1 //===-- LoongArchAsmBackend.cpp - LoongArch Assembler Backend -*- C++ -*---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the LoongArchAsmBackend class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "LoongArchAsmBackend.h"
14 #include "LoongArchFixupKinds.h"
15 #include "llvm/MC/MCAsmInfo.h"
16 #include "llvm/MC/MCAsmLayout.h"
17 #include "llvm/MC/MCAssembler.h"
18 #include "llvm/MC/MCContext.h"
19 #include "llvm/MC/MCELFObjectWriter.h"
20 #include "llvm/MC/MCExpr.h"
21 #include "llvm/MC/MCSection.h"
22 #include "llvm/MC/MCValue.h"
23 #include "llvm/Support/EndianStream.h"
24 #include "llvm/Support/LEB128.h"
25 #include "llvm/Support/MathExtras.h"
26 
27 #define DEBUG_TYPE "loongarch-asmbackend"
28 
29 using namespace llvm;
30 
31 std::optional<MCFixupKind>
getFixupKind(StringRef Name) const32 LoongArchAsmBackend::getFixupKind(StringRef Name) const {
33   if (STI.getTargetTriple().isOSBinFormatELF()) {
34     auto Type = llvm::StringSwitch<unsigned>(Name)
35 #define ELF_RELOC(X, Y) .Case(#X, Y)
36 #include "llvm/BinaryFormat/ELFRelocs/LoongArch.def"
37 #undef ELF_RELOC
38                     .Case("BFD_RELOC_NONE", ELF::R_LARCH_NONE)
39                     .Case("BFD_RELOC_32", ELF::R_LARCH_32)
40                     .Case("BFD_RELOC_64", ELF::R_LARCH_64)
41                     .Default(-1u);
42     if (Type != -1u)
43       return static_cast<MCFixupKind>(FirstLiteralRelocationKind + Type);
44   }
45   return std::nullopt;
46 }
47 
48 const MCFixupKindInfo &
getFixupKindInfo(MCFixupKind Kind) const49 LoongArchAsmBackend::getFixupKindInfo(MCFixupKind Kind) const {
50   const static MCFixupKindInfo Infos[] = {
51       // This table *must* be in the order that the fixup_* kinds are defined in
52       // LoongArchFixupKinds.h.
53       //
54       // {name, offset, bits, flags}
55       {"fixup_loongarch_b16", 10, 16, MCFixupKindInfo::FKF_IsPCRel},
56       {"fixup_loongarch_b21", 0, 26, MCFixupKindInfo::FKF_IsPCRel},
57       {"fixup_loongarch_b26", 0, 26, MCFixupKindInfo::FKF_IsPCRel},
58       {"fixup_loongarch_abs_hi20", 5, 20, 0},
59       {"fixup_loongarch_abs_lo12", 10, 12, 0},
60       {"fixup_loongarch_abs64_lo20", 5, 20, 0},
61       {"fixup_loongarch_abs64_hi12", 10, 12, 0},
62       {"fixup_loongarch_tls_le_hi20", 5, 20, 0},
63       {"fixup_loongarch_tls_le_lo12", 10, 12, 0},
64       {"fixup_loongarch_tls_le64_lo20", 5, 20, 0},
65       {"fixup_loongarch_tls_le64_hi12", 10, 12, 0},
66       // TODO: Add more fixup kinds.
67   };
68 
69   static_assert((std::size(Infos)) == LoongArch::NumTargetFixupKinds,
70                 "Not all fixup kinds added to Infos array");
71 
72   // Fixup kinds from .reloc directive are like R_LARCH_NONE. They
73   // do not require any extra processing.
