1 /*	$NetBSD: crypto.c,v 1.48 2016/07/07 06:55:43 msaitoh Exp $ */
2 /*	$FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $	*/
3 /*	$OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $	*/
4 
5 /*-
6  * Copyright (c) 2008 The NetBSD Foundation, Inc.
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to The NetBSD Foundation
10  * by Coyote Point Systems, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 /*
35  * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
36  *
37  * This code was written by Angelos D. Keromytis in Athens, Greece, in
38  * February 2000. Network Security Technologies Inc. (NSTI) kindly
39  * supported the development of this code.
40  *
41  * Copyright (c) 2000, 2001 Angelos D. Keromytis
42  *
43  * Permission to use, copy, and modify this software with or without fee
44  * is hereby granted, provided that this entire notice is included in
45  * all source code copies of any software which is or includes a copy or
46  * modification of this software.
47  *
48  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
49  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
50  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
51  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
52  * PURPOSE.
53  */
54 
55 #include <sys/cdefs.h>
56 __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.48 2016/07/07 06:55:43 msaitoh Exp $");
57 
58 #include <sys/param.h>
59 #include <sys/reboot.h>
60 #include <sys/systm.h>
61 #include <sys/malloc.h>
62 #include <sys/proc.h>
63 #include <sys/pool.h>
64 #include <sys/kthread.h>
65 #include <sys/once.h>
66 #include <sys/sysctl.h>
67 #include <sys/intr.h>
68 #include <sys/errno.h>
69 #include <sys/module.h>
70 
71 #if defined(_KERNEL_OPT)
72 #include "opt_ocf.h"
73 #endif
74 
75 #include <opencrypto/cryptodev.h>
76 #include <opencrypto/xform.h>			/* XXX for M_XDATA */
77 
78 kmutex_t crypto_q_mtx;
79 kmutex_t crypto_ret_q_mtx;
80 kcondvar_t cryptoret_cv;
81 kmutex_t crypto_mtx;
82 
83 /* below are kludges for residual code wrtitten to FreeBSD interfaces */
84   #define SWI_CRYPTO 17
85   #define register_swi(lvl, fn)  \
86   softint_establish(SOFTINT_NET|SOFTINT_MPSAFE, (void (*)(void *))fn, NULL)
87   #define unregister_swi(lvl, fn)  softint_disestablish(softintr_cookie)
88   #define setsoftcrypto(x) softint_schedule(x)
89 
90 int crypto_ret_q_check(struct cryptop *);
91 
92 /*
93  * Crypto drivers register themselves by allocating a slot in the
94  * crypto_drivers table with crypto_get_driverid() and then registering
95  * each algorithm they support with crypto_register() and crypto_kregister().
96  */
97 static	struct cryptocap *crypto_drivers;
98 static	int crypto_drivers_num;
99 static	void *softintr_cookie;
100 static	int crypto_exit_flag;
101 
102 /*
103  * There are two queues for crypto requests; one for symmetric (e.g.
104  * cipher) operations and one for asymmetric (e.g. MOD) operations.
105  * See below for how synchronization is handled.
106  */
107 static	TAILQ_HEAD(,cryptop) crp_q =		/* request queues */
108 		TAILQ_HEAD_INITIALIZER(crp_q);
109 static	TAILQ_HEAD(,cryptkop) crp_kq =
110 		TAILQ_HEAD_INITIALIZER(crp_kq);
111 
112 /*
113  * There are two queues for processing completed crypto requests; one
114  * for the symmetric and one for the asymmetric ops.  We only need one
115  * but have two to avoid type futzing (cryptop vs. cryptkop).  See below
116  * for how synchronization is handled.
117  */
118 static	TAILQ_HEAD(crprethead, cryptop) crp_ret_q =	/* callback queues */
119 		TAILQ_HEAD_INITIALIZER(crp_ret_q);
120 static	TAILQ_HEAD(krprethead, cryptkop) crp_ret_kq =
121 		TAILQ_HEAD_INITIALIZER(crp_ret_kq);
122 
123 /*
124  * XXX these functions are ghastly hacks for when the submission
125  * XXX routines discover a request that was not CBIMM is already
126  * XXX done, and must be yanked from the retq (where _done) put it
127  * XXX as cryptoret won't get the chance.  The queue is walked backwards
128  * XXX as the request is generally the last one queued.
129  *
130  *	 call with the lock held, or else.
131  */
132 int
crypto_ret_q_remove(struct cryptop * crp)133 crypto_ret_q_remove(struct cryptop *crp)
134 {
135 	struct cryptop * acrp, *next;
136 
137 	TAILQ_FOREACH_REVERSE_SAFE(acrp, &crp_ret_q, crprethead, crp_next, next) {
138 		if (acrp == crp) {
139 			TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
140 			crp->crp_flags &= (~CRYPTO_F_ONRETQ);
141 			return 1;
142 		}
143 	}
144 	return 0;
145 }
146 
147 int
crypto_ret_kq_remove(struct cryptkop * krp)148 crypto_ret_kq_remove(struct cryptkop *krp)
149 {
150 	struct cryptkop * akrp, *next;
151 
152 	TAILQ_FOREACH_REVERSE_SAFE(akrp, &crp_ret_kq, krprethead, krp_next, next) {
153 		if (akrp == krp) {
154 			TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
155 			krp->krp_flags &= (~CRYPTO_F_ONRETQ);
156 			return 1;
157 		}
158 	}
159 	return 0;
160 }
161 
162 /*
163  * Crypto op and desciptor data structures are allocated
164  * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
165  */
166 struct pool cryptop_pool;
167 struct pool cryptodesc_pool;
168 struct pool cryptkop_pool;
169 
170 int	crypto_usercrypto = 1;		/* userland may open /dev/crypto */
171 int	crypto_userasymcrypto = 1;	/* userland may do asym crypto reqs */
172 /*
173  * cryptodevallowsoft is (intended to be) sysctl'able, controlling
174  * access to hardware versus software transforms as below:
175  *
176  * crypto_devallowsoft < 0:  Force userlevel requests to use software
177  *                              transforms, always
178  * crypto_devallowsoft = 0:  Use hardware if present, grant userlevel
179  *                              requests for non-accelerated transforms
180  *                              (handling the latter in software)
181  * crypto_devallowsoft > 0:  Allow user requests only for transforms which
182  *                               are hardware-accelerated.
