1 /*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 */
24
25 #include "dm_services.h"
26
27 #include "dc.h"
28
29 #include "core_status.h"
30 #include "core_types.h"
31 #include "hw_sequencer.h"
32 #include "dce/dce_hwseq.h"
33
34 #include "resource.h"
35
36 #include "gpio_service_interface.h"
37 #include "clk_mgr.h"
38 #include "clock_source.h"
39 #include "dc_bios_types.h"
40
41 #include "bios_parser_interface.h"
42 #include "bios/bios_parser_helper.h"
43 #include "include/irq_service_interface.h"
44 #include "transform.h"
45 #include "dmcu.h"
46 #include "dpp.h"
47 #include "timing_generator.h"
48 #include "abm.h"
49 #include "virtual/virtual_link_encoder.h"
50 #include "hubp.h"
51
52 #include "link_hwss.h"
53 #include "link_encoder.h"
54 #include "link_enc_cfg.h"
55
56 #include "link.h"
57 #include "dm_helpers.h"
58 #include "mem_input.h"
59
60 #include "dc_dmub_srv.h"
61
62 #include "dsc.h"
63
64 #include "vm_helper.h"
65
66 #include "dce/dce_i2c.h"
67
68 #include "dmub/dmub_srv.h"
69
70 #include "dce/dmub_psr.h"
71
72 #include "dce/dmub_hw_lock_mgr.h"
73
74 #include "dc_trace.h"
75
76 #include "hw_sequencer_private.h"
77
78 #include "dce/dmub_outbox.h"
79
80 #define CTX \
81 dc->ctx
82
83 #define DC_LOGGER \
84 dc->ctx->logger
85
86 static const char DC_BUILD_ID[] = "production-build";
87
88 /**
89 * DOC: Overview
90 *
91 * DC is the OS-agnostic component of the amdgpu DC driver.
92 *
93 * DC maintains and validates a set of structs representing the state of the
94 * driver and writes that state to AMD hardware
95 *
96 * Main DC HW structs:
97 *
98 * struct dc - The central struct. One per driver. Created on driver load,
99 * destroyed on driver unload.
100 *
101 * struct dc_context - One per driver.
102 * Used as a backpointer by most other structs in dc.
103 *
104 * struct dc_link - One per connector (the physical DP, HDMI, miniDP, or eDP
105 * plugpoints). Created on driver load, destroyed on driver unload.
106 *
107 * struct dc_sink - One per display. Created on boot or hotplug.
108 * Destroyed on shutdown or hotunplug. A dc_link can have a local sink
109 * (the display directly attached). It may also have one or more remote
110 * sinks (in the Multi-Stream Transport case)
111 *
112 * struct resource_pool - One per driver. Represents the hw blocks not in the
113 * main pipeline. Not directly accessible by dm.
114 *
115 * Main dc state structs:
116 *
117 * These structs can be created and destroyed as needed. There is a full set of
118 * these structs in dc->current_state representing the currently programmed state.
119 *
120 * struct dc_state - The global DC state to track global state information,
121 * such as bandwidth values.
122 *
123 * struct dc_stream_state - Represents the hw configuration for the pipeline from
124 * a framebuffer to a display. Maps one-to-one with dc_sink.
125 *
126 * struct dc_plane_state - Represents a framebuffer. Each stream has at least one,
127 * and may have more in the Multi-Plane Overlay case.
128 *
129 * struct resource_context - Represents the programmable state of everything in
130 * the resource_pool. Not directly accessible by dm.
131 *
132 * struct pipe_ctx - A member of struct resource_context. Represents the
133 * internal hardware pipeline components. Each dc_plane_state has either
134 * one or two (in the pipe-split case).
135 */
136
137 /* Private functions */
138
elevate_update_type(enum surface_update_type * original,enum surface_update_type new)139 static inline void elevate_update_type(enum surface_update_type *original, enum surface_update_type new)
140 {
141 if (new > *original)
142 *original = new;
143 }
144
destroy_links(struct dc * dc)145 static void destroy_links(struct dc *dc)
146 {
147 uint32_t i;
148
149 for (i = 0; i < dc->link_count; i++) {
150 if (NULL != dc->links[i])
151 dc->link_srv->destroy_link(&dc->links[i]);
152 }
153 }
154
get_num_of_internal_disp(struct dc_link ** links,uint32_t num_links)155 static uint32_t get_num_of_internal_disp(struct dc_link **links, uint32_t num_links)
156 {
157 int i;
158 uint32_t count = 0;
159
160 for (i = 0; i < num_links; i++) {
161 if (links[i]->connector_signal == SIGNAL_TYPE_EDP ||
162 links[i]->is_internal_display)
163 count++;
164 }
165
166 return count;
167 }
168
get_seamless_boot_stream_count(struct dc_state * ctx)169 static int get_seamless_boot_stream_count(struct dc_state *ctx)
170 {
171 uint8_t i;
172 uint8_t seamless_boot_stream_count = 0;
173
174 for (i = 0; i < ctx->stream_count; i++)
175 if (ctx->streams[i]->apply_seamless_boot_optimization)
176 seamless_boot_stream_count++;
177
178 return seamless_boot_stream_count;
179 }
180
create_links(struct dc * dc,uint32_t num_virtual_links)181 static bool create_links(
182 struct dc *dc,
183 uint32_t num_virtual_links)
184 {
185 int i;
186 int connectors_num;
187 struct dc_bios *bios = dc->ctx->dc_bios;
188
189 dc->link_count = 0;
190
191 connectors_num = bios->funcs->get_connectors_number(bios);
192
193 DC_LOG_DC("BIOS object table - number of connectors: %d", connectors_num);
194
195 if (connectors_num > ENUM_ID_COUNT) {
196 dm_error(
197 "DC: Number of connectors %d exceeds maximum of %d!\n",
198 connectors_num,
199 ENUM_ID_COUNT);
200 return false;
201 }
202
203 dm_output_to_console(
204 "DC: %s: connectors_num: physical:%d, virtual:%d\n",
205 __func__,
206 connectors_num,
207 num_virtual_links);
208
209 for (i = 0; i < connectors_num; i++) {
210 struct link_init_data link_init_params = {0};
211 struct dc_link *link;
212
213 DC_LOG_DC("BIOS object table - printing link object info for connector number: %d, link_index: %d", i, dc->link_count);
214
215 link_init_params.ctx = dc->ctx;
216 /* next BIOS object table connector */
217 link_init_params.connector_index = i;
218 link_init_params.link_index = dc->link_count;
219 link_init_params.dc = dc;
220 link = dc->link_srv->create_link(&link_init_params);
221
222 if (link) {
223 dc->links[dc->link_count] = link;
224 link->dc = dc;
225 ++dc->link_count;
226 }
227 }
228
229 DC_LOG_DC("BIOS object table - end");
230
231 /* Create a link for each usb4 dpia port */
232 for (i = 0; i < dc->res_pool->usb4_dpia_count; i++) {
233 struct link_init_data link_init_params = {0};
234 struct dc_link *link;
235
236 link_init_params.ctx = dc->ctx;
237 link_init_params.connector_index = i;
238 link_init_params.link_index = dc->link_count;
239 link_init_params.dc = dc;
240 link_init_params.is_dpia_link = true;
241
242 link = dc->link_srv->create_link(&link_init_params);
243 if (link) {
244 dc->links[dc->link_count] = link;
245 link->dc = dc;
246 ++dc->link_count;
247 }
248 }
249
250 for (i = 0; i < num_virtual_links; i++) {
251 struct dc_link *link = kzalloc(sizeof(*link), GFP_KERNEL);
252 struct encoder_init_data enc_init = {0};
253
254 if (link == NULL) {
255 BREAK_TO_DEBUGGER();
256 goto failed_alloc;
257 }
258
259 link->link_index = dc->link_count;
260 dc->links[dc->link_count] = link;
261 dc->link_count++;
262
263 link->ctx = dc->ctx;
264 link->dc = dc;
265 link->connector_signal = SIGNAL_TYPE_VIRTUAL;
266 link->link_id.type = OBJECT_TYPE_CONNECTOR;
267 link->link_id.id = CONNECTOR_ID_VIRTUAL;
268 link->link_id.enum_id = ENUM_ID_1;
269 link->link_enc = kzalloc(sizeof(*link->link_enc), GFP_KERNEL);
270
271 if (!link->link_enc) {
272 BREAK_TO_DEBUGGER();
273 goto failed_alloc;
274 }
275
276 link->link_status.dpcd_caps = &link->dpcd_caps;
277
278 enc_init.ctx = dc->ctx;
279 enc_init.channel = CHANNEL_ID_UNKNOWN;
280 enc_init.hpd_source = HPD_SOURCEID_UNKNOWN;
281 enc_init.transmitter = TRANSMITTER_UNKNOWN;
282 enc_init.connector = link->link_id;
283 enc_init.encoder.type = OBJECT_TYPE_ENCODER;
284 enc_init.encoder.id = ENCODER_ID_INTERNAL_VIRTUAL;
285 enc_init.encoder.enum_id = ENUM_ID_1;
286 virtual_link_encoder_construct(link->link_enc, &enc_init);
287 }
288
289 dc->caps.num_of_internal_disp = get_num_of_internal_disp(dc->links, dc->link_count);
290
291 return true;
292
293 failed_alloc:
294 return false;
295 }
296
297 /* Create additional DIG link encoder objects if fewer than the platform
298 * supports were created during link construction. This can happen if the
299 * number of physical connectors is less than the number of DIGs.
300 */
create_link_encoders(struct dc * dc)301 static bool create_link_encoders(struct dc *dc)
302 {
303 bool res = true;
304 unsigned int num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia;
305 unsigned int num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc;
306 int i;
307
308 /* A platform without USB4 DPIA endpoints has a fixed mapping between DIG
309 * link encoders and physical display endpoints and does not require
310 * additional link encoder objects.
311 */
312 if (num_usb4_dpia == 0)
313 return res;
314
315 /* Create as many link encoder objects as the platform supports. DPIA
316 * endpoints can be programmably mapped to any DIG.
317 */
318 if (num_dig_link_enc > dc->res_pool->dig_link_enc_count) {
319 for (i = 0; i < num_dig_link_enc; i++) {
320 struct link_encoder *link_enc = dc->res_pool->link_encoders[i];
321
322 if (!link_enc && dc->res_pool->funcs->link_enc_create_minimal) {
323 link_enc = dc->res_pool->funcs->link_enc_create_minimal(dc->ctx,
324 (enum engine_id)(ENGINE_ID_DIGA + i));
325 if (link_enc) {
326 dc->res_pool->link_encoders[i] = link_enc;
327 dc->res_pool->dig_link_enc_count++;
328 } else {
329 res = false;
330 }
331 }
332 }
333 }
334
335 return res;
336 }
337
338 /* Destroy any additional DIG link encoder objects created by
339 * create_link_encoders().
340 * NB: Must only be called after destroy_links().
341 */
destroy_link_encoders(struct dc * dc)342 static void destroy_link_encoders(struct dc *dc)
343 {
344 unsigned int num_usb4_dpia;
345 unsigned int num_dig_link_enc;
346 int i;
347
348 if (!dc->res_pool)
349 return;
350
351 num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia;
352 num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc;
353
354 /* A platform without USB4 DPIA endpoints has a fixed mapping between DIG
355 * link encoders and physical display endpoints and does not require
356 * additional link encoder objects.
357 */
358 if (num_usb4_dpia == 0)
359 return;
360
361 for (i = 0; i < num_dig_link_enc; i++) {
362 struct link_encoder *link_enc = dc->res_pool->link_encoders[i];
363
364 if (link_enc) {
365 link_enc->funcs->destroy(&link_enc);
366 dc->res_pool->link_encoders[i] = NULL;
367 dc->res_pool->dig_link_enc_count--;
368 }
369 }
370 }
371
dc_perf_trace_create(void)372 static struct dc_perf_trace *dc_perf_trace_create(void)
373 {
374 return kzalloc(sizeof(struct dc_perf_trace), GFP_KERNEL);
375 }
376
dc_perf_trace_destroy(struct dc_perf_trace ** perf_trace)377 static void dc_perf_trace_destroy(struct dc_perf_trace **perf_trace)
378 {
379 kfree(*perf_trace);
380 *perf_trace = NULL;
381 }
382
383 /**
384 * dc_stream_adjust_vmin_vmax - look up pipe context & update parts of DRR
385 * @dc: dc reference
386 * @stream: Initial dc stream state
387 * @adjust: Updated parameters for vertical_total_min and vertical_total_max
388 *
389 * Looks up the pipe context of dc_stream_state and updates the
390 * vertical_total_min and vertical_total_max of the DRR, Dynamic Refresh
391 * Rate, which is a power-saving feature that targets reducing panel
392 * refresh rate while the screen is static
393 *
394 * Return: %true if the pipe context is found and adjusted;
395 * %false if the pipe context is not found.
396 */
dc_stream_adjust_vmin_vmax(struct dc * dc,struct dc_stream_state * stream,struct dc_crtc_timing_adjust * adjust)397 bool dc_stream_adjust_vmin_vmax(struct dc *dc,
398 struct dc_stream_state *stream,
399 struct dc_crtc_timing_adjust *adjust)
400 {
401 int i;
402
403 /*
404 * Don't adjust DRR while there's bandwidth optimizations pending to
405 * avoid conflicting with firmware updates.
406 */
407 if (dc->ctx->dce_version > DCE_VERSION_MAX)
408 if (dc->optimized_required || dc->wm_optimized_required)
409 return false;
410
411 stream->adjust.v_total_max = adjust->v_total_max;
412 stream->adjust.v_total_mid = adjust->v_total_mid;
413 stream->adjust.v_total_mid_frame_num = adjust->v_total_mid_frame_num;
414 stream->adjust.v_total_min = adjust->v_total_min;
415
416 for (i = 0; i < MAX_PIPES; i++) {
417 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
418
419 if (pipe->stream == stream && pipe->stream_res.tg) {
420 dc->hwss.set_drr(&pipe,
421 1,
422 *adjust);
423
424 return true;
425 }
426 }
427 return false;
428 }
429
430 /**
431 * dc_stream_get_last_used_drr_vtotal - Looks up the pipe context of
432 * dc_stream_state and gets the last VTOTAL used by DRR (Dynamic Refresh Rate)
433 *
434 * @dc: [in] dc reference
435 * @stream: [in] Initial dc stream state
436 * @refresh_rate: [in] new refresh_rate
437 *
438 * Return: %true if the pipe context is found and there is an associated
439 * timing_generator for the DC;
440 * %false if the pipe context is not found or there is no
441 * timing_generator for the DC.
442 */
dc_stream_get_last_used_drr_vtotal(struct dc * dc,struct dc_stream_state * stream,uint32_t * refresh_rate)443 bool dc_stream_get_last_used_drr_vtotal(struct dc *dc,
444 struct dc_stream_state *stream,
445 uint32_t *refresh_rate)
446 {
447 bool status = false;
448
449 int i = 0;
450
451 for (i = 0; i < MAX_PIPES; i++) {
452 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
453
454 if (pipe->stream == stream && pipe->stream_res.tg) {
455 /* Only execute if a function pointer has been defined for
456 * the DC version in question
457 */
458 if (pipe->stream_res.tg->funcs->get_last_used_drr_vtotal) {
459 pipe->stream_res.tg->funcs->get_last_used_drr_vtotal(pipe->stream_res.tg, refresh_rate);
460
461 status = true;
462
463 break;
464 }
465 }
466 }
467
468 return status;
469 }
470
dc_stream_get_crtc_position(struct dc * dc,struct dc_stream_state ** streams,int num_streams,unsigned int * v_pos,unsigned int * nom_v_pos)471 bool dc_stream_get_crtc_position(struct dc *dc,
472 struct dc_stream_state **streams, int num_streams,
473 unsigned int *v_pos, unsigned int *nom_v_pos)
474 {
475 /* TODO: Support multiple streams */
476 const struct dc_stream_state *stream = streams[0];
477 int i;
478 bool ret = false;
479 struct crtc_position position;
480
481 for (i = 0; i < MAX_PIPES; i++) {
482 struct pipe_ctx *pipe =
483 &dc->current_state->res_ctx.pipe_ctx[i];
484
485 if (pipe->stream == stream && pipe->stream_res.stream_enc) {
486 dc->hwss.get_position(&pipe, 1, &position);
487
488 *v_pos = position.vertical_count;
489 *nom_v_pos = position.nominal_vcount;
490 ret = true;
491 }
492 }
493 return ret;
494 }
495
496 #if defined(CONFIG_DRM_AMD_SECURE_DISPLAY)
497 static inline void
dc_stream_forward_dmub_crc_window(struct dc_dmub_srv * dmub_srv,struct rect * rect,struct otg_phy_mux * mux_mapping,bool is_stop)498 dc_stream_forward_dmub_crc_window(struct dc_dmub_srv *dmub_srv,
499 struct rect *rect, struct otg_phy_mux *mux_mapping, bool is_stop)
500 {
501 union dmub_rb_cmd cmd = {0};
502
503 cmd.secure_display.roi_info.phy_id = mux_mapping->phy_output_num;
504 cmd.secure_display.roi_info.otg_id = mux_mapping->otg_output_num;
505
506 if (is_stop) {
507 cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
508 cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_CRC_STOP_UPDATE;
509 } else {
510 cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
511 cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_CRC_WIN_NOTIFY;
512 cmd.secure_display.roi_info.x_start = rect->x;
513 cmd.secure_display.roi_info.y_start = rect->y;
514 cmd.secure_display.roi_info.x_end = rect->x + rect->width;
515 cmd.secure_display.roi_info.y_end = rect->y + rect->height;
516 }
517
518 dm_execute_dmub_cmd(dmub_srv->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
519 }
520
521 static inline void
dc_stream_forward_dmcu_crc_window(struct dmcu * dmcu,struct rect * rect,struct otg_phy_mux * mux_mapping,bool is_stop)522 dc_stream_forward_dmcu_crc_window(struct dmcu *dmcu,
523 struct rect *rect, struct otg_phy_mux *mux_mapping, bool is_stop)
524 {
525 if (is_stop)
526 dmcu->funcs->stop_crc_win_update(dmcu, mux_mapping);
527 else
528 dmcu->funcs->forward_crc_window(dmcu, rect, mux_mapping);
529 }
530
531 bool
dc_stream_forward_crc_window(struct dc_stream_state * stream,struct rect * rect,bool is_stop)532 dc_stream_forward_crc_window(struct dc_stream_state *stream,
533 struct rect *rect, bool is_stop)
534 {
535 struct dmcu *dmcu;
536 struct dc_dmub_srv *dmub_srv;
537 struct otg_phy_mux mux_mapping;
538 struct pipe_ctx *pipe;
539 int i;
540 struct dc *dc = stream->ctx->dc;
541
542 for (i = 0; i < MAX_PIPES; i++) {
543 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
544 if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
545 break;
546 }
547
548 /* Stream not found */
549 if (i == MAX_PIPES)
550 return false;
551
552 mux_mapping.phy_output_num = stream->link->link_enc_hw_inst;
553 mux_mapping.otg_output_num = pipe->stream_res.tg->inst;
554
555 dmcu = dc->res_pool->dmcu;
556 dmub_srv = dc->ctx->dmub_srv;
557
558 /* forward to dmub */
559 if (dmub_srv)
560 dc_stream_forward_dmub_crc_window(dmub_srv, rect, &mux_mapping, is_stop);
561 /* forward to dmcu */
562 else if (dmcu && dmcu->funcs->is_dmcu_initialized(dmcu))
563 dc_stream_forward_dmcu_crc_window(dmcu, rect, &mux_mapping, is_stop);
564 else
565 return false;
566
567 return true;
568 }
569 #endif /* CONFIG_DRM_AMD_SECURE_DISPLAY */
570
571 /**
572 * dc_stream_configure_crc() - Configure CRC capture for the given stream.
573 * @dc: DC Object
574 * @stream: The stream to configure CRC on.
575 * @enable: Enable CRC if true, disable otherwise.
576 * @crc_window: CRC window (x/y start/end) information
577 * @continuous: Capture CRC on every frame if true. Otherwise, only capture
578 * once.
579 *
580 * By default, only CRC0 is configured, and the entire frame is used to
581 * calculate the CRC.
582 *
583 * Return: %false if the stream is not found or CRC capture is not supported;
584 * %true if the stream has been configured.
585 */
dc_stream_configure_crc(struct dc * dc,struct dc_stream_state * stream,struct crc_params * crc_window,bool enable,bool continuous)586 bool dc_stream_configure_crc(struct dc *dc, struct dc_stream_state *stream,
587 struct crc_params *crc_window, bool enable, bool continuous)
588 {
589 struct pipe_ctx *pipe;
590 struct crc_params param;
591 struct timing_generator *tg;
592
593 pipe = resource_get_otg_master_for_stream(
594 &dc->current_state->res_ctx, stream);
595
596 /* Stream not found */
597 if (pipe == NULL)
598 return false;
599
600 /* By default, capture the full frame */
601 param.windowa_x_start = 0;
602 param.windowa_y_start = 0;
603 param.windowa_x_end = pipe->stream->timing.h_addressable;
604 param.windowa_y_end = pipe->stream->timing.v_addressable;
605 param.windowb_x_start = 0;
606 param.windowb_y_start = 0;
607 param.windowb_x_end = pipe->stream->timing.h_addressable;
608 param.windowb_y_end = pipe->stream->timing.v_addressable;
609
610 if (crc_window) {
611 param.windowa_x_start = crc_window->windowa_x_start;
612 param.windowa_y_start = crc_window->windowa_y_start;
613 param.windowa_x_end = crc_window->windowa_x_end;
614 param.windowa_y_end = crc_window->windowa_y_end;
615 param.windowb_x_start = crc_window->windowb_x_start;
616 param.windowb_y_start = crc_window->windowb_y_start;
617 param.windowb_x_end = crc_window->windowb_x_end;
618 param.windowb_y_end = crc_window->windowb_y_end;
619 }
620
621 param.dsc_mode = pipe->stream->timing.flags.DSC ? 1:0;
622 param.odm_mode = pipe->next_odm_pipe ? 1:0;
623
624 /* Default to the union of both windows */
625 param.selection = UNION_WINDOW_A_B;
626 param.continuous_mode = continuous;
627 param.enable = enable;
628
629 tg = pipe->stream_res.tg;
630
631 /* Only call if supported */
632 if (tg->funcs->configure_crc)
633 return tg->funcs->configure_crc(tg, ¶m);
634 DC_LOG_WARNING("CRC capture not supported.");
635 return false;
636 }
637
638 /**
639 * dc_stream_get_crc() - Get CRC values for the given stream.
640 *
641 * @dc: DC object.
642 * @stream: The DC stream state of the stream to get CRCs from.
643 * @r_cr: CRC value for the red component.
644 * @g_y: CRC value for the green component.
645 * @b_cb: CRC value for the blue component.
646 *
647 * dc_stream_configure_crc needs to be called beforehand to enable CRCs.
648 *
649 * Return:
650 * %false if stream is not found, or if CRCs are not enabled.
