1 //===-- tsan_rtl.h ----------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of ThreadSanitizer (TSan), a race detector.
10 //
11 // Main internal TSan header file.
12 //
13 // Ground rules:
14 // - C++ run-time should not be used (static CTORs, RTTI, exceptions, static
15 // function-scope locals)
16 // - All functions/classes/etc reside in namespace __tsan, except for those
17 // declared in tsan_interface.h.
18 // - Platform-specific files should be used instead of ifdefs (*).
19 // - No system headers included in header files (*).
20 // - Platform specific headres included only into platform-specific files (*).
21 //
22 // (*) Except when inlining is critical for performance.
23 //===----------------------------------------------------------------------===//
24
25 #ifndef TSAN_RTL_H
26 #define TSAN_RTL_H
27
28 #include "sanitizer_common/sanitizer_allocator.h"
29 #include "sanitizer_common/sanitizer_allocator_internal.h"
30 #include "sanitizer_common/sanitizer_asm.h"
31 #include "sanitizer_common/sanitizer_common.h"
32 #include "sanitizer_common/sanitizer_deadlock_detector_interface.h"
33 #include "sanitizer_common/sanitizer_libignore.h"
34 #include "sanitizer_common/sanitizer_suppressions.h"
35 #include "sanitizer_common/sanitizer_thread_registry.h"
36 #include "sanitizer_common/sanitizer_vector.h"
37 #include "tsan_defs.h"
38 #include "tsan_flags.h"
39 #include "tsan_ignoreset.h"
40 #include "tsan_ilist.h"
41 #include "tsan_mman.h"
42 #include "tsan_mutexset.h"
43 #include "tsan_platform.h"
44 #include "tsan_report.h"
45 #include "tsan_shadow.h"
46 #include "tsan_stack_trace.h"
47 #include "tsan_sync.h"
48 #include "tsan_trace.h"
49 #include "tsan_vector_clock.h"
50
51 #if SANITIZER_WORDSIZE != 64
52 # error "ThreadSanitizer is supported only on 64-bit platforms"
53 #endif
54
55 namespace __tsan {
56
57 #if !SANITIZER_GO
58 struct MapUnmapCallback;
59 # if defined(__mips64) || defined(__aarch64__) || defined(__loongarch__) || \
60 defined(__powerpc__) || SANITIZER_RISCV64
61
62 struct AP32 {
63 static const uptr kSpaceBeg = 0;
64 static const u64 kSpaceSize = SANITIZER_MMAP_RANGE_SIZE;
65 static const uptr kMetadataSize = 0;
66 typedef __sanitizer::CompactSizeClassMap SizeClassMap;
67 static const uptr kRegionSizeLog = 20;
68 using AddressSpaceView = LocalAddressSpaceView;
69 typedef __tsan::MapUnmapCallback MapUnmapCallback;
70 static const uptr kFlags = 0;
71 };
72 typedef SizeClassAllocator32<AP32> PrimaryAllocator;
73 #else
74 struct AP64 { // Allocator64 parameters. Deliberately using a short name.
75 # if defined(__s390x__)
76 typedef MappingS390x Mapping;
77 # else
78 typedef Mapping48AddressSpace Mapping;
79 # endif
80 static const uptr kSpaceBeg = Mapping::kHeapMemBeg;
81 static const uptr kSpaceSize = Mapping::kHeapMemEnd - Mapping::kHeapMemBeg;
82 static const uptr kMetadataSize = 0;
83 typedef DefaultSizeClassMap SizeClassMap;
84 typedef __tsan::MapUnmapCallback MapUnmapCallback;
85 static const uptr kFlags = 0;
86 using AddressSpaceView = LocalAddressSpaceView;
87 };
88 typedef SizeClassAllocator64<AP64> PrimaryAllocator;
89 #endif
90 typedef CombinedAllocator<PrimaryAllocator> Allocator;
91 typedef Allocator::AllocatorCache AllocatorCache;
92 Allocator *allocator();
93 #endif
94
95 struct ThreadSignalContext;
96
97 struct JmpBuf {
98 uptr sp;
99 int int_signal_send;
100 bool in_blocking_func;
101 uptr in_signal_handler;
102 uptr *shadow_stack_pos;
103 };
104
105 // A Processor represents a physical thread, or a P for Go.
106 // It is used to store internal resources like allocate cache, and does not
107 // participate in race-detection logic (invisible to end user).
