xref: /openbsd/sys/dev/ic/dc.c (revision 3836e7c7)
1 /*	$OpenBSD: dc.c,v 1.159 2024/11/05 18:58:59 miod Exp $	*/
2 
3 /*
4  * Copyright (c) 1997, 1998, 1999
5  *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * $FreeBSD: src/sys/pci/if_dc.c,v 1.43 2001/01/19 23:55:07 wpaul Exp $
35  */
36 
37 /*
38  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
39  * series chips and several workalikes including the following:
40  *
41  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
42  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
43  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
44  * ASIX Electronics AX88140A (www.asix.com.tw)
45  * ASIX Electronics AX88141 (www.asix.com.tw)
46  * ADMtek AL981 (www.admtek.com.tw)
47  * ADMtek AN983 (www.admtek.com.tw)
48  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
49  * Accton EN1217, EN2242 (www.accton.com)
50  * Xircom X3201 (www.xircom.com)
51  *
52  * Datasheets for the 21143 are available at developer.intel.com.
53  * Datasheets for the clone parts can be found at their respective sites.
54  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
55  * The PNIC II is essentially a Macronix 98715A chip; the only difference
56  * worth noting is that its multicast hash table is only 128 bits wide
57  * instead of 512.
58  *
59  * Written by Bill Paul <wpaul@ee.columbia.edu>
60  * Electrical Engineering Department
61  * Columbia University, New York City
62  */
63 
64 /*
65  * The Intel 21143 is the successor to the DEC 21140. It is basically
66  * the same as the 21140 but with a few new features. The 21143 supports
67  * three kinds of media attachments:
68  *
69  * o MII port, for 10Mbps and 100Mbps support and NWAY
70  *   autonegotiation provided by an external PHY.
71  * o SYM port, for symbol mode 100Mbps support.
72  * o 10baseT port.
73  * o AUI/BNC port.
74  *
75  * The 100Mbps SYM port and 10baseT port can be used together in
76  * combination with the internal NWAY support to create a 10/100
77  * autosensing configuration.
78  *
79  * Note that not all tulip workalikes are handled in this driver: we only
80  * deal with those which are relatively well behaved. The Winbond is
81  * handled separately due to its different register offsets and the
82  * special handling needed for its various bugs. The PNIC is handled
83  * here, but I'm not thrilled about it.
84  *
85  * All of the workalike chips use some form of MII transceiver support
86  * with the exception of the Macronix chips, which also have a SYM port.
87  * The ASIX AX88140A is also documented to have a SYM port, but all
88  * the cards I've seen use an MII transceiver, probably because the
89  * AX88140A doesn't support internal NWAY.
90  */
91 
92 #include "bpfilter.h"
93 
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/mbuf.h>
97 #include <sys/socket.h>
98 #include <sys/ioctl.h>
99 #include <sys/errno.h>
100 #include <sys/malloc.h>
101 #include <sys/kernel.h>
102 #include <sys/device.h>
103 #include <sys/timeout.h>
104 
105 #include <net/if.h>
106 
107 #include <netinet/in.h>
108 #include <netinet/if_ether.h>
109 
110 #include <net/if_media.h>
111 
112 #if NBPFILTER > 0
113 #include <net/bpf.h>
114 #endif
115 
116 #include <dev/mii/mii.h>
117 #include <dev/mii/miivar.h>
118 
119 #include <machine/bus.h>
120 #include <dev/pci/pcidevs.h>
121 
122 #include <dev/ic/dcreg.h>
123 
124 /*
125  * The Davicom DM9102 has a broken DMA engine that reads beyond the
126  * end of the programmed transfer.  Architectures with a proper IOMMU
127  * (such as sparc64) will trap on this access.  To avoid having to
128  * copy each transmitted mbuf to guarantee enough trailing space,
129  * those architectures should implement BUS_DMA_OVERRUN that takes
130  * appropriate action to tolerate this behaviour.
131  */
132 #ifndef BUS_DMA_OVERRUN
133 #define BUS_DMA_OVERRUN 0
134 #endif
135 
136 int dc_intr(void *);
137 int dc_newbuf(struct dc_softc *, int, struct mbuf *);
138 int dc_encap(struct dc_softc *, bus_dmamap_t, struct mbuf *, u_int32_t *);
139 
140 void dc_pnic_rx_bug_war(struct dc_softc *, int);
141 int dc_rx_resync(struct dc_softc *);
142 int dc_rxeof(struct dc_softc *);
143 void dc_txeof(struct dc_softc *);
144 void dc_tick(void *);
145 void dc_tx_underrun(struct dc_softc *);
146 void dc_start(struct ifnet *);
147 int dc_ioctl(struct ifnet *, u_long, caddr_t);
148 void dc_watchdog(struct ifnet *);
149 int dc_ifmedia_upd(struct ifnet *);
150 void dc_ifmedia_sts(struct ifnet *, struct ifmediareq *);
151 
152 void dc_delay(struct dc_softc *);
153 void dc_eeprom_width(struct dc_softc *);
154 void dc_eeprom_idle(struct dc_softc *);
155 void dc_eeprom_putbyte(struct dc_softc *, int);
156 void dc_eeprom_getword(struct dc_softc *, int, u_int16_t *);
157 void dc_eeprom_getword_pnic(struct dc_softc *, int, u_int16_t *);
158 void dc_eeprom_getword_xircom(struct dc_softc *, int, u_int16_t *);
159 void dc_read_eeprom(struct dc_softc *, caddr_t, int, int, int);
160 
161 void dc_mii_writebit(struct dc_softc *, int);
162 int dc_mii_readbit(struct dc_softc *);
163 void dc_mii_sync(struct dc_softc *);
164 void dc_mii_send(struct dc_softc *, u_int32_t, int);
165 int dc_mii_readreg(struct dc_softc *, struct dc_mii_frame *);
166 int dc_mii_writereg(struct dc_softc *, struct dc_mii_frame *);
167 int dc_miibus_readreg(struct device *, int, int);
168 void dc_miibus_writereg(struct device *, int, int, int);
169 void dc_miibus_statchg(struct device *);
170 
171 void dc_setcfg(struct dc_softc *, uint64_t);
172 u_int32_t dc_crc_le(struct dc_softc *, caddr_t);
173 u_int32_t dc_crc_be(caddr_t);
174 void dc_setfilt_21143(struct dc_softc *);
175 void dc_setfilt_asix(struct dc_softc *);
176 void dc_setfilt_admtek(struct dc_softc *);
177 void dc_setfilt_xircom(struct dc_softc *);
178 
179 void dc_setfilt(struct dc_softc *);
180 
181 void dc_reset(struct dc_softc *);
182 int dc_list_rx_init(struct dc_softc *);
183 int dc_list_tx_init(struct dc_softc *);
184 
185 void dc_read_srom(struct dc_softc *, int);
186 void dc_parse_21143_srom(struct dc_softc *);
187 void dc_decode_leaf_sia(struct dc_softc *,
188 				     struct dc_eblock_sia *);
189 void dc_decode_leaf_mii(struct dc_softc *,
190 				     struct dc_eblock_mii *);
191 void dc_decode_leaf_sym(struct dc_softc *,
192 				     struct dc_eblock_sym *);
193 void dc_apply_fixup(struct dc_softc *, uint64_t);
194 
195 #define DC_SETBIT(sc, reg, x)				\
196 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
197 
198 #define DC_CLRBIT(sc, reg, x)				\
199 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
200 
201 #define SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
202 #define SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
203 
204 void
dc_delay(struct dc_softc * sc)205 dc_delay(struct dc_softc *sc)
206 {
207 	int idx;
208 
209 	for (idx = (300 / 33) + 1; idx > 0; idx--)
210 		CSR_READ_4(sc, DC_BUSCTL);
211 }
212 
213 void
dc_eeprom_width(struct dc_softc * sc)214 dc_eeprom_width(struct dc_softc *sc)
215 {
216 	int i;
217 
218 	/* Force EEPROM to idle state. */
219 	dc_eeprom_idle(sc);
220 
221 	/* Enter EEPROM access mode. */
222 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
223 	dc_delay(sc);
224 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
225 	dc_delay(sc);
226 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
227 	dc_delay(sc);
228 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
229 	dc_delay(sc);
230 
231 	for (i = 3; i--;) {
232 		if (6 & (1 << i))
233 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
234 		else
235 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
236 		dc_delay(sc);
237 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
238 		dc_delay(sc);
239 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
240 		dc_delay(sc);
241 	}
242 
243 	for (i = 1; i <= 12; i++) {
244 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
245 		dc_delay(sc);
246 		if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
247 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
248 			dc_delay(sc);
249 			break;
250 		}
251 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
252 		dc_delay(sc);
253 	}
254 
255 	/* Turn off EEPROM access mode. */
256 	dc_eeprom_idle(sc);
257 
258 	if (i < 4 || i > 12)
259 		sc->dc_romwidth = 6;
260 	else
261 		sc->dc_romwidth = i;
262 
263 	/* Enter EEPROM access mode. */
264 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
265 	dc_delay(sc);
266 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
267 	dc_delay(sc);
268 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
269 	dc_delay(sc);
270 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
271 	dc_delay(sc);
272 
273 	/* Turn off EEPROM access mode. */
274 	dc_eeprom_idle(sc);
275 }
276 
277 void
dc_eeprom_idle(struct dc_softc * sc)278 dc_eeprom_idle(struct dc_softc *sc)
279 {
280 	int i;
281 
282 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
283 	dc_delay(sc);
284 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
285 	dc_delay(sc);
286 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
287 	dc_delay(sc);
288 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
289 	dc_delay(sc);
290 
291 	for (i = 0; i < 25; i++) {
292 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
293 		dc_delay(sc);
294 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
295 		dc_delay(sc);
296 	}
297 
298 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
299 	dc_delay(sc);
300 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
301 	dc_delay(sc);
302 	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
303 }
304 
305 /*
306  * Send a read command and address to the EEPROM, check for ACK.
307  */
308 void
dc_eeprom_putbyte(struct dc_softc * sc,int addr)309 dc_eeprom_putbyte(struct dc_softc *sc, int addr)
310 {
311 	int d, i;
312 
313 	d = DC_EECMD_READ >> 6;
314 
315 	for (i = 3; i--; ) {
316 		if (d & (1 << i))
317 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
318 		else
319 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
320 		dc_delay(sc);
321 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
322 		dc_delay(sc);
323 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
324 		dc_delay(sc);
325 	}
326 
327 	/*
328 	 * Feed in each bit and strobe the clock.
329 	 */
330 	for (i = sc->dc_romwidth; i--;) {
331 		if (addr & (1 << i)) {
332 			SIO_SET(DC_SIO_EE_DATAIN);
333 		} else {
334 			SIO_CLR(DC_SIO_EE_DATAIN);
335 		}
336 		dc_delay(sc);
337 		SIO_SET(DC_SIO_EE_CLK);
338 		dc_delay(sc);
339 		SIO_CLR(DC_SIO_EE_CLK);
340 		dc_delay(sc);
341 	}
342 }
343 
344 /*
345  * Read a word of data stored in the EEPROM at address 'addr.'
346  * The PNIC 82c168/82c169 has its own non-standard way to read
347  * the EEPROM.
348  */
349 void
dc_eeprom_getword_pnic(struct dc_softc * sc,int addr,u_int16_t * dest)350 dc_eeprom_getword_pnic(struct dc_softc *sc, int addr, u_int16_t *dest)
351 {
352 	int i;
353 	u_int32_t r;
354 
355 	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ|addr);
356 
357 	for (i = 0; i < DC_TIMEOUT; i++) {
358 		DELAY(1);
359 		r = CSR_READ_4(sc, DC_SIO);
360 		if (!(r & DC_PN_SIOCTL_BUSY)) {
361 			*dest = (u_int16_t)(r & 0xFFFF);
362 			return;
363 		}
364 	}
365 }
366 
367 /*
368  * Read a word of data stored in the EEPROM at address 'addr.'
369  * The Xircom X3201 has its own non-standard way to read
370  * the EEPROM, too.
371  */
372 void
dc_eeprom_getword_xircom(struct dc_softc * sc,int addr,u_int16_t * dest)373 dc_eeprom_getword_xircom(struct dc_softc *sc, int addr, u_int16_t *dest)
374 {
375 	SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
376 
377 	addr *= 2;
378 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
379 	*dest = (u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff;
380 	addr += 1;
381 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
382 	*dest |= ((u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff) << 8;
383 
384 	SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
385 }
386 
387 /*
388  * Read a word of data stored in the EEPROM at address 'addr.'
389  */
390 void
dc_eeprom_getword(struct dc_softc * sc,int addr,u_int16_t * dest)391 dc_eeprom_getword(struct dc_softc *sc, int addr, u_int16_t *dest)
392 {
393 	int i;
394 	u_int16_t word = 0;
395 
396 	/* Force EEPROM to idle state. */
397 	dc_eeprom_idle(sc);
398 
399 	/* Enter EEPROM access mode. */
400 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
401 	dc_delay(sc);
402 	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
403 	dc_delay(sc);
404 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
405 	dc_delay(sc);
406 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
407 	dc_delay(sc);
408 
409 	/*
410 	 * Send address of word we want to read.
411 	 */
412 	dc_eeprom_putbyte(sc, addr);
413 
414 	/*
415 	 * Start reading bits from EEPROM.
416 	 */
417 	for (i = 0x8000; i; i >>= 1) {
418 		SIO_SET(DC_SIO_EE_CLK);
419 		dc_delay(sc);
420 		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
421 			word |= i;
422 		dc_delay(sc);
423 		SIO_CLR(DC_SIO_EE_CLK);
424 		dc_delay(sc);
425 	}
426 
427 	/* Turn off EEPROM access mode. */
428 	dc_eeprom_idle(sc);
429 
430 	*dest = word;
431 }
432 
433 /*
434  * Read a sequence of words from the EEPROM.
