1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 	Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
4 	Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
5 	Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
6 	<http://rt2x00.serialmonkey.com>
7 
8  */
9 
10 /*
11 	Module: rt2x00
12 	Abstract: rt2x00 global information.
13  */
14 
15 #ifndef RT2X00_H
16 #define RT2X00_H
17 
18 #include <linux/bitops.h>
19 #include <linux/interrupt.h>
20 #include <linux/skbuff.h>
21 #include <linux/workqueue.h>
22 #include <linux/firmware.h>
23 #include <linux/leds.h>
24 #include <linux/mutex.h>
25 #include <linux/etherdevice.h>
26 #include <linux/kfifo.h>
27 #include <linux/hrtimer.h>
28 #include <linux/average.h>
29 #include <linux/usb.h>
30 #include <linux/clk.h>
31 
32 #include <net/mac80211.h>
33 
34 #include "rt2x00debug.h"
35 #include "rt2x00dump.h"
36 #include "rt2x00leds.h"
37 #include "rt2x00reg.h"
38 #include "rt2x00queue.h"
39 
40 /*
41  * Module information.
42  */
43 #define DRV_VERSION	"2.3.0"
44 #define DRV_PROJECT	"http://rt2x00.serialmonkey.com"
45 
46 /* Debug definitions.
47  * Debug output has to be enabled during compile time.
48  */
49 #ifdef CONFIG_RT2X00_DEBUG
50 #define DEBUG
51 #endif /* CONFIG_RT2X00_DEBUG */
52 
53 /* Utility printing macros
54  * rt2x00_probe_err is for messages when rt2x00_dev is uninitialized
55  */
56 #define rt2x00_probe_err(fmt, ...)					\
57 	printk(KERN_ERR KBUILD_MODNAME ": %s: Error - " fmt,		\
58 	       __func__, ##__VA_ARGS__)
59 #define rt2x00_err(dev, fmt, ...)					\
60 	wiphy_err_ratelimited((dev)->hw->wiphy, "%s: Error - " fmt,	\
61 		  __func__, ##__VA_ARGS__)
62 #define rt2x00_warn(dev, fmt, ...)					\
63 	wiphy_warn_ratelimited((dev)->hw->wiphy, "%s: Warning - " fmt,	\
64 		   __func__, ##__VA_ARGS__)
65 #define rt2x00_info(dev, fmt, ...)					\
66 	wiphy_info((dev)->hw->wiphy, "%s: Info - " fmt,			\
67 		   __func__, ##__VA_ARGS__)
68 
69 /* Various debug levels */
70 #define rt2x00_dbg(dev, fmt, ...)					\
71 	wiphy_dbg((dev)->hw->wiphy, "%s: Debug - " fmt,			\
72 		  __func__, ##__VA_ARGS__)
73 #define rt2x00_eeprom_dbg(dev, fmt, ...)				\
74 	wiphy_dbg((dev)->hw->wiphy, "%s: EEPROM recovery - " fmt,	\
75 		  __func__, ##__VA_ARGS__)
76 
77 /*
78  * Duration calculations
79  * The rate variable passed is: 100kbs.
80  * To convert from bytes to bits we multiply size with 8,
81  * then the size is multiplied with 10 to make the
82  * real rate -> rate argument correction.
83  */
84 #define GET_DURATION(__size, __rate)	(((__size) * 8 * 10) / (__rate))
85 #define GET_DURATION_RES(__size, __rate)(((__size) * 8 * 10) % (__rate))
86 
87 /*
88  * Determine the number of L2 padding bytes required between the header and
89  * the payload.
90  */
91 #define L2PAD_SIZE(__hdrlen)	(-(__hdrlen) & 3)
92 
93 /*
94  * Determine the alignment requirement,
95  * to make sure the 802.11 payload is padded to a 4-byte boundrary
96  * we must determine the address of the payload and calculate the
97  * amount of bytes needed to move the data.
98  */
99 #define ALIGN_SIZE(__skb, __header) \
100 	(((unsigned long)((__skb)->data + (__header))) & 3)
101 
102 /*
103  * Constants for extra TX headroom for alignment purposes.
104  */
105 #define RT2X00_ALIGN_SIZE	4 /* Only whole frame needs alignment */
106 #define RT2X00_L2PAD_SIZE	8 /* Both header & payload need alignment */
107 
108 /*
109  * Standard timing and size defines.
110  * These values should follow the ieee80211 specifications.
111  */
112 #define ACK_SIZE		14
113 #define IEEE80211_HEADER	24
114 #define PLCP			48
115 #define BEACON			100
116 #define PREAMBLE		144
117 #define SHORT_PREAMBLE		72
118 #define SLOT_TIME		20
119 #define SHORT_SLOT_TIME		9
120 #define SIFS			10
121 #define PIFS			(SIFS + SLOT_TIME)
122 #define SHORT_PIFS		(SIFS + SHORT_SLOT_TIME)
123 #define DIFS			(PIFS + SLOT_TIME)
124 #define SHORT_DIFS		(SHORT_PIFS + SHORT_SLOT_TIME)
125 #define EIFS			(SIFS + DIFS + \
126 				  GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10))
127 #define SHORT_EIFS		(SIFS + SHORT_DIFS + \
128 				  GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10))
129 
130 enum rt2x00_chip_intf {
131 	RT2X00_CHIP_INTF_PCI,
132 	RT2X00_CHIP_INTF_PCIE,
133 	RT2X00_CHIP_INTF_USB,
134 	RT2X00_CHIP_INTF_SOC,
135 };
136 
137 /*
138  * Chipset identification
139  * The chipset on the device is composed of a RT and RF chip.
140  * The chipset combination is important for determining device capabilities.
141  */
142 struct rt2x00_chip {
143 	u16 rt;
144 #define RT2460		0x2460
145 #define RT2560		0x2560
146 #define RT2570		0x2570
147 #define RT2661		0x2661
148 #define RT2573		0x2573
149 #define RT2860		0x2860	/* 2.4GHz */
150 #define RT2872		0x2872	/* WSOC */
151 #define RT2883		0x2883	/* WSOC */
152 #define RT3070		0x3070
153 #define RT3071		0x3071
154 #define RT3090		0x3090	/* 2.4GHz PCIe */
155 #define RT3290		0x3290
156 #define RT3352		0x3352  /* WSOC */
157 #define RT3390		0x3390
158 #define RT3572		0x3572
159 #define RT3593		0x3593
160 #define RT3883		0x3883	/* WSOC */
161 #define RT5350		0x5350  /* WSOC 2.4GHz */
162 #define RT5390		0x5390  /* 2.4GHz */
163 #define RT5392		0x5392  /* 2.4GHz */
164 #define RT5592		0x5592
165 #define RT6352		0x6352  /* WSOC 2.4GHz */
166 
167 	u16 rf;
168 	u16 rev;
169 
170 	enum rt2x00_chip_intf intf;
171 };
172 
173 /*
174  * RF register values that belong to a particular channel.
175  */
176 struct rf_channel {
177 	int channel;
178 	u32 rf1;
179 	u32 rf2;
180 	u32 rf3;
181 	u32 rf4;
182 };
183 
184 /*
185  * Information structure for channel survey.