74   if (Kind >= FirstLiteralRelocationKind)
75     return MCAsmBackend::getFixupKindInfo(FK_NONE);
76 
77   if (Kind < FirstTargetFixupKind)
78     return MCAsmBackend::getFixupKindInfo(Kind);
79 
80   assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
81          "Invalid kind!");
82   return Infos[Kind - FirstTargetFixupKind];
83 }
84 
reportOutOfRangeError(MCContext & Ctx,SMLoc Loc,unsigned N)85 static void reportOutOfRangeError(MCContext &Ctx, SMLoc Loc, unsigned N) {
86   Ctx.reportError(Loc, "fixup value out of range [" + Twine(llvm::minIntN(N)) +
87                            ", " + Twine(llvm::maxIntN(N)) + "]");
88 }
89 
adjustFixupValue(const MCFixup & Fixup,uint64_t Value,MCContext & Ctx)90 static uint64_t adjustFixupValue(const MCFixup &Fixup, uint64_t Value,
91                                  MCContext &Ctx) {
92   switch (Fixup.getTargetKind()) {
93   default:
94     llvm_unreachable("Unknown fixup kind");
95   case FK_Data_1:
96   case FK_Data_2:
97   case FK_Data_4:
98   case FK_Data_8:
99   case FK_Data_leb128:
100     return Value;
101   case LoongArch::fixup_loongarch_b16: {
102     if (!isInt<18>(Value))
103       reportOutOfRangeError(Ctx, Fixup.getLoc(), 18);
104     if (Value % 4)
105       Ctx.reportError(Fixup.getLoc(), "fixup value must be 4-byte aligned");
106     return (Value >> 2) & 0xffff;
107   }
108   case LoongArch::fixup_loongarch_b21: {
109     if (!isInt<23>(Value))
110       reportOutOfRangeError(Ctx, Fixup.getLoc(), 23);
111     if (Value % 4)
112       Ctx.reportError(Fixup.getLoc(), "fixup value must be 4-byte aligned");
113     return ((Value & 0x3fffc) << 8) | ((Value >> 18) & 0x1f);
114   }
115   case LoongArch::fixup_loongarch_b26: {
116     if (!isInt<28>(Value))
117       reportOutOfRangeError(Ctx, Fixup.getLoc(), 28);
118     if (Value % 4)
119       Ctx.reportError(Fixup.getLoc(), "fixup value must be 4-byte aligned");
120     return ((Value & 0x3fffc) << 8) | ((Value >> 18) & 0x3ff);
121   }
122   case LoongArch::fixup_loongarch_abs_hi20:
123   case LoongArch::fixup_loongarch_tls_le_hi20:
124     return (Value >> 12) & 0xfffff;
125   case LoongArch::fixup_loongarch_abs_lo12:
126   case LoongArch::fixup_loongarch_tls_le_lo12:
127     return Value & 0xfff;
128   case LoongArch::fixup_loongarch_abs64_lo20:
129   case LoongArch::fixup_loongarch_tls_le64_lo20:
130     return (Value >> 32) & 0xfffff;
131   case LoongArch::fixup_loongarch_abs64_hi12:
132   case LoongArch::fixup_loongarch_tls_le64_hi12:
133     return (Value >> 52) & 0xfff;
134   }
135 }
136 
fixupLeb128(MCContext & Ctx,const MCFixup & Fixup,MutableArrayRef<char> Data,uint64_t Value)137 static void fixupLeb128(MCContext &Ctx, const MCFixup &Fixup,
138                         MutableArrayRef<char> Data, uint64_t Value) {
139   unsigned I;
140   for (I = 0; I != Data.size() && Value; ++I, Value >>= 7)
141     Data[I] |= uint8_t(Value & 0x7f);
142   if (Value)
143     Ctx.reportError(Fixup.getLoc(), "Invalid uleb128 value!");
144 }
145 
applyFixup(const MCAssembler & Asm,const MCFixup & Fixup,const MCValue & Target,MutableArrayRef<char> Data,uint64_t Value,bool IsResolved,const MCSubtargetInfo * STI) const146 void LoongArchAsmBackend::applyFixup(const MCAssembler &Asm,
147                                      const MCFixup &Fixup,
148                                      const MCValue &Target,
149                                      MutableArrayRef<char> Data, uint64_t Value,
150                                      bool IsResolved,
151                                      const MCSubtargetInfo *STI) const {
152   if (!Value)
153     return; // Doesn't change encoding.