183  */
184 int	crypto_devallowsoft = 1;	/* only use hardware crypto */
185 
186 SYSCTL_SETUP(sysctl_opencrypto_setup, "sysctl opencrypto subtree setup")
187 {
188 
189 	sysctl_createv(clog, 0, NULL, NULL,
190 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
191 		       CTLTYPE_INT, "usercrypto",
192 		       SYSCTL_DESCR("Enable/disable user-mode access to "
193 			   "crypto support"),
194 		       NULL, 0, &crypto_usercrypto, 0,
195 		       CTL_KERN, CTL_CREATE, CTL_EOL);
196 	sysctl_createv(clog, 0, NULL, NULL,
197 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
198 		       CTLTYPE_INT, "userasymcrypto",
199 		       SYSCTL_DESCR("Enable/disable user-mode access to "
200 			   "asymmetric crypto support"),
201 		       NULL, 0, &crypto_userasymcrypto, 0,
202 		       CTL_KERN, CTL_CREATE, CTL_EOL);
203 	sysctl_createv(clog, 0, NULL, NULL,
204 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
205 		       CTLTYPE_INT, "cryptodevallowsoft",
206 		       SYSCTL_DESCR("Enable/disable use of software "
207 			   "asymmetric crypto support"),
208 		       NULL, 0, &crypto_devallowsoft, 0,
209 		       CTL_KERN, CTL_CREATE, CTL_EOL);
210 }
211 
212 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
213 
214 /*
215  * Synchronization: read carefully, this is non-trivial.
216  *
217  * Crypto requests are submitted via crypto_dispatch.  Typically
218  * these come in from network protocols at spl0 (output path) or
219  * spl[,soft]net (input path).
220  *
221  * Requests are typically passed on the driver directly, but they
222  * may also be queued for processing by a software interrupt thread,
223  * cryptointr, that runs at splsoftcrypto.  This thread dispatches
224  * the requests to crypto drivers (h/w or s/w) who call crypto_done
225  * when a request is complete.  Hardware crypto drivers are assumed
226  * to register their IRQ's as network devices so their interrupt handlers
227  * and subsequent "done callbacks" happen at spl[imp,net].
228  *
229  * Completed crypto ops are queued for a separate kernel thread that
230  * handles the callbacks at spl0.  This decoupling insures the crypto
231  * driver interrupt service routine is not delayed while the callback
232  * takes place and that callbacks are delivered after a context switch
233  * (as opposed to a software interrupt that clients must block).
234  *
235  * This scheme is not intended for SMP machines.
236  */
237 static	void cryptointr(void);		/* swi thread to dispatch ops */
238 static	void cryptoret(void);		/* kernel thread for callbacks*/
239 static	struct lwp *cryptothread;
240 static	int crypto_destroy(bool);
241 static	int crypto_invoke(struct cryptop *crp, int hint);
242 static	int crypto_kinvoke(struct cryptkop *krp, int hint);
243 
244 static struct cryptostats cryptostats;
245 #ifdef CRYPTO_TIMING
246 static	int crypto_timing = 0;
247 #endif
248 
249 #ifdef _MODULE
250 static struct sysctllog *sysctl_opencrypto_clog;
251 #endif
252 
253 static int
crypto_init0(void)254 crypto_init0(void)
255 {
256 	int error;
257 
258 	mutex_init(&crypto_mtx, MUTEX_DEFAULT, IPL_NONE);
259 	mutex_init(&crypto_q_mtx, MUTEX_DEFAULT, IPL_NET);
260 	mutex_init(&crypto_ret_q_mtx, MUTEX_DEFAULT, IPL_NET);
261 	cv_init(&cryptoret_cv, "crypto_w");
262 	pool_init(&cryptop_pool, sizeof(struct cryptop), 0, 0,
263 		  0, "cryptop", NULL, IPL_NET);
264 	pool_init(&cryptodesc_pool, sizeof(struct cryptodesc), 0, 0,
265 		  0, "cryptodesc", NULL, IPL_NET);
266 	pool_init(&cryptkop_pool, sizeof(struct cryptkop), 0, 0,
267 		  0, "cryptkop", NULL, IPL_NET);
268 
269 	crypto_drivers = malloc(CRYPTO_DRIVERS_INITIAL *
270 	    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
271 	if (crypto_drivers == NULL) {
272 		printf("crypto_init: cannot malloc driver table\n");
273 		return ENOMEM;
274 	}
275 	crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
276 
277 	softintr_cookie = register_swi(SWI_CRYPTO, cryptointr);
278 	error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
279 	    (void (*)(void *))cryptoret, NULL, &cryptothread, "cryptoret");
280 	if (error) {
281 		printf("crypto_init: cannot start cryptoret thread; error %d",
282 			error);
283 		return crypto_destroy(false);
284 	}
285 
286 #ifdef _MODULE
287 	sysctl_opencrypto_setup(&sysctl_opencrypto_clog);
288 #endif
289 	return 0;
290 }
291 
292 int
crypto_init(void)293 crypto_init(void)
294 {
295 	static ONCE_DECL(crypto_init_once);
296 
297 	return RUN_ONCE(&crypto_init_once, crypto_init0);
298 }
299 
300 static int
crypto_destroy(bool exit_kthread)301 crypto_destroy(bool exit_kthread)
302 {
303 	int i;
304 
305 	if (exit_kthread) {
306 		mutex_spin_enter(&crypto_ret_q_mtx);
307 
308 		/* if we have any in-progress requests, don't unload */
309 		if (!TAILQ_EMPTY(&crp_q) || !TAILQ_EMPTY(&crp_kq))
310 			return EBUSY;
311 
312 		for (i = 0; i < crypto_drivers_num; i++)
313 			if (crypto_drivers[i].cc_sessions != 0)
314 				break;
315 		if (i < crypto_drivers_num)
316 			return EBUSY;
317 
318 		/* kick the cryptoret thread and wait for it to exit */
319 		crypto_exit_flag = 1;
320 		cv_signal(&cryptoret_cv);
321 
322 		while (crypto_exit_flag != 0)
323 			cv_wait(&cryptoret_cv, &crypto_ret_q_mtx);
324 		mutex_spin_exit(&crypto_ret_q_mtx);
325 	}
326 
327 #ifdef _MODULE
328 	if (sysctl_opencrypto_clog != NULL)
329 		sysctl_teardown(&sysctl_opencrypto_clog);
330 #endif
331 
332 	unregister_swi(SWI_CRYPTO, cryptointr);
333 
334 	if (crypto_drivers != NULL)
335 		free(crypto_drivers, M_CRYPTO_DATA);
336 
337 	pool_destroy(&cryptop_pool);
338 	pool_destroy(&cryptodesc_pool);
339 	pool_destroy(&cryptkop_pool);
340 
341 	cv_destroy(&cryptoret_cv);
342 
343 	mutex_destroy(&crypto_ret_q_mtx);
344 	mutex_destroy(&crypto_q_mtx);
345 	mutex_destroy(&crypto_mtx);
346 
347 	return 0;
348 }
349 
350 /*
351  * Create a new session.  Must be called with crypto_mtx held.