186  */
187 struct rt2x00_chan_survey {
188 	u64 time_idle;
189 	u64 time_busy;
190 	u64 time_ext_busy;
191 };
192 
193 /*
194  * Channel information structure
195  */
196 struct channel_info {
197 	unsigned int flags;
198 #define GEOGRAPHY_ALLOWED	0x00000001
199 
200 	short max_power;
201 	short default_power1;
202 	short default_power2;
203 	short default_power3;
204 };
205 
206 /*
207  * Antenna setup values.
208  */
209 struct antenna_setup {
210 	enum antenna rx;
211 	enum antenna tx;
212 	u8 rx_chain_num;
213 	u8 tx_chain_num;
214 };
215 
216 /*
217  * Quality statistics about the currently active link.
218  */
219 struct link_qual {
220 	/*
221 	 * Statistics required for Link tuning by driver
222 	 * The rssi value is provided by rt2x00lib during the
223 	 * link_tuner() callback function.
224 	 * The false_cca field is filled during the link_stats()
225 	 * callback function and could be used during the
226 	 * link_tuner() callback function.
227 	 */
228 	int rssi;
229 	int false_cca;
230 
231 	/*
232 	 * VGC levels
233 	 * Hardware driver will tune the VGC level during each call
234 	 * to the link_tuner() callback function. This vgc_level is
235 	 * determined based on the link quality statistics like
236 	 * average RSSI and the false CCA count.
237 	 *
238 	 * In some cases the drivers need to differentiate between
239 	 * the currently "desired" VGC level and the level configured
240 	 * in the hardware. The latter is important to reduce the
241 	 * number of BBP register reads to reduce register access
242 	 * overhead. For this reason we store both values here.
243 	 */
244 	u8 vgc_level;
245 	u8 vgc_level_reg;
246 
247 	/*
248 	 * Statistics required for Signal quality calculation.
249 	 * These fields might be changed during the link_stats()
250 	 * callback function.
251 	 */
252 	int rx_success;
253 	int rx_failed;
254 	int tx_success;
255 	int tx_failed;
256 };
257 
258 DECLARE_EWMA(rssi, 10, 8)
259 
260 /*
261  * Antenna settings about the currently active link.
262  */
263 struct link_ant {
264 	/*
265 	 * Antenna flags
266 	 */
267 	unsigned int flags;
268 #define ANTENNA_RX_DIVERSITY	0x00000001
269 #define ANTENNA_TX_DIVERSITY	0x00000002
270 #define ANTENNA_MODE_SAMPLE	0x00000004
271 
272 	/*
273 	 * Currently active TX/RX antenna setup.
274 	 * When software diversity is used, this will indicate
275 	 * which antenna is actually used at this time.
276 	 */
277 	struct antenna_setup active;
278 
279 	/*
280 	 * RSSI history information for the antenna.
281 	 * Used to determine when to switch antenna
282 	 * when using software diversity.
283 	 */
284 	int rssi_history;
285 
286 	/*
287 	 * Current RSSI average of the currently active antenna.
288 	 * Similar to the avg_rssi in the link_qual structure
289 	 * this value is updated by using the walking average.
290 	 */
291 	struct ewma_rssi rssi_ant;
292 };
293 
294 /*
295  * To optimize the quality of the link we need to store
296  * the quality of received frames and periodically
297  * optimize the link.
298  */
299 struct link {
300 	/*
301 	 * Link tuner counter
302 	 * The number of times the link has been tuned
303 	 * since the radio has been switched on.
304 	 */
305 	u32 count;
306 
307 	/*
308 	 * Quality measurement values.
309 	 */
310 	struct link_qual qual;
311 
312 	/*
313 	 * TX/RX antenna setup.
314 	 */
315 	struct link_ant ant;
316 
317 	/*
318 	 * Currently active average RSSI value
319 	 */
320 	struct ewma_rssi avg_rssi;
321 
322 	/*
323 	 * Work structure for scheduling periodic link tuning.
324 	 */
325 	struct delayed_work work;
326 
327 	/*
328 	 * Work structure for scheduling periodic watchdog monitoring.
329 	 * This work must be scheduled on the kernel workqueue, while
330 	 * all other work structures must be queued on the mac80211
331 	 * workqueue. This guarantees that the watchdog can schedule
332 	 * other work structures and wait for their completion in order
333 	 * to bring the device/driver back into the desired state.
334 	 */
335 	struct delayed_work watchdog_work;
336 	unsigned int watchdog_interval;
337 	unsigned int watchdog;
338 };
339 
340 enum rt2x00_delayed_flags {
341 	DELAYED_UPDATE_BEACON,
342 };
343 
344 /*
345  * Interface structure
346  * Per interface configuration details, this structure
347  * is allocated as the private data for ieee80211_vif.
348  */
349 struct rt2x00_intf {
350 	/*
351 	 * beacon->skb must be protected with the mutex.
352 	 */
353 	struct mutex beacon_skb_mutex;
354 
355 	/*
356 	 * Entry in the beacon queue which belongs to
357 	 * this interface. Each interface has its own
358 	 * dedicated beacon entry.
359 	 */
360 	struct queue_entry *beacon;
361 	bool enable_beacon;
362 
363 	/*
364 	 * Actions that needed rescheduling.
365 	 */
366 	unsigned long delayed_flags;
367 
368 	/*
369 	 * Software sequence counter, this is only required
370 	 * for hardware which doesn't support hardware
371 	 * sequence counting.
372 	 */
373 	atomic_t seqno;
374 };
375 
vif_to_intf(struct ieee80211_vif * vif)376 static inline struct rt2x00_intf* vif_to_intf(struct ieee80211_vif *vif)
377 {
378 	return (struct rt2x00_intf *)vif->drv_priv;
379 }
380 
381 /**
382  * struct hw_mode_spec: Hardware specifications structure
383  *
384  * Details about the supported modes, rates and channels
385  * of a particular chipset. This is used by rt2x00lib
386  * to build the ieee80211_hw_mode array for mac80211.
387  *
388  * @supported_bands: Bitmask contained the supported bands (2.4GHz, 5.2GHz).
389  * @supported_rates: Rate types which are supported (CCK, OFDM).
390  * @num_channels: Number of supported channels. This is used as array size
391  *	for @tx_power_a, @tx_power_bg and @channels.
392  * @channels: Device/chipset specific channel values (See &struct rf_channel).
393  * @channels_info: Additional information for channels (See &struct channel_info).
394  * @ht: Driver HT Capabilities (See &ieee80211_sta_ht_cap).
395  */
396 struct hw_mode_spec {
397 	unsigned int supported_bands;
398 #define SUPPORT_BAND_2GHZ	0x00000001
399 #define SUPPORT_BAND_5GHZ	0x00000002
400 
401 	unsigned int supported_rates;
402 #define SUPPORT_RATE_CCK	0x00000001
403 #define SUPPORT_RATE_OFDM	0x00000002
404 
405 	unsigned int num_channels;
406 	const struct rf_channel *channels;
407 	const struct channel_info *channels_info;
408 
409 	struct ieee80211_sta_ht_cap ht;
410 };
411 
412 /*
413  * Configuration structure wrapper around the
414  * mac80211 configuration structure.