154 
155   MCFixupKind Kind = Fixup.getKind();
156   if (Kind >= FirstLiteralRelocationKind)
157     return;
158   MCFixupKindInfo Info = getFixupKindInfo(Kind);
159   MCContext &Ctx = Asm.getContext();
160 
161   // Fixup leb128 separately.
162   if (Fixup.getTargetKind() == FK_Data_leb128)
163     return fixupLeb128(Ctx, Fixup, Data, Value);
164 
165   // Apply any target-specific value adjustments.
166   Value = adjustFixupValue(Fixup, Value, Ctx);
167 
168   // Shift the value into position.
169   Value <<= Info.TargetOffset;
170 
171   unsigned Offset = Fixup.getOffset();
172   unsigned NumBytes = alignTo(Info.TargetSize + Info.TargetOffset, 8) / 8;
173 
174   assert(Offset + NumBytes <= Data.size() && "Invalid fixup offset!");
175   // For each byte of the fragment that the fixup touches, mask in the
176   // bits from the fixup value.
177   for (unsigned I = 0; I != NumBytes; ++I) {
178     Data[Offset + I] |= uint8_t((Value >> (I * 8)) & 0xff);
179   }
180 }
181 
182 // Linker relaxation may change code size. We have to insert Nops
183 // for .align directive when linker relaxation enabled. So then Linker
184 // could satisfy alignment by removing Nops.
185 // The function returns the total Nops Size we need to insert.
shouldInsertExtraNopBytesForCodeAlign(const MCAlignFragment & AF,unsigned & Size)186 bool LoongArchAsmBackend::shouldInsertExtraNopBytesForCodeAlign(
187     const MCAlignFragment &AF, unsigned &Size) {
188   // Calculate Nops Size only when linker relaxation enabled.
189   if (!AF.getSubtargetInfo()->hasFeature(LoongArch::FeatureRelax))
190     return false;
191 
192   // Ignore alignment if MaxBytesToEmit is less than the minimum Nop size.
193   const unsigned MinNopLen = 4;
194   if (AF.getMaxBytesToEmit() < MinNopLen)
195     return false;
196   Size = AF.getAlignment().value() - MinNopLen;
197   return AF.getAlignment() > MinNopLen;
198 }
199 
200 // We need to insert R_LARCH_ALIGN relocation type to indicate the
201 // position of Nops and the total bytes of the Nops have been inserted
202 // when linker relaxation enabled.
203 // The function inserts fixup_loongarch_align fixup which eventually will
204 // transfer to R_LARCH_ALIGN relocation type.
205 // The improved R_LARCH_ALIGN requires symbol index. The lowest 8 bits of
206 // addend represent alignment and the other bits of addend represent the
207 // maximum number of bytes to emit. The maximum number of bytes is zero
208 // means ignore the emit limit.
shouldInsertFixupForCodeAlign(MCAssembler & Asm,const MCAsmLayout & Layout,MCAlignFragment & AF)209 bool LoongArchAsmBackend::shouldInsertFixupForCodeAlign(
210     MCAssembler &Asm, const MCAsmLayout &Layout, MCAlignFragment &AF) {
211   // Insert the fixup only when linker relaxation enabled.
212   if (!AF.getSubtargetInfo()->hasFeature(LoongArch::FeatureRelax))
213     return false;
214 
215   // Calculate total Nops we need to insert. If there are none to insert
216   // then simply return.
217   unsigned Count;
218   if (!shouldInsertExtraNopBytesForCodeAlign(AF, Count))
219     return false;
220 
221   MCSection *Sec = AF.getParent();
222   MCContext &Ctx = Asm.getContext();
223   const MCExpr *Dummy = MCConstantExpr::create(0, Ctx);
224   // Create fixup_loongarch_align fixup.
