1 /*
2 * BCM2835 CPRMAN clock manager
3 *
4 * Copyright (c) 2020 Luc Michel <luc@lmichel.fr>
5 *
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
8
9 /*
10 * This peripheral is roughly divided into 3 main parts:
11 * - the PLLs
12 * - the PLL channels
13 * - the clock muxes
14 *
15 * A main oscillator (xosc) feeds all the PLLs. Each PLLs has one or more
16 * channels. Those channel are then connected to the clock muxes. Each mux has
17 * multiples sources (usually the xosc, some of the PLL channels and some "test
18 * debug" clocks). A mux is configured to select a given source through its
19 * control register. Each mux has one output clock that also goes out of the
20 * CPRMAN. This output clock usually connects to another peripheral in the SoC
21 * (so a given mux is dedicated to a peripheral).
22 *
23 * At each level (PLL, channel and mux), the clock can be altered through
24 * dividers (and multipliers in case of the PLLs), and can be disabled (in this
25 * case, the next levels see no clock).
26 *
27 * This can be sum-up as follows (this is an example and not the actual BCM2835
28 * clock tree):
29 *
30 * /-->[PLL]-|->[PLL channel]--... [mux]--> to peripherals
31 * | |->[PLL channel] muxes takes [mux]
32 * | \->[PLL channel] inputs from [mux]
33 * | some channels [mux]
34 * [xosc]---|-->[PLL]-|->[PLL channel] and other srcs [mux]
35 * | \->[PLL channel] ...-->[mux]
36 * | [mux]
37 * \-->[PLL]--->[PLL channel] [mux]
38 *
39 * The page at https://elinux.org/The_Undocumented_Pi gives the actual clock
40 * tree configuration.
41 *
42 * The CPRMAN exposes clock outputs with the name of the clock mux suffixed
43 * with "-out" (e.g. "uart-out", "h264-out", ...).
44 */
45
46 #include "qemu/osdep.h"
47 #include "qemu/log.h"
48 #include "migration/vmstate.h"
49 #include "hw/qdev-properties.h"
50 #include "hw/misc/bcm2835_cprman.h"
51 #include "hw/misc/bcm2835_cprman_internals.h"
52 #include "trace.h"
53
54 /* PLL */
55
pll_reset(DeviceState * dev)56 static void pll_reset(DeviceState *dev)
57 {
58 CprmanPllState *s = CPRMAN_PLL(dev);
59 const PLLResetInfo *info = &PLL_RESET_INFO[s->id];
60
61 *s->reg_cm = info->cm;
62 *s->reg_a2w_ctrl = info->a2w_ctrl;
63 memcpy(s->reg_a2w_ana, info->a2w_ana, sizeof(info->a2w_ana));
64 *s->reg_a2w_frac = info->a2w_frac;
65 }
66
pll_is_locked(const CprmanPllState * pll)67 static bool pll_is_locked(const CprmanPllState *pll)
68 {
69 return !FIELD_EX32(*pll->reg_a2w_ctrl, A2W_PLLx_CTRL, PWRDN)
70 && !FIELD_EX32(*pll->reg_cm, CM_PLLx, ANARST);
71 }
72
pll_update(CprmanPllState * pll)73 static void pll_update(CprmanPllState *pll)
74 {
75 uint64_t freq, ndiv, fdiv, pdiv;
76
77 if (!pll_is_locked(pll)) {
78 clock_update(pll->out, 0);
79 return;
80 }
81
82 pdiv = FIELD_EX32(*pll->reg_a2w_ctrl, A2W_PLLx_CTRL, PDIV);
83
84 if (!pdiv) {
85 clock_update(pll->out, 0);
86 return;
87 }
88
89 ndiv = FIELD_EX32(*pll->reg_a2w_ctrl, A2W_PLLx_CTRL, NDIV);
90 fdiv = FIELD_EX32(*pll->reg_a2w_frac, A2W_PLLx_FRAC, FRAC);
91
92 if (pll->reg_a2w_ana[1] & pll->prediv_mask) {
93 /* The prescaler doubles the parent frequency */
94 ndiv *= 2;
95 fdiv *= 2;
96 }
97
98 /*
99 * We have a multiplier with an integer part (ndiv) and a fractional part
100 * (fdiv), and a divider (pdiv).