352  */
353 int
crypto_newsession(u_int64_t * sid,struct cryptoini * cri,int hard)354 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
355 {
356 	struct cryptoini *cr;
357 	u_int32_t hid, lid;
358 	int err = EINVAL;
359 
360 	mutex_enter(&crypto_mtx);
361 
362 	if (crypto_drivers == NULL)
363 		goto done;
364 
365 	/*
366 	 * The algorithm we use here is pretty stupid; just use the
367 	 * first driver that supports all the algorithms we need.
368 	 *
369 	 * XXX We need more smarts here (in real life too, but that's
370 	 * XXX another story altogether).
371 	 */
372 
373 	for (hid = 0; hid < crypto_drivers_num; hid++) {
374 		/*
375 		 * If it's not initialized or has remaining sessions
376 		 * referencing it, skip.
377 		 */
378 		if (crypto_drivers[hid].cc_newsession == NULL ||
379 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP))
380 			continue;
381 
382 		/* Hardware required -- ignore software drivers. */
383 		if (hard > 0 &&
384 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE))
385 			continue;
386 		/* Software required -- ignore hardware drivers. */
387 		if (hard < 0 &&
388 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) == 0)
389 			continue;
390 
391 		/* See if all the algorithms are supported. */
392 		for (cr = cri; cr; cr = cr->cri_next)
393 			if (crypto_drivers[hid].cc_alg[cr->cri_alg] == 0) {
394 				DPRINTF(("crypto_newsession: alg %d not supported\n", cr->cri_alg));
395 				break;
396 			}
397 
398 		if (cr == NULL) {
399 			/* Ok, all algorithms are supported. */
400 
401 			/*
402 			 * Can't do everything in one session.
403 			 *
404 			 * XXX Fix this. We need to inject a "virtual" session layer right
405 			 * XXX about here.
406 			 */
407 
408 			/* Call the driver initialization routine. */
409 			lid = hid;		/* Pass the driver ID. */
410 			err = crypto_drivers[hid].cc_newsession(
411 					crypto_drivers[hid].cc_arg, &lid, cri);
412 			if (err == 0) {
413 				(*sid) = hid;
414 				(*sid) <<= 32;
415 				(*sid) |= (lid & 0xffffffff);
416 				crypto_drivers[hid].cc_sessions++;
417 			}
418 			goto done;
419 			/*break;*/
420 		}
421 	}
422 done:
423 	mutex_exit(&crypto_mtx);
424 	return err;
425 }
426 
427 /*
428  * Delete an existing session (or a reserved session on an unregistered
429  * driver).  Must be called with crypto_mtx mutex held.
430  */
431 int
crypto_freesession(u_int64_t sid)432 crypto_freesession(u_int64_t sid)
433 {
434 	u_int32_t hid;
435 	int err = 0;
436 
437 	mutex_enter(&crypto_mtx);
438 
439 	if (crypto_drivers == NULL) {
440 		err = EINVAL;
441 		goto done;
442 	}
443 
444 	/* Determine two IDs. */
445 	hid = CRYPTO_SESID2HID(sid);
446 
447 	if (hid >= crypto_drivers_num) {
448 		err = ENOENT;
449 		goto done;
450 	}
451 
452 	if (crypto_drivers[hid].cc_sessions)
453 		crypto_drivers[hid].cc_sessions--;
454 
455 	/* Call the driver cleanup routine, if available. */
456 	if (crypto_drivers[hid].cc_freesession) {
457 		err = crypto_drivers[hid].cc_freesession(
458 				crypto_drivers[hid].cc_arg, sid);
459 	}
460 	else
461 		err = 0;
462 
463 	/*
464 	 * If this was the last session of a driver marked as invalid,
465 	 * make the entry available for reuse.
466 	 */
467 	if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) &&
468 	    crypto_drivers[hid].cc_sessions == 0)
469 		memset(&crypto_drivers[hid], 0, sizeof(struct cryptocap));
470 
471 done:
472 	mutex_exit(&crypto_mtx);
473 	return err;
474 }
475 
476 /*
477  * Return an unused driver id.  Used by drivers prior to registering
478  * support for the algorithms they handle.
479  */
480 int32_t
crypto_get_driverid(u_int32_t flags)481 crypto_get_driverid(u_int32_t flags)
482 {
483 	struct cryptocap *newdrv;
484 	int i;
485 
486 	(void)crypto_init();		/* XXX oh, this is foul! */
487 
488 	mutex_enter(&crypto_mtx);
489 	for (i = 0; i < crypto_drivers_num; i++)
490 		if (crypto_drivers[i].cc_process == NULL &&
491 		    (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0 &&
492 		    crypto_drivers[i].cc_sessions == 0)
493 			break;
494 
495 	/* Out of entries, allocate some more. */
496 	if (i == crypto_drivers_num) {
497 		/* Be careful about wrap-around. */
498 		if (2 * crypto_drivers_num <= crypto_drivers_num) {
499 			mutex_exit(&crypto_mtx);
500 			printf("crypto: driver count wraparound!\n");
501 			return -1;
502 		}
503 
504 		newdrv = malloc(2 * crypto_drivers_num *
505 		    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
506 		if (newdrv == NULL) {
507 			mutex_exit(&crypto_mtx);
508 			printf("crypto: no space to expand driver table!\n");
509 			return -1;
510 		}
511 
512 		memcpy(newdrv, crypto_drivers,
513 		    crypto_drivers_num * sizeof(struct cryptocap));
514 
515 		crypto_drivers_num *= 2;
516 
517 		free(crypto_drivers, M_CRYPTO_DATA);
518 		crypto_drivers = newdrv;
519 	}
520 
521 	/* NB: state is zero'd on free */
522 	crypto_drivers[i].cc_sessions = 1;	/* Mark */
523 	crypto_drivers[i].cc_flags = flags;
524 
525 	if (bootverbose)
526 		printf("crypto: assign driver %u, flags %u\n", i, flags);
527 
528 	mutex_exit(&crypto_mtx);
529 
530 	return i;
531 }
532 
533 static struct cryptocap *
crypto_checkdriver(u_int32_t hid)534 crypto_checkdriver(u_int32_t hid)
535 {
536 	if (crypto_drivers == NULL)
537 		return NULL;
538 	return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
539 }
540 
541 /*
542  * Register support for a key-related algorithm.  This routine
543  * is called once for each algorithm supported a driver.