225   MCFixup Fixup =
226       MCFixup::create(0, Dummy, MCFixupKind(LoongArch::fixup_loongarch_align));
227   const MCSymbolRefExpr *MCSym = getSecToAlignSym()[Sec];
228   if (MCSym == nullptr) {
229     // Create a symbol and make the value of symbol is zero.
230     MCSymbol *Sym = Ctx.createNamedTempSymbol("la-relax-align");
231     Sym->setFragment(&*Sec->getBeginSymbol()->getFragment());
232     Asm.registerSymbol(*Sym);
233     MCSym = MCSymbolRefExpr::create(Sym, Ctx);
234     getSecToAlignSym()[Sec] = MCSym;
235   }
236 
237   uint64_t FixedValue = 0;
238   unsigned Lo = Log2_64(Count) + 1;
239   unsigned Hi = AF.getMaxBytesToEmit() >= Count ? 0 : AF.getMaxBytesToEmit();
240   MCValue Value = MCValue::get(MCSym, nullptr, Hi << 8 | Lo);
241   Asm.getWriter().recordRelocation(Asm, Layout, &AF, Fixup, Value, FixedValue);
242 
243   return true;
244 }
245 
shouldForceRelocation(const MCAssembler & Asm,const MCFixup & Fixup,const MCValue & Target,const MCSubtargetInfo * STI)246 bool LoongArchAsmBackend::shouldForceRelocation(const MCAssembler &Asm,
247                                                 const MCFixup &Fixup,
248                                                 const MCValue &Target,
249                                                 const MCSubtargetInfo *STI) {
250   if (Fixup.getKind() >= FirstLiteralRelocationKind)
251     return true;
252   switch (Fixup.getTargetKind()) {
253   default:
254     return STI->hasFeature(LoongArch::FeatureRelax);
255   case FK_Data_1:
256   case FK_Data_2:
257   case FK_Data_4:
258   case FK_Data_8:
259   case FK_Data_leb128:
260     return !Target.isAbsolute();
261   }
262 }
263 
264 static inline std::pair<MCFixupKind, MCFixupKind>
getRelocPairForSize(unsigned Size)265 getRelocPairForSize(unsigned Size) {
266   switch (Size) {
267   default:
268     llvm_unreachable("unsupported fixup size");
269   case 6:
270     return std::make_pair(
271         MCFixupKind(FirstLiteralRelocationKind + ELF::R_LARCH_ADD6),
272         MCFixupKind(FirstLiteralRelocationKind + ELF::R_LARCH_SUB6));
273   case 8:
274     return std::make_pair(
275         MCFixupKind(FirstLiteralRelocationKind + ELF::R_LARCH_ADD8),
276         MCFixupKind(FirstLiteralRelocationKind + ELF::R_LARCH_SUB8));
277   case 16:
278     return std::make_pair(
279         MCFixupKind(FirstLiteralRelocationKind + ELF::R_LARCH_ADD16),
280         MCFixupKind(FirstLiteralRelocationKind + ELF::R_LARCH_SUB16));
281   case 32:
282     return std::make_pair(
283         MCFixupKind(FirstLiteralRelocationKind + ELF::R_LARCH_ADD32),
284         MCFixupKind(FirstLiteralRelocationKind + ELF::R_LARCH_SUB32));
285   case 64:
286     return std::make_pair(
287         MCFixupKind(FirstLiteralRelocationKind + ELF::R_LARCH_ADD64),
288         MCFixupKind(FirstLiteralRelocationKind + ELF::R_LARCH_SUB64));
289   case 128:
290     return std::make_pair(
291         MCFixupKind(FirstLiteralRelocationKind + ELF::R_LARCH_ADD_ULEB128),
292         MCFixupKind(FirstLiteralRelocationKind + ELF::R_LARCH_SUB_ULEB128));
293   }
294 }
295 
