1 /* $NetBSD: amdgpu_dc.c,v 1.4 2021/12/19 11:59:30 riastradh Exp $ */
2
3 /*
4 * Copyright 2015 Advanced Micro Devices, Inc.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * Authors: AMD
25 */
26
27 #include <sys/cdefs.h>
28 __KERNEL_RCSID(0, "$NetBSD: amdgpu_dc.c,v 1.4 2021/12/19 11:59:30 riastradh Exp $");
29
30 #include <linux/slab.h>
31 #include <linux/mm.h>
32
33 #include "dm_services.h"
34
35 #include "dc.h"
36
37 #include "core_status.h"
38 #include "core_types.h"
39 #include "hw_sequencer.h"
40 #include "dce/dce_hwseq.h"
41
42 #include "resource.h"
43
44 #include "clk_mgr.h"
45 #include "clock_source.h"
46 #include "dc_bios_types.h"
47
48 #include "bios_parser_interface.h"
49 #include "include/irq_service_interface.h"
50 #include "transform.h"
51 #include "dmcu.h"
52 #include "dpp.h"
53 #include "timing_generator.h"
54 #include "abm.h"
55 #include "virtual/virtual_link_encoder.h"
56
57 #include "link_hwss.h"
58 #include "link_encoder.h"
59
60 #include "dc_link_ddc.h"
61 #include "dm_helpers.h"
62 #include "mem_input.h"
63 #include "hubp.h"
64
65 #include "dc_link_dp.h"
66 #include "dc_dmub_srv.h"
67
68 #include "dsc.h"
69
70 #include "vm_helper.h"
71
72 #include "dce/dce_i2c.h"
73
74 #define CTX \
75 dc->ctx
76
77 #define DC_LOGGER \
78 dc->ctx->logger
79
80 static const char DC_BUILD_ID[] = "production-build";
81
82 /**
83 * DOC: Overview
84 *
85 * DC is the OS-agnostic component of the amdgpu DC driver.
86 *
87 * DC maintains and validates a set of structs representing the state of the
88 * driver and writes that state to AMD hardware
89 *
90 * Main DC HW structs:
91 *
92 * struct dc - The central struct. One per driver. Created on driver load,
93 * destroyed on driver unload.
94 *
95 * struct dc_context - One per driver.
96 * Used as a backpointer by most other structs in dc.
97 *
98 * struct dc_link - One per connector (the physical DP, HDMI, miniDP, or eDP
99 * plugpoints). Created on driver load, destroyed on driver unload.
100 *
101 * struct dc_sink - One per display. Created on boot or hotplug.
102 * Destroyed on shutdown or hotunplug. A dc_link can have a local sink
103 * (the display directly attached). It may also have one or more remote
104 * sinks (in the Multi-Stream Transport case)
105 *
106 * struct resource_pool - One per driver. Represents the hw blocks not in the
107 * main pipeline. Not directly accessible by dm.
108 *
109 * Main dc state structs:
110 *
111 * These structs can be created and destroyed as needed. There is a full set of
112 * these structs in dc->current_state representing the currently programmed state.
113 *
114 * struct dc_state - The global DC state to track global state information,
115 * such as bandwidth values.
116 *
117 * struct dc_stream_state - Represents the hw configuration for the pipeline from
118 * a framebuffer to a display. Maps one-to-one with dc_sink.
119 *
120 * struct dc_plane_state - Represents a framebuffer. Each stream has at least one,
121 * and may have more in the Multi-Plane Overlay case.
122 *
123 * struct resource_context - Represents the programmable state of everything in
124 * the resource_pool. Not directly accessible by dm.
125 *
126 * struct pipe_ctx - A member of struct resource_context. Represents the
127 * internal hardware pipeline components. Each dc_plane_state has either
128 * one or two (in the pipe-split case).
129 */
130
131 /*******************************************************************************
132 * Private functions
133 ******************************************************************************/
134
elevate_update_type(enum surface_update_type * original,enum surface_update_type new)135 static inline void elevate_update_type(enum surface_update_type *original, enum surface_update_type new)
136 {
137 if (new > *original)
138 *original = new;
139 }
140
destroy_links(struct dc * dc)141 static void destroy_links(struct dc *dc)
142 {
143 uint32_t i;
144
145 for (i = 0; i < dc->link_count; i++) {
146 if (NULL != dc->links[i])
147 link_destroy(&dc->links[i]);
148 }
149 }
150
create_links(struct dc * dc,uint32_t num_virtual_links)151 static bool create_links(
152 struct dc *dc,
153 uint32_t num_virtual_links)
154 {
155 int i;
156 int connectors_num;
157 struct dc_bios *bios = dc->ctx->dc_bios;
158
159 dc->link_count = 0;
160
161 connectors_num = bios->funcs->get_connectors_number(bios);
162
163 if (connectors_num > ENUM_ID_COUNT) {
164 dm_error(
165 "DC: Number of connectors %d exceeds maximum of %d!\n",
166 connectors_num,
167 ENUM_ID_COUNT);
168 return false;
169 }
170
171 dm_output_to_console(
172 "DC: %s: connectors_num: physical:%d, virtual:%d\n",
173 __func__,
174 connectors_num,
175 num_virtual_links);
176
177 for (i = 0; i < connectors_num; i++) {
178 struct link_init_data link_init_params = {0};
179 struct dc_link *link;
180
181 link_init_params.ctx = dc->ctx;
182 /* next BIOS object table connector */
183 link_init_params.connector_index = i;
184 link_init_params.link_index = dc->link_count;
185 link_init_params.dc = dc;
186 link = link_create(&link_init_params);
187
188 if (link) {
189 bool should_destory_link = false;
190
191 if (link->connector_signal == SIGNAL_TYPE_EDP) {
192 if (dc->config.edp_not_connected)
193 should_destory_link = true;
194 else if (dc->debug.remove_disconnect_edp) {
195 enum dc_connection_type type;
196 dc_link_detect_sink(link, &type);
197 if (type == dc_connection_none)
198 should_destory_link = true;
199 }
200 }
201
202 if (dc->config.force_enum_edp || !should_destory_link) {
203 dc->links[dc->link_count] = link;
204 link->dc = dc;
205 ++dc->link_count;
206 } else {
207 link_destroy(&link);
208 }
209 }
210 }
211
212 for (i = 0; i < num_virtual_links; i++) {
213 struct dc_link *link = kzalloc(sizeof(*link), GFP_KERNEL);
214 struct encoder_init_data enc_init = {0};
215
216 if (link == NULL) {
217 BREAK_TO_DEBUGGER();
218 goto failed_alloc;
219 }
220
221 link->link_index = dc->link_count;
222 dc->links[dc->link_count] = link;
223 dc->link_count++;
224
225 link->ctx = dc->ctx;
226 link->dc = dc;
227 link->connector_signal = SIGNAL_TYPE_VIRTUAL;
228 link->link_id.type = OBJECT_TYPE_CONNECTOR;
229 link->link_id.id = CONNECTOR_ID_VIRTUAL;
230 link->link_id.enum_id = ENUM_ID_1;
231 link->link_enc = kzalloc(sizeof(*link->link_enc), GFP_KERNEL);
232
233 if (!link->link_enc) {
234 BREAK_TO_DEBUGGER();
235 goto failed_alloc;
236 }
237
238 link->link_status.dpcd_caps = &link->dpcd_caps;
239
240 enc_init.ctx = dc->ctx;
241 enc_init.channel = CHANNEL_ID_UNKNOWN;
242 enc_init.hpd_source = HPD_SOURCEID_UNKNOWN;
243 enc_init.transmitter = TRANSMITTER_UNKNOWN;
244 enc_init.connector = link->link_id;