415  * When mac80211 configures the driver, rt2x00lib
416  * can precalculate values which are equal for all
417  * rt2x00 drivers. Those values can be stored in here.
418  */
419 struct rt2x00lib_conf {
420 	struct ieee80211_conf *conf;
421 
422 	struct rf_channel rf;
423 	struct channel_info channel;
424 };
425 
426 /*
427  * Configuration structure for erp settings.
428  */
429 struct rt2x00lib_erp {
430 	int short_preamble;
431 	int cts_protection;
432 
433 	u32 basic_rates;
434 
435 	int slot_time;
436 
437 	short sifs;
438 	short pifs;
439 	short difs;
440 	short eifs;
441 
442 	u16 beacon_int;
443 	u16 ht_opmode;
444 };
445 
446 /*
447  * Configuration structure for hardware encryption.
448  */
449 struct rt2x00lib_crypto {
450 	enum cipher cipher;
451 
452 	enum set_key_cmd cmd;
453 	const u8 *address;
454 
455 	u32 bssidx;
456 
457 	u8 key[16];
458 	u8 tx_mic[8];
459 	u8 rx_mic[8];
460 
461 	int wcid;
462 };
463 
464 /*
465  * Configuration structure wrapper around the
466  * rt2x00 interface configuration handler.
467  */
468 struct rt2x00intf_conf {
469 	/*
470 	 * Interface type
471 	 */
472 	enum nl80211_iftype type;
473 
474 	/*
475 	 * TSF sync value, this is dependent on the operation type.
476 	 */
477 	enum tsf_sync sync;
478 
479 	/*
480 	 * The MAC and BSSID addresses are simple array of bytes,
481 	 * these arrays are little endian, so when sending the addresses
482 	 * to the drivers, copy the it into a endian-signed variable.
483 	 *
484 	 * Note that all devices (except rt2500usb) have 32 bits
485 	 * register word sizes. This means that whatever variable we
486 	 * pass _must_ be a multiple of 32 bits. Otherwise the device
487 	 * might not accept what we are sending to it.
488 	 * This will also make it easier for the driver to write
489 	 * the data to the device.
490 	 */
491 	__le32 mac[2];
492 	__le32 bssid[2];
493 };
494 
495 /*
496  * Private structure for storing STA details
497  * wcid: Wireless Client ID
498  */
499 struct rt2x00_sta {
500 	int wcid;
501 };
502 
sta_to_rt2x00_sta(struct ieee80211_sta * sta)503 static inline struct rt2x00_sta* sta_to_rt2x00_sta(struct ieee80211_sta *sta)
504 {
505 	return (struct rt2x00_sta *)sta->drv_priv;
506 }
507 
508 /*
509  * rt2x00lib callback functions.
510  */
511 struct rt2x00lib_ops {
512 	/*
513 	 * Interrupt handlers.
514 	 */
515 	irq_handler_t irq_handler;
516 
517 	/*
518 	 * TX status tasklet handler.
519 	 */
520 	void (*txstatus_tasklet) (struct tasklet_struct *t);
521 	void (*pretbtt_tasklet) (struct tasklet_struct *t);
522 	void (*tbtt_tasklet) (struct tasklet_struct *t);
523 	void (*rxdone_tasklet) (struct tasklet_struct *t);
524 	void (*autowake_tasklet) (struct tasklet_struct *t);
525 
526 	/*
527 	 * Device init handlers.
528 	 */
529 	int (*probe_hw) (struct rt2x00_dev *rt2x00dev);
530 	char *(*get_firmware_name) (struct rt2x00_dev *rt2x00dev);
531 	int (*check_firmware) (struct rt2x00_dev *rt2x00dev,
532 			       const u8 *data, const size_t len);
533 	int (*load_firmware) (struct rt2x00_dev *rt2x00dev,
534 			      const u8 *data, const size_t len);
535 
536 	/*
537 	 * Device initialization/deinitialization handlers.
538 	 */
539 	int (*initialize) (struct rt2x00_dev *rt2x00dev);
540 	void (*uninitialize) (struct rt2x00_dev *rt2x00dev);
541 
542 	/*
543 	 * queue initialization handlers
544 	 */
545 	bool (*get_entry_state) (struct queue_entry *entry);
546 	void (*clear_entry) (struct queue_entry *entry);
547 
548 	/*
549 	 * Radio control handlers.
550 	 */
551 	int (*set_device_state) (struct rt2x00_dev *rt2x00dev,
552 				 enum dev_state state);
553 	int (*rfkill_poll) (struct rt2x00_dev *rt2x00dev);
554 	void (*link_stats) (struct rt2x00_dev *rt2x00dev,
555 			    struct link_qual *qual);
556 	void (*reset_tuner) (struct rt2x00_dev *rt2x00dev,
557 			     struct link_qual *qual);
558 	void (*link_tuner) (struct rt2x00_dev *rt2x00dev,
559 			    struct link_qual *qual, const u32 count);
560 	void (*gain_calibration) (struct rt2x00_dev *rt2x00dev);
561 	void (*vco_calibration) (struct rt2x00_dev *rt2x00dev);
562 
563 	/*
564 	 * Data queue handlers.
565 	 */
566 	void (*watchdog) (struct rt2x00_dev *rt2x00dev);
567 	void (*start_queue) (struct data_queue *queue);
568 	void (*kick_queue) (struct data_queue *queue);
569 	void (*stop_queue) (struct data_queue *queue);
570 	void (*flush_queue) (struct data_queue *queue, bool drop);
571 	void (*tx_dma_done) (struct queue_entry *entry);
572 
573 	/*
574 	 * TX control handlers
575 	 */
576 	void (*write_tx_desc) (struct queue_entry *entry,
577 			       struct txentry_desc *txdesc);
578 	void (*write_tx_data) (struct queue_entry *entry,
579 			       struct txentry_desc *txdesc);
580 	void (*write_beacon) (struct queue_entry *entry,
581 			      struct txentry_desc *txdesc);
582 	void (*clear_beacon) (struct queue_entry *entry);
583 	int (*get_tx_data_len) (struct queue_entry *entry);
584 
585 	/*
586 	 * RX control handlers
587 	 */
588 	void (*fill_rxdone) (struct queue_entry *entry,
589 			     struct rxdone_entry_desc *rxdesc);
590 
591 	/*
592 	 * Configuration handlers.