101 */
102 freq = clock_get_hz(pll->xosc_in) *
103 ((ndiv << R_A2W_PLLx_FRAC_FRAC_LENGTH) + fdiv);
104 freq /= pdiv;
105 freq >>= R_A2W_PLLx_FRAC_FRAC_LENGTH;
106
107 clock_update_hz(pll->out, freq);
108 }
109
pll_xosc_update(void * opaque,ClockEvent event)110 static void pll_xosc_update(void *opaque, ClockEvent event)
111 {
112 pll_update(CPRMAN_PLL(opaque));
113 }
114
pll_init(Object * obj)115 static void pll_init(Object *obj)
116 {
117 CprmanPllState *s = CPRMAN_PLL(obj);
118
119 s->xosc_in = qdev_init_clock_in(DEVICE(s), "xosc-in", pll_xosc_update,
120 s, ClockUpdate);
121 s->out = qdev_init_clock_out(DEVICE(s), "out");
122 }
123
124 static const VMStateDescription pll_vmstate = {
125 .name = TYPE_CPRMAN_PLL,
126 .version_id = 1,
127 .minimum_version_id = 1,
128 .fields = (const VMStateField[]) {
129 VMSTATE_CLOCK(xosc_in, CprmanPllState),
130 VMSTATE_END_OF_LIST()
131 }
132 };
133
pll_class_init(ObjectClass * klass,void * data)134 static void pll_class_init(ObjectClass *klass, void *data)
135 {
136 DeviceClass *dc = DEVICE_CLASS(klass);
137
138 device_class_set_legacy_reset(dc, pll_reset);
139 dc->vmsd = &pll_vmstate;
140 }
141
142 static const TypeInfo cprman_pll_info = {
143 .name = TYPE_CPRMAN_PLL,
144 .parent = TYPE_DEVICE,
145 .instance_size = sizeof(CprmanPllState),
146 .class_init = pll_class_init,
147 .instance_init = pll_init,
148 };
149
150
151 /* PLL channel */
152
pll_channel_reset(DeviceState * dev)153 static void pll_channel_reset(DeviceState *dev)
154 {
155 CprmanPllChannelState *s = CPRMAN_PLL_CHANNEL(dev);
156 const PLLChannelResetInfo *info = &PLL_CHANNEL_RESET_INFO[s->id];
157
158 *s->reg_a2w_ctrl = info->a2w_ctrl;
159 }
160
pll_channel_is_enabled(CprmanPllChannelState * channel)161 static bool pll_channel_is_enabled(CprmanPllChannelState *channel)
162 {
163 /*
164 * XXX I'm not sure of the purpose of the LOAD field. The Linux driver does
165 * not set it when enabling the channel, but does clear it when disabling
166 * it.
167 */
168 return !FIELD_EX32(*channel->reg_a2w_ctrl, A2W_PLLx_CHANNELy, DISABLE)
169 && !(*channel->reg_cm & channel->hold_mask);
170 }
171
pll_channel_update(CprmanPllChannelState * channel)172 static void pll_channel_update(CprmanPllChannelState *channel)
173 {
174 uint64_t freq, div;
175
176 if (!pll_channel_is_enabled(channel)) {
177 clock_update(channel->out, 0);
178 return;
179 }
180
181 div = FIELD_EX32(*channel->reg_a2w_ctrl, A2W_PLLx_CHANNELy, DIV);
182
183 if (!div) {
184 /*
185 * It seems that when the divider value is 0, it is considered as
186 * being maximum by the hardware (see the Linux driver).