245 enc_init.encoder.type = OBJECT_TYPE_ENCODER;
246 enc_init.encoder.id = ENCODER_ID_INTERNAL_VIRTUAL;
247 enc_init.encoder.enum_id = ENUM_ID_1;
248 virtual_link_encoder_construct(link->link_enc, &enc_init);
249 }
250
251 return true;
252
253 failed_alloc:
254 return false;
255 }
256
dc_perf_trace_create(void)257 static struct dc_perf_trace *dc_perf_trace_create(void)
258 {
259 return kzalloc(sizeof(struct dc_perf_trace), GFP_KERNEL);
260 }
261
dc_perf_trace_destroy(struct dc_perf_trace ** perf_trace)262 static void dc_perf_trace_destroy(struct dc_perf_trace **perf_trace)
263 {
264 kfree(*perf_trace);
265 *perf_trace = NULL;
266 }
267
268 /**
269 *****************************************************************************
270 * Function: dc_stream_adjust_vmin_vmax
271 *
272 * @brief
273 * Looks up the pipe context of dc_stream_state and updates the
274 * vertical_total_min and vertical_total_max of the DRR, Dynamic Refresh
275 * Rate, which is a power-saving feature that targets reducing panel
276 * refresh rate while the screen is static
277 *
278 * @param [in] dc: dc reference
279 * @param [in] stream: Initial dc stream state
280 * @param [in] adjust: Updated parameters for vertical_total_min and
281 * vertical_total_max
282 *****************************************************************************
283 */
dc_stream_adjust_vmin_vmax(struct dc * dc,struct dc_stream_state * stream,struct dc_crtc_timing_adjust * adjust)284 bool dc_stream_adjust_vmin_vmax(struct dc *dc,
285 struct dc_stream_state *stream,
286 struct dc_crtc_timing_adjust *adjust)
287 {
288 int i = 0;
289 bool ret = false;
290
291 for (i = 0; i < MAX_PIPES; i++) {
292 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
293
294 if (pipe->stream == stream && pipe->stream_res.tg) {
295 dc->hwss.set_drr(&pipe,
296 1,
297 adjust->v_total_min,
298 adjust->v_total_max,
299 adjust->v_total_mid,
300 adjust->v_total_mid_frame_num);
301
302 ret = true;
303 }
304 }
305 return ret;
306 }
307
dc_stream_get_crtc_position(struct dc * dc,struct dc_stream_state ** streams,int num_streams,unsigned int * v_pos,unsigned int * nom_v_pos)308 bool dc_stream_get_crtc_position(struct dc *dc,
309 struct dc_stream_state **streams, int num_streams,
310 unsigned int *v_pos, unsigned int *nom_v_pos)
311 {
312 /* TODO: Support multiple streams */
313 const struct dc_stream_state *stream = streams[0];
314 int i = 0;
315 bool ret = false;
316 struct crtc_position position;
317
318 for (i = 0; i < MAX_PIPES; i++) {
319 struct pipe_ctx *pipe =
320 &dc->current_state->res_ctx.pipe_ctx[i];
321
322 if (pipe->stream == stream && pipe->stream_res.stream_enc) {
323 dc->hwss.get_position(&pipe, 1, &position);
324
325 *v_pos = position.vertical_count;
326 *nom_v_pos = position.nominal_vcount;
327 ret = true;
328 }
329 }
330 return ret;
331 }
332
333 /**
334 * dc_stream_configure_crc() - Configure CRC capture for the given stream.
335 * @dc: DC Object
336 * @stream: The stream to configure CRC on.
337 * @enable: Enable CRC if true, disable otherwise.
338 * @continuous: Capture CRC on every frame if true. Otherwise, only capture
339 * once.
340 *
341 * By default, only CRC0 is configured, and the entire frame is used to
342 * calculate the crc.
343 */
dc_stream_configure_crc(struct dc * dc,struct dc_stream_state * stream,bool enable,bool continuous)344 bool dc_stream_configure_crc(struct dc *dc, struct dc_stream_state *stream,
345 bool enable, bool continuous)
346 {
347 int i;
348 struct pipe_ctx *pipe;
349 struct crc_params param;
350 struct timing_generator *tg;
351
352 for (i = 0; i < MAX_PIPES; i++) {
353 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
354 if (pipe->stream == stream)
355 break;
356 }
357 /* Stream not found */
358 if (i == MAX_PIPES)
359 return false;
360
361 /* Always capture the full frame */
362 param.windowa_x_start = 0;
363 param.windowa_y_start = 0;
364 param.windowa_x_end = pipe->stream->timing.h_addressable;
365 param.windowa_y_end = pipe->stream->timing.v_addressable;
366 param.windowb_x_start = 0;
367 param.windowb_y_start = 0;
368 param.windowb_x_end = pipe->stream->timing.h_addressable;
369 param.windowb_y_end = pipe->stream->timing.v_addressable;
370
371 /* Default to the union of both windows */
372 param.selection = UNION_WINDOW_A_B;
373 param.continuous_mode = continuous;
374 param.enable = enable;
375
376 tg = pipe->stream_res.tg;
377
378 /* Only call if supported */
379 if (tg->funcs->configure_crc)
380 return tg->funcs->configure_crc(tg, ¶m);
381 DC_LOG_WARNING("CRC capture not supported.");
382 return false;
383 }
384
385 /**
386 * dc_stream_get_crc() - Get CRC values for the given stream.
387 * @dc: DC object
388 * @stream: The DC stream state of the stream to get CRCs from.
389 * @r_cr, g_y, b_cb: CRC values for the three channels are stored here.
390 *
391 * dc_stream_configure_crc needs to be called beforehand to enable CRCs.
392 * Return false if stream is not found, or if CRCs are not enabled.
393 */
dc_stream_get_crc(struct dc * dc,struct dc_stream_state * stream,uint32_t * r_cr,uint32_t * g_y,uint32_t * b_cb)394 bool dc_stream_get_crc(struct dc *dc, struct dc_stream_state *stream,
395 uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
396 {
397 int i;
398 struct pipe_ctx *pipe;
399 struct timing_generator *tg;
400
401 for (i = 0; i < MAX_PIPES; i++) {
402 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
403 if (pipe->stream == stream)
404 break;
405 }
406 /* Stream not found */
407 if (i == MAX_PIPES)
408 return false;
409
410 tg = pipe->stream_res.tg;
411
412 if (tg->funcs->get_crc)
413 return tg->funcs->get_crc(tg, r_cr, g_y, b_cb);
414 DC_LOG_WARNING("CRC capture not supported.");
415 return false;
416 }
417
dc_stream_set_dyn_expansion(struct dc * dc,struct dc_stream_state * stream,enum dc_dynamic_expansion option)418 void dc_stream_set_dyn_expansion(struct dc *dc, struct dc_stream_state *stream,
419 enum dc_dynamic_expansion option)
420 {
421 /* OPP FMT dyn expansion updates*/
422 int i = 0;
423 struct pipe_ctx *pipe_ctx;
424
425 for (i = 0; i < MAX_PIPES; i++) {
426 if (dc->current_state->res_ctx.pipe_ctx[i].stream
427 == stream) {
428 pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
429 pipe_ctx->stream_res.opp->dyn_expansion = option;
430 pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
431 pipe_ctx->stream_res.opp,
432 COLOR_SPACE_YCBCR601,
433 stream->timing.display_color_depth,
434 stream->signal);
435 }
436 }
437 }
438
dc_stream_set_dither_option(struct dc_stream_state * stream,enum dc_dither_option option)439 void dc_stream_set_dither_option(struct dc_stream_state *stream,
440 enum dc_dither_option option)