108 // In C++ it is tied to an OS thread just like ThreadState, however ideally
109 // it should be tied to a CPU (this way we will have fewer allocator caches).
110 // In Go it is tied to a P, so there are significantly fewer Processor's than
111 // ThreadState's (which are tied to Gs).
112 // A ThreadState must be wired with a Processor to handle events.
113 struct Processor {
114 ThreadState *thr; // currently wired thread, or nullptr
115 #if !SANITIZER_GO
116 AllocatorCache alloc_cache;
117 InternalAllocatorCache internal_alloc_cache;
118 #endif
119 DenseSlabAllocCache block_cache;
120 DenseSlabAllocCache sync_cache;
121 DDPhysicalThread *dd_pt;
122 };
123
124 #if !SANITIZER_GO
125 // ScopedGlobalProcessor temporary setups a global processor for the current
126 // thread, if it does not have one. Intended for interceptors that can run
127 // at the very thread end, when we already destroyed the thread processor.
128 struct ScopedGlobalProcessor {
129 ScopedGlobalProcessor();
130 ~ScopedGlobalProcessor();
131 };
132 #endif
133
134 struct TidEpoch {
135 Tid tid;
136 Epoch epoch;
137 };
138
alignas(SANITIZER_CACHE_LINE_SIZE)139 struct alignas(SANITIZER_CACHE_LINE_SIZE) TidSlot {
140 Mutex mtx;
141 Sid sid;
142 atomic_uint32_t raw_epoch;
143 ThreadState *thr;
144 Vector<TidEpoch> journal;
145 INode node;
146
147 Epoch epoch() const {
148 return static_cast<Epoch>(atomic_load(&raw_epoch, memory_order_relaxed));
149 }
150
151 void SetEpoch(Epoch v) {
152 atomic_store(&raw_epoch, static_cast<u32>(v), memory_order_relaxed);
153 }
154
155 TidSlot();
156 };
157
158 // This struct is stored in TLS.
alignas(SANITIZER_CACHE_LINE_SIZE)159 struct alignas(SANITIZER_CACHE_LINE_SIZE) ThreadState {
160 FastState fast_state;
161 int ignore_sync;
162 #if !SANITIZER_GO
163 int ignore_interceptors;
164 #endif
165 uptr *shadow_stack_pos;
166
167 // Current position in tctx->trace.Back()->events (Event*).
168 atomic_uintptr_t trace_pos;
169 // PC of the last memory access, used to compute PC deltas in the trace.
170 uptr trace_prev_pc;
171
172 // Technically `current` should be a separate THREADLOCAL variable;
173 // but it is placed here in order to share cache line with previous fields.
174 ThreadState* current;
175
176 atomic_sint32_t pending_signals;
177
178 VectorClock clock;
179
180 // This is a slow path flag. On fast path, fast_state.GetIgnoreBit() is read.
181 // We do not distinguish beteween ignoring reads and writes
182 // for better performance.
183 int ignore_reads_and_writes;
184 int suppress_reports;
185 // Go does not support ignores.
186 #if !SANITIZER_GO
187 IgnoreSet mop_ignore_set;
188 IgnoreSet sync_ignore_set;
189 #endif
190 uptr *shadow_stack;
191 uptr *shadow_stack_end;
192 #if !SANITIZER_GO
193 Vector<JmpBuf> jmp_bufs;
194 int in_symbolizer;
195 atomic_uintptr_t in_blocking_func;
196 bool in_ignored_lib;
197 bool is_inited;
198 #endif
199 MutexSet mset;
200 bool is_dead;
201 const Tid tid;
202 uptr stk_addr;
203 uptr stk_size;
204 uptr tls_addr;
205 uptr tls_size;
206 ThreadContext *tctx;
207
208 DDLogicalThread *dd_lt;
209
210 TidSlot *slot;
211 uptr slot_epoch;
212 bool slot_locked;
213
214 // Current wired Processor, or nullptr. Required to handle any events.
215 Processor *proc1;
216 #if !SANITIZER_GO
217 Processor *proc() { return proc1; }
218 #else
219 Processor *proc();
220 #endif
221
222 atomic_uintptr_t in_signal_handler;
223 atomic_uintptr_t signal_ctx;
224
225 #if !SANITIZER_GO
226 StackID last_sleep_stack_id;
227 VectorClock last_sleep_clock;
228 #endif
229
230 // Set in regions of runtime that must be signal-safe and fork-safe.