187 */
188 div = R_A2W_PLLx_CHANNELy_DIV_MASK;
189 }
190
191 /* Some channels have an additional fixed divider */
192 freq = clock_get_hz(channel->pll_in) / (div * channel->fixed_divider);
193
194 clock_update_hz(channel->out, freq);
195 }
196
197 /* Update a PLL and all its channels */
pll_update_all_channels(BCM2835CprmanState * s,CprmanPllState * pll)198 static void pll_update_all_channels(BCM2835CprmanState *s,
199 CprmanPllState *pll)
200 {
201 size_t i;
202
203 pll_update(pll);
204
205 for (i = 0; i < CPRMAN_NUM_PLL_CHANNEL; i++) {
206 CprmanPllChannelState *channel = &s->channels[i];
207 if (channel->parent == pll->id) {
208 pll_channel_update(channel);
209 }
210 }
211 }
212
pll_channel_pll_in_update(void * opaque,ClockEvent event)213 static void pll_channel_pll_in_update(void *opaque, ClockEvent event)
214 {
215 pll_channel_update(CPRMAN_PLL_CHANNEL(opaque));
216 }
217
pll_channel_init(Object * obj)218 static void pll_channel_init(Object *obj)
219 {
220 CprmanPllChannelState *s = CPRMAN_PLL_CHANNEL(obj);
221
222 s->pll_in = qdev_init_clock_in(DEVICE(s), "pll-in",
223 pll_channel_pll_in_update, s,
224 ClockUpdate);
225 s->out = qdev_init_clock_out(DEVICE(s), "out");
226 }
227
228 static const VMStateDescription pll_channel_vmstate = {
229 .name = TYPE_CPRMAN_PLL_CHANNEL,
230 .version_id = 1,
231 .minimum_version_id = 1,
232 .fields = (const VMStateField[]) {
233 VMSTATE_CLOCK(pll_in, CprmanPllChannelState),
234 VMSTATE_END_OF_LIST()
235 }
236 };
237
pll_channel_class_init(ObjectClass * klass,void * data)238 static void pll_channel_class_init(ObjectClass *klass, void *data)
239 {
240 DeviceClass *dc = DEVICE_CLASS(klass);
241
242 device_class_set_legacy_reset(dc, pll_channel_reset);
243 dc->vmsd = &pll_channel_vmstate;
244 }
245
246 static const TypeInfo cprman_pll_channel_info = {
247 .name = TYPE_CPRMAN_PLL_CHANNEL,
248 .parent = TYPE_DEVICE,
249 .instance_size = sizeof(CprmanPllChannelState),
250 .class_init = pll_channel_class_init,
251 .instance_init = pll_channel_init,
252 };
253
254
255 /* clock mux */
256
clock_mux_is_enabled(CprmanClockMuxState * mux)257 static bool clock_mux_is_enabled(CprmanClockMuxState *mux)
258 {
259 return FIELD_EX32(*mux->reg_ctl, CM_CLOCKx_CTL, ENABLE);
260 }
261
clock_mux_update(CprmanClockMuxState * mux)262 static void clock_mux_update(CprmanClockMuxState *mux)
263 {
264 uint64_t freq;
265 uint32_t div, src = FIELD_EX32(*mux->reg_ctl, CM_CLOCKx_CTL, SRC);
266 bool enabled = clock_mux_is_enabled(mux);
267
268 *mux->reg_ctl = FIELD_DP32(*mux->reg_ctl, CM_CLOCKx_CTL, BUSY, enabled);
269
270 if (!enabled) {
271 clock_update(mux->out, 0);
272 return;
273 }
274
275 freq = clock_get_hz(mux->srcs[src]);
276
277 if (mux->int_bits == 0 && mux->frac_bits == 0) {
278 clock_update_hz(mux->out, freq);
279 return;
280 }
281
282 /*
283 * The divider has an integer and a fractional part. The size of each part
284 * varies with the muxes (int_bits and frac_bits). Both parts are
285 * concatenated, with the integer part always starting at bit 12.