593 	 */
594 	int (*config_shared_key) (struct rt2x00_dev *rt2x00dev,
595 				  struct rt2x00lib_crypto *crypto,
596 				  struct ieee80211_key_conf *key);
597 	int (*config_pairwise_key) (struct rt2x00_dev *rt2x00dev,
598 				    struct rt2x00lib_crypto *crypto,
599 				    struct ieee80211_key_conf *key);
600 	void (*config_filter) (struct rt2x00_dev *rt2x00dev,
601 			       const unsigned int filter_flags);
602 	void (*config_intf) (struct rt2x00_dev *rt2x00dev,
603 			     struct rt2x00_intf *intf,
604 			     struct rt2x00intf_conf *conf,
605 			     const unsigned int flags);
606 #define CONFIG_UPDATE_TYPE		( 1 << 1 )
607 #define CONFIG_UPDATE_MAC		( 1 << 2 )
608 #define CONFIG_UPDATE_BSSID		( 1 << 3 )
609 
610 	void (*config_erp) (struct rt2x00_dev *rt2x00dev,
611 			    struct rt2x00lib_erp *erp,
612 			    u32 changed);
613 	void (*config_ant) (struct rt2x00_dev *rt2x00dev,
614 			    struct antenna_setup *ant);
615 	void (*config) (struct rt2x00_dev *rt2x00dev,
616 			struct rt2x00lib_conf *libconf,
617 			const unsigned int changed_flags);
618 	void (*pre_reset_hw) (struct rt2x00_dev *rt2x00dev);
619 	int (*sta_add) (struct rt2x00_dev *rt2x00dev,
620 			struct ieee80211_vif *vif,
621 			struct ieee80211_sta *sta);
622 	int (*sta_remove) (struct rt2x00_dev *rt2x00dev,
623 			   struct ieee80211_sta *sta);
624 };
625 
626 /*
627  * rt2x00 driver callback operation structure.
628  */
629 struct rt2x00_ops {
630 	const char *name;
631 	const unsigned int drv_data_size;
632 	const unsigned int max_ap_intf;
633 	const unsigned int eeprom_size;
634 	const unsigned int rf_size;
635 	const unsigned int tx_queues;
636 	void (*queue_init)(struct data_queue *queue);
637 	const struct rt2x00lib_ops *lib;
638 	const void *drv;
639 	const struct ieee80211_ops *hw;
640 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
641 	const struct rt2x00debug *debugfs;
642 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
643 };
644 
645 /*
646  * rt2x00 state flags
647  */
648 enum rt2x00_state_flags {
649 	/*
650 	 * Device flags
651 	 */
652 	DEVICE_STATE_PRESENT,
653 	DEVICE_STATE_REGISTERED_HW,
654 	DEVICE_STATE_INITIALIZED,
655 	DEVICE_STATE_STARTED,
656 	DEVICE_STATE_ENABLED_RADIO,
657 	DEVICE_STATE_SCANNING,
658 	DEVICE_STATE_FLUSHING,
659 	DEVICE_STATE_RESET,
660 
661 	/*
662 	 * Driver configuration
663 	 */
664 	CONFIG_CHANNEL_HT40,
665 	CONFIG_POWERSAVING,
666 	CONFIG_HT_DISABLED,
667 	CONFIG_MONITORING,
668 
669 	/*
670 	 * Mark we currently are sequentially reading TX_STA_FIFO register
671 	 * FIXME: this is for only rt2800usb, should go to private data
672 	 */
673 	TX_STATUS_READING,
674 };
675 
676 /*
677  * rt2x00 capability flags
678  */
679 enum rt2x00_capability_flags {
680 	/*
681 	 * Requirements
682 	 */
683 	REQUIRE_FIRMWARE,
684 	REQUIRE_BEACON_GUARD,
685 	REQUIRE_ATIM_QUEUE,
686 	REQUIRE_DMA,
687 	REQUIRE_COPY_IV,
688 	REQUIRE_L2PAD,
689 	REQUIRE_TXSTATUS_FIFO,
690 	REQUIRE_TASKLET_CONTEXT,
691 	REQUIRE_SW_SEQNO,
692 	REQUIRE_HT_TX_DESC,
693 	REQUIRE_PS_AUTOWAKE,
694 	REQUIRE_DELAYED_RFKILL,
695 
696 	/*
697 	 * Capabilities
698 	 */
699 	CAPABILITY_HW_BUTTON,
700 	CAPABILITY_HW_CRYPTO,
701 	CAPABILITY_POWER_LIMIT,
702 	CAPABILITY_CONTROL_FILTERS,
703 	CAPABILITY_CONTROL_FILTER_PSPOLL,
704 	CAPABILITY_PRE_TBTT_INTERRUPT,
705 	CAPABILITY_LINK_TUNING,
706 	CAPABILITY_FRAME_TYPE,
707 	CAPABILITY_RF_SEQUENCE,
708 	CAPABILITY_EXTERNAL_LNA_A,
709 	CAPABILITY_EXTERNAL_LNA_BG,
710 	CAPABILITY_DOUBLE_ANTENNA,
711 	CAPABILITY_BT_COEXIST,
712 	CAPABILITY_VCO_RECALIBRATION,
713 	CAPABILITY_EXTERNAL_PA_TX0,
714 	CAPABILITY_EXTERNAL_PA_TX1,
715 	CAPABILITY_RESTART_HW,
716 };
717 
718 /*
719  * Interface combinations
720  */
721 enum {
722 	IF_COMB_AP = 0,
723 	NUM_IF_COMB,
724 };
725 
726 /*
727  * rt2x00 device structure.
728  */
729 struct rt2x00_dev {
730 	/*
731 	 * Device structure.
732 	 * The structure stored in here depends on the
733 	 * system bus (PCI or USB).
734 	 * When accessing this variable, the rt2x00dev_{pci,usb}
735 	 * macros should be used for correct typecasting.
736 	 */
737 	struct device *dev;
738 
739 	/*
740 	 * Callback functions.
741 	 */
742 	const struct rt2x00_ops *ops;
743 
744 	/*
745 	 * Driver data.
746 	 */
747 	void *drv_data;
748 
749 	/*
750 	 * IEEE80211 control structure.
751 	 */
752 	struct ieee80211_hw *hw;
753 	struct ieee80211_supported_band bands[NUM_NL80211_BANDS];
754 	struct rt2x00_chan_survey *chan_survey;
755 	enum nl80211_band curr_band;
756 	int curr_freq;
757 
758 	/*
759 	 * If enabled, the debugfs interface structures
760 	 * required for deregistration of debugfs.
761 	 */
762 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
763 	struct rt2x00debug_intf *debugfs_intf;
764 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
765 
766 	/*
767 	 * LED structure for changing the LED status
768 	 * by mac8011 or the kernel.
769 	 */
770 #ifdef CONFIG_RT2X00_LIB_LEDS
771 	struct rt2x00_led led_radio;
772 	struct rt2x00_led led_assoc;
773 	struct rt2x00_led led_qual;
774 	u16 led_mcu_reg;
775 #endif /* CONFIG_RT2X00_LIB_LEDS */
776 
777 	/*
778 	 * Device state flags.
779 	 * In these flags the current status is stored.
780 	 * Access to these flags should occur atomically.
781 	 */
782 	unsigned long flags;
783 
784 	/*
785 	 * Device capabiltiy flags.
786 	 * In these flags the device/driver capabilities are stored.
787 	 * Access to these flags should occur non-atomically.
788 	 */
789 	unsigned long cap_flags;
790 
791 	/*
792 	 * Device information, Bus IRQ and name (PCI, SoC)
793 	 */
794 	int irq;
795 	const char *name;
796 
797 	/*
798 	 * Chipset identification.
799 	 */
800 	struct rt2x00_chip chip;
801 
802 	/*
803 	 * hw capability specifications.
804 	 */
805 	struct hw_mode_spec spec;
806 
807 	/*
808 	 * This is the default TX/RX antenna setup as indicated
809 	 * by the device's EEPROM.