231 // If set, malloc must not be called.
232 int nomalloc;
233
234 const ReportDesc *current_report;
235
236 explicit ThreadState(Tid tid);
237 };
238
239 #if !SANITIZER_GO
240 #if SANITIZER_APPLE || SANITIZER_ANDROID
241 ThreadState *cur_thread();
242 void set_cur_thread(ThreadState *thr);
243 void cur_thread_finalize();
cur_thread_init()244 inline ThreadState *cur_thread_init() { return cur_thread(); }
245 # else
246 __attribute__((tls_model("initial-exec")))
247 extern THREADLOCAL char cur_thread_placeholder[];
cur_thread()248 inline ThreadState *cur_thread() {
249 return reinterpret_cast<ThreadState *>(cur_thread_placeholder)->current;
250 }
cur_thread_init()251 inline ThreadState *cur_thread_init() {
252 ThreadState *thr = reinterpret_cast<ThreadState *>(cur_thread_placeholder);
253 if (UNLIKELY(!thr->current))
254 thr->current = thr;
255 return thr->current;
256 }
set_cur_thread(ThreadState * thr)257 inline void set_cur_thread(ThreadState *thr) {
258 reinterpret_cast<ThreadState *>(cur_thread_placeholder)->current = thr;
259 }
cur_thread_finalize()260 inline void cur_thread_finalize() { }
261 # endif // SANITIZER_APPLE || SANITIZER_ANDROID
262 #endif // SANITIZER_GO
263
264 class ThreadContext final : public ThreadContextBase {
265 public:
266 explicit ThreadContext(Tid tid);
267 ~ThreadContext();
268 ThreadState *thr;
269 StackID creation_stack_id;
270 VectorClock *sync;
271 uptr sync_epoch;
272 Trace trace;
273
274 // Override superclass callbacks.
275 void OnDead() override;
276 void OnJoined(void *arg) override;
277 void OnFinished() override;
278 void OnStarted(void *arg) override;
279 void OnCreated(void *arg) override;
280 void OnReset() override;
281 void OnDetached(void *arg) override;
282 };
283
284 struct RacyStacks {
285 MD5Hash hash[2];
286 bool operator==(const RacyStacks &other) const;
287 };
288
289 struct RacyAddress {
290 uptr addr_min;
291 uptr addr_max;
292 };
293
294 struct FiredSuppression {
295 ReportType type;
296 uptr pc_or_addr;
297 Suppression *supp;
298 };
299
300 struct Context {
301 Context();
302
303 bool initialized;
304 #if !SANITIZER_GO
305 bool after_multithreaded_fork;
306 #endif
307
308 MetaMap metamap;
309
310 Mutex report_mtx;
311 int nreported;
312 atomic_uint64_t last_symbolize_time_ns;
313
314 void *background_thread;
315 atomic_uint32_t stop_background_thread;
316
317 ThreadRegistry thread_registry;
318
319 // This is used to prevent a very unlikely but very pathological behavior.
320 // Since memory access handling is not synchronized with DoReset,
321 // a thread running concurrently with DoReset can leave a bogus shadow value
322 // that will be later falsely detected as a race. For such false races
323 // RestoreStack will return false and we will not report it.
324 // However, consider that a thread leaves a whole lot of such bogus values
325 // and these values are later read by a whole lot of threads.
326 // This will cause massive amounts of ReportRace calls and lots of
327 // serialization. In very pathological cases the resulting slowdown
328 // can be >100x. This is very unlikely, but it was presumably observed
329 // in practice: https://github.com/google/sanitizers/issues/1552
330 // If this happens, previous access sid+epoch will be the same for all of
331 // these false races b/c if the thread will try to increment epoch, it will
332 // notice that DoReset has happened and will stop producing bogus shadow
333 // values. So, last_spurious_race is used to remember the last sid+epoch
334 // for which RestoreStack returned false. Then it is used to filter out
335 // races with the same sid+epoch very early and quickly.
336 // It is of course possible that multiple threads left multiple bogus shadow
337 // values and all of them are read by lots of threads at the same time.
338 // In such case last_spurious_race will only be able to deduplicate a few
339 // races from one thread, then few from another and so on. An alternative
340 // would be to hold an array of such sid+epoch, but we consider such scenario
341 // as even less likely.