544  */
545 int
crypto_kregister(u_int32_t driverid,int kalg,u_int32_t flags,int (* kprocess)(void *,struct cryptkop *,int),void * karg)546 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
547     int (*kprocess)(void *, struct cryptkop *, int),
548     void *karg)
549 {
550 	struct cryptocap *cap;
551 	int err;
552 
553 	mutex_enter(&crypto_mtx);
554 
555 	cap = crypto_checkdriver(driverid);
556 	if (cap != NULL &&
557 	    (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
558 		/*
559 		 * XXX Do some performance testing to determine placing.
560 		 * XXX We probably need an auxiliary data structure that
561 		 * XXX describes relative performances.
562 		 */
563 
564 		cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
565 		if (bootverbose) {
566 			printf("crypto: driver %u registers key alg %u "
567 			       " flags %u\n",
568 				driverid,
569 				kalg,
570 				flags
571 			);
572 		}
573 
574 		if (cap->cc_kprocess == NULL) {
575 			cap->cc_karg = karg;
576 			cap->cc_kprocess = kprocess;
577 		}
578 		err = 0;
579 	} else
580 		err = EINVAL;
581 
582 	mutex_exit(&crypto_mtx);
583 	return err;
584 }
585 
586 /*
587  * Register support for a non-key-related algorithm.  This routine
588  * is called once for each such algorithm supported by a driver.
589  */
590 int
crypto_register(u_int32_t driverid,int alg,u_int16_t maxoplen,u_int32_t flags,int (* newses)(void *,u_int32_t *,struct cryptoini *),int (* freeses)(void *,u_int64_t),int (* process)(void *,struct cryptop *,int),void * arg)591 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
592     u_int32_t flags,
593     int (*newses)(void *, u_int32_t*, struct cryptoini*),
594     int (*freeses)(void *, u_int64_t),
595     int (*process)(void *, struct cryptop *, int),
596     void *arg)
597 {
598 	struct cryptocap *cap;
599 	int err;
600 
601 	mutex_enter(&crypto_mtx);
602 
603 	cap = crypto_checkdriver(driverid);
604 	/* NB: algorithms are in the range [1..max] */
605 	if (cap != NULL &&
606 	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
607 		/*
608 		 * XXX Do some performance testing to determine placing.
609 		 * XXX We probably need an auxiliary data structure that
610 		 * XXX describes relative performances.
611 		 */
612 
613 		cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
614 		cap->cc_max_op_len[alg] = maxoplen;
615 		if (bootverbose) {
616 			printf("crypto: driver %u registers alg %u "
617 				"flags %u maxoplen %u\n",
618 				driverid,
619 				alg,
620 				flags,
621 				maxoplen
622 			);
623 		}
624 
625 		if (cap->cc_process == NULL) {
626 			cap->cc_arg = arg;
627 			cap->cc_newsession = newses;
628 			cap->cc_process = process;
629 			cap->cc_freesession = freeses;
630 			cap->cc_sessions = 0;		/* Unmark */
631 		}
632 		err = 0;
633 	} else
634 		err = EINVAL;
635 
636 	mutex_exit(&crypto_mtx);
637 	return err;
638 }
639 
640 /*
641  * Unregister a crypto driver. If there are pending sessions using it,
642  * leave enough information around so that subsequent calls using those
643  * sessions will correctly detect the driver has been unregistered and
644  * reroute requests.
645  */
646 int
crypto_unregister(u_int32_t driverid,int alg)647 crypto_unregister(u_int32_t driverid, int alg)
648 {
649 	int i, err;
650 	u_int32_t ses;
651 	struct cryptocap *cap;
652 
653 	mutex_enter(&crypto_mtx);
654 
655 	cap = crypto_checkdriver(driverid);
656 	if (cap != NULL &&
657 	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
658 	    cap->cc_alg[alg] != 0) {
659 		cap->cc_alg[alg] = 0;
660 		cap->cc_max_op_len[alg] = 0;
661 
662 		/* Was this the last algorithm ? */
663 		for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
664 			if (cap->cc_alg[i] != 0)
665 				break;
666 
667 		if (i == CRYPTO_ALGORITHM_MAX + 1) {
668 			ses = cap->cc_sessions;
669 			memset(cap, 0, sizeof(struct cryptocap));
670 			if (ses != 0) {
671 				/*
672 				 * If there are pending sessions, just mark as invalid.
673 				 */
674 				cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
675 				cap->cc_sessions = ses;
676 			}
677 		}
678 		err = 0;
679 	} else
680 		err = EINVAL;
681 
682 	mutex_exit(&crypto_mtx);
683 	return err;
684 }
685 
686 /*
687  * Unregister all algorithms associated with a crypto driver.
688  * If there are pending sessions using it, leave enough information
689  * around so that subsequent calls using those sessions will
690  * correctly detect the driver has been unregistered and reroute
691  * requests.
692  *
693  * XXX careful.  Don't change this to call crypto_unregister() for each
694  * XXX registered algorithm unless you drop the mutex across the calls;
695  * XXX you can't take it recursively.
696  */
697 int
crypto_unregister_all(u_int32_t driverid)698 crypto_unregister_all(u_int32_t driverid)
699 {
700 	int i, err;
701 	u_int32_t ses;
702 	struct cryptocap *cap;
703 
704 	mutex_enter(&crypto_mtx);
705 	cap = crypto_checkdriver(driverid);
706 	if (cap != NULL) {
707 		for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
708 			cap->cc_alg[i] = 0;
709 			cap->cc_max_op_len[i] = 0;
710 		}
711 		ses = cap->cc_sessions;
712 		memset(cap, 0, sizeof(struct cryptocap));
713 		if (ses != 0) {
714 			/*
715 			 * If there are pending sessions, just mark as invalid.
