xref: /netbsd/sys/kern/subr_cpufreq.c (revision 416a8a0e)
1 /*	$NetBSD: subr_cpufreq.c,v 1.10 2023/04/09 09:18:09 riastradh Exp $ */
2 
3 /*-
4  * Copyright (c) 2011 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jukka Ruohonen.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: subr_cpufreq.c,v 1.10 2023/04/09 09:18:09 riastradh Exp $");
34 
35 #include <sys/param.h>
36 #include <sys/cpu.h>
37 #include <sys/cpufreq.h>
38 #include <sys/kernel.h>
39 #include <sys/kmem.h>
40 #include <sys/mutex.h>
41 #include <sys/time.h>
42 #include <sys/xcall.h>
43 
44 static int	 cpufreq_latency(void);
45 static uint32_t	 cpufreq_get_max(void);
46 static uint32_t	 cpufreq_get_min(void);
47 static uint32_t	 cpufreq_get_raw(struct cpu_info *);
48 static void	 cpufreq_get_state_raw(uint32_t, struct cpufreq_state *);
49 static void	 cpufreq_set_raw(struct cpu_info *, uint32_t);
50 static void	 cpufreq_set_all_raw(uint32_t);
51 
52 static kmutex_t		cpufreq_lock __cacheline_aligned;
53 static struct cpufreq  *cf_backend __read_mostly = NULL;
54 
55 void
cpufreq_init(void)56 cpufreq_init(void)
57 {
58 
59 	mutex_init(&cpufreq_lock, MUTEX_DEFAULT, IPL_NONE);
60 	cf_backend = kmem_zalloc(sizeof(*cf_backend), KM_SLEEP);
61 }
62 
63 int
cpufreq_register(struct cpufreq * cf)64 cpufreq_register(struct cpufreq *cf)
65 {
66 	uint32_t c, i, j, k, m;
67 	int rv;
68 
69 	if (cold != 0)
70 		return EBUSY;
71 
72 	KASSERT(cf != NULL);
73 	KASSERT(cf_backend != NULL);
74 	KASSERT(cf->cf_get_freq != NULL);
75 	KASSERT(cf->cf_set_freq != NULL);
76 	KASSERT(cf->cf_state_count > 0);
77 	KASSERT(cf->cf_state_count < CPUFREQ_STATE_MAX);
78 
79 	mutex_enter(&cpufreq_lock);
80 
81 	if (cf_backend->cf_init != false) {
82 		mutex_exit(&cpufreq_lock);
83 		return EALREADY;
84 	}
85 
86 	cf_backend->cf_init = true;
87 	cf_backend->cf_mp = cf->cf_mp;
88 	cf_backend->cf_cookie = cf->cf_cookie;
89 	cf_backend->cf_get_freq = cf->cf_get_freq;
90 	cf_backend->cf_set_freq = cf->cf_set_freq;
91 
92 	(void)strlcpy(cf_backend->cf_name, cf->cf_name, sizeof(cf->cf_name));
93 
94 	/*
95 	 * Sanity check the values and verify descending order.
