1 //===- llvm/Support/KnownBits.h - Stores known zeros/ones -------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a class for representing known zeros and ones used by 10 // computeKnownBits. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_SUPPORT_KNOWNBITS_H 15 #define LLVM_SUPPORT_KNOWNBITS_H 16 17 #include "llvm/ADT/APInt.h" 18 #include <optional> 19 20 namespace llvm { 21 22 // Struct for tracking the known zeros and ones of a value. 23 struct KnownBits { 24 APInt Zero; 25 APInt One; 26 27 private: 28 // Internal constructor for creating a KnownBits from two APInts. KnownBitsKnownBits29 KnownBits(APInt Zero, APInt One) 30 : Zero(std::move(Zero)), One(std::move(One)) {} 31 32 public: 33 // Default construct Zero and One. 34 KnownBits() = default; 35 36 /// Create a known bits object of BitWidth bits initialized to unknown. KnownBitsKnownBits37 KnownBits(unsigned BitWidth) : Zero(BitWidth, 0), One(BitWidth, 0) {} 38 39 /// Get the bit width of this value. getBitWidthKnownBits40 unsigned getBitWidth() const { 41 assert(Zero.getBitWidth() == One.getBitWidth() && 42 "Zero and One should have the same width!"); 43 return Zero.getBitWidth(); 44 } 45 46 /// Returns true if there is conflicting information. hasConflictKnownBits47 bool hasConflict() const { return Zero.intersects(One); } 48 49 /// Returns true if we know the value of all bits. isConstantKnownBits50 bool isConstant() const { 51 assert(!hasConflict() && "KnownBits conflict!"); 52 return Zero.countPopulation() + One.countPopulation() == getBitWidth(); 53 } 54 55 /// Returns the value when all bits have a known value. This just returns One 56 /// with a protective assertion. getConstantKnownBits57 const APInt &getConstant() const { 58 assert(isConstant() && "Can only get value when all bits are known"); 59 return One; 60 } 61 62 /// Returns true if we don't know any bits. isUnknownKnownBits63 bool isUnknown() const { return Zero.isZero() && One.isZero(); } 64 65 /// Resets the known state of all bits. resetAllKnownBits66 void resetAll() { 67 Zero.clearAllBits(); 68 One.clearAllBits(); 69 } 70 71 /// Returns true if value is all zero. isZeroKnownBits72 bool isZero() const { 73 assert(!hasConflict() && "KnownBits conflict!"); 74 return Zero.isAllOnes(); 75 } 76 77 /// Returns true if value is all one bits. isAllOnesKnownBits78 bool isAllOnes() const { 79 assert(!hasConflict() && "KnownBits conflict!"); 80 return One.isAllOnes(); 81 } 82 83 /// Make all bits known to be zero and discard any previous information. setAllZeroKnownBits84 void setAllZero() { 85 Zero.setAllBits(); 86 One.clearAllBits(); 87 } 88 89 /// Make all bits known to be one and discard any previous information. setAllOnesKnownBits90 void setAllOnes() { 91 Zero.clearAllBits(); 92 One.setAllBits(); 93 } 94 95 /// Returns true if this value is known to be negative. isNegativeKnownBits96 bool isNegative() const { return One.isSignBitSet(); } 97 98 /// Returns true if this value is known to be non-negative. isNonNegativeKnownBits99 bool isNonNegative() const { return Zero.isSignBitSet(); } 100 101 /// Returns true if this value is known to be non-zero. isNonZeroKnownBits102 bool isNonZero() const { return !One.isZero(); } 103 104 /// Returns true if this value is known to be positive. isStrictlyPositiveKnownBits105 bool isStrictlyPositive() const { 106 return Zero.isSignBitSet() && !One.isZero(); 107 } 108 109 /// Make this value negative. makeNegativeKnownBits110 void makeNegative() { 111 One.setSignBit(); 112 } 113 114 /// Make this value non-negative. makeNonNegativeKnownBits115 void makeNonNegative() { 116 Zero.setSignBit(); 117 } 118 119 /// Return the minimal unsigned value possible given these KnownBits. getMinValueKnownBits120 APInt getMinValue() const { 121 // Assume that all bits that aren't known-ones are zeros. 122 return One; 123 } 124 125 /// Return the minimal signed value possible given these KnownBits. getSignedMinValueKnownBits126 APInt getSignedMinValue() const { 127 // Assume that all bits that aren't known-ones are zeros. 128 APInt Min = One; 129 // Sign bit is unknown. 