716 			 */
717 			cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
718 			cap->cc_sessions = ses;
719 		}
720 		err = 0;
721 	} else
722 		err = EINVAL;
723 
724 	mutex_exit(&crypto_mtx);
725 	return err;
726 }
727 
728 /*
729  * Clear blockage on a driver.  The what parameter indicates whether
730  * the driver is now ready for cryptop's and/or cryptokop's.
731  */
732 int
crypto_unblock(u_int32_t driverid,int what)733 crypto_unblock(u_int32_t driverid, int what)
734 {
735 	struct cryptocap *cap;
736 	int needwakeup, err;
737 
738 	mutex_spin_enter(&crypto_q_mtx);
739 	cap = crypto_checkdriver(driverid);
740 	if (cap != NULL) {
741 		needwakeup = 0;
742 		if (what & CRYPTO_SYMQ) {
743 			needwakeup |= cap->cc_qblocked;
744 			cap->cc_qblocked = 0;
745 		}
746 		if (what & CRYPTO_ASYMQ) {
747 			needwakeup |= cap->cc_kqblocked;
748 			cap->cc_kqblocked = 0;
749 		}
750 		err = 0;
751 		if (needwakeup)
752 			setsoftcrypto(softintr_cookie);
753 		mutex_spin_exit(&crypto_q_mtx);
754 	} else {
755 		err = EINVAL;
756 		mutex_spin_exit(&crypto_q_mtx);
757 	}
758 
759 	return err;
760 }
761 
762 /*
763  * Dispatch a crypto request to a driver or queue
764  * it, to be processed by the kernel thread.
765  */
766 int
crypto_dispatch(struct cryptop * crp)767 crypto_dispatch(struct cryptop *crp)
768 {
769 	u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
770 	int result;
771 
772 	mutex_spin_enter(&crypto_q_mtx);
773 	DPRINTF(("crypto_dispatch: crp %p, alg %d\n",
774 		crp, crp->crp_desc->crd_alg));
775 
776 	cryptostats.cs_ops++;
777 
778 #ifdef CRYPTO_TIMING
779 	if (crypto_timing)
780 		nanouptime(&crp->crp_tstamp);
781 #endif
782 	if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
783 		struct cryptocap *cap;
784 		/*
785 		 * Caller marked the request to be processed
786 		 * immediately; dispatch it directly to the
787 		 * driver unless the driver is currently blocked.
788 		 */
789 		cap = crypto_checkdriver(hid);
790 		if (cap && !cap->cc_qblocked) {
791 			mutex_spin_exit(&crypto_q_mtx);
792 			result = crypto_invoke(crp, 0);
793 			if (result == ERESTART) {
794 				/*
795 				 * The driver ran out of resources, mark the
796 				 * driver ``blocked'' for cryptop's and put
797 				 * the op on the queue.
798 				 */
799 				mutex_spin_enter(&crypto_q_mtx);
800 				crypto_drivers[hid].cc_qblocked = 1;
801 				TAILQ_INSERT_HEAD(&crp_q, crp, crp_next);
802 				cryptostats.cs_blocks++;
803 				mutex_spin_exit(&crypto_q_mtx);
804 			}
805 			goto out_released;
806 		} else {
807 			/*
808 			 * The driver is blocked, just queue the op until
809 			 * it unblocks and the swi thread gets kicked.
810 			 */
811 			TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
812 			result = 0;
813 		}
814 	} else {
815 		int wasempty = TAILQ_EMPTY(&crp_q);
816 		/*
817 		 * Caller marked the request as ``ok to delay'';
818 		 * queue it for the swi thread.  This is desirable
819 		 * when the operation is low priority and/or suitable
820 		 * for batching.
821 		 */
822 		TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
823 		if (wasempty) {
824 			setsoftcrypto(softintr_cookie);
825 			mutex_spin_exit(&crypto_q_mtx);
826 			result = 0;
827 			goto out_released;
828 		}
829 
830 		result = 0;
831 	}
832 
833 	mutex_spin_exit(&crypto_q_mtx);
834 out_released:
835 	return result;
836 }
837 
838 /*
839  * Add an asymetric crypto request to a queue,
840  * to be processed by the kernel thread.
841  */
842 int
crypto_kdispatch(struct cryptkop * krp)843 crypto_kdispatch(struct cryptkop *krp)
844 {
845 	struct cryptocap *cap;
846 	int result;
847 
848 	mutex_spin_enter(&crypto_q_mtx);
849 	cryptostats.cs_kops++;
850 
851 	cap = crypto_checkdriver(krp->krp_hid);
852 	if (cap && !cap->cc_kqblocked) {
853 		mutex_spin_exit(&crypto_q_mtx);
854 		result = crypto_kinvoke(krp, 0);
855 		if (result == ERESTART) {
856 			/*
857 			 * The driver ran out of resources, mark the
858 			 * driver ``blocked'' for cryptop's and put
859 			 * the op on the queue.
860 			 */
861 			mutex_spin_enter(&crypto_q_mtx);
862 			crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
863 			TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
864 			cryptostats.cs_kblocks++;
865 			mutex_spin_exit(&crypto_q_mtx);
866 		}
867 	} else {
868 		/*
869 		 * The driver is blocked, just queue the op until
870 		 * it unblocks and the swi thread gets kicked.
871 		 */
872 		TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
873 		result = 0;
874 		mutex_spin_exit(&crypto_q_mtx);
875 	}
876 
877 	return result;
878 }
879 
880 /*
881  * Dispatch an assymetric crypto request to the appropriate crypto devices.