435  */
436 void
dc_read_eeprom(struct dc_softc * sc,caddr_t dest,int off,int cnt,int swap)437 dc_read_eeprom(struct dc_softc *sc, caddr_t dest, int off, int cnt,
438     int swap)
439 {
440 	int i;
441 	u_int16_t word = 0, *ptr;
442 
443 	for (i = 0; i < cnt; i++) {
444 		if (DC_IS_PNIC(sc))
445 			dc_eeprom_getword_pnic(sc, off + i, &word);
446 		else if (DC_IS_XIRCOM(sc))
447 			dc_eeprom_getword_xircom(sc, off + i, &word);
448 		else
449 			dc_eeprom_getword(sc, off + i, &word);
450 		ptr = (u_int16_t *)(dest + (i * 2));
451 		if (swap)
452 			*ptr = betoh16(word);
453 		else
454 			*ptr = letoh16(word);
455 	}
456 }
457 
458 /*
459  * The following two routines are taken from the Macronix 98713
460  * Application Notes pp.19-21.
461  */
462 /*
463  * Write a bit to the MII bus.
464  */
465 void
dc_mii_writebit(struct dc_softc * sc,int bit)466 dc_mii_writebit(struct dc_softc *sc, int bit)
467 {
468 	if (bit)
469 		CSR_WRITE_4(sc, DC_SIO,
470 		    DC_SIO_ROMCTL_WRITE|DC_SIO_MII_DATAOUT);
471 	else
472 		CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
473 
474 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
475 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
476 }
477 
478 /*
479  * Read a bit from the MII bus.
480  */
481 int
dc_mii_readbit(struct dc_softc * sc)482 dc_mii_readbit(struct dc_softc *sc)
483 {
484 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ|DC_SIO_MII_DIR);
485 	CSR_READ_4(sc, DC_SIO);
486 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
487 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
488 	if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
489 		return (1);
490 	return (0);
491 }
492 
493 /*
494  * Sync the PHYs by setting data bit and strobing the clock 32 times.
495  */
496 void
dc_mii_sync(struct dc_softc * sc)497 dc_mii_sync(struct dc_softc *sc)
498 {
499 	int i;
500 
501 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
502 
503 	for (i = 0; i < 32; i++)
504 		dc_mii_writebit(sc, 1);
505 }
506 
507 /*
508  * Clock a series of bits through the MII.
509  */
510 void
dc_mii_send(struct dc_softc * sc,u_int32_t bits,int cnt)511 dc_mii_send(struct dc_softc *sc, u_int32_t bits, int cnt)
512 {
513 	int i;
514 
515 	for (i = (0x1 << (cnt - 1)); i; i >>= 1)
516 		dc_mii_writebit(sc, bits & i);
517 }
518 
519 /*
520  * Read an PHY register through the MII.
521  */
522 int
dc_mii_readreg(struct dc_softc * sc,struct dc_mii_frame * frame)523 dc_mii_readreg(struct dc_softc *sc, struct dc_mii_frame *frame)
524 {
525 	int i, ack, s;
526 
527 	s = splnet();
528 
529 	/*
530 	 * Set up frame for RX.
531 	 */
532 	frame->mii_stdelim = DC_MII_STARTDELIM;
533 	frame->mii_opcode = DC_MII_READOP;
534 	frame->mii_turnaround = 0;
535 	frame->mii_data = 0;
536 
537 	/*
538 	 * Sync the PHYs.
539 	 */
540 	dc_mii_sync(sc);
541 
542 	/*
543 	 * Send command/address info.
544 	 */
545 	dc_mii_send(sc, frame->mii_stdelim, 2);
546 	dc_mii_send(sc, frame->mii_opcode, 2);
547 	dc_mii_send(sc, frame->mii_phyaddr, 5);
548 	dc_mii_send(sc, frame->mii_regaddr, 5);
549 
550 #ifdef notdef
551 	/* Idle bit */
552 	dc_mii_writebit(sc, 1);
553 	dc_mii_writebit(sc, 0);
554 #endif
555 
556 	/* Check for ack */
557 	ack = dc_mii_readbit(sc);
558 
559 	/*
560 	 * Now try reading data bits. If the ack failed, we still
561 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
562 	 */
563 	if (ack) {
564 		for(i = 0; i < 16; i++) {
565 			dc_mii_readbit(sc);
566 		}
567 		goto fail;
568 	}
569 
570 	for (i = 0x8000; i; i >>= 1) {
571 		if (!ack) {
572 			if (dc_mii_readbit(sc))
573 				frame->mii_data |= i;
574 		}
575 	}
576 
577 fail:
578 
579 	dc_mii_writebit(sc, 0);
580 	dc_mii_writebit(sc, 0);
581 
582 	splx(s);
583 
584 	if (ack)
585 		return (1);
586 	return (0);
587 }
588 
589 /*
590  * Write to a PHY register through the MII.
591  */
592 int
dc_mii_writereg(struct dc_softc * sc,struct dc_mii_frame * frame)593 dc_mii_writereg(struct dc_softc *sc, struct dc_mii_frame *frame)
594 {
595 	int s;
596 
597 	s = splnet();
598 	/*
599 	 * Set up frame for TX.
600 	 */
601 
602 	frame->mii_stdelim = DC_MII_STARTDELIM;
603 	frame->mii_opcode = DC_MII_WRITEOP;
604 	frame->mii_turnaround = DC_MII_TURNAROUND;
605 
606 	/*
607 	 * Sync the PHYs.
608 	 */
609 	dc_mii_sync(sc);
610 
611 	dc_mii_send(sc, frame->mii_stdelim, 2);
612 	dc_mii_send(sc, frame->mii_opcode, 2);
613 	dc_mii_send(sc, frame->mii_phyaddr, 5);
614 	dc_mii_send(sc, frame->mii_regaddr, 5);
615 	dc_mii_send(sc, frame->mii_turnaround, 2);
616 	dc_mii_send(sc, frame->mii_data, 16);
617 
618 	/* Idle bit. */
619 	dc_mii_writebit(sc, 0);
620 	dc_mii_writebit(sc, 0);
621 
622 	splx(s);
623 	return (0);
624 }
625 
626 int
dc_miibus_readreg(struct device * self,int phy,int reg)627 dc_miibus_readreg(struct device *self, int phy, int reg)
628 {
629 	struct dc_mii_frame frame;
630 	struct dc_softc *sc = (struct dc_softc *)self;
631 	int i, rval, phy_reg;
632 
633 	/*
634 	 * Note: both the AL981 and AN983 have internal PHYs,
635 	 * however the AL981 provides direct access to the PHY
636 	 * registers while the AN983 uses a serial MII interface.
637 	 * The AN983's MII interface is also buggy in that you
638 	 * can read from any MII address (0 to 31), but only address 1
639 	 * behaves normally. To deal with both cases, we pretend
640 	 * that the PHY is at MII address 1.
641 	 */
642 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
643 		return (0);
644 
645 	/*
646 	 * Note: the ukphy probs of the RS7112 report a PHY at
647 	 * MII address 0 (possibly HomePNA?) and 1 (ethernet)
648 	 * so we only respond to correct one.
649 	 */
650 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
651 		return (0);
652 
653 	if (sc->dc_pmode != DC_PMODE_MII) {
654 		if (phy == (MII_NPHY - 1)) {
655 			switch(reg) {
656 			case MII_BMSR:
657 				/*
658 				 * Fake something to make the probe
659 				 * code think there's a PHY here.
660 				 */
661 				return (BMSR_MEDIAMASK);
662 				break;
663 			case MII_PHYIDR1:
664 				if (DC_IS_PNIC(sc))
665 					return (PCI_VENDOR_LITEON);
666 				return (PCI_VENDOR_DEC);
667 				break;
668 			case MII_PHYIDR2:
669 				if (DC_IS_PNIC(sc))
670 					return (PCI_PRODUCT_LITEON_PNIC);
671 				return (PCI_PRODUCT_DEC_21142);
672 				break;
673 			default:
674 				return (0);
675 				break;
676 			}
677 		} else
678 			return (0);
679 	}
680 
681 	if (DC_IS_PNIC(sc)) {
682 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
683 		    (phy << 23) | (reg << 18));
684 		for (i = 0; i < DC_TIMEOUT; i++) {
685 			DELAY(1);
686 			rval = CSR_READ_4(sc, DC_PN_MII);
687 			if (!(rval & DC_PN_MII_BUSY)) {
688 				rval &= 0xFFFF;
689 				return (rval == 0xFFFF ? 0 : rval);
690 			}
691 		}
692 		return (0);
693 	}
694 
695 	if (DC_IS_COMET(sc)) {
696 		switch(reg) {
697 		case MII_BMCR:
698 			phy_reg = DC_AL_BMCR;
699 			break;
700 		case MII_BMSR:
701 			phy_reg = DC_AL_BMSR;
702 			break;
703 		case MII_PHYIDR1:
704 			phy_reg = DC_AL_VENID;
705 			break;
706 		case MII_PHYIDR2:
707 			phy_reg = DC_AL_DEVID;
708 			break;
709 		case MII_ANAR:
710 			phy_reg = DC_AL_ANAR;
711 			break;
712 		case MII_ANLPAR:
713 			phy_reg = DC_AL_LPAR;
714 			break;
715 		case MII_ANER:
716 			phy_reg = DC_AL_ANER;
717 			break;
718 		default:
719 			printf("%s: phy_read: bad phy register %x\n",
720 			    sc->sc_dev.dv_xname, reg);
721 			return (0);
722 			break;
723 		}
724 
725 		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
726 
727 		if (rval == 0xFFFF)
728 			return (0);
729 		return (rval);
730 	}
731 
732 	bzero(&frame, sizeof(frame));
733 
734 	frame.mii_phyaddr = phy;
735 	frame.mii_regaddr = reg;
736 	if (sc->dc_type == DC_TYPE_98713) {
737 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
738 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
739 	}
740 	dc_mii_readreg(sc, &frame);
741 	if (sc->dc_type == DC_TYPE_98713)
742 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
743 
744 	return (frame.mii_data);
745 }
746 
747 void
dc_miibus_writereg(struct device * self,int phy,int reg,int data)748 dc_miibus_writereg(struct device *self, int phy, int reg, int data)
749 {
750 	struct dc_softc *sc = (struct dc_softc *)self;
751 	struct dc_mii_frame frame;
752 	int i, phy_reg;
753 
754 	bzero(&frame, sizeof(frame));
755 
756 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
757 		return;
758 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
759 		return;
760 
761 	if (DC_IS_PNIC(sc)) {
762 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
763 		    (phy << 23) | (reg << 10) | data);
764 		for (i = 0; i < DC_TIMEOUT; i++) {
765 			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
766 				break;
767 		}
768 		return;
769 	}
770 
771 	if (DC_IS_COMET(sc)) {
772 		switch(reg) {
773 		case MII_BMCR:
774 			phy_reg = DC_AL_BMCR;
775 			break;
776 		case MII_BMSR:
777 			phy_reg = DC_AL_BMSR;
778 			break;
779 		case MII_PHYIDR1:
780 			phy_reg = DC_AL_VENID;
781 			break;
782 		case MII_PHYIDR2:
783 			phy_reg = DC_AL_DEVID;
784 			break;
785 		case MII_ANAR:
786 			phy_reg = DC_AL_ANAR;
787 			break;
788 		case MII_ANLPAR:
789 			phy_reg = DC_AL_LPAR;
790 			break;
791 		case MII_ANER:
792 			phy_reg = DC_AL_ANER;
793 			break;
794 		default:
795 			printf("%s: phy_write: bad phy register %x\n",
796 			    sc->sc_dev.dv_xname, reg);
797 			return;
798 		}
799 
800 		CSR_WRITE_4(sc, phy_reg, data);
801 		return;
802 	}
803 
804 	frame.mii_phyaddr = phy;
805 	frame.mii_regaddr = reg;
806 	frame.mii_data = data;
807 
808 	if (sc->dc_type == DC_TYPE_98713) {
809 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
810 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
811 	}
812 	dc_mii_writereg(sc, &frame);
813 	if (sc->dc_type == DC_TYPE_98713)
814 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
815 }
816 
817 void
dc_miibus_statchg(struct device * self)818 dc_miibus_statchg(struct device *self)
819 {
820 	struct dc_softc *sc = (struct dc_softc *)self;
821 	struct mii_data *mii;
822 	struct ifmedia *ifm;
823 
824 	if (DC_IS_ADMTEK(sc))
825 		return;
826 
827 	mii = &sc->sc_mii;
828 	ifm = &mii->mii_media;
829 	if (DC_IS_DAVICOM(sc) && IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
830 		dc_setcfg(sc, ifm->ifm_media);
831 		sc->dc_if_media = ifm->ifm_media;
832 	} else {
833 		dc_setcfg(sc, mii->mii_media_active);
834 		sc->dc_if_media = mii->mii_media_active;
835 	}
836 }
837 
838 #define DC_BITS_512	9
839 #define DC_BITS_128	7
840 #define DC_BITS_64	6
841 
842 u_int32_t
dc_crc_le(struct dc_softc * sc,caddr_t addr)843 dc_crc_le(struct dc_softc *sc, caddr_t addr)
844 {
845 	u_int32_t crc;
846 
847 	/* Compute CRC for the address value. */
848 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
849 
850 	/*
851 	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
852 	 * chips is only 128 bits wide.
853 	 */
854 	if (sc->dc_flags & DC_128BIT_HASH)
855 		return (crc & ((1 << DC_BITS_128) - 1));
856 
857 	/* The hash table on the MX98715BEC is only 64 bits wide. */
858 	if (sc->dc_flags & DC_64BIT_HASH)
859 		return (crc & ((1 << DC_BITS_64) - 1));
860 
861 	/* Xircom's hash filtering table is different (read: weird) */
862 	/* Xircom uses the LEAST significant bits */
863 	if (DC_IS_XIRCOM(sc)) {
864 		if ((crc & 0x180) == 0x180)
865 			return (crc & 0x0F) + (crc	& 0x70)*3 + (14 << 4);
866 		else
867 			return (crc & 0x1F) + ((crc>>1) & 0xF0)*3 + (12 << 4);
868 	}
869 
870 	return (crc & ((1 << DC_BITS_512) - 1));
871 }
872 
873 /*
874  * Calculate CRC of a multicast group address, return the lower 6 bits.
875  */
876 #define dc_crc_be(addr)	((ether_crc32_be(addr,ETHER_ADDR_LEN) >> 26) \
877 	& 0x0000003F)
878 
879 /*
880  * 21143-style RX filter setup routine. Filter programming is done by
881  * downloading a special setup frame into the TX engine. 21143, Macronix,
882  * PNIC, PNIC II and Davicom chips are programmed this way.