relaxLEB128(MCLEBFragment & LF,MCAsmLayout & Layout,int64_t & Value) const296 std::pair<bool, bool> LoongArchAsmBackend::relaxLEB128(MCLEBFragment &LF,
297                                                        MCAsmLayout &Layout,
298                                                        int64_t &Value) const {
299   const MCExpr &Expr = LF.getValue();
300   if (LF.isSigned() || !Expr.evaluateKnownAbsolute(Value, Layout))
301     return std::make_pair(false, false);
302   LF.getFixups().push_back(
303       MCFixup::create(0, &Expr, FK_Data_leb128, Expr.getLoc()));
304   return std::make_pair(true, true);
305 }
306 
relaxDwarfLineAddr(MCDwarfLineAddrFragment & DF,MCAsmLayout & Layout,bool & WasRelaxed) const307 bool LoongArchAsmBackend::relaxDwarfLineAddr(MCDwarfLineAddrFragment &DF,
308                                              MCAsmLayout &Layout,
309                                              bool &WasRelaxed) const {
310   MCContext &C = Layout.getAssembler().getContext();
311 
312   int64_t LineDelta = DF.getLineDelta();
313   const MCExpr &AddrDelta = DF.getAddrDelta();
314   SmallVectorImpl<char> &Data = DF.getContents();
315   SmallVectorImpl<MCFixup> &Fixups = DF.getFixups();
316   size_t OldSize = Data.size();
317 
318   int64_t Value;
319   if (AddrDelta.evaluateAsAbsolute(Value, Layout))
320     return false;
321   bool IsAbsolute = AddrDelta.evaluateKnownAbsolute(Value, Layout);
322   assert(IsAbsolute && "CFA with invalid expression");
323   (void)IsAbsolute;
324 
325   Data.clear();
326   Fixups.clear();
327   raw_svector_ostream OS(Data);
328 
329   // INT64_MAX is a signal that this is actually a DW_LNE_end_sequence.
330   if (LineDelta != INT64_MAX) {
331     OS << uint8_t(dwarf::DW_LNS_advance_line);
332     encodeSLEB128(LineDelta, OS);
333   }
334 
335   unsigned Offset;
336   std::pair<MCFixupKind, MCFixupKind> FK;
337 
338   // According to the DWARF specification, the `DW_LNS_fixed_advance_pc` opcode
339   // takes a single unsigned half (unencoded) operand. The maximum encodable
340   // value is therefore 65535.  Set a conservative upper bound for relaxation.
341   if (Value > 60000) {
342     unsigned PtrSize = C.getAsmInfo()->getCodePointerSize();
343 
344     OS << uint8_t(dwarf::DW_LNS_extended_op);
345     encodeULEB128(PtrSize + 1, OS);
346 
347     OS << uint8_t(dwarf::DW_LNE_set_address);
348     Offset = OS.tell();
349     assert((PtrSize == 4 || PtrSize == 8) && "Unexpected pointer size");
350     FK = getRelocPairForSize(PtrSize == 4 ? 32 : 64);
351     OS.write_zeros(PtrSize);
352   } else {
353     OS << uint8_t(dwarf::DW_LNS_fixed_advance_pc);
354     Offset = OS.tell();
355     FK = getRelocPairForSize(16);
356     support::endian::write<uint16_t>(OS, 0, llvm::endianness::little);
357   }
358 
359   const MCBinaryExpr &MBE = cast<MCBinaryExpr>(AddrDelta);
360   Fixups.push_back(MCFixup::create(Offset, MBE.getLHS(), std::get<0>(FK)));
361   Fixups.push_back(MCFixup::create(Offset, MBE.getRHS(), std::get<1>(FK)));
362 
363   if (LineDelta == INT64_MAX) {
364     OS << uint8_t(dwarf::DW_LNS_extended_op);