651 */
dc_stream_get_crc(struct dc * dc,struct dc_stream_state * stream,uint32_t * r_cr,uint32_t * g_y,uint32_t * b_cb)652 bool dc_stream_get_crc(struct dc *dc, struct dc_stream_state *stream,
653 uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
654 {
655 int i;
656 struct pipe_ctx *pipe;
657 struct timing_generator *tg;
658
659 for (i = 0; i < MAX_PIPES; i++) {
660 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
661 if (pipe->stream == stream)
662 break;
663 }
664 /* Stream not found */
665 if (i == MAX_PIPES)
666 return false;
667
668 tg = pipe->stream_res.tg;
669
670 if (tg->funcs->get_crc)
671 return tg->funcs->get_crc(tg, r_cr, g_y, b_cb);
672 DC_LOG_WARNING("CRC capture not supported.");
673 return false;
674 }
675
dc_stream_set_dyn_expansion(struct dc * dc,struct dc_stream_state * stream,enum dc_dynamic_expansion option)676 void dc_stream_set_dyn_expansion(struct dc *dc, struct dc_stream_state *stream,
677 enum dc_dynamic_expansion option)
678 {
679 /* OPP FMT dyn expansion updates*/
680 int i;
681 struct pipe_ctx *pipe_ctx;
682
683 for (i = 0; i < MAX_PIPES; i++) {
684 if (dc->current_state->res_ctx.pipe_ctx[i].stream
685 == stream) {
686 pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
687 pipe_ctx->stream_res.opp->dyn_expansion = option;
688 pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
689 pipe_ctx->stream_res.opp,
690 COLOR_SPACE_YCBCR601,
691 stream->timing.display_color_depth,
692 stream->signal);
693 }
694 }
695 }
696
dc_stream_set_dither_option(struct dc_stream_state * stream,enum dc_dither_option option)697 void dc_stream_set_dither_option(struct dc_stream_state *stream,
698 enum dc_dither_option option)
699 {
700 struct bit_depth_reduction_params params;
701 struct dc_link *link = stream->link;
702 struct pipe_ctx *pipes = NULL;
703 int i;
704
705 for (i = 0; i < MAX_PIPES; i++) {
706 if (link->dc->current_state->res_ctx.pipe_ctx[i].stream ==
707 stream) {
708 pipes = &link->dc->current_state->res_ctx.pipe_ctx[i];
709 break;
710 }
711 }
712
713 if (!pipes)
714 return;
715 if (option > DITHER_OPTION_MAX)
716 return;
717
718 stream->dither_option = option;
719
720 memset(¶ms, 0, sizeof(params));
721 resource_build_bit_depth_reduction_params(stream, ¶ms);
722 stream->bit_depth_params = params;
723
724 if (pipes->plane_res.xfm &&
725 pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth) {
726 pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
727 pipes->plane_res.xfm,
728 pipes->plane_res.scl_data.lb_params.depth,
729 &stream->bit_depth_params);
730 }
731
732 pipes->stream_res.opp->funcs->
733 opp_program_bit_depth_reduction(pipes->stream_res.opp, ¶ms);
734 }
735
dc_stream_set_gamut_remap(struct dc * dc,const struct dc_stream_state * stream)736 bool dc_stream_set_gamut_remap(struct dc *dc, const struct dc_stream_state *stream)
737 {
738 int i;
739 bool ret = false;
740 struct pipe_ctx *pipes;
741
742 for (i = 0; i < MAX_PIPES; i++) {
743 if (dc->current_state->res_ctx.pipe_ctx[i].stream == stream) {
744 pipes = &dc->current_state->res_ctx.pipe_ctx[i];
745 dc->hwss.program_gamut_remap(pipes);
746 ret = true;
747 }
748 }
749
750 return ret;
751 }
752
dc_stream_program_csc_matrix(struct dc * dc,struct dc_stream_state * stream)753 bool dc_stream_program_csc_matrix(struct dc *dc, struct dc_stream_state *stream)
754 {
755 int i;
756 bool ret = false;
757 struct pipe_ctx *pipes;
758
759 for (i = 0; i < MAX_PIPES; i++) {
760 if (dc->current_state->res_ctx.pipe_ctx[i].stream
761 == stream) {
762
763 pipes = &dc->current_state->res_ctx.pipe_ctx[i];
764 dc->hwss.program_output_csc(dc,
765 pipes,
766 stream->output_color_space,
767 stream->csc_color_matrix.matrix,
768 pipes->stream_res.opp->inst);
769 ret = true;
770 }
771 }
772
773 return ret;
774 }
775
dc_stream_set_static_screen_params(struct dc * dc,struct dc_stream_state ** streams,int num_streams,const struct dc_static_screen_params * params)776 void dc_stream_set_static_screen_params(struct dc *dc,
777 struct dc_stream_state **streams,
778 int num_streams,
779 const struct dc_static_screen_params *params)
780 {
781 int i, j;
782 struct pipe_ctx *pipes_affected[MAX_PIPES];
783 int num_pipes_affected = 0;
784
785 for (i = 0; i < num_streams; i++) {
786 struct dc_stream_state *stream = streams[i];
787
788 for (j = 0; j < MAX_PIPES; j++) {
789 if (dc->current_state->res_ctx.pipe_ctx[j].stream
790 == stream) {
791 pipes_affected[num_pipes_affected++] =
792 &dc->current_state->res_ctx.pipe_ctx[j];
793 }
794 }
795 }
796
797 dc->hwss.set_static_screen_control(pipes_affected, num_pipes_affected, params);
798 }
799
dc_destruct(struct dc * dc)800 static void dc_destruct(struct dc *dc)
801 {
802 // reset link encoder assignment table on destruct
803 if (dc->res_pool && dc->res_pool->funcs->link_encs_assign)
804 link_enc_cfg_init(dc, dc->current_state);
805
806 if (dc->current_state) {
807 dc_release_state(dc->current_state);
808 dc->current_state = NULL;
809 }
810
811 destroy_links(dc);
812
813 destroy_link_encoders(dc);
814
815 if (dc->clk_mgr) {
816 dc_destroy_clk_mgr(dc->clk_mgr);
817 dc->clk_mgr = NULL;
818 }
819
820 dc_destroy_resource_pool(dc);
821
822 if (dc->link_srv)
823 link_destroy_link_service(&dc->link_srv);
824
825 if (dc->ctx->gpio_service)
826 dal_gpio_service_destroy(&dc->ctx->gpio_service);
827
828 if (dc->ctx->created_bios)
829 dal_bios_parser_destroy(&dc->ctx->dc_bios);
830
831 dc_perf_trace_destroy(&dc->ctx->perf_trace);
832
833 kfree(dc->ctx);
834 dc->ctx = NULL;
835
836 kfree(dc->bw_vbios);
837 dc->bw_vbios = NULL;
838
839 kfree(dc->bw_dceip);
840 dc->bw_dceip = NULL;
841
842 kfree(dc->dcn_soc);
843 dc->dcn_soc = NULL;
844
845 kfree(dc->dcn_ip);
846 dc->dcn_ip = NULL;
847
848 kfree(dc->vm_helper);
849 dc->vm_helper = NULL;
850
851 }
852
dc_construct_ctx(struct dc * dc,const struct dc_init_data * init_params)853 static bool dc_construct_ctx(struct dc *dc,
854 const struct dc_init_data *init_params)
855 {
856 struct dc_context *dc_ctx;
857
858 dc_ctx = kzalloc(sizeof(*dc_ctx), GFP_KERNEL);
859 if (!dc_ctx)
860 return false;
861
862 dc_ctx->cgs_device = init_params->cgs_device;
863 dc_ctx->driver_context = init_params->driver;
864 dc_ctx->dc = dc;
865 dc_ctx->asic_id = init_params->asic_id;
866 dc_ctx->dc_sink_id_count = 0;
867 dc_ctx->dc_stream_id_count = 0;
868 dc_ctx->dce_environment = init_params->dce_environment;
869 dc_ctx->dcn_reg_offsets = init_params->dcn_reg_offsets;
870 dc_ctx->nbio_reg_offsets = init_params->nbio_reg_offsets;
871
872 /* Create logger */
873
874 dc_ctx->dce_version = resource_parse_asic_id(init_params->asic_id);
875
876 dc_ctx->perf_trace = dc_perf_trace_create();
877 if (!dc_ctx->perf_trace) {
878 kfree(dc_ctx);
879 ASSERT_CRITICAL(false);
880 return false;
881 }
882
883 dc->ctx = dc_ctx;
884
885 dc->link_srv = link_create_link_service();
886 if (!dc->link_srv)
887 return false;
888
889 return true;
890 }
891
dc_construct(struct dc * dc,const struct dc_init_data * init_params)892 static bool dc_construct(struct dc *dc,
893 const struct dc_init_data *init_params)
894 {
895 struct dc_context *dc_ctx;
896 struct bw_calcs_dceip *dc_dceip;
897 struct bw_calcs_vbios *dc_vbios;
898 struct dcn_soc_bounding_box *dcn_soc;
899 struct dcn_ip_params *dcn_ip;
900
901 dc->config = init_params->flags;
902
903 // Allocate memory for the vm_helper
904 dc->vm_helper = kzalloc(sizeof(struct vm_helper), GFP_KERNEL);
905 if (!dc->vm_helper) {
906 dm_error("%s: failed to create dc->vm_helper\n", __func__);
907 goto fail;
908 }
909
910 memcpy(&dc->bb_overrides, &init_params->bb_overrides, sizeof(dc->bb_overrides));
911
912 dc_dceip = kzalloc(sizeof(*dc_dceip), GFP_KERNEL);
913 if (!dc_dceip) {
914 dm_error("%s: failed to create dceip\n", __func__);
915 goto fail;
916 }
917
918 dc->bw_dceip = dc_dceip;
919
920 dc_vbios = kzalloc(sizeof(*dc_vbios), GFP_KERNEL);
921 if (!dc_vbios) {
922 dm_error("%s: failed to create vbios\n", __func__);
923 goto fail;
924 }
925
926 dc->bw_vbios = dc_vbios;
927 dcn_soc = kzalloc(sizeof(*dcn_soc), GFP_KERNEL);
928 if (!dcn_soc) {
929 dm_error("%s: failed to create dcn_soc\n", __func__);
930 goto fail;
931 }
932
933 dc->dcn_soc = dcn_soc;
934
935 dcn_ip = kzalloc(sizeof(*dcn_ip), GFP_KERNEL);
936 if (!dcn_ip) {
937 dm_error("%s: failed to create dcn_ip\n", __func__);
938 goto fail;
939 }
940
941 dc->dcn_ip = dcn_ip;
942
943 if (!dc_construct_ctx(dc, init_params)) {
944 dm_error("%s: failed to create ctx\n", __func__);
945 goto fail;
946 }
947
948 dc_ctx = dc->ctx;
949
950 /* Resource should construct all asic specific resources.
951 * This should be the only place where we need to parse the asic id
952 */
953 if (init_params->vbios_override)
954 dc_ctx->dc_bios = init_params->vbios_override;
955 else {
956 /* Create BIOS parser */
957 struct bp_init_data bp_init_data;
958
959 bp_init_data.ctx = dc_ctx;
960 bp_init_data.bios = init_params->asic_id.atombios_base_address;
961
962 dc_ctx->dc_bios = dal_bios_parser_create(
963 &bp_init_data, dc_ctx->dce_version);
964
965 if (!dc_ctx->dc_bios) {
966 ASSERT_CRITICAL(false);
967 goto fail;
968 }
969
970 dc_ctx->created_bios = true;
971 }
972
973 dc->vendor_signature = init_params->vendor_signature;
974
975 /* Create GPIO service */
976 dc_ctx->gpio_service = dal_gpio_service_create(
977 dc_ctx->dce_version,
978 dc_ctx->dce_environment,
979 dc_ctx);
980
981 if (!dc_ctx->gpio_service) {
982 ASSERT_CRITICAL(false);
983 goto fail;
984 }
985
986 dc->res_pool = dc_create_resource_pool(dc, init_params, dc_ctx->dce_version);
987 if (!dc->res_pool)
988 goto fail;
989
990 /* set i2c speed if not done by the respective dcnxxx__resource.c */
991 if (dc->caps.i2c_speed_in_khz_hdcp == 0)
992 dc->caps.i2c_speed_in_khz_hdcp = dc->caps.i2c_speed_in_khz;
993 if (dc->caps.max_optimizable_video_width == 0)
994 dc->caps.max_optimizable_video_width = 5120;
995 dc->clk_mgr = dc_clk_mgr_create(dc->ctx, dc->res_pool->pp_smu, dc->res_pool->dccg);
996 if (!dc->clk_mgr)
997 goto fail;
998 #ifdef CONFIG_DRM_AMD_DC_FP
999 dc->clk_mgr->force_smu_not_present = init_params->force_smu_not_present;
1000
1001 if (dc->res_pool->funcs->update_bw_bounding_box) {
1002 DC_FP_START();
1003 dc->res_pool->funcs->update_bw_bounding_box(dc, dc->clk_mgr->bw_params);
1004 DC_FP_END();
1005 }
1006 #endif
1007
1008 /* Creation of current_state must occur after dc->dml
1009 * is initialized in dc_create_resource_pool because
1010 * on creation it copies the contents of dc->dml
1011 */
1012
1013 dc->current_state = dc_create_state(dc);
1014
1015 if (!dc->current_state) {
1016 dm_error("%s: failed to create validate ctx\n", __func__);
1017 goto fail;
1018 }
1019
1020 if (!create_links(dc, init_params->num_virtual_links))
1021 goto fail;
1022
1023 /* Create additional DIG link encoder objects if fewer than the platform
1024 * supports were created during link construction.
1025 */
1026 if (!create_link_encoders(dc))
1027 goto fail;
1028
1029 dc_resource_state_construct(dc, dc->current_state);
1030
1031 return true;
1032
1033 fail:
1034 return false;
1035 }
1036
disable_all_writeback_pipes_for_stream(const struct dc * dc,struct dc_stream_state * stream,struct dc_state * context)1037 static void disable_all_writeback_pipes_for_stream(
1038 const struct dc *dc,
1039 struct dc_stream_state *stream,
1040 struct dc_state *context)
1041 {
1042 int i;
1043
1044 for (i = 0; i < stream->num_wb_info; i++)
1045 stream->writeback_info[i].wb_enabled = false;
1046 }
1047
apply_ctx_interdependent_lock(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,bool lock)1048 static void apply_ctx_interdependent_lock(struct dc *dc,
1049 struct dc_state *context,
1050 struct dc_stream_state *stream,
1051 bool lock)
1052 {
1053 int i;
1054
1055 /* Checks if interdependent update function pointer is NULL or not, takes care of DCE110 case */
1056 if (dc->hwss.interdependent_update_lock)
1057 dc->hwss.interdependent_update_lock(dc, context, lock);
1058 else {
1059 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1060 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1061 struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
1062
1063 // Copied conditions that were previously in dce110_apply_ctx_for_surface
1064 if (stream == pipe_ctx->stream) {
1065 if (resource_is_pipe_type(pipe_ctx, OPP_HEAD) &&
1066 (pipe_ctx->plane_state || old_pipe_ctx->plane_state))
1067 dc->hwss.pipe_control_lock(dc, pipe_ctx, lock);
1068 }
1069 }
1070 }
1071 }
1072
dc_update_viusal_confirm_color(struct dc * dc,struct dc_state * context,struct pipe_ctx * pipe_ctx)1073 static void dc_update_viusal_confirm_color(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe_ctx)
1074 {
1075 if (dc->ctx->dce_version >= DCN_VERSION_1_0) {
1076 memset(&pipe_ctx->visual_confirm_color, 0, sizeof(struct tg_color));
1077
1078 if (dc->debug.visual_confirm == VISUAL_CONFIRM_HDR)
1079 get_hdr_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1080 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
1081 get_surface_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1082 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SWIZZLE)
1083 get_surface_tile_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1084 else {
1085 if (dc->ctx->dce_version < DCN_VERSION_2_0)
1086 color_space_to_black_color(
1087 dc, pipe_ctx->stream->output_color_space, &(pipe_ctx->visual_confirm_color));
1088 }
1089 if (dc->ctx->dce_version >= DCN_VERSION_2_0) {
1090 if (dc->debug.visual_confirm == VISUAL_CONFIRM_MPCTREE)
1091 get_mpctree_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1092 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SUBVP)
1093 get_subvp_visual_confirm_color(dc, context, pipe_ctx, &(pipe_ctx->visual_confirm_color));
1094 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_MCLK_SWITCH)
1095 get_mclk_switch_visual_confirm_color(dc, context, pipe_ctx, &(pipe_ctx->visual_confirm_color));
1096 }
1097 }
1098 }
1099
disable_dangling_plane(struct dc * dc,struct dc_state * context)1100 static void disable_dangling_plane(struct dc *dc, struct dc_state *context)
1101 {
1102 int i, j;
1103 struct dc_state *dangling_context = dc_create_state(dc);
1104 struct dc_state *current_ctx;
1105 struct pipe_ctx *pipe;
1106 struct timing_generator *tg;
1107
1108 if (dangling_context == NULL)
1109 return;
1110
1111 dc_resource_state_copy_construct(dc->current_state, dangling_context);
1112
1113 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1114 struct dc_stream_state *old_stream =
1115 dc->current_state->res_ctx.pipe_ctx[i].stream;
1116 bool should_disable = true;
1117 bool pipe_split_change = false;
1118
1119 if ((context->res_ctx.pipe_ctx[i].top_pipe) &&
1120 (dc->current_state->res_ctx.pipe_ctx[i].top_pipe))
1121 pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe->pipe_idx !=
1122 dc->current_state->res_ctx.pipe_ctx[i].top_pipe->pipe_idx;
1123 else
1124 pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe !=
1125 dc->current_state->res_ctx.pipe_ctx[i].top_pipe;
1126
1127 for (j = 0; j < context->stream_count; j++) {
1128 if (old_stream == context->streams[j]) {
1129 should_disable = false;
1130 break;
1131 }
1132 }
1133 if (!should_disable && pipe_split_change &&
1134 dc->current_state->stream_count != context->stream_count)
1135 should_disable = true;
1136
1137 if (old_stream && !dc->current_state->res_ctx.pipe_ctx[i].top_pipe &&
1138 !dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe) {
1139 struct pipe_ctx *old_pipe, *new_pipe;
1140
1141 old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1142 new_pipe = &context->res_ctx.pipe_ctx[i];
1143
1144 if (old_pipe->plane_state && !new_pipe->plane_state)
1145 should_disable = true;
1146 }
1147
1148 if (should_disable && old_stream) {
1149 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1150 tg = pipe->stream_res.tg;
1151 /* When disabling plane for a phantom pipe, we must turn on the
1152 * phantom OTG so the disable programming gets the double buffer
1153 * update. Otherwise the pipe will be left in a partially disabled
1154 * state that can result in underflow or hang when enabling it
1155 * again for different use.
1156 */
1157 if (old_stream->mall_stream_config.type == SUBVP_PHANTOM) {
1158 if (tg->funcs->enable_crtc) {
1159 int main_pipe_width, main_pipe_height;
1160
1161 main_pipe_width = old_stream->mall_stream_config.paired_stream->dst.width;
1162 main_pipe_height = old_stream->mall_stream_config.paired_stream->dst.height;
1163 if (dc->hwss.blank_phantom)
1164 dc->hwss.blank_phantom(dc, tg, main_pipe_width, main_pipe_height);
1165 tg->funcs->enable_crtc(tg);
1166 }
1167 }
1168 dc_rem_all_planes_for_stream(dc, old_stream, dangling_context);
1169 disable_all_writeback_pipes_for_stream(dc, old_stream, dangling_context);
1170
1171 if (pipe->stream && pipe->plane_state)
1172 dc_update_viusal_confirm_color(dc, context, pipe);
1173
1174 if (dc->hwss.apply_ctx_for_surface) {
1175 apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, true);
1176 dc->hwss.apply_ctx_for_surface(dc, old_stream, 0, dangling_context);
1177 apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, false);
1178 dc->hwss.post_unlock_program_front_end(dc, dangling_context);
1179 }
1180 if (dc->hwss.program_front_end_for_ctx) {
1181 dc->hwss.interdependent_update_lock(dc, dc->current_state, true);
1182 dc->hwss.program_front_end_for_ctx(dc, dangling_context);
1183 dc->hwss.interdependent_update_lock(dc, dc->current_state, false);
1184 dc->hwss.post_unlock_program_front_end(dc, dangling_context);
1185 }
1186 /* We need to put the phantom OTG back into it's default (disabled) state or we
1187 * can get corruption when transition from one SubVP config to a different one.
1188 * The OTG is set to disable on falling edge of VUPDATE so the plane disable
1189 * will still get it's double buffer update.