883  *
884  * We always program the chip using 'hash perfect' mode, i.e. one perfect
885  * address (our node address) and a 512-bit hash filter for multicast
886  * frames. We also sneak the broadcast address into the hash filter since
887  * we need that too.
888  */
889 void
dc_setfilt_21143(struct dc_softc * sc)890 dc_setfilt_21143(struct dc_softc *sc)
891 {
892 	struct arpcom *ac = &sc->sc_arpcom;
893 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
894 	struct ether_multi *enm;
895 	struct ether_multistep step;
896 	struct dc_desc *sframe;
897 	u_int32_t h, *sp;
898 	int i;
899 
900 	i = sc->dc_cdata.dc_tx_prod;
901 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
902 	sc->dc_cdata.dc_tx_cnt++;
903 	sframe = &sc->dc_ldata->dc_tx_list[i];
904 	sp = &sc->dc_ldata->dc_sbuf[0];
905 	bzero(sp, DC_SFRAME_LEN);
906 
907 	sframe->dc_data = htole32(sc->sc_listmap->dm_segs[0].ds_addr +
908 	    offsetof(struct dc_list_data, dc_sbuf));
909 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
910 	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
911 
912 	sc->dc_cdata.dc_tx_chain[i].sd_mbuf =
913 	    (struct mbuf *)&sc->dc_ldata->dc_sbuf[0];
914 
915 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ALLMULTI | DC_NETCFG_RX_PROMISC));
916 	ifp->if_flags &= ~IFF_ALLMULTI;
917 
918 	if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
919 		ifp->if_flags |= IFF_ALLMULTI;
920 		if (ifp->if_flags & IFF_PROMISC)
921 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
922 		else
923 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
924 	} else {
925 		ETHER_FIRST_MULTI(step, ac, enm);
926 		while (enm != NULL) {
927 			h = dc_crc_le(sc, enm->enm_addrlo);
928 
929 			sp[h >> 4] |= htole32(1 << (h & 0xF));
930 
931 			ETHER_NEXT_MULTI(step, enm);
932 		}
933 	}
934 
935 	/*
936 	 * Always accept broadcast frames.
937 	 */
938 	h = dc_crc_le(sc, (caddr_t)&etherbroadcastaddr);
939 	sp[h >> 4] |= htole32(1 << (h & 0xF));
940 
941 	/* Set our MAC address */
942 	sp[39] = DC_SP_FIELD(sc->sc_arpcom.ac_enaddr, 0);
943 	sp[40] = DC_SP_FIELD(sc->sc_arpcom.ac_enaddr, 1);
944 	sp[41] = DC_SP_FIELD(sc->sc_arpcom.ac_enaddr, 2);
945 
946 	bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap,
947 	    offsetof(struct dc_list_data, dc_sbuf[0]),
948 	    sizeof(struct dc_list_data) -
949 	    offsetof(struct dc_list_data, dc_sbuf[0]),
950 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
951 
952 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
953 
954 	bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap,
955 	    offsetof(struct dc_list_data, dc_tx_list[i]),
956 	    sizeof(struct dc_desc), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
957 
958 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
959 
960 	/*
961 	 * The PNIC takes an exceedingly long time to process its
962 	 * setup frame; wait 10ms after posting the setup frame
963 	 * before proceeding, just so it has time to swallow its
964 	 * medicine.
965 	 */
966 	DELAY(10000);
967 
968 	ifp->if_timer = 5;
969 }
970 
971 void
dc_setfilt_admtek(struct dc_softc * sc)972 dc_setfilt_admtek(struct dc_softc *sc)
973 {
974 	struct arpcom *ac = &sc->sc_arpcom;
975 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
976 	struct ether_multi *enm;
977 	struct ether_multistep step;
978 	u_int32_t hashes[2];
979 	int h = 0;
980 
981 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ALLMULTI | DC_NETCFG_RX_PROMISC));
982 	bzero(hashes, sizeof(hashes));
983 	ifp->if_flags &= ~IFF_ALLMULTI;
984 
985 	if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
986 		ifp->if_flags |= IFF_ALLMULTI;
987 		if (ifp->if_flags & IFF_PROMISC)
988 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
989 		else
990 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
991 	} else {
992 		/* now program new ones */
993 		ETHER_FIRST_MULTI(step, ac, enm);
994 		while (enm != NULL) {
995 			if (DC_IS_CENTAUR(sc))
996 				h = dc_crc_le(sc, enm->enm_addrlo);
997 			else
998 				h = dc_crc_be(enm->enm_addrlo);
999 
1000 			if (h < 32)
1001 				hashes[0] |= (1 << h);
1002 			else
1003 				hashes[1] |= (1 << (h - 32));
1004 
1005 			ETHER_NEXT_MULTI(step, enm);
1006 		}
1007 	}
1008 
1009 	/* Init our MAC address */
1010 	CSR_WRITE_4(sc, DC_AL_PAR0, ac->ac_enaddr[3] << 24 |
1011 	    ac->ac_enaddr[2] << 16 | ac->ac_enaddr[1] << 8 | ac->ac_enaddr[0]);
1012 	CSR_WRITE_4(sc, DC_AL_PAR1, ac->ac_enaddr[5] << 8 | ac->ac_enaddr[4]);
1013 
1014 	CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1015 	CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1016 }
1017 
1018 void
dc_setfilt_asix(struct dc_softc * sc)1019 dc_setfilt_asix(struct dc_softc *sc)
1020 {
1021 	struct arpcom *ac = &sc->sc_arpcom;
1022 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1023 	struct ether_multi *enm;
1024 	struct ether_multistep step;
1025 	u_int32_t hashes[2];
1026 	int h = 0;
1027 
1028 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ALLMULTI | DC_AX_NETCFG_RX_BROAD |
1029 	    DC_NETCFG_RX_PROMISC));
1030 	bzero(hashes, sizeof(hashes));
1031 	ifp->if_flags &= ~IFF_ALLMULTI;
1032 
1033 	/*
1034 	 * Always accept broadcast frames.
1035 	 */
1036 	DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1037 
1038 	if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
1039 		ifp->if_flags |= IFF_ALLMULTI;
1040 		if (ifp->if_flags & IFF_PROMISC)
1041 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1042 		else
1043 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1044 	} else {
1045 		/* now program new ones */
1046 		ETHER_FIRST_MULTI(step, ac, enm);
1047 		while (enm != NULL) {
1048 			h = dc_crc_be(enm->enm_addrlo);
1049 
1050 			if (h < 32)
1051 				hashes[0] |= (1 << h);
1052 			else
1053 				hashes[1] |= (1 << (h - 32));
1054 
1055 			ETHER_NEXT_MULTI(step, enm);
1056 		}
1057 	}
1058 
1059 	/* Init our MAC address */
1060 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1061 	CSR_WRITE_4(sc, DC_AX_FILTDATA,
1062 	    *(u_int32_t *)(&sc->sc_arpcom.ac_enaddr[0]));
1063 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1064 	CSR_WRITE_4(sc, DC_AX_FILTDATA,
1065 	    *(u_int32_t *)(&sc->sc_arpcom.ac_enaddr[4]));
1066 
1067 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1068 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1069 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1070 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1071 }
1072 
1073 void
dc_setfilt_xircom(struct dc_softc * sc)1074 dc_setfilt_xircom(struct dc_softc *sc)
1075 {
1076 	struct arpcom *ac = &sc->sc_arpcom;
1077 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1078 	struct ether_multi *enm;
1079 	struct ether_multistep step;
1080 	struct dc_desc *sframe;
1081 	u_int32_t h, *sp;
1082 	int i;
1083 
1084 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON));
1085 
1086 	i = sc->dc_cdata.dc_tx_prod;
1087 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1088 	sc->dc_cdata.dc_tx_cnt++;
1089 	sframe = &sc->dc_ldata->dc_tx_list[i];
1090 	sp = &sc->dc_ldata->dc_sbuf[0];
1091 	bzero(sp, DC_SFRAME_LEN);
1092 
1093 	sframe->dc_data = htole32(sc->sc_listmap->dm_segs[0].ds_addr +
1094 	    offsetof(struct dc_list_data, dc_sbuf));
1095 	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1096 	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
1097 
1098 	sc->dc_cdata.dc_tx_chain[i].sd_mbuf =
1099 	    (struct mbuf *)&sc->dc_ldata->dc_sbuf[0];
1100 
1101 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ALLMULTI | DC_NETCFG_RX_PROMISC));
1102 	ifp->if_flags &= ~IFF_ALLMULTI;
1103 
1104 	if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
1105 		ifp->if_flags |= IFF_ALLMULTI;
1106 		if (ifp->if_flags & IFF_PROMISC)
1107 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1108 		else
1109 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1110 	} else {
1111 		/* now program new ones */
1112 		ETHER_FIRST_MULTI(step, ac, enm);
1113 		while (enm != NULL) {
1114 			h = dc_crc_le(sc, enm->enm_addrlo);
1115 
1116 			sp[h >> 4] |= htole32(1 << (h & 0xF));
1117 
1118 			ETHER_NEXT_MULTI(step, enm);
1119 		}
1120 	}
1121 
1122 	/*
1123 	 * Always accept broadcast frames.
1124 	 */
1125 	h = dc_crc_le(sc, (caddr_t)&etherbroadcastaddr);
1126 	sp[h >> 4] |= htole32(1 << (h & 0xF));
1127 
1128 	/* Set our MAC address */
1129 	sp[0] = DC_SP_FIELD(sc->sc_arpcom.ac_enaddr, 0);
1130 	sp[1] = DC_SP_FIELD(sc->sc_arpcom.ac_enaddr, 1);
1131 	sp[2] = DC_SP_FIELD(sc->sc_arpcom.ac_enaddr, 2);
1132 
1133 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
1134 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
1135 	ifp->if_flags |= IFF_RUNNING;
1136 	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1137 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1138 
1139 	/*
1140 	 * wait some time...
1141 	 */
1142 	DELAY(1000);
1143 
1144 	ifp->if_timer = 5;
1145 }
1146 
1147 void
dc_setfilt(struct dc_softc * sc)1148 dc_setfilt(struct dc_softc *sc)
1149 {
1150 	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1151 	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
1152 		dc_setfilt_21143(sc);
1153 
1154 	if (DC_IS_ASIX(sc))
1155 		dc_setfilt_asix(sc);
1156 
1157 	if (DC_IS_ADMTEK(sc))
1158 		dc_setfilt_admtek(sc);
1159 
1160 	if (DC_IS_XIRCOM(sc))
1161 		dc_setfilt_xircom(sc);
1162 }
1163 
1164 /*
1165  * In order to fiddle with the
1166  * 'full-duplex' and '100Mbps' bits in the netconfig register, we
1167  * first have to put the transmit and/or receive logic in the idle state.
1168  */
1169 void
dc_setcfg(struct dc_softc * sc,uint64_t media)1170 dc_setcfg(struct dc_softc *sc, uint64_t media)
1171 {
1172 	int i, restart = 0;
1173 	u_int32_t isr;
1174 
1175 	if (IFM_SUBTYPE(media) == IFM_NONE)
1176 		return;
1177 
1178 	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON)) {
1179 		restart = 1;
1180 		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON));
1181 
1182 		for (i = 0; i < DC_TIMEOUT; i++) {
1183 			isr = CSR_READ_4(sc, DC_ISR);
1184 			if (isr & DC_ISR_TX_IDLE &&
1185 			    ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1186 			    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT))
1187 				break;
1188 			DELAY(10);
1189 		}
1190 
1191 		if (i == DC_TIMEOUT) {
1192 			if (!(isr & DC_ISR_TX_IDLE) && !DC_IS_ASIX(sc))
1193 				printf("%s: failed to force tx to idle state\n",
1194 				    sc->sc_dev.dv_xname);
1195 			if (!((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1196 			    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT) &&
1197 			    !DC_HAS_BROKEN_RXSTATE(sc))
1198 				printf("%s: failed to force rx to idle state\n",
1199 				    sc->sc_dev.dv_xname);
1200 		}
1201 	}
1202 
1203 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1204 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1205 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1206 		if (sc->dc_pmode == DC_PMODE_MII) {
1207 			int watchdogreg;
1208 
1209 			if (DC_IS_INTEL(sc)) {
1210 			/* there's a write enable bit here that reads as 1 */
1211 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1212 				watchdogreg &= ~DC_WDOG_CTLWREN;
1213 				watchdogreg |= DC_WDOG_JABBERDIS;
1214 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1215 			} else {
1216 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1217 			}
1218 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1219 			    DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1220 			if (sc->dc_type == DC_TYPE_98713)
1221 				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1222 				    DC_NETCFG_SCRAMBLER));
1223 			if (!DC_IS_DAVICOM(sc))
1224 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1225 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1226 			if (DC_IS_INTEL(sc))
1227 				dc_apply_fixup(sc, IFM_AUTO);
1228 		} else {
1229 			if (DC_IS_PNIC(sc)) {
1230 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1231 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1232 				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1233 			}
1234 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1235 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1236 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1237 			if (DC_IS_INTEL(sc))
1238 				dc_apply_fixup(sc,
1239 				    (media & IFM_GMASK) == IFM_FDX ?
1240 				    IFM_100_TX|IFM_FDX : IFM_100_TX);
1241 		}
1242 	}
1243 
1244 	if (IFM_SUBTYPE(media) == IFM_10_T) {
1245 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1246 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1247 		if (sc->dc_pmode == DC_PMODE_MII) {
1248 			int watchdogreg;
1249 
1250 			if (DC_IS_INTEL(sc)) {
1251 			/* there's a write enable bit here that reads as 1 */
1252 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1253 				watchdogreg &= ~DC_WDOG_CTLWREN;
1254 				watchdogreg |= DC_WDOG_JABBERDIS;
1255 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1256 			} else {
1257 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1258 			}
1259 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1260 			    DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1261 			if (sc->dc_type == DC_TYPE_98713)
1262 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1263 			if (!DC_IS_DAVICOM(sc))
1264 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1265 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1266 			if (DC_IS_INTEL(sc))
1267 				dc_apply_fixup(sc, IFM_AUTO);
1268 		} else {
1269 			if (DC_IS_PNIC(sc)) {
1270 				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1271 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1272 				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1273 			}
1274 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1275 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1276 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1277 			if (DC_IS_INTEL(sc)) {
1278 				DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1279 				DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1280 				if ((media & IFM_GMASK) == IFM_FDX)
1281 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1282 				else
1283 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1284 				DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1285 				DC_CLRBIT(sc, DC_10BTCTRL,
1286 				    DC_TCTL_AUTONEGENBL);
1287 				dc_apply_fixup(sc,
1288 				    (media & IFM_GMASK) == IFM_FDX ?