441 {
442 struct bit_depth_reduction_params params;
443 struct dc_link *link = stream->link;
444 struct pipe_ctx *pipes = NULL;
445 int i;
446
447 for (i = 0; i < MAX_PIPES; i++) {
448 if (link->dc->current_state->res_ctx.pipe_ctx[i].stream ==
449 stream) {
450 pipes = &link->dc->current_state->res_ctx.pipe_ctx[i];
451 break;
452 }
453 }
454
455 if (!pipes)
456 return;
457 if (option > DITHER_OPTION_MAX)
458 return;
459
460 stream->dither_option = option;
461
462 memset(¶ms, 0, sizeof(params));
463 resource_build_bit_depth_reduction_params(stream, ¶ms);
464 stream->bit_depth_params = params;
465
466 if (pipes->plane_res.xfm &&
467 pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth) {
468 pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
469 pipes->plane_res.xfm,
470 pipes->plane_res.scl_data.lb_params.depth,
471 &stream->bit_depth_params);
472 }
473
474 pipes->stream_res.opp->funcs->
475 opp_program_bit_depth_reduction(pipes->stream_res.opp, ¶ms);
476 }
477
dc_stream_set_gamut_remap(struct dc * dc,const struct dc_stream_state * stream)478 bool dc_stream_set_gamut_remap(struct dc *dc, const struct dc_stream_state *stream)
479 {
480 int i = 0;
481 bool ret = false;
482 struct pipe_ctx *pipes;
483
484 for (i = 0; i < MAX_PIPES; i++) {
485 if (dc->current_state->res_ctx.pipe_ctx[i].stream == stream) {
486 pipes = &dc->current_state->res_ctx.pipe_ctx[i];
487 dc->hwss.program_gamut_remap(pipes);
488 ret = true;
489 }
490 }
491
492 return ret;
493 }
494
dc_stream_program_csc_matrix(struct dc * dc,struct dc_stream_state * stream)495 bool dc_stream_program_csc_matrix(struct dc *dc, struct dc_stream_state *stream)
496 {
497 int i = 0;
498 bool ret = false;
499 struct pipe_ctx *pipes;
500
501 for (i = 0; i < MAX_PIPES; i++) {
502 if (dc->current_state->res_ctx.pipe_ctx[i].stream
503 == stream) {
504
505 pipes = &dc->current_state->res_ctx.pipe_ctx[i];
506 dc->hwss.program_output_csc(dc,
507 pipes,
508 stream->output_color_space,
509 stream->csc_color_matrix.matrix,
510 pipes->stream_res.opp->inst);
511 ret = true;
512 }
513 }
514
515 return ret;
516 }
517
dc_stream_set_static_screen_params(struct dc * dc,struct dc_stream_state ** streams,int num_streams,const struct dc_static_screen_params * params)518 void dc_stream_set_static_screen_params(struct dc *dc,
519 struct dc_stream_state **streams,
520 int num_streams,
521 const struct dc_static_screen_params *params)
522 {
523 int i = 0;
524 int j = 0;
525 struct pipe_ctx *pipes_affected[MAX_PIPES];
526 int num_pipes_affected = 0;
527
528 for (i = 0; i < num_streams; i++) {
529 struct dc_stream_state *stream = streams[i];
530
531 for (j = 0; j < MAX_PIPES; j++) {
532 if (dc->current_state->res_ctx.pipe_ctx[j].stream
533 == stream) {
534 pipes_affected[num_pipes_affected++] =
535 &dc->current_state->res_ctx.pipe_ctx[j];
536 }
537 }
538 }
539
540 dc->hwss.set_static_screen_control(pipes_affected, num_pipes_affected, params);
541 }
542
dc_destruct(struct dc * dc)543 static void dc_destruct(struct dc *dc)
544 {
545 if (dc->current_state) {
546 dc_release_state(dc->current_state);
547 dc->current_state = NULL;
548 }
549
550 destroy_links(dc);
551
552 if (dc->clk_mgr) {
553 dc_destroy_clk_mgr(dc->clk_mgr);
554 dc->clk_mgr = NULL;
555 }
556
557 dc_destroy_resource_pool(dc);
558
559 if (dc->ctx->gpio_service)
560 dal_gpio_service_destroy(&dc->ctx->gpio_service);
561
562 if (dc->ctx->created_bios)
563 dal_bios_parser_destroy(&dc->ctx->dc_bios);
564
565 dc_perf_trace_destroy(&dc->ctx->perf_trace);
566
567 kfree(dc->ctx);
568 dc->ctx = NULL;
569
570 kfree(dc->bw_vbios);
571 dc->bw_vbios = NULL;
572
573 kfree(dc->bw_dceip);
574 dc->bw_dceip = NULL;
575
576 #ifdef CONFIG_DRM_AMD_DC_DCN
577 kfree(dc->dcn_soc);
578 dc->dcn_soc = NULL;
579
580 kfree(dc->dcn_ip);
581 dc->dcn_ip = NULL;
582
583 #endif
584 kfree(dc->vm_helper);
585 dc->vm_helper = NULL;
586
587 }
588
dc_construct_ctx(struct dc * dc,const struct dc_init_data * init_params)589 static bool dc_construct_ctx(struct dc *dc,
590 const struct dc_init_data *init_params)
591 {
592 struct dc_context *dc_ctx;
593 enum dce_version dc_version = DCE_VERSION_UNKNOWN;
594
595 dc_ctx = kzalloc(sizeof(*dc_ctx), GFP_KERNEL);
596 if (!dc_ctx)
597 return false;
598
599 dc_ctx->cgs_device = init_params->cgs_device;
600 dc_ctx->driver_context = init_params->driver;
601 dc_ctx->dc = dc;
602 dc_ctx->asic_id = init_params->asic_id;
603 dc_ctx->dc_sink_id_count = 0;
604 dc_ctx->dc_stream_id_count = 0;
605 dc_ctx->dce_environment = init_params->dce_environment;
606
607 /* Create logger */
608
609 dc_version = resource_parse_asic_id(init_params->asic_id);
610 dc_ctx->dce_version = dc_version;
611
612 dc_ctx->perf_trace = dc_perf_trace_create();
613 if (!dc_ctx->perf_trace) {
614 ASSERT_CRITICAL(false);
615 return false;
616 }
617
618 dc->ctx = dc_ctx;
619
620 return true;
621 }
622
dc_construct(struct dc * dc,const struct dc_init_data * init_params)623 static bool dc_construct(struct dc *dc,
624 const struct dc_init_data *init_params)
625 {
626 struct dc_context *dc_ctx;
627 struct bw_calcs_dceip *dc_dceip;
628 struct bw_calcs_vbios *dc_vbios;
629 #ifdef CONFIG_DRM_AMD_DC_DCN
630 struct dcn_soc_bounding_box *dcn_soc;
631 struct dcn_ip_params *dcn_ip;
632 #endif
633
634 dc->config = init_params->flags;
635
636 // Allocate memory for the vm_helper
637 dc->vm_helper = kzalloc(sizeof(struct vm_helper), GFP_KERNEL);
638 if (!dc->vm_helper) {
639 dm_error("%s: failed to create dc->vm_helper\n", __func__);
640 goto fail;
641 }
642
643 memcpy(&dc->bb_overrides, &init_params->bb_overrides, sizeof(dc->bb_overrides));
644
645 dc_dceip = kzalloc(sizeof(*dc_dceip), GFP_KERNEL);
646 if (!dc_dceip) {
647 dm_error("%s: failed to create dceip\n", __func__);
648 goto fail;
649 }
650
651 dc->bw_dceip = dc_dceip;
652
653 dc_vbios = kzalloc(sizeof(*dc_vbios), GFP_KERNEL);
654 if (!dc_vbios) {
655 dm_error("%s: failed to create vbios\n", __func__);
656 goto fail;
657 }
658
659 dc->bw_vbios = dc_vbios;
660 #ifdef CONFIG_DRM_AMD_DC_DCN
661 dcn_soc = kzalloc(sizeof(*dcn_soc), GFP_KERNEL);
662 if (!dcn_soc) {
663 dm_error("%s: failed to create dcn_soc\n", __func__);
664 goto fail;
665 }
666
667 dc->dcn_soc = dcn_soc;
668
669 dcn_ip = kzalloc(sizeof(*dcn_ip), GFP_KERNEL);
670 if (!dcn_ip) {
671 dm_error("%s: failed to create dcn_ip\n", __func__);
672 goto fail;
673 }
674
675 dc->dcn_ip = dcn_ip;
676 dc->soc_bounding_box = init_params->soc_bounding_box;
677 #endif
678
679 if (!dc_construct_ctx(dc, init_params)) {
680 dm_error("%s: failed to create ctx\n", __func__);
681 goto fail;
682 }
683
684 dc_ctx = dc->ctx;
685
686 /* Resource should construct all asic specific resources.