130 if (Zero.isSignBitClear()) 131 Min.setSignBit(); 132 return Min; 133 } 134 135 /// Return the maximal unsigned value possible given these KnownBits. getMaxValueKnownBits136 APInt getMaxValue() const { 137 // Assume that all bits that aren't known-zeros are ones. 138 return ~Zero; 139 } 140 141 /// Return the maximal signed value possible given these KnownBits. getSignedMaxValueKnownBits142 APInt getSignedMaxValue() const { 143 // Assume that all bits that aren't known-zeros are ones. 144 APInt Max = ~Zero; 145 // Sign bit is unknown. 146 if (One.isSignBitClear()) 147 Max.clearSignBit(); 148 return Max; 149 } 150 151 /// Return known bits for a truncation of the value we're tracking. truncKnownBits152 KnownBits trunc(unsigned BitWidth) const { 153 return KnownBits(Zero.trunc(BitWidth), One.trunc(BitWidth)); 154 } 155 156 /// Return known bits for an "any" extension of the value we're tracking, 157 /// where we don't know anything about the extended bits. anyextKnownBits158 KnownBits anyext(unsigned BitWidth) const { 159 return KnownBits(Zero.zext(BitWidth), One.zext(BitWidth)); 160 } 161 162 /// Return known bits for a zero extension of the value we're tracking. zextKnownBits163 KnownBits zext(unsigned BitWidth) const { 164 unsigned OldBitWidth = getBitWidth(); 165 APInt NewZero = Zero.zext(BitWidth); 166 NewZero.setBitsFrom(OldBitWidth); 167 return KnownBits(NewZero, One.zext(BitWidth)); 168 } 169 170 /// Return known bits for a sign extension of the value we're tracking. sextKnownBits171 KnownBits sext(unsigned BitWidth) const { 172 return KnownBits(Zero.sext(BitWidth), One.sext(BitWidth)); 173 } 174 175 /// Return known bits for an "any" extension or truncation of the value we're 176 /// tracking. anyextOrTruncKnownBits177 KnownBits anyextOrTrunc(unsigned BitWidth) const { 178 if (BitWidth > getBitWidth()) 179 return anyext(BitWidth); 180 if (BitWidth < getBitWidth()) 181 return trunc(BitWidth); 182 return *this; 183 } 184 185 /// Return known bits for a zero extension or truncation of the value we're 186 /// tracking. zextOrTruncKnownBits187 KnownBits zextOrTrunc(unsigned BitWidth) const { 188 if (BitWidth > getBitWidth()) 189 return zext(BitWidth); 190 if (BitWidth < getBitWidth()) 191 return trunc(BitWidth); 192 return *this; 193 } 194 195 /// Return known bits for a sign extension or truncation of the value we're 196 /// tracking. sextOrTruncKnownBits197 KnownBits sextOrTrunc(unsigned BitWidth) const { 198 if (BitWidth > getBitWidth()) 199 return sext(BitWidth); 200 if (BitWidth < getBitWidth()) 201 return trunc(BitWidth); 202 return *this; 203 } 204 205 /// Return known bits for a in-register sign extension of the value we're 206 /// tracking. 207 KnownBits sextInReg(unsigned SrcBitWidth) const; 208 209 /// Insert the bits from a smaller known bits starting at bitPosition. insertBitsKnownBits210 void insertBits(const KnownBits &SubBits, unsigned BitPosition) { 211 Zero.insertBits(SubBits.Zero, BitPosition); 212 One.insertBits(SubBits.One, BitPosition); 213 } 214 215 /// Return a subset of the known bits from [bitPosition,bitPosition+numBits). extractBitsKnownBits216 KnownBits extractBits(unsigned NumBits, unsigned BitPosition) const { 217 return KnownBits(Zero.extractBits(NumBits, BitPosition), 218 One.extractBits(NumBits, BitPosition)); 219 } 220 221 /// Concatenate the bits from \p Lo onto the bottom of *this. This is 222 /// equivalent to: 223 /// (this->zext(NewWidth) << Lo.getBitWidth()) | Lo.zext(NewWidth) concatKnownBits224 KnownBits concat(const KnownBits &Lo) const { 225 return KnownBits(Zero.concat(Lo.Zero), One.concat(Lo.One)); 226 } 227 228 /// Return KnownBits based on this, but updated given that the underlying 229 /// value is known to be greater than or equal to Val. 230 KnownBits makeGE(const APInt &Val) const; 231 232 /// Returns the minimum number of trailing zero bits. countMinTrailingZerosKnownBits233 unsigned countMinTrailingZeros() const { 234 return Zero.countTrailingOnes(); 235 } 236 237 /// Returns the minimum number of trailing one bits. countMinTrailingOnesKnownBits238 unsigned countMinTrailingOnes() const { 239 return One.countTrailingOnes(); 240 } 241 242 /// Returns the minimum number of leading zero bits. countMinLeadingZerosKnownBits243 unsigned countMinLeadingZeros() const { 244 return Zero.countLeadingOnes(); 245 } 246 247 /// Returns the