1190 */
1191 if (old_stream->mall_stream_config.type == SUBVP_PHANTOM) {
1192 if (tg->funcs->disable_phantom_crtc)
1193 tg->funcs->disable_phantom_crtc(tg);
1194 }
1195 }
1196 }
1197
1198 current_ctx = dc->current_state;
1199 dc->current_state = dangling_context;
1200 dc_release_state(current_ctx);
1201 }
1202
disable_vbios_mode_if_required(struct dc * dc,struct dc_state * context)1203 static void disable_vbios_mode_if_required(
1204 struct dc *dc,
1205 struct dc_state *context)
1206 {
1207 unsigned int i, j;
1208
1209 /* check if timing_changed, disable stream*/
1210 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1211 struct dc_stream_state *stream = NULL;
1212 struct dc_link *link = NULL;
1213 struct pipe_ctx *pipe = NULL;
1214
1215 pipe = &context->res_ctx.pipe_ctx[i];
1216 stream = pipe->stream;
1217 if (stream == NULL)
1218 continue;
1219
1220 if (stream->apply_seamless_boot_optimization)
1221 continue;
1222
1223 // only looking for first odm pipe
1224 if (pipe->prev_odm_pipe)
1225 continue;
1226
1227 if (stream->link->local_sink &&
1228 stream->link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1229 link = stream->link;
1230 }
1231
1232 if (link != NULL && link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
1233 unsigned int enc_inst, tg_inst = 0;
1234 unsigned int pix_clk_100hz;
1235
1236 enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1237 if (enc_inst != ENGINE_ID_UNKNOWN) {
1238 for (j = 0; j < dc->res_pool->stream_enc_count; j++) {
1239 if (dc->res_pool->stream_enc[j]->id == enc_inst) {
1240 tg_inst = dc->res_pool->stream_enc[j]->funcs->dig_source_otg(
1241 dc->res_pool->stream_enc[j]);
1242 break;
1243 }
1244 }
1245
1246 dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1247 dc->res_pool->dp_clock_source,
1248 tg_inst, &pix_clk_100hz);
1249
1250 if (link->link_status.link_active) {
1251 uint32_t requested_pix_clk_100hz =
1252 pipe->stream_res.pix_clk_params.requested_pix_clk_100hz;
1253
1254 if (pix_clk_100hz != requested_pix_clk_100hz) {
1255 dc->link_srv->set_dpms_off(pipe);
1256 pipe->stream->dpms_off = false;
1257 }
1258 }
1259 }
1260 }
1261 }
1262 }
1263
wait_for_no_pipes_pending(struct dc * dc,struct dc_state * context)1264 static void wait_for_no_pipes_pending(struct dc *dc, struct dc_state *context)
1265 {
1266 int i;
1267 PERF_TRACE();
1268 for (i = 0; i < MAX_PIPES; i++) {
1269 int count = 0;
1270 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1271
1272 if (!pipe->plane_state || pipe->stream->mall_stream_config.type == SUBVP_PHANTOM)
1273 continue;
1274
1275 /* Timeout 100 ms */
1276 while (count < 100000) {
1277 /* Must set to false to start with, due to OR in update function */
1278 pipe->plane_state->status.is_flip_pending = false;
1279 dc->hwss.update_pending_status(pipe);
1280 if (!pipe->plane_state->status.is_flip_pending)
1281 break;
1282 udelay(1);
1283 count++;
1284 }
1285 ASSERT(!pipe->plane_state->status.is_flip_pending);
1286 }
1287 PERF_TRACE();
1288 }
1289
1290 /* Public functions */
1291
dc_create(const struct dc_init_data * init_params)1292 struct dc *dc_create(const struct dc_init_data *init_params)
1293 {
1294 struct dc *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1295 unsigned int full_pipe_count;
1296
1297 if (!dc)
1298 return NULL;
1299
1300 if (init_params->dce_environment == DCE_ENV_VIRTUAL_HW) {
1301 dc->caps.linear_pitch_alignment = 64;
1302 if (!dc_construct_ctx(dc, init_params))
1303 goto destruct_dc;
1304 } else {
1305 if (!dc_construct(dc, init_params))
1306 goto destruct_dc;
1307
1308 full_pipe_count = dc->res_pool->pipe_count;
1309 if (dc->res_pool->underlay_pipe_index != NO_UNDERLAY_PIPE)
1310 full_pipe_count--;
1311 dc->caps.max_streams = min(
1312 full_pipe_count,
1313 dc->res_pool->stream_enc_count);
1314
1315 dc->caps.max_links = dc->link_count;
1316 dc->caps.max_audios = dc->res_pool->audio_count;
1317 dc->caps.linear_pitch_alignment = 64;
1318
1319 dc->caps.max_dp_protocol_version = DP_VERSION_1_4;
1320
1321 dc->caps.max_otg_num = dc->res_pool->res_cap->num_timing_generator;
1322
1323 if (dc->res_pool->dmcu != NULL)
1324 dc->versions.dmcu_version = dc->res_pool->dmcu->dmcu_version;
1325 }
1326
1327 dc->dcn_reg_offsets = init_params->dcn_reg_offsets;
1328 dc->nbio_reg_offsets = init_params->nbio_reg_offsets;
1329
1330 /* Populate versioning information */
1331 dc->versions.dc_ver = DC_VER;
1332
1333 dc->build_id = DC_BUILD_ID;
1334
1335 DC_LOG_DC("Display Core initialized\n");
1336
1337
1338
1339 return dc;
1340
1341 destruct_dc:
1342 dc_destruct(dc);
1343 kfree(dc);
1344 return NULL;
1345 }
1346
detect_edp_presence(struct dc * dc)1347 static void detect_edp_presence(struct dc *dc)
1348 {
1349 struct dc_link *edp_links[MAX_NUM_EDP];
1350 struct dc_link *edp_link = NULL;
1351 enum dc_connection_type type;
1352 int i;
1353 int edp_num;
1354
1355 dc_get_edp_links(dc, edp_links, &edp_num);
1356 if (!edp_num)
1357 return;
1358
1359 for (i = 0; i < edp_num; i++) {
1360 edp_link = edp_links[i];
1361 if (dc->config.edp_not_connected) {
1362 edp_link->edp_sink_present = false;
1363 } else {
1364 dc_link_detect_connection_type(edp_link, &type);
1365 edp_link->edp_sink_present = (type != dc_connection_none);
1366 }
1367 }
1368 }
1369
dc_hardware_init(struct dc * dc)1370 void dc_hardware_init(struct dc *dc)
1371 {
1372
1373 detect_edp_presence(dc);
1374 if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW)
1375 dc->hwss.init_hw(dc);
1376 }
1377
dc_init_callbacks(struct dc * dc,const struct dc_callback_init * init_params)1378 void dc_init_callbacks(struct dc *dc,
1379 const struct dc_callback_init *init_params)
1380 {
1381 dc->ctx->cp_psp = init_params->cp_psp;
1382 }
1383
dc_deinit_callbacks(struct dc * dc)1384 void dc_deinit_callbacks(struct dc *dc)
1385 {
1386 memset(&dc->ctx->cp_psp, 0, sizeof(dc->ctx->cp_psp));
1387 }
1388
dc_destroy(struct dc ** dc)1389 void dc_destroy(struct dc **dc)
1390 {
1391 dc_destruct(*dc);
1392 kfree(*dc);
1393 *dc = NULL;
1394 }
1395
enable_timing_multisync(struct dc * dc,struct dc_state * ctx)1396 static void enable_timing_multisync(
1397 struct dc *dc,
1398 struct dc_state *ctx)
1399 {
1400 int i, multisync_count = 0;
1401 int pipe_count = dc->res_pool->pipe_count;
1402 struct pipe_ctx *multisync_pipes[MAX_PIPES] = { NULL };
1403
1404 for (i = 0; i < pipe_count; i++) {
1405 if (!ctx->res_ctx.pipe_ctx[i].stream ||
1406 !ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.enabled)
1407 continue;
1408 if (ctx->res_ctx.pipe_ctx[i].stream == ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.event_source)
1409 continue;
1410 multisync_pipes[multisync_count] = &ctx->res_ctx.pipe_ctx[i];
1411 multisync_count++;
1412 }
1413
1414 if (multisync_count > 0) {
1415 dc->hwss.enable_per_frame_crtc_position_reset(
1416 dc, multisync_count, multisync_pipes);
1417 }
1418 }
1419
program_timing_sync(struct dc * dc,struct dc_state * ctx)1420 static void program_timing_sync(
1421 struct dc *dc,
1422 struct dc_state *ctx)
1423 {
1424 int i, j, k;
1425 int group_index = 0;
1426 int num_group = 0;
1427 int pipe_count = dc->res_pool->pipe_count;
1428 struct pipe_ctx *unsynced_pipes[MAX_PIPES] = { NULL };
1429
1430 for (i = 0; i < pipe_count; i++) {
1431 if (!ctx->res_ctx.pipe_ctx[i].stream
1432 || ctx->res_ctx.pipe_ctx[i].top_pipe
1433 || ctx->res_ctx.pipe_ctx[i].prev_odm_pipe)
1434 continue;
1435
1436 unsynced_pipes[i] = &ctx->res_ctx.pipe_ctx[i];
1437 }
1438
1439 for (i = 0; i < pipe_count; i++) {
1440 int group_size = 1;
1441 enum timing_synchronization_type sync_type = NOT_SYNCHRONIZABLE;
1442 struct pipe_ctx *pipe_set[MAX_PIPES];
1443
1444 if (!unsynced_pipes[i])
1445 continue;
1446
1447 pipe_set[0] = unsynced_pipes[i];
1448 unsynced_pipes[i] = NULL;
1449
1450 /* Add tg to the set, search rest of the tg's for ones with
1451 * same timing, add all tgs with same timing to the group
1452 */
1453 for (j = i + 1; j < pipe_count; j++) {
1454 if (!unsynced_pipes[j])
1455 continue;
1456 if (sync_type != TIMING_SYNCHRONIZABLE &&
1457 dc->hwss.enable_vblanks_synchronization &&
1458 unsynced_pipes[j]->stream_res.tg->funcs->align_vblanks &&
1459 resource_are_vblanks_synchronizable(
1460 unsynced_pipes[j]->stream,
1461 pipe_set[0]->stream)) {
1462 sync_type = VBLANK_SYNCHRONIZABLE;
1463 pipe_set[group_size] = unsynced_pipes[j];
1464 unsynced_pipes[j] = NULL;
1465 group_size++;
1466 } else
1467 if (sync_type != VBLANK_SYNCHRONIZABLE &&
1468 resource_are_streams_timing_synchronizable(
1469 unsynced_pipes[j]->stream,
1470 pipe_set[0]->stream)) {
1471 sync_type = TIMING_SYNCHRONIZABLE;
1472 pipe_set[group_size] = unsynced_pipes[j];
1473 unsynced_pipes[j] = NULL;
1474 group_size++;
1475 }
1476 }
1477
1478 /* set first unblanked pipe as master */
1479 for (j = 0; j < group_size; j++) {
1480 bool is_blanked;
1481
1482 if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1483 is_blanked =
1484 pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1485 else
1486 is_blanked =
1487 pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1488 if (!is_blanked) {
1489 if (j == 0)
1490 break;
1491
1492 swap(pipe_set[0], pipe_set[j]);
1493 break;
1494 }
1495 }
1496
1497 for (k = 0; k < group_size; k++) {
1498 struct dc_stream_status *status = dc_stream_get_status_from_state(ctx, pipe_set[k]->stream);
1499
1500 status->timing_sync_info.group_id = num_group;
1501 status->timing_sync_info.group_size = group_size;
1502 if (k == 0)
1503 status->timing_sync_info.master = true;
1504 else
1505 status->timing_sync_info.master = false;
1506
1507 }
1508
1509 /* remove any other pipes that are already been synced */
1510 if (dc->config.use_pipe_ctx_sync_logic) {
1511 /* check pipe's syncd to decide which pipe to be removed */
1512 for (j = 1; j < group_size; j++) {
1513 if (pipe_set[j]->pipe_idx_syncd == pipe_set[0]->pipe_idx_syncd) {
1514 group_size--;
1515 pipe_set[j] = pipe_set[group_size];
1516 j--;
1517 } else
1518 /* link slave pipe's syncd with master pipe */
1519 pipe_set[j]->pipe_idx_syncd = pipe_set[0]->pipe_idx_syncd;
1520 }
1521 } else {
1522 for (j = j + 1; j < group_size; j++) {
1523 bool is_blanked;
1524
1525 if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1526 is_blanked =
1527 pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1528 else
1529 is_blanked =
1530 pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1531 if (!is_blanked) {
1532 group_size--;
1533 pipe_set[j] = pipe_set[group_size];
1534 j--;
1535 }
1536 }
1537 }
1538
1539 if (group_size > 1) {
1540 if (sync_type == TIMING_SYNCHRONIZABLE) {
1541 dc->hwss.enable_timing_synchronization(
1542 dc, group_index, group_size, pipe_set);
1543 } else
1544 if (sync_type == VBLANK_SYNCHRONIZABLE) {
1545 dc->hwss.enable_vblanks_synchronization(
1546 dc, group_index, group_size, pipe_set);
1547 }
1548 group_index++;
1549 }
1550 num_group++;
1551 }
1552 }
1553
streams_changed(struct dc * dc,struct dc_stream_state * streams[],uint8_t stream_count)1554 static bool streams_changed(struct dc *dc,
1555 struct dc_stream_state *streams[],
1556 uint8_t stream_count)
1557 {
1558 uint8_t i;
1559
1560 if (stream_count != dc->current_state->stream_count)
1561 return true;
1562
1563 for (i = 0; i < dc->current_state->stream_count; i++) {
1564 if (dc->current_state->streams[i] != streams[i])
1565 return true;
1566 if (!streams[i]->link->link_state_valid)
1567 return true;
1568 }
1569
1570 return false;
1571 }
1572
dc_validate_boot_timing(const struct dc * dc,const struct dc_sink * sink,struct dc_crtc_timing * crtc_timing)1573 bool dc_validate_boot_timing(const struct dc *dc,
1574 const struct dc_sink *sink,
1575 struct dc_crtc_timing *crtc_timing)
1576 {
1577 struct timing_generator *tg;
1578 struct stream_encoder *se = NULL;
1579
1580 struct dc_crtc_timing hw_crtc_timing = {0};
1581
1582 struct dc_link *link = sink->link;
1583 unsigned int i, enc_inst, tg_inst = 0;
1584
1585 /* Support seamless boot on EDP displays only */
1586 if (sink->sink_signal != SIGNAL_TYPE_EDP) {
1587 return false;
1588 }
1589
1590 if (dc->debug.force_odm_combine)
1591 return false;
1592
1593 /* Check for enabled DIG to identify enabled display */
1594 if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
1595 return false;
1596
1597 enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1598
1599 if (enc_inst == ENGINE_ID_UNKNOWN)
1600 return false;
1601
1602 for (i = 0; i < dc->res_pool->stream_enc_count; i++) {
1603 if (dc->res_pool->stream_enc[i]->id == enc_inst) {
1604
1605 se = dc->res_pool->stream_enc[i];
1606
1607 tg_inst = dc->res_pool->stream_enc[i]->funcs->dig_source_otg(
1608 dc->res_pool->stream_enc[i]);
1609 break;
1610 }
1611 }
1612
1613 // tg_inst not found
1614 if (i == dc->res_pool->stream_enc_count)
1615 return false;
1616
1617 if (tg_inst >= dc->res_pool->timing_generator_count)
1618 return false;
1619
1620 if (tg_inst != link->link_enc->preferred_engine)
1621 return false;
1622
1623 tg = dc->res_pool->timing_generators[tg_inst];
1624
1625 if (!tg->funcs->get_hw_timing)
1626 return false;
1627
1628 if (!tg->funcs->get_hw_timing(tg, &hw_crtc_timing))
1629 return false;
1630
1631 if (crtc_timing->h_total != hw_crtc_timing.h_total)
1632 return false;
1633
1634 if (crtc_timing->h_border_left != hw_crtc_timing.h_border_left)
1635 return false;
1636
1637 if (crtc_timing->h_addressable != hw_crtc_timing.h_addressable)
1638 return false;
1639
1640 if (crtc_timing->h_border_right != hw_crtc_timing.h_border_right)
1641 return false;
1642
1643 if (crtc_timing->h_front_porch != hw_crtc_timing.h_front_porch)
1644 return false;
1645
1646 if (crtc_timing->h_sync_width != hw_crtc_timing.h_sync_width)
1647 return false;
1648
1649 if (crtc_timing->v_total != hw_crtc_timing.v_total)
1650 return false;
1651
1652 if (crtc_timing->v_border_top != hw_crtc_timing.v_border_top)
1653 return false;
1654
1655 if (crtc_timing->v_addressable != hw_crtc_timing.v_addressable)
1656 return false;
1657
1658 if (crtc_timing->v_border_bottom != hw_crtc_timing.v_border_bottom)
1659 return false;
1660
1661 if (crtc_timing->v_front_porch != hw_crtc_timing.v_front_porch)
1662 return false;
1663
1664 if (crtc_timing->v_sync_width != hw_crtc_timing.v_sync_width)
1665 return false;
1666
1667 /* block DSC for now, as VBIOS does not currently support DSC timings */
1668 if (crtc_timing->flags.DSC)
1669 return false;
1670
1671 if (dc_is_dp_signal(link->connector_signal)) {
1672 unsigned int pix_clk_100hz;
1673 uint32_t numOdmPipes = 1;
1674 uint32_t id_src[4] = {0};
1675
1676 dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1677 dc->res_pool->dp_clock_source,
1678 tg_inst, &pix_clk_100hz);
1679
1680 if (tg->funcs->get_optc_source)
1681 tg->funcs->get_optc_source(tg,
1682 &numOdmPipes, &id_src[0], &id_src[1]);
1683
1684 if (numOdmPipes == 2)
1685 pix_clk_100hz *= 2;
1686 if (numOdmPipes == 4)
1687 pix_clk_100hz *= 4;
1688
1689 // Note: In rare cases, HW pixclk may differ from crtc's pixclk
1690 // slightly due to rounding issues in 10 kHz units.
1691 if (crtc_timing->pix_clk_100hz != pix_clk_100hz)
1692 return false;
1693
1694 if (!se || !se->funcs->dp_get_pixel_format)
1695 return false;
1696
1697 if (!se->funcs->dp_get_pixel_format(
1698 se,
1699 &hw_crtc_timing.pixel_encoding,
1700 &hw_crtc_timing.display_color_depth))
1701 return false;
1702
1703 if (hw_crtc_timing.display_color_depth != crtc_timing->display_color_depth)
1704 return false;
1705
1706 if (hw_crtc_timing.pixel_encoding != crtc_timing->pixel_encoding)
1707 return false;
1708 }
1709
1710 if (link->dpcd_caps.dprx_feature.bits.VSC_SDP_COLORIMETRY_SUPPORTED) {
1711 return false;
1712 }
1713
1714 if (link->dpcd_caps.channel_coding_cap.bits.DP_128b_132b_SUPPORTED)
1715 return false;
1716
1717 if (dc->link_srv->edp_is_ilr_optimization_required(link, crtc_timing)) {
1718 DC_LOG_EVENT_LINK_TRAINING("Seamless boot disabled to optimize eDP link rate\n");
1719 return false;
1720 }
1721
1722 return true;
1723 }
1724
should_update_pipe_for_stream(struct dc_state * context,struct pipe_ctx * pipe_ctx,struct dc_stream_state * stream)1725 static inline bool should_update_pipe_for_stream(
1726 struct dc_state *context,
1727 struct pipe_ctx *pipe_ctx,
1728 struct dc_stream_state *stream)
1729 {
1730 return (pipe_ctx->stream && pipe_ctx->stream == stream);
1731 }
1732
should_update_pipe_for_plane(struct dc_state * context,struct pipe_ctx * pipe_ctx,struct dc_plane_state * plane_state)1733 static inline bool should_update_pipe_for_plane(
1734 struct dc_state *context,
1735 struct pipe_ctx *pipe_ctx,
1736 struct dc_plane_state *plane_state)
1737 {
1738 return (pipe_ctx->plane_state == plane_state);
1739 }
1740
dc_enable_stereo(struct dc * dc,struct dc_state * context,struct dc_stream_state * streams[],uint8_t stream_count)1741 void dc_enable_stereo(
1742 struct dc *dc,
1743 struct dc_state *context,
1744 struct dc_stream_state *streams[],
1745 uint8_t stream_count)
1746 {
1747 int i, j;
1748 struct pipe_ctx *pipe;
1749
1750 for (i = 0; i < MAX_PIPES; i++) {
1751 if (context != NULL) {
1752 pipe = &context->res_ctx.pipe_ctx[i];
1753 } else {
1754 context = dc->current_state;
1755 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1756 }
1757
1758 for (j = 0; pipe && j < stream_count; j++) {
1759 if (should_update_pipe_for_stream(context, pipe, streams[j]) &&
1760 dc->hwss.setup_stereo)
1761 dc->hwss.setup_stereo(pipe, dc);
1762 }
1763 }
1764 }
1765
dc_trigger_sync(struct dc * dc,struct dc_state * context)1766 void dc_trigger_sync(struct dc *dc, struct dc_state *context)
1767 {
1768 if (context->stream_count > 1 && !dc->debug.disable_timing_sync) {
1769 enable_timing_multisync(dc, context);
1770 program_timing_sync(dc, context);
1771 }
1772 }
1773
get_stream_mask(struct dc * dc,struct dc_state * context)1774 static uint8_t get_stream_mask(struct dc *dc, struct dc_state *context)
1775 {
1776 int i;
1777 unsigned int stream_mask = 0;
1778
1779 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1780 if (context->res_ctx.pipe_ctx[i].stream)
1781 stream_mask |= 1 << i;
1782 }
1783
1784 return stream_mask;
1785 }
1786
dc_z10_restore(const struct dc * dc)1787 void dc_z10_restore(const struct dc *dc)
1788 {
1789 if (dc->hwss.z10_restore)
1790 dc->hwss.z10_restore(dc);
1791 }
1792
dc_z10_save_init(struct dc * dc)1793 void dc_z10_save_init(struct dc *dc)
1794 {
1795 if (dc->hwss.z10_save_init)
1796 dc->hwss.z10_save_init(dc);
1797 }
1798
1799 /**
1800 * dc_commit_state_no_check - Apply context to the hardware
1801 *
1802 * @dc: DC object with the current status to be updated
1803 * @context: New state that will become the current status at the end of this function
1804 *
1805 * Applies given context to the hardware and copy it into current context.
1806 * It's up to the user to release the src context afterwards.
1807 *
1808 * Return: an enum dc_status result code for the operation
1809 */
dc_commit_state_no_check(struct dc * dc,struct dc_state * context)1810 static enum dc_status dc_commit_state_no_check(struct dc *dc, struct dc_state *context)
1811 {
1812 struct dc_bios *dcb = dc->ctx->dc_bios;
1813 enum dc_status result = DC_ERROR_UNEXPECTED;
1814 struct pipe_ctx *pipe;
1815 int i, k, l;
1816 struct dc_stream_state *dc_streams[MAX_STREAMS] = {0};
1817 struct dc_state *old_state;
1818 bool subvp_prev_use = false;
1819
1820 dc_z10_restore(dc);
1821 dc_allow_idle_optimizations(dc, false);
1822
1823 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1824 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1825
1826 /* Check old context for SubVP */
1827 subvp_prev_use |= (old_pipe->stream && old_pipe->stream->mall_stream_config.type == SUBVP_PHANTOM);
1828 if (subvp_prev_use)
1829 break;
1830 }
1831
1832 for (i = 0; i < context->stream_count; i++)
1833 dc_streams[i] = context->streams[i];
1834
1835 if (!dcb->funcs->is_accelerated_mode(dcb)) {
1836 disable_vbios_mode_if_required(dc, context);
1837 dc->hwss.enable_accelerated_mode(dc, context);
1838 }
1839
1840 if (context->stream_count > get_seamless_boot_stream_count(context) ||
1841 context->stream_count == 0)
1842 dc->hwss.prepare_bandwidth(dc, context);
1843
1844 /* When SubVP is active, all HW programming must be done while
1845 * SubVP lock is acquired
1846 */
1847 if (dc->hwss.subvp_pipe_control_lock)
1848 dc->hwss.subvp_pipe_control_lock(dc, context, true, true, NULL, subvp_prev_use);
1849
1850 if (dc->hwss.update_dsc_pg)
1851 dc->hwss.update_dsc_pg(dc, context, false);
1852
1853 disable_dangling_plane(dc, context);
1854 /* re-program planes for existing stream, in case we need to
1855 * free up plane resource for later use
1856 */
1857 if (dc->hwss.apply_ctx_for_surface) {
1858 for (i = 0; i < context->stream_count; i++) {
1859 if (context->streams[i]->mode_changed)
1860 continue;
1861 apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
1862 dc->hwss.apply_ctx_for_surface(
1863 dc, context->streams[i],
1864 context->stream_status[i].plane_count,
1865 context); /* use new pipe config in new context */
1866 apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
1867 dc->hwss.post_unlock_program_front_end(dc, context);
1868 }
1869 }
1870
1871 /* Program hardware */
1872 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1873 pipe = &context->res_ctx.pipe_ctx[i];
1874 dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe);
1875 }
1876
1877 result = dc->hwss.apply_ctx_to_hw(dc, context);
1878
1879 if (result != DC_OK) {
1880 /* Application of dc_state to hardware stopped. */
1881 dc->current_state->res_ctx.link_enc_cfg_ctx.mode = LINK_ENC_CFG_STEADY;
1882 return result;
1883 }
1884
1885 dc_trigger_sync(dc, context);
1886
1887 /* Full update should unconditionally be triggered when dc_commit_state_no_check is called */
1888 for (i = 0; i < context->stream_count; i++) {
1889 uint32_t prev_dsc_changed = context->streams[i]->update_flags.bits.dsc_changed;
1890
1891 context->streams[i]->update_flags.raw = 0xFFFFFFFF;
1892 context->streams[i]->update_flags.bits.dsc_changed = prev_dsc_changed;
1893 }
1894
1895 /* Program all planes within new context*/
1896 if (dc->hwss.program_front_end_for_ctx) {
1897 dc->hwss.interdependent_update_lock(dc, context, true);
1898 dc->hwss.program_front_end_for_ctx(dc, context);
1899 dc->hwss.interdependent_update_lock(dc, context, false);
1900 dc->hwss.post_unlock_program_front_end(dc, context);
1901 }
1902
1903 if (dc->hwss.commit_subvp_config)
1904 dc->hwss.commit_subvp_config(dc, context);
1905 if (dc->hwss.subvp_pipe_control_lock)
1906 dc->hwss.subvp_pipe_control_lock(dc, context, false, true, NULL, subvp_prev_use);
1907
1908 for (i = 0; i < context->stream_count; i++) {
1909 const struct dc_link *link = context->streams[i]->link;
1910
1911 if (!context->streams[i]->mode_changed)
1912 continue;
1913
1914 if (dc->hwss.apply_ctx_for_surface) {
1915 apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
1916 dc->hwss.apply_ctx_for_surface(
1917 dc, context->streams[i],
1918 context->stream_status[i].plane_count,
1919 context);
1920 apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
1921 dc->hwss.post_unlock_program_front_end(dc, context);
1922 }
1923
1924 /*
1925 * enable stereo
1926 * TODO rework dc_enable_stereo call to work with validation sets?
1927 */
1928 for (k = 0; k < MAX_PIPES; k++) {
1929 pipe = &context->res_ctx.pipe_ctx[k];
1930
1931 for (l = 0 ; pipe && l < context->stream_count; l++) {
1932 if (context->streams[l] &&
1933 context->streams[l] == pipe->stream &&
1934 dc->hwss.setup_stereo)
1935 dc->hwss.setup_stereo(pipe, dc);
1936 }
1937 }
1938
1939 CONN_MSG_MODE(link, "{%dx%d, %dx%d@%dKhz}",
1940 context->streams[i]->timing.h_addressable,
1941 context->streams[i]->timing.v_addressable,
1942 context->streams[i]->timing.h_total,
1943 context->streams[i]->timing.v_total,
1944 context->streams[i]->timing.pix_clk_100hz / 10);
1945 }
1946
1947 dc_enable_stereo(dc, context, dc_streams, context->stream_count);
1948
1949 if (context->stream_count > get_seamless_boot_stream_count(context) ||
1950 context->stream_count == 0) {
1951 /* Must wait for no flips to be pending before doing optimize bw */
1952 wait_for_no_pipes_pending(dc, context);
1953 /* pplib is notified if disp_num changed */
1954 dc->hwss.optimize_bandwidth(dc, context);
1955 /* Need to do otg sync again as otg could be out of sync due to otg
1956 * workaround applied during clock update
1957 */
1958 dc_trigger_sync(dc, context);
1959 }
1960
1961 if (dc->hwss.update_dsc_pg)
1962 dc->hwss.update_dsc_pg(dc, context, true);
1963
1964 if (dc->ctx->dce_version >= DCE_VERSION_MAX)
1965 TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
1966 else
1967 TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
1968
1969 context->stream_mask = get_stream_mask(dc, context);
1970
1971 if (context->stream_mask != dc->current_state->stream_mask)
1972 dc_dmub_srv_notify_stream_mask(dc->ctx->dmub_srv, context->stream_mask);
1973
1974 for (i = 0; i < context->stream_count; i++)
1975 context->streams[i]->mode_changed = false;
1976
1977 /* Clear update flags that were set earlier to avoid redundant programming */
1978 for (i = 0; i < context->stream_count; i++) {
1979 context->streams[i]->update_flags.raw = 0x0;
1980 }
1981
1982 old_state = dc->current_state;
1983 dc->current_state = context;
1984
1985 dc_release_state(old_state);
1986
1987 dc_retain_state(dc->current_state);
1988
1989 return result;
1990 }
1991
1992 static bool commit_minimal_transition_state(struct dc *dc,
1993 struct dc_state *transition_base_context);
1994
1995 /**
1996 * dc_commit_streams - Commit current stream state
1997 *
1998 * @dc: DC object with the commit state to be configured in the hardware
1999 * @streams: Array with a list of stream state
2000 * @stream_count: Total of streams
2001 *
2002 * Function responsible for commit streams change to the hardware.
2003 *
2004 * Return:
2005 * Return DC_OK if everything work as expected, otherwise, return a dc_status
2006 * code.
2007 */
dc_commit_streams(struct dc * dc,struct dc_stream_state * streams[],uint8_t stream_count)2008 enum dc_status dc_commit_streams(struct dc *dc,
2009 struct dc_stream_state *streams[],
2010 uint8_t stream_count)
2011 {
2012 int i, j;
2013 struct dc_state *context;
2014 enum dc_status res = DC_OK;
2015 struct dc_validation_set set[MAX_STREAMS] = {0};
2016 struct pipe_ctx *pipe;
2017 bool handle_exit_odm2to1 = false;
2018
2019 if (dc->ctx->dce_environment == DCE_ENV_VIRTUAL_HW)
2020 return res;
2021
2022 if (!streams_changed(dc, streams, stream_count))
2023 return res;
2024
2025 DC_LOG_DC("%s: %d streams\n", __func__, stream_count);
2026
2027 for (i = 0; i < stream_count; i++) {
2028 struct dc_stream_state *stream = streams[i];
2029 struct dc_stream_status *status = dc_stream_get_status(stream);
2030
2031 dc_stream_log(dc, stream);
2032
2033 set[i].stream = stream;
2034
2035 if (status) {
2036 set[i].plane_count = status->plane_count;
2037 for (j = 0; j < status->plane_count; j++)
2038 set[i].plane_states[j] = status->plane_states[j];
2039 }
2040 }
2041
2042 /* ODM Combine 2:1 power optimization is only applied for single stream
2043 * scenario, it uses extra pipes than needed to reduce power consumption
2044 * We need to switch off this feature to make room for new streams.