687 * This should be the only place where we need to parse the asic id
688 */
689 if (init_params->vbios_override)
690 dc_ctx->dc_bios = init_params->vbios_override;
691 else {
692 /* Create BIOS parser */
693 struct bp_init_data bp_init_data;
694
695 bp_init_data.ctx = dc_ctx;
696 bp_init_data.bios = init_params->asic_id.atombios_base_address;
697
698 dc_ctx->dc_bios = dal_bios_parser_create(
699 &bp_init_data, dc_ctx->dce_version);
700
701 if (!dc_ctx->dc_bios) {
702 ASSERT_CRITICAL(false);
703 goto fail;
704 }
705
706 dc_ctx->created_bios = true;
707 }
708
709
710
711 /* Create GPIO service */
712 dc_ctx->gpio_service = dal_gpio_service_create(
713 dc_ctx->dce_version,
714 dc_ctx->dce_environment,
715 dc_ctx);
716
717 if (!dc_ctx->gpio_service) {
718 ASSERT_CRITICAL(false);
719 goto fail;
720 }
721
722 dc->res_pool = dc_create_resource_pool(dc, init_params, dc_ctx->dce_version);
723 if (!dc->res_pool)
724 goto fail;
725
726 dc->clk_mgr = dc_clk_mgr_create(dc->ctx, dc->res_pool->pp_smu, dc->res_pool->dccg);
727 if (!dc->clk_mgr)
728 goto fail;
729
730 if (dc->res_pool->funcs->update_bw_bounding_box)
731 dc->res_pool->funcs->update_bw_bounding_box(dc, dc->clk_mgr->bw_params);
732
733 /* Creation of current_state must occur after dc->dml
734 * is initialized in dc_create_resource_pool because
735 * on creation it copies the contents of dc->dml
736 */
737
738 dc->current_state = dc_create_state(dc);
739
740 if (!dc->current_state) {
741 dm_error("%s: failed to create validate ctx\n", __func__);
742 goto fail;
743 }
744
745 dc_resource_state_construct(dc, dc->current_state);
746
747 if (!create_links(dc, init_params->num_virtual_links))
748 goto fail;
749
750 return true;
751
752 fail:
753 return false;
754 }
755
disable_all_writeback_pipes_for_stream(const struct dc * dc,struct dc_stream_state * stream,struct dc_state * context)756 static bool disable_all_writeback_pipes_for_stream(
757 const struct dc *dc,
758 struct dc_stream_state *stream,
759 struct dc_state *context)
760 {
761 int i;
762
763 for (i = 0; i < stream->num_wb_info; i++)
764 stream->writeback_info[i].wb_enabled = false;
765
766 return true;
767 }
768
disable_dangling_plane(struct dc * dc,struct dc_state * context)769 static void disable_dangling_plane(struct dc *dc, struct dc_state *context)
770 {
771 int i, j;
772 struct dc_state *dangling_context = dc_create_state(dc);
773 struct dc_state *current_ctx;
774
775 if (dangling_context == NULL)
776 return;
777
778 dc_resource_state_copy_construct(dc->current_state, dangling_context);
779
780 for (i = 0; i < dc->res_pool->pipe_count; i++) {
781 struct dc_stream_state *old_stream =
782 dc->current_state->res_ctx.pipe_ctx[i].stream;
783 bool should_disable = true;
784
785 for (j = 0; j < context->stream_count; j++) {
786 if (old_stream == context->streams[j]) {
787 should_disable = false;
788 break;
789 }
790 }
791 if (should_disable && old_stream) {
792 dc_rem_all_planes_for_stream(dc, old_stream, dangling_context);
793 disable_all_writeback_pipes_for_stream(dc, old_stream, dangling_context);
794 if (dc->hwss.apply_ctx_for_surface)
795 dc->hwss.apply_ctx_for_surface(dc, old_stream, 0, dangling_context);
796 }
797 if (dc->hwss.program_front_end_for_ctx)
798 dc->hwss.program_front_end_for_ctx(dc, dangling_context);
799 }
800
801 current_ctx = dc->current_state;
802 dc->current_state = dangling_context;
803 dc_release_state(current_ctx);
804 }
805
wait_for_no_pipes_pending(struct dc * dc,struct dc_state * context)806 static void wait_for_no_pipes_pending(struct dc *dc, struct dc_state *context)
807 {
808 int i;
809 int count = 0;
810 struct pipe_ctx *pipe;
811 PERF_TRACE();
812 for (i = 0; i < MAX_PIPES; i++) {
813 pipe = &context->res_ctx.pipe_ctx[i];
814
815 if (!pipe->plane_state)
816 continue;
817
818 /* Timeout 100 ms */
819 while (count < 100000) {
820 /* Must set to false to start with, due to OR in update function */
821 pipe->plane_state->status.is_flip_pending = false;
822 dc->hwss.update_pending_status(pipe);
823 if (!pipe->plane_state->status.is_flip_pending)
824 break;
825 udelay(1);
826 count++;
827 }
828 ASSERT(!pipe->plane_state->status.is_flip_pending);
829 }
830 PERF_TRACE();
831 }
832
833 /*******************************************************************************
834 * Public functions
835 ******************************************************************************/
836
dc_create(const struct dc_init_data * init_params)837 struct dc *dc_create(const struct dc_init_data *init_params)
838 {
839 struct dc *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
840 unsigned int full_pipe_count;
841
842 if (NULL == dc)
843 goto alloc_fail;
844
845 if (init_params->dce_environment == DCE_ENV_VIRTUAL_HW) {
846 if (false == dc_construct_ctx(dc, init_params)) {
847 dc_destruct(dc);
848 goto construct_fail;
849 }
850 } else {
851 if (false == dc_construct(dc, init_params)) {
852 dc_destruct(dc);
853 goto construct_fail;
854 }
855
856 full_pipe_count = dc->res_pool->pipe_count;
857 if (dc->res_pool->underlay_pipe_index != NO_UNDERLAY_PIPE)
858 full_pipe_count--;
859 dc->caps.max_streams = min(
860 full_pipe_count,
861 dc->res_pool->stream_enc_count);
862
863 dc->optimize_seamless_boot_streams = 0;
864 dc->caps.max_links = dc->link_count;
865 dc->caps.max_audios = dc->res_pool->audio_count;
866 dc->caps.linear_pitch_alignment = 64;
867
868 dc->caps.max_dp_protocol_version = DP_VERSION_1_4;
869
870 if (dc->res_pool->dmcu != NULL)
871 dc->versions.dmcu_version = dc->res_pool->dmcu->dmcu_version;
872 }
873
874 /* Populate versioning information */
875 dc->versions.dc_ver = DC_VER;
876
877 dc->build_id = DC_BUILD_ID;
878
879 DC_LOG_DC("Display Core initialized\n");
880
881
882
883 return dc;
884
885 construct_fail:
886 kfree(dc);
887
888 alloc_fail:
889 return NULL;
890 }
891
dc_hardware_init(struct dc * dc)892 void dc_hardware_init(struct dc *dc)
893 {
894 if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW)
895 dc->hwss.init_hw(dc);
896 }
897
dc_init_callbacks(struct dc * dc,const struct dc_callback_init * init_params)898 void dc_init_callbacks(struct dc *dc,
899 const struct dc_callback_init *init_params)
900 {
901 #ifdef CONFIG_DRM_AMD_DC_HDCP
902 dc->ctx->cp_psp = init_params->cp_psp;
903 #endif
904 }
905
dc_deinit_callbacks(struct dc * dc)906 void dc_deinit_callbacks(struct dc *dc)
907 {
908 #ifdef CONFIG_DRM_AMD_DC_HDCP
909 memset(&dc->ctx->cp_psp, 0, sizeof(dc->ctx->cp_psp));
910 #endif
911 }
912
dc_destroy(struct dc ** dc)913 void dc_destroy(struct dc **dc)
914 {
915 dc_destruct(*dc);
916 kfree(*dc);
917 *dc = NULL;
918 }
919
enable_timing_multisync(struct dc * dc,struct dc_state * ctx)920 static void enable_timing_multisync(
921 struct dc *dc,
922 struct dc_state *ctx)
923 {
924 int i = 0, multisync_count = 0;
925 int pipe_count = dc->res_pool->pipe_count;
926 struct pipe_ctx *multisync_pipes[MAX_PIPES] = { NULL };
927
928 for (i = 0; i < pipe_count; i++) {
929 if (!ctx->res_ctx.pipe_ctx[i].stream ||
930 !ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.enabled)
931 continue;
932 if (ctx->res_ctx.pipe_ctx[i].stream == ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.event_source)
933 continue;