342 // Note: this can lead to some rare false negatives as well:
343 // 1. When a legit access with the same sid+epoch participates in a race
344 // as the "previous" memory access, it will be wrongly filtered out.
345 // 2. When RestoreStack returns false for a legit memory access because it
346 // was already evicted from the thread trace, we will still remember it in
347 // last_spurious_race. Then if there is another racing memory access from
348 // the same thread that happened in the same epoch, but was stored in the
349 // next thread trace part (which is still preserved in the thread trace),
350 // we will also wrongly filter it out while RestoreStack would actually
351 // succeed for that second memory access.
352 RawShadow last_spurious_race;
353
354 Mutex racy_mtx;
355 Vector<RacyStacks> racy_stacks;
356 // Number of fired suppressions may be large enough.
357 Mutex fired_suppressions_mtx;
358 InternalMmapVector<FiredSuppression> fired_suppressions;
359 DDetector *dd;
360
361 Flags flags;
362 fd_t memprof_fd;
363
364 // The last slot index (kFreeSid) is used to denote freed memory.
365 TidSlot slots[kThreadSlotCount - 1];
366
367 // Protects global_epoch, slot_queue, trace_part_recycle.
368 Mutex slot_mtx;
369 uptr global_epoch; // guarded by slot_mtx and by all slot mutexes
370 bool resetting; // global reset is in progress
371 IList<TidSlot, &TidSlot::node> slot_queue SANITIZER_GUARDED_BY(slot_mtx);
372 IList<TraceHeader, &TraceHeader::global, TracePart> trace_part_recycle
373 SANITIZER_GUARDED_BY(slot_mtx);
374 uptr trace_part_total_allocated SANITIZER_GUARDED_BY(slot_mtx);
375 uptr trace_part_recycle_finished SANITIZER_GUARDED_BY(slot_mtx);
376 uptr trace_part_finished_excess SANITIZER_GUARDED_BY(slot_mtx);
377 #if SANITIZER_GO
378 uptr mapped_shadow_begin;
379 uptr mapped_shadow_end;
380 #endif
381 };
382
383 extern Context *ctx; // The one and the only global runtime context.
384
flags()385 ALWAYS_INLINE Flags *flags() {
386 return &ctx->flags;
387 }
388
389 struct ScopedIgnoreInterceptors {
ScopedIgnoreInterceptorsScopedIgnoreInterceptors390 ScopedIgnoreInterceptors() {
391 #if !SANITIZER_GO
392 cur_thread()->ignore_interceptors++;
393 #endif
394 }
395
~ScopedIgnoreInterceptorsScopedIgnoreInterceptors396 ~ScopedIgnoreInterceptors() {
397 #if !SANITIZER_GO
398 cur_thread()->ignore_interceptors--;
399 #endif
400 }
401 };
402
403 const char *GetObjectTypeFromTag(uptr tag);
404 const char *GetReportHeaderFromTag(uptr tag);
405 uptr TagFromShadowStackFrame(uptr pc);
406
407 class ScopedReportBase {
408 public:
409 void AddMemoryAccess(uptr addr, uptr external_tag, Shadow s, Tid tid,
410 StackTrace stack, const MutexSet *mset);
411 void AddStack(StackTrace stack, bool suppressable = false);
412 void AddThread(const ThreadContext *tctx, bool suppressable = false);
413 void AddThread(Tid tid, bool suppressable = false);
414 void AddUniqueTid(Tid unique_tid);
415 int AddMutex(uptr addr, StackID creation_stack_id);
416 void AddLocation(uptr addr, uptr size);
417 void AddSleep(StackID stack_id);
418 void SetCount(int count);
419 void SetSigNum(int sig);
420
421 const ReportDesc *GetReport() const;
422
423 protected:
424 ScopedReportBase(ReportType typ, uptr tag);
425 ~ScopedReportBase();
426
427 private:
428 ReportDesc *rep_;
429 // Symbolizer makes lots of intercepted calls. If we try to process them,
430 // at best it will cause deadlocks on internal mutexes.