2045 */
2046 if (stream_count > dc->current_state->stream_count &&
2047 dc->current_state->stream_count == 1) {
2048 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2049 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2050 if (pipe->next_odm_pipe)
2051 handle_exit_odm2to1 = true;
2052 }
2053 }
2054
2055 if (handle_exit_odm2to1)
2056 res = commit_minimal_transition_state(dc, dc->current_state);
2057
2058 context = dc_create_state(dc);
2059 if (!context)
2060 goto context_alloc_fail;
2061
2062 dc_resource_state_copy_construct_current(dc, context);
2063
2064 res = dc_validate_with_context(dc, set, stream_count, context, false);
2065 if (res != DC_OK) {
2066 BREAK_TO_DEBUGGER();
2067 goto fail;
2068 }
2069
2070 res = dc_commit_state_no_check(dc, context);
2071
2072 for (i = 0; i < stream_count; i++) {
2073 for (j = 0; j < context->stream_count; j++) {
2074 if (streams[i]->stream_id == context->streams[j]->stream_id)
2075 streams[i]->out.otg_offset = context->stream_status[j].primary_otg_inst;
2076
2077 if (dc_is_embedded_signal(streams[i]->signal)) {
2078 struct dc_stream_status *status = dc_stream_get_status_from_state(context, streams[i]);
2079
2080 if (dc->hwss.is_abm_supported)
2081 status->is_abm_supported = dc->hwss.is_abm_supported(dc, context, streams[i]);
2082 else
2083 status->is_abm_supported = true;
2084 }
2085 }
2086 }
2087
2088 fail:
2089 dc_release_state(context);
2090
2091 context_alloc_fail:
2092
2093 DC_LOG_DC("%s Finished.\n", __func__);
2094
2095 return res;
2096 }
2097
dc_acquire_release_mpc_3dlut(struct dc * dc,bool acquire,struct dc_stream_state * stream,struct dc_3dlut ** lut,struct dc_transfer_func ** shaper)2098 bool dc_acquire_release_mpc_3dlut(
2099 struct dc *dc, bool acquire,
2100 struct dc_stream_state *stream,
2101 struct dc_3dlut **lut,
2102 struct dc_transfer_func **shaper)
2103 {
2104 int pipe_idx;
2105 bool ret = false;
2106 bool found_pipe_idx = false;
2107 const struct resource_pool *pool = dc->res_pool;
2108 struct resource_context *res_ctx = &dc->current_state->res_ctx;
2109 int mpcc_id = 0;
2110
2111 if (pool && res_ctx) {
2112 if (acquire) {
2113 /*find pipe idx for the given stream*/
2114 for (pipe_idx = 0; pipe_idx < pool->pipe_count; pipe_idx++) {
2115 if (res_ctx->pipe_ctx[pipe_idx].stream == stream) {
2116 found_pipe_idx = true;
2117 mpcc_id = res_ctx->pipe_ctx[pipe_idx].plane_res.hubp->inst;
2118 break;
2119 }
2120 }
2121 } else
2122 found_pipe_idx = true;/*for release pipe_idx is not required*/
2123
2124 if (found_pipe_idx) {
2125 if (acquire && pool->funcs->acquire_post_bldn_3dlut)
2126 ret = pool->funcs->acquire_post_bldn_3dlut(res_ctx, pool, mpcc_id, lut, shaper);
2127 else if (!acquire && pool->funcs->release_post_bldn_3dlut)
2128 ret = pool->funcs->release_post_bldn_3dlut(res_ctx, pool, lut, shaper);
2129 }
2130 }
2131 return ret;
2132 }
2133
is_flip_pending_in_pipes(struct dc * dc,struct dc_state * context)2134 static bool is_flip_pending_in_pipes(struct dc *dc, struct dc_state *context)
2135 {
2136 int i;
2137 struct pipe_ctx *pipe;
2138
2139 for (i = 0; i < MAX_PIPES; i++) {
2140 pipe = &context->res_ctx.pipe_ctx[i];
2141
2142 // Don't check flip pending on phantom pipes
2143 if (!pipe->plane_state || (pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM))
2144 continue;
2145
2146 /* Must set to false to start with, due to OR in update function */
2147 pipe->plane_state->status.is_flip_pending = false;
2148 dc->hwss.update_pending_status(pipe);
2149 if (pipe->plane_state->status.is_flip_pending)
2150 return true;
2151 }
2152 return false;
2153 }
2154
2155 /* Perform updates here which need to be deferred until next vupdate
2156 *
2157 * i.e. blnd lut, 3dlut, and shaper lut bypass regs are double buffered
2158 * but forcing lut memory to shutdown state is immediate. This causes
2159 * single frame corruption as lut gets disabled mid-frame unless shutdown
2160 * is deferred until after entering bypass.
2161 */
process_deferred_updates(struct dc * dc)2162 static void process_deferred_updates(struct dc *dc)
2163 {
2164 int i = 0;
2165
2166 if (dc->debug.enable_mem_low_power.bits.cm) {
2167 ASSERT(dc->dcn_ip->max_num_dpp);
2168 for (i = 0; i < dc->dcn_ip->max_num_dpp; i++)
2169 if (dc->res_pool->dpps[i]->funcs->dpp_deferred_update)
2170 dc->res_pool->dpps[i]->funcs->dpp_deferred_update(dc->res_pool->dpps[i]);
2171 }
2172 }
2173
dc_post_update_surfaces_to_stream(struct dc * dc)2174 void dc_post_update_surfaces_to_stream(struct dc *dc)
2175 {
2176 int i;
2177 struct dc_state *context = dc->current_state;
2178
2179 if ((!dc->optimized_required) || get_seamless_boot_stream_count(context) > 0)
2180 return;
2181
2182 post_surface_trace(dc);
2183
2184 /*
2185 * Only relevant for DCN behavior where we can guarantee the optimization
2186 * is safe to apply - retain the legacy behavior for DCE.
2187 */
2188
2189 if (dc->ctx->dce_version < DCE_VERSION_MAX)
2190 TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
2191 else {
2192 TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
2193
2194 if (is_flip_pending_in_pipes(dc, context))
2195 return;
2196
2197 for (i = 0; i < dc->res_pool->pipe_count; i++)
2198 if (context->res_ctx.pipe_ctx[i].stream == NULL ||
2199 context->res_ctx.pipe_ctx[i].plane_state == NULL) {
2200 context->res_ctx.pipe_ctx[i].pipe_idx = i;
2201 dc->hwss.disable_plane(dc, &context->res_ctx.pipe_ctx[i]);
2202 }
2203
2204 process_deferred_updates(dc);
2205
2206 dc->hwss.optimize_bandwidth(dc, context);
2207
2208 if (dc->hwss.update_dsc_pg)
2209 dc->hwss.update_dsc_pg(dc, context, true);
2210 }
2211
2212 dc->optimized_required = false;
2213 dc->wm_optimized_required = false;
2214 }
2215
init_state(struct dc * dc,struct dc_state * context)2216 static void init_state(struct dc *dc, struct dc_state *context)
2217 {
2218 /* Each context must have their own instance of VBA and in order to
2219 * initialize and obtain IP and SOC the base DML instance from DC is
2220 * initially copied into every context
2221 */
2222 memcpy(&context->bw_ctx.dml, &dc->dml, sizeof(struct display_mode_lib));
2223 }
2224
dc_create_state(struct dc * dc)2225 struct dc_state *dc_create_state(struct dc *dc)
2226 {
2227 struct dc_state *context = kvzalloc(sizeof(struct dc_state),
2228 GFP_KERNEL);
2229
2230 if (!context)
2231 return NULL;
2232
2233 init_state(dc, context);
2234
2235 kref_init(&context->refcount);
2236
2237 return context;
2238 }
2239
dc_copy_state(struct dc_state * src_ctx)2240 struct dc_state *dc_copy_state(struct dc_state *src_ctx)
2241 {
2242 int i, j;
2243 struct dc_state *new_ctx = kvmalloc(sizeof(struct dc_state), GFP_KERNEL);
2244
2245 if (!new_ctx)
2246 return NULL;
2247 memcpy(new_ctx, src_ctx, sizeof(struct dc_state));
2248
2249 for (i = 0; i < MAX_PIPES; i++) {
2250 struct pipe_ctx *cur_pipe = &new_ctx->res_ctx.pipe_ctx[i];
2251
2252 if (cur_pipe->top_pipe)
2253 cur_pipe->top_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx];
2254
2255 if (cur_pipe->bottom_pipe)
2256 cur_pipe->bottom_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx];
2257
2258 if (cur_pipe->prev_odm_pipe)
2259 cur_pipe->prev_odm_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->prev_odm_pipe->pipe_idx];
2260
2261 if (cur_pipe->next_odm_pipe)
2262 cur_pipe->next_odm_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->next_odm_pipe->pipe_idx];
2263
2264 }
2265
2266 for (i = 0; i < new_ctx->stream_count; i++) {
2267 dc_stream_retain(new_ctx->streams[i]);
2268 for (j = 0; j < new_ctx->stream_status[i].plane_count; j++)
2269 dc_plane_state_retain(
2270 new_ctx->stream_status[i].plane_states[j]);
2271 }
2272
2273 kref_init(&new_ctx->refcount);
2274
2275 return new_ctx;
2276 }
2277
dc_retain_state(struct dc_state * context)2278 void dc_retain_state(struct dc_state *context)
2279 {
2280 kref_get(&context->refcount);
2281 }
2282
dc_state_free(struct kref * kref)2283 static void dc_state_free(struct kref *kref)
2284 {
2285 struct dc_state *context = container_of(kref, struct dc_state, refcount);
2286 dc_resource_state_destruct(context);
2287 kvfree(context);
2288 }
2289
dc_release_state(struct dc_state * context)2290 void dc_release_state(struct dc_state *context)
2291 {
2292 kref_put(&context->refcount, dc_state_free);
2293 }
2294
dc_set_generic_gpio_for_stereo(bool enable,struct gpio_service * gpio_service)2295 bool dc_set_generic_gpio_for_stereo(bool enable,
2296 struct gpio_service *gpio_service)
2297 {
2298 enum gpio_result gpio_result = GPIO_RESULT_NON_SPECIFIC_ERROR;
2299 struct gpio_pin_info pin_info;
2300 struct gpio *generic;
2301 struct gpio_generic_mux_config *config = kzalloc(sizeof(struct gpio_generic_mux_config),
2302 GFP_KERNEL);
2303
2304 if (!config)
2305 return false;
2306 pin_info = dal_gpio_get_generic_pin_info(gpio_service, GPIO_ID_GENERIC, 0);
2307
2308 if (pin_info.mask == 0xFFFFFFFF || pin_info.offset == 0xFFFFFFFF) {
2309 kfree(config);
2310 return false;
2311 } else {
2312 generic = dal_gpio_service_create_generic_mux(
2313 gpio_service,
2314 pin_info.offset,
2315 pin_info.mask);
2316 }
2317
2318 if (!generic) {
2319 kfree(config);
2320 return false;
2321 }
2322
2323 gpio_result = dal_gpio_open(generic, GPIO_MODE_OUTPUT);
2324
2325 config->enable_output_from_mux = enable;
2326 config->mux_select = GPIO_SIGNAL_SOURCE_PASS_THROUGH_STEREO_SYNC;
2327
2328 if (gpio_result == GPIO_RESULT_OK)
2329 gpio_result = dal_mux_setup_config(generic, config);
2330
2331 if (gpio_result == GPIO_RESULT_OK) {
2332 dal_gpio_close(generic);
2333 dal_gpio_destroy_generic_mux(&generic);
2334 kfree(config);
2335 return true;
2336 } else {
2337 dal_gpio_close(generic);
2338 dal_gpio_destroy_generic_mux(&generic);
2339 kfree(config);
2340 return false;
2341 }
2342 }
2343
is_surface_in_context(const struct dc_state * context,const struct dc_plane_state * plane_state)2344 static bool is_surface_in_context(
2345 const struct dc_state *context,
2346 const struct dc_plane_state *plane_state)
2347 {
2348 int j;
2349
2350 for (j = 0; j < MAX_PIPES; j++) {
2351 const struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2352
2353 if (plane_state == pipe_ctx->plane_state) {
2354 return true;
2355 }
2356 }
2357
2358 return false;
2359 }
2360
get_plane_info_update_type(const struct dc_surface_update * u)2361 static enum surface_update_type get_plane_info_update_type(const struct dc_surface_update *u)
2362 {
2363 union surface_update_flags *update_flags = &u->surface->update_flags;
2364 enum surface_update_type update_type = UPDATE_TYPE_FAST;
2365
2366 if (!u->plane_info)
2367 return UPDATE_TYPE_FAST;
2368
2369 if (u->plane_info->color_space != u->surface->color_space) {
2370 update_flags->bits.color_space_change = 1;
2371 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2372 }
2373
2374 if (u->plane_info->horizontal_mirror != u->surface->horizontal_mirror) {
2375 update_flags->bits.horizontal_mirror_change = 1;
2376 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2377 }
2378
2379 if (u->plane_info->rotation != u->surface->rotation) {
2380 update_flags->bits.rotation_change = 1;
2381 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2382 }
2383
2384 if (u->plane_info->format != u->surface->format) {
2385 update_flags->bits.pixel_format_change = 1;
2386 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2387 }
2388
2389 if (u->plane_info->stereo_format != u->surface->stereo_format) {
2390 update_flags->bits.stereo_format_change = 1;
2391 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2392 }
2393
2394 if (u->plane_info->per_pixel_alpha != u->surface->per_pixel_alpha) {
2395 update_flags->bits.per_pixel_alpha_change = 1;
2396 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2397 }
2398
2399 if (u->plane_info->global_alpha_value != u->surface->global_alpha_value) {
2400 update_flags->bits.global_alpha_change = 1;
2401 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2402 }
2403
2404 if (u->plane_info->dcc.enable != u->surface->dcc.enable
2405 || u->plane_info->dcc.dcc_ind_blk != u->surface->dcc.dcc_ind_blk
2406 || u->plane_info->dcc.meta_pitch != u->surface->dcc.meta_pitch) {
2407 /* During DCC on/off, stutter period is calculated before
2408 * DCC has fully transitioned. This results in incorrect
2409 * stutter period calculation. Triggering a full update will
2410 * recalculate stutter period.
2411 */
2412 update_flags->bits.dcc_change = 1;
2413 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2414 }
2415
2416 if (resource_pixel_format_to_bpp(u->plane_info->format) !=
2417 resource_pixel_format_to_bpp(u->surface->format)) {
2418 /* different bytes per element will require full bandwidth
2419 * and DML calculation
2420 */
2421 update_flags->bits.bpp_change = 1;
2422 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2423 }
2424
2425 if (u->plane_info->plane_size.surface_pitch != u->surface->plane_size.surface_pitch
2426 || u->plane_info->plane_size.chroma_pitch != u->surface->plane_size.chroma_pitch) {
2427 update_flags->bits.plane_size_change = 1;
2428 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2429 }
2430
2431
2432 if (memcmp(&u->plane_info->tiling_info, &u->surface->tiling_info,
2433 sizeof(union dc_tiling_info)) != 0) {
2434 update_flags->bits.swizzle_change = 1;
2435 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2436
2437 /* todo: below are HW dependent, we should add a hook to
2438 * DCE/N resource and validated there.
2439 */
2440 if (u->plane_info->tiling_info.gfx9.swizzle != DC_SW_LINEAR) {
2441 /* swizzled mode requires RQ to be setup properly,
2442 * thus need to run DML to calculate RQ settings
2443 */
2444 update_flags->bits.bandwidth_change = 1;
2445 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2446 }
2447 }
2448
2449 /* This should be UPDATE_TYPE_FAST if nothing has changed. */
2450 return update_type;
2451 }
2452
get_scaling_info_update_type(const struct dc * dc,const struct dc_surface_update * u)2453 static enum surface_update_type get_scaling_info_update_type(
2454 const struct dc *dc,
2455 const struct dc_surface_update *u)
2456 {
2457 union surface_update_flags *update_flags = &u->surface->update_flags;
2458
2459 if (!u->scaling_info)
2460 return UPDATE_TYPE_FAST;
2461
2462 if (u->scaling_info->dst_rect.width != u->surface->dst_rect.width
2463 || u->scaling_info->dst_rect.height != u->surface->dst_rect.height
2464 || u->scaling_info->scaling_quality.integer_scaling !=
2465 u->surface->scaling_quality.integer_scaling
2466 ) {
2467 update_flags->bits.scaling_change = 1;
2468
2469 if ((u->scaling_info->dst_rect.width < u->surface->dst_rect.width
2470 || u->scaling_info->dst_rect.height < u->surface->dst_rect.height)
2471 && (u->scaling_info->dst_rect.width < u->surface->src_rect.width
2472 || u->scaling_info->dst_rect.height < u->surface->src_rect.height))
2473 /* Making dst rect smaller requires a bandwidth change */
2474 update_flags->bits.bandwidth_change = 1;
2475 }
2476
2477 if (u->scaling_info->src_rect.width != u->surface->src_rect.width
2478 || u->scaling_info->src_rect.height != u->surface->src_rect.height) {
2479
2480 update_flags->bits.scaling_change = 1;
2481 if (u->scaling_info->src_rect.width > u->surface->src_rect.width
2482 || u->scaling_info->src_rect.height > u->surface->src_rect.height)
2483 /* Making src rect bigger requires a bandwidth change */
2484 update_flags->bits.clock_change = 1;
2485 }
2486
2487 if (u->scaling_info->src_rect.width > dc->caps.max_optimizable_video_width &&
2488 (u->scaling_info->clip_rect.width > u->surface->clip_rect.width ||
2489 u->scaling_info->clip_rect.height > u->surface->clip_rect.height))
2490 /* Changing clip size of a large surface may result in MPC slice count change */
2491 update_flags->bits.bandwidth_change = 1;
2492
2493 if (u->scaling_info->src_rect.x != u->surface->src_rect.x
2494 || u->scaling_info->src_rect.y != u->surface->src_rect.y
2495 || u->scaling_info->clip_rect.x != u->surface->clip_rect.x
2496 || u->scaling_info->clip_rect.y != u->surface->clip_rect.y
2497 || u->scaling_info->dst_rect.x != u->surface->dst_rect.x
2498 || u->scaling_info->dst_rect.y != u->surface->dst_rect.y)
2499 update_flags->bits.position_change = 1;
2500
2501 if (update_flags->bits.clock_change
2502 || update_flags->bits.bandwidth_change
2503 || update_flags->bits.scaling_change)
2504 return UPDATE_TYPE_FULL;
2505
2506 if (update_flags->bits.position_change)
2507 return UPDATE_TYPE_MED;
2508
2509 return UPDATE_TYPE_FAST;
2510 }
2511
det_surface_update(const struct dc * dc,const struct dc_surface_update * u)2512 static enum surface_update_type det_surface_update(const struct dc *dc,
2513 const struct dc_surface_update *u)
2514 {
2515 const struct dc_state *context = dc->current_state;
2516 enum surface_update_type type;
2517 enum surface_update_type overall_type = UPDATE_TYPE_FAST;
2518 union surface_update_flags *update_flags = &u->surface->update_flags;
2519
2520 if (!is_surface_in_context(context, u->surface) || u->surface->force_full_update) {
2521 update_flags->raw = 0xFFFFFFFF;
2522 return UPDATE_TYPE_FULL;
2523 }
2524
2525 update_flags->raw = 0; // Reset all flags
2526
2527 type = get_plane_info_update_type(u);
2528 elevate_update_type(&overall_type, type);
2529
2530 type = get_scaling_info_update_type(dc, u);
2531 elevate_update_type(&overall_type, type);
2532
2533 if (u->flip_addr) {
2534 update_flags->bits.addr_update = 1;
2535 if (u->flip_addr->address.tmz_surface != u->surface->address.tmz_surface) {
2536 update_flags->bits.tmz_changed = 1;
2537 elevate_update_type(&overall_type, UPDATE_TYPE_FULL);
2538 }
2539 }
2540 if (u->in_transfer_func)
2541 update_flags->bits.in_transfer_func_change = 1;
2542
2543 if (u->input_csc_color_matrix)
2544 update_flags->bits.input_csc_change = 1;
2545
2546 if (u->coeff_reduction_factor)
2547 update_flags->bits.coeff_reduction_change = 1;
2548
2549 if (u->gamut_remap_matrix)
2550 update_flags->bits.gamut_remap_change = 1;
2551
2552 if (u->gamma) {
2553 enum surface_pixel_format format = SURFACE_PIXEL_FORMAT_GRPH_BEGIN;
2554
2555 if (u->plane_info)
2556 format = u->plane_info->format;
2557 else if (u->surface)
2558 format = u->surface->format;
2559
2560 if (dce_use_lut(format))
2561 update_flags->bits.gamma_change = 1;
2562 }
2563
2564 if (u->lut3d_func || u->func_shaper)
2565 update_flags->bits.lut_3d = 1;
2566
2567 if (u->hdr_mult.value)
2568 if (u->hdr_mult.value != u->surface->hdr_mult.value) {
2569 update_flags->bits.hdr_mult = 1;
2570 elevate_update_type(&overall_type, UPDATE_TYPE_MED);
2571 }
2572
2573 if (update_flags->bits.in_transfer_func_change) {
2574 type = UPDATE_TYPE_MED;
2575 elevate_update_type(&overall_type, type);
2576 }
2577
2578 if (update_flags->bits.lut_3d) {
2579 type = UPDATE_TYPE_FULL;
2580 elevate_update_type(&overall_type, type);
2581 }
2582
2583 if (dc->debug.enable_legacy_fast_update &&
2584 (update_flags->bits.gamma_change ||
2585 update_flags->bits.gamut_remap_change ||
2586 update_flags->bits.input_csc_change ||
2587 update_flags->bits.coeff_reduction_change)) {
2588 type = UPDATE_TYPE_FULL;
2589 elevate_update_type(&overall_type, type);
2590 }
2591 return overall_type;
2592 }
2593
check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)2594 static enum surface_update_type check_update_surfaces_for_stream(
2595 struct dc *dc,
2596 struct dc_surface_update *updates,
2597 int surface_count,
2598 struct dc_stream_update *stream_update,
2599 const struct dc_stream_status *stream_status)
2600 {
2601 int i;
2602 enum surface_update_type overall_type = UPDATE_TYPE_FAST;
2603
2604 if (dc->idle_optimizations_allowed)
2605 overall_type = UPDATE_TYPE_FULL;
2606
2607 if (stream_status == NULL || stream_status->plane_count != surface_count)
2608 overall_type = UPDATE_TYPE_FULL;
2609
2610 if (stream_update && stream_update->pending_test_pattern) {
2611 overall_type = UPDATE_TYPE_FULL;
2612 }
2613
2614 /* some stream updates require passive update */
2615 if (stream_update) {
2616 union stream_update_flags *su_flags = &stream_update->stream->update_flags;
2617
2618 if ((stream_update->src.height != 0 && stream_update->src.width != 0) ||
2619 (stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
2620 stream_update->integer_scaling_update)
2621 su_flags->bits.scaling = 1;
2622
2623 if (dc->debug.enable_legacy_fast_update && stream_update->out_transfer_func)
2624 su_flags->bits.out_tf = 1;
2625
2626 if (stream_update->abm_level)
2627 su_flags->bits.abm_level = 1;
2628
2629 if (stream_update->dpms_off)
2630 su_flags->bits.dpms_off = 1;
2631
2632 if (stream_update->gamut_remap)
2633 su_flags->bits.gamut_remap = 1;
2634
2635 if (stream_update->wb_update)
2636 su_flags->bits.wb_update = 1;
2637
2638 if (stream_update->dsc_config)
2639 su_flags->bits.dsc_changed = 1;
2640
2641 if (stream_update->mst_bw_update)
2642 su_flags->bits.mst_bw = 1;
2643
2644 if (stream_update->stream && stream_update->stream->freesync_on_desktop &&
2645 (stream_update->vrr_infopacket || stream_update->allow_freesync ||
2646 stream_update->vrr_active_variable || stream_update->vrr_active_fixed))
2647 su_flags->bits.fams_changed = 1;
2648
2649 if (su_flags->raw != 0)
2650 overall_type = UPDATE_TYPE_FULL;
2651
2652 if (stream_update->output_csc_transform || stream_update->output_color_space)
2653 su_flags->bits.out_csc = 1;
2654
2655 /* Output transfer function changes do not require bandwidth recalculation,
2656 * so don't trigger a full update
2657 */
2658 if (!dc->debug.enable_legacy_fast_update && stream_update->out_transfer_func)
2659 su_flags->bits.out_tf = 1;
2660 }
2661
2662 for (i = 0 ; i < surface_count; i++) {
2663 enum surface_update_type type =
2664 det_surface_update(dc, &updates[i]);
2665
2666 elevate_update_type(&overall_type, type);
2667 }
2668
2669 return overall_type;
2670 }
2671
2672 /*
2673 * dc_check_update_surfaces_for_stream() - Determine update type (fast, med, or full)
2674 *
2675 * See :c:type:`enum surface_update_type <surface_update_type>` for explanation of update types
2676 */
dc_check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)2677 enum surface_update_type dc_check_update_surfaces_for_stream(
2678 struct dc *dc,
2679 struct dc_surface_update *updates,
2680 int surface_count,
2681 struct dc_stream_update *stream_update,
2682 const struct dc_stream_status *stream_status)
2683 {
2684 int i;
2685 enum surface_update_type type;
2686
2687 if (stream_update)
2688 stream_update->stream->update_flags.raw = 0;
2689 for (i = 0; i < surface_count; i++)
2690 updates[i].surface->update_flags.raw = 0;
2691
2692 type = check_update_surfaces_for_stream(dc, updates, surface_count, stream_update, stream_status);
2693 if (type == UPDATE_TYPE_FULL) {
2694 if (stream_update) {
2695 uint32_t dsc_changed = stream_update->stream->update_flags.bits.dsc_changed;
2696 stream_update->stream->update_flags.raw = 0xFFFFFFFF;
2697 stream_update->stream->update_flags.bits.dsc_changed = dsc_changed;
2698 }
2699 for (i = 0; i < surface_count; i++)
2700 updates[i].surface->update_flags.raw = 0xFFFFFFFF;
2701 }
2702
2703 if (type == UPDATE_TYPE_FAST) {
2704 // If there's an available clock comparator, we use that.
2705 if (dc->clk_mgr->funcs->are_clock_states_equal) {
2706 if (!dc->clk_mgr->funcs->are_clock_states_equal(&dc->clk_mgr->clks, &dc->current_state->bw_ctx.bw.dcn.clk))
2707 dc->optimized_required = true;
2708 // Else we fallback to mem compare.