minimum number of leading one bits. countMinLeadingOnesKnownBits248 unsigned countMinLeadingOnes() const { 249 return One.countLeadingOnes(); 250 } 251 252 /// Returns the number of times the sign bit is replicated into the other 253 /// bits. countMinSignBitsKnownBits254 unsigned countMinSignBits() const { 255 if (isNonNegative()) 256 return countMinLeadingZeros(); 257 if (isNegative()) 258 return countMinLeadingOnes(); 259 // Every value has at least 1 sign bit. 260 return 1; 261 } 262 263 /// Returns the maximum number of bits needed to represent all possible 264 /// signed values with these known bits. This is the inverse of the minimum 265 /// number of known sign bits. Examples for bitwidth 5: 266 /// 110?? --> 4 267 /// 0000? --> 2 countMaxSignificantBitsKnownBits268 unsigned countMaxSignificantBits() const { 269 return getBitWidth() - countMinSignBits() + 1; 270 } 271 272 /// Returns the maximum number of trailing zero bits possible. countMaxTrailingZerosKnownBits273 unsigned countMaxTrailingZeros() const { 274 return One.countTrailingZeros(); 275 } 276 277 /// Returns the maximum number of trailing one bits possible. countMaxTrailingOnesKnownBits278 unsigned countMaxTrailingOnes() const { 279 return Zero.countTrailingZeros(); 280 } 281 282 /// Returns the maximum number of leading zero bits possible. countMaxLeadingZerosKnownBits283 unsigned countMaxLeadingZeros() const { 284 return One.countLeadingZeros(); 285 } 286 287 /// Returns the maximum number of leading one bits possible. countMaxLeadingOnesKnownBits288 unsigned countMaxLeadingOnes() const { 289 return Zero.countLeadingZeros(); 290 } 291 292 /// Returns the number of bits known to be one. countMinPopulationKnownBits293 unsigned countMinPopulation() const { 294 return One.countPopulation(); 295 } 296 297 /// Returns the maximum number of bits that could be one. countMaxPopulationKnownBits298 unsigned countMaxPopulation() const { 299 return getBitWidth() - Zero.countPopulation(); 300 } 301 302 /// Returns the maximum number of bits needed to represent all possible 303 /// unsigned values with these known bits. This is the inverse of the 304 /// minimum number of leading zeros. countMaxActiveBitsKnownBits305 unsigned countMaxActiveBits() const { 306 return getBitWidth() - countMinLeadingZeros(); 307 } 308 309 /// Create known bits from a known constant. makeConstantKnownBits310 static KnownBits makeConstant(const APInt &C) { 311 return KnownBits(~C, C); 312 } 313 314 /// Compute known bits common to LHS and RHS. commonBitsKnownBits315 static KnownBits commonBits(const KnownBits &LHS, const KnownBits &RHS) { 316 return KnownBits(LHS.Zero & RHS.Zero, LHS.One & RHS.One); 317 } 318 319 /// Return true if LHS and RHS have no common bits set. haveNoCommonBitsSetKnownBits320 static bool haveNoCommonBitsSet(const KnownBits &LHS, const KnownBits &RHS) { 321 return (LHS.Zero | RHS.Zero).isAllOnes(); 322 } 323 324 /// Compute known bits resulting from adding LHS, RHS and a 1-bit Carry. 325 static KnownBits computeForAddCarry( 326 const KnownBits &LHS, const KnownBits &RHS, const KnownBits &Carry); 327 328 /// Compute known bits resulting from adding LHS and RHS. 329 static KnownBits computeForAddSub(bool Add, bool NSW, const KnownBits &LHS, 330 KnownBits RHS); 331 332 /// Compute known bits resulting from multiplying LHS and RHS. 333 static KnownBits mul(const KnownBits &LHS, const KnownBits &RHS, 334 bool NoUndefSelfMultiply = false); 335 336 /// Compute known bits from sign-extended multiply-hi. 337 static KnownBits mulhs(const KnownBits &LHS, const KnownBits &RHS); 338 339 /// Compute known bits from zero-extended multiply-hi. 340 static KnownBits mulhu(const KnownBits &LHS, const KnownBits &RHS); 341 342 /// Compute known bits for udiv(LHS, RHS). 343 static KnownBits udiv(const KnownBits &LHS, const KnownBits &RHS); 344 345 /// Compute known bits for urem(LHS, RHS). 346 static KnownBits urem(const KnownBits &LHS, const KnownBits &RHS); 347 348 /// Compute known bits for srem(LHS, RHS). 349 static KnownBits srem(const KnownBits &LHS, const KnownBits &RHS); 350 351 /// Compute known bits for umax(LHS, RHS). 352 static KnownBits umax(const KnownBits &LHS, const KnownBits &RHS); 353 354 /// Compute known bits for umin(LHS, RHS). 