934 multisync_pipes[multisync_count] = &ctx->res_ctx.pipe_ctx[i];
935 multisync_count++;
936 }
937
938 if (multisync_count > 0) {
939 dc->hwss.enable_per_frame_crtc_position_reset(
940 dc, multisync_count, multisync_pipes);
941 }
942 }
943
program_timing_sync(struct dc * dc,struct dc_state * ctx)944 static void program_timing_sync(
945 struct dc *dc,
946 struct dc_state *ctx)
947 {
948 int i, j, k;
949 int group_index = 0;
950 int num_group = 0;
951 int pipe_count = dc->res_pool->pipe_count;
952 struct pipe_ctx *unsynced_pipes[MAX_PIPES] = { NULL };
953
954 for (i = 0; i < pipe_count; i++) {
955 if (!ctx->res_ctx.pipe_ctx[i].stream || ctx->res_ctx.pipe_ctx[i].top_pipe)
956 continue;
957
958 unsynced_pipes[i] = &ctx->res_ctx.pipe_ctx[i];
959 }
960
961 for (i = 0; i < pipe_count; i++) {
962 int group_size = 1;
963 struct pipe_ctx *pipe_set[MAX_PIPES];
964
965 if (!unsynced_pipes[i])
966 continue;
967
968 pipe_set[0] = unsynced_pipes[i];
969 unsynced_pipes[i] = NULL;
970
971 /* Add tg to the set, search rest of the tg's for ones with
972 * same timing, add all tgs with same timing to the group
973 */
974 for (j = i + 1; j < pipe_count; j++) {
975 if (!unsynced_pipes[j])
976 continue;
977
978 if (resource_are_streams_timing_synchronizable(
979 unsynced_pipes[j]->stream,
980 pipe_set[0]->stream)) {
981 pipe_set[group_size] = unsynced_pipes[j];
982 unsynced_pipes[j] = NULL;
983 group_size++;
984 }
985 }
986
987 /* set first pipe with plane as master */
988 for (j = 0; j < group_size; j++) {
989 if (pipe_set[j]->plane_state) {
990 if (j == 0)
991 break;
992
993 swap(pipe_set[0], pipe_set[j]);
994 break;
995 }
996 }
997
998
999 for (k = 0; k < group_size; k++) {
1000 struct dc_stream_status *status = dc_stream_get_status_from_state(ctx, pipe_set[k]->stream);
1001
1002 status->timing_sync_info.group_id = num_group;
1003 status->timing_sync_info.group_size = group_size;
1004 if (k == 0)
1005 status->timing_sync_info.master = true;
1006 else
1007 status->timing_sync_info.master = false;
1008
1009 }
1010 /* remove any other pipes with plane as they have already been synced */
1011 for (j = j + 1; j < group_size; j++) {
1012 if (pipe_set[j]->plane_state) {
1013 group_size--;
1014 pipe_set[j] = pipe_set[group_size];
1015 j--;
1016 }
1017 }
1018
1019 if (group_size > 1) {
1020 dc->hwss.enable_timing_synchronization(
1021 dc, group_index, group_size, pipe_set);
1022 group_index++;
1023 }
1024 num_group++;
1025 }
1026 }
1027
context_changed(struct dc * dc,struct dc_state * context)1028 static bool context_changed(
1029 struct dc *dc,
1030 struct dc_state *context)
1031 {
1032 uint8_t i;
1033
1034 if (context->stream_count != dc->current_state->stream_count)
1035 return true;
1036
1037 for (i = 0; i < dc->current_state->stream_count; i++) {
1038 if (dc->current_state->streams[i] != context->streams[i])
1039 return true;
1040 }
1041
1042 return false;
1043 }
1044
dc_validate_seamless_boot_timing(const struct dc * dc,const struct dc_sink * sink,struct dc_crtc_timing * crtc_timing)1045 bool dc_validate_seamless_boot_timing(const struct dc *dc,
1046 const struct dc_sink *sink,
1047 struct dc_crtc_timing *crtc_timing)
1048 {
1049 struct timing_generator *tg;
1050 struct stream_encoder *se = NULL;
1051
1052 struct dc_crtc_timing hw_crtc_timing = {0};
1053
1054 struct dc_link *link = sink->link;
1055 unsigned int i, enc_inst, tg_inst = 0;
1056
1057 // Seamless port only support single DP and EDP so far
1058 if (sink->sink_signal != SIGNAL_TYPE_DISPLAY_PORT &&
1059 sink->sink_signal != SIGNAL_TYPE_EDP)
1060 return false;
1061
1062 /* Check for enabled DIG to identify enabled display */
1063 if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
1064 return false;
1065
1066 enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1067
1068 if (enc_inst == ENGINE_ID_UNKNOWN)
1069 return false;
1070
1071 for (i = 0; i < dc->res_pool->stream_enc_count; i++) {
1072 if (dc->res_pool->stream_enc[i]->id == enc_inst) {
1073
1074 se = dc->res_pool->stream_enc[i];
1075
1076 tg_inst = dc->res_pool->stream_enc[i]->funcs->dig_source_otg(
1077 dc->res_pool->stream_enc[i]);
1078 break;
1079 }
1080 }
1081
1082 // tg_inst not found
1083 if (i == dc->res_pool->stream_enc_count)
1084 return false;
1085
1086 if (tg_inst >= dc->res_pool->timing_generator_count)
1087 return false;
1088
1089 tg = dc->res_pool->timing_generators[tg_inst];
1090
1091 if (!tg->funcs->get_hw_timing)
1092 return false;
1093
1094 if (!tg->funcs->get_hw_timing(tg, &hw_crtc_timing))
1095 return false;
1096
1097 if (crtc_timing->h_total != hw_crtc_timing.h_total)
1098 return false;
1099
1100 if (crtc_timing->h_border_left != hw_crtc_timing.h_border_left)
1101 return false;
1102
1103 if (crtc_timing->h_addressable != hw_crtc_timing.h_addressable)
1104 return false;
1105
1106 if (crtc_timing->h_border_right != hw_crtc_timing.h_border_right)
1107 return false;
1108
1109 if (crtc_timing->h_front_porch != hw_crtc_timing.h_front_porch)
1110 return false;
1111
1112 if (crtc_timing->h_sync_width != hw_crtc_timing.h_sync_width)
1113 return false;
1114
1115 if (crtc_timing->v_total != hw_crtc_timing.v_total)
1116 return false;
1117
1118 if (crtc_timing->v_border_top != hw_crtc_timing.v_border_top)
1119 return false;
1120
1121 if (crtc_timing->v_addressable != hw_crtc_timing.v_addressable)
1122 return false;
1123
1124 if (crtc_timing->v_border_bottom != hw_crtc_timing.v_border_bottom)
1125 return false;
1126
1127 if (crtc_timing->v_front_porch != hw_crtc_timing.v_front_porch)
1128 return false;
1129
1130 if (crtc_timing->v_sync_width != hw_crtc_timing.v_sync_width)
1131 return false;
1132
1133 if (dc_is_dp_signal(link->connector_signal)) {
1134 unsigned int pix_clk_100hz;
1135
1136 dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1137 dc->res_pool->dp_clock_source,
1138 tg_inst, &pix_clk_100hz);
1139
1140 if (crtc_timing->pix_clk_100hz != pix_clk_100hz)
1141 return false;
1142
1143 if (!se->funcs->dp_get_pixel_format)
1144 return false;
1145
1146 if (!se->funcs->dp_get_pixel_format(
1147 se,
1148 &hw_crtc_timing.pixel_encoding,
1149 &hw_crtc_timing.display_color_depth))
1150 return false;
1151
1152 if (hw_crtc_timing.display_color_depth != crtc_timing->display_color_depth)
1153 return false;
1154
1155 if (hw_crtc_timing.pixel_encoding != crtc_timing->pixel_encoding)
1156 return false;
1157 }
1158
1159 return true;
1160 }
1161
dc_enable_stereo(struct dc * dc,struct dc_state * context,struct dc_stream_state * streams[],uint8_t stream_count)1162 bool dc_enable_stereo(
1163 struct dc *dc,
1164 struct dc_state *context,
1165 struct dc_stream_state *streams[],
1166 uint8_t stream_count)
1167 {
1168 bool ret = true;
1169 int i, j;
1170 struct pipe_ctx *pipe;
1171
1172 for (i = 0; i < MAX_PIPES; i++) {
1173 if (context != NULL)
1174 pipe = &context->res_ctx.pipe_ctx[i];
1175 else
1176 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1177 for (j = 0 ; pipe && j < stream_count; j++) {
1178 if (streams[j] && streams[j] == pipe->stream &&
1179 dc->hwss.setup_stereo)
1180 dc->hwss.setup_stereo(pipe, dc);
1181 }
1182 }
1183
1184 return ret;
1185 }
1186
1187 /*
1188 * Applies given context to HW and copy it into current context.