2709 } else if (memcmp(&dc->current_state->bw_ctx.bw.dcn.clk, &dc->clk_mgr->clks, offsetof(struct dc_clocks, prev_p_state_change_support)) != 0) {
2710 dc->optimized_required = true;
2711 }
2712
2713 dc->optimized_required |= dc->wm_optimized_required;
2714 }
2715
2716 return type;
2717 }
2718
stream_get_status(struct dc_state * ctx,struct dc_stream_state * stream)2719 static struct dc_stream_status *stream_get_status(
2720 struct dc_state *ctx,
2721 struct dc_stream_state *stream)
2722 {
2723 uint8_t i;
2724
2725 for (i = 0; i < ctx->stream_count; i++) {
2726 if (stream == ctx->streams[i]) {
2727 return &ctx->stream_status[i];
2728 }
2729 }
2730
2731 return NULL;
2732 }
2733
2734 static const enum surface_update_type update_surface_trace_level = UPDATE_TYPE_FULL;
2735
copy_surface_update_to_plane(struct dc_plane_state * surface,struct dc_surface_update * srf_update)2736 static void copy_surface_update_to_plane(
2737 struct dc_plane_state *surface,
2738 struct dc_surface_update *srf_update)
2739 {
2740 if (srf_update->flip_addr) {
2741 surface->address = srf_update->flip_addr->address;
2742 surface->flip_immediate =
2743 srf_update->flip_addr->flip_immediate;
2744 surface->time.time_elapsed_in_us[surface->time.index] =
2745 srf_update->flip_addr->flip_timestamp_in_us -
2746 surface->time.prev_update_time_in_us;
2747 surface->time.prev_update_time_in_us =
2748 srf_update->flip_addr->flip_timestamp_in_us;
2749 surface->time.index++;
2750 if (surface->time.index >= DC_PLANE_UPDATE_TIMES_MAX)
2751 surface->time.index = 0;
2752
2753 surface->triplebuffer_flips = srf_update->flip_addr->triplebuffer_flips;
2754 }
2755
2756 if (srf_update->scaling_info) {
2757 surface->scaling_quality =
2758 srf_update->scaling_info->scaling_quality;
2759 surface->dst_rect =
2760 srf_update->scaling_info->dst_rect;
2761 surface->src_rect =
2762 srf_update->scaling_info->src_rect;
2763 surface->clip_rect =
2764 srf_update->scaling_info->clip_rect;
2765 }
2766
2767 if (srf_update->plane_info) {
2768 surface->color_space =
2769 srf_update->plane_info->color_space;
2770 surface->format =
2771 srf_update->plane_info->format;
2772 surface->plane_size =
2773 srf_update->plane_info->plane_size;
2774 surface->rotation =
2775 srf_update->plane_info->rotation;
2776 surface->horizontal_mirror =
2777 srf_update->plane_info->horizontal_mirror;
2778 surface->stereo_format =
2779 srf_update->plane_info->stereo_format;
2780 surface->tiling_info =
2781 srf_update->plane_info->tiling_info;
2782 surface->visible =
2783 srf_update->plane_info->visible;
2784 surface->per_pixel_alpha =
2785 srf_update->plane_info->per_pixel_alpha;
2786 surface->global_alpha =
2787 srf_update->plane_info->global_alpha;
2788 surface->global_alpha_value =
2789 srf_update->plane_info->global_alpha_value;
2790 surface->dcc =
2791 srf_update->plane_info->dcc;
2792 surface->layer_index =
2793 srf_update->plane_info->layer_index;
2794 }
2795
2796 if (srf_update->gamma &&
2797 (surface->gamma_correction !=
2798 srf_update->gamma)) {
2799 memcpy(&surface->gamma_correction->entries,
2800 &srf_update->gamma->entries,
2801 sizeof(struct dc_gamma_entries));
2802 surface->gamma_correction->is_identity =
2803 srf_update->gamma->is_identity;
2804 surface->gamma_correction->num_entries =
2805 srf_update->gamma->num_entries;
2806 surface->gamma_correction->type =
2807 srf_update->gamma->type;
2808 }
2809
2810 if (srf_update->in_transfer_func &&
2811 (surface->in_transfer_func !=
2812 srf_update->in_transfer_func)) {
2813 surface->in_transfer_func->sdr_ref_white_level =
2814 srf_update->in_transfer_func->sdr_ref_white_level;
2815 surface->in_transfer_func->tf =
2816 srf_update->in_transfer_func->tf;
2817 surface->in_transfer_func->type =
2818 srf_update->in_transfer_func->type;
2819 memcpy(&surface->in_transfer_func->tf_pts,
2820 &srf_update->in_transfer_func->tf_pts,
2821 sizeof(struct dc_transfer_func_distributed_points));
2822 }
2823
2824 if (srf_update->func_shaper &&
2825 (surface->in_shaper_func !=
2826 srf_update->func_shaper))
2827 memcpy(surface->in_shaper_func, srf_update->func_shaper,
2828 sizeof(*surface->in_shaper_func));
2829
2830 if (srf_update->lut3d_func &&
2831 (surface->lut3d_func !=
2832 srf_update->lut3d_func))
2833 memcpy(surface->lut3d_func, srf_update->lut3d_func,
2834 sizeof(*surface->lut3d_func));
2835
2836 if (srf_update->hdr_mult.value)
2837 surface->hdr_mult =
2838 srf_update->hdr_mult;
2839
2840 if (srf_update->blend_tf &&
2841 (surface->blend_tf !=
2842 srf_update->blend_tf))
2843 memcpy(surface->blend_tf, srf_update->blend_tf,
2844 sizeof(*surface->blend_tf));
2845
2846 if (srf_update->input_csc_color_matrix)
2847 surface->input_csc_color_matrix =
2848 *srf_update->input_csc_color_matrix;
2849
2850 if (srf_update->coeff_reduction_factor)
2851 surface->coeff_reduction_factor =
2852 *srf_update->coeff_reduction_factor;
2853
2854 if (srf_update->gamut_remap_matrix)
2855 surface->gamut_remap_matrix =
2856 *srf_update->gamut_remap_matrix;
2857 }
2858
copy_stream_update_to_stream(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,struct dc_stream_update * update)2859 static void copy_stream_update_to_stream(struct dc *dc,
2860 struct dc_state *context,
2861 struct dc_stream_state *stream,
2862 struct dc_stream_update *update)
2863 {
2864 struct dc_context *dc_ctx = dc->ctx;
2865
2866 if (update == NULL || stream == NULL)
2867 return;
2868
2869 if (update->src.height && update->src.width)
2870 stream->src = update->src;
2871
2872 if (update->dst.height && update->dst.width)
2873 stream->dst = update->dst;
2874
2875 if (update->out_transfer_func &&
2876 stream->out_transfer_func != update->out_transfer_func) {
2877 stream->out_transfer_func->sdr_ref_white_level =
2878 update->out_transfer_func->sdr_ref_white_level;
2879 stream->out_transfer_func->tf = update->out_transfer_func->tf;
2880 stream->out_transfer_func->type =
2881 update->out_transfer_func->type;
2882 memcpy(&stream->out_transfer_func->tf_pts,
2883 &update->out_transfer_func->tf_pts,
2884 sizeof(struct dc_transfer_func_distributed_points));
2885 }
2886
2887 if (update->hdr_static_metadata)
2888 stream->hdr_static_metadata = *update->hdr_static_metadata;
2889
2890 if (update->abm_level)
2891 stream->abm_level = *update->abm_level;
2892
2893 if (update->periodic_interrupt)
2894 stream->periodic_interrupt = *update->periodic_interrupt;
2895
2896 if (update->gamut_remap)
2897 stream->gamut_remap_matrix = *update->gamut_remap;
2898
2899 /* Note: this being updated after mode set is currently not a use case
2900 * however if it arises OCSC would need to be reprogrammed at the
2901 * minimum
2902 */
2903 if (update->output_color_space)
2904 stream->output_color_space = *update->output_color_space;
2905
2906 if (update->output_csc_transform)
2907 stream->csc_color_matrix = *update->output_csc_transform;
2908
2909 if (update->vrr_infopacket)
2910 stream->vrr_infopacket = *update->vrr_infopacket;
2911
2912 if (update->allow_freesync)
2913 stream->allow_freesync = *update->allow_freesync;
2914
2915 if (update->vrr_active_variable)
2916 stream->vrr_active_variable = *update->vrr_active_variable;
2917
2918 if (update->vrr_active_fixed)
2919 stream->vrr_active_fixed = *update->vrr_active_fixed;
2920
2921 if (update->crtc_timing_adjust)
2922 stream->adjust = *update->crtc_timing_adjust;
2923
2924 if (update->dpms_off)
2925 stream->dpms_off = *update->dpms_off;
2926
2927 if (update->hfvsif_infopacket)
2928 stream->hfvsif_infopacket = *update->hfvsif_infopacket;
2929
2930 if (update->vtem_infopacket)
2931 stream->vtem_infopacket = *update->vtem_infopacket;
2932
2933 if (update->vsc_infopacket)
2934 stream->vsc_infopacket = *update->vsc_infopacket;
2935
2936 if (update->vsp_infopacket)
2937 stream->vsp_infopacket = *update->vsp_infopacket;
2938
2939 if (update->adaptive_sync_infopacket)
2940 stream->adaptive_sync_infopacket = *update->adaptive_sync_infopacket;
2941
2942 if (update->dither_option)
2943 stream->dither_option = *update->dither_option;
2944
2945 if (update->pending_test_pattern)
2946 stream->test_pattern = *update->pending_test_pattern;
2947 /* update current stream with writeback info */
2948 if (update->wb_update) {
2949 int i;
2950
2951 stream->num_wb_info = update->wb_update->num_wb_info;
2952 ASSERT(stream->num_wb_info <= MAX_DWB_PIPES);
2953 for (i = 0; i < stream->num_wb_info; i++)
2954 stream->writeback_info[i] =
2955 update->wb_update->writeback_info[i];
2956 }
2957 if (update->dsc_config) {
2958 struct dc_dsc_config old_dsc_cfg = stream->timing.dsc_cfg;
2959 uint32_t old_dsc_enabled = stream->timing.flags.DSC;
2960 uint32_t enable_dsc = (update->dsc_config->num_slices_h != 0 &&
2961 update->dsc_config->num_slices_v != 0);
2962
2963 /* Use temporarry context for validating new DSC config */
2964 struct dc_state *dsc_validate_context = dc_create_state(dc);
2965
2966 if (dsc_validate_context) {
2967 dc_resource_state_copy_construct(dc->current_state, dsc_validate_context);
2968
2969 stream->timing.dsc_cfg = *update->dsc_config;
2970 stream->timing.flags.DSC = enable_dsc;
2971 if (!dc->res_pool->funcs->validate_bandwidth(dc, dsc_validate_context, true)) {
2972 stream->timing.dsc_cfg = old_dsc_cfg;
2973 stream->timing.flags.DSC = old_dsc_enabled;
2974 update->dsc_config = NULL;
2975 }
2976
2977 dc_release_state(dsc_validate_context);
2978 } else {
2979 DC_ERROR("Failed to allocate new validate context for DSC change\n");
2980 update->dsc_config = NULL;
2981 }
2982 }
2983 }
2984
update_planes_and_stream_state(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type * new_update_type,struct dc_state ** new_context)2985 static bool update_planes_and_stream_state(struct dc *dc,
2986 struct dc_surface_update *srf_updates, int surface_count,
2987 struct dc_stream_state *stream,
2988 struct dc_stream_update *stream_update,
2989 enum surface_update_type *new_update_type,
2990 struct dc_state **new_context)
2991 {
2992 struct dc_state *context;
2993 int i, j;
2994 enum surface_update_type update_type;
2995 const struct dc_stream_status *stream_status;
2996 struct dc_context *dc_ctx = dc->ctx;
2997
2998 stream_status = dc_stream_get_status(stream);
2999
3000 if (!stream_status) {
3001 if (surface_count) /* Only an error condition if surf_count non-zero*/
3002 ASSERT(false);
3003
3004 return false; /* Cannot commit surface to stream that is not committed */
3005 }
3006
3007 context = dc->current_state;
3008
3009 update_type = dc_check_update_surfaces_for_stream(
3010 dc, srf_updates, surface_count, stream_update, stream_status);
3011
3012 /* update current stream with the new updates */
3013 copy_stream_update_to_stream(dc, context, stream, stream_update);
3014
3015 /* do not perform surface update if surface has invalid dimensions
3016 * (all zero) and no scaling_info is provided
3017 */
3018 if (surface_count > 0) {
3019 for (i = 0; i < surface_count; i++) {
3020 if ((srf_updates[i].surface->src_rect.width == 0 ||
3021 srf_updates[i].surface->src_rect.height == 0 ||
3022 srf_updates[i].surface->dst_rect.width == 0 ||
3023 srf_updates[i].surface->dst_rect.height == 0) &&
3024 (!srf_updates[i].scaling_info ||
3025 srf_updates[i].scaling_info->src_rect.width == 0 ||
3026 srf_updates[i].scaling_info->src_rect.height == 0 ||
3027 srf_updates[i].scaling_info->dst_rect.width == 0 ||
3028 srf_updates[i].scaling_info->dst_rect.height == 0)) {
3029 DC_ERROR("Invalid src/dst rects in surface update!\n");
3030 return false;
3031 }
3032 }
3033 }
3034
3035 if (update_type >= update_surface_trace_level)
3036 update_surface_trace(dc, srf_updates, surface_count);
3037
3038 if (update_type >= UPDATE_TYPE_FULL) {
3039 struct dc_plane_state *new_planes[MAX_SURFACES] = {0};
3040
3041 for (i = 0; i < surface_count; i++)
3042 new_planes[i] = srf_updates[i].surface;
3043
3044 /* initialize scratch memory for building context */
3045 context = dc_create_state(dc);
3046 if (context == NULL) {
3047 DC_ERROR("Failed to allocate new validate context!\n");
3048 return false;
3049 }
3050
3051 dc_resource_state_copy_construct(
3052 dc->current_state, context);
3053
3054 /* For each full update, remove all existing phantom pipes first.
3055 * Ensures that we have enough pipes for newly added MPO planes
3056 */
3057 if (dc->res_pool->funcs->remove_phantom_pipes)
3058 dc->res_pool->funcs->remove_phantom_pipes(dc, context, false);
3059
3060 /*remove old surfaces from context */
3061 if (!dc_rem_all_planes_for_stream(dc, stream, context)) {
3062
3063 BREAK_TO_DEBUGGER();
3064 goto fail;
3065 }
3066
3067 /* add surface to context */
3068 if (!dc_add_all_planes_for_stream(dc, stream, new_planes, surface_count, context)) {
3069
3070 BREAK_TO_DEBUGGER();
3071 goto fail;
3072 }
3073 }
3074
3075 /* save update parameters into surface */
3076 for (i = 0; i < surface_count; i++) {
3077 struct dc_plane_state *surface = srf_updates[i].surface;
3078
3079 copy_surface_update_to_plane(surface, &srf_updates[i]);
3080
3081 if (update_type >= UPDATE_TYPE_MED) {
3082 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3083 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3084
3085 if (pipe_ctx->plane_state != surface)
3086 continue;
3087
3088 resource_build_scaling_params(pipe_ctx);
3089 }
3090 }
3091 }
3092
3093 if (update_type == UPDATE_TYPE_FULL) {
3094 if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) {
3095 /* For phantom pipes we remove and create a new set of phantom pipes
3096 * for each full update (because we don't know if we'll need phantom
3097 * pipes until after the first round of validation). However, if validation
3098 * fails we need to keep the existing phantom pipes (because we don't update
3099 * the dc->current_state).
3100 *
3101 * The phantom stream/plane refcount is decremented for validation because
3102 * we assume it'll be removed (the free comes when the dc_state is freed),
3103 * but if validation fails we have to increment back the refcount so it's
3104 * consistent.
3105 */
3106 if (dc->res_pool->funcs->retain_phantom_pipes)
3107 dc->res_pool->funcs->retain_phantom_pipes(dc, dc->current_state);
3108 BREAK_TO_DEBUGGER();
3109 goto fail;
3110 }
3111 }
3112
3113 *new_context = context;
3114 *new_update_type = update_type;
3115
3116 return true;
3117
3118 fail:
3119 dc_release_state(context);
3120
3121 return false;
3122
3123 }
3124
commit_planes_do_stream_update(struct dc * dc,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3125 static void commit_planes_do_stream_update(struct dc *dc,
3126 struct dc_stream_state *stream,
3127 struct dc_stream_update *stream_update,
3128 enum surface_update_type update_type,
3129 struct dc_state *context)
3130 {
3131 int j;
3132
3133 // Stream updates
3134 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3135 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3136
3137 if (resource_is_pipe_type(pipe_ctx, OTG_MASTER) && pipe_ctx->stream == stream) {
3138
3139 if (stream_update->periodic_interrupt && dc->hwss.setup_periodic_interrupt)
3140 dc->hwss.setup_periodic_interrupt(dc, pipe_ctx);
3141
3142 if ((stream_update->hdr_static_metadata && !stream->use_dynamic_meta) ||
3143 stream_update->vrr_infopacket ||
3144 stream_update->vsc_infopacket ||
3145 stream_update->vsp_infopacket ||
3146 stream_update->hfvsif_infopacket ||
3147 stream_update->adaptive_sync_infopacket ||
3148 stream_update->vtem_infopacket) {
3149 resource_build_info_frame(pipe_ctx);
3150 dc->hwss.update_info_frame(pipe_ctx);
3151
3152 if (dc_is_dp_signal(pipe_ctx->stream->signal))
3153 dc->link_srv->dp_trace_source_sequence(
3154 pipe_ctx->stream->link,
3155 DPCD_SOURCE_SEQ_AFTER_UPDATE_INFO_FRAME);
3156 }
3157
3158 if (stream_update->hdr_static_metadata &&
3159 stream->use_dynamic_meta &&
3160 dc->hwss.set_dmdata_attributes &&
3161 pipe_ctx->stream->dmdata_address.quad_part != 0)
3162 dc->hwss.set_dmdata_attributes(pipe_ctx);
3163
3164 if (stream_update->gamut_remap)
3165 dc_stream_set_gamut_remap(dc, stream);
3166
3167 if (stream_update->output_csc_transform)
3168 dc_stream_program_csc_matrix(dc, stream);
3169
3170 if (stream_update->dither_option) {
3171 struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
3172 resource_build_bit_depth_reduction_params(pipe_ctx->stream,
3173 &pipe_ctx->stream->bit_depth_params);
3174 pipe_ctx->stream_res.opp->funcs->opp_program_fmt(pipe_ctx->stream_res.opp,
3175 &stream->bit_depth_params,
3176 &stream->clamping);
3177 while (odm_pipe) {
3178 odm_pipe->stream_res.opp->funcs->opp_program_fmt(odm_pipe->stream_res.opp,
3179 &stream->bit_depth_params,
3180 &stream->clamping);
3181 odm_pipe = odm_pipe->next_odm_pipe;
3182 }
3183 }
3184
3185
3186 /* Full fe update*/
3187 if (update_type == UPDATE_TYPE_FAST)
3188 continue;
3189
3190 if (stream_update->dsc_config)
3191 dc->link_srv->update_dsc_config(pipe_ctx);
3192
3193 if (stream_update->mst_bw_update) {
3194 if (stream_update->mst_bw_update->is_increase)
3195 dc->link_srv->increase_mst_payload(pipe_ctx,
3196 stream_update->mst_bw_update->mst_stream_bw);
3197 else
3198 dc->link_srv->reduce_mst_payload(pipe_ctx,
3199 stream_update->mst_bw_update->mst_stream_bw);
3200 }
3201
3202 if (stream_update->pending_test_pattern) {
3203 dc_link_dp_set_test_pattern(stream->link,
3204 stream->test_pattern.type,
3205 stream->test_pattern.color_space,
3206 stream->test_pattern.p_link_settings,
3207 stream->test_pattern.p_custom_pattern,
3208 stream->test_pattern.cust_pattern_size);
3209 }
3210
3211 if (stream_update->dpms_off) {
3212 if (*stream_update->dpms_off) {
3213 dc->link_srv->set_dpms_off(pipe_ctx);
3214 /* for dpms, keep acquired resources*/
3215 if (pipe_ctx->stream_res.audio && !dc->debug.az_endpoint_mute_only)
3216 pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);
3217
3218 dc->optimized_required = true;
3219
3220 } else {
3221 if (get_seamless_boot_stream_count(context) == 0)
3222 dc->hwss.prepare_bandwidth(dc, dc->current_state);
3223 dc->link_srv->set_dpms_on(dc->current_state, pipe_ctx);
3224 }
3225 } else if (pipe_ctx->stream->link->wa_flags.blank_stream_on_ocs_change && stream_update->output_color_space
3226 && !stream->dpms_off && dc_is_dp_signal(pipe_ctx->stream->signal)) {
3227 /*
3228 * Workaround for firmware issue in some receivers where they don't pick up
3229 * correct output color space unless DP link is disabled/re-enabled
3230 */
3231 dc->link_srv->set_dpms_on(dc->current_state, pipe_ctx);
3232 }
3233
3234 if (stream_update->abm_level && pipe_ctx->stream_res.abm) {
3235 bool should_program_abm = true;
3236
3237 // if otg funcs defined check if blanked before programming
3238 if (pipe_ctx->stream_res.tg->funcs->is_blanked)
3239 if (pipe_ctx->stream_res.tg->funcs->is_blanked(pipe_ctx->stream_res.tg))
3240 should_program_abm = false;
3241
3242 if (should_program_abm) {
3243 if (*stream_update->abm_level == ABM_LEVEL_IMMEDIATE_DISABLE) {
3244 dc->hwss.set_abm_immediate_disable(pipe_ctx);
3245 } else {
3246 pipe_ctx->stream_res.abm->funcs->set_abm_level(
3247 pipe_ctx->stream_res.abm, stream->abm_level);
3248 }
3249 }
3250 }
3251 }
3252 }
3253 }
3254
dc_dmub_should_send_dirty_rect_cmd(struct dc * dc,struct dc_stream_state * stream)3255 static bool dc_dmub_should_send_dirty_rect_cmd(struct dc *dc, struct dc_stream_state *stream)
3256 {
3257 if ((stream->link->psr_settings.psr_version == DC_PSR_VERSION_SU_1
3258 || stream->link->psr_settings.psr_version == DC_PSR_VERSION_1)
3259 && stream->ctx->dce_version >= DCN_VERSION_3_1)
3260 return true;
3261
3262 if (stream->link->replay_settings.config.replay_supported)
3263 return true;
3264
3265 return false;
3266 }
3267
dc_dmub_update_dirty_rect(struct dc * dc,int surface_count,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,struct dc_state * context)3268 void dc_dmub_update_dirty_rect(struct dc *dc,
3269 int surface_count,
3270 struct dc_stream_state *stream,
3271 struct dc_surface_update *srf_updates,
3272 struct dc_state *context)
3273 {
3274 union dmub_rb_cmd cmd;
3275 struct dmub_cmd_update_dirty_rect_data *update_dirty_rect;
3276 unsigned int i, j;
3277 unsigned int panel_inst = 0;
3278
3279 if (!dc_dmub_should_send_dirty_rect_cmd(dc, stream))
3280 return;
3281
3282 if (!dc_get_edp_link_panel_inst(dc, stream->link, &panel_inst))
3283 return;
3284
3285 memset(&cmd, 0x0, sizeof(cmd));
3286 cmd.update_dirty_rect.header.type = DMUB_CMD__UPDATE_DIRTY_RECT;
3287 cmd.update_dirty_rect.header.sub_type = 0;
3288 cmd.update_dirty_rect.header.payload_bytes =
3289 sizeof(cmd.update_dirty_rect) -
3290 sizeof(cmd.update_dirty_rect.header);
3291 update_dirty_rect = &cmd.update_dirty_rect.update_dirty_rect_data;
3292 for (i = 0; i < surface_count; i++) {
3293 struct dc_plane_state *plane_state = srf_updates[i].surface;
3294 const struct dc_flip_addrs *flip_addr = srf_updates[i].flip_addr;
3295
3296 if (!srf_updates[i].surface || !flip_addr)
3297 continue;
3298 /* Do not send in immediate flip mode */
3299 if (srf_updates[i].surface->flip_immediate)
3300 continue;
3301
3302 update_dirty_rect->dirty_rect_count = flip_addr->dirty_rect_count;
3303 memcpy(update_dirty_rect->src_dirty_rects, flip_addr->dirty_rects,
3304 sizeof(flip_addr->dirty_rects));
3305 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3306 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3307
3308 if (pipe_ctx->stream != stream)
3309 continue;
3310 if (pipe_ctx->plane_state != plane_state)
3311 continue;
3312
3313 update_dirty_rect->panel_inst = panel_inst;
3314 update_dirty_rect->pipe_idx = j;
3315 dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
3316 }
3317 }
3318 }
3319
build_dmub_update_dirty_rect(struct dc * dc,int surface_count,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,struct dc_state * context,struct dc_dmub_cmd dc_dmub_cmd[],unsigned int * dmub_cmd_count)3320 static void build_dmub_update_dirty_rect(
3321 struct dc *dc,
3322 int surface_count,
3323 struct dc_stream_state *stream,
3324 struct dc_surface_update *srf_updates,
3325 struct dc_state *context,
3326 struct dc_dmub_cmd dc_dmub_cmd[],
3327 unsigned int *dmub_cmd_count)
3328 {
3329 union dmub_rb_cmd cmd;
3330 struct dmub_cmd_update_dirty_rect_data *update_dirty_rect;
3331 unsigned int i, j;
3332 unsigned int panel_inst = 0;
3333
3334 if (!dc_dmub_should_send_dirty_rect_cmd(dc, stream))
3335 return;
3336
3337 if (!dc_get_edp_link_panel_inst(dc, stream->link, &panel_inst))
3338 return;
3339
3340 memset(&cmd, 0x0, sizeof(cmd));
3341 cmd.update_dirty_rect.header.type = DMUB_CMD__UPDATE_DIRTY_RECT;
3342 cmd.update_dirty_rect.header.sub_type = 0;
3343 cmd.update_dirty_rect.header.payload_bytes =
3344 sizeof(cmd.update_dirty_rect) -
3345 sizeof(cmd.update_dirty_rect.header);
3346 update_dirty_rect = &cmd.update_dirty_rect.update_dirty_rect_data;
3347 for (i = 0; i < surface_count; i++) {
3348 struct dc_plane_state *plane_state = srf_updates[i].surface;
3349 const struct dc_flip_addrs *flip_addr = srf_updates[i].flip_addr;
3350
3351 if (!srf_updates[i].surface || !flip_addr)
3352 continue;
3353 /* Do not send in immediate flip mode */
3354 if (srf_updates[i].surface->flip_immediate)
3355 continue;
3356 update_dirty_rect->cmd_version = DMUB_CMD_PSR_CONTROL_VERSION_1;
3357 update_dirty_rect->dirty_rect_count = flip_addr->dirty_rect_count;
3358 memcpy(update_dirty_rect->src_dirty_rects, flip_addr->dirty_rects,
3359 sizeof(flip_addr->dirty_rects));
3360 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3361 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3362
3363 if (pipe_ctx->stream != stream)
3364 continue;
3365 if (pipe_ctx->plane_state != plane_state)
3366 continue;
3367 update_dirty_rect->panel_inst = panel_inst;
3368 update_dirty_rect->pipe_idx = j;
3369 dc_dmub_cmd[*dmub_cmd_count].dmub_cmd = cmd;
3370 dc_dmub_cmd[*dmub_cmd_count].wait_type = DM_DMUB_WAIT_TYPE_NO_WAIT;
3371 (*dmub_cmd_count)++;
3372 }
3373 }
3374 }
3375
3376
3377 /**
3378 * build_dmub_cmd_list() - Build an array of DMCUB commands to be sent to DMCUB
3379 *
3380 * @dc: Current DC state
3381 * @srf_updates: Array of surface updates
3382 * @surface_count: Number of surfaces that have an updated
3383 * @stream: Corresponding stream to be updated in the current flip
3384 * @context: New DC state to be programmed
3385 *
3386 * @dc_dmub_cmd: Array of DMCUB commands to be sent to DMCUB
3387 * @dmub_cmd_count: Count indicating the number of DMCUB commands in dc_dmub_cmd array
3388 *
3389 * This function builds an array of DMCUB commands to be sent to DMCUB. This function is required
3390 * to build an array of commands and have them sent while the OTG lock is acquired.