286 *
287 * 31 12 11 0
288 * ------------------------------
289 * CM_DIV | | int | frac | |
290 * ------------------------------
291 * <-----> <------>
292 * int_bits frac_bits
293 */
294 div = extract32(*mux->reg_div,
295 R_CM_CLOCKx_DIV_FRAC_LENGTH - mux->frac_bits,
296 mux->int_bits + mux->frac_bits);
297
298 if (!div) {
299 clock_update(mux->out, 0);
300 return;
301 }
302
303 freq = muldiv64(freq, 1 << mux->frac_bits, div);
304
305 clock_update_hz(mux->out, freq);
306 }
307
clock_mux_src_update(void * opaque,ClockEvent event)308 static void clock_mux_src_update(void *opaque, ClockEvent event)
309 {
310 CprmanClockMuxState **backref = opaque;
311 CprmanClockMuxState *s = *backref;
312 CprmanClockMuxSource src = backref - s->backref;
313
314 if (FIELD_EX32(*s->reg_ctl, CM_CLOCKx_CTL, SRC) != src) {
315 return;
316 }
317
318 clock_mux_update(s);
319 }
320
clock_mux_reset(DeviceState * dev)321 static void clock_mux_reset(DeviceState *dev)
322 {
323 CprmanClockMuxState *clock = CPRMAN_CLOCK_MUX(dev);
324 const ClockMuxResetInfo *info = &CLOCK_MUX_RESET_INFO[clock->id];
325
326 *clock->reg_ctl = info->cm_ctl;
327 *clock->reg_div = info->cm_div;
328 }
329
clock_mux_init(Object * obj)330 static void clock_mux_init(Object *obj)
331 {
332 CprmanClockMuxState *s = CPRMAN_CLOCK_MUX(obj);
333 size_t i;
334
335 for (i = 0; i < CPRMAN_NUM_CLOCK_MUX_SRC; i++) {
336 char *name = g_strdup_printf("srcs[%zu]", i);
337 s->backref[i] = s;
338 s->srcs[i] = qdev_init_clock_in(DEVICE(s), name,
339 clock_mux_src_update,
340 &s->backref[i],
341 ClockUpdate);
342 g_free(name);
343 }
344
345 s->out = qdev_init_clock_out(DEVICE(s), "out");
346 }
347
348 static const VMStateDescription clock_mux_vmstate = {
349 .name = TYPE_CPRMAN_CLOCK_MUX,
350 .version_id = 1,
351 .minimum_version_id = 1,
352 .fields = (const VMStateField[]) {
353 VMSTATE_ARRAY_CLOCK(srcs, CprmanClockMuxState,
354 CPRMAN_NUM_CLOCK_MUX_SRC),
355 VMSTATE_END_OF_LIST()
356 }
357 };
358
clock_mux_class_init(ObjectClass * klass,void * data)359 static void clock_mux_class_init(ObjectClass *klass, void *data)
360 {
361 DeviceClass *dc = DEVICE_CLASS(klass);
362
363 device_class_set_legacy_reset(dc, clock_mux_reset);
364 dc->vmsd = &clock_mux_vmstate;
365 }
366
367 static const TypeInfo cprman_clock_mux_info = {
368 .name = TYPE_CPRMAN_CLOCK_MUX,
369 .parent = TYPE_DEVICE,
370 .instance_size = sizeof(CprmanClockMuxState),
371 .class_init = clock_mux_class_init,
372 .instance_init = clock_mux_init,
373 };
374
375
376 /* DSI0HSCK mux */
377
dsi0hsck_mux_update(CprmanDsi0HsckMuxState * s)378 static void dsi0hsck_mux_update(CprmanDsi0HsckMuxState *s)
379 {
380 bool src_is_plld = FIELD_EX32(*s->reg_cm, CM_DSI0HSCK, SELPLLD);
381 Clock *src = src_is_plld ? s->plld_in : s->plla_in;
382
383 clock_update(s->out, clock_get(src));
384 }
385
dsi0hsck_mux_in_update(void * opaque,ClockEvent event)386 static void dsi0hsck_mux_in_update(void *opaque, ClockEvent event)
387 {
388 dsi0hsck_mux_update(CPRMAN_DSI0HSCK_MUX(opaque));
389 }
390
dsi0hsck_mux_init(Object * obj)391 static void dsi0hsck_mux_init(Object *obj)
