1 #ifndef __CS_SLES_IT_H__
2 #define __CS_SLES_IT_H__
3 
4 /*============================================================================
5  * Sparse Linear Equation Solvers
6  *============================================================================*/
7 
8 /*
9   This file is part of Code_Saturne, a general-purpose CFD tool.
10 
11   Copyright (C) 1998-2021 EDF S.A.
12 
13   This program is free software; you can redistribute it and/or modify it under
14   the terms of the GNU General Public License as published by the Free Software
15   Foundation; either version 2 of the License, or (at your option) any later
16   version.
17 
18   This program is distributed in the hope that it will be useful, but WITHOUT
19   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
20   FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
21   details.
22 
23   You should have received a copy of the GNU General Public License along with
24   this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
25   Street, Fifth Floor, Boston, MA 02110-1301, USA.
26 */
27 
28 /*----------------------------------------------------------------------------*/
29 
30 /*----------------------------------------------------------------------------
31  *  Local headers
32  *----------------------------------------------------------------------------*/
33 
34 #include "cs_base.h"
35 #include "cs_matrix.h"
36 #include "cs_sles.h"
37 #include "cs_sles_pc.h"
38 
39 /*----------------------------------------------------------------------------*/
40 
41 BEGIN_C_DECLS
42 
43 /*============================================================================
44  * Macro definitions
45  *============================================================================*/
46 
47 /*============================================================================
48  * Type definitions
49  *============================================================================*/
50 
51 /*----------------------------------------------------------------------------
52  * Solver types
53  *----------------------------------------------------------------------------*/
54 
55 typedef enum {
56 
57   CS_SLES_PCG,                 /*!< Preconditioned conjugate gradient */
58   CS_SLES_FCG,                 /*!< Preconditions flexible conjugate gradient,
59                                     described in \cite Notay:2015 */
60   CS_SLES_IPCG,                /*!< Preconditions inexact conjugate gradient */
61   CS_SLES_JACOBI,              /*!< Jacobi */
62   CS_SLES_BICGSTAB,            /*!< Preconditioned BiCGstab
63                                     (biconjugate gradient stabilized) */
64   CS_SLES_BICGSTAB2,           /*!< Preconditioned BiCGstab2 */
65   CS_SLES_GCR,                 /*!< Generalized conjugate residual  */
66   CS_SLES_GMRES,               /*!< Preconditioned GMRES
67                                     (generalized minimal residual) */
68   CS_SLES_P_GAUSS_SEIDEL,      /*!< Process-local Gauss-Seidel */
69   CS_SLES_P_SYM_GAUSS_SEIDEL,  /*!< Process-local symmetric Gauss-Seidel */
70   CS_SLES_PCR3,                /*!< 3-layer conjugate residual */
71   CS_SLES_USER_DEFINED,        /*!< User-defined iterative solver */
72 
73   CS_SLES_N_IT_TYPES,          /*!< Number of resolution algorithms
74                                     excluding smoother only*/
75 
76   CS_SLES_TS_F_GAUSS_SEIDEL,   /*!< Truncated forward Gauss-Seidel smoother */
77   CS_SLES_TS_B_GAUSS_SEIDEL,   /*!< Truncated backward Gauss-Seidel smoother */
78 
79   CS_SLES_N_SMOOTHER_TYPES     /*!< Number of resolution algorithms
80                                     including smoother only */
81 
82 } cs_sles_it_type_t;
83 
84 /* Iterative linear solver context (opaque) */
85 
86 typedef struct _cs_sles_it_t  cs_sles_it_t;
87 
88 /* Forward type declarations */
89 
90 typedef struct _cs_sles_it_convergence_t  cs_sles_it_convergence_t;
91 
92 /*============================================================================
93  *  Global variables
94  *============================================================================*/
95 
96 /* Names for iterative solver types */
97 
98 extern const char *cs_sles_it_type_name[];
99 
100 /*=============================================================================
101  * User function prototypes
102  *============================================================================*/
103 
104 /*----------------------------------------------------------------------------
105  * Solution of A.vx = Rhs using a user-defined iterative solver
106  *
107  * On entry, vx is considered initialized.