355 static KnownBits umin(const KnownBits &LHS, const KnownBits &RHS); 356 357 /// Compute known bits for smax(LHS, RHS). 358 static KnownBits smax(const KnownBits &LHS, const KnownBits &RHS); 359 360 /// Compute known bits for smin(LHS, RHS). 361 static KnownBits smin(const KnownBits &LHS, const KnownBits &RHS); 362 363 /// Compute known bits for shl(LHS, RHS). 364 /// NOTE: RHS (shift amount) bitwidth doesn't need to be the same as LHS. 365 static KnownBits shl(const KnownBits &LHS, const KnownBits &RHS); 366 367 /// Compute known bits for lshr(LHS, RHS). 368 /// NOTE: RHS (shift amount) bitwidth doesn't need to be the same as LHS. 369 static KnownBits lshr(const KnownBits &LHS, const KnownBits &RHS); 370 371 /// Compute known bits for ashr(LHS, RHS). 372 /// NOTE: RHS (shift amount) bitwidth doesn't need to be the same as LHS. 373 static KnownBits ashr(const KnownBits &LHS, const KnownBits &RHS); 374 375 /// Determine if these known bits always give the same ICMP_EQ result. 376 static std::optional<bool> eq(const KnownBits &LHS, const KnownBits &RHS); 377 378 /// Determine if these known bits always give the same ICMP_NE result. 379 static std::optional<bool> ne(const KnownBits &LHS, const KnownBits &RHS); 380 381 /// Determine if these known bits always give the same ICMP_UGT result. 382 static std::optional<bool> ugt(const KnownBits &LHS, const KnownBits &RHS); 383 384 /// Determine if these known bits always give the same ICMP_UGE result. 385 static std::optional<bool> uge(const KnownBits &LHS, const KnownBits &RHS); 386 387 /// Determine if these known bits always give the same ICMP_ULT result. 388 static std::optional<bool> ult(const KnownBits &LHS, const KnownBits &RHS); 389 390 /// Determine if these known bits always give the same ICMP_ULE result. 391 static std::optional<bool> ule(const KnownBits &LHS, const KnownBits &RHS); 392 393 /// Determine if these known bits always give the same ICMP_SGT result. 394 static std::optional<bool> sgt(const KnownBits &LHS, const KnownBits &RHS); 395 396 /// Determine if these known bits always give the same ICMP_SGE result. 397 static std::optional<bool> sge(const KnownBits &LHS, const KnownBits &RHS); 398 399 /// Determine if these known bits always give the same ICMP_SLT result. 400 static std::optional<bool> slt(const KnownBits &LHS, const KnownBits &RHS); 401 402 /// Determine if these known bits always give the same ICMP_SLE result. 403 static std::optional<bool> sle(const KnownBits &LHS, const KnownBits &RHS); 404 405 /// Update known bits based on ANDing with RHS. 406 KnownBits &operator&=(const KnownBits &RHS); 407 408 /// Update known bits based on ORing with RHS. 409 KnownBits &operator|=(const KnownBits &RHS); 410 411 /// Update known bits based on XORing with RHS. 412 KnownBits &operator^=(const KnownBits &RHS); 413 414 /// Compute known bits for the absolute value. 415 KnownBits abs(bool IntMinIsPoison = false) const; 416 byteSwapKnownBits417 KnownBits byteSwap() const { 418 return KnownBits(Zero.byteSwap(), One.byteSwap()); 419 } 420 reverseBitsKnownBits421 KnownBits reverseBits() const { 422 return KnownBits(Zero.reverseBits(), One.reverseBits()); 423 } 424 425 bool operator==(const KnownBits &Other) const { 426 return Zero == Other.Zero && One == Other.One; 427 } 428 429 bool operator!=(const KnownBits &Other) const { return !(*this == Other); } 430 431 void print(raw_ostream &OS) const; 432 void dump() const; 433 }; 434 435 inline KnownBits operator&(KnownBits LHS, const KnownBits &RHS) { 436 LHS &= RHS; 437 return LHS; 438 } 439 440 inline KnownBits operator&(const KnownBits &LHS, KnownBits &&RHS) { 441 RHS &= LHS; 442 return std::move(RHS); 443 } 444 445 inline KnownBits operator|(KnownBits LHS, const KnownBits &RHS) { 446 LHS |= RHS; 447 return LHS; 448 } 449 450 inline KnownBits operator|(const KnownBits &LHS, KnownBits &&RHS) { 451 RHS |= LHS; 452 return std::move(RHS); 453 } 454 455 inline KnownBits operator^(KnownBits LHS, const KnownBits &RHS) { 456 LHS ^= RHS; 457 return LHS; 458 } 459 460 inline KnownBits operator^(const KnownBits &LHS, KnownBits &&RHS) { 461 RHS ^= LHS; 462 return std::move(RHS); 463 } 464 465 } // end namespace llvm 466 467 #endif 468