431 ScopedIgnoreInterceptors ignore_interceptors_;
432
433 ScopedReportBase(const ScopedReportBase &) = delete;
434 void operator=(const ScopedReportBase &) = delete;
435 };
436
437 class ScopedReport : public ScopedReportBase {
438 public:
439 explicit ScopedReport(ReportType typ, uptr tag = kExternalTagNone);
440 ~ScopedReport();
441
442 private:
443 ScopedErrorReportLock lock_;
444 };
445
446 bool ShouldReport(ThreadState *thr, ReportType typ);
447 ThreadContext *IsThreadStackOrTls(uptr addr, bool *is_stack);
448
449 // The stack could look like:
450 // <start> | <main> | <foo> | tag | <bar>
451 // This will extract the tag and keep:
452 // <start> | <main> | <foo> | <bar>
453 template<typename StackTraceTy>
454 void ExtractTagFromStack(StackTraceTy *stack, uptr *tag = nullptr) {
455 if (stack->size < 2) return;
456 uptr possible_tag_pc = stack->trace[stack->size - 2];
457 uptr possible_tag = TagFromShadowStackFrame(possible_tag_pc);
458 if (possible_tag == kExternalTagNone) return;
459 stack->trace_buffer[stack->size - 2] = stack->trace_buffer[stack->size - 1];
460 stack->size -= 1;
461 if (tag) *tag = possible_tag;
462 }
463
464 template<typename StackTraceTy>
465 void ObtainCurrentStack(ThreadState *thr, uptr toppc, StackTraceTy *stack,
466 uptr *tag = nullptr) {
467 uptr size = thr->shadow_stack_pos - thr->shadow_stack;
468 uptr start = 0;
469 if (size + !!toppc > kStackTraceMax) {
470 start = size + !!toppc - kStackTraceMax;
471 size = kStackTraceMax - !!toppc;
472 }
473 stack->Init(&thr->shadow_stack[start], size, toppc);
474 ExtractTagFromStack(stack, tag);
475 }
476
477 #define GET_STACK_TRACE_FATAL(thr, pc) \
478 VarSizeStackTrace stack; \
479 ObtainCurrentStack(thr, pc, &stack); \
480 stack.ReverseOrder();
481
482 void MapShadow(uptr addr, uptr size);
483 void MapThreadTrace(uptr addr, uptr size, const char *name);
484 void DontNeedShadowFor(uptr addr, uptr size);
485 void UnmapShadow(ThreadState *thr, uptr addr, uptr size);
486 void InitializeShadowMemory();
487 void DontDumpShadow(uptr addr, uptr size);
488 void InitializeInterceptors();
489 void InitializeLibIgnore();
490 void InitializeDynamicAnnotations();
491
492 void ForkBefore(ThreadState *thr, uptr pc);
493 void ForkParentAfter(ThreadState *thr, uptr pc);
494 void ForkChildAfter(ThreadState *thr, uptr pc, bool start_thread);
495
496 void ReportRace(ThreadState *thr, RawShadow *shadow_mem, Shadow cur, Shadow old,
497 AccessType typ);
498 bool OutputReport(ThreadState *thr, const ScopedReport &srep);
499 bool IsFiredSuppression(Context *ctx, ReportType type, StackTrace trace);
500 bool IsExpectedReport(uptr addr, uptr size);
501
502 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 1
503 # define DPrintf Printf
504 #else
505 # define DPrintf(...)
506 #endif
507
508 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 2
509 # define DPrintf2 Printf
510 #else
511 # define DPrintf2(...)
512 #endif
513
514 StackID CurrentStackId(ThreadState *thr, uptr pc);
515 ReportStack *SymbolizeStackId(StackID stack_id);
516 void PrintCurrentStack(ThreadState *thr, uptr pc);
517 void PrintCurrentStackSlow(uptr pc); // uses libunwind
518 MBlock *JavaHeapBlock(uptr addr, uptr *start);
519
520 void Initialize(ThreadState *thr);
521 void MaybeSpawnBackgroundThread();
522 int Finalize(ThreadState *thr);
523
524 void OnUserAlloc(ThreadState *thr, uptr pc, uptr p, uptr sz, bool write);
525 void OnUserFree(ThreadState *thr, uptr pc, uptr p, bool write);
526
527 void MemoryAccess(ThreadState *thr, uptr pc, uptr addr, uptr size,
528 AccessType typ);
529 void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr, uptr size,
530 AccessType typ);
531 // This creates 2 non-inlined specialized versions of MemoryAccessRange.