1189 * It's up to the user to release the src context afterwards.
1190 */
dc_commit_state_no_check(struct dc * dc,struct dc_state * context)1191 static enum dc_status dc_commit_state_no_check(struct dc *dc, struct dc_state *context)
1192 {
1193 struct dc_bios *dcb = dc->ctx->dc_bios;
1194 enum dc_status result = DC_ERROR_UNEXPECTED;
1195 struct pipe_ctx *pipe;
1196 int i, k, l;
1197 struct dc_stream_state *dc_streams[MAX_STREAMS] = {0};
1198
1199 disable_dangling_plane(dc, context);
1200
1201 for (i = 0; i < context->stream_count; i++)
1202 dc_streams[i] = context->streams[i];
1203
1204 if (!dcb->funcs->is_accelerated_mode(dcb))
1205 dc->hwss.enable_accelerated_mode(dc, context);
1206
1207 for (i = 0; i < context->stream_count; i++) {
1208 if (context->streams[i]->apply_seamless_boot_optimization)
1209 dc->optimize_seamless_boot_streams++;
1210 }
1211
1212 if (dc->optimize_seamless_boot_streams == 0)
1213 dc->hwss.prepare_bandwidth(dc, context);
1214
1215 /* re-program planes for existing stream, in case we need to
1216 * free up plane resource for later use
1217 */
1218 if (dc->hwss.apply_ctx_for_surface)
1219 for (i = 0; i < context->stream_count; i++) {
1220 if (context->streams[i]->mode_changed)
1221 continue;
1222
1223 dc->hwss.apply_ctx_for_surface(
1224 dc, context->streams[i],
1225 context->stream_status[i].plane_count,
1226 context); /* use new pipe config in new context */
1227 }
1228
1229 /* Program hardware */
1230 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1231 pipe = &context->res_ctx.pipe_ctx[i];
1232 dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe);
1233 }
1234
1235 result = dc->hwss.apply_ctx_to_hw(dc, context);
1236
1237 if (result != DC_OK)
1238 return result;
1239
1240 if (context->stream_count > 1 && !dc->debug.disable_timing_sync) {
1241 enable_timing_multisync(dc, context);
1242 program_timing_sync(dc, context);
1243 }
1244
1245 /* Program all planes within new context*/
1246 if (dc->hwss.program_front_end_for_ctx)
1247 dc->hwss.program_front_end_for_ctx(dc, context);
1248 for (i = 0; i < context->stream_count; i++) {
1249 const struct dc_link *link = context->streams[i]->link;
1250
1251 if (!context->streams[i]->mode_changed)
1252 continue;
1253
1254 if (dc->hwss.apply_ctx_for_surface)
1255 dc->hwss.apply_ctx_for_surface(
1256 dc, context->streams[i],
1257 context->stream_status[i].plane_count,
1258 context);
1259
1260 /*
1261 * enable stereo
1262 * TODO rework dc_enable_stereo call to work with validation sets?
1263 */
1264 for (k = 0; k < MAX_PIPES; k++) {
1265 pipe = &context->res_ctx.pipe_ctx[k];
1266
1267 for (l = 0 ; pipe && l < context->stream_count; l++) {
1268 if (context->streams[l] &&
1269 context->streams[l] == pipe->stream &&
1270 dc->hwss.setup_stereo)
1271 dc->hwss.setup_stereo(pipe, dc);
1272 }
1273 }
1274
1275 CONN_MSG_MODE(link, "{%dx%d, %dx%d@%dKhz}",
1276 context->streams[i]->timing.h_addressable,
1277 context->streams[i]->timing.v_addressable,
1278 context->streams[i]->timing.h_total,
1279 context->streams[i]->timing.v_total,
1280 context->streams[i]->timing.pix_clk_100hz / 10);
1281 }
1282
1283 dc_enable_stereo(dc, context, dc_streams, context->stream_count);
1284
1285 if (dc->optimize_seamless_boot_streams == 0) {
1286 /* Must wait for no flips to be pending before doing optimize bw */
1287 wait_for_no_pipes_pending(dc, context);
1288 /* pplib is notified if disp_num changed */
1289 dc->hwss.optimize_bandwidth(dc, context);
1290 }
1291
1292 for (i = 0; i < context->stream_count; i++)
1293 context->streams[i]->mode_changed = false;
1294
1295 dc_release_state(dc->current_state);
1296
1297 dc->current_state = context;
1298
1299 dc_retain_state(dc->current_state);
1300
1301 return result;
1302 }
1303
dc_commit_state(struct dc * dc,struct dc_state * context)1304 bool dc_commit_state(struct dc *dc, struct dc_state *context)
1305 {
1306 enum dc_status result = DC_ERROR_UNEXPECTED;
1307 int i;
1308
1309 if (false == context_changed(dc, context))
1310 return DC_OK;
1311
1312 DC_LOG_DC("%s: %d streams\n",
1313 __func__, context->stream_count);
1314
1315 for (i = 0; i < context->stream_count; i++) {
1316 struct dc_stream_state *stream = context->streams[i];
1317
1318 dc_stream_log(dc, stream);
1319 }
1320
1321 result = dc_commit_state_no_check(dc, context);
1322
1323 return (result == DC_OK);
1324 }
1325
dc_is_hw_initialized(struct dc * dc)1326 bool dc_is_hw_initialized(struct dc *dc)
1327 {
1328 struct dc_bios *dcb = dc->ctx->dc_bios;
1329 return dcb->funcs->is_accelerated_mode(dcb);
1330 }
1331
dc_post_update_surfaces_to_stream(struct dc * dc)1332 bool dc_post_update_surfaces_to_stream(struct dc *dc)
1333 {
1334 int i;
1335 struct dc_state *context = dc->current_state;
1336
1337 if (!dc->optimized_required || dc->optimize_seamless_boot_streams > 0)
1338 return true;
1339
1340 post_surface_trace(dc);
1341
1342 for (i = 0; i < dc->res_pool->pipe_count; i++)
1343 if (context->res_ctx.pipe_ctx[i].stream == NULL ||
1344 context->res_ctx.pipe_ctx[i].plane_state == NULL) {
1345 context->res_ctx.pipe_ctx[i].pipe_idx = i;
1346 dc->hwss.disable_plane(dc, &context->res_ctx.pipe_ctx[i]);
1347 }
1348
1349 dc->optimized_required = false;
1350
1351 dc->hwss.optimize_bandwidth(dc, context);
1352 return true;
1353 }
1354
dc_create_state(struct dc * dc)1355 struct dc_state *dc_create_state(struct dc *dc)
1356 {
1357 struct dc_state *context = kvzalloc(sizeof(struct dc_state),
1358 GFP_KERNEL);
1359
1360 if (!context)
1361 return NULL;
1362 /* Each context must have their own instance of VBA and in order to
1363 * initialize and obtain IP and SOC the base DML instance from DC is
1364 * initially copied into every context
1365 */
1366 #ifdef CONFIG_DRM_AMD_DC_DCN
1367 memcpy(&context->bw_ctx.dml, &dc->dml, sizeof(struct display_mode_lib));
1368 #endif
1369
1370 kref_init(&context->refcount);
1371
1372 return context;
1373 }
1374
dc_copy_state(struct dc_state * src_ctx)1375 struct dc_state *dc_copy_state(struct dc_state *src_ctx)
1376 {
1377 int i, j;
1378 struct dc_state *new_ctx = kvmalloc(sizeof(struct dc_state), GFP_KERNEL);
1379
1380 if (!new_ctx)
1381 return NULL;
1382 memcpy(new_ctx, src_ctx, sizeof(struct dc_state));
1383
1384 for (i = 0; i < MAX_PIPES; i++) {
1385 struct pipe_ctx *cur_pipe = &new_ctx->res_ctx.pipe_ctx[i];
1386