392 {
393 CprmanDsi0HsckMuxState *s = CPRMAN_DSI0HSCK_MUX(obj);
394 DeviceState *dev = DEVICE(obj);
395
396 s->plla_in = qdev_init_clock_in(dev, "plla-in", dsi0hsck_mux_in_update,
397 s, ClockUpdate);
398 s->plld_in = qdev_init_clock_in(dev, "plld-in", dsi0hsck_mux_in_update,
399 s, ClockUpdate);
400 s->out = qdev_init_clock_out(DEVICE(s), "out");
401 }
402
403 static const VMStateDescription dsi0hsck_mux_vmstate = {
404 .name = TYPE_CPRMAN_DSI0HSCK_MUX,
405 .version_id = 1,
406 .minimum_version_id = 1,
407 .fields = (const VMStateField[]) {
408 VMSTATE_CLOCK(plla_in, CprmanDsi0HsckMuxState),
409 VMSTATE_CLOCK(plld_in, CprmanDsi0HsckMuxState),
410 VMSTATE_END_OF_LIST()
411 }
412 };
413
dsi0hsck_mux_class_init(ObjectClass * klass,void * data)414 static void dsi0hsck_mux_class_init(ObjectClass *klass, void *data)
415 {
416 DeviceClass *dc = DEVICE_CLASS(klass);
417
418 dc->vmsd = &dsi0hsck_mux_vmstate;
419 }
420
421 static const TypeInfo cprman_dsi0hsck_mux_info = {
422 .name = TYPE_CPRMAN_DSI0HSCK_MUX,
423 .parent = TYPE_DEVICE,
424 .instance_size = sizeof(CprmanDsi0HsckMuxState),
425 .class_init = dsi0hsck_mux_class_init,
426 .instance_init = dsi0hsck_mux_init,
427 };
428
429
430 /* CPRMAN "top level" model */
431
get_cm_lock(const BCM2835CprmanState * s)432 static uint32_t get_cm_lock(const BCM2835CprmanState *s)
433 {
434 static const int CM_LOCK_MAPPING[CPRMAN_NUM_PLL] = {
435 [CPRMAN_PLLA] = R_CM_LOCK_FLOCKA_SHIFT,
436 [CPRMAN_PLLC] = R_CM_LOCK_FLOCKC_SHIFT,
437 [CPRMAN_PLLD] = R_CM_LOCK_FLOCKD_SHIFT,
438 [CPRMAN_PLLH] = R_CM_LOCK_FLOCKH_SHIFT,
439 [CPRMAN_PLLB] = R_CM_LOCK_FLOCKB_SHIFT,
440 };
441
442 uint32_t r = 0;
443 size_t i;
444
445 for (i = 0; i < CPRMAN_NUM_PLL; i++) {
446 r |= pll_is_locked(&s->plls[i]) << CM_LOCK_MAPPING[i];
447 }
448
449 return r;
450 }
451
cprman_read(void * opaque,hwaddr offset,unsigned size)452 static uint64_t cprman_read(void *opaque, hwaddr offset,
453 unsigned size)
454 {
455 BCM2835CprmanState *s = CPRMAN(opaque);
456 uint64_t r = 0;
457 size_t idx = offset / sizeof(uint32_t);
458
459 switch (idx) {
460 case R_CM_LOCK:
461 r = get_cm_lock(s);
462 break;
463
464 default:
465 r = s->regs[idx];
466 }
467
468 trace_bcm2835_cprman_read(offset, r);
469 return r;
470 }
471
update_pll_and_channels_from_cm(BCM2835CprmanState * s,size_t idx)472 static inline void update_pll_and_channels_from_cm(BCM2835CprmanState *s,
473 size_t idx)
474 {
475 size_t i;
476
477 for (i = 0; i < CPRMAN_NUM_PLL; i++) {
478 if (PLL_INIT_INFO[i].cm_offset == idx) {
479 pll_update_all_channels(s, &s->plls[i]);
480 return;
481 }
482 }
483 }
484
update_channel_from_a2w(BCM2835CprmanState * s,size_t idx)485 static inline void update_channel_from_a2w(BCM2835CprmanState *s, size_t idx)
486 {
487 size_t i;
488
489 for (i = 0; i < CPRMAN_NUM_PLL_CHANNEL; i++) {
490 if (PLL_CHANNEL_INIT_INFO[i].a2w_ctrl_offset == idx) {
491 pll_channel_update(&s->channels[i]);
492 return;
493 }
494 }
495 }
496
update_mux_from_cm(BCM2835CprmanState * s,size_t idx)497 static inline void update_mux_from_cm(BCM2835CprmanState *s, size_t idx)