108  *
109  * parameters:
110  *   c               <-- pointer to solver context info
111  *   a               <-- matrix
112  *   diag_block_size <-- diagonal block size (unused here)
113  *   convergence     <-- convergence information structure
114  *   rhs             <-- right hand side
115  *   vx              <-> system solution
116  *   aux_size        <-- number of elements in aux_vectors (in bytes)
117  *   aux_vectors     --- optional working area (allocation otherwise)
118  *
119  * returns:
120  *   convergence state
121  *----------------------------------------------------------------------------*/
122 
123 cs_sles_convergence_state_t
124 cs_user_sles_it_solver(cs_sles_it_t              *c,
125                        const cs_matrix_t         *a,
126                        cs_lnum_t                  diag_block_size,
127                        cs_sles_it_convergence_t  *convergence,
128                        const cs_real_t           *rhs,
129                        cs_real_t                 *restrict vx,
130                        size_t                     aux_size,
131                        void                      *aux_vectors);
132 
133 /*=============================================================================
134  * Public function prototypes
135  *============================================================================*/
136 
137 /*----------------------------------------------------------------------------
138  * Define and associate an iterative sparse linear system solver
139  * for a given field or equation name.
140  *
141  * If this system did not previously exist, it is added to the list of
142  * "known" systems. Otherwise, its definition is replaced by the one
143  * defined here.
144  *
145  * This is a utility function: if finer control is needed, see
146  * cs_sles_define() and cs_sles_it_create().
147  *
148  * Note that this function returns a pointer directly to the iterative solver
149  * management structure. This may be used to set further options,
150  * for example using cs_sles_set_plot_options(). If needed, cs_sles_find()
151  * may be used to obtain a pointer to the matching cs_sles_t container.
152  *
153  * parameters:
154  *   f_id         <-- associated field id, or < 0
155  *   name         <-- associated name if f_id < 0, or NULL
156  *   solver_type  <-- type of solver (PCG, Jacobi, ...)
157  *   poly_degree  <-- preconditioning polynomial degree
158  *                    (0: diagonal; -1: non-preconditioned)
159  *   n_max_iter   <-- maximum number of iterations
160  *
161  * returns:
162  *   pointer to newly created iterative solver info object.
163  *----------------------------------------------------------------------------*/
164 
165 cs_sles_it_t *
166 cs_sles_it_define(int                 f_id,
167                   const char         *name,
168                   cs_sles_it_type_t   solver_type,
169                   int                 poly_degree,
170                   int                 n_max_iter);
171 
172 /*----------------------------------------------------------------------------
173  * Create iterative sparse linear system solver info and context.
174  *
175  * parameters:
176  *   solver_type  <-- type of solver (PCG, Jacobi, ...)
177  *   poly_degree  <-- preconditioning polynomial degree
178  *                    (0: diagonal; -1: non-preconditioned)
179  *   n_max_iter   <-- maximum number of iterations
180  *   update_stats <-- automatic solver statistics indicator
181  *
182  * returns:
183  *   pointer to newly created solver info object.
184  *----------------------------------------------------------------------------*/
185 
186 cs_sles_it_t *
187 cs_sles_it_create(cs_sles_it_type_t   solver_type,
188                   int                 poly_degree,
189                   int                 n_max_iter,
190                   bool                update_stats);
191 
192 /*----------------------------------------------------------------------------
193  * Destroy iterative sparse linear system solver info and context.
194  *
195  * parameters:
196  *   context  <-> pointer to iterative sparse linear solver info
197  *                (actual type: cs_sles_it_t  **)
198  *----------------------------------------------------------------------------*/
199 
200 void
201 cs_sles_it_destroy(void  **context);
202 
203 /*----------------------------------------------------------------------------
204  * Create iterative sparse linear system solver info and context
205  * based on existing info and context.
206  *
207  * parameters:
208  *   context <-- pointer to reference info and context
209  *               (actual type: cs_sles_it_t  *)
210  *
211  * returns:
212  *   pointer to newly created solver info object
213  *   (actual type: cs_sles_it_t  *)
214  *----------------------------------------------------------------------------*/
215 
216 void *
217 cs_sles_it_copy(const void  *context);
218 
219 /*----------------------------------------------------------------------------
220  * Setup iterative sparse linear equation solver.