1387 if (cur_pipe->top_pipe)
1388 cur_pipe->top_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx];
1389
1390 if (cur_pipe->bottom_pipe)
1391 cur_pipe->bottom_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx];
1392
1393 if (cur_pipe->prev_odm_pipe)
1394 cur_pipe->prev_odm_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->prev_odm_pipe->pipe_idx];
1395
1396 if (cur_pipe->next_odm_pipe)
1397 cur_pipe->next_odm_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->next_odm_pipe->pipe_idx];
1398
1399 }
1400
1401 for (i = 0; i < new_ctx->stream_count; i++) {
1402 dc_stream_retain(new_ctx->streams[i]);
1403 for (j = 0; j < new_ctx->stream_status[i].plane_count; j++)
1404 dc_plane_state_retain(
1405 new_ctx->stream_status[i].plane_states[j]);
1406 }
1407
1408 kref_init(&new_ctx->refcount);
1409
1410 return new_ctx;
1411 }
1412
dc_retain_state(struct dc_state * context)1413 void dc_retain_state(struct dc_state *context)
1414 {
1415 kref_get(&context->refcount);
1416 }
1417
dc_state_free(struct kref * kref)1418 static void dc_state_free(struct kref *kref)
1419 {
1420 struct dc_state *context = container_of(kref, struct dc_state, refcount);
1421 dc_resource_state_destruct(context);
1422 kvfree(context);
1423 }
1424
dc_release_state(struct dc_state * context)1425 void dc_release_state(struct dc_state *context)
1426 {
1427 kref_put(&context->refcount, dc_state_free);
1428 }
1429
dc_set_generic_gpio_for_stereo(bool enable,struct gpio_service * gpio_service)1430 bool dc_set_generic_gpio_for_stereo(bool enable,
1431 struct gpio_service *gpio_service)
1432 {
1433 enum gpio_result gpio_result = GPIO_RESULT_NON_SPECIFIC_ERROR;
1434 struct gpio_pin_info pin_info;
1435 struct gpio *generic;
1436 struct gpio_generic_mux_config *config = kzalloc(sizeof(struct gpio_generic_mux_config),
1437 GFP_KERNEL);
1438
1439 if (!config)
1440 return false;
1441 pin_info = dal_gpio_get_generic_pin_info(gpio_service, GPIO_ID_GENERIC, 0);
1442
1443 if (pin_info.mask == 0xFFFFFFFF || pin_info.offset == 0xFFFFFFFF) {
1444 kfree(config);
1445 return false;
1446 } else {
1447 generic = dal_gpio_service_create_generic_mux(
1448 gpio_service,
1449 pin_info.offset,
1450 pin_info.mask);
1451 }
1452
1453 if (!generic) {
1454 kfree(config);
1455 return false;
1456 }
1457
1458 gpio_result = dal_gpio_open(generic, GPIO_MODE_OUTPUT);
1459
1460 config->enable_output_from_mux = enable;
1461 config->mux_select = GPIO_SIGNAL_SOURCE_PASS_THROUGH_STEREO_SYNC;
1462
1463 if (gpio_result == GPIO_RESULT_OK)
1464 gpio_result = dal_mux_setup_config(generic, config);
1465
1466 if (gpio_result == GPIO_RESULT_OK) {
1467 dal_gpio_close(generic);
1468 dal_gpio_destroy_generic_mux(&generic);
1469 kfree(config);
1470 return true;
1471 } else {
1472 dal_gpio_close(generic);
1473 dal_gpio_destroy_generic_mux(&generic);
1474 kfree(config);
1475 return false;
1476 }
1477 }
1478
is_surface_in_context(const struct dc_state * context,const struct dc_plane_state * plane_state)1479 static bool is_surface_in_context(
1480 const struct dc_state *context,
1481 const struct dc_plane_state *plane_state)
1482 {
1483 int j;
1484
1485 for (j = 0; j < MAX_PIPES; j++) {
1486 const struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
1487
1488 if (plane_state == pipe_ctx->plane_state) {
1489 return true;
1490 }
1491 }
1492
1493 return false;
1494 }
1495
get_plane_info_update_type(const struct dc_surface_update * u)1496 static enum surface_update_type get_plane_info_update_type(const struct dc_surface_update *u)
1497 {
1498 union surface_update_flags *update_flags = &u->surface->update_flags;
1499 enum surface_update_type update_type = UPDATE_TYPE_FAST;
1500
1501 if (!u->plane_info)
1502 return UPDATE_TYPE_FAST;
1503
1504 if (u->plane_info->color_space != u->surface->color_space) {
1505 update_flags->bits.color_space_change = 1;
1506 elevate_update_type(&update_type, UPDATE_TYPE_MED);
1507 }
1508
1509 if (u->plane_info->horizontal_mirror != u->surface->horizontal_mirror) {
1510 update_flags->bits.horizontal_mirror_change = 1;
1511 elevate_update_type(&update_type, UPDATE_TYPE_MED);
1512 }
1513
1514 if (u->plane_info->rotation != u->surface->rotation) {
1515 update_flags->bits.rotation_change = 1;
1516 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1517 }
1518
1519 if (u->plane_info->format != u->surface->format) {
1520 update_flags->bits.pixel_format_change = 1;
1521 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1522 }
1523
1524 if (u->plane_info->stereo_format != u->surface->stereo_format) {
1525 update_flags->bits.stereo_format_change = 1;
1526 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1527 }
1528
1529 if (u->plane_info->per_pixel_alpha != u->surface->per_pixel_alpha) {
1530 update_flags->bits.per_pixel_alpha_change = 1;
1531 elevate_update_type(&update_type, UPDATE_TYPE_MED);
1532 }
1533
1534 if (u->plane_info->global_alpha_value != u->surface->global_alpha_value) {
1535 update_flags->bits.global_alpha_change = 1;
1536 elevate_update_type(&update_type, UPDATE_TYPE_MED);
1537 }
1538
1539 if (u->plane_info->dcc.enable != u->surface->dcc.enable
1540 || u->plane_info->dcc.independent_64b_blks != u->surface->dcc.independent_64b_blks
1541 || u->plane_info->dcc.meta_pitch != u->surface->dcc.meta_pitch) {
1542 update_flags->bits.dcc_change = 1;
1543 elevate_update_type(&update_type, UPDATE_TYPE_MED);
1544 }
1545
1546 if (resource_pixel_format_to_bpp(u->plane_info->format) !=
1547 resource_pixel_format_to_bpp(u->surface->format)) {
1548 /* different bytes per element will require full bandwidth
1549 * and DML calculation
1550 */
1551 update_flags->bits.bpp_change = 1;
1552 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1553 }
1554
1555 if (u->plane_info->plane_size.surface_pitch != u->surface->plane_size.surface_pitch
1556 || u->plane_info->plane_size.chroma_pitch != u->surface->plane_size.chroma_pitch) {
1557 update_flags->bits.plane_size_change = 1;
1558 elevate_update_type(&update_type, UPDATE_TYPE_MED);
1559 }
1560
1561
1562 if (memcmp(&u->plane_info->tiling_info, &u->surface->tiling_info,
1563 sizeof(union dc_tiling_info)) != 0) {
1564 update_flags->bits.swizzle_change = 1;
1565 elevate_update_type(&update_type, UPDATE_TYPE_MED);
1566
1567 /* todo: below are HW dependent, we should add a hook to
1568 * DCE/N resource and validated there.