532 template <bool is_read>
533 void MemoryAccessRangeT(ThreadState *thr, uptr pc, uptr addr, uptr size);
534
535 ALWAYS_INLINE
MemoryAccessRange(ThreadState * thr,uptr pc,uptr addr,uptr size,bool is_write)536 void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size,
537 bool is_write) {
538 if (size == 0)
539 return;
540 if (is_write)
541 MemoryAccessRangeT<false>(thr, pc, addr, size);
542 else
543 MemoryAccessRangeT<true>(thr, pc, addr, size);
544 }
545
546 void ShadowSet(RawShadow *p, RawShadow *end, RawShadow v);
547 void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size);
548 void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size);
549 void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size);
550 void MemoryRangeImitateWriteOrResetRange(ThreadState *thr, uptr pc, uptr addr,
551 uptr size);
552
553 void ThreadIgnoreBegin(ThreadState *thr, uptr pc);
554 void ThreadIgnoreEnd(ThreadState *thr);
555 void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc);
556 void ThreadIgnoreSyncEnd(ThreadState *thr);
557
558 Tid ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached);
559 void ThreadStart(ThreadState *thr, Tid tid, tid_t os_id,
560 ThreadType thread_type);
561 void ThreadFinish(ThreadState *thr);
562 Tid ThreadConsumeTid(ThreadState *thr, uptr pc, uptr uid);
563 void ThreadJoin(ThreadState *thr, uptr pc, Tid tid);
564 void ThreadDetach(ThreadState *thr, uptr pc, Tid tid);
565 void ThreadFinalize(ThreadState *thr);
566 void ThreadSetName(ThreadState *thr, const char *name);
567 int ThreadCount(ThreadState *thr);
568 void ProcessPendingSignalsImpl(ThreadState *thr);
569 void ThreadNotJoined(ThreadState *thr, uptr pc, Tid tid, uptr uid);
570
571 Processor *ProcCreate();
572 void ProcDestroy(Processor *proc);
573 void ProcWire(Processor *proc, ThreadState *thr);
574 void ProcUnwire(Processor *proc, ThreadState *thr);
575
576 // Note: the parameter is called flagz, because flags is already taken
577 // by the global function that returns flags.
578 void MutexCreate(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
579 void MutexDestroy(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
580 void MutexPreLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
581 void MutexPostLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0,
582 int rec = 1);
583 int MutexUnlock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
584 void MutexPreReadLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
585 void MutexPostReadLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
586 void MutexReadUnlock(ThreadState *thr, uptr pc, uptr addr);
587 void MutexReadOrWriteUnlock(ThreadState *thr, uptr pc, uptr addr);
588 void MutexRepair(ThreadState *thr, uptr pc, uptr addr); // call on EOWNERDEAD
589 void MutexInvalidAccess(ThreadState *thr, uptr pc, uptr addr);
590
591 void Acquire(ThreadState *thr, uptr pc, uptr addr);
592 // AcquireGlobal synchronizes the current thread with all other threads.
593 // In terms of happens-before relation, it draws a HB edge from all threads
594 // (where they happen to execute right now) to the current thread. We use it to
595 // handle Go finalizers. Namely, finalizer goroutine executes AcquireGlobal
596 // right before executing finalizers. This provides a coarse, but simple
597 // approximation of the actual required synchronization.
598 void AcquireGlobal(ThreadState *thr);
599 void Release(ThreadState *thr, uptr pc, uptr addr);
600 void ReleaseStoreAcquire(ThreadState *thr, uptr pc, uptr addr);
601 void ReleaseStore(ThreadState *thr, uptr pc, uptr addr);
602 void AfterSleep(ThreadState *thr, uptr pc);
603 void IncrementEpoch(ThreadState *thr);
604
605 #if !SANITIZER_GO
HeapEnd()606 uptr ALWAYS_INLINE HeapEnd() {
607 return HeapMemEnd() + PrimaryAllocator::AdditionalSize();
608 }
609 #endif
610
611 void SlotAttachAndLock(ThreadState *thr) SANITIZER_ACQUIRE(thr->slot->mtx);
612 void SlotDetach(ThreadState *thr);
613 void SlotLock(ThreadState *thr) SANITIZER_ACQUIRE(thr->slot->mtx);
614 void SlotUnlock(ThreadState *thr) SANITIZER_RELEASE(thr->slot->mtx);
615 void DoReset(ThreadState *thr, uptr epoch);
616 void FlushShadowMemory();
617
618 ThreadState *FiberCreate(ThreadState *thr, uptr pc, unsigned flags);
619 void FiberDestroy(ThreadState *thr, uptr pc, ThreadState *fiber);
620 void FiberSwitch(ThreadState *thr, uptr pc, ThreadState *fiber, unsigned flags);
621
622 // These need to match __tsan_switch_to_fiber_* flags defined in
623 // tsan_interface.h. See documentation there as well.