810 	 */
811 	struct antenna_setup default_ant;
812 
813 	/*
814 	 * Register pointers
815 	 * csr.base: CSR base register address. (PCI)
816 	 * csr.cache: CSR cache for usb_control_msg. (USB)
817 	 */
818 	union csr {
819 		void __iomem *base;
820 		void *cache;
821 	} csr;
822 
823 	/*
824 	 * Mutex to protect register accesses.
825 	 * For PCI and USB devices it protects against concurrent indirect
826 	 * register access (BBP, RF, MCU) since accessing those
827 	 * registers require multiple calls to the CSR registers.
828 	 * For USB devices it also protects the csr_cache since that
829 	 * field is used for normal CSR access and it cannot support
830 	 * multiple callers simultaneously.
831 	 */
832 	struct mutex csr_mutex;
833 
834 	/*
835 	 * Mutex to synchronize config and link tuner.
836 	 */
837 	struct mutex conf_mutex;
838 	/*
839 	 * Current packet filter configuration for the device.
840 	 * This contains all currently active FIF_* flags send
841 	 * to us by mac80211 during configure_filter().
842 	 */
843 	unsigned int packet_filter;
844 
845 	/*
846 	 * Interface details:
847 	 *  - Open ap interface count.
848 	 *  - Open sta interface count.
849 	 *  - Association count.
850 	 *  - Beaconing enabled count.
851 	 */
852 	unsigned int intf_ap_count;
853 	unsigned int intf_sta_count;
854 	unsigned int intf_associated;
855 	unsigned int intf_beaconing;
856 
857 	/*
858 	 * Interface combinations
859 	 */
860 	struct ieee80211_iface_limit if_limits_ap;
861 	struct ieee80211_iface_combination if_combinations[NUM_IF_COMB];
862 
863 	/*
864 	 * Link quality
865 	 */
866 	struct link link;
867 
868 	/*
869 	 * EEPROM data.
870 	 */
871 	__le16 *eeprom;
872 
873 	/*
874 	 * Active RF register values.
875 	 * These are stored here so we don't need
876 	 * to read the rf registers and can directly
877 	 * use this value instead.
878 	 * This field should be accessed by using
879 	 * rt2x00_rf_read() and rt2x00_rf_write().
880 	 */
881 	u32 *rf;
882 
883 	/*
884 	 * LNA gain
885 	 */
886 	short lna_gain;
887 
888 	/*
889 	 * Current TX power value.
890 	 */
891 	u16 tx_power;
892 
893 	/*
894 	 * Current retry values.
895 	 */
896 	u8 short_retry;
897 	u8 long_retry;
898 
899 	/*
900 	 * Rssi <-> Dbm offset
901 	 */
902 	u8 rssi_offset;
903 
904 	/*
905 	 * Frequency offset.
906 	 */
907 	u8 freq_offset;
908 
909 	/*
910 	 * Association id.
911 	 */
912 	u16 aid;
913 
914 	/*
915 	 * Beacon interval.
916 	 */
917 	u16 beacon_int;
918 
919 	/* Rx/Tx DMA busy watchdog counter */
920 	u16 rxdma_busy, txdma_busy;
921 
922 	/**
923 	 * Timestamp of last received beacon
924 	 */
925 	unsigned long last_beacon;
926 
927 	/*
928 	 * Low level statistics which will have
929 	 * to be kept up to date while device is running.
930 	 */
931 	struct ieee80211_low_level_stats low_level_stats;
932 
933 	/**
934 	 * Work queue for all work which should not be placed
935 	 * on the mac80211 workqueue (because of dependencies
936 	 * between various work structures).
937 	 */
938 	struct workqueue_struct *workqueue;
939 
940 	/*
941 	 * Scheduled work.
942 	 * NOTE: intf_work will use ieee80211_iterate_active_interfaces()
943 	 * which means it cannot be placed on the hw->workqueue
944 	 * due to RTNL locking requirements.
945 	 */
946 	struct work_struct intf_work;
947 
948 	/**
949 	 * Scheduled work for TX/RX done handling (USB devices)
950 	 */
951 	struct work_struct rxdone_work;
952 	struct work_struct txdone_work;
953 
954 	/*
955 	 * Powersaving work
956 	 */
957 	struct delayed_work autowakeup_work;
958 	struct work_struct sleep_work;
959 
960 	/*
961 	 * Data queue arrays for RX, TX, Beacon and ATIM.
962 	 */
963 	unsigned int data_queues;
964 	struct data_queue *rx;
965 	struct data_queue *tx;
966 	struct data_queue *bcn;
967 	struct data_queue *atim;
968 
969 	/*
970 	 * Firmware image.
971 	 */
972 	const struct firmware *fw;
973 
974 	/*
975 	 * FIFO for storing tx status reports between isr and tasklet.
976 	 */
977 	DECLARE_KFIFO_PTR(txstatus_fifo, u32);
978 
979 	/*
980 	 * Timer to ensure tx status reports are read (rt2800usb).
981 	 */
982 	struct hrtimer txstatus_timer;
983 
984 	/*
985 	 * Tasklet for processing tx status reports (rt2800pci).
986 	 */
987 	struct tasklet_struct txstatus_tasklet;
988 	struct tasklet_struct pretbtt_tasklet;
989 	struct tasklet_struct tbtt_tasklet;
990 	struct tasklet_struct rxdone_tasklet;
991 	struct tasklet_struct autowake_tasklet;
992 
993 	/*
994 	 * Used for VCO periodic calibration.
995 	 */
996 	int rf_channel;
997 
998 	/*
999 	 * Protect the interrupt mask register.
1000 	 */
1001 	spinlock_t irqmask_lock;
1002 
1003 	/*
1004 	 * List of BlockAckReq TX entries that need driver BlockAck processing.
1005 	 */
1006 	struct list_head bar_list;
1007 	spinlock_t bar_list_lock;
1008 
1009 	/* Extra TX headroom required for alignment purposes. */
1010 	unsigned int extra_tx_headroom;
1011 
1012 	struct usb_anchor *anchor;
1013 	unsigned int num_proto_errs;
1014 
1015 	/* Clock for System On Chip devices. */
1016 	struct clk *clk;
1017 };
1018 
1019 struct rt2x00_bar_list_entry {
1020 	struct list_head list;
1021 	struct rcu_head head;
1022 
1023 	struct queue_entry *entry;
1024 	int block_acked;
1025 
1026 	/* Relevant parts of the IEEE80211 BAR header */
1027 	__u8 ra[6];
1028 	__u8 ta[6];
1029 	__le16 control;
1030 	__le16 start_seq_num;
1031 };
1032 
1033 /*
1034  * Register defines.
1035  * Some registers require multiple attempts before success,
1036  * in those cases REGISTER_BUSY_COUNT attempts should be
1037  * taken with a REGISTER_BUSY_DELAY interval. Due to USB
1038  * bus delays, we do not have to loop so many times to wait
1039  * for valid register value on that bus.
1040  */
1041 #define REGISTER_BUSY_COUNT	100
1042 #define REGISTER_USB_BUSY_COUNT 20
1043 #define REGISTER_BUSY_DELAY	100
1044 
1045 /*
1046  * Generic RF access.