498 {
499 size_t i;
500
501 for (i = 0; i < CPRMAN_NUM_CLOCK_MUX; i++) {
502 if ((CLOCK_MUX_INIT_INFO[i].cm_offset == idx) ||
503 (CLOCK_MUX_INIT_INFO[i].cm_offset + 4 == idx)) {
504 /* matches CM_CTL or CM_DIV mux register */
505 clock_mux_update(&s->clock_muxes[i]);
506 return;
507 }
508 }
509 }
510
511 #define CASE_PLL_A2W_REGS(pll_) \
512 case R_A2W_ ## pll_ ## _CTRL: \
513 case R_A2W_ ## pll_ ## _ANA0: \
514 case R_A2W_ ## pll_ ## _ANA1: \
515 case R_A2W_ ## pll_ ## _ANA2: \
516 case R_A2W_ ## pll_ ## _ANA3: \
517 case R_A2W_ ## pll_ ## _FRAC
518
cprman_write(void * opaque,hwaddr offset,uint64_t value,unsigned size)519 static void cprman_write(void *opaque, hwaddr offset,
520 uint64_t value, unsigned size)
521 {
522 BCM2835CprmanState *s = CPRMAN(opaque);
523 size_t idx = offset / sizeof(uint32_t);
524
525 if (FIELD_EX32(value, CPRMAN, PASSWORD) != CPRMAN_PASSWORD) {
526 trace_bcm2835_cprman_write_invalid_magic(offset, value);
527 return;
528 }
529
530 value &= ~R_CPRMAN_PASSWORD_MASK;
531
532 trace_bcm2835_cprman_write(offset, value);
533 s->regs[idx] = value;
534
535 switch (idx) {
536 case R_CM_PLLA ... R_CM_PLLH:
537 case R_CM_PLLB:
538 /*
539 * A given CM_PLLx register is shared by both the PLL and the channels
540 * of this PLL.
541 */
542 update_pll_and_channels_from_cm(s, idx);
543 break;
544
545 CASE_PLL_A2W_REGS(PLLA) :
546 pll_update(&s->plls[CPRMAN_PLLA]);
547 break;
548
549 CASE_PLL_A2W_REGS(PLLC) :
550 pll_update(&s->plls[CPRMAN_PLLC]);
551 break;
552
553 CASE_PLL_A2W_REGS(PLLD) :
554 pll_update(&s->plls[CPRMAN_PLLD]);
555 break;
556
557 CASE_PLL_A2W_REGS(PLLH) :
558 pll_update(&s->plls[CPRMAN_PLLH]);
559 break;
560
561 CASE_PLL_A2W_REGS(PLLB) :
562 pll_update(&s->plls[CPRMAN_PLLB]);
563 break;
564
565 case R_A2W_PLLA_DSI0:
566 case R_A2W_PLLA_CORE:
567 case R_A2W_PLLA_PER:
568 case R_A2W_PLLA_CCP2:
569 case R_A2W_PLLC_CORE2:
570 case R_A2W_PLLC_CORE1:
571 case R_A2W_PLLC_PER:
572 case R_A2W_PLLC_CORE0:
573 case R_A2W_PLLD_DSI0:
574 case R_A2W_PLLD_CORE:
575 case R_A2W_PLLD_PER:
576 case R_A2W_PLLD_DSI1:
577 case R_A2W_PLLH_AUX:
578 case R_A2W_PLLH_RCAL:
579 case R_A2W_PLLH_PIX:
580 case R_A2W_PLLB_ARM:
581 update_channel_from_a2w(s, idx);
582 break;
583
584 case R_CM_GNRICCTL ... R_CM_SMIDIV:
585 case R_CM_TCNTCNT ... R_CM_VECDIV:
586 case R_CM_PULSECTL ... R_CM_PULSEDIV:
587 case R_CM_SDCCTL ... R_CM_ARMCTL:
588 case R_CM_AVEOCTL ... R_CM_EMMCDIV:
589 case R_CM_EMMC2CTL ... R_CM_EMMC2DIV:
590 update_mux_from_cm(s, idx);
591 break;
592
593 case R_CM_DSI0HSCK:
594 dsi0hsck_mux_update(&s->dsi0hsck_mux);
595 break;
596 }
597 }
598
599 #undef CASE_PLL_A2W_REGS
600
601 static const MemoryRegionOps cprman_ops = {
602 .read = cprman_read,
603 .write = cprman_write,
604 .endianness = DEVICE_LITTLE_ENDIAN,
605 .valid = {
606 /*
607 * Although this hasn't been checked against real hardware, nor the
608 * information can be found in a datasheet, it seems reasonable because
609 * of the "PASSWORD" magic value found in every registers.