624 enum FiberSwitchFlags {
625 FiberSwitchFlagNoSync = 1 << 0, // __tsan_switch_to_fiber_no_sync
626 };
627
628 class SlotLocker {
629 public:
630 ALWAYS_INLINE
631 SlotLocker(ThreadState *thr, bool recursive = false)
thr_(thr)632 : thr_(thr), locked_(recursive ? thr->slot_locked : false) {
633 #if !SANITIZER_GO
634 // We are in trouble if we are here with in_blocking_func set.
635 // If in_blocking_func is set, all signals will be delivered synchronously,
636 // which means we can't lock slots since the signal handler will try
637 // to lock it recursively and deadlock.
638 DCHECK(!atomic_load(&thr->in_blocking_func, memory_order_relaxed));
639 #endif
640 if (!locked_)
641 SlotLock(thr_);
642 }
643
644 ALWAYS_INLINE
~SlotLocker()645 ~SlotLocker() {
646 if (!locked_)
647 SlotUnlock(thr_);
648 }
649
650 private:
651 ThreadState *thr_;
652 bool locked_;
653 };
654
655 class SlotUnlocker {
656 public:
SlotUnlocker(ThreadState * thr)657 SlotUnlocker(ThreadState *thr) : thr_(thr), locked_(thr->slot_locked) {
658 if (locked_)
659 SlotUnlock(thr_);
660 }
661
~SlotUnlocker()662 ~SlotUnlocker() {
663 if (locked_)
664 SlotLock(thr_);
665 }
666
667 private:
668 ThreadState *thr_;
669 bool locked_;
670 };
671
ProcessPendingSignals(ThreadState * thr)672 ALWAYS_INLINE void ProcessPendingSignals(ThreadState *thr) {
673 if (UNLIKELY(atomic_load_relaxed(&thr->pending_signals)))
674 ProcessPendingSignalsImpl(thr);
675 }
676
677 extern bool is_initialized;
678
679 ALWAYS_INLINE
LazyInitialize(ThreadState * thr)680 void LazyInitialize(ThreadState *thr) {
681 // If we can use .preinit_array, assume that __tsan_init
682 // called from .preinit_array initializes runtime before
683 // any instrumented code except when tsan is used as a
684 // shared library.
685 #if (!SANITIZER_CAN_USE_PREINIT_ARRAY || defined(SANITIZER_SHARED))
686 if (UNLIKELY(!is_initialized))
687 Initialize(thr);
688 #endif
689 }
690
691 void TraceResetForTesting();
692 void TraceSwitchPart(ThreadState *thr);
693 void TraceSwitchPartImpl(ThreadState *thr);
694 bool RestoreStack(EventType type, Sid sid, Epoch epoch, uptr addr, uptr size,
695 AccessType typ, Tid *ptid, VarSizeStackTrace *pstk,
696 MutexSet *pmset, uptr *ptag);
697
698 template <typename EventT>
TraceAcquire(ThreadState * thr,EventT ** ev)699 ALWAYS_INLINE WARN_UNUSED_RESULT bool TraceAcquire(ThreadState *thr,
700 EventT **ev) {
701 // TraceSwitchPart accesses shadow_stack, but it's called infrequently,
702 // so we check it here proactively.
703 DCHECK(thr->shadow_stack);
704 Event *pos = reinterpret_cast<Event *>(atomic_load_relaxed(&thr->trace_pos));
705 #if SANITIZER_DEBUG
706 // TraceSwitch acquires these mutexes,
707 // so we lock them here to detect deadlocks more reliably.
708 { Lock lock(&ctx->slot_mtx); }
709 { Lock lock(&thr->tctx->trace.mtx); }
710 TracePart *current = thr->tctx->trace.parts.Back();
711 if (current) {
712 DCHECK_GE(pos, ¤t->events[0]);
713 DCHECK_LE(pos, ¤t->events[TracePart::kSize]);
714 } else {
715 DCHECK_EQ(pos, nullptr);
716 }
717 #endif
718 // TracePart is allocated with mmap and is at least 4K aligned.