221  *
222  * parameters:
223  *   context   <-> pointer to iterative sparse linear solver info
224  *                 (actual type: cs_sles_it_t  *)
225  *   name      <-- pointer to system name
226  *   a         <-- associated matrix
227  *   verbosity <-- verbosity level
228  *----------------------------------------------------------------------------*/
229 
230 void
231 cs_sles_it_setup(void               *context,
232                  const char         *name,
233                  const cs_matrix_t  *a,
234                  int                 verbosity);
235 
236 /*----------------------------------------------------------------------------
237  * Call iterative sparse linear equation solver.
238  *
239  * parameters:
240  *   context       <-> pointer to iterative sparse linear solver info
241  *                     (actual type: cs_sles_it_t  *)
242  *   name          <-- pointer to system name
243  *   a             <-- matrix
244  *   verbosity     <-- verbosity level
245  *   precision     <-- solver precision
246  *   r_norm        <-- residue normalization
247  *   n_iter        --> number of iterations
248  *   residue       --> residue
249  *   rhs           <-- right hand side
250  *   vx            <-> system solution
251  *   aux_size      <-- number of elements in aux_vectors (in bytes)
252  *   aux_vectors   --- optional working area (internal allocation if NULL)
253  *
254  * returns:
255  *   convergence state
256  *----------------------------------------------------------------------------*/
257 
258 cs_sles_convergence_state_t
259 cs_sles_it_solve(void                *context,
260                  const char          *name,
261                  const cs_matrix_t   *a,
262                  int                  verbosity,
263                  double               precision,
264                  double               r_norm,
265                  int                 *n_iter,
266                  double              *residue,
267                  const cs_real_t     *rhs,
268                  cs_real_t           *vx,
269                  size_t               aux_size,
270                  void                *aux_vectors);
271 
272 /*----------------------------------------------------------------------------
273  * Free iterative sparse linear equation solver setup context.
274  *
275  * This function frees resolution-related data, such as
276  * buffers and preconditioning but does not free the whole context,
277  * as info used for logging (especially performance data) is maintained.
278 
279  * parameters:
280  *   context <-> pointer to iterative sparse linear solver info
281  *               (actual type: cs_sles_it_t  *)
282  *----------------------------------------------------------------------------*/
283 
284 void
285 cs_sles_it_free(void  *context);
286 
287 /*----------------------------------------------------------------------------
288  * Log sparse linear equation solver info.
289  *
290  * parameters:
291  *   context  <-> pointer to iterative sparse linear solver info
292  *                (actual type: cs_sles_it_t  *)
293  *   log_type <-- log type
294  *----------------------------------------------------------------------------*/
295 
296 void
297 cs_sles_it_log(const void  *context,
298                cs_log_t     log_type);
299 
300 /*----------------------------------------------------------------------------
301  * Return iterative solver type.
302  *
303  * parameters:
304  *   context <-- pointer to iterative solver info and context
305  *
306  * returns:
307  *   selected solver type
308  *----------------------------------------------------------------------------*/
309 
310 cs_sles_it_type_t
311 cs_sles_it_get_type(const cs_sles_it_t  *context);
312 
313 /*----------------------------------------------------------------------------
314  * Return the initial residue for the previous solve operation with a solver.
315  *
316  * This is useful for convergence tests when this solver is used as
317  * a preconditioning smoother.
318  *
319  * This operation is only valid between calls to cs_sles_it_setup()
320  * (or cs_sles_it_solve()) and cs_sles_it_free().
321  * It returns -1 otherwise.
322  *
323  * parameters:
324  *   context <-- pointer to iterative solver info and context
325  *
326  * returns:
327  *   initial residue from last call to \ref cs_sles_solve with this solver
328  *----------------------------------------------------------------------------*/
329 
330 double
331 cs_sles_it_get_last_initial_residue(const cs_sles_it_t  *context);
332 
333 /*----------------------------------------------------------------------------
334  * Return a preconditioner context for an iterative sparse linear
335  * equation solver.
336  *
337  * This allows modifying parameters of a non default (Jacobi or polynomial)
338  * preconditioner.
339  *
340  * parameters:
341  *   context <-- pointer to iterative solver info and context
342  *
343  * returns:
344  *   pointer to preconditoner context
345  *----------------------------------------------------------------------------*/
346 
347 cs_sles_pc_t  *
348 cs_sles_it_get_pc(cs_sles_it_t  *context);
349 
350 /*----------------------------------------------------------------------------
351  * Assign a preconditioner to an iterative sparse linear equation
352  * solver, transfering its ownership to to solver context.