882  */
883 static int
crypto_kinvoke(struct cryptkop * krp,int hint)884 crypto_kinvoke(struct cryptkop *krp, int hint)
885 {
886 	u_int32_t hid;
887 	int error;
888 
889 	/* Sanity checks. */
890 	if (krp == NULL)
891 		return EINVAL;
892 	if (krp->krp_callback == NULL) {
893 		cv_destroy(&krp->krp_cv);
894 		pool_put(&cryptkop_pool, krp);
895 		return EINVAL;
896 	}
897 
898 	mutex_enter(&crypto_mtx);
899 	for (hid = 0; hid < crypto_drivers_num; hid++) {
900 		if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
901 		    crypto_devallowsoft == 0)
902 			continue;
903 		if (crypto_drivers[hid].cc_kprocess == NULL)
904 			continue;
905 		if ((crypto_drivers[hid].cc_kalg[krp->krp_op] &
906 		    CRYPTO_ALG_FLAG_SUPPORTED) == 0)
907 			continue;
908 		break;
909 	}
910 	if (hid < crypto_drivers_num) {
911 		int (*process)(void *, struct cryptkop *, int);
912 		void *arg;
913 
914 		process = crypto_drivers[hid].cc_kprocess;
915 		arg = crypto_drivers[hid].cc_karg;
916 		mutex_exit(&crypto_mtx);
917 		krp->krp_hid = hid;
918 		error = (*process)(arg, krp, hint);
919 	} else {
920 		mutex_exit(&crypto_mtx);
921 		error = ENODEV;
922 	}
923 
924 	if (error) {
925 		krp->krp_status = error;
926 		crypto_kdone(krp);
927 	}
928 	return 0;
929 }
930 
931 #ifdef CRYPTO_TIMING
932 static void
crypto_tstat(struct cryptotstat * ts,struct timespec * tv)933 crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
934 {
935 	struct timespec now, t;
936 
937 	nanouptime(&now);
938 	t.tv_sec = now.tv_sec - tv->tv_sec;
939 	t.tv_nsec = now.tv_nsec - tv->tv_nsec;
940 	if (t.tv_nsec < 0) {
941 		t.tv_sec--;
942 		t.tv_nsec += 1000000000;
943 	}
944 	timespecadd(&ts->acc, &t, &t);
945 	if (timespeccmp(&t, &ts->min, <))
946 		ts->min = t;
947 	if (timespeccmp(&t, &ts->max, >))
948 		ts->max = t;
949 	ts->count++;
950 
951 	*tv = now;
952 }
953 #endif
954 
955 /*
956  * Dispatch a crypto request to the appropriate crypto devices.
957  */
958 static int
crypto_invoke(struct cryptop * crp,int hint)959 crypto_invoke(struct cryptop *crp, int hint)
960 {
961 	u_int32_t hid;
962 
963 #ifdef CRYPTO_TIMING
964 	if (crypto_timing)
965 		crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
966 #endif
967 	/* Sanity checks. */
968 	if (crp == NULL)
969 		return EINVAL;
970 	if (crp->crp_callback == NULL) {
971 		return EINVAL;
972 	}
973 	if (crp->crp_desc == NULL) {
974 		crp->crp_etype = EINVAL;
975 		crypto_done(crp);
976 		return 0;
977 	}
978 
979 	hid = CRYPTO_SESID2HID(crp->crp_sid);
980 
981 	if (hid < crypto_drivers_num) {
982 		int (*process)(void *, struct cryptop *, int);
983 		void *arg;
984 
985 		if (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) {
986 			mutex_exit(&crypto_mtx);
987 			crypto_freesession(crp->crp_sid);
988 			mutex_enter(&crypto_mtx);
989 		}
990 		process = crypto_drivers[hid].cc_process;
991 		arg = crypto_drivers[hid].cc_arg;
992 
993 		/*
994 		 * Invoke the driver to process the request.
995 		 */
996 		DPRINTF(("calling process for %p\n", crp));
997 		return (*process)(arg, crp, hint);
998 	} else {
999 		struct cryptodesc *crd;
1000 		u_int64_t nid = 0;
1001 
1002 		/*
1003 		 * Driver has unregistered; migrate the session and return
1004 		 * an error to the caller so they'll resubmit the op.
1005 		 */
1006 		for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
1007 			crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
1008 
1009 		if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
1010 			crp->crp_sid = nid;
1011 
1012 		crp->crp_etype = EAGAIN;
1013 
1014 		crypto_done(crp);
1015 		return 0;
1016 	}
1017 }
1018 
1019 /*
1020  * Release a set of crypto descriptors.
1021  */
1022 void
crypto_freereq(struct cryptop * crp)1023 crypto_freereq(struct cryptop *crp)
1024 {
1025 	struct cryptodesc *crd;
1026 
1027 	if (crp == NULL)
1028 		return;
1029 	DPRINTF(("crypto_freereq[%u]: crp %p\n",
1030 		CRYPTO_SESID2LID(crp->crp_sid), crp));
1031 
1032 	/* sanity check */
1033 	if (crp->crp_flags & CRYPTO_F_ONRETQ) {
1034 		panic("crypto_freereq() freeing crp on RETQ\n");
1035 	}
1036 
1037 	while ((crd = crp->crp_desc) != NULL) {
1038 		crp->crp_desc = crd->crd_next;
1039 		pool_put(&cryptodesc_pool, crd);
1040 	}
1041 	pool_put(&cryptop_pool, crp);
1042 }
1043 
1044 /*
1045  * Acquire a set of crypto descriptors.
1046  */
1047 struct cryptop *
crypto_getreq(int num)1048 crypto_getreq(int num)
1049 {
1050 	struct cryptodesc *crd;
1051 	struct cryptop *crp;
1052 
1053 	crp = pool_get(&cryptop_pool, 0);
1054 	if (crp == NULL) {
1055 		return NULL;
1056 	}
1057 	memset(crp, 0, sizeof(struct cryptop));
1058 
1059 	while (num--) {
1060 		crd = pool_get(&cryptodesc_pool, 0);
1061 		if (crd == NULL) {
1062 			crypto_freereq(crp);
1063 			return NULL;
1064 		}
1065 
1066 		memset(crd, 0, sizeof(struct cryptodesc));
1067 		crd->crd_next = crp->crp_desc;
1068 		crp->crp_desc = crd;
1069 	}
1070 
1071 	return crp;
1072 }
1073 
1074 /*
1075  * Invoke the callback on behalf of the driver.
1076  */
1077 void
crypto_done(struct cryptop * crp)1078 crypto_done(struct cryptop *crp)
1079 {
1080 	int wasempty;
1081 
1082 	if (crp->crp_etype != 0)
1083 		cryptostats.cs_errs++;
1084 #ifdef CRYPTO_TIMING
1085 	if (crypto_timing)
1086 		crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
1087 #endif
1088 	DPRINTF(("crypto_done[%u]: crp %p\n",
1089 		CRYPTO_SESID2LID(crp->crp_sid), crp));
1090 
1091 	/*
1092 	 * Normal case; queue the callback for the thread.