1289 				    IFM_10_T|IFM_FDX : IFM_10_T);
1290 				DELAY(20000);
1291 			}
1292 		}
1293 	}
1294 
1295 	/*
1296 	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1297 	 * PHY and we want HomePNA mode, set the portsel bit to turn
1298 	 * on the external MII port.
1299 	 */
1300 	if (DC_IS_DAVICOM(sc)) {
1301 		if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
1302 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1303 			sc->dc_link = 1;
1304 		} else {
1305 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1306 		}
1307 	}
1308 
1309 	if ((media & IFM_GMASK) == IFM_FDX) {
1310 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1311 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1312 			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1313 	} else {
1314 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1315 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1316 			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1317 	}
1318 
1319 	if (restart)
1320 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON|DC_NETCFG_RX_ON);
1321 }
1322 
1323 void
dc_reset(struct dc_softc * sc)1324 dc_reset(struct dc_softc *sc)
1325 {
1326 	int i;
1327 
1328 	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1329 
1330 	for (i = 0; i < DC_TIMEOUT; i++) {
1331 		DELAY(10);
1332 		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1333 			break;
1334 	}
1335 
1336 	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_XIRCOM(sc) ||
1337 	    DC_IS_INTEL(sc) || DC_IS_CONEXANT(sc)) {
1338 		DELAY(10000);
1339 		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1340 		i = 0;
1341 	}
1342 
1343 	if (i == DC_TIMEOUT)
1344 		printf("%s: reset never completed!\n", sc->sc_dev.dv_xname);
1345 
1346 	/* Wait a little while for the chip to get its brains in order. */
1347 	DELAY(1000);
1348 
1349 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1350 	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1351 	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1352 
1353 	/*
1354 	 * Bring the SIA out of reset. In some cases, it looks
1355 	 * like failing to unreset the SIA soon enough gets it
1356 	 * into a state where it will never come out of reset
1357 	 * until we reset the whole chip again.
1358 	 */
1359 	if (DC_IS_INTEL(sc)) {
1360 		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1361 		CSR_WRITE_4(sc, DC_10BTCTRL, 0);
1362 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1363 	}
1364 
1365 	if (sc->dc_type == DC_TYPE_21145)
1366 		dc_setcfg(sc, IFM_10_T);
1367 }
1368 
1369 void
dc_apply_fixup(struct dc_softc * sc,uint64_t media)1370 dc_apply_fixup(struct dc_softc *sc, uint64_t media)
1371 {
1372 	struct dc_mediainfo *m;
1373 	u_int8_t *p;
1374 	int i;
1375 	u_int32_t reg;
1376 
1377 	m = sc->dc_mi;
1378 
1379 	while (m != NULL) {
1380 		if (m->dc_media == media)
1381 			break;
1382 		m = m->dc_next;
1383 	}
1384 
1385 	if (m == NULL)
1386 		return;
1387 
1388 	for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1389 		reg = (p[0] | (p[1] << 8)) << 16;
1390 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1391 	}
1392 
1393 	for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1394 		reg = (p[0] | (p[1] << 8)) << 16;
1395 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1396 	}
1397 }
1398 
1399 void
dc_decode_leaf_sia(struct dc_softc * sc,struct dc_eblock_sia * l)1400 dc_decode_leaf_sia(struct dc_softc *sc, struct dc_eblock_sia *l)
1401 {
1402 	struct dc_mediainfo *m;
1403 
1404 	m = malloc(sizeof(*m), M_DEVBUF, M_NOWAIT | M_ZERO);
1405 	if (m == NULL)
1406 		return;
1407 	switch (l->dc_sia_code & ~DC_SIA_CODE_EXT) {
1408 	case DC_SIA_CODE_10BT:
1409 		m->dc_media = IFM_10_T;
1410 		break;
1411 	case DC_SIA_CODE_10BT_FDX:
1412 		m->dc_media = IFM_10_T|IFM_FDX;
1413 		break;
1414 	case DC_SIA_CODE_10B2:
1415 		m->dc_media = IFM_10_2;
1416 		break;
1417 	case DC_SIA_CODE_10B5:
1418 		m->dc_media = IFM_10_5;
1419 		break;
1420 	default:
1421 		break;
1422 	}
1423 
1424 	/*
1425 	 * We need to ignore CSR13, CSR14, CSR15 for SIA mode.
1426 	 * Things apparently already work for cards that do
1427 	 * supply Media Specific Data.
1428 	 */
1429 	if (l->dc_sia_code & DC_SIA_CODE_EXT) {
1430 		m->dc_gp_len = 2;
1431 		m->dc_gp_ptr =
1432 		(u_int8_t *)&l->dc_un.dc_sia_ext.dc_sia_gpio_ctl;
1433 	} else {
1434 		m->dc_gp_len = 2;
1435 		m->dc_gp_ptr =
1436 		(u_int8_t *)&l->dc_un.dc_sia_noext.dc_sia_gpio_ctl;
1437 	}
1438 
1439 	m->dc_next = sc->dc_mi;
1440 	sc->dc_mi = m;
1441 
1442 	sc->dc_pmode = DC_PMODE_SIA;
1443 }
1444 
1445 void
dc_decode_leaf_sym(struct dc_softc * sc,struct dc_eblock_sym * l)1446 dc_decode_leaf_sym(struct dc_softc *sc, struct dc_eblock_sym *l)
1447 {
1448 	struct dc_mediainfo *m;
1449 
1450 	m = malloc(sizeof(*m), M_DEVBUF, M_NOWAIT | M_ZERO);
1451 	if (m == NULL)
1452 		return;
1453 	if (l->dc_sym_code == DC_SYM_CODE_100BT)
1454 		m->dc_media = IFM_100_TX;
1455 
1456 	if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1457 		m->dc_media = IFM_100_TX|IFM_FDX;
1458 
1459 	m->dc_gp_len = 2;
1460 	m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl;
1461 
1462 	m->dc_next = sc->dc_mi;
1463 	sc->dc_mi = m;
1464 
1465 	sc->dc_pmode = DC_PMODE_SYM;
1466 }
1467 
1468 void
dc_decode_leaf_mii(struct dc_softc * sc,struct dc_eblock_mii * l)1469 dc_decode_leaf_mii(struct dc_softc *sc, struct dc_eblock_mii *l)
1470 {
1471 	u_int8_t *p;
1472 	struct dc_mediainfo *m;
1473 
1474 	m = malloc(sizeof(*m), M_DEVBUF, M_NOWAIT | M_ZERO);
1475 	if (m == NULL)
1476 		return;
1477 	/* We abuse IFM_AUTO to represent MII. */
1478 	m->dc_media = IFM_AUTO;
1479 	m->dc_gp_len = l->dc_gpr_len;
1480 
1481 	p = (u_int8_t *)l;
1482 	p += sizeof(struct dc_eblock_mii);
1483 	m->dc_gp_ptr = p;
1484 	p += 2 * l->dc_gpr_len;
1485 	m->dc_reset_len = *p;
1486 	p++;
1487 	m->dc_reset_ptr = p;
1488 
1489 	m->dc_next = sc->dc_mi;
1490 	sc->dc_mi = m;
1491 }
1492 
1493 void
dc_read_srom(struct dc_softc * sc,int bits)1494 dc_read_srom(struct dc_softc *sc, int bits)
1495 {
1496 	sc->dc_sromsize = 2 << bits;
1497 	sc->dc_srom = malloc(sc->dc_sromsize, M_DEVBUF, M_NOWAIT);
1498 	if (sc->dc_srom == NULL)
1499 		return;
1500 	dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (sc->dc_sromsize / 2), 0);
1501 }
1502 
1503 void
dc_parse_21143_srom(struct dc_softc * sc)1504 dc_parse_21143_srom(struct dc_softc *sc)
1505 {
1506 	struct dc_leaf_hdr *lhdr;
1507 	struct dc_eblock_hdr *hdr;
1508 	int have_mii, i, loff;
1509 	char *ptr;
1510 
1511 	have_mii = 0;
1512 	loff = sc->dc_srom[27];
1513 	lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1514 
1515 	ptr = (char *)lhdr;
1516 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1517 	/*
1518 	 * Look if we got a MII media block.
1519 	 */
1520 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1521 		hdr = (struct dc_eblock_hdr *)ptr;
1522 		if (hdr->dc_type == DC_EBLOCK_MII)
1523 		    have_mii++;
1524 
1525 		ptr += (hdr->dc_len & 0x7F);
1526 		ptr++;
1527 	}
1528 
1529 	/*
1530 	 * Do the same thing again. Only use SIA and SYM media
1531 	 * blocks if no MII media block is available.
1532 	 */
1533 	ptr = (char *)lhdr;
1534 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1535 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1536 		hdr = (struct dc_eblock_hdr *)ptr;
1537 		switch(hdr->dc_type) {
1538 		case DC_EBLOCK_MII:
1539 			dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1540 			break;
1541 		case DC_EBLOCK_SIA:
1542 			if (! have_mii)
1543 			    dc_decode_leaf_sia(sc,
1544 				(struct dc_eblock_sia *)hdr);
1545 			break;
1546 		case DC_EBLOCK_SYM:
1547 			if (! have_mii)
1548 			    dc_decode_leaf_sym(sc,
1549 				(struct dc_eblock_sym *)hdr);
1550 			break;
1551 		default:
1552 			/* Don't care. Yet. */
1553 			break;
1554 		}
1555 		ptr += (hdr->dc_len & 0x7F);
1556 		ptr++;
1557 	}
1558 }
1559 
1560 /*
1561  * Attach the interface. Allocate softc structures, do ifmedia
1562  * setup and ethernet/BPF attach.
1563  */
1564 void
dc_attach(struct dc_softc * sc)1565 dc_attach(struct dc_softc *sc)
1566 {
1567 	struct ifnet *ifp;
1568 	int mac_offset, tmp, i;
1569 	u_int32_t reg;
1570 
1571 	/*
1572 	 * Get station address from the EEPROM.
1573 	 */
1574 	if (sc->sc_hasmac)
1575 		goto hasmac;
1576 
1577 	switch(sc->dc_type) {
1578 	case DC_TYPE_98713:
1579 	case DC_TYPE_98713A:
1580 	case DC_TYPE_987x5:
1581 	case DC_TYPE_PNICII:
1582 		dc_read_eeprom(sc, (caddr_t)&mac_offset,
1583 		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
1584 		dc_read_eeprom(sc, (caddr_t)&sc->sc_arpcom.ac_enaddr,
1585 		    (mac_offset / 2), 3, 0);
1586 		break;
1587 	case DC_TYPE_PNIC:
1588 		dc_read_eeprom(sc, (caddr_t)&sc->sc_arpcom.ac_enaddr, 0, 3, 1);
1589 		break;
1590 	case DC_TYPE_DM9102:
1591 	case DC_TYPE_21143:
1592 	case DC_TYPE_21145:
1593 	case DC_TYPE_ASIX:
1594 		dc_read_eeprom(sc, (caddr_t)&sc->sc_arpcom.ac_enaddr,
1595 		    DC_EE_NODEADDR, 3, 0);
1596 		break;
1597 	case DC_TYPE_AL981:
1598 	case DC_TYPE_AN983:
1599 		reg = CSR_READ_4(sc, DC_AL_PAR0);
1600 		sc->sc_arpcom.ac_enaddr[0] = (reg & 0xff);
1601 		sc->sc_arpcom.ac_enaddr[1] = (reg >> 8) & 0xff;
1602 		sc->sc_arpcom.ac_enaddr[2] = (reg >> 16) & 0xff;
1603 		sc->sc_arpcom.ac_enaddr[3] = (reg >> 24) & 0xff;
1604 		reg = CSR_READ_4(sc, DC_AL_PAR1);
1605 		sc->sc_arpcom.ac_enaddr[4] = (reg & 0xff);
1606 		sc->sc_arpcom.ac_enaddr[5] = (reg >> 8) & 0xff;
1607 		break;
1608 	case DC_TYPE_CONEXANT:
1609 		bcopy(&sc->dc_srom + DC_CONEXANT_EE_NODEADDR,
1610 		    &sc->sc_arpcom.ac_enaddr, ETHER_ADDR_LEN);
1611 		break;
1612 	case DC_TYPE_XIRCOM:
1613 		/* Some newer units have the MAC at offset 8 */
1614 		dc_read_eeprom(sc, (caddr_t)&sc->sc_arpcom.ac_enaddr, 8, 3, 0);
1615 
1616 		if (sc->sc_arpcom.ac_enaddr[0] == 0x00 &&
1617 		    sc->sc_arpcom.ac_enaddr[1] == 0x10 &&
1618 		    sc->sc_arpcom.ac_enaddr[2] == 0xa4)
1619 			break;
1620 		if (sc->sc_arpcom.ac_enaddr[0] == 0x00 &&
1621 		    sc->sc_arpcom.ac_enaddr[1] == 0x80 &&
1622 		    sc->sc_arpcom.ac_enaddr[2] == 0xc7)
1623 			break;
1624 		dc_read_eeprom(sc, (caddr_t)&sc->sc_arpcom.ac_enaddr, 3, 3, 0);
1625 		break;
1626 	default:
1627 		dc_read_eeprom(sc, (caddr_t)&sc->sc_arpcom.ac_enaddr,
1628 		    DC_EE_NODEADDR, 3, 0);
1629 		break;
1630 	}
1631 hasmac:
1632 
1633 	if (bus_dmamem_alloc(sc->sc_dmat, sizeof(struct dc_list_data),
1634 	    PAGE_SIZE, 0, sc->sc_listseg, 1, &sc->sc_listnseg,
1635 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO) != 0) {
1636 		printf(": can't alloc list mem\n");
1637 		goto fail;
1638 	}
1639 	if (bus_dmamem_map(sc->sc_dmat, sc->sc_listseg, sc->sc_listnseg,
1640 	    sizeof(struct dc_list_data), &sc->sc_listkva,
1641 	    BUS_DMA_NOWAIT) != 0) {
1642 		printf(": can't map list mem\n");
1643 		goto fail;
1644 	}
1645 	if (bus_dmamap_create(sc->sc_dmat, sizeof(struct dc_list_data), 1,
1646 	    sizeof(struct dc_list_data), 0, BUS_DMA_NOWAIT,
1647 	    &sc->sc_listmap) != 0) {
1648 		printf(": can't alloc list map\n");
1649 		goto fail;
1650 	}
1651 	if (bus_dmamap_load(sc->sc_dmat, sc->sc_listmap, sc->sc_listkva,
1652 	    sizeof(struct dc_list_data), NULL, BUS_DMA_NOWAIT) != 0) {
1653 		printf(": can't load list map\n");
1654 		goto fail;
1655 	}
1656 	sc->dc_ldata = (struct dc_list_data *)sc->sc_listkva;
1657 
1658 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
1659 		if (bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
1660 		    0, BUS_DMA_NOWAIT,
1661 		    &sc->dc_cdata.dc_rx_chain[i].sd_map) != 0) {
1662 			printf(": can't create rx map\n");
1663 			return;
1664 		}
1665 	}
1666 	if (bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
1667 	    BUS_DMA_NOWAIT, &sc->sc_rx_sparemap) != 0) {
1668 		printf(": can't create rx spare map\n");
1669 		return;
1670 	}
1671 
1672 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
1673 		if (bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1674 		    (sc->dc_flags & DC_TX_COALESCE) ? 1 : DC_TX_LIST_CNT - 5,
1675 		    MCLBYTES, 0, BUS_DMA_NOWAIT,
1676 		    &sc->dc_cdata.dc_tx_chain[i].sd_map) != 0) {
1677 			printf(": can't create tx map\n");
1678 			return;
1679 		}
1680 	}
1681 	if (bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1682 	    (sc->dc_flags & DC_TX_COALESCE) ? 1 : DC_TX_LIST_CNT - 5,
1683 	    MCLBYTES, 0, BUS_DMA_NOWAIT, &sc->sc_tx_sparemap) != 0) {
1684 		printf(": can't create tx spare map\n");
1685 		return;
1686 	}
1687 
1688 	/*
1689 	 * A 21143 or clone chip was detected. Inform the world.