353  *
354  * This allows assigning a non default (Jacobi or polynomial) preconditioner.
355  *
356  * The input pointer is set to NULL to make it clear the caller does not
357  * own the preconditioner anymore, though the context can be accessed using
358  * cs_sles_it_get_cp().
359  *
360  * parameters:
361  *   context <->  pointer to iterative solver info and context
362  *   pc      <->  pointer to preconditoner context
363  *----------------------------------------------------------------------------*/
364 
365 void
366 cs_sles_it_transfer_pc(cs_sles_it_t     *context,
367                        cs_sles_pc_t    **pc);
368 
369 /*----------------------------------------------------------------------------
370  * Copy options from one iterative sparse linear system solver info
371  * and context to another.
372  *
373  * Optional plotting contexts are shared between the source and destination
374  * contexts.
375  *
376  * Preconditioner settings are to be handled separately.
377  *
378  * parameters:
379  *   src  <-- pointer to source info and context
380  *   dest <-> pointer to destination info and context
381  *----------------------------------------------------------------------------*/
382 
383 void
384 cs_sles_it_transfer_parameters(const cs_sles_it_t  *src,
385                                cs_sles_it_t        *dest);
386 
387 /*----------------------------------------------------------------------------
388  * Associate a similar info and context object with which some setup
389  * data may be shared.
390  *
391  * This is especially useful for sharing preconditioning data between
392  * similar solver contexts (for example ascending and descending multigrid
393  * smoothers based on the same matrix).
394  *
395  * For preconditioning data to be effectively shared, cs_sles_it_setup()
396  * (or cs_sles_it_solve()) must be called on "shareable" before being
397  * called on "context" (without cs_sles_it_free() being called in between,
398  * of course).
399  *
400  * It is the caller's responsibility to ensure the context is not used
401  * for a cs_sles_it_setup() or cs_sles_it_solve() operation  after the
402  * shareable object has been destroyed (normally by cs_sles_it_destroy()).
403  *
404  * parameters:
405  *   context   <-> pointer to iterative sparse linear system solver info
406  *   shareable <-- pointer to iterative solver info and context
407  *                 whose context may be shared
408  *----------------------------------------------------------------------------*/
409 
410 void
411 cs_sles_it_set_shareable(cs_sles_it_t        *context,
412                          const cs_sles_it_t  *shareable);
413 
414 #if defined(HAVE_MPI)
415 
416 /*----------------------------------------------------------------------------*/
417 /*!
418  * \brief Set MPI communicator for global reductions.
419  *
420  * The system is solved only on ranks with a non-NULL communicator or
421  * if the caller communicator has less than 2 ranks. convergence info
422  * is broadcast across the caller communicator.
423  *
424  * \param[in, out]  context      pointer to iterative solver info and context
425  * \param[in]       comm         MPI communicator for solving
426  * \param[in]       caller_comm  MPI communicator of caller
427  */
428 /*----------------------------------------------------------------------------*/
429 
430 void
431 cs_sles_it_set_mpi_reduce_comm(cs_sles_it_t  *context,
432                                MPI_Comm       comm,
433                                MPI_Comm       caller_comm);
434 
435 #endif /* defined(HAVE_MPI) */
436 
437 /*----------------------------------------------------------------------------
438  * Assign ordering to iterative solver.
439  *
440  * The solver context takes ownership of the order array (i.e. it will
441  * handle its later deallocation).
442  *
443  * This is useful only for Block Gauss-Seidel.
444  *
445  * parameters:
446  *   context <-> pointer to iterative solver info and context
447  *   order   <-> pointer to ordering array
448  *----------------------------------------------------------------------------*/
449 
450 void
451 cs_sles_it_assign_order(cs_sles_it_t   *context,
452                         cs_lnum_t     **order);
453 
454 /*----------------------------------------------------------------------------*/
455 /*!
456  * \brief Define convergence level under which the fallback to another
457  *        solver may be used if applicable.
458  *
459  * Currently, this mechanism is only by default used for BiCGstab and
460  * 3-layer conjugate residual solvers with scalar matrices, which may
461  * fall back to a preconditioned GMRES solver. For those solvers, the
462  * default threshold is \ref CS_SLES_BREAKDOWN, meaning that divergence
463  * (but not breakdown) will lead to the use of the fallback mechanism.