96 	 */
97 	for (c = i = 0; i < cf->cf_state_count; i++) {
98 
99 		CTASSERT(CPUFREQ_STATE_ENABLED != 0);
100 		CTASSERT(CPUFREQ_STATE_DISABLED != 0);
101 
102 		if (cf->cf_state[i].cfs_freq == 0)
103 			continue;
104 
105 		if (cf->cf_state[i].cfs_freq > 9999 &&
106 		    cf->cf_state[i].cfs_freq != CPUFREQ_STATE_ENABLED &&
107 		    cf->cf_state[i].cfs_freq != CPUFREQ_STATE_DISABLED)
108 			continue;
109 
110 		for (j = k = 0; j < i; j++) {
111 
112 			if (cf->cf_state[i].cfs_freq >=
113 			    cf->cf_state[j].cfs_freq) {
114 				k = 1;
115 				break;
116 			}
117 		}
118 
119 		if (k != 0)
120 			continue;
121 
122 		cf_backend->cf_state[c].cfs_index = c;
123 		cf_backend->cf_state[c].cfs_freq = cf->cf_state[i].cfs_freq;
124 		cf_backend->cf_state[c].cfs_power = cf->cf_state[i].cfs_power;
125 
126 		c++;
127 	}
128 
129 	cf_backend->cf_state_count = c;
130 
131 	if (cf_backend->cf_state_count == 0) {
132 		mutex_exit(&cpufreq_lock);
133 		cpufreq_deregister();
134 		return EINVAL;
135 	}
136 
137 	rv = cpufreq_latency();
138 
139 	if (rv != 0) {
140 		mutex_exit(&cpufreq_lock);
141 		cpufreq_deregister();
142 		return rv;
143 	}
144 
145 	m = cpufreq_get_max();
146 	cpufreq_set_all_raw(m);
147 	mutex_exit(&cpufreq_lock);
148 
149 	return 0;
150 }
151 
152 void
cpufreq_deregister(void)153 cpufreq_deregister(void)
154 {
155 
156 	mutex_enter(&cpufreq_lock);
157 	memset(cf_backend, 0, sizeof(*cf_backend));
158 	mutex_exit(&cpufreq_lock);
159 }
160 
161 static int
cpufreq_latency(void)162 cpufreq_latency(void)
163 {
164 	struct cpufreq *cf = cf_backend;
165 	struct timespec nta, ntb;
166 	const uint32_t n = 10;
167 	uint32_t i, j, l, m;
168 	uint64_t s;
169 
170 	l = cpufreq_get_min();
171 	m = cpufreq_get_max();
172 
173 	/*
174 	 * For each state, sample the average transition
175 	 * latency required to set the state for all CPUs.
176 	 */
177 	for (i = 0; i < cf->cf_state_count; i++) {
178 
179 		for (s = 0, j = 0; j < n; j++) {
180 
181 			/*
182 			 * Attempt to exclude possible
183 			 * caching done by the backend.
184 			 */
185 			if (i == 0)
186 				cpufreq_set_all_raw(l);
187 			else {
188 				cpufreq_set_all_raw(m);
189 			}
190 
191 			nanotime(&nta);
192 			cpufreq_set_all_raw(cf->cf_state[i].cfs_freq);
193 			nanotime(&ntb);
194 			timespecsub(&ntb, &nta, &ntb);
195 
196 			if (ntb.tv_sec != 0 ||
197 			    ntb.tv_nsec > CPUFREQ_LATENCY_MAX)
198 				continue;
199 
200 			if (s >= UINT64_MAX - CPUFREQ_LATENCY_MAX)
201 				break;
202 
203 			/* Convert to microseconds to prevent overflow */
204 			s += ntb.tv_nsec / 1000;
205 		}
206 
207 		/*
208 		 * Consider the backend unsuitable if
209 		 * the transition latency was too high.
210 		 */
211 		if (s == 0)
212 			return EMSGSIZE;
213 
214 		cf->cf_state[i].cfs_latency = s / n;
215 	}
216 
217 	return 0;
218 }
219 
220 void
cpufreq_suspend(struct cpu_info * ci)221 cpufreq_suspend(struct cpu_info *ci)
222 {
223 	struct cpufreq *cf = cf_backend;
224 	uint32_t l, s;
225 
226 	mutex_enter(&cpufreq_lock);
227 
228 	if (cf->cf_init != true) {
229 		mutex_exit(&cpufreq_lock);
230 		return;
231 	}
232 
233 	l = cpufreq_get_min();
234 	s = cpufreq_get_raw(ci);
235 
236 	cpufreq_set_raw(ci, l);