1047  * The RF is being accessed by word index.
1048  */
rt2x00_rf_read(struct rt2x00_dev * rt2x00dev,const unsigned int word)1049 static inline u32 rt2x00_rf_read(struct rt2x00_dev *rt2x00dev,
1050 				 const unsigned int word)
1051 {
1052 	BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32));
1053 	return rt2x00dev->rf[word - 1];
1054 }
1055 
rt2x00_rf_write(struct rt2x00_dev * rt2x00dev,const unsigned int word,u32 data)1056 static inline void rt2x00_rf_write(struct rt2x00_dev *rt2x00dev,
1057 				   const unsigned int word, u32 data)
1058 {
1059 	BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32));
1060 	rt2x00dev->rf[word - 1] = data;
1061 }
1062 
1063 /*
1064  * Generic EEPROM access. The EEPROM is being accessed by word or byte index.
1065  */
rt2x00_eeprom_addr(struct rt2x00_dev * rt2x00dev,const unsigned int word)1066 static inline void *rt2x00_eeprom_addr(struct rt2x00_dev *rt2x00dev,
1067 				       const unsigned int word)
1068 {
1069 	return (void *)&rt2x00dev->eeprom[word];
1070 }
1071 
rt2x00_eeprom_read(struct rt2x00_dev * rt2x00dev,const unsigned int word)1072 static inline u16 rt2x00_eeprom_read(struct rt2x00_dev *rt2x00dev,
1073 				     const unsigned int word)
1074 {
1075 	return le16_to_cpu(rt2x00dev->eeprom[word]);
1076 }
1077 
rt2x00_eeprom_write(struct rt2x00_dev * rt2x00dev,const unsigned int word,u16 data)1078 static inline void rt2x00_eeprom_write(struct rt2x00_dev *rt2x00dev,
1079 				       const unsigned int word, u16 data)
1080 {
1081 	rt2x00dev->eeprom[word] = cpu_to_le16(data);
1082 }
1083 
rt2x00_eeprom_byte(struct rt2x00_dev * rt2x00dev,const unsigned int byte)1084 static inline u8 rt2x00_eeprom_byte(struct rt2x00_dev *rt2x00dev,
1085 				    const unsigned int byte)
1086 {
1087 	return *(((u8 *)rt2x00dev->eeprom) + byte);
1088 }
1089 
1090 /*
1091  * Chipset handlers
1092  */
rt2x00_set_chip(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rf,const u16 rev)1093 static inline void rt2x00_set_chip(struct rt2x00_dev *rt2x00dev,
1094 				   const u16 rt, const u16 rf, const u16 rev)
1095 {
1096 	rt2x00dev->chip.rt = rt;
1097 	rt2x00dev->chip.rf = rf;
1098 	rt2x00dev->chip.rev = rev;
1099 
1100 	rt2x00_info(rt2x00dev, "Chipset detected - rt: %04x, rf: %04x, rev: %04x\n",
1101 		    rt2x00dev->chip.rt, rt2x00dev->chip.rf,
1102 		    rt2x00dev->chip.rev);
1103 }
1104 
rt2x00_set_rt(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1105 static inline void rt2x00_set_rt(struct rt2x00_dev *rt2x00dev,
1106 				 const u16 rt, const u16 rev)
1107 {
1108 	rt2x00dev->chip.rt = rt;
1109 	rt2x00dev->chip.rev = rev;
1110 
1111 	rt2x00_info(rt2x00dev, "RT chipset %04x, rev %04x detected\n",
1112 		    rt2x00dev->chip.rt, rt2x00dev->chip.rev);
1113 }
1114 
rt2x00_set_rf(struct rt2x00_dev * rt2x00dev,const u16 rf)1115 static inline void rt2x00_set_rf(struct rt2x00_dev *rt2x00dev, const u16 rf)
1116 {
1117 	rt2x00dev->chip.rf = rf;
1118 
1119 	rt2x00_info(rt2x00dev, "RF chipset %04x detected\n",
1120 		    rt2x00dev->chip.rf);
1121 }
1122 
rt2x00_rt(struct rt2x00_dev * rt2x00dev,const u16 rt)1123 static inline bool rt2x00_rt(struct rt2x00_dev *rt2x00dev, const u16 rt)
1124 {
1125 	return (rt2x00dev->chip.rt == rt);
1126 }
1127 
rt2x00_rf(struct rt2x00_dev * rt2x00dev,const u16 rf)1128 static inline bool rt2x00_rf(struct rt2x00_dev *rt2x00dev, const u16 rf)
1129 {
1130 	return (rt2x00dev->chip.rf == rf);
1131 }
1132 
rt2x00_rev(struct rt2x00_dev * rt2x00dev)1133 static inline u16 rt2x00_rev(struct rt2x00_dev *rt2x00dev)
1134 {
1135 	return rt2x00dev->chip.rev;
1136 }
1137 
rt2x00_rt_rev(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1138 static inline bool rt2x00_rt_rev(struct rt2x00_dev *rt2x00dev,
1139 				 const u16 rt, const u16 rev)
1140 {
1141 	return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) == rev);
1142 }
1143 
rt2x00_rt_rev_lt(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1144 static inline bool rt2x00_rt_rev_lt(struct rt2x00_dev *rt2x00dev,
1145 				    const u16 rt, const u16 rev)
1146 {
1147 	return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) < rev);
1148 }
1149 
rt2x00_rt_rev_gte(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1150 static inline bool rt2x00_rt_rev_gte(struct rt2x00_dev *rt2x00dev,
1151 				     const u16 rt, const u16 rev)
1152 {
1153 	return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) >= rev);
1154 }
1155 
rt2x00_set_chip_intf(struct rt2x00_dev * rt2x00dev,enum rt2x00_chip_intf intf)1156 static inline void rt2x00_set_chip_intf(struct rt2x00_dev *rt2x00dev,
1157 					enum rt2x00_chip_intf intf)
1158 {
1159 	rt2x00dev->chip.intf = intf;
1160 }
1161 
rt2x00_intf(struct rt2x00_dev * rt2x00dev,enum rt2x00_chip_intf intf)1162 static inline bool rt2x00_intf(struct rt2x00_dev *rt2x00dev,
1163 			       enum rt2x00_chip_intf intf)
1164 {
1165 	return (rt2x00dev->chip.intf == intf);
1166 }
1167 
rt2x00_is_pci(struct rt2x00_dev * rt2x00dev)1168 static inline bool rt2x00_is_pci(struct rt2x00_dev *rt2x00dev)
1169 {
1170 	return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCI) ||
1171 	       rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE);
1172 }
1173 
rt2x00_is_pcie(struct rt2x00_dev * rt2x00dev)1174 static inline bool rt2x00_is_pcie(struct rt2x00_dev *rt2x00dev)
1175 {
1176 	return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE);
1177 }
1178 
rt2x00_is_usb(struct rt2x00_dev * rt2x00dev)1179 static inline bool rt2x00_is_usb(struct rt2x00_dev *rt2x00dev)
1180 {
1181 	return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_USB);
1182 }
1183 
rt2x00_is_soc(struct rt2x00_dev * rt2x00dev)1184 static inline bool rt2x00_is_soc(struct rt2x00_dev *rt2x00dev)
1185 {
1186 	return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_SOC);
1187 }
1188 