610 */
611 .min_access_size = 4,
612 .max_access_size = 4,
613 .unaligned = false,
614 },
615 .impl = {
616 .max_access_size = 4,
617 },
618 };
619
cprman_reset(DeviceState * dev)620 static void cprman_reset(DeviceState *dev)
621 {
622 BCM2835CprmanState *s = CPRMAN(dev);
623 size_t i;
624
625 memset(s->regs, 0, sizeof(s->regs));
626
627 for (i = 0; i < CPRMAN_NUM_PLL; i++) {
628 device_cold_reset(DEVICE(&s->plls[i]));
629 }
630
631 for (i = 0; i < CPRMAN_NUM_PLL_CHANNEL; i++) {
632 device_cold_reset(DEVICE(&s->channels[i]));
633 }
634
635 device_cold_reset(DEVICE(&s->dsi0hsck_mux));
636
637 for (i = 0; i < CPRMAN_NUM_CLOCK_MUX; i++) {
638 device_cold_reset(DEVICE(&s->clock_muxes[i]));
639 }
640
641 clock_update_hz(s->xosc, s->xosc_freq);
642 }
643
cprman_init(Object * obj)644 static void cprman_init(Object *obj)
645 {
646 BCM2835CprmanState *s = CPRMAN(obj);
647 size_t i;
648
649 for (i = 0; i < CPRMAN_NUM_PLL; i++) {
650 object_initialize_child(obj, PLL_INIT_INFO[i].name,
651 &s->plls[i], TYPE_CPRMAN_PLL);
652 set_pll_init_info(s, &s->plls[i], i);
653 }
654
655 for (i = 0; i < CPRMAN_NUM_PLL_CHANNEL; i++) {
656 object_initialize_child(obj, PLL_CHANNEL_INIT_INFO[i].name,
657 &s->channels[i],
658 TYPE_CPRMAN_PLL_CHANNEL);
659 set_pll_channel_init_info(s, &s->channels[i], i);
660 }
661
662 object_initialize_child(obj, "dsi0hsck-mux",
663 &s->dsi0hsck_mux, TYPE_CPRMAN_DSI0HSCK_MUX);
664 s->dsi0hsck_mux.reg_cm = &s->regs[R_CM_DSI0HSCK];
665
666 for (i = 0; i < CPRMAN_NUM_CLOCK_MUX; i++) {
667 char *alias;
668
669 object_initialize_child(obj, CLOCK_MUX_INIT_INFO[i].name,
670 &s->clock_muxes[i],
671 TYPE_CPRMAN_CLOCK_MUX);
672 set_clock_mux_init_info(s, &s->clock_muxes[i], i);
673
674 /* Expose muxes output as CPRMAN outputs */
675 alias = g_strdup_printf("%s-out", CLOCK_MUX_INIT_INFO[i].name);
676 qdev_alias_clock(DEVICE(&s->clock_muxes[i]), "out", DEVICE(obj), alias);
677 g_free(alias);
678 }
679
680 s->xosc = clock_new(obj, "xosc");
681 s->gnd = clock_new(obj, "gnd");
682
683 clock_set(s->gnd, 0);
684
685 memory_region_init_io(&s->iomem, obj, &cprman_ops,
686 s, "bcm2835-cprman", 0x2000);
687 sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem);
688 }
689
connect_mux_sources(BCM2835CprmanState * s,CprmanClockMuxState * mux,const CprmanPllChannel * clk_mapping)690 static void connect_mux_sources(BCM2835CprmanState *s,
691 CprmanClockMuxState *mux,
692 const CprmanPllChannel *clk_mapping)
693 {
694 size_t i;
695 Clock *td0 = s->clock_muxes[CPRMAN_CLOCK_TD0].out;
696 Clock *td1 = s->clock_muxes[CPRMAN_CLOCK_TD1].out;
697
698 /* For sources from 0 to 3. Source 4 to 9 are mux specific */
699 Clock * const CLK_SRC_MAPPING[] = {
700 [CPRMAN_CLOCK_SRC_GND] = s->gnd,
701 [CPRMAN_CLOCK_SRC_XOSC] = s->xosc,
702 [CPRMAN_CLOCK_SRC_TD0] = td0,
703 [CPRMAN_CLOCK_SRC_TD1] = td1,
704 };
705
706 for (i = 0; i < CPRMAN_NUM_CLOCK_MUX_SRC; i++) {
707 CprmanPllChannel mapping = clk_mapping[i];
708 Clock *src;
709
710 if (mapping == CPRMAN_CLOCK_SRC_FORCE_GROUND) {