3391 *
3392 * Return: void
3393 */
build_dmub_cmd_list(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_state * context,struct dc_dmub_cmd dc_dmub_cmd[],unsigned int * dmub_cmd_count)3394 static void build_dmub_cmd_list(struct dc *dc,
3395 struct dc_surface_update *srf_updates,
3396 int surface_count,
3397 struct dc_stream_state *stream,
3398 struct dc_state *context,
3399 struct dc_dmub_cmd dc_dmub_cmd[],
3400 unsigned int *dmub_cmd_count)
3401 {
3402 // Initialize cmd count to 0
3403 *dmub_cmd_count = 0;
3404 build_dmub_update_dirty_rect(dc, surface_count, stream, srf_updates, context, dc_dmub_cmd, dmub_cmd_count);
3405 }
3406
commit_planes_for_stream_fast(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3407 static void commit_planes_for_stream_fast(struct dc *dc,
3408 struct dc_surface_update *srf_updates,
3409 int surface_count,
3410 struct dc_stream_state *stream,
3411 struct dc_stream_update *stream_update,
3412 enum surface_update_type update_type,
3413 struct dc_state *context)
3414 {
3415 int i, j;
3416 struct pipe_ctx *top_pipe_to_program = NULL;
3417 dc_z10_restore(dc);
3418
3419 top_pipe_to_program = resource_get_otg_master_for_stream(
3420 &context->res_ctx,
3421 stream);
3422
3423 if (dc->debug.visual_confirm) {
3424 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3425 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3426
3427 if (pipe->stream && pipe->plane_state)
3428 dc_update_viusal_confirm_color(dc, context, pipe);
3429 }
3430 }
3431
3432 for (i = 0; i < surface_count; i++) {
3433 struct dc_plane_state *plane_state = srf_updates[i].surface;
3434 /*set logical flag for lock/unlock use*/
3435 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3436 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3437
3438 if (!pipe_ctx->plane_state)
3439 continue;
3440 if (should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3441 continue;
3442 pipe_ctx->plane_state->triplebuffer_flips = false;
3443 if (update_type == UPDATE_TYPE_FAST &&
3444 dc->hwss.program_triplebuffer &&
3445 !pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) {
3446 /*triple buffer for VUpdate only*/
3447 pipe_ctx->plane_state->triplebuffer_flips = true;
3448 }
3449 }
3450 }
3451
3452 build_dmub_cmd_list(dc,
3453 srf_updates,
3454 surface_count,
3455 stream,
3456 context,
3457 context->dc_dmub_cmd,
3458 &(context->dmub_cmd_count));
3459 hwss_build_fast_sequence(dc,
3460 context->dc_dmub_cmd,
3461 context->dmub_cmd_count,
3462 context->block_sequence,
3463 &(context->block_sequence_steps),
3464 top_pipe_to_program);
3465 hwss_execute_sequence(dc,
3466 context->block_sequence,
3467 context->block_sequence_steps);
3468 /* Clear update flags so next flip doesn't have redundant programming
3469 * (if there's no stream update, the update flags are not cleared).
3470 * Surface updates are cleared unconditionally at the beginning of each flip,
3471 * so no need to clear here.
3472 */
3473 if (top_pipe_to_program->stream)
3474 top_pipe_to_program->stream->update_flags.raw = 0;
3475 }
3476
wait_for_outstanding_hw_updates(struct dc * dc,const struct dc_state * dc_context)3477 static void wait_for_outstanding_hw_updates(struct dc *dc, const struct dc_state *dc_context)
3478 {
3479 /*
3480 * This function calls HWSS to wait for any potentially double buffered
3481 * operations to complete. It should be invoked as a pre-amble prior
3482 * to full update programming before asserting any HW locks.
3483 */
3484 int pipe_idx;
3485 int opp_inst;
3486 int opp_count = dc->res_pool->pipe_count;
3487 struct hubp *hubp;
3488 int mpcc_inst;
3489 const struct pipe_ctx *pipe_ctx;
3490
3491 for (pipe_idx = 0; pipe_idx < dc->res_pool->pipe_count; pipe_idx++) {
3492 pipe_ctx = &dc_context->res_ctx.pipe_ctx[pipe_idx];
3493
3494 if (!pipe_ctx->stream)
3495 continue;
3496
3497 if (pipe_ctx->stream_res.tg->funcs->wait_drr_doublebuffer_pending_clear)
3498 pipe_ctx->stream_res.tg->funcs->wait_drr_doublebuffer_pending_clear(pipe_ctx->stream_res.tg);
3499
3500 hubp = pipe_ctx->plane_res.hubp;
3501 if (!hubp)
3502 continue;
3503
3504 mpcc_inst = hubp->inst;
3505 // MPCC inst is equal to pipe index in practice
3506 for (opp_inst = 0; opp_inst < opp_count; opp_inst++) {
3507 if (dc->res_pool->opps[opp_inst]->mpcc_disconnect_pending[mpcc_inst]) {
3508 dc->res_pool->mpc->funcs->wait_for_idle(dc->res_pool->mpc, mpcc_inst);
3509 dc->res_pool->opps[opp_inst]->mpcc_disconnect_pending[mpcc_inst] = false;
3510 break;
3511 }
3512 }
3513 }
3514 }
3515
commit_planes_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3516 static void commit_planes_for_stream(struct dc *dc,
3517 struct dc_surface_update *srf_updates,
3518 int surface_count,
3519 struct dc_stream_state *stream,
3520 struct dc_stream_update *stream_update,
3521 enum surface_update_type update_type,
3522 struct dc_state *context)
3523 {
3524 int i, j;
3525 struct pipe_ctx *top_pipe_to_program = NULL;
3526 bool should_lock_all_pipes = (update_type != UPDATE_TYPE_FAST);
3527 bool subvp_prev_use = false;
3528 bool subvp_curr_use = false;
3529
3530 // Once we apply the new subvp context to hardware it won't be in the
3531 // dc->current_state anymore, so we have to cache it before we apply
3532 // the new SubVP context
3533 subvp_prev_use = false;
3534 dc_z10_restore(dc);
3535 if (update_type == UPDATE_TYPE_FULL)
3536 wait_for_outstanding_hw_updates(dc, context);
3537
3538 if (update_type == UPDATE_TYPE_FULL) {
3539 dc_allow_idle_optimizations(dc, false);
3540
3541 if (get_seamless_boot_stream_count(context) == 0)
3542 dc->hwss.prepare_bandwidth(dc, context);
3543
3544 if (dc->hwss.update_dsc_pg)
3545 dc->hwss.update_dsc_pg(dc, context, false);
3546
3547 context_clock_trace(dc, context);
3548 }
3549
3550 top_pipe_to_program = resource_get_otg_master_for_stream(
3551 &context->res_ctx,
3552 stream);
3553
3554 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3555 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
3556
3557 // Check old context for SubVP
3558 subvp_prev_use |= (old_pipe->stream && old_pipe->stream->mall_stream_config.type == SUBVP_PHANTOM);
3559 if (subvp_prev_use)
3560 break;
3561 }
3562
3563 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3564 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3565
3566 if (pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
3567 subvp_curr_use = true;
3568 break;
3569 }
3570 }
3571
3572 if (dc->debug.visual_confirm)
3573 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3574 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3575
3576 if (pipe->stream && pipe->plane_state)
3577 dc_update_viusal_confirm_color(dc, context, pipe);
3578 }
3579
3580 if (stream->test_pattern.type != DP_TEST_PATTERN_VIDEO_MODE) {
3581 struct pipe_ctx *mpcc_pipe;
3582 struct pipe_ctx *odm_pipe;
3583
3584 for (mpcc_pipe = top_pipe_to_program; mpcc_pipe; mpcc_pipe = mpcc_pipe->bottom_pipe)
3585 for (odm_pipe = mpcc_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
3586 odm_pipe->ttu_regs.min_ttu_vblank = MAX_TTU;
3587 }
3588
3589 if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
3590 if (top_pipe_to_program &&
3591 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
3592 if (should_use_dmub_lock(stream->link)) {
3593 union dmub_hw_lock_flags hw_locks = { 0 };
3594 struct dmub_hw_lock_inst_flags inst_flags = { 0 };
3595
3596 hw_locks.bits.lock_dig = 1;
3597 inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
3598
3599 dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
3600 true,
3601 &hw_locks,
3602 &inst_flags);
3603 } else
3604 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable(
3605 top_pipe_to_program->stream_res.tg);
3606 }
3607
3608 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3609 if (dc->hwss.subvp_pipe_control_lock)
3610 dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, NULL, subvp_prev_use);
3611 dc->hwss.interdependent_update_lock(dc, context, true);
3612
3613 } else {
3614 if (dc->hwss.subvp_pipe_control_lock)
3615 dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use);
3616 /* Lock the top pipe while updating plane addrs, since freesync requires
3617 * plane addr update event triggers to be synchronized.
3618 * top_pipe_to_program is expected to never be NULL
3619 */
3620 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, true);
3621 }
3622
3623 dc_dmub_update_dirty_rect(dc, surface_count, stream, srf_updates, context);
3624
3625 // Stream updates
3626 if (stream_update)
3627 commit_planes_do_stream_update(dc, stream, stream_update, update_type, context);
3628
3629 if (surface_count == 0) {
3630 /*
3631 * In case of turning off screen, no need to program front end a second time.
3632 * just return after program blank.
3633 */
3634 if (dc->hwss.apply_ctx_for_surface)
3635 dc->hwss.apply_ctx_for_surface(dc, stream, 0, context);
3636 if (dc->hwss.program_front_end_for_ctx)
3637 dc->hwss.program_front_end_for_ctx(dc, context);
3638
3639 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3640 dc->hwss.interdependent_update_lock(dc, context, false);
3641 } else {
3642 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
3643 }
3644 dc->hwss.post_unlock_program_front_end(dc, context);
3645
3646 if (update_type != UPDATE_TYPE_FAST)
3647 if (dc->hwss.commit_subvp_config)
3648 dc->hwss.commit_subvp_config(dc, context);
3649
3650 /* Since phantom pipe programming is moved to post_unlock_program_front_end,
3651 * move the SubVP lock to after the phantom pipes have been setup
3652 */
3653 if (dc->hwss.subvp_pipe_control_lock)
3654 dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes,
3655 NULL, subvp_prev_use);
3656 return;
3657 }
3658
3659 if (update_type != UPDATE_TYPE_FAST) {
3660 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3661 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3662
3663 if ((dc->debug.visual_confirm == VISUAL_CONFIRM_SUBVP ||
3664 dc->debug.visual_confirm == VISUAL_CONFIRM_MCLK_SWITCH) &&
3665 pipe_ctx->stream && pipe_ctx->plane_state) {
3666 /* Only update visual confirm for SUBVP and Mclk switching here.
3667 * The bar appears on all pipes, so we need to update the bar on all displays,
3668 * so the information doesn't get stale.
3669 */
3670 dc->hwss.update_visual_confirm_color(dc, pipe_ctx,
3671 pipe_ctx->plane_res.hubp->inst);
3672 }
3673 }
3674 }
3675
3676 for (i = 0; i < surface_count; i++) {
3677 struct dc_plane_state *plane_state = srf_updates[i].surface;
3678 /*set logical flag for lock/unlock use*/
3679 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3680 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3681 if (!pipe_ctx->plane_state)
3682 continue;
3683 if (should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3684 continue;
3685 pipe_ctx->plane_state->triplebuffer_flips = false;
3686 if (update_type == UPDATE_TYPE_FAST &&
3687 dc->hwss.program_triplebuffer != NULL &&
3688 !pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) {
3689 /*triple buffer for VUpdate only*/
3690 pipe_ctx->plane_state->triplebuffer_flips = true;
3691 }
3692 }
3693 if (update_type == UPDATE_TYPE_FULL) {
3694 /* force vsync flip when reconfiguring pipes to prevent underflow */
3695 plane_state->flip_immediate = false;
3696 }
3697 }
3698
3699 // Update Type FULL, Surface updates
3700 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3701 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3702
3703 if (!pipe_ctx->top_pipe &&
3704 !pipe_ctx->prev_odm_pipe &&
3705 should_update_pipe_for_stream(context, pipe_ctx, stream)) {
3706 struct dc_stream_status *stream_status = NULL;
3707
3708 if (!pipe_ctx->plane_state)
3709 continue;
3710
3711 /* Full fe update*/
3712 if (update_type == UPDATE_TYPE_FAST)
3713 continue;
3714
3715 ASSERT(!pipe_ctx->plane_state->triplebuffer_flips);
3716
3717 if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
3718 /*turn off triple buffer for full update*/
3719 dc->hwss.program_triplebuffer(
3720 dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
3721 }
3722 stream_status =
3723 stream_get_status(context, pipe_ctx->stream);
3724
3725 if (dc->hwss.apply_ctx_for_surface)
3726 dc->hwss.apply_ctx_for_surface(
3727 dc, pipe_ctx->stream, stream_status->plane_count, context);
3728 }
3729 }
3730 if (dc->hwss.program_front_end_for_ctx && update_type != UPDATE_TYPE_FAST) {
3731 dc->hwss.program_front_end_for_ctx(dc, context);
3732 if (dc->debug.validate_dml_output) {
3733 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3734 struct pipe_ctx *cur_pipe = &context->res_ctx.pipe_ctx[i];
3735 if (cur_pipe->stream == NULL)
3736 continue;
3737
3738 cur_pipe->plane_res.hubp->funcs->validate_dml_output(
3739 cur_pipe->plane_res.hubp, dc->ctx,
3740 &context->res_ctx.pipe_ctx[i].rq_regs,
3741 &context->res_ctx.pipe_ctx[i].dlg_regs,
3742 &context->res_ctx.pipe_ctx[i].ttu_regs);
3743 }
3744 }
3745 }
3746
3747 // Update Type FAST, Surface updates
3748 if (update_type == UPDATE_TYPE_FAST) {
3749 if (dc->hwss.set_flip_control_gsl)
3750 for (i = 0; i < surface_count; i++) {
3751 struct dc_plane_state *plane_state = srf_updates[i].surface;
3752
3753 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3754 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3755
3756 if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
3757 continue;
3758
3759 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3760 continue;
3761
3762 // GSL has to be used for flip immediate
3763 dc->hwss.set_flip_control_gsl(pipe_ctx,
3764 pipe_ctx->plane_state->flip_immediate);
3765 }
3766 }
3767
3768 /* Perform requested Updates */
3769 for (i = 0; i < surface_count; i++) {
3770 struct dc_plane_state *plane_state = srf_updates[i].surface;
3771
3772 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3773 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3774
3775 if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
3776 continue;
3777
3778 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3779 continue;
3780
3781 /*program triple buffer after lock based on flip type*/
3782 if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
3783 /*only enable triplebuffer for fast_update*/
3784 dc->hwss.program_triplebuffer(
3785 dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
3786 }
3787 if (pipe_ctx->plane_state->update_flags.bits.addr_update)
3788 dc->hwss.update_plane_addr(dc, pipe_ctx);
3789 }
3790 }
3791 }
3792
3793 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3794 dc->hwss.interdependent_update_lock(dc, context, false);
3795 } else {
3796 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
3797 }
3798
3799 if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
3800 if (top_pipe_to_program &&
3801 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
3802 top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
3803 top_pipe_to_program->stream_res.tg,
3804 CRTC_STATE_VACTIVE);
3805 top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
3806 top_pipe_to_program->stream_res.tg,
3807 CRTC_STATE_VBLANK);
3808 top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
3809 top_pipe_to_program->stream_res.tg,
3810 CRTC_STATE_VACTIVE);
3811
3812 if (should_use_dmub_lock(stream->link)) {
3813 union dmub_hw_lock_flags hw_locks = { 0 };
3814 struct dmub_hw_lock_inst_flags inst_flags = { 0 };
3815
3816 hw_locks.bits.lock_dig = 1;
3817 inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
3818
3819 dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
3820 false,
3821 &hw_locks,
3822 &inst_flags);
3823 } else
3824 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_disable(
3825 top_pipe_to_program->stream_res.tg);
3826 }
3827
3828 if (subvp_curr_use) {
3829 /* If enabling subvp or transitioning from subvp->subvp, enable the
3830 * phantom streams before we program front end for the phantom pipes.
3831 */
3832 if (update_type != UPDATE_TYPE_FAST) {
3833 if (dc->hwss.enable_phantom_streams)
3834 dc->hwss.enable_phantom_streams(dc, context);
3835 }
3836 }
3837
3838 if (update_type != UPDATE_TYPE_FAST)
3839 dc->hwss.post_unlock_program_front_end(dc, context);
3840
3841 if (subvp_prev_use && !subvp_curr_use) {
3842 /* If disabling subvp, disable phantom streams after front end
3843 * programming has completed (we turn on phantom OTG in order
3844 * to complete the plane disable for phantom pipes).
3845 */
3846 dc->hwss.apply_ctx_to_hw(dc, context);
3847 }
3848
3849 if (update_type != UPDATE_TYPE_FAST)
3850 if (dc->hwss.commit_subvp_config)
3851 dc->hwss.commit_subvp_config(dc, context);
3852 /* Since phantom pipe programming is moved to post_unlock_program_front_end,
3853 * move the SubVP lock to after the phantom pipes have been setup
3854 */
3855 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3856 if (dc->hwss.subvp_pipe_control_lock)
3857 dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, NULL, subvp_prev_use);
3858 } else {
3859 if (dc->hwss.subvp_pipe_control_lock)
3860 dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use);
3861 }
3862
3863 // Fire manual trigger only when bottom plane is flipped
3864 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3865 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3866
3867 if (!pipe_ctx->plane_state)
3868 continue;
3869
3870 if (pipe_ctx->bottom_pipe || pipe_ctx->next_odm_pipe ||
3871 !pipe_ctx->stream || !should_update_pipe_for_stream(context, pipe_ctx, stream) ||
3872 !pipe_ctx->plane_state->update_flags.bits.addr_update ||
3873 pipe_ctx->plane_state->skip_manual_trigger)
3874 continue;
3875
3876 if (pipe_ctx->stream_res.tg->funcs->program_manual_trigger)
3877 pipe_ctx->stream_res.tg->funcs->program_manual_trigger(pipe_ctx->stream_res.tg);
3878 }
3879 }
3880
3881 /**
3882 * could_mpcc_tree_change_for_active_pipes - Check if an OPP associated with MPCC might change
3883 *
3884 * @dc: Used to get the current state status
3885 * @stream: Target stream, which we want to remove the attached planes
3886 * @surface_count: Number of surface update
3887 * @is_plane_addition: [in] Fill out with true if it is a plane addition case
3888 *
3889 * DCN32x and newer support a feature named Dynamic ODM which can conflict with
3890 * the MPO if used simultaneously in some specific configurations (e.g.,
3891 * 4k@144). This function checks if the incoming context requires applying a
3892 * transition state with unnecessary pipe splitting and ODM disabled to
3893 * circumvent our hardware limitations to prevent this edge case. If the OPP
3894 * associated with an MPCC might change due to plane additions, this function
3895 * returns true.
3896 *
3897 * Return:
3898 * Return true if OPP and MPCC might change, otherwise, return false.
3899 */
could_mpcc_tree_change_for_active_pipes(struct dc * dc,struct dc_stream_state * stream,int surface_count,bool * is_plane_addition)3900 static bool could_mpcc_tree_change_for_active_pipes(struct dc *dc,
3901 struct dc_stream_state *stream,
3902 int surface_count,
3903 bool *is_plane_addition)
3904 {
3905
3906 struct dc_stream_status *cur_stream_status = stream_get_status(dc->current_state, stream);
3907 bool force_minimal_pipe_splitting = false;
3908 bool subvp_active = false;
3909 uint32_t i;
3910
3911 *is_plane_addition = false;
3912
3913 if (cur_stream_status &&
3914 dc->current_state->stream_count > 0 &&
3915 dc->debug.pipe_split_policy != MPC_SPLIT_AVOID) {
3916 /* determine if minimal transition is required due to MPC*/
3917 if (surface_count > 0) {
3918 if (cur_stream_status->plane_count > surface_count) {
3919 force_minimal_pipe_splitting = true;
3920 } else if (cur_stream_status->plane_count < surface_count) {
3921 force_minimal_pipe_splitting = true;
3922 *is_plane_addition = true;
3923 }
3924 }
3925 }
3926
3927 if (cur_stream_status &&
3928 dc->current_state->stream_count == 1 &&
3929 dc->debug.enable_single_display_2to1_odm_policy) {
3930 /* determine if minimal transition is required due to dynamic ODM*/
3931 if (surface_count > 0) {
3932 if (cur_stream_status->plane_count > 2 && cur_stream_status->plane_count > surface_count) {
3933 force_minimal_pipe_splitting = true;
3934 } else if (surface_count > 2 && cur_stream_status->plane_count < surface_count) {
3935 force_minimal_pipe_splitting = true;
3936 *is_plane_addition = true;
3937 }
3938 }
3939 }
3940
3941 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3942 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
3943
3944 if (pipe->stream && pipe->stream->mall_stream_config.type != SUBVP_NONE) {
3945 subvp_active = true;
3946 break;
3947 }
3948 }
3949
3950 /* For SubVP when adding or removing planes we need to add a minimal transition
3951 * (even when disabling all planes). Whenever disabling a phantom pipe, we
3952 * must use the minimal transition path to disable the pipe correctly.
3953 *
3954 * We want to use the minimal transition whenever subvp is active, not only if
3955 * a plane is being added / removed from a subvp stream (MPO plane can be added
3956 * to a DRR pipe of SubVP + DRR config, in which case we still want to run through
3957 * a min transition to disable subvp.
3958 */
3959 if (cur_stream_status && subvp_active) {
3960 /* determine if minimal transition is required due to SubVP*/
3961 if (cur_stream_status->plane_count > surface_count) {
3962 force_minimal_pipe_splitting = true;
3963 } else if (cur_stream_status->plane_count < surface_count) {
3964 force_minimal_pipe_splitting = true;
3965 *is_plane_addition = true;
3966 }
3967 }
3968
3969 return force_minimal_pipe_splitting;
3970 }
3971
3972 /**
3973 * commit_minimal_transition_state - Create a transition pipe split state
3974 *
3975 * @dc: Used to get the current state status
3976 * @transition_base_context: New transition state
3977 *
3978 * In some specific configurations, such as pipe split on multi-display with
3979 * MPO and/or Dynamic ODM, removing a plane may cause unsupported pipe
3980 * programming when moving to new planes. To mitigate those types of problems,
3981 * this function adds a transition state that minimizes pipe usage before
3982 * programming the new configuration. When adding a new plane, the current
3983 * state requires the least pipes, so it is applied without splitting. When
3984 * removing a plane, the new state requires the least pipes, so it is applied
3985 * without splitting.
3986 *
3987 * Return:
3988 * Return false if something is wrong in the transition state.