1189 /* Helpers for capability flags */
1190 
1191 static inline bool
rt2x00_has_cap_flag(struct rt2x00_dev * rt2x00dev,enum rt2x00_capability_flags cap_flag)1192 rt2x00_has_cap_flag(struct rt2x00_dev *rt2x00dev,
1193 		    enum rt2x00_capability_flags cap_flag)
1194 {
1195 	return test_bit(cap_flag, &rt2x00dev->cap_flags);
1196 }
1197 
1198 static inline bool
rt2x00_has_cap_hw_crypto(struct rt2x00_dev * rt2x00dev)1199 rt2x00_has_cap_hw_crypto(struct rt2x00_dev *rt2x00dev)
1200 {
1201 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_HW_CRYPTO);
1202 }
1203 
1204 static inline bool
rt2x00_has_cap_power_limit(struct rt2x00_dev * rt2x00dev)1205 rt2x00_has_cap_power_limit(struct rt2x00_dev *rt2x00dev)
1206 {
1207 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_POWER_LIMIT);
1208 }
1209 
1210 static inline bool
rt2x00_has_cap_control_filters(struct rt2x00_dev * rt2x00dev)1211 rt2x00_has_cap_control_filters(struct rt2x00_dev *rt2x00dev)
1212 {
1213 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTERS);
1214 }
1215 
1216 static inline bool
rt2x00_has_cap_control_filter_pspoll(struct rt2x00_dev * rt2x00dev)1217 rt2x00_has_cap_control_filter_pspoll(struct rt2x00_dev *rt2x00dev)
1218 {
1219 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTER_PSPOLL);
1220 }
1221 
1222 static inline bool
rt2x00_has_cap_pre_tbtt_interrupt(struct rt2x00_dev * rt2x00dev)1223 rt2x00_has_cap_pre_tbtt_interrupt(struct rt2x00_dev *rt2x00dev)
1224 {
1225 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_PRE_TBTT_INTERRUPT);
1226 }
1227 
1228 static inline bool
rt2x00_has_cap_link_tuning(struct rt2x00_dev * rt2x00dev)1229 rt2x00_has_cap_link_tuning(struct rt2x00_dev *rt2x00dev)
1230 {
1231 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_LINK_TUNING);
1232 }
1233 
1234 static inline bool
rt2x00_has_cap_frame_type(struct rt2x00_dev * rt2x00dev)1235 rt2x00_has_cap_frame_type(struct rt2x00_dev *rt2x00dev)
1236 {
1237 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_FRAME_TYPE);
1238 }
1239 
1240 static inline bool
rt2x00_has_cap_rf_sequence(struct rt2x00_dev * rt2x00dev)1241 rt2x00_has_cap_rf_sequence(struct rt2x00_dev *rt2x00dev)
1242 {
1243 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_RF_SEQUENCE);
1244 }
1245 
1246 static inline bool
rt2x00_has_cap_external_lna_a(struct rt2x00_dev * rt2x00dev)1247 rt2x00_has_cap_external_lna_a(struct rt2x00_dev *rt2x00dev)
1248 {
1249 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_A);
1250 }
1251 
1252 static inline bool
rt2x00_has_cap_external_lna_bg(struct rt2x00_dev * rt2x00dev)1253 rt2x00_has_cap_external_lna_bg(struct rt2x00_dev *rt2x00dev)
1254 {
1255 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_BG);
1256 }
1257 
1258 static inline bool
rt2x00_has_cap_external_pa(struct rt2x00_dev * rt2x00dev)1259 rt2x00_has_cap_external_pa(struct rt2x00_dev *rt2x00dev)
1260 {
1261 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_PA_TX0);
1262 }
1263 
1264 static inline bool
rt2x00_has_cap_double_antenna(struct rt2x00_dev * rt2x00dev)1265 rt2x00_has_cap_double_antenna(struct rt2x00_dev *rt2x00dev)
1266 {
1267 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_DOUBLE_ANTENNA);
1268 }
1269 
1270 static inline bool
rt2x00_has_cap_bt_coexist(struct rt2x00_dev * rt2x00dev)1271 rt2x00_has_cap_bt_coexist(struct rt2x00_dev *rt2x00dev)
1272 {
1273 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_BT_COEXIST);
1274 }
1275 
1276 static inline bool
rt2x00_has_cap_vco_recalibration(struct rt2x00_dev * rt2x00dev)1277 rt2x00_has_cap_vco_recalibration(struct rt2x00_dev *rt2x00dev)
1278 {
1279 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_VCO_RECALIBRATION);
1280 }
1281 
1282 static inline bool
rt2x00_has_cap_restart_hw(struct rt2x00_dev * rt2x00dev)1283 rt2x00_has_cap_restart_hw(struct rt2x00_dev *rt2x00dev)
1284 {
1285 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_RESTART_HW);
1286 }
1287 
1288 /**
1289  * rt2x00queue_map_txskb - Map a skb into DMA for TX purposes.
1290  * @entry: Pointer to &struct queue_entry
1291  *
1292  * Returns -ENOMEM if mapping fail, 0 otherwise.
1293  */
1294 int rt2x00queue_map_txskb(struct queue_entry *entry);
1295 
1296 /**
1297  * rt2x00queue_unmap_skb - Unmap a skb from DMA.
1298  * @entry: Pointer to &struct queue_entry
1299  */
1300 void rt2x00queue_unmap_skb(struct queue_entry *entry);
1301 
1302 /**
1303  * rt2x00queue_get_tx_queue - Convert tx queue index to queue pointer
1304  * @rt2x00dev: Pointer to &struct rt2x00_dev.
1305  * @queue: rt2x00 queue index (see &enum data_queue_qid).
1306  *
1307  * Returns NULL for non tx queues.
1308  */
1309 static inline struct data_queue *
rt2x00queue_get_tx_queue(struct rt2x00_dev * rt2x00dev,enum data_queue_qid queue)1310 rt2x00queue_get_tx_queue(struct rt2x00_dev *rt2x00dev,
1311 			 enum data_queue_qid queue)
1312 {
1313 	if (queue >= rt2x00dev->ops->tx_queues && queue < IEEE80211_NUM_ACS)
1314 		queue = rt2x00dev->ops->tx_queues - 1;
1315 
1316 	if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx)
1317 		return &rt2x00dev->tx[queue];
1318 
1319 	if (queue == QID_ATIM)
1320 		return rt2x00dev->atim;
1321 
1322 	return NULL;
1323 }
1324 
1325 /**
1326  * rt2x00queue_get_entry - Get queue entry where the given index points to.
1327  * @queue: Pointer to &struct data_queue from where we obtain the entry.
1328  * @index: Index identifier for obtaining the correct index.
1329  */
1330 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
1331 					  enum queue_index index);
1332 
1333 /**
1334  * rt2x00queue_pause_queue - Pause a data queue
1335  * @queue: Pointer to &struct data_queue.
1336  *
1337  * This function will pause the data queue locally, preventing
1338  * new frames to be added to the queue (while the hardware is
1339  * still allowed to run).