1093 	 *
1094 	 * The return queue is manipulated by the swi thread
1095 	 * and, potentially, by crypto device drivers calling
1096 	 * back to mark operations completed.  Thus we need
1097 	 * to mask both while manipulating the return queue.
1098 	 */
1099   	if (crp->crp_flags & CRYPTO_F_CBIMM) {
1100 		/*
1101 	 	* Do the callback directly.  This is ok when the
1102   	 	* callback routine does very little (e.g. the
1103 	 	* /dev/crypto callback method just does a wakeup).
1104 	 	*/
1105 		mutex_spin_enter(&crypto_ret_q_mtx);
1106 		crp->crp_flags |= CRYPTO_F_DONE;
1107 		mutex_spin_exit(&crypto_ret_q_mtx);
1108 
1109 #ifdef CRYPTO_TIMING
1110 		if (crypto_timing) {
1111 			/*
1112 		 	* NB: We must copy the timestamp before
1113 		 	* doing the callback as the cryptop is
1114 		 	* likely to be reclaimed.
1115 		 	*/
1116 			struct timespec t = crp->crp_tstamp;
1117 			crypto_tstat(&cryptostats.cs_cb, &t);
1118 			crp->crp_callback(crp);
1119 			crypto_tstat(&cryptostats.cs_finis, &t);
1120 		} else
1121 #endif
1122 		crp->crp_callback(crp);
1123 	} else {
1124 		mutex_spin_enter(&crypto_ret_q_mtx);
1125 		crp->crp_flags |= CRYPTO_F_DONE;
1126 
1127 		if (crp->crp_flags & CRYPTO_F_USER) {
1128 			/* the request has completed while
1129 			 * running in the user context
1130 			 * so don't queue it - the user
1131 			 * thread won't sleep when it sees
1132 			 * the CRYPTO_F_DONE flag.
1133 			 * This is an optimization to avoid
1134 			 * unecessary context switches.
1135 			 */
1136 			DPRINTF(("crypto_done[%u]: crp %p CRYPTO_F_USER\n",
1137 				CRYPTO_SESID2LID(crp->crp_sid), crp));
1138 		} else {
1139 			wasempty = TAILQ_EMPTY(&crp_ret_q);
1140 			DPRINTF(("crypto_done[%u]: queueing %p\n",
1141 				CRYPTO_SESID2LID(crp->crp_sid), crp));
1142 			crp->crp_flags |= CRYPTO_F_ONRETQ;
1143 			TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
1144 			if (wasempty) {
1145 				DPRINTF(("crypto_done[%u]: waking cryptoret, "
1146 					"crp %p hit empty queue\n.",
1147 					CRYPTO_SESID2LID(crp->crp_sid), crp));
1148 				cv_signal(&cryptoret_cv);
1149 			}
1150 		}
1151 		mutex_spin_exit(&crypto_ret_q_mtx);
1152 	}
1153 }
1154 
1155 /*
1156  * Invoke the callback on behalf of the driver.
1157  */
1158 void
crypto_kdone(struct cryptkop * krp)1159 crypto_kdone(struct cryptkop *krp)
1160 {
1161 	int wasempty;
1162 
1163 	if (krp->krp_status != 0)
1164 		cryptostats.cs_kerrs++;
1165 
1166 	krp->krp_flags |= CRYPTO_F_DONE;
1167 
1168 	/*
1169 	 * The return queue is manipulated by the swi thread
1170 	 * and, potentially, by crypto device drivers calling
1171 	 * back to mark operations completed.  Thus we need
1172 	 * to mask both while manipulating the return queue.
1173 	 */
1174 	if (krp->krp_flags & CRYPTO_F_CBIMM) {
1175 		krp->krp_callback(krp);
1176 	} else {
1177 		mutex_spin_enter(&crypto_ret_q_mtx);
1178 		wasempty = TAILQ_EMPTY(&crp_ret_kq);
1179 		krp->krp_flags |= CRYPTO_F_ONRETQ;
1180 		TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
1181 		if (wasempty)
1182 			cv_signal(&cryptoret_cv);
1183 		mutex_spin_exit(&crypto_ret_q_mtx);
1184 	}
1185 }
1186 
1187 int
crypto_getfeat(int * featp)1188 crypto_getfeat(int *featp)
1189 {
1190 	int hid, kalg, feat = 0;
1191 
1192 	mutex_enter(&crypto_mtx);
1193 
1194 	if (crypto_userasymcrypto == 0)
1195 		goto out;
1196 
1197 	for (hid = 0; hid < crypto_drivers_num; hid++) {
1198 		if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1199 		    crypto_devallowsoft == 0) {
1200 			continue;
1201 		}
1202 		if (crypto_drivers[hid].cc_kprocess == NULL)
1203 			continue;
1204 		for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1205 			if ((crypto_drivers[hid].cc_kalg[kalg] &
1206 			    CRYPTO_ALG_FLAG_SUPPORTED) != 0)
1207 				feat |=  1 << kalg;
1208 	}
1209 out:
1210 	mutex_exit(&crypto_mtx);
1211 	*featp = feat;
1212 	return (0);
1213 }
1214 
1215 /*
1216  * Software interrupt thread to dispatch crypto requests.
1217  */
1218 static void
cryptointr(void)1219 cryptointr(void)
1220 {
1221 	struct cryptop *crp, *submit, *cnext;
1222 	struct cryptkop *krp, *knext;
1223 	struct cryptocap *cap;
1224 	int result, hint;
1225 
1226 	cryptostats.cs_intrs++;
1227 	mutex_spin_enter(&crypto_q_mtx);
1228 	do {
1229 		/*
1230 		 * Find the first element in the queue that can be
1231 		 * processed and look-ahead to see if multiple ops
1232 		 * are ready for the same driver.
1233 		 */
1234 		submit = NULL;
1235 		hint = 0;
1236 		TAILQ_FOREACH_SAFE(crp, &crp_q, crp_next, cnext) {
1237 			u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
1238 			cap = crypto_checkdriver(hid);
1239 			if (cap == NULL || cap->cc_process == NULL) {
1240 				/* Op needs to be migrated, process it. */
1241 				if (submit == NULL)
1242 					submit = crp;
1243 				break;
1244 			}
1245 			if (!cap->cc_qblocked) {
1246 				if (submit != NULL) {
1247 					/*
1248 					 * We stop on finding another op,
1249 					 * regardless whether its for the same
1250 					 * driver or not.  We could keep
1251 					 * searching the queue but it might be
1252 					 * better to just use a per-driver
1253 					 * queue instead.