711 src = s->gnd;
712 } else if (mapping == CPRMAN_CLOCK_SRC_DSI0HSCK) {
713 src = s->dsi0hsck_mux.out;
714 } else if (i < CPRMAN_CLOCK_SRC_PLLA) {
715 src = CLK_SRC_MAPPING[i];
716 } else {
717 src = s->channels[mapping].out;
718 }
719
720 clock_set_source(mux->srcs[i], src);
721 }
722 }
723
cprman_realize(DeviceState * dev,Error ** errp)724 static void cprman_realize(DeviceState *dev, Error **errp)
725 {
726 BCM2835CprmanState *s = CPRMAN(dev);
727 size_t i;
728
729 for (i = 0; i < CPRMAN_NUM_PLL; i++) {
730 CprmanPllState *pll = &s->plls[i];
731
732 clock_set_source(pll->xosc_in, s->xosc);
733
734 if (!qdev_realize(DEVICE(pll), NULL, errp)) {
735 return;
736 }
737 }
738
739 for (i = 0; i < CPRMAN_NUM_PLL_CHANNEL; i++) {
740 CprmanPllChannelState *channel = &s->channels[i];
741 CprmanPll parent = PLL_CHANNEL_INIT_INFO[i].parent;
742 Clock *parent_clk = s->plls[parent].out;
743
744 clock_set_source(channel->pll_in, parent_clk);
745
746 if (!qdev_realize(DEVICE(channel), NULL, errp)) {
747 return;
748 }
749 }
750
751 clock_set_source(s->dsi0hsck_mux.plla_in,
752 s->channels[CPRMAN_PLLA_CHANNEL_DSI0].out);
753 clock_set_source(s->dsi0hsck_mux.plld_in,
754 s->channels[CPRMAN_PLLD_CHANNEL_DSI0].out);
755
756 if (!qdev_realize(DEVICE(&s->dsi0hsck_mux), NULL, errp)) {
757 return;
758 }
759
760 for (i = 0; i < CPRMAN_NUM_CLOCK_MUX; i++) {
761 CprmanClockMuxState *clock_mux = &s->clock_muxes[i];
762
763 connect_mux_sources(s, clock_mux, CLOCK_MUX_INIT_INFO[i].src_mapping);
764
765 if (!qdev_realize(DEVICE(clock_mux), NULL, errp)) {
766 return;
767 }
768 }
769 }
770
771 static const VMStateDescription cprman_vmstate = {
772 .name = TYPE_BCM2835_CPRMAN,
773 .version_id = 1,
774 .minimum_version_id = 1,
775 .fields = (const VMStateField[]) {
776 VMSTATE_UINT32_ARRAY(regs, BCM2835CprmanState, CPRMAN_NUM_REGS),
777 VMSTATE_END_OF_LIST()
778 }
779 };
780
781 static Property cprman_properties[] = {
782 DEFINE_PROP_UINT32("xosc-freq-hz", BCM2835CprmanState, xosc_freq, 19200000),
783 DEFINE_PROP_END_OF_LIST()
784 };
785
cprman_class_init(ObjectClass * klass,void * data)786 static void cprman_class_init(ObjectClass *klass, void *data)
787 {
788 DeviceClass *dc = DEVICE_CLASS(klass);
789
790 dc->realize = cprman_realize;
791 device_class_set_legacy_reset(dc, cprman_reset);
792 dc->vmsd = &cprman_vmstate;
793 device_class_set_props(dc, cprman_properties);
794 }
795
796 static const TypeInfo cprman_info = {
797 .name = TYPE_BCM2835_CPRMAN,
798 .parent = TYPE_SYS_BUS_DEVICE,
799 .instance_size = sizeof(BCM2835CprmanState),
800 .class_init = cprman_class_init,
801 .instance_init = cprman_init,
802 };
803
cprman_register_types(void)804 static void cprman_register_types(void)
805 {
806 type_register_static(&cprman_info);
807 type_register_static(&cprman_pll_info);
808 type_register_static(&cprman_pll_channel_info);
809 type_register_static(&cprman_clock_mux_info);
810 type_register_static(&cprman_dsi0hsck_mux_info);
811 }
812
813 type_init(cprman_register_types);
814