237 	cf->cf_state_saved = s;
238 
239 	mutex_exit(&cpufreq_lock);
240 }
241 
242 void
cpufreq_resume(struct cpu_info * ci)243 cpufreq_resume(struct cpu_info *ci)
244 {
245 	struct cpufreq *cf = cf_backend;
246 
247 	mutex_enter(&cpufreq_lock);
248 
249 	if (cf->cf_init != true || cf->cf_state_saved == 0) {
250 		mutex_exit(&cpufreq_lock);
251 		return;
252 	}
253 
254 	cpufreq_set_raw(ci, cf->cf_state_saved);
255 	mutex_exit(&cpufreq_lock);
256 }
257 
258 uint32_t
cpufreq_get(struct cpu_info * ci)259 cpufreq_get(struct cpu_info *ci)
260 {
261 	struct cpufreq *cf = cf_backend;
262 	uint32_t freq;
263 
264 	mutex_enter(&cpufreq_lock);
265 
266 	if (cf->cf_init != true) {
267 		mutex_exit(&cpufreq_lock);
268 		return 0;
269 	}
270 
271 	freq = cpufreq_get_raw(ci);
272 	mutex_exit(&cpufreq_lock);
273 
274 	return freq;
275 }
276 
277 static uint32_t
cpufreq_get_max(void)278 cpufreq_get_max(void)
279 {
280 	struct cpufreq *cf = cf_backend;
281 
282 	KASSERT(cf->cf_init != false);
283 	KASSERT(mutex_owned(&cpufreq_lock) != 0);
284 
285 	return cf->cf_state[0].cfs_freq;
286 }
287 
288 static uint32_t
cpufreq_get_min(void)289 cpufreq_get_min(void)
290 {
291 	struct cpufreq *cf = cf_backend;
292 
293 	KASSERT(cf->cf_init != false);
294 	KASSERT(mutex_owned(&cpufreq_lock) != 0);
295 
296 	return cf->cf_state[cf->cf_state_count - 1].cfs_freq;
297 }
298 
299 static uint32_t
cpufreq_get_raw(struct cpu_info * ci)300 cpufreq_get_raw(struct cpu_info *ci)
301 {
302 	struct cpufreq *cf = cf_backend;
303 	uint32_t freq = 0;
304 	uint64_t xc;
305 
306 	KASSERT(cf->cf_init != false);
307 	KASSERT(mutex_owned(&cpufreq_lock) != 0);
308 
309 	xc = xc_unicast(0, (*cf->cf_get_freq), cf->cf_cookie, &freq, ci);
310 	xc_wait(xc);
311 
312 	return freq;
313 }
314 
315 int
cpufreq_get_backend(struct cpufreq * dst)316 cpufreq_get_backend(struct cpufreq *dst)
317 {
318 	struct cpufreq *cf = cf_backend;
319 
320 	mutex_enter(&cpufreq_lock);
321 
322 	if (cf->cf_init != true || dst == NULL) {
323 		mutex_exit(&cpufreq_lock);
324 		return ENODEV;
325 	}
326 
327 	memcpy(dst, cf, sizeof(*cf));
328 	mutex_exit(&cpufreq_lock);
329 
330 	return 0;
331 }
332 
333 int
cpufreq_get_state(uint32_t freq,struct cpufreq_state * cfs)334 cpufreq_get_state(uint32_t freq, struct cpufreq_state *cfs)
335 {
336 	struct cpufreq *cf = cf_backend;
337 
338 	mutex_enter(&cpufreq_lock);
339 
340 	if (cf->cf_init != true || cfs == NULL) {
341 		mutex_exit(&cpufreq_lock);
342 		return ENODEV;
343 	}
344 
345 	cpufreq_get_state_raw(freq, cfs);
346 	mutex_exit(&cpufreq_lock);
347 
348 	return 0;
349 }
350 
351 int
cpufreq_get_state_index(uint32_t index,struct cpufreq_state * cfs)352 cpufreq_get_state_index(uint32_t index, struct cpufreq_state *cfs)
353 {
354 	struct cpufreq *cf = cf_backend;
355 
356 	mutex_enter(&cpufreq_lock);
357 
358 	if (cf->cf_init != true || cfs == NULL) {
359 		mutex_exit(&cpufreq_lock);
360 		return ENODEV;
361 	}
362 
363 	if (index >= cf->cf_state_count) {
364 		mutex_exit(&cpufreq_lock);
365 		return EINVAL;
366 	}
367 
368 	memcpy(cfs, &cf->cf_state[index], sizeof(*cfs));
369 	mutex_exit(&cpufreq_lock);
370 
371 	return 0;
372 }
373 
374 static void