365     OS << uint8_t(1);
366     OS << uint8_t(dwarf::DW_LNE_end_sequence);
367   } else {
368     OS << uint8_t(dwarf::DW_LNS_copy);
369   }
370 
371   WasRelaxed = OldSize != Data.size();
372   return true;
373 }
374 
relaxDwarfCFA(MCDwarfCallFrameFragment & DF,MCAsmLayout & Layout,bool & WasRelaxed) const375 bool LoongArchAsmBackend::relaxDwarfCFA(MCDwarfCallFrameFragment &DF,
376                                         MCAsmLayout &Layout,
377                                         bool &WasRelaxed) const {
378   const MCExpr &AddrDelta = DF.getAddrDelta();
379   SmallVectorImpl<char> &Data = DF.getContents();
380   SmallVectorImpl<MCFixup> &Fixups = DF.getFixups();
381   size_t OldSize = Data.size();
382 
383   int64_t Value;
384   if (AddrDelta.evaluateAsAbsolute(Value, Layout))
385     return false;
386   bool IsAbsolute = AddrDelta.evaluateKnownAbsolute(Value, Layout);
387   assert(IsAbsolute && "CFA with invalid expression");
388   (void)IsAbsolute;
389 
390   Data.clear();
391   Fixups.clear();
392   raw_svector_ostream OS(Data);
393 
394   assert(
395       Layout.getAssembler().getContext().getAsmInfo()->getMinInstAlignment() ==
396           1 &&
397       "expected 1-byte alignment");
398   if (Value == 0) {
399     WasRelaxed = OldSize != Data.size();
400     return true;
401   }
402 
403   auto AddFixups = [&Fixups,
404                     &AddrDelta](unsigned Offset,
405                                 std::pair<MCFixupKind, MCFixupKind> FK) {
406     const MCBinaryExpr &MBE = cast<MCBinaryExpr>(AddrDelta);
407     Fixups.push_back(MCFixup::create(Offset, MBE.getLHS(), std::get<0>(FK)));
408     Fixups.push_back(MCFixup::create(Offset, MBE.getRHS(), std::get<1>(FK)));
409   };
410 
411   if (isUIntN(6, Value)) {
412     OS << uint8_t(dwarf::DW_CFA_advance_loc);
413     AddFixups(0, getRelocPairForSize(6));
414   } else if (isUInt<8>(Value)) {
415     OS << uint8_t(dwarf::DW_CFA_advance_loc1);
416     support::endian::write<uint8_t>(OS, 0, llvm::endianness::little);
417     AddFixups(1, getRelocPairForSize(8));
418   } else if (isUInt<16>(Value)) {
419     OS << uint8_t(dwarf::DW_CFA_advance_loc2);
420     support::endian::write<uint16_t>(OS, 0, llvm::endianness::little);
421     AddFixups(1, getRelocPairForSize(16));
422   } else if (isUInt<32>(Value)) {
423     OS << uint8_t(dwarf::DW_CFA_advance_loc4);
424     support::endian::write<uint32_t>(OS, 0, llvm::endianness::little);
425     AddFixups(1, getRelocPairForSize(32));
426   } else {
427     llvm_unreachable("unsupported CFA encoding");
428   }
429 
430   WasRelaxed = OldSize != Data.size();
431   return true;
432 }
433 
writeNopData(raw_ostream & OS,uint64_t Count,const MCSubtargetInfo * STI) const434 bool LoongArchAsmBackend::writeNopData(raw_ostream &OS, uint64_t Count,
435                                        const MCSubtargetInfo *STI) const {
436   // We mostly follow binutils' convention here: align to 4-byte boundary with a
437   // 0-fill padding.
438   OS.write_zeros(Count % 4);
439 
440   // The remainder is now padded with 4-byte nops.