464  *
465  * \param[in, out]  context    pointer to iterative solver info and context
466  * \param[in]       threshold  convergence level under which fallback is used
467  */
468 /*----------------------------------------------------------------------------*/
469 
470 void
471 cs_sles_it_set_fallback_threshold(cs_sles_it_t                 *context,
472                                   cs_sles_convergence_state_t   threshold);
473 
474 /*----------------------------------------------------------------------------*/
475 /*!
476  * \brief Define the number of iterations to be done before restarting the
477  *        solver. Useful only for GCR or GMRES algorithms.
478  *
479  * \param[in, out]  context    pointer to iterative solver info and context
480  * \param[in]       interval   convergence level under which fallback is used
481  */
482 /*----------------------------------------------------------------------------*/
483 
484 void
485 cs_sles_it_set_restart_interval(cs_sles_it_t                 *context,
486                                 int                           interval);
487 
488 /*----------------------------------------------------------------------------
489  * Query mean number of rows under which Conjugate Gradient algorithm
490  * uses the single-reduction variant.
491  *
492  * The single-reduction variant requires only one parallel sum per
493  * iteration (instead of 2), at the cost of additional vector operations,
494  * so it tends to be more expensive when the number of matrix rows per
495  * MPI rank is high, then becomes cheaper when the MPI latency cost becomes
496  * more significant.
497  *
498  * This option is ignored for non-parallel runs, so 0 is returned.
499  *
500  * return:
501  *   mean number of rows per active rank under which the
502  *   single-reduction variant will be used
503  *----------------------------------------------------------------------------*/
504 
505 cs_lnum_t
506 cs_sles_it_get_pcg_single_reduction(void);
507 
508 /*----------------------------------------------------------------------------
509  * Set mean number of rows under which Conjugate Gradient algorithm
510  * should use the single-reduction variant.
511  *
512  * The single-reduction variant requires only one parallel sum per
513  * iteration (instead of 2), at the cost of additional vector operations,
514  * so it tends to be more expensive when the number of matrix rows per
515  * MPI rank is high, then becomes cheaper when the MPI latency cost becomes
516  * more significant.
517  *
518  * This option is ignored for non-parallel runs.
519  *
520  * parameters:
521  *   threshold <-- mean number of rows per active rank under which the
522  *                 single-reduction variant will be used
523  *----------------------------------------------------------------------------*/
524 
525 void
526 cs_sles_it_set_pcg_single_reduction(cs_lnum_t  threshold);
527 
528 /*----------------------------------------------------------------------------
529  * Log the current global settings relative to parallelism.
530  *----------------------------------------------------------------------------*/
531 
532 void
533 cs_sles_it_log_parallel_options(void);
534 
535 /*----------------------------------------------------------------------------
536  * Error handler for iterative sparse linear equation solver.
537  *
538  * In case of divergence or breakdown, this error handler outputs
539  * postprocessing data to assist debugging, then aborts the run.
540  * It does nothing in case the maximum iteration count is reached.
541  *
542  * parameters:
543  *   sles          <-> pointer to solver object
544  *   state         <-- convergence state
545  *   a             <-- matrix
546  *   rhs           <-- right hand side
547  *   vx            <-> system solution
548  *
549  * returns:
550  *   false (do not attempt new solve)
551  *----------------------------------------------------------------------------*/
552 
553 bool
554 cs_sles_it_error_post_and_abort(cs_sles_t                    *sles,
555                                 cs_sles_convergence_state_t   state,
556                                 const cs_matrix_t            *a,
557                                 const cs_real_t              *rhs,
558                                 cs_real_t                    *vx);
559 
560 /*----------------------------------------------------------------------------
561  * Set plotting options for an iterative sparse linear equation solver.
562  *
563  * parameters:
564  *   context       <-> pointer to iterative solver info and context
565  *   base_name     <-- base plot name to activate, NULL otherwise
566  *   use_iteration <-- if true, use iteration as time stamp
567  *                     otherwise, use wall clock time
568  *----------------------------------------------------------------------------*/
569 
570 void
571 cs_sles_it_set_plot_options(cs_sles_it_t  *context,
572                             const char    *base_name,
573                             bool           use_iteration);
574 
575 /*----------------------------------------------------------------------------*/
576 
577 END_C_DECLS
578 
579 #endif /* __CS_SLES_IT_H__ */
580