1690 	 */
1691 	printf(", address %s\n", ether_sprintf(sc->sc_arpcom.ac_enaddr));
1692 
1693 	ifp = &sc->sc_arpcom.ac_if;
1694 	ifp->if_softc = sc;
1695 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1696 	ifp->if_ioctl = dc_ioctl;
1697 	ifp->if_start = dc_start;
1698 	ifp->if_watchdog = dc_watchdog;
1699 	ifq_init_maxlen(&ifp->if_snd, DC_TX_LIST_CNT - 1);
1700 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
1701 
1702 	ifp->if_capabilities = IFCAP_VLAN_MTU;
1703 
1704 	/* Do MII setup. If this is a 21143, check for a PHY on the
1705 	 * MII bus after applying any necessary fixups to twiddle the
1706 	 * GPIO bits. If we don't end up finding a PHY, restore the
1707 	 * old selection (SIA only or SIA/SYM) and attach the dcphy
1708 	 * driver instead.
1709 	 */
1710 	if (DC_IS_INTEL(sc)) {
1711 		dc_apply_fixup(sc, IFM_AUTO);
1712 		tmp = sc->dc_pmode;
1713 		sc->dc_pmode = DC_PMODE_MII;
1714 	}
1715 
1716 	/*
1717 	 * Setup General Purpose port mode and data so the tulip can talk
1718 	 * to the MII.  This needs to be done before mii_attach so that
1719 	 * we can actually see them.
1720 	 */
1721 	if (DC_IS_XIRCOM(sc)) {
1722 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
1723 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
1724 		DELAY(10);
1725 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
1726 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
1727 		DELAY(10);
1728 	}
1729 
1730 	sc->sc_mii.mii_ifp = ifp;
1731 	sc->sc_mii.mii_readreg = dc_miibus_readreg;
1732 	sc->sc_mii.mii_writereg = dc_miibus_writereg;
1733 	sc->sc_mii.mii_statchg = dc_miibus_statchg;
1734 	ifmedia_init(&sc->sc_mii.mii_media, 0, dc_ifmedia_upd, dc_ifmedia_sts);
1735 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1736 	    MII_OFFSET_ANY, 0);
1737 
1738 	if (DC_IS_INTEL(sc)) {
1739 		if (LIST_EMPTY(&sc->sc_mii.mii_phys)) {
1740 			sc->dc_pmode = tmp;
1741 			if (sc->dc_pmode != DC_PMODE_SIA)
1742 				sc->dc_pmode = DC_PMODE_SYM;
1743 			sc->dc_flags |= DC_21143_NWAY;
1744 			if (sc->dc_flags & DC_MOMENCO_BOTCH)
1745 				sc->dc_pmode = DC_PMODE_MII;
1746 			mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff,
1747 			    MII_PHY_ANY, MII_OFFSET_ANY, 0);
1748 		} else {
1749 			/* we have a PHY, so we must clear this bit */
1750 			sc->dc_flags &= ~DC_TULIP_LEDS;
1751 		}
1752 	}
1753 
1754 	if (LIST_EMPTY(&sc->sc_mii.mii_phys)) {
1755 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1756 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
1757 		printf("%s: MII without any PHY!\n", sc->sc_dev.dv_xname);
1758 	} else if (sc->dc_type == DC_TYPE_21145) {
1759 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_10_T);
1760 	} else
1761 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1762 
1763 	if (DC_IS_DAVICOM(sc) && sc->dc_revision >= DC_REVISION_DM9102A)
1764 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_HPNA_1,0,NULL);
1765 
1766 	if (DC_IS_ADMTEK(sc)) {
1767 		/*
1768 		 * Set automatic TX underrun recovery for the ADMtek chips
1769 		 */
1770 		DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
1771 	}
1772 
1773 	/*
1774 	 * Call MI attach routines.
1775 	 */
1776 	if_attach(ifp);
1777 	ether_ifattach(ifp);
1778 
1779 fail:
1780 	return;
1781 }
1782 
1783 /*
1784  * Initialize the transmit descriptors.
1785  */
1786 int
dc_list_tx_init(struct dc_softc * sc)1787 dc_list_tx_init(struct dc_softc *sc)
1788 {
1789 	struct dc_chain_data *cd;
1790 	struct dc_list_data *ld;
1791 	int i;
1792 	bus_addr_t next;
1793 
1794 	cd = &sc->dc_cdata;
1795 	ld = sc->dc_ldata;
1796 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
1797 		next = sc->sc_listmap->dm_segs[0].ds_addr;
1798 		if (i == (DC_TX_LIST_CNT - 1))
1799 			next +=
1800 			    offsetof(struct dc_list_data, dc_tx_list[0]);
1801 		else
1802 			next +=
1803 			    offsetof(struct dc_list_data, dc_tx_list[i + 1]);
1804 		cd->dc_tx_chain[i].sd_mbuf = NULL;
1805 		ld->dc_tx_list[i].dc_data = htole32(0);
1806 		ld->dc_tx_list[i].dc_ctl = htole32(0);
1807 		ld->dc_tx_list[i].dc_next = htole32(next);
1808 	}
1809 
1810 	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
1811 
1812 	return (0);
1813 }
1814 
1815 
1816 /*
1817  * Initialize the RX descriptors and allocate mbufs for them. Note that
1818  * we arrange the descriptors in a closed ring, so that the last descriptor
1819  * points back to the first.
1820  */
1821 int
dc_list_rx_init(struct dc_softc * sc)1822 dc_list_rx_init(struct dc_softc *sc)
1823 {
1824 	struct dc_chain_data *cd;
1825 	struct dc_list_data *ld;
1826 	int i;
1827 	bus_addr_t next;
1828 
1829 	cd = &sc->dc_cdata;
1830 	ld = sc->dc_ldata;
1831 
1832 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
1833 		if (dc_newbuf(sc, i, NULL) == ENOBUFS)
1834 			return (ENOBUFS);
1835 		next = sc->sc_listmap->dm_segs[0].ds_addr;
1836 		if (i == (DC_RX_LIST_CNT - 1))
1837 			next +=
1838 			    offsetof(struct dc_list_data, dc_rx_list[0]);
1839 		else
1840 			next +=
1841 			    offsetof(struct dc_list_data, dc_rx_list[i + 1]);
1842 		ld->dc_rx_list[i].dc_next = htole32(next);
1843 	}
1844 
1845 	cd->dc_rx_prod = 0;
1846 
1847 	return (0);
1848 }
1849 
1850 /*
1851  * Initialize an RX descriptor and attach an MBUF cluster.
1852  */
1853 int
dc_newbuf(struct dc_softc * sc,int i,struct mbuf * m)1854 dc_newbuf(struct dc_softc *sc, int i, struct mbuf *m)
1855 {
1856 	struct mbuf *m_new = NULL;
1857 	struct dc_desc *c;
1858 	bus_dmamap_t map;
1859 
1860 	c = &sc->dc_ldata->dc_rx_list[i];
1861 
1862 	if (m == NULL) {
1863 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1864 		if (m_new == NULL)
1865 			return (ENOBUFS);
1866 
1867 		MCLGET(m_new, M_DONTWAIT);
1868 		if (!(m_new->m_flags & M_EXT)) {
1869 			m_freem(m_new);
1870 			return (ENOBUFS);
1871 		}
1872 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1873 		if (bus_dmamap_load_mbuf(sc->sc_dmat, sc->sc_rx_sparemap,
1874 		    m_new, BUS_DMA_NOWAIT) != 0) {
1875 			m_freem(m_new);
1876 			return (ENOBUFS);
1877 		}
1878 		map = sc->dc_cdata.dc_rx_chain[i].sd_map;
1879 		sc->dc_cdata.dc_rx_chain[i].sd_map = sc->sc_rx_sparemap;
1880 		sc->sc_rx_sparemap = map;
1881 	} else {
1882 		/*
1883 		 * We're re-using a previously allocated mbuf;
1884 		 * be sure to re-init pointers and lengths to
1885 		 * default values.
1886 		 */
1887 		m_new = m;
1888 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1889 		m_new->m_data = m_new->m_ext.ext_buf;
1890 	}
1891 
1892 	m_adj(m_new, sizeof(u_int64_t));
1893 
1894 	/*
1895 	 * If this is a PNIC chip, zero the buffer. This is part
1896 	 * of the workaround for the receive bug in the 82c168 and
1897 	 * 82c169 chips.
1898 	 */
1899 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
1900 		bzero(mtod(m_new, char *), m_new->m_len);
1901 
1902 	bus_dmamap_sync(sc->sc_dmat, sc->dc_cdata.dc_rx_chain[i].sd_map, 0,
1903 	    sc->dc_cdata.dc_rx_chain[i].sd_map->dm_mapsize,
1904 	    BUS_DMASYNC_PREREAD);
1905 
1906 	sc->dc_cdata.dc_rx_chain[i].sd_mbuf = m_new;
1907 	c->dc_data = htole32(
1908 	    sc->dc_cdata.dc_rx_chain[i].sd_map->dm_segs[0].ds_addr +
1909 	    sizeof(u_int64_t));
1910 	c->dc_ctl = htole32(DC_RXCTL_RLINK | ETHER_MAX_DIX_LEN);
1911 	c->dc_status = htole32(DC_RXSTAT_OWN);
1912 
1913 	bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap,
1914 	    offsetof(struct dc_list_data, dc_rx_list[i]),
1915 	    sizeof(struct dc_desc),
1916 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1917 
1918 	return (0);
1919 }
1920 
1921 /*
1922  * Grrrrr.
1923  * The PNIC chip has a terrible bug in it that manifests itself during
1924  * periods of heavy activity. The exact mode of failure if difficult to
1925  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
1926  * will happen on slow machines. The bug is that sometimes instead of
1927  * uploading one complete frame during reception, it uploads what looks
1928  * like the entire contents of its FIFO memory. The frame we want is at
1929  * the end of the whole mess, but we never know exactly how much data has
1930  * been uploaded, so salvaging the frame is hard.
1931  *
1932  * There is only one way to do it reliably, and it's disgusting.
1933  * Here's what we know:
1934  *
1935  * - We know there will always be somewhere between one and three extra
1936  *   descriptors uploaded.
1937  *
1938  * - We know the desired received frame will always be at the end of the
1939  *   total data upload.
1940  *
1941  * - We know the size of the desired received frame because it will be
1942  *   provided in the length field of the status word in the last descriptor.
1943  *
1944  * Here's what we do:
1945  *
1946  * - When we allocate buffers for the receive ring, we bzero() them.
1947  *   This means that we know that the buffer contents should be all
1948  *   zeros, except for data uploaded by the chip.
1949  *
1950  * - We also force the PNIC chip to upload frames that include the
1951  *   ethernet CRC at the end.
1952  *
1953  * - We gather all of the bogus frame data into a single buffer.
1954  *
1955  * - We then position a pointer at the end of this buffer and scan
1956  *   backwards until we encounter the first non-zero byte of data.
1957  *   This is the end of the received frame. We know we will encounter
1958  *   some data at the end of the frame because the CRC will always be
1959  *   there, so even if the sender transmits a packet of all zeros,
1960  *   we won't be fooled.
1961  *
1962  * - We know the size of the actual received frame, so we subtract
1963  *   that value from the current pointer location. This brings us
1964  *   to the start of the actual received packet.
1965  *
1966  * - We copy this into an mbuf and pass it on, along with the actual
1967  *   frame length.
1968  *
1969  * The performance hit is tremendous, but it beats dropping frames all
1970  * the time.