441   // nop: andi r0, r0, 0
442   for (; Count >= 4; Count -= 4)
443     OS.write("\0\0\x40\x03", 4);
444 
445   return true;
446 }
447 
handleAddSubRelocations(const MCAsmLayout & Layout,const MCFragment & F,const MCFixup & Fixup,const MCValue & Target,uint64_t & FixedValue) const448 bool LoongArchAsmBackend::handleAddSubRelocations(const MCAsmLayout &Layout,
449                                                   const MCFragment &F,
450                                                   const MCFixup &Fixup,
451                                                   const MCValue &Target,
452                                                   uint64_t &FixedValue) const {
453   std::pair<MCFixupKind, MCFixupKind> FK;
454   uint64_t FixedValueA, FixedValueB;
455   const MCSymbol &SA = Target.getSymA()->getSymbol();
456   const MCSymbol &SB = Target.getSymB()->getSymbol();
457 
458   bool force = !SA.isInSection() || !SB.isInSection();
459   if (!force) {
460     const MCSection &SecA = SA.getSection();
461     const MCSection &SecB = SB.getSection();
462 
463     // We need record relocation if SecA != SecB. Usually SecB is same as the
464     // section of Fixup, which will be record the relocation as PCRel. If SecB
465     // is not same as the section of Fixup, it will report error. Just return
466     // false and then this work can be finished by handleFixup.
467     if (&SecA != &SecB)
468       return false;
469 
470     // In SecA == SecB case. If the linker relaxation is enabled, we need record
471     // the ADD, SUB relocations. Otherwise the FixedValue has already been calc-
472     // ulated out in evaluateFixup, return true and avoid record relocations.
473     if (!STI.hasFeature(LoongArch::FeatureRelax))
474       return true;
475   }
476 
477   switch (Fixup.getKind()) {
478   case llvm::FK_Data_1:
479     FK = getRelocPairForSize(8);
480     break;
481   case llvm::FK_Data_2:
482     FK = getRelocPairForSize(16);
483     break;
484   case llvm::FK_Data_4:
485     FK = getRelocPairForSize(32);
486     break;
487   case llvm::FK_Data_8:
488     FK = getRelocPairForSize(64);
489     break;
490   case llvm::FK_Data_leb128:
491     FK = getRelocPairForSize(128);
492     break;
493   default:
494     llvm_unreachable("unsupported fixup size");
495   }
496   MCValue A = MCValue::get(Target.getSymA(), nullptr, Target.getConstant());
497   MCValue B = MCValue::get(Target.getSymB());
498   auto FA = MCFixup::create(Fixup.getOffset(), nullptr, std::get<0>(FK));
499   auto FB = MCFixup::create(Fixup.getOffset(), nullptr, std::get<1>(FK));
500   auto &Asm = Layout.getAssembler();
501   Asm.getWriter().recordRelocation(Asm, Layout, &F, FA, A, FixedValueA);
502   Asm.getWriter().recordRelocation(Asm, Layout, &F, FB, B, FixedValueB);
503   FixedValue = FixedValueA - FixedValueB;
504   return true;
505 }
506 
507 std::unique_ptr<MCObjectTargetWriter>
createObjectTargetWriter() const508 LoongArchAsmBackend::createObjectTargetWriter() const {
509   return createLoongArchELFObjectWriter(
510       OSABI, Is64Bit, STI.hasFeature(LoongArch::FeatureRelax));
511 }
512 
createLoongArchAsmBackend(const Target & T,const MCSubtargetInfo & STI,const MCRegisterInfo & MRI,const MCTargetOptions & Options)513 MCAsmBackend *llvm::createLoongArchAsmBackend(const Target &T,
514                                               const MCSubtargetInfo &STI,
515                                               const MCRegisterInfo &MRI,
516                                               const MCTargetOptions &Options) {
517   const Triple &TT = STI.getTargetTriple();
518   uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TT.getOS());
519   return new LoongArchAsmBackend(STI, OSABI, TT.isArch64Bit(), Options);
520 }
521