1340  */
1341 void rt2x00queue_pause_queue(struct data_queue *queue);
1342 
1343 /**
1344  * rt2x00queue_unpause_queue - unpause a data queue
1345  * @queue: Pointer to &struct data_queue.
1346  *
1347  * This function will unpause the data queue locally, allowing
1348  * new frames to be added to the queue again.
1349  */
1350 void rt2x00queue_unpause_queue(struct data_queue *queue);
1351 
1352 /**
1353  * rt2x00queue_start_queue - Start a data queue
1354  * @queue: Pointer to &struct data_queue.
1355  *
1356  * This function will start handling all pending frames in the queue.
1357  */
1358 void rt2x00queue_start_queue(struct data_queue *queue);
1359 
1360 /**
1361  * rt2x00queue_stop_queue - Halt a data queue
1362  * @queue: Pointer to &struct data_queue.
1363  *
1364  * This function will stop all pending frames in the queue.
1365  */
1366 void rt2x00queue_stop_queue(struct data_queue *queue);
1367 
1368 /**
1369  * rt2x00queue_flush_queue - Flush a data queue
1370  * @queue: Pointer to &struct data_queue.
1371  * @drop: True to drop all pending frames.
1372  *
1373  * This function will flush the queue. After this call
1374  * the queue is guaranteed to be empty.
1375  */
1376 void rt2x00queue_flush_queue(struct data_queue *queue, bool drop);
1377 
1378 /**
1379  * rt2x00queue_start_queues - Start all data queues
1380  * @rt2x00dev: Pointer to &struct rt2x00_dev.
1381  *
1382  * This function will loop through all available queues to start them
1383  */
1384 void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev);
1385 
1386 /**
1387  * rt2x00queue_stop_queues - Halt all data queues
1388  * @rt2x00dev: Pointer to &struct rt2x00_dev.
1389  *
1390  * This function will loop through all available queues to stop
1391  * any pending frames.
1392  */
1393 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev);
1394 
1395 /**
1396  * rt2x00queue_flush_queues - Flush all data queues
1397  * @rt2x00dev: Pointer to &struct rt2x00_dev.
1398  * @drop: True to drop all pending frames.
1399  *
1400  * This function will loop through all available queues to flush
1401  * any pending frames.
1402  */
1403 void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop);
1404 
1405 /*
1406  * Debugfs handlers.
1407  */
1408 /**
1409  * rt2x00debug_dump_frame - Dump a frame to userspace through debugfs.
1410  * @rt2x00dev: Pointer to &struct rt2x00_dev.
1411  * @type: The type of frame that is being dumped.
1412  * @entry: The queue entry containing the frame to be dumped.
1413  */
1414 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1415 void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev,
1416 			    enum rt2x00_dump_type type, struct queue_entry *entry);
1417 #else
rt2x00debug_dump_frame(struct rt2x00_dev * rt2x00dev,enum rt2x00_dump_type type,struct queue_entry * entry)1418 static inline void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev,
1419 					  enum rt2x00_dump_type type,
1420 					  struct queue_entry *entry)
1421 {
1422 }
1423 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1424 
1425 /*
1426  * Utility functions.
1427  */
1428 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
1429 			 struct ieee80211_vif *vif);
1430 void rt2x00lib_set_mac_address(struct rt2x00_dev *rt2x00dev, u8 *eeprom_mac_addr);
1431 
1432 /*
1433  * Interrupt context handlers.
1434  */
1435 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev);
1436 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev);
1437 void rt2x00lib_dmastart(struct queue_entry *entry);
1438 void rt2x00lib_dmadone(struct queue_entry *entry);
1439 void rt2x00lib_txdone(struct queue_entry *entry,
1440 		      struct txdone_entry_desc *txdesc);
1441 void rt2x00lib_txdone_nomatch(struct queue_entry *entry,
1442 			      struct txdone_entry_desc *txdesc);
1443 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status);
1444 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp);
1445 
1446 /*
1447  * mac80211 handlers.
1448  */
1449 void rt2x00mac_tx(struct ieee80211_hw *hw,
1450 		  struct ieee80211_tx_control *control,
1451 		  struct sk_buff *skb);
1452 int rt2x00mac_start(struct ieee80211_hw *hw);
1453 void rt2x00mac_stop(struct ieee80211_hw *hw, bool suspend);
1454 void rt2x00mac_reconfig_complete(struct ieee80211_hw *hw,
1455 				 enum ieee80211_reconfig_type reconfig_type);
1456 int rt2x00mac_add_interface(struct ieee80211_hw *hw,
1457 			    struct ieee80211_vif *vif);
1458 void rt2x00mac_remove_interface(struct ieee80211_hw *hw,
1459 				struct ieee80211_vif *vif);
1460 int rt2x00mac_config(struct ieee80211_hw *hw, u32 changed);
1461 void rt2x00mac_configure_filter(struct ieee80211_hw *hw,
1462 				unsigned int changed_flags,
1463 				unsigned int *total_flags,
1464 				u64 multicast);
1465 int rt2x00mac_set_tim(struct ieee80211_hw *hw, struct ieee80211_sta *sta,
1466 		      bool set);
1467 #ifdef CONFIG_RT2X00_LIB_CRYPTO
1468 int rt2x00mac_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
1469 		      struct ieee80211_vif *vif, struct ieee80211_sta *sta,
1470 		      struct ieee80211_key_conf *key);
1471 #else
1472 #define rt2x00mac_set_key	NULL
1473 #endif /* CONFIG_RT2X00_LIB_CRYPTO */
1474 void rt2x00mac_sw_scan_start(struct ieee80211_hw *hw,
1475 			     struct ieee80211_vif *vif,
1476 			     const u8 *mac_addr);
1477 void rt2x00mac_sw_scan_complete(struct ieee80211_hw *hw,
1478 				struct ieee80211_vif *vif);
1479 int rt2x00mac_get_stats(struct ieee80211_hw *hw,
1480 			struct ieee80211_low_level_stats *stats);
1481 void rt2x00mac_bss_info_changed(struct ieee80211_hw *hw,
1482 				struct ieee80211_vif *vif,
1483 				struct ieee80211_bss_conf *bss_conf,
1484 				u64 changes);
1485 int rt2x00mac_conf_tx(struct ieee80211_hw *hw,
1486 		      struct ieee80211_vif *vif,
1487 		      unsigned int link_id, u16 queue,
1488 		      const struct ieee80211_tx_queue_params *params);
1489 void rt2x00mac_rfkill_poll(struct ieee80211_hw *hw);
1490 void rt2x00mac_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1491 		     u32 queues, bool drop);
1492 int rt2x00mac_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant);
1493 int rt2x00mac_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant);
1494 void rt2x00mac_get_ringparam(struct ieee80211_hw *hw,
1495 			     u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max);
1496 bool rt2x00mac_tx_frames_pending(struct ieee80211_hw *hw);
1497 
1498 /*
1499  * Driver allocation handlers.
1500  */
1501 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev);
1502 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev);
1503 
1504 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev);
1505 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev);
1506 
1507 #endif /* RT2X00_H */
1508