1971  */
1972 
1973 #define DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG|DC_RXSTAT_LASTFRAG)
1974 void
dc_pnic_rx_bug_war(struct dc_softc * sc,int idx)1975 dc_pnic_rx_bug_war(struct dc_softc *sc, int idx)
1976 {
1977 	struct dc_desc		*cur_rx;
1978 	struct dc_desc		*c = NULL;
1979 	struct mbuf		*m = NULL;
1980 	unsigned char		*ptr;
1981 	int			i, total_len;
1982 	u_int32_t		rxstat = 0;
1983 
1984 	i = sc->dc_pnic_rx_bug_save;
1985 	cur_rx = &sc->dc_ldata->dc_rx_list[idx];
1986 	ptr = sc->dc_pnic_rx_buf;
1987 	bzero(ptr, ETHER_MAX_DIX_LEN * 5);
1988 
1989 	/* Copy all the bytes from the bogus buffers. */
1990 	while (1) {
1991 		c = &sc->dc_ldata->dc_rx_list[i];
1992 		rxstat = letoh32(c->dc_status);
1993 		m = sc->dc_cdata.dc_rx_chain[i].sd_mbuf;
1994 		bcopy(mtod(m, char *), ptr, ETHER_MAX_DIX_LEN);
1995 		ptr += ETHER_MAX_DIX_LEN;
1996 		/* If this is the last buffer, break out. */
1997 		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
1998 			break;
1999 		dc_newbuf(sc, i, m);
2000 		DC_INC(i, DC_RX_LIST_CNT);
2001 	}
2002 
2003 	/* Find the length of the actual receive frame. */
2004 	total_len = DC_RXBYTES(rxstat);
2005 
2006 	/* Scan backwards until we hit a non-zero byte. */
2007 	while(*ptr == 0x00)
2008 		ptr--;
2009 
2010 	/* Round off. */
2011 	if ((unsigned long)(ptr) & 0x3)
2012 		ptr -= 1;
2013 
2014 	/* Now find the start of the frame. */
2015 	ptr -= total_len;
2016 	if (ptr < sc->dc_pnic_rx_buf)
2017 		ptr = sc->dc_pnic_rx_buf;
2018 
2019 	/*
2020 	 * Now copy the salvaged frame to the last mbuf and fake up
2021 	 * the status word to make it look like a successful
2022  	 * frame reception.
2023 	 */
2024 	dc_newbuf(sc, i, m);
2025 	bcopy(ptr, mtod(m, char *), total_len);
2026 	cur_rx->dc_status = htole32(rxstat | DC_RXSTAT_FIRSTFRAG);
2027 }
2028 
2029 /*
2030  * This routine searches the RX ring for dirty descriptors in the
2031  * event that the rxeof routine falls out of sync with the chip's
2032  * current descriptor pointer. This may happen sometimes as a result
2033  * of a "no RX buffer available" condition that happens when the chip
2034  * consumes all of the RX buffers before the driver has a chance to
2035  * process the RX ring. This routine may need to be called more than
2036  * once to bring the driver back in sync with the chip, however we
2037  * should still be getting RX DONE interrupts to drive the search
2038  * for new packets in the RX ring, so we should catch up eventually.
2039  */
2040 int
dc_rx_resync(struct dc_softc * sc)2041 dc_rx_resync(struct dc_softc *sc)
2042 {
2043 	u_int32_t stat;
2044 	int i, pos, offset;
2045 
2046 	pos = sc->dc_cdata.dc_rx_prod;
2047 
2048 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2049 
2050 		offset = offsetof(struct dc_list_data, dc_rx_list[pos]);
2051 		bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap,
2052 		    offset, sizeof(struct dc_desc),
2053 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2054 
2055 		stat = sc->dc_ldata->dc_rx_list[pos].dc_status;
2056 		if (!(stat & htole32(DC_RXSTAT_OWN)))
2057 			break;
2058 		DC_INC(pos, DC_RX_LIST_CNT);
2059 	}
2060 
2061 	/* If the ring really is empty, then just return. */
2062 	if (i == DC_RX_LIST_CNT)
2063 		return (0);
2064 
2065 	/* We've fallen behind the chip: catch it. */
2066 	sc->dc_cdata.dc_rx_prod = pos;
2067 
2068 	return (EAGAIN);
2069 }
2070 
2071 /*
2072  * A frame has been uploaded: pass the resulting mbuf chain up to
2073  * the higher level protocols.
2074  */
2075 int
dc_rxeof(struct dc_softc * sc)2076 dc_rxeof(struct dc_softc *sc)
2077 {
2078 	struct mbuf *m;
2079 	struct ifnet *ifp;
2080 	struct dc_desc *cur_rx;
2081 	struct mbuf_list ml = MBUF_LIST_INITIALIZER();
2082 	int i, offset, total_len = 0, consumed = 0;
2083 	u_int32_t rxstat;
2084 
2085 	ifp = &sc->sc_arpcom.ac_if;
2086 	i = sc->dc_cdata.dc_rx_prod;
2087 
2088 	for(;;) {
2089 		struct mbuf	*m0 = NULL;
2090 
2091 		offset = offsetof(struct dc_list_data, dc_rx_list[i]);
2092 		bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap,
2093 		    offset, sizeof(struct dc_desc),
2094 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2095 
2096 		cur_rx = &sc->dc_ldata->dc_rx_list[i];
2097 		rxstat = letoh32(cur_rx->dc_status);
2098 		if (rxstat & DC_RXSTAT_OWN)
2099 			break;
2100 
2101 		m = sc->dc_cdata.dc_rx_chain[i].sd_mbuf;
2102 		total_len = DC_RXBYTES(rxstat);
2103 
2104 		bus_dmamap_sync(sc->sc_dmat, sc->dc_cdata.dc_rx_chain[i].sd_map,
2105 		    0, sc->dc_cdata.dc_rx_chain[i].sd_map->dm_mapsize,
2106 		    BUS_DMASYNC_POSTREAD);
2107 
2108 		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2109 			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2110 				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2111 					sc->dc_pnic_rx_bug_save = i;
2112 				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
2113 					DC_INC(i, DC_RX_LIST_CNT);
2114 					continue;
2115 				}
2116 				dc_pnic_rx_bug_war(sc, i);
2117 				rxstat = letoh32(cur_rx->dc_status);
2118 				total_len = DC_RXBYTES(rxstat);
2119 			}
2120 		}
2121 
2122 		sc->dc_cdata.dc_rx_chain[i].sd_mbuf = NULL;
2123 
2124 		/*
2125 		 * If an error occurs, update stats, clear the
2126 		 * status word and leave the mbuf cluster in place:
2127 		 * it should simply get re-used next time this descriptor
2128 		 * comes up in the ring.  However, don't report long
2129 		 * frames as errors since they could be VLANs.
2130 		 */
2131 		if ((rxstat & DC_RXSTAT_RXERR)) {
2132 			if (!(rxstat & DC_RXSTAT_GIANT) ||
2133 			    (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
2134 				       DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
2135 				       DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
2136 				ifp->if_ierrors++;
2137 				if (rxstat & DC_RXSTAT_COLLSEEN)
2138 					ifp->if_collisions++;
2139 				dc_newbuf(sc, i, m);
2140 				if (rxstat & DC_RXSTAT_CRCERR) {
2141 					DC_INC(i, DC_RX_LIST_CNT);
2142 					continue;
2143 				} else {
2144 					dc_init(sc);
2145 					break;
2146 				}
2147 			}
2148 		}
2149 
2150 		/* No errors; receive the packet. */
2151 		total_len -= ETHER_CRC_LEN;
2152 
2153 		m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN);
2154 		dc_newbuf(sc, i, m);
2155 		DC_INC(i, DC_RX_LIST_CNT);
2156 		if (m0 == NULL) {
2157 			ifp->if_ierrors++;
2158 			continue;
2159 		}
2160 		m = m0;
2161 
2162 		consumed++;
2163 		ml_enqueue(&ml, m);
2164 	}
2165 
2166 	sc->dc_cdata.dc_rx_prod = i;
2167 
2168 	if_input(ifp, &ml);
2169 
2170 	return (consumed);
2171 }
2172 
2173 /*
2174  * A frame was downloaded to the chip. It's safe for us to clean up
2175  * the list buffers.
2176  */
2177 
2178 void
dc_txeof(struct dc_softc * sc)2179 dc_txeof(struct dc_softc *sc)
2180 {
2181 	struct dc_desc *cur_tx = NULL;
2182 	struct ifnet *ifp;
2183 	int idx, offset;
2184 
2185 	ifp = &sc->sc_arpcom.ac_if;
2186 
2187 	/*
2188 	 * Go through our tx list and free mbufs for those
2189 	 * frames that have been transmitted.
2190 	 */
2191 	idx = sc->dc_cdata.dc_tx_cons;
2192 	while(idx != sc->dc_cdata.dc_tx_prod) {
2193 		u_int32_t		txstat;
2194 
2195 		offset = offsetof(struct dc_list_data, dc_tx_list[idx]);
2196 		bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap,
2197 		    offset, sizeof(struct dc_desc),
2198 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2199 
2200 		cur_tx = &sc->dc_ldata->dc_tx_list[idx];
2201 		txstat = letoh32(cur_tx->dc_status);
2202 
2203 		if (txstat & DC_TXSTAT_OWN)
2204 			break;
2205 
2206 		if (!(cur_tx->dc_ctl & htole32(DC_TXCTL_LASTFRAG)) ||
2207 		    cur_tx->dc_ctl & htole32(DC_TXCTL_SETUP)) {
2208 			if (cur_tx->dc_ctl & htole32(DC_TXCTL_SETUP)) {
2209 				/*
2210 				 * Yes, the PNIC is so brain damaged
2211 				 * that it will sometimes generate a TX
2212 				 * underrun error while DMAing the RX
2213 				 * filter setup frame. If we detect this,
2214 				 * we have to send the setup frame again,
2215 				 * or else the filter won't be programmed
2216 				 * correctly.
2217 				 */
2218 				if (DC_IS_PNIC(sc)) {
2219 					if (txstat & DC_TXSTAT_ERRSUM)
2220 						dc_setfilt(sc);
2221 				}
2222 				sc->dc_cdata.dc_tx_chain[idx].sd_mbuf = NULL;
2223 			}
2224 			sc->dc_cdata.dc_tx_cnt--;
2225 			DC_INC(idx, DC_TX_LIST_CNT);
2226 			continue;
2227 		}
2228 
2229 		if (DC_IS_XIRCOM(sc) || DC_IS_CONEXANT(sc)) {
2230 			/*
2231 			 * XXX: Why does my Xircom taunt me so?
2232 			 * For some reason it likes setting the CARRLOST flag
2233 			 * even when the carrier is there. wtf?!
2234 			 * Who knows, but Conexant chips have the
2235 			 * same problem. Maybe they took lessons
2236 			 * from Xircom.
2237 			 */
2238 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2239 			    sc->dc_pmode == DC_PMODE_MII &&
2240 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
2241 			    DC_TXSTAT_NOCARRIER)))
2242 				txstat &= ~DC_TXSTAT_ERRSUM;
2243 		} else {
2244 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2245 			    sc->dc_pmode == DC_PMODE_MII &&
2246 		    	    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
2247 		    	    DC_TXSTAT_NOCARRIER|DC_TXSTAT_CARRLOST)))
2248 				txstat &= ~DC_TXSTAT_ERRSUM;
2249 		}
2250 
2251 		if (txstat & DC_TXSTAT_ERRSUM) {
2252 			ifp->if_oerrors++;
2253 			if (txstat & DC_TXSTAT_EXCESSCOLL)
2254 				ifp->if_collisions++;
2255 			if (txstat & DC_TXSTAT_LATECOLL)
2256 				ifp->if_collisions++;
2257 			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
2258 				dc_init(sc);
2259 				return;
2260 			}
2261 		}
2262 
2263 		ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
2264 
2265 		if (sc->dc_cdata.dc_tx_chain[idx].sd_map->dm_nsegs != 0) {
2266 			bus_dmamap_t map = sc->dc_cdata.dc_tx_chain[idx].sd_map;
2267 
2268 			bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
2269 			    BUS_DMASYNC_POSTWRITE);
2270 			bus_dmamap_unload(sc->sc_dmat, map);
2271 		}
2272 		if (sc->dc_cdata.dc_tx_chain[idx].sd_mbuf != NULL) {
2273 			m_freem(sc->dc_cdata.dc_tx_chain[idx].sd_mbuf);
2274 			sc->dc_cdata.dc_tx_chain[idx].sd_mbuf = NULL;
2275 		}
2276 
2277 		bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap,
2278 		    offset, sizeof(struct dc_desc),
2279 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2280 
2281 		sc->dc_cdata.dc_tx_cnt--;
2282 		DC_INC(idx, DC_TX_LIST_CNT);
2283 	}
2284 	sc->dc_cdata.dc_tx_cons = idx;
2285 
2286 	if (DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt > 5)
2287 		ifq_clr_oactive(&ifp->if_snd);
2288 	if (sc->dc_cdata.dc_tx_cnt == 0)
2289 		ifp->if_timer = 0;
2290 }
2291 
2292 void
dc_tick(void * xsc)2293 dc_tick(void *xsc)
2294 {
2295 	struct dc_softc *sc = (struct dc_softc *)xsc;
2296 	struct mii_data *mii;
2297 	struct ifnet *ifp;
2298 	int s;
2299 	u_int32_t r;
2300 
2301 	s = splnet();
2302 
2303 	ifp = &sc->sc_arpcom.ac_if;
2304 	mii = &sc->sc_mii;
2305 
2306 	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
2307 		if (sc->dc_flags & DC_21143_NWAY) {
2308 			r = CSR_READ_4(sc, DC_10BTSTAT);
2309 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2310 			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
2311 				sc->dc_link = 0;
2312 				mii_mediachg(mii);
2313 			}
2314 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2315 			    IFM_10_T && (r & DC_TSTAT_LS10)) {
2316 				sc->dc_link = 0;
2317 				mii_mediachg(mii);
2318 			}
2319 			if (sc->dc_link == 0)
2320 				mii_tick(mii);
2321 		} else {
2322 			/*
2323 			 * For NICs which never report DC_RXSTATE_WAIT, we
2324 			 * have to bite the bullet...
