 0, NULL, NULL,
2933 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2934 		CTLTYPE_BOOL, "detachall",
2935 		SYSCTL_DESCR("Detach all devices at shutdown"),
2936 		NULL, 0, &detachall, 0,
2937 		CTL_KERN, CTL_CREATE, CTL_EOL);
2938 }
2939