1254 					 */
1255 					if (CRYPTO_SESID2HID(submit->crp_sid)
1256 					    == hid)
1257 						hint = CRYPTO_HINT_MORE;
1258 					break;
1259 				} else {
1260 					submit = crp;
1261 					if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
1262 						break;
1263 					/* keep scanning for more are q'd */
1264 				}
1265 			}
1266 		}
1267 		if (submit != NULL) {
1268 			TAILQ_REMOVE(&crp_q, submit, crp_next);
1269 			mutex_spin_exit(&crypto_q_mtx);
1270 			result = crypto_invoke(submit, hint);
1271 			/* we must take here as the TAILQ op or kinvoke
1272 			   may need this mutex below.  sigh. */
1273 			mutex_spin_enter(&crypto_q_mtx);
1274 			if (result == ERESTART) {
1275 				/*
1276 				 * The driver ran out of resources, mark the
1277 				 * driver ``blocked'' for cryptop's and put
1278 				 * the request back in the queue.  It would
1279 				 * best to put the request back where we got
1280 				 * it but that's hard so for now we put it
1281 				 * at the front.  This should be ok; putting
1282 				 * it at the end does not work.
1283 				 */
1284 				/* XXX validate sid again? */
1285 				crypto_drivers[CRYPTO_SESID2HID(submit->crp_sid)].cc_qblocked = 1;
1286 				TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
1287 				cryptostats.cs_blocks++;
1288 			}
1289 		}
1290 
1291 		/* As above, but for key ops */
1292 		TAILQ_FOREACH_SAFE(krp, &crp_kq, krp_next, knext) {
1293 			cap = crypto_checkdriver(krp->krp_hid);
1294 			if (cap == NULL || cap->cc_kprocess == NULL) {
1295 				/* Op needs to be migrated, process it. */
1296 				break;
1297 			}
1298 			if (!cap->cc_kqblocked)
1299 				break;
1300 		}
1301 		if (krp != NULL) {
1302 			TAILQ_REMOVE(&crp_kq, krp, krp_next);
1303 			mutex_spin_exit(&crypto_q_mtx);
1304 			result = crypto_kinvoke(krp, 0);
1305 			/* the next iteration will want the mutex. :-/ */
1306 			mutex_spin_enter(&crypto_q_mtx);
1307 			if (result == ERESTART) {
1308 				/*
1309 				 * The driver ran out of resources, mark the
1310 				 * driver ``blocked'' for cryptkop's and put
1311 				 * the request back in the queue.  It would
1312 				 * best to put the request back where we got
1313 				 * it but that's hard so for now we put it
1314 				 * at the front.  This should be ok; putting
1315 				 * it at the end does not work.
1316 				 */
1317 				/* XXX validate sid again? */
1318 				crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
1319 				TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
1320 				cryptostats.cs_kblocks++;
1321 			}
1322 		}
1323 	} while (submit != NULL || krp != NULL);
1324 	mutex_spin_exit(&crypto_q_mtx);
1325 }
1326 
1327 /*
1328  * Kernel thread to do callbacks.
1329  */
1330 static void
cryptoret(void)1331 cryptoret(void)
1332 {
1333 	struct cryptop *crp;
1334 	struct cryptkop *krp;
1335 
1336 	mutex_spin_enter(&crypto_ret_q_mtx);
1337 	for (;;) {
1338 		crp = TAILQ_FIRST(&crp_ret_q);
1339 		if (crp != NULL) {
1340 			TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
1341 			crp->crp_flags &= ~CRYPTO_F_ONRETQ;
1342 		}
1343 		krp = TAILQ_FIRST(&crp_ret_kq);
1344 		if (krp != NULL) {
1345 			TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
1346 			krp->krp_flags &= ~CRYPTO_F_ONRETQ;
1347 		}
1348 
1349 		/* drop before calling any callbacks. */
1350 		if (crp == NULL && krp == NULL) {
1351 
1352                         /* Check for the exit condition. */
1353 			if (crypto_exit_flag != 0) {
1354 
1355         			/* Time to die. */
1356 				crypto_exit_flag = 0;
1357         			cv_broadcast(&cryptoret_cv);
1358 				mutex_spin_exit(&crypto_ret_q_mtx);
1359         			kthread_exit(0);
1360 			}
1361 
1362 			cryptostats.cs_rets++;
1363 			cv_wait(&cryptoret_cv, &crypto_ret_q_mtx);
1364 			continue;
1365 		}
1366 
1367 		mutex_spin_exit(&crypto_ret_q_mtx);
1368 
1369 		if (crp != NULL) {
1370 #ifdef CRYPTO_TIMING
1371 			if (crypto_timing) {
1372 				/*
1373 				 * NB: We must copy the timestamp before
1374 				 * doing the callback as the cryptop is
1375 				 * likely to be reclaimed.
1376 				 */
1377 				struct timespec t = crp->crp_tstamp;
1378 				crypto_tstat(&cryptostats.cs_cb, &t);
1379 				crp->crp_callback(crp);
1380 				crypto_tstat(&cryptostats.cs_finis, &t);
1381 			} else
1382 #endif
1383 			{
1384 				crp->crp_callback(crp);
1385 			}
1386 		}
1387 		if (krp != NULL)
1388 			krp->krp_callback(krp);
1389 
1390 		mutex_spin_enter(&crypto_ret_q_mtx);
1391 	}
1392 }
1393 
1394 /* NetBSD module interface */
1395 
1396 MODULE(MODULE_CLASS_MISC, opencrypto, NULL);
1397 
1398 static int
opencrypto_modcmd(modcmd_t cmd,void * opaque)1399 opencrypto_modcmd(modcmd_t cmd, void *opaque)
1400 {
1401 	int error = 0;
1402 
1403 	switch (cmd) {
1404 	case MODULE_CMD_INIT:
1405 #ifdef _MODULE
1406 		error = crypto_init();
1407 #endif
1408 		break;
1409 	case MODULE_CMD_FINI:
1410 #ifdef _MODULE
1411 		error = crypto_destroy(true);
1412 #endif
1413 		break;
1414 	default:
1415 		error = ENOTTY;
1416 	}
1417 	return error;
1418 }
1419