2325 			 */
2326 			if ((DC_HAS_BROKEN_RXSTATE(sc) || (CSR_READ_4(sc,
2327 			    DC_ISR) & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT) &&
2328 			    sc->dc_cdata.dc_tx_cnt == 0 && !DC_IS_ASIX(sc)) {
2329 				mii_tick(mii);
2330 				if (!(mii->mii_media_status & IFM_ACTIVE))
2331 					sc->dc_link = 0;
2332 			}
2333 		}
2334 	} else
2335 		mii_tick(mii);
2336 
2337 	/*
2338 	 * When the init routine completes, we expect to be able to send
2339 	 * packets right away, and in fact the network code will send a
2340 	 * gratuitous ARP the moment the init routine marks the interface
2341 	 * as running. However, even though the MAC may have been initialized,
2342 	 * there may be a delay of a few seconds before the PHY completes
2343 	 * autonegotiation and the link is brought up. Any transmissions
2344 	 * made during that delay will be lost. Dealing with this is tricky:
2345 	 * we can't just pause in the init routine while waiting for the
2346 	 * PHY to come ready since that would bring the whole system to
2347 	 * a screeching halt for several seconds.
2348 	 *
2349 	 * What we do here is prevent the TX start routine from sending
2350 	 * any packets until a link has been established. After the
2351 	 * interface has been initialized, the tick routine will poll
2352 	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
2353 	 * that time, packets will stay in the send queue, and once the
2354 	 * link comes up, they will be flushed out to the wire.
2355 	 */
2356 	if (!sc->dc_link && mii->mii_media_status & IFM_ACTIVE &&
2357 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2358 		sc->dc_link++;
2359 		if (ifq_empty(&ifp->if_snd) == 0)
2360 	 	    dc_start(ifp);
2361 	}
2362 
2363 	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
2364 		timeout_add_msec(&sc->dc_tick_tmo, 100);
2365 	else
2366 		timeout_add_sec(&sc->dc_tick_tmo, 1);
2367 
2368 	splx(s);
2369 }
2370 
2371 /* A transmit underrun has occurred.  Back off the transmit threshold,
2372  * or switch to store and forward mode if we have to.
2373  */
2374 void
dc_tx_underrun(struct dc_softc * sc)2375 dc_tx_underrun(struct dc_softc *sc)
2376 {
2377 	u_int32_t	isr;
2378 	int		i;
2379 
2380 	if (DC_IS_DAVICOM(sc))
2381 		dc_init(sc);
2382 
2383 	if (DC_IS_INTEL(sc)) {
2384 		/*
2385 		 * The real 21143 requires that the transmitter be idle
2386 		 * in order to change the transmit threshold or store
2387 		 * and forward state.
2388 		 */
2389 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2390 
2391 		for (i = 0; i < DC_TIMEOUT; i++) {
2392 			isr = CSR_READ_4(sc, DC_ISR);
2393 			if (isr & DC_ISR_TX_IDLE)
2394 				break;
2395 			DELAY(10);
2396 		}
2397 		if (i == DC_TIMEOUT) {
2398 			printf("%s: failed to force tx to idle state\n",
2399 			    sc->sc_dev.dv_xname);
2400 			dc_init(sc);
2401 		}
2402 	}
2403 
2404 	sc->dc_txthresh += DC_TXTHRESH_INC;
2405 	if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
2406 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2407 	} else {
2408 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
2409 		DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
2410 	}
2411 
2412 	if (DC_IS_INTEL(sc))
2413 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2414 
2415 	return;
2416 }
2417 
2418 int
dc_intr(void * arg)2419 dc_intr(void *arg)
2420 {
2421 	struct dc_softc *sc;
2422 	struct ifnet *ifp;
2423 	u_int32_t status, ints;
2424 	int claimed = 0;
2425 
2426 	sc = arg;
2427 
2428 	ifp = &sc->sc_arpcom.ac_if;
2429 
2430 	ints = CSR_READ_4(sc, DC_ISR);
2431 	if ((ints & DC_INTRS) == 0)
2432 		return (claimed);
2433 	if (ints == 0xffffffff)
2434 		return (0);
2435 
2436 	/* Suppress unwanted interrupts */
2437 	if (!(ifp->if_flags & IFF_UP)) {
2438 		if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
2439 			dc_stop(sc, 0);
2440 		return (claimed);
2441 	}
2442 
2443 	/* Disable interrupts. */
2444 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
2445 
2446 	while (((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS) &&
2447 	    status != 0xFFFFFFFF &&
2448 	    (ifp->if_flags & IFF_RUNNING)) {
2449 
2450 		claimed = 1;
2451 		CSR_WRITE_4(sc, DC_ISR, status);
2452 
2453 		if (status & DC_ISR_RX_OK) {
2454 			if (dc_rxeof(sc) == 0) {
2455 				while(dc_rx_resync(sc))
2456 					dc_rxeof(sc);
2457 			}
2458 		}
2459 
2460 		if (status & (DC_ISR_TX_OK|DC_ISR_TX_NOBUF))
2461 			dc_txeof(sc);
2462 
2463 		if (status & DC_ISR_TX_IDLE) {
2464 			dc_txeof(sc);
2465 			if (sc->dc_cdata.dc_tx_cnt) {
2466 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2467 				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2468 			}
2469 		}
2470 
2471 		if (status & DC_ISR_TX_UNDERRUN)
2472 			dc_tx_underrun(sc);
2473 
2474 		if ((status & DC_ISR_RX_WATDOGTIMEO)
2475 		    || (status & DC_ISR_RX_NOBUF)) {
2476 			if (dc_rxeof(sc) == 0) {
2477 				while(dc_rx_resync(sc))
2478 					dc_rxeof(sc);
2479 			}
2480 		}
2481 
2482 		if (status & DC_ISR_BUS_ERR)
2483 			dc_init(sc);
2484 	}
2485 
2486 	/* Re-enable interrupts. */
2487 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
2488 
2489 	if (ifq_empty(&ifp->if_snd) == 0)
2490 		dc_start(ifp);
2491 
2492 	return (claimed);
2493 }
2494 
2495 /*
2496  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
2497  * pointers to the fragment pointers.
2498  */
2499 int
dc_encap(struct dc_softc * sc,bus_dmamap_t map,struct mbuf * m,u_int32_t * idx)2500 dc_encap(struct dc_softc *sc, bus_dmamap_t map, struct mbuf *m, u_int32_t *idx)
2501 {
2502 	struct dc_desc *f = NULL;
2503 	int frag, cur, cnt = 0, i;
2504 
2505 	cur = frag = *idx;
2506 
2507 	for (i = 0; i < map->dm_nsegs; i++) {
2508 		f = &sc->dc_ldata->dc_tx_list[frag];
2509 		f->dc_ctl = htole32(DC_TXCTL_TLINK | map->dm_segs[i].ds_len);
2510 		if (cnt == 0) {
2511 			f->dc_status = htole32(0);
2512 			f->dc_ctl |= htole32(DC_TXCTL_FIRSTFRAG);
2513 		} else
2514 			f->dc_status = htole32(DC_TXSTAT_OWN);
2515 		f->dc_data = htole32(map->dm_segs[i].ds_addr);
2516 		cur = frag;
2517 		DC_INC(frag, DC_TX_LIST_CNT);
2518 		cnt++;
2519 	}
2520 
2521 	sc->dc_cdata.dc_tx_cnt += cnt;
2522 	sc->dc_cdata.dc_tx_chain[cur].sd_mbuf = m;
2523 	sc->sc_tx_sparemap = sc->dc_cdata.dc_tx_chain[cur].sd_map;
2524 	sc->dc_cdata.dc_tx_chain[cur].sd_map = map;
2525 	sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_LASTFRAG);
2526 	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
2527 		sc->dc_ldata->dc_tx_list[*idx].dc_ctl |=
2528 		    htole32(DC_TXCTL_FINT);
2529 	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
2530 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |=
2531 		    htole32(DC_TXCTL_FINT);
2532 	if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
2533 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |=
2534 		    htole32(DC_TXCTL_FINT);
2535 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
2536 	    BUS_DMASYNC_PREWRITE);
2537 
2538 	sc->dc_ldata->dc_tx_list[*idx].dc_status = htole32(DC_TXSTAT_OWN);
2539 
2540 	*idx = frag;
2541 
2542 	return (0);
2543 }
2544 
2545 /*
2546  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2547  * to the mbuf data regions directly in the transmit lists. We also save a
2548  * copy of the pointers since the transmit list fragment pointers are
2549  * physical addresses.
2550  */
2551 
2552 static inline int
dc_fits(struct dc_softc * sc,int idx,bus_dmamap_t map)2553 dc_fits(struct dc_softc *sc, int idx, bus_dmamap_t map)
2554 {
2555 	if (sc->dc_flags & DC_TX_ADMTEK_WAR) {
2556 		if (sc->dc_cdata.dc_tx_prod != idx &&
2557 		    idx + map->dm_nsegs >= DC_TX_LIST_CNT)
2558 			return (0);
2559 	}
2560 
2561 	if (sc->dc_cdata.dc_tx_cnt + map->dm_nsegs + 5 > DC_TX_LIST_CNT)
2562 		return (0);
2563 
2564 	return (1);
2565 }
2566 
2567 void
dc_start(struct ifnet * ifp)2568 dc_start(struct ifnet *ifp)
2569 {
2570 	struct dc_softc *sc = ifp->if_softc;
2571 	bus_dmamap_t map;
2572 	struct mbuf *m;
2573 	int idx;
2574 
2575 	if (!sc->dc_link && ifq_len(&ifp->if_snd) < 10)
2576 		return;
2577 
2578 	if (ifq_is_oactive(&ifp->if_snd))
2579 		return;
2580 
2581 	idx = sc->dc_cdata.dc_tx_prod;
2582 
2583 	bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap,
2584 	    offsetof(struct dc_list_data, dc_tx_list),
2585 	    sizeof(struct dc_desc) * DC_TX_LIST_CNT,
2586 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2587 
2588 	for (;;) {
2589 		m = ifq_deq_begin(&ifp->if_snd);
2590 		if (m == NULL)
2591 			break;
2592 
2593 		map = sc->sc_tx_sparemap;
2594 		switch (bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
2595 		    BUS_DMA_NOWAIT | BUS_DMA_OVERRUN)) {
2596 		case 0:
2597 			break;
2598 		case EFBIG:
2599 			if (m_defrag(m, M_DONTWAIT) == 0 &&
2600 			    bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
2601 			     BUS_DMA_NOWAIT | BUS_DMA_OVERRUN) == 0)
2602 				break;
2603 
2604 			/* FALLTHROUGH */
2605 		default:
2606 			ifq_deq_commit(&ifp->if_snd, m);
2607 			m_freem(m);
2608 			ifp->if_oerrors++;
2609 			continue;
2610 		}
2611 
2612 		if (!dc_fits(sc, idx, map)) {
2613 			bus_dmamap_unload(sc->sc_dmat, map);
2614 			ifq_deq_rollback(&ifp->if_snd, m);
2615 			ifq_set_oactive(&ifp->if_snd);
2616 			break;
2617 		}
2618 
2619 		/* now we are committed to transmit the packet */
2620 		ifq_deq_commit(&ifp->if_snd, m);
2621 
2622 		if (dc_encap(sc, map, m, &idx) != 0) {
2623 			m_freem(m);
2624 			ifp->if_oerrors++;
2625 			continue;
2626 		}
2627 
2628 		/*
2629 		 * If there's a BPF listener, bounce a copy of this frame
2630 		 * to him.
2631 		 */
2632 #if NBPFILTER > 0
2633 		if (ifp->if_bpf)
2634 			bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT);
2635 #endif
2636 
2637 		if (sc->dc_flags & DC_TX_ONE) {
2638 			ifq_set_oactive(&ifp->if_snd);
2639 			break;
2640 		}
2641 	}
2642 
2643 	bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap,
2644 	    offsetof(struct dc_list_data, dc_tx_list),
2645 	    sizeof(struct dc_desc) * DC_TX_LIST_CNT,
2646 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2647 
2648 	if (idx == sc->dc_cdata.dc_tx_prod)
2649 		return;
2650 
2651 	/* Transmit */
2652 	sc->dc_cdata.dc_tx_prod = idx;
2653 	if (!(sc->dc_flags & DC_TX_POLL))
2654 		CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2655 
2656 	/*
2657 	 * Set a timeout in case the chip goes out to lunch.
2658 	 */
2659 	ifp->if_timer = 5;
2660 }
2661 
2662 void
dc_init(void * xsc)2663 dc_init(void *xsc)
2664 {
2665 	struct dc_softc *sc = xsc;
2666 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
2667 	struct mii_data *mii;
2668 	int s;
2669 
2670 	s = splnet();
2671 
2672 	mii = &sc->sc_mii;
2673 
2674 	/*
2675 	 * Cancel pending I/O and free all RX/TX buffers.
2676 	 */
2677 	dc_stop(sc, 0);
2678 	dc_reset(sc);
2679 
2680 	/*
2681 	 * Set cache alignment and burst length.
2682 	 */
2683 	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
2684 		CSR_WRITE_4(sc, DC_BUSCTL, 0);
2685 	else
2686 		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME|DC_BUSCTL_MRLE);
2687 	/*
2688 	 * Evenly share the bus between receive and transmit process.
2689 	 */
2690 	if (DC_IS_INTEL(sc))
2691 		DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
2692 	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
2693 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
2694 	} else {
2695 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
2696 	}
2697 	if (sc->dc_flags & DC_TX_POLL)
2698 		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
2699 	switch(sc->dc_cachesize) {
2700 	case 32:
2701 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
2702 		break;
2703 	case 16:
2704 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
2705 		break;
2706 	case 8:
2707 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
2708 		break;
2709 	case 0:
2710 	default:
2711 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
2712 		break;
2713 	}
2714 
2715 	if (sc->dc_flags & DC_TX_STORENFWD)
2716 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2717 	else {
2718 		if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
2719 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2720 		} else {
2721 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2722 			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
2723 		}
2724 	}
2725 
2726 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
2727 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
2728 
2729 	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
2730 		/*
2731 		 * The app notes for the 98713 and 98715A say that
2732 		 * in order to have the chips operate properly, a magic
2733 		 * number must be written to CSR16. Macronix does not
2734 		 * document the meaning of these bits so there's no way
2735 		 * to know exactly what they do. The 98713 has a magic
2736 		 * number all its own; the rest all use a different one.