3989 */
commit_minimal_transition_state(struct dc * dc,struct dc_state * transition_base_context)3990 static bool commit_minimal_transition_state(struct dc *dc,
3991 struct dc_state *transition_base_context)
3992 {
3993 struct dc_state *transition_context = dc_create_state(dc);
3994 enum pipe_split_policy tmp_mpc_policy = 0;
3995 bool temp_dynamic_odm_policy = 0;
3996 bool temp_subvp_policy = 0;
3997 enum dc_status ret = DC_ERROR_UNEXPECTED;
3998 unsigned int i, j;
3999 unsigned int pipe_in_use = 0;
4000 bool subvp_in_use = false;
4001 bool odm_in_use = false;
4002
4003 if (!transition_context)
4004 return false;
4005 /* Setup:
4006 * Store the current ODM and MPC config in some temp variables to be
4007 * restored after we commit the transition state.
4008 */
4009
4010 /* check current pipes in use*/
4011 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4012 struct pipe_ctx *pipe = &transition_base_context->res_ctx.pipe_ctx[i];
4013
4014 if (pipe->plane_state)
4015 pipe_in_use++;
4016 }
4017
4018 /* If SubVP is enabled and we are adding or removing planes from any main subvp
4019 * pipe, we must use the minimal transition.
4020 */
4021 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4022 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4023
4024 if (pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
4025 subvp_in_use = true;
4026 break;
4027 }
4028 }
4029
4030 /* If ODM is enabled and we are adding or removing planes from any ODM
4031 * pipe, we must use the minimal transition.
4032 */
4033 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4034 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4035
4036 if (pipe->stream && pipe->next_odm_pipe) {
4037 odm_in_use = true;
4038 break;
4039 }
4040 }
4041
4042 /* When the OS add a new surface if we have been used all of pipes with odm combine
4043 * and mpc split feature, it need use commit_minimal_transition_state to transition safely.
4044 * After OS exit MPO, it will back to use odm and mpc split with all of pipes, we need
4045 * call it again. Otherwise return true to skip.
4046 *
4047 * Reduce the scenarios to use dc_commit_state_no_check in the stage of flip. Especially
4048 * enter/exit MPO when DCN still have enough resources.
4049 */
4050 if (pipe_in_use != dc->res_pool->pipe_count && !subvp_in_use && !odm_in_use) {
4051 dc_release_state(transition_context);
4052 return true;
4053 }
4054
4055 if (!dc->config.is_vmin_only_asic) {
4056 tmp_mpc_policy = dc->debug.pipe_split_policy;
4057 dc->debug.pipe_split_policy = MPC_SPLIT_AVOID;
4058 }
4059
4060 temp_dynamic_odm_policy = dc->debug.enable_single_display_2to1_odm_policy;
4061 dc->debug.enable_single_display_2to1_odm_policy = false;
4062
4063 temp_subvp_policy = dc->debug.force_disable_subvp;
4064 dc->debug.force_disable_subvp = true;
4065
4066 dc_resource_state_copy_construct(transition_base_context, transition_context);
4067
4068 /* commit minimal state */
4069 if (dc->res_pool->funcs->validate_bandwidth(dc, transition_context, false)) {
4070 for (i = 0; i < transition_context->stream_count; i++) {
4071 struct dc_stream_status *stream_status = &transition_context->stream_status[i];
4072
4073 for (j = 0; j < stream_status->plane_count; j++) {
4074 struct dc_plane_state *plane_state = stream_status->plane_states[j];
4075
4076 /* force vsync flip when reconfiguring pipes to prevent underflow
4077 * and corruption
4078 */
4079 plane_state->flip_immediate = false;
4080 }
4081 }
4082
4083 ret = dc_commit_state_no_check(dc, transition_context);
4084 }
4085
4086 /* always release as dc_commit_state_no_check retains in good case */
4087 dc_release_state(transition_context);
4088
4089 /* TearDown:
4090 * Restore original configuration for ODM and MPO.
4091 */
4092 if (!dc->config.is_vmin_only_asic)
4093 dc->debug.pipe_split_policy = tmp_mpc_policy;
4094
4095 dc->debug.enable_single_display_2to1_odm_policy = temp_dynamic_odm_policy;
4096 dc->debug.force_disable_subvp = temp_subvp_policy;
4097
4098 if (ret != DC_OK) {
4099 /* this should never happen */
4100 BREAK_TO_DEBUGGER();
4101 return false;
4102 }
4103
4104 /* force full surface update */
4105 for (i = 0; i < dc->current_state->stream_count; i++) {
4106 for (j = 0; j < dc->current_state->stream_status[i].plane_count; j++) {
4107 dc->current_state->stream_status[i].plane_states[j]->update_flags.raw = 0xFFFFFFFF;
4108 }
4109 }
4110
4111 return true;
4112 }
4113
4114 /**
4115 * update_seamless_boot_flags() - Helper function for updating seamless boot flags
4116 *
4117 * @dc: Current DC state
4118 * @context: New DC state to be programmed
4119 * @surface_count: Number of surfaces that have an updated
4120 * @stream: Corresponding stream to be updated in the current flip
4121 *
4122 * Updating seamless boot flags do not need to be part of the commit sequence. This
4123 * helper function will update the seamless boot flags on each flip (if required)
4124 * outside of the HW commit sequence (fast or slow).
4125 *
4126 * Return: void
4127 */
update_seamless_boot_flags(struct dc * dc,struct dc_state * context,int surface_count,struct dc_stream_state * stream)4128 static void update_seamless_boot_flags(struct dc *dc,
4129 struct dc_state *context,
4130 int surface_count,
4131 struct dc_stream_state *stream)
4132 {
4133 if (get_seamless_boot_stream_count(context) > 0 && surface_count > 0) {
4134 /* Optimize seamless boot flag keeps clocks and watermarks high until
4135 * first flip. After first flip, optimization is required to lower
4136 * bandwidth. Important to note that it is expected UEFI will
4137 * only light up a single display on POST, therefore we only expect
4138 * one stream with seamless boot flag set.
4139 */
4140 if (stream->apply_seamless_boot_optimization) {
4141 stream->apply_seamless_boot_optimization = false;
4142
4143 if (get_seamless_boot_stream_count(context) == 0)
4144 dc->optimized_required = true;
4145 }
4146 }
4147 }
4148
populate_fast_updates(struct dc_fast_update * fast_update,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update)4149 static void populate_fast_updates(struct dc_fast_update *fast_update,
4150 struct dc_surface_update *srf_updates,
4151 int surface_count,
4152 struct dc_stream_update *stream_update)
4153 {
4154 int i = 0;
4155
4156 if (stream_update) {
4157 fast_update[0].out_transfer_func = stream_update->out_transfer_func;
4158 fast_update[0].output_csc_transform = stream_update->output_csc_transform;
4159 }
4160
4161 for (i = 0; i < surface_count; i++) {
4162 fast_update[i].flip_addr = srf_updates[i].flip_addr;
4163 fast_update[i].gamma = srf_updates[i].gamma;
4164 fast_update[i].gamut_remap_matrix = srf_updates[i].gamut_remap_matrix;
4165 fast_update[i].input_csc_color_matrix = srf_updates[i].input_csc_color_matrix;
4166 fast_update[i].coeff_reduction_factor = srf_updates[i].coeff_reduction_factor;
4167 }
4168 }
4169
fast_updates_exist(struct dc_fast_update * fast_update,int surface_count)4170 static bool fast_updates_exist(struct dc_fast_update *fast_update, int surface_count)
4171 {
4172 int i;
4173
4174 if (fast_update[0].out_transfer_func ||
4175 fast_update[0].output_csc_transform)
4176 return true;
4177
4178 for (i = 0; i < surface_count; i++) {
4179 if (fast_update[i].flip_addr ||
4180 fast_update[i].gamma ||
4181 fast_update[i].gamut_remap_matrix ||
4182 fast_update[i].input_csc_color_matrix ||
4183 fast_update[i].coeff_reduction_factor)
4184 return true;
4185 }
4186
4187 return false;
4188 }
4189
full_update_required(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update,struct dc_stream_state * stream)4190 static bool full_update_required(struct dc *dc,
4191 struct dc_surface_update *srf_updates,
4192 int surface_count,
4193 struct dc_stream_update *stream_update,
4194 struct dc_stream_state *stream)
4195 {
4196
4197 int i;
4198 struct dc_stream_status *stream_status;
4199 const struct dc_state *context = dc->current_state;
4200
4201 for (i = 0; i < surface_count; i++) {
4202 if (srf_updates &&
4203 (srf_updates[i].plane_info ||
4204 srf_updates[i].scaling_info ||
4205 (srf_updates[i].hdr_mult.value &&
4206 srf_updates[i].hdr_mult.value != srf_updates->surface->hdr_mult.value) ||
4207 srf_updates[i].in_transfer_func ||
4208 srf_updates[i].func_shaper ||
4209 srf_updates[i].lut3d_func ||
4210 srf_updates[i].blend_tf ||
4211 srf_updates[i].surface->force_full_update ||
4212 (srf_updates[i].flip_addr &&
4213 srf_updates[i].flip_addr->address.tmz_surface != srf_updates[i].surface->address.tmz_surface) ||
4214 !is_surface_in_context(context, srf_updates[i].surface)))
4215 return true;
4216 }
4217
4218 if (stream_update &&
4219 (((stream_update->src.height != 0 && stream_update->src.width != 0) ||
4220 (stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
4221 stream_update->integer_scaling_update) ||
4222 stream_update->hdr_static_metadata ||
4223 stream_update->abm_level ||
4224 stream_update->periodic_interrupt ||
4225 stream_update->vrr_infopacket ||
4226 stream_update->vsc_infopacket ||
4227 stream_update->vsp_infopacket ||
4228 stream_update->hfvsif_infopacket ||
4229 stream_update->vtem_infopacket ||
4230 stream_update->adaptive_sync_infopacket ||
4231 stream_update->dpms_off ||
4232 stream_update->allow_freesync ||
4233 stream_update->vrr_active_variable ||
4234 stream_update->vrr_active_fixed ||
4235 stream_update->gamut_remap ||
4236 stream_update->output_color_space ||
4237 stream_update->dither_option ||
4238 stream_update->wb_update ||
4239 stream_update->dsc_config ||
4240 stream_update->mst_bw_update ||
4241 stream_update->func_shaper ||
4242 stream_update->lut3d_func ||
4243 stream_update->pending_test_pattern ||
4244 stream_update->crtc_timing_adjust))
4245 return true;
4246
4247 if (stream) {
4248 stream_status = dc_stream_get_status(stream);
4249 if (stream_status == NULL || stream_status->plane_count != surface_count)
4250 return true;
4251 }
4252 if (dc->idle_optimizations_allowed)
4253 return true;
4254
4255 return false;
4256 }
4257
fast_update_only(struct dc * dc,struct dc_fast_update * fast_update,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update,struct dc_stream_state * stream)4258 static bool fast_update_only(struct dc *dc,
4259 struct dc_fast_update *fast_update,
4260 struct dc_surface_update *srf_updates,
4261 int surface_count,
4262 struct dc_stream_update *stream_update,
4263 struct dc_stream_state *stream)
4264 {
4265 return fast_updates_exist(fast_update, surface_count)
4266 && !full_update_required(dc, srf_updates, surface_count, stream_update, stream);
4267 }
4268
dc_update_planes_and_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update)4269 bool dc_update_planes_and_stream(struct dc *dc,
4270 struct dc_surface_update *srf_updates, int surface_count,
4271 struct dc_stream_state *stream,
4272 struct dc_stream_update *stream_update)
4273 {
4274 struct dc_state *context;
4275 enum surface_update_type update_type;
4276 int i;
4277 struct mall_temp_config mall_temp_config;
4278 struct dc_fast_update fast_update[MAX_SURFACES] = {0};
4279
4280 /* In cases where MPO and split or ODM are used transitions can
4281 * cause underflow. Apply stream configuration with minimal pipe
4282 * split first to avoid unsupported transitions for active pipes.
4283 */
4284 bool force_minimal_pipe_splitting = 0;
4285 bool is_plane_addition = 0;
4286
4287 populate_fast_updates(fast_update, srf_updates, surface_count, stream_update);
4288 force_minimal_pipe_splitting = could_mpcc_tree_change_for_active_pipes(
4289 dc,
4290 stream,
4291 surface_count,
4292 &is_plane_addition);
4293
4294 /* on plane addition, minimal state is the current one */
4295 if (force_minimal_pipe_splitting && is_plane_addition &&
4296 !commit_minimal_transition_state(dc, dc->current_state))
4297 return false;
4298
4299 if (!update_planes_and_stream_state(
4300 dc,
4301 srf_updates,
4302 surface_count,
4303 stream,
4304 stream_update,
4305 &update_type,
4306 &context))
4307 return false;
4308
4309 /* on plane removal, minimal state is the new one */
4310 if (force_minimal_pipe_splitting && !is_plane_addition) {
4311 /* Since all phantom pipes are removed in full validation,
4312 * we have to save and restore the subvp/mall config when
4313 * we do a minimal transition since the flags marking the
4314 * pipe as subvp/phantom will be cleared (dc copy constructor
4315 * creates a shallow copy).
4316 */
4317 if (dc->res_pool->funcs->save_mall_state)
4318 dc->res_pool->funcs->save_mall_state(dc, context, &mall_temp_config);
4319 if (!commit_minimal_transition_state(dc, context)) {
4320 dc_release_state(context);
4321 return false;
4322 }
4323 if (dc->res_pool->funcs->restore_mall_state)
4324 dc->res_pool->funcs->restore_mall_state(dc, context, &mall_temp_config);
4325
4326 /* If we do a minimal transition with plane removal and the context
4327 * has subvp we also have to retain back the phantom stream / planes
4328 * since the refcount is decremented as part of the min transition
4329 * (we commit a state with no subvp, so the phantom streams / planes
4330 * had to be removed).
4331 */
4332 if (dc->res_pool->funcs->retain_phantom_pipes)
4333 dc->res_pool->funcs->retain_phantom_pipes(dc, context);
4334 update_type = UPDATE_TYPE_FULL;
4335 }
4336
4337 update_seamless_boot_flags(dc, context, surface_count, stream);
4338 if (fast_update_only(dc, fast_update, srf_updates, surface_count, stream_update, stream) &&
4339 !dc->debug.enable_legacy_fast_update) {
4340 commit_planes_for_stream_fast(dc,
4341 srf_updates,
4342 surface_count,
4343 stream,
4344 stream_update,
4345 update_type,
4346 context);
4347 } else {
4348 if (!stream_update &&
4349 dc->hwss.is_pipe_topology_transition_seamless &&
4350 !dc->hwss.is_pipe_topology_transition_seamless(
4351 dc, dc->current_state, context)) {
4352
4353 DC_LOG_ERROR("performing non-seamless pipe topology transition with surface only update!\n");
4354 BREAK_TO_DEBUGGER();
4355 }
4356 commit_planes_for_stream(
4357 dc,
4358 srf_updates,
4359 surface_count,
4360 stream,
4361 stream_update,
4362 update_type,
4363 context);
4364 }
4365
4366 if (dc->current_state != context) {
4367
4368 /* Since memory free requires elevated IRQL, an interrupt
4369 * request is generated by mem free. If this happens
4370 * between freeing and reassigning the context, our vsync
4371 * interrupt will call into dc and cause a memory
4372 * corruption BSOD. Hence, we first reassign the context,
4373 * then free the old context.
4374 */
4375
4376 struct dc_state *old = dc->current_state;
4377
4378 dc->current_state = context;
4379 dc_release_state(old);
4380
4381 // clear any forced full updates
4382 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4383 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
4384
4385 if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
4386 pipe_ctx->plane_state->force_full_update = false;
4387 }
4388 }
4389 return true;
4390 }
4391
dc_commit_updates_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,struct dc_state * state)4392 void dc_commit_updates_for_stream(struct dc *dc,
4393 struct dc_surface_update *srf_updates,
4394 int surface_count,
4395 struct dc_stream_state *stream,
4396 struct dc_stream_update *stream_update,
4397 struct dc_state *state)
4398 {
4399 const struct dc_stream_status *stream_status;
4400 enum surface_update_type update_type;
4401 struct dc_state *context;
4402 struct dc_context *dc_ctx = dc->ctx;
4403 int i, j;
4404 struct dc_fast_update fast_update[MAX_SURFACES] = {0};
4405
4406 populate_fast_updates(fast_update, srf_updates, surface_count, stream_update);
4407 stream_status = dc_stream_get_status(stream);
4408 context = dc->current_state;
4409
4410 update_type = dc_check_update_surfaces_for_stream(
4411 dc, srf_updates, surface_count, stream_update, stream_status);
4412
4413 /* TODO: Since change commit sequence can have a huge impact,
4414 * we decided to only enable it for DCN3x. However, as soon as
4415 * we get more confident about this change we'll need to enable
4416 * the new sequence for all ASICs.
4417 */
4418 if (dc->ctx->dce_version >= DCN_VERSION_3_2) {
4419 /*
4420 * Previous frame finished and HW is ready for optimization.
4421 */
4422 if (update_type == UPDATE_TYPE_FAST)
4423 dc_post_update_surfaces_to_stream(dc);
4424
4425 dc_update_planes_and_stream(dc, srf_updates,
4426 surface_count, stream,
4427 stream_update);
4428 return;
4429 }
4430
4431 if (update_type >= update_surface_trace_level)
4432 update_surface_trace(dc, srf_updates, surface_count);
4433
4434
4435 if (update_type >= UPDATE_TYPE_FULL) {
4436
4437 /* initialize scratch memory for building context */
4438 context = dc_create_state(dc);
4439 if (context == NULL) {
4440 DC_ERROR("Failed to allocate new validate context!\n");
4441 return;
4442 }
4443
4444 dc_resource_state_copy_construct(state, context);
4445
4446 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4447 struct pipe_ctx *new_pipe = &context->res_ctx.pipe_ctx[i];
4448 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4449
4450 if (new_pipe->plane_state && new_pipe->plane_state != old_pipe->plane_state)
4451 new_pipe->plane_state->force_full_update = true;
4452 }
4453 } else if (update_type == UPDATE_TYPE_FAST) {
4454 /*
4455 * Previous frame finished and HW is ready for optimization.
4456 */
4457 dc_post_update_surfaces_to_stream(dc);
4458 }
4459
4460
4461 for (i = 0; i < surface_count; i++) {
4462 struct dc_plane_state *surface = srf_updates[i].surface;
4463
4464 copy_surface_update_to_plane(surface, &srf_updates[i]);
4465
4466 if (update_type >= UPDATE_TYPE_MED) {
4467 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4468 struct pipe_ctx *pipe_ctx =
4469 &context->res_ctx.pipe_ctx[j];
4470
4471 if (pipe_ctx->plane_state != surface)
4472 continue;
4473
4474 resource_build_scaling_params(pipe_ctx);
4475 }
4476 }
4477 }
4478
4479 copy_stream_update_to_stream(dc, context, stream, stream_update);
4480
4481 if (update_type >= UPDATE_TYPE_FULL) {
4482 if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) {
4483 DC_ERROR("Mode validation failed for stream update!\n");
4484 dc_release_state(context);
4485 return;
4486 }
4487 }
4488
4489 TRACE_DC_PIPE_STATE(pipe_ctx, i, MAX_PIPES);
4490
4491 update_seamless_boot_flags(dc, context, surface_count, stream);
4492 if (fast_update_only(dc, fast_update, srf_updates, surface_count, stream_update, stream) &&
4493 !dc->debug.enable_legacy_fast_update) {
4494 commit_planes_for_stream_fast(dc,
4495 srf_updates,
4496 surface_count,
4497 stream,
4498 stream_update,
4499 update_type,
4500 context);
4501 } else {
4502 commit_planes_for_stream(
4503 dc,
4504 srf_updates,
4505 surface_count,
4506 stream,
4507 stream_update,
4508 update_type,
4509 context);
4510 }
4511 /*update current_State*/
4512 if (dc->current_state != context) {
4513
4514 struct dc_state *old = dc->current_state;
4515
4516 dc->current_state = context;
4517 dc_release_state(old);
4518
4519 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4520 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
4521
4522 if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
4523 pipe_ctx->plane_state->force_full_update = false;
4524 }
4525 }
4526
4527 /* Legacy optimization path for DCE. */
4528 if (update_type >= UPDATE_TYPE_FULL && dc_ctx->dce_version < DCE_VERSION_MAX) {
4529 dc_post_update_surfaces_to_stream(dc);
4530 TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
4531 }
4532
4533 return;
4534
4535 }
4536
dc_get_current_stream_count(struct dc * dc)4537 uint8_t dc_get_current_stream_count(struct dc *dc)
4538 {
4539 return dc->current_state->stream_count;
4540 }
4541
dc_get_stream_at_index(struct dc * dc,uint8_t i)4542 struct dc_stream_state *dc_get_stream_at_index(struct dc *dc, uint8_t i)
4543 {
4544 if (i < dc->current_state->stream_count)
4545 return dc->current_state->streams[i];
4546 return NULL;
4547 }
4548
dc_interrupt_to_irq_source(struct dc * dc,uint32_t src_id,uint32_t ext_id)4549 enum dc_irq_source dc_interrupt_to_irq_source(
4550 struct dc *dc,
4551 uint32_t src_id,
4552 uint32_t ext_id)
4553 {
4554 return dal_irq_service_to_irq_source(dc->res_pool->irqs, src_id, ext_id);
4555 }
4556
4557 /*
4558 * dc_interrupt_set() - Enable/disable an AMD hw interrupt source
4559 */
dc_interrupt_set(struct dc * dc,enum dc_irq_source src,bool enable)4560 bool dc_interrupt_set(struct dc *dc, enum dc_irq_source src, bool enable)
4561 {
4562
4563 if (dc == NULL)
4564 return false;
4565
4566 return dal_irq_service_set(dc->res_pool->irqs, src, enable);
4567 }
4568
dc_interrupt_ack(struct dc * dc,enum dc_irq_source src)4569 void dc_interrupt_ack(struct dc *dc, enum dc_irq_source src)
4570 {
4571 dal_irq_service_ack(dc->res_pool->irqs, src);
4572 }
4573
dc_power_down_on_boot(struct dc * dc)4574 void dc_power_down_on_boot(struct dc *dc)
4575 {
4576 if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW &&
4577 dc->hwss.power_down_on_boot)
4578 dc->hwss.power_down_on_boot(dc);
4579 }
4580
dc_set_power_state(struct dc * dc,enum dc_acpi_cm_power_state power_state)4581 void dc_set_power_state(
4582 struct dc *dc,
4583 enum dc_acpi_cm_power_state power_state)
4584 {
4585 struct kref refcount;
4586 struct display_mode_lib *dml;
4587
4588 if (!dc->current_state)
4589 return;
4590
4591 switch (power_state) {
4592 case DC_ACPI_CM_POWER_STATE_D0:
4593 dc_resource_state_construct(dc, dc->current_state);
4594
4595 dc_z10_restore(dc);
4596
4597 dc->hwss.init_hw(dc);
4598
4599 if (dc->hwss.init_sys_ctx != NULL &&
4600 dc->vm_pa_config.valid) {
4601 dc->hwss.init_sys_ctx(dc->hwseq, dc, &dc->vm_pa_config);
4602 }
4603
4604 break;
4605 default:
4606 ASSERT(dc->current_state->stream_count == 0);
4607 /* Zero out the current context so that on resume we start with
4608 * clean state, and dc hw programming optimizations will not
4609 * cause any trouble.