cpufreq_get_state_raw(uint32_t freq,struct cpufreq_state * cfs)375 cpufreq_get_state_raw(uint32_t freq, struct cpufreq_state *cfs)
376 {
377 	struct cpufreq *cf = cf_backend;
378 	uint32_t f, hi, i = 0, lo = 0;
379 
380 	KASSERT(mutex_owned(&cpufreq_lock) != 0);
381 	KASSERT(cf->cf_init != false);
382 	KASSERT(cfs != NULL);
383 
384 	hi = cf->cf_state_count;
385 
386 	while (lo < hi) {
387 
388 		i = (lo + hi) >> 1;
389 		f = cf->cf_state[i].cfs_freq;
390 
391 		if (freq == f)
392 			break;
393 		else if (freq > f)
394 			hi = i;
395 		else {
396 			lo = i + 1;
397 		}
398 	}
399 
400 	memcpy(cfs, &cf->cf_state[i], sizeof(*cfs));
401 }
402 
403 void
cpufreq_set(struct cpu_info * ci,uint32_t freq)404 cpufreq_set(struct cpu_info *ci, uint32_t freq)
405 {
406 	struct cpufreq *cf = cf_backend;
407 
408 	mutex_enter(&cpufreq_lock);
409 
410 	if (__predict_false(cf->cf_init != true)) {
411 		mutex_exit(&cpufreq_lock);
412 		return;
413 	}
414 
415 	cpufreq_set_raw(ci, freq);
416 	mutex_exit(&cpufreq_lock);
417 }
418 
419 static void
cpufreq_set_raw(struct cpu_info * ci,uint32_t freq)420 cpufreq_set_raw(struct cpu_info *ci, uint32_t freq)
421 {
422 	struct cpufreq *cf = cf_backend;
423 	uint64_t xc;
424 
425 	KASSERT(cf->cf_init != false);
426 	KASSERT(mutex_owned(&cpufreq_lock) != 0);
427 
428 	xc = xc_unicast(0, (*cf->cf_set_freq), cf->cf_cookie, &freq, ci);
429 	xc_wait(xc);
430 }
431 
432 void
cpufreq_set_all(uint32_t freq)433 cpufreq_set_all(uint32_t freq)
434 {
435 	struct cpufreq *cf = cf_backend;
436 
437 	mutex_enter(&cpufreq_lock);
438 
439 	if (__predict_false(cf->cf_init != true)) {
440 		mutex_exit(&cpufreq_lock);
441 		return;
442 	}
443 
444 	cpufreq_set_all_raw(freq);
445 	mutex_exit(&cpufreq_lock);
446 }
447 
448 static void
cpufreq_set_all_raw(uint32_t freq)449 cpufreq_set_all_raw(uint32_t freq)
450 {
451 	struct cpufreq *cf = cf_backend;
452 	uint64_t xc;
453 
454 	KASSERT(cf->cf_init != false);
455 	KASSERT(mutex_owned(&cpufreq_lock) != 0);
456 
457 	xc = xc_broadcast(0, (*cf->cf_set_freq), cf->cf_cookie, &freq);
458 	xc_wait(xc);
459 }
460 
461 #ifdef notyet
462 void
cpufreq_set_higher(struct cpu_info * ci)463 cpufreq_set_higher(struct cpu_info *ci)
464 {
465 	cpufreq_set_step(ci, -1);
466 }
467 
468 void
cpufreq_set_lower(struct cpu_info * ci)469 cpufreq_set_lower(struct cpu_info *ci)
470 {
471 	cpufreq_set_step(ci, 1);
472 }
473 
474 static void
cpufreq_set_step(struct cpu_info * ci,int32_t step)475 cpufreq_set_step(struct cpu_info *ci, int32_t step)
476 {
477 	struct cpufreq *cf = cf_backend;
478 	struct cpufreq_state cfs;
479 	uint32_t freq;
480 	int32_t index;
481 
482 	mutex_enter(&cpufreq_lock);
483 
484 	if (__predict_false(cf->cf_init != true)) {
485 		mutex_exit(&cpufreq_lock);
486 		return;
487 	}
488 
489 	freq = cpufreq_get_raw(ci);
490 
491 	if (__predict_false(freq == 0)) {
492 		mutex_exit(&cpufreq_lock);
493 		return;
494 	}
495 
496 	cpufreq_get_state_raw(freq, &cfs);
497 	index = cfs.cfs_index + step;
498 
499 	if (index < 0 || index >= (int32_t)cf->cf_state_count) {
500 		mutex_exit(&cpufreq_lock);
501 		return;
502 	}
503 
504 	cpufreq_set_raw(ci, cf->cf_state[index].cfs_freq);
505 	mutex_exit(&cpufreq_lock);
506 }
507 #endif
508