2737 		 */
2738 		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
2739 		if (sc->dc_type == DC_TYPE_98713)
2740 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
2741 		else
2742 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
2743 	}
2744 
2745 	if (DC_IS_XIRCOM(sc)) {
2746 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
2747 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2748 		DELAY(10);
2749 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
2750 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2751 		DELAY(10);
2752 	}
2753 
2754 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
2755 	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
2756 
2757 	/* Init circular RX list. */
2758 	if (dc_list_rx_init(sc) == ENOBUFS) {
2759 		printf("%s: initialization failed: no "
2760 		    "memory for rx buffers\n", sc->sc_dev.dv_xname);
2761 		dc_stop(sc, 0);
2762 		splx(s);
2763 		return;
2764 	}
2765 
2766 	/*
2767 	 * Init tx descriptors.
2768 	 */
2769 	dc_list_tx_init(sc);
2770 
2771 	/*
2772 	 * Sync down both lists initialized.
2773 	 */
2774 	bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap,
2775 	    0, sc->sc_listmap->dm_mapsize,
2776 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2777 
2778 	/*
2779 	 * Load the address of the RX list.
2780 	 */
2781 	CSR_WRITE_4(sc, DC_RXADDR, sc->sc_listmap->dm_segs[0].ds_addr +
2782 	    offsetof(struct dc_list_data, dc_rx_list[0]));
2783 	CSR_WRITE_4(sc, DC_TXADDR, sc->sc_listmap->dm_segs[0].ds_addr +
2784 	    offsetof(struct dc_list_data, dc_tx_list[0]));
2785 
2786 	/*
2787 	 * Enable interrupts.
2788 	 */
2789 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
2790 	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
2791 
2792 	/* Enable transmitter. */
2793 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2794 
2795 	/*
2796 	 * If this is an Intel 21143 and we're not using the
2797 	 * MII port, program the LED control pins so we get
2798 	 * link and activity indications.
2799 	 */
2800 	if (sc->dc_flags & DC_TULIP_LEDS) {
2801 		CSR_WRITE_4(sc, DC_WATCHDOG,
2802 		    DC_WDOG_CTLWREN|DC_WDOG_LINK|DC_WDOG_ACTIVITY);
2803 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
2804 	}
2805 
2806 	/*
2807 	 * Load the RX/multicast filter. We do this sort of late
2808 	 * because the filter programming scheme on the 21143 and
2809 	 * some clones requires DMAing a setup frame via the TX
2810 	 * engine, and we need the transmitter enabled for that.
2811 	 */
2812 	dc_setfilt(sc);
2813 
2814 	/* Enable receiver. */
2815 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
2816 	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
2817 
2818 	mii_mediachg(mii);
2819 	dc_setcfg(sc, sc->dc_if_media);
2820 
2821 	ifp->if_flags |= IFF_RUNNING;
2822 	ifq_clr_oactive(&ifp->if_snd);
2823 
2824 	splx(s);
2825 
2826 	timeout_set(&sc->dc_tick_tmo, dc_tick, sc);
2827 
2828 	if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
2829 		sc->dc_link = 1;
2830 	else {
2831 		if (sc->dc_flags & DC_21143_NWAY)
2832 			timeout_add_msec(&sc->dc_tick_tmo, 100);
2833 		else
2834 			timeout_add_sec(&sc->dc_tick_tmo, 1);
2835 	}
2836 
2837 #ifdef SRM_MEDIA
2838 	if(sc->dc_srm_media) {
2839 		struct ifreq ifr;
2840 
2841 		ifr.ifr_media = sc->dc_srm_media;
2842 		ifmedia_ioctl(ifp, &ifr, &mii->mii_media, SIOCSIFMEDIA);
2843 		sc->dc_srm_media = 0;
2844 	}
2845 #endif
2846 }
2847 
2848 /*
2849  * Set media options.
2850  */
2851 int
dc_ifmedia_upd(struct ifnet * ifp)2852 dc_ifmedia_upd(struct ifnet *ifp)
2853 {
2854 	struct dc_softc *sc;
2855 	struct mii_data *mii;
2856 	struct ifmedia *ifm;
2857 
2858 	sc = ifp->if_softc;
2859 	mii = &sc->sc_mii;
2860 	mii_mediachg(mii);
2861 
2862 	ifm = &mii->mii_media;
2863 
2864 	if (DC_IS_DAVICOM(sc) &&
2865 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
2866 		dc_setcfg(sc, ifm->ifm_media);
2867 	else
2868 		sc->dc_link = 0;
2869 
2870 	return (0);
2871 }
2872 
2873 /*
2874  * Report current media status.
2875  */
2876 void
dc_ifmedia_sts(struct ifnet * ifp,struct ifmediareq * ifmr)2877 dc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2878 {
2879 	struct dc_softc *sc;
2880 	struct mii_data *mii;
2881 	struct ifmedia *ifm;
2882 
2883 	sc = ifp->if_softc;
2884 	mii = &sc->sc_mii;
2885 	mii_pollstat(mii);
2886 	ifm = &mii->mii_media;
2887 	if (DC_IS_DAVICOM(sc)) {
2888 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
2889 			ifmr->ifm_active = ifm->ifm_media;
2890 			ifmr->ifm_status = 0;
2891 			return;
2892 		}
2893 	}
2894 	ifmr->ifm_active = mii->mii_media_active;
2895 	ifmr->ifm_status = mii->mii_media_status;
2896 }
2897 
2898 int
dc_ioctl(struct ifnet * ifp,u_long command,caddr_t data)2899 dc_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2900 {
2901 	struct dc_softc		*sc = ifp->if_softc;
2902 	struct ifreq		*ifr = (struct ifreq *) data;
2903 	int			s, error = 0;
2904 
2905 	s = splnet();
2906 
2907 	switch(command) {
2908 	case SIOCSIFADDR:
2909 		ifp->if_flags |= IFF_UP;
2910 		if (!(ifp->if_flags & IFF_RUNNING))
2911 			dc_init(sc);
2912 		break;
2913 	case SIOCSIFFLAGS:
2914 		if (ifp->if_flags & IFF_UP) {
2915 			if (ifp->if_flags & IFF_RUNNING)
2916 				error = ENETRESET;
2917 			else {
2918 				sc->dc_txthresh = 0;
2919 				dc_init(sc);
2920 			}
2921 		} else {
2922 			if (ifp->if_flags & IFF_RUNNING)
2923 				dc_stop(sc, 0);
2924 		}
2925 		break;
2926 	case SIOCGIFMEDIA:
2927 	case SIOCSIFMEDIA:
2928 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
2929 #ifdef SRM_MEDIA
2930 		if (sc->dc_srm_media)
2931 			sc->dc_srm_media = 0;
2932 #endif
2933 		break;
2934 	default:
2935 		error = ether_ioctl(ifp, &sc->sc_arpcom, command, data);
2936 	}
2937 
2938 	if (error == ENETRESET) {
2939 		if (ifp->if_flags & IFF_RUNNING)
2940 			dc_setfilt(sc);
2941 		error = 0;
2942 	}
2943 
2944 	splx(s);
2945 	return (error);
2946 }
2947 
2948 void
dc_watchdog(struct ifnet * ifp)2949 dc_watchdog(struct ifnet *ifp)
2950 {
2951 	struct dc_softc *sc;
2952 
2953 	sc = ifp->if_softc;
2954 
2955 	ifp->if_oerrors++;
2956 	printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
2957 
2958 	dc_init(sc);
2959 
2960 	if (ifq_empty(&ifp->if_snd) == 0)
2961 		dc_start(ifp);
2962 }
2963 
2964 /*
2965  * Stop the adapter and free any mbufs allocated to the
2966  * RX and TX lists.
2967  */
2968 void
dc_stop(struct dc_softc * sc,int softonly)2969 dc_stop(struct dc_softc *sc, int softonly)
2970 {
2971 	struct ifnet *ifp;
2972 	u_int32_t isr;
2973 	int i;
2974 
2975 	ifp = &sc->sc_arpcom.ac_if;
2976 	ifp->if_timer = 0;
2977 
2978 	timeout_del(&sc->dc_tick_tmo);
2979 
2980 	ifp->if_flags &= ~IFF_RUNNING;
2981 	ifq_clr_oactive(&ifp->if_snd);
2982 
2983 	if (!softonly) {
2984 		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON|DC_NETCFG_TX_ON));
2985 
2986 		for (i = 0; i < DC_TIMEOUT; i++) {
2987 			isr = CSR_READ_4(sc, DC_ISR);
2988 			if ((isr & DC_ISR_TX_IDLE ||
2989 			    (isr & DC_ISR_TX_STATE) == DC_TXSTATE_RESET) &&
2990 			    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED)
2991 				break;
2992 			DELAY(10);
2993 		}
2994 
2995 		if (i == DC_TIMEOUT) {
2996 			if (!((isr & DC_ISR_TX_IDLE) ||
2997 			    (isr & DC_ISR_TX_STATE) == DC_TXSTATE_RESET) &&
2998 			    !DC_IS_ASIX(sc) && !DC_IS_DAVICOM(sc))
2999 				printf("%s: failed to force tx to idle state\n",
3000 				    sc->sc_dev.dv_xname);
3001 			if (!((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED) &&
3002 			    !DC_HAS_BROKEN_RXSTATE(sc))
3003 				printf("%s: failed to force rx to idle state\n",
3004 				    sc->sc_dev.dv_xname);
3005 		}
3006 
3007 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3008 		CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
3009 		CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
3010 		sc->dc_link = 0;
3011 	}
3012 
3013 	/*
3014 	 * Free data in the RX lists.
3015 	 */
3016 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
3017 		if (sc->dc_cdata.dc_rx_chain[i].sd_map->dm_nsegs != 0) {
3018 			bus_dmamap_t map = sc->dc_cdata.dc_rx_chain[i].sd_map;
3019 
3020 			bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
3021 			    BUS_DMASYNC_POSTREAD);
3022 			bus_dmamap_unload(sc->sc_dmat, map);
3023 		}
3024 		if (sc->dc_cdata.dc_rx_chain[i].sd_mbuf != NULL) {
3025 			m_freem(sc->dc_cdata.dc_rx_chain[i].sd_mbuf);
3026 			sc->dc_cdata.dc_rx_chain[i].sd_mbuf = NULL;
3027 		}
3028 	}
3029 	bzero(&sc->dc_ldata->dc_rx_list, sizeof(sc->dc_ldata->dc_rx_list));
3030 
3031 	/*
3032 	 * Free the TX list buffers.
3033 	 */
3034 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
3035 		if (sc->dc_cdata.dc_tx_chain[i].sd_map->dm_nsegs != 0) {
3036 			bus_dmamap_t map = sc->dc_cdata.dc_tx_chain[i].sd_map;
3037 
3038 			bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
3039 			    BUS_DMASYNC_POSTWRITE);
3040 			bus_dmamap_unload(sc->sc_dmat, map);
3041 		}
3042 		if (sc->dc_cdata.dc_tx_chain[i].sd_mbuf != NULL) {
3043 			if (sc->dc_ldata->dc_tx_list[i].dc_ctl &
3044 			    htole32(DC_TXCTL_SETUP)) {
3045 				sc->dc_cdata.dc_tx_chain[i].sd_mbuf = NULL;
3046 				continue;
3047 			}
3048 			m_freem(sc->dc_cdata.dc_tx_chain[i].sd_mbuf);
3049 			sc->dc_cdata.dc_tx_chain[i].sd_mbuf = NULL;
3050 		}
3051 	}
3052 	bzero(&sc->dc_ldata->dc_tx_list, sizeof(sc->dc_ldata->dc_tx_list));
3053 
3054 	bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap,
3055 	    0, sc->sc_listmap->dm_mapsize,
3056 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3057 }
3058 
3059 int
dc_activate(struct device * self,int act)3060 dc_activate(struct device *self, int act)
3061 {
3062 	struct dc_softc *sc = (struct dc_softc *)self;
3063 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
3064 
3065 	switch (act) {
3066 	case DVACT_SUSPEND:
3067 		if (ifp->if_flags & IFF_RUNNING)
3068 			dc_stop(sc, 0);
3069 		break;
3070 	case DVACT_RESUME:
3071 		if (ifp->if_flags & IFF_UP)
3072 			dc_init(sc);
3073 		break;
3074 	}
3075 	return (0);
3076 }
3077 
3078 int
dc_detach(struct dc_softc * sc)3079 dc_detach(struct dc_softc *sc)
3080 {
3081 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
3082 	int i;
3083 
3084 	dc_stop(sc, 1);
3085 
3086 	if (LIST_FIRST(&sc->sc_mii.mii_phys) != NULL)
3087 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
3088 
3089 	if (sc->dc_srom)
3090 		free(sc->dc_srom, M_DEVBUF, sc->dc_sromsize);
3091 
3092 	for (i = 0; i < DC_RX_LIST_CNT; i++)
3093 		bus_dmamap_destroy(sc->sc_dmat, sc->dc_cdata.dc_rx_chain[i].sd_map);
3094 	if (sc->sc_rx_sparemap)
3095 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_sparemap);
3096 	for (i = 0; i < DC_TX_LIST_CNT; i++)
3097 		bus_dmamap_destroy(sc->sc_dmat, sc->dc_cdata.dc_tx_chain[i].sd_map);
3098 	if (sc->sc_tx_sparemap)
3099 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_sparemap);
3100 
3101 	/// XXX bus_dmamap_sync
3102 	bus_dmamap_unload(sc->sc_dmat, sc->sc_listmap);
3103 	bus_dmamem_unmap(sc->sc_dmat, sc->sc_listkva, sc->sc_listnseg);
3104 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_listmap);
3105 	bus_dmamem_free(sc->sc_dmat, sc->sc_listseg, sc->sc_listnseg);
3106 
3107 	ether_ifdetach(ifp);
3108 	if_detach(ifp);
3109 	return (0);
3110 }
3111 
3112 struct cfdriver dc_cd = {
3113 	NULL, "dc", DV_IFNET
3114 };
3115