4610 */
4611 dml = kzalloc(sizeof(struct display_mode_lib),
4612 GFP_KERNEL);
4613
4614 ASSERT(dml);
4615 if (!dml)
4616 return;
4617
4618 /* Preserve refcount */
4619 refcount = dc->current_state->refcount;
4620 /* Preserve display mode lib */
4621 memcpy(dml, &dc->current_state->bw_ctx.dml, sizeof(struct display_mode_lib));
4622
4623 dc_resource_state_destruct(dc->current_state);
4624 memset(dc->current_state, 0,
4625 sizeof(*dc->current_state));
4626
4627 dc->current_state->refcount = refcount;
4628 dc->current_state->bw_ctx.dml = *dml;
4629
4630 kfree(dml);
4631
4632 break;
4633 }
4634 }
4635
dc_resume(struct dc * dc)4636 void dc_resume(struct dc *dc)
4637 {
4638 uint32_t i;
4639
4640 for (i = 0; i < dc->link_count; i++)
4641 dc->link_srv->resume(dc->links[i]);
4642 }
4643
dc_is_dmcu_initialized(struct dc * dc)4644 bool dc_is_dmcu_initialized(struct dc *dc)
4645 {
4646 struct dmcu *dmcu = dc->res_pool->dmcu;
4647
4648 if (dmcu)
4649 return dmcu->funcs->is_dmcu_initialized(dmcu);
4650 return false;
4651 }
4652
get_clock_requirements_for_state(struct dc_state * state,struct AsicStateEx * info)4653 void get_clock_requirements_for_state(struct dc_state *state, struct AsicStateEx *info)
4654 {
4655 info->displayClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dispclk_khz;
4656 info->engineClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_khz;
4657 info->memoryClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dramclk_khz;
4658 info->maxSupportedDppClock = (unsigned int)state->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz;
4659 info->dppClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dppclk_khz;
4660 info->socClock = (unsigned int)state->bw_ctx.bw.dcn.clk.socclk_khz;
4661 info->dcfClockDeepSleep = (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz;
4662 info->fClock = (unsigned int)state->bw_ctx.bw.dcn.clk.fclk_khz;
4663 info->phyClock = (unsigned int)state->bw_ctx.bw.dcn.clk.phyclk_khz;
4664 }
dc_set_clock(struct dc * dc,enum dc_clock_type clock_type,uint32_t clk_khz,uint32_t stepping)4665 enum dc_status dc_set_clock(struct dc *dc, enum dc_clock_type clock_type, uint32_t clk_khz, uint32_t stepping)
4666 {
4667 if (dc->hwss.set_clock)
4668 return dc->hwss.set_clock(dc, clock_type, clk_khz, stepping);
4669 return DC_ERROR_UNEXPECTED;
4670 }
dc_get_clock(struct dc * dc,enum dc_clock_type clock_type,struct dc_clock_config * clock_cfg)4671 void dc_get_clock(struct dc *dc, enum dc_clock_type clock_type, struct dc_clock_config *clock_cfg)
4672 {
4673 if (dc->hwss.get_clock)
4674 dc->hwss.get_clock(dc, clock_type, clock_cfg);
4675 }
4676
4677 /* enable/disable eDP PSR without specify stream for eDP */
dc_set_psr_allow_active(struct dc * dc,bool enable)4678 bool dc_set_psr_allow_active(struct dc *dc, bool enable)
4679 {
4680 int i;
4681 bool allow_active;
4682
4683 for (i = 0; i < dc->current_state->stream_count ; i++) {
4684 struct dc_link *link;
4685 struct dc_stream_state *stream = dc->current_state->streams[i];
4686
4687 link = stream->link;
4688 if (!link)
4689 continue;
4690
4691 if (link->psr_settings.psr_feature_enabled) {
4692 if (enable && !link->psr_settings.psr_allow_active) {
4693 allow_active = true;
4694 if (!dc_link_set_psr_allow_active(link, &allow_active, false, false, NULL))
4695 return false;
4696 } else if (!enable && link->psr_settings.psr_allow_active) {
4697 allow_active = false;
4698 if (!dc_link_set_psr_allow_active(link, &allow_active, true, false, NULL))
4699 return false;
4700 }
4701 }
4702 }
4703
4704 return true;
4705 }
4706
dc_allow_idle_optimizations(struct dc * dc,bool allow)4707 void dc_allow_idle_optimizations(struct dc *dc, bool allow)
4708 {
4709 if (dc->debug.disable_idle_power_optimizations)
4710 return;
4711
4712 if (dc->clk_mgr != NULL && dc->clk_mgr->funcs->is_smu_present)
4713 if (!dc->clk_mgr->funcs->is_smu_present(dc->clk_mgr))
4714 return;
4715
4716 if (allow == dc->idle_optimizations_allowed)
4717 return;
4718
4719 if (dc->hwss.apply_idle_power_optimizations && dc->clk_mgr != NULL &&
4720 dc->hwss.apply_idle_power_optimizations(dc, allow))
4721 dc->idle_optimizations_allowed = allow;
4722 }
4723
4724 /* set min and max memory clock to lowest and highest DPM level, respectively */
dc_unlock_memory_clock_frequency(struct dc * dc)4725 void dc_unlock_memory_clock_frequency(struct dc *dc)
4726 {
4727 if (dc->clk_mgr->funcs->set_hard_min_memclk)
4728 dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, false);
4729
4730 if (dc->clk_mgr->funcs->set_hard_max_memclk)
4731 dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
4732 }
4733
4734 /* set min memory clock to the min required for current mode, max to maxDPM */
dc_lock_memory_clock_frequency(struct dc * dc)4735 void dc_lock_memory_clock_frequency(struct dc *dc)
4736 {
4737 if (dc->clk_mgr->funcs->get_memclk_states_from_smu)
4738 dc->clk_mgr->funcs->get_memclk_states_from_smu(dc->clk_mgr);
4739
4740 if (dc->clk_mgr->funcs->set_hard_min_memclk)
4741 dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, true);
4742
4743 if (dc->clk_mgr->funcs->set_hard_max_memclk)
4744 dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
4745 }
4746
blank_and_force_memclk(struct dc * dc,bool apply,unsigned int memclk_mhz)4747 static void blank_and_force_memclk(struct dc *dc, bool apply, unsigned int memclk_mhz)
4748 {
4749 struct dc_state *context = dc->current_state;
4750 struct hubp *hubp;
4751 struct pipe_ctx *pipe;
4752 int i;
4753
4754 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4755 pipe = &context->res_ctx.pipe_ctx[i];
4756
4757 if (pipe->stream != NULL) {
4758 dc->hwss.disable_pixel_data(dc, pipe, true);
4759
4760 // wait for double buffer
4761 pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE);
4762 pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VBLANK);
4763 pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE);
4764
4765 hubp = pipe->plane_res.hubp;
4766 hubp->funcs->set_blank_regs(hubp, true);
4767 }
4768 }
4769
4770 dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, memclk_mhz);
4771 dc->clk_mgr->funcs->set_min_memclk(dc->clk_mgr, memclk_mhz);
4772
4773 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4774 pipe = &context->res_ctx.pipe_ctx[i];
4775
4776 if (pipe->stream != NULL) {
4777 dc->hwss.disable_pixel_data(dc, pipe, false);
4778
4779 hubp = pipe->plane_res.hubp;
4780 hubp->funcs->set_blank_regs(hubp, false);
4781 }
4782 }
4783 }
4784
4785
4786 /**
4787 * dc_enable_dcmode_clk_limit() - lower clocks in dc (battery) mode
4788 * @dc: pointer to dc of the dm calling this
4789 * @enable: True = transition to DC mode, false = transition back to AC mode
4790 *
4791 * Some SoCs define additional clock limits when in DC mode, DM should
4792 * invoke this function when the platform undergoes a power source transition
4793 * so DC can apply/unapply the limit. This interface may be disruptive to
4794 * the onscreen content.
4795 *
4796 * Context: Triggered by OS through DM interface, or manually by escape calls.
4797 * Need to hold a dclock when doing so.
4798 *
4799 * Return: none (void function)
4800 *
4801 */
dc_enable_dcmode_clk_limit(struct dc * dc,bool enable)4802 void dc_enable_dcmode_clk_limit(struct dc *dc, bool enable)
4803 {
4804 unsigned int softMax = 0, maxDPM = 0, funcMin = 0, i;
4805 bool p_state_change_support;
4806
4807 if (!dc->config.dc_mode_clk_limit_support)
4808 return;
4809
4810 softMax = dc->clk_mgr->bw_params->dc_mode_softmax_memclk;
4811 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries; i++) {
4812 if (dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz > maxDPM)
4813 maxDPM = dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz;
4814 }
4815 funcMin = (dc->clk_mgr->clks.dramclk_khz + 999) / 1000;
4816 p_state_change_support = dc->clk_mgr->clks.p_state_change_support;
4817
4818 if (enable && !dc->clk_mgr->dc_mode_softmax_enabled) {
4819 if (p_state_change_support) {
4820 if (funcMin <= softMax)
4821 dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, softMax);
4822 // else: No-Op
4823 } else {
4824 if (funcMin <= softMax)
4825 blank_and_force_memclk(dc, true, softMax);
4826 // else: No-Op
4827 }
4828 } else if (!enable && dc->clk_mgr->dc_mode_softmax_enabled) {
4829 if (p_state_change_support) {
4830 if (funcMin <= softMax)
4831 dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, maxDPM);
4832 // else: No-Op
4833 } else {
4834 if (funcMin <= softMax)
4835 blank_and_force_memclk(dc, true, maxDPM);
4836 // else: No-Op
4837 }
4838 }
4839 dc->clk_mgr->dc_mode_softmax_enabled = enable;
4840 }
dc_is_plane_eligible_for_idle_optimizations(struct dc * dc,struct dc_plane_state * plane,struct dc_cursor_attributes * cursor_attr)4841 bool dc_is_plane_eligible_for_idle_optimizations(struct dc *dc, struct dc_plane_state *plane,
4842 struct dc_cursor_attributes *cursor_attr)
4843 {
4844 if (dc->hwss.does_plane_fit_in_mall && dc->hwss.does_plane_fit_in_mall(dc, plane, cursor_attr))
4845 return true;
4846 return false;
4847 }
4848
4849 /* cleanup on driver unload */
dc_hardware_release(struct dc * dc)4850 void dc_hardware_release(struct dc *dc)
4851 {
4852 dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(dc);
4853
4854 if (dc->hwss.hardware_release)
4855 dc->hwss.hardware_release(dc);
4856 }
4857
dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(struct dc * dc)4858 void dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(struct dc *dc)
4859 {
4860 if (dc->current_state)
4861 dc->current_state->bw_ctx.bw.dcn.clk.fw_based_mclk_switching_shut_down = true;
4862 }
4863
4864 /**
4865 * dc_is_dmub_outbox_supported - Check if DMUB firmware support outbox notification
4866 *
4867 * @dc: [in] dc structure
4868 *
4869 * Checks whether DMUB FW supports outbox notifications, if supported DM
4870 * should register outbox interrupt prior to actually enabling interrupts
4871 * via dc_enable_dmub_outbox
4872 *
4873 * Return:
4874 * True if DMUB FW supports outbox notifications, False otherwise
4875 */
dc_is_dmub_outbox_supported(struct dc * dc)4876 bool dc_is_dmub_outbox_supported(struct dc *dc)
4877 {
4878 switch (dc->ctx->asic_id.chip_family) {
4879
4880 case FAMILY_YELLOW_CARP:
4881 /* DCN31 B0 USB4 DPIA needs dmub notifications for interrupts */
4882 if (dc->ctx->asic_id.hw_internal_rev == YELLOW_CARP_B0 &&
4883 !dc->debug.dpia_debug.bits.disable_dpia)
4884 return true;
4885 break;
4886
4887 case AMDGPU_FAMILY_GC_11_0_1:
4888 case AMDGPU_FAMILY_GC_11_5_0:
4889 if (!dc->debug.dpia_debug.bits.disable_dpia)
4890 return true;
4891 break;
4892
4893 default:
4894 break;
4895 }
4896
4897 /* dmub aux needs dmub notifications to be enabled */
4898 return dc->debug.enable_dmub_aux_for_legacy_ddc;
4899
4900 }
4901
4902 /**
4903 * dc_enable_dmub_notifications - Check if dmub fw supports outbox
4904 *
4905 * @dc: [in] dc structure
4906 *
4907 * Calls dc_is_dmub_outbox_supported to check if dmub fw supports outbox
4908 * notifications. All DMs shall switch to dc_is_dmub_outbox_supported. This
4909 * API shall be removed after switching.
4910 *
4911 * Return:
4912 * True if DMUB FW supports outbox notifications, False otherwise
4913 */
dc_enable_dmub_notifications(struct dc * dc)4914 bool dc_enable_dmub_notifications(struct dc *dc)
4915 {
4916 return dc_is_dmub_outbox_supported(dc);
4917 }
4918
4919 /**
4920 * dc_enable_dmub_outbox - Enables DMUB unsolicited notification
4921 *
4922 * @dc: [in] dc structure
4923 *
4924 * Enables DMUB unsolicited notifications to x86 via outbox.
4925 */
dc_enable_dmub_outbox(struct dc * dc)4926 void dc_enable_dmub_outbox(struct dc *dc)
4927 {
4928 struct dc_context *dc_ctx = dc->ctx;
4929
4930 dmub_enable_outbox_notification(dc_ctx->dmub_srv);
4931 DC_LOG_DC("%s: dmub outbox notifications enabled\n", __func__);
4932 }
4933
4934 /**
4935 * dc_process_dmub_aux_transfer_async - Submits aux command to dmub via inbox message
4936 * Sets port index appropriately for legacy DDC
4937 * @dc: dc structure
4938 * @link_index: link index
4939 * @payload: aux payload
4940 *
4941 * Returns: True if successful, False if failure
4942 */
dc_process_dmub_aux_transfer_async(struct dc * dc,uint32_t link_index,struct aux_payload * payload)4943 bool dc_process_dmub_aux_transfer_async(struct dc *dc,
4944 uint32_t link_index,
4945 struct aux_payload *payload)
4946 {
4947 uint8_t action;
4948 union dmub_rb_cmd cmd = {0};
4949
4950 ASSERT(payload->length <= 16);
4951
4952 cmd.dp_aux_access.header.type = DMUB_CMD__DP_AUX_ACCESS;
4953 cmd.dp_aux_access.header.payload_bytes = 0;
4954 /* For dpia, ddc_pin is set to NULL */
4955 if (!dc->links[link_index]->ddc->ddc_pin)
4956 cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_DPIA;
4957 else
4958 cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_LEGACY_DDC;
4959
4960 cmd.dp_aux_access.aux_control.instance = dc->links[link_index]->ddc_hw_inst;
4961 cmd.dp_aux_access.aux_control.sw_crc_enabled = 0;
4962 cmd.dp_aux_access.aux_control.timeout = 0;
4963 cmd.dp_aux_access.aux_control.dpaux.address = payload->address;
4964 cmd.dp_aux_access.aux_control.dpaux.is_i2c_over_aux = payload->i2c_over_aux;
4965 cmd.dp_aux_access.aux_control.dpaux.length = payload->length;
4966
4967 /* set aux action */
4968 if (payload->i2c_over_aux) {
4969 if (payload->write) {
4970 if (payload->mot)
4971 action = DP_AUX_REQ_ACTION_I2C_WRITE_MOT;
4972 else
4973 action = DP_AUX_REQ_ACTION_I2C_WRITE;
4974 } else {
4975 if (payload->mot)
4976 action = DP_AUX_REQ_ACTION_I2C_READ_MOT;
4977 else
4978 action = DP_AUX_REQ_ACTION_I2C_READ;
4979 }
4980 } else {
4981 if (payload->write)
4982 action = DP_AUX_REQ_ACTION_DPCD_WRITE;
4983 else
4984 action = DP_AUX_REQ_ACTION_DPCD_READ;
4985 }
4986
4987 cmd.dp_aux_access.aux_control.dpaux.action = action;
4988
4989 if (payload->length && payload->write) {
4990 memcpy(cmd.dp_aux_access.aux_control.dpaux.data,
4991 payload->data,
4992 payload->length
4993 );
4994 }
4995
4996 dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
4997
4998 return true;
4999 }
5000
get_link_index_from_dpia_port_index(const struct dc * dc,uint8_t dpia_port_index)5001 uint8_t get_link_index_from_dpia_port_index(const struct dc *dc,
5002 uint8_t dpia_port_index)
5003 {
5004 uint8_t index, link_index = 0xFF;
5005
5006 for (index = 0; index < dc->link_count; index++) {
5007 /* ddc_hw_inst has dpia port index for dpia links
5008 * and ddc instance for legacy links
5009 */
5010 if (!dc->links[index]->ddc->ddc_pin) {
5011 if (dc->links[index]->ddc_hw_inst == dpia_port_index) {
5012 link_index = index;
5013 break;
5014 }
5015 }
5016 }
5017 ASSERT(link_index != 0xFF);
5018 return link_index;
5019 }
5020
5021 /**
5022 * dc_process_dmub_set_config_async - Submits set_config command
5023 *
5024 * @dc: [in] dc structure
5025 * @link_index: [in] link_index: link index
5026 * @payload: [in] aux payload
5027 * @notify: [out] set_config immediate reply
5028 *
5029 * Submits set_config command to dmub via inbox message.
5030 *
5031 * Return:
5032 * True if successful, False if failure
5033 */
dc_process_dmub_set_config_async(struct dc * dc,uint32_t link_index,struct set_config_cmd_payload * payload,struct dmub_notification * notify)5034 bool dc_process_dmub_set_config_async(struct dc *dc,
5035 uint32_t link_index,
5036 struct set_config_cmd_payload *payload,
5037 struct dmub_notification *notify)
5038 {
5039 union dmub_rb_cmd cmd = {0};
5040 bool is_cmd_complete = true;
5041
5042 /* prepare SET_CONFIG command */
5043 cmd.set_config_access.header.type = DMUB_CMD__DPIA;
5044 cmd.set_config_access.header.sub_type = DMUB_CMD__DPIA_SET_CONFIG_ACCESS;
5045
5046 cmd.set_config_access.set_config_control.instance = dc->links[link_index]->ddc_hw_inst;
5047 cmd.set_config_access.set_config_control.cmd_pkt.msg_type = payload->msg_type;
5048 cmd.set_config_access.set_config_control.cmd_pkt.msg_data = payload->msg_data;
5049
5050 if (!dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY)) {
5051 /* command is not processed by dmub */
5052 notify->sc_status = SET_CONFIG_UNKNOWN_ERROR;
5053 return is_cmd_complete;
5054 }
5055
5056 /* command processed by dmub, if ret_status is 1, it is completed instantly */
5057 if (cmd.set_config_access.header.ret_status == 1)
5058 notify->sc_status = cmd.set_config_access.set_config_control.immed_status;
5059 else
5060 /* cmd pending, will receive notification via outbox */
5061 is_cmd_complete = false;
5062
5063 return is_cmd_complete;
5064 }
5065
5066 /**
5067 * dc_process_dmub_set_mst_slots - Submits MST solt allocation
5068 *
5069 * @dc: [in] dc structure
5070 * @link_index: [in] link index
5071 * @mst_alloc_slots: [in] mst slots to be allotted
5072 * @mst_slots_in_use: [out] mst slots in use returned in failure case
5073 *
5074 * Submits mst slot allocation command to dmub via inbox message
5075 *
5076 * Return:
5077 * DC_OK if successful, DC_ERROR if failure
5078 */
dc_process_dmub_set_mst_slots(const struct dc * dc,uint32_t link_index,uint8_t mst_alloc_slots,uint8_t * mst_slots_in_use)5079 enum dc_status dc_process_dmub_set_mst_slots(const struct dc *dc,
5080 uint32_t link_index,
5081 uint8_t mst_alloc_slots,
5082 uint8_t *mst_slots_in_use)
5083 {
5084 union dmub_rb_cmd cmd = {0};
5085
5086 /* prepare MST_ALLOC_SLOTS command */
5087 cmd.set_mst_alloc_slots.header.type = DMUB_CMD__DPIA;
5088 cmd.set_mst_alloc_slots.header.sub_type = DMUB_CMD__DPIA_MST_ALLOC_SLOTS;
5089
5090 cmd.set_mst_alloc_slots.mst_slots_control.instance = dc->links[link_index]->ddc_hw_inst;
5091 cmd.set_mst_alloc_slots.mst_slots_control.mst_alloc_slots = mst_alloc_slots;
5092
5093 if (!dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY))
5094 /* command is not processed by dmub */
5095 return DC_ERROR_UNEXPECTED;
5096
5097 /* command processed by dmub, if ret_status is 1 */
5098 if (cmd.set_config_access.header.ret_status != 1)
5099 /* command processing error */
5100 return DC_ERROR_UNEXPECTED;
5101
5102 /* command processed and we have a status of 2, mst not enabled in dpia */
5103 if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 2)
5104 return DC_FAIL_UNSUPPORTED_1;
5105
5106 /* previously configured mst alloc and used slots did not match */
5107 if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 3) {
5108 *mst_slots_in_use = cmd.set_mst_alloc_slots.mst_slots_control.mst_slots_in_use;
5109 return DC_NOT_SUPPORTED;
5110 }
5111
5112 return DC_OK;
5113 }
5114
5115 /**
5116 * dc_process_dmub_dpia_hpd_int_enable - Submits DPIA DPD interruption
5117 *
5118 * @dc: [in] dc structure
5119 * @hpd_int_enable: [in] 1 for hpd int enable, 0 to disable
5120 *
5121 * Submits dpia hpd int enable command to dmub via inbox message
5122 */
dc_process_dmub_dpia_hpd_int_enable(const struct dc * dc,uint32_t hpd_int_enable)5123 void dc_process_dmub_dpia_hpd_int_enable(const struct dc *dc,
5124 uint32_t hpd_int_enable)
5125 {
5126 union dmub_rb_cmd cmd = {0};
5127
5128 cmd.dpia_hpd_int_enable.header.type = DMUB_CMD__DPIA_HPD_INT_ENABLE;
5129 cmd.dpia_hpd_int_enable.enable = hpd_int_enable;
5130
5131 dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
5132
5133 DC_LOG_DEBUG("%s: hpd_int_enable(%d)\n", __func__, hpd_int_enable);
5134 }
5135
5136 /**
5137 * dc_print_dmub_diagnostic_data - Print DMUB diagnostic data for debugging
5138 *
5139 * @dc: [in] dc structure
5140 *
5141 *
5142 */
dc_print_dmub_diagnostic_data(const struct dc * dc)5143 void dc_print_dmub_diagnostic_data(const struct dc *dc)
5144 {
5145 dc_dmub_srv_log_diagnostic_data(dc->ctx->dmub_srv);
5146 }
5147
5148 /**
5149 * dc_disable_accelerated_mode - disable accelerated mode
5150 * @dc: dc structure
5151 */
dc_disable_accelerated_mode(struct dc * dc)5152 void dc_disable_accelerated_mode(struct dc *dc)
5153 {
5154 bios_set_scratch_acc_mode_change(dc->ctx->dc_bios, 0);
5155 }
5156
5157
5158 /**
5159 * dc_notify_vsync_int_state - notifies vsync enable/disable state
5160 * @dc: dc structure
5161 * @stream: stream where vsync int state changed
5162 * @enable: whether vsync is enabled or disabled
5163 *
5164 * Called when vsync is enabled/disabled Will notify DMUB to start/stop ABM
5165 * interrupts after steady state is reached.
5166 */
dc_notify_vsync_int_state(struct dc * dc,struct dc_stream_state * stream,bool enable)5167 void dc_notify_vsync_int_state(struct dc *dc, struct dc_stream_state *stream, bool enable)
5168 {
5169 int i;
5170 int edp_num;
5171 struct pipe_ctx *pipe = NULL;
5172 struct dc_link *link = stream->sink->link;
5173 struct dc_link *edp_links[MAX_NUM_EDP];
5174
5175
5176 if (link->psr_settings.psr_feature_enabled)
5177 return;
5178
5179 if (link->replay_settings.replay_feature_enabled)
5180 return;
5181
5182 /*find primary pipe associated with stream*/
5183 for (i = 0; i < MAX_PIPES; i++) {
5184 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
5185
5186 if (pipe->stream == stream && pipe->stream_res.tg)
5187 break;
5188 }
5189
5190 if (i == MAX_PIPES) {
5191 ASSERT(0);
5192 return;
5193 }
5194
5195 dc_get_edp_links(dc, edp_links, &edp_num);
5196
5197 /* Determine panel inst */
5198 for (i = 0; i < edp_num; i++) {
5199 if (edp_links[i] == link)
5200 break;
5201 }
5202
5203 if (i == edp_num) {
5204 return;
5205 }
5206
5207 if (pipe->stream_res.abm && pipe->stream_res.abm->funcs->set_abm_pause)
5208 pipe->stream_res.abm->funcs->set_abm_pause(pipe->stream_res.abm, !enable, i, pipe->stream_res.tg->inst);
5209 }
5210
5211 /*****************************************************************************
5212 * dc_abm_save_restore() - Interface to DC for save+pause and restore+un-pause
5213 * ABM
5214 * @dc: dc structure
5215 * @stream: stream where vsync int state changed
5216 * @pData: abm hw states
5217 *
5218 ****************************************************************************/
dc_abm_save_restore(struct dc * dc,struct dc_stream_state * stream,struct abm_save_restore * pData)5219 bool dc_abm_save_restore(
5220 struct dc *dc,
5221 struct dc_stream_state *stream,
5222 struct abm_save_restore *pData)
5223 {
5224 int i;
5225 int edp_num;
5226 struct pipe_ctx *pipe = NULL;
5227 struct dc_link *link = stream->sink->link;
5228 struct dc_link *edp_links[MAX_NUM_EDP];
5229
5230
5231 /*find primary pipe associated with stream*/
5232 for (i = 0; i < MAX_PIPES; i++) {
5233 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
5234
5235 if (pipe->stream == stream && pipe->stream_res.tg)
5236 break;
5237 }
5238
5239 if (i == MAX_PIPES) {
5240 ASSERT(0);
5241 return false;
5242 }
5243
5244 dc_get_edp_links(dc, edp_links, &edp_num);
5245
5246 /* Determine panel inst */
5247 for (i = 0; i < edp_num; i++)
5248 if (edp_links[i] == link)
5249 break;
5250
5251 if (i == edp_num)
5252 return false;
5253
5254 if (pipe->stream_res.abm &&
5255 pipe->stream_res.abm->funcs->save_restore)
5256 return pipe->stream_res.abm->funcs->save_restore(
5257 pipe->stream_res.abm,
5258 i,
5259 pData);
5260 return false;
5261 }
5262
dc_query_current_properties(struct dc * dc,struct dc_current_properties * properties)5263 void dc_query_current_properties(struct dc *dc, struct dc_current_properties *properties)
5264 {
5265 unsigned int i;
5266 bool subvp_in_use = false;
5267
5268 for (i = 0; i < dc->current_state->stream_count; i++) {
5269 if (dc->current_state->streams[i]->mall_stream_config.type != SUBVP_NONE) {
5270 subvp_in_use = true;
5271 break;
5272 }
5273 }
5274 properties->cursor_size_limit = subvp_in_use ? 64 : dc->caps.max_cursor_size;
5275 }
5276
5277 /**
5278 *****************************************************************************
5279 * dc_set_edp_power() - DM controls eDP power to be ON/OFF
5280 *
5281 * Called when DM wants to power on/off eDP.
5282 * Only work on links with flag skip_implict_edp_power_control is set.
5283 *
5284 *****************************************************************************
5285 */
dc_set_edp_power(const struct dc * dc,struct dc_link * edp_link,bool powerOn)5286 void dc_set_edp_power(const struct dc *dc, struct dc_link *edp_link,
5287 bool powerOn)
5288 {
5289 if (edp_link->connector_signal != SIGNAL_TYPE_EDP)
5290 return;
5291
5292 if (edp_link->skip_implict_edp_power_control == false)
5293 return;
5294
5295 edp_link->dc->link_srv->edp_set_panel_power(edp_link, powerOn);
5296 }
5297
5298