719 // So the following check is a faster way to check for part end.
720 // It may have false positives in the middle of the trace,
721 // they are filtered out in TraceSwitch.
722 if (UNLIKELY(((uptr)(pos + 1) & TracePart::kAlignment) == 0))
723 return false;
724 *ev = reinterpret_cast<EventT *>(pos);
725 return true;
726 }
727
728 template <typename EventT>
TraceRelease(ThreadState * thr,EventT * evp)729 ALWAYS_INLINE void TraceRelease(ThreadState *thr, EventT *evp) {
730 DCHECK_LE(evp + 1, &thr->tctx->trace.parts.Back()->events[TracePart::kSize]);
731 atomic_store_relaxed(&thr->trace_pos, (uptr)(evp + 1));
732 }
733
734 template <typename EventT>
TraceEvent(ThreadState * thr,EventT ev)735 void TraceEvent(ThreadState *thr, EventT ev) {
736 EventT *evp;
737 if (!TraceAcquire(thr, &evp)) {
738 TraceSwitchPart(thr);
739 UNUSED bool res = TraceAcquire(thr, &evp);
740 DCHECK(res);
741 }
742 *evp = ev;
743 TraceRelease(thr, evp);
744 }
745
746 ALWAYS_INLINE WARN_UNUSED_RESULT bool TryTraceFunc(ThreadState *thr,
747 uptr pc = 0) {
748 if (!kCollectHistory)
749 return true;
750 EventFunc *ev;
751 if (UNLIKELY(!TraceAcquire(thr, &ev)))
752 return false;
753 ev->is_access = 0;
754 ev->is_func = 1;
755 ev->pc = pc;
756 TraceRelease(thr, ev);
757 return true;
758 }
759
760 WARN_UNUSED_RESULT
761 bool TryTraceMemoryAccess(ThreadState *thr, uptr pc, uptr addr, uptr size,
762 AccessType typ);
763 WARN_UNUSED_RESULT
764 bool TryTraceMemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size,
765 AccessType typ);
766 void TraceMemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size,
767 AccessType typ);
768 void TraceFunc(ThreadState *thr, uptr pc = 0);
769 void TraceMutexLock(ThreadState *thr, EventType type, uptr pc, uptr addr,
770 StackID stk);
771 void TraceMutexUnlock(ThreadState *thr, uptr addr);
772 void TraceTime(ThreadState *thr);
773
774 void TraceRestartFuncExit(ThreadState *thr);
775 void TraceRestartFuncEntry(ThreadState *thr, uptr pc);
776
777 void GrowShadowStack(ThreadState *thr);
778
779 ALWAYS_INLINE
FuncEntry(ThreadState * thr,uptr pc)780 void FuncEntry(ThreadState *thr, uptr pc) {
781 DPrintf2("#%d: FuncEntry %p\n", (int)thr->fast_state.sid(), (void *)pc);
782 if (UNLIKELY(!TryTraceFunc(thr, pc)))
783 return TraceRestartFuncEntry(thr, pc);
784 DCHECK_GE(thr->shadow_stack_pos, thr->shadow_stack);
785 #if !SANITIZER_GO
786 DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
787 #else
788 if (thr->shadow_stack_pos == thr->shadow_stack_end)
789 GrowShadowStack(thr);
790 #endif
791 thr->shadow_stack_pos[0] = pc;
792 thr->shadow_stack_pos++;
793 }
794
795 ALWAYS_INLINE
FuncExit(ThreadState * thr)796 void FuncExit(ThreadState *thr) {
797 DPrintf2("#%d: FuncExit\n", (int)thr->fast_state.sid());
798 if (UNLIKELY(!TryTraceFunc(thr, 0)))
799 return TraceRestartFuncExit(thr);
800 DCHECK_GT(thr->shadow_stack_pos, thr->shadow_stack);
801 #if !SANITIZER_GO
802 DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
803 #endif
804 thr->shadow_stack_pos--;
805 }
806
807 #if !SANITIZER_GO
808 extern void (*on_initialize)(void);
809 extern int (*on_finalize)(int);
810 #endif
811 } // namespace __tsan
812
813 #endif // TSAN_RTL_H
814