1569 */
1570 if (u->plane_info->tiling_info.gfx9.swizzle != DC_SW_LINEAR) {
1571 /* swizzled mode requires RQ to be setup properly,
1572 * thus need to run DML to calculate RQ settings
1573 */
1574 update_flags->bits.bandwidth_change = 1;
1575 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1576 }
1577 }
1578
1579 /* This should be UPDATE_TYPE_FAST if nothing has changed. */
1580 return update_type;
1581 }
1582
get_scaling_info_update_type(const struct dc_surface_update * u)1583 static enum surface_update_type get_scaling_info_update_type(
1584 const struct dc_surface_update *u)
1585 {
1586 union surface_update_flags *update_flags = &u->surface->update_flags;
1587
1588 if (!u->scaling_info)
1589 return UPDATE_TYPE_FAST;
1590
1591 if (u->scaling_info->clip_rect.width != u->surface->clip_rect.width
1592 || u->scaling_info->clip_rect.height != u->surface->clip_rect.height
1593 || u->scaling_info->dst_rect.width != u->surface->dst_rect.width
1594 || u->scaling_info->dst_rect.height != u->surface->dst_rect.height
1595 || u->scaling_info->scaling_quality.integer_scaling !=
1596 u->surface->scaling_quality.integer_scaling
1597 ) {
1598 update_flags->bits.scaling_change = 1;
1599
1600 if ((u->scaling_info->dst_rect.width < u->surface->dst_rect.width
1601 || u->scaling_info->dst_rect.height < u->surface->dst_rect.height)
1602 && (u->scaling_info->dst_rect.width < u->surface->src_rect.width
1603 || u->scaling_info->dst_rect.height < u->surface->src_rect.height))
1604 /* Making dst rect smaller requires a bandwidth change */
1605 update_flags->bits.bandwidth_change = 1;
1606 }
1607
1608 if (u->scaling_info->src_rect.width != u->surface->src_rect.width
1609 || u->scaling_info->src_rect.height != u->surface->src_rect.height) {
1610
1611 update_flags->bits.scaling_change = 1;
1612 if (u->scaling_info->src_rect.width > u->surface->src_rect.width
1613 || u->scaling_info->src_rect.height > u->surface->src_rect.height)
1614 /* Making src rect bigger requires a bandwidth change */
1615 update_flags->bits.clock_change = 1;
1616 }
1617
1618 if (u->scaling_info->src_rect.x != u->surface->src_rect.x
1619 || u->scaling_info->src_rect.y != u->surface->src_rect.y
1620 || u->scaling_info->clip_rect.x != u->surface->clip_rect.x
1621 || u->scaling_info->clip_rect.y != u->surface->clip_rect.y
1622 || u->scaling_info->dst_rect.x != u->surface->dst_rect.x
1623 || u->scaling_info->dst_rect.y != u->surface->dst_rect.y)
1624 update_flags->bits.position_change = 1;
1625
1626 if (update_flags->bits.clock_change
1627 || update_flags->bits.bandwidth_change
1628 || update_flags->bits.scaling_change)
1629 return UPDATE_TYPE_FULL;
1630
1631 if (update_flags->bits.position_change)
1632 return UPDATE_TYPE_MED;
1633
1634 return UPDATE_TYPE_FAST;
1635 }
1636
det_surface_update(const struct dc * dc,const struct dc_surface_update * u)1637 static enum surface_update_type det_surface_update(const struct dc *dc,
1638 const struct dc_surface_update *u)
1639 {
1640 const struct dc_state *context = dc->current_state;
1641 enum surface_update_type type;
1642 enum surface_update_type overall_type = UPDATE_TYPE_FAST;
1643 union surface_update_flags *update_flags = &u->surface->update_flags;
1644
1645 if (u->flip_addr)
1646 update_flags->bits.addr_update = 1;
1647
1648 if (!is_surface_in_context(context, u->surface) || u->surface->force_full_update) {
1649 update_flags->raw = 0xFFFFFFFF;
1650 return UPDATE_TYPE_FULL;
1651 }
1652
1653 update_flags->raw = 0; // Reset all flags
1654
1655 type = get_plane_info_update_type(u);
1656 elevate_update_type(&overall_type, type);
1657
1658 type = get_scaling_info_update_type(u);
1659 elevate_update_type(&overall_type, type);
1660
1661 if (u->flip_addr)
1662 update_flags->bits.addr_update = 1;
1663
1664 if (u->in_transfer_func)
1665 update_flags->bits.in_transfer_func_change = 1;
1666
1667 if (u->input_csc_color_matrix)
1668 update_flags->bits.input_csc_change = 1;
1669
1670 if (u->coeff_reduction_factor)
1671 update_flags->bits.coeff_reduction_change = 1;
1672
1673 if (u->gamma) {
1674 enum surface_pixel_format format = SURFACE_PIXEL_FORMAT_GRPH_BEGIN;
1675
1676 if (u->plane_info)
1677 format = u->plane_info->format;
1678 else if (u->surface)
1679 format = u->surface->format;
1680
1681 if (dce_use_lut(format))
1682 update_flags->bits.gamma_change = 1;
1683 }
1684
1685 if (u->hdr_mult.value)
1686 if (u->hdr_mult.value != u->surface->hdr_mult.value) {
1687 update_flags->bits.hdr_mult = 1;
1688 elevate_update_type(&overall_type, UPDATE_TYPE_MED);
1689 }
1690
1691 if (update_flags->bits.in_transfer_func_change) {
1692 type = UPDATE_TYPE_MED;
1693 elevate_update_type(&overall_type, type);
1694 }
1695
1696 if (update_flags->bits.input_csc_change
1697 || update_flags->bits.coeff_reduction_change
1698 || update_flags->bits.gamma_change) {
1699 type = UPDATE_TYPE_FULL;
1700 elevate_update_type(&overall_type, type);
1701 }
1702
1703 return overall_type;
1704 }
1705
check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)1706 static enum surface_update_type check_update_surfaces_for_stream(
1707 struct dc *dc,
1708 struct dc_surface_update *updates,
1709 int surface_count,
1710 struct dc_stream_update *stream_update,
1711 const struct dc_stream_status *stream_status)
1712 {
1713 int i;
1714 enum surface_update_type overall_type = UPDATE_TYPE_FAST;
1715
1716 if (stream_status == NULL || stream_status->plane_count != surface_count)
1717 overall_type = UPDATE_TYPE_FULL;
1718
1719 /* some stream updates require passive update */
1720 if (stream_update) {
1721 union stream_update_flags *su_flags = &stream_update->stream->update_flags;
1722
1723 if ((stream_update->src.height != 0 && stream_update->src.width != 0) ||
1724 (stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
1725 stream_update->integer_scaling_update)
1726 su_flags->bits.scaling = 1;
1727
1728 if (stream_update->out_transfer_func)
1729 su_flags->bits.out_tf = 1;
1730
1731 if (stream_update->abm_level)
1732 su_flags->bits.abm_level = 1;
1733
1734 if (stream_update->dpms_off)
1735 su_flags->bits.dpms_off = 1;
1736
1737 if (stream_update->gamut_remap)
1738 su_flags->bits.gamut_remap = 1;
1739
1740 if (stream_update->wb_update)
1741 su_flags->bits.wb_update = 1;
1742 if (su_flags->raw != 0)
1743 overall_type = UPDATE_TYPE_FULL;
1744
1745 if (stream_update->output_csc_transform || stream_update->output_color_space)
1746 su_flags->bits.out_csc = 1;
1747
1748 if (stream_update->dsc_config)
1749 overall_type = UPDATE_TYPE_FULL;
1750 }
1751
1752 for (i = 0 ; i < surface_count; i++) {
1753 enum surface_update_type type =
1754 det_surface_update(dc, &updates[i]);
1755
1756 elevate_update_type(&overall_type, type);
1757 }
1758
1759 return overall_type;
1760 }
1761
1762 /**
1763 * dc_check_update_surfaces_for_stream() - Determine update type (fast, med, or full)
1764 *
1765 * See :c:type:`enum surface_update_type <surface_update_type>` for explanation of update types
1766 */
dc_check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)1767 enum surface_update_type dc_check_update_surfaces_for_stream(
1768 struct dc *dc,
1769 struct dc_surface_update *updates,
1770 int surface_count,
1771 struct dc_stream_update *stream_update,
1772 const struct dc_stream_status *stream_status)
1773 {
1774 int i;
1775 enum surface_update_type type;
1776
1777 if (stream_update)
1778 stream_update->stream->update_flags.raw = 0;
1779 for (i = 0; i < surface_count; i++)
1780 updates[i].surface->update_flags.raw = 0;
1781
1782 type = check_update_surfaces_for_stream(dc, updates, surface_count, stream_update, stream_status);
1783 if (type == UPDATE_TYPE_FULL) {
1784 if (stream_update)
1785 stream_update->stream->update_flags.raw = 0xFFFFFFFF;
1786 for (i = 0; i < surface_count; i++)
1787 updates[i].surface->update_flags.raw = 0xFFFFFFFF;
1788 }
1789
1790 if (type == UPDATE_TYPE_FAST) {
1791 // If there's an available clock comparator, we use that.
1792 if (dc->clk_mgr->funcs->are_clock_states_equal) {
1793 if (!dc->clk_mgr->funcs->are_clock_states_equal(&dc->clk_mgr->clks, &dc->current_state->bw_ctx.bw.dcn.clk))
1794 dc->optimized_required = true;
1795 // Else we fallback to mem compare.
1796 } else if (memcmp(&dc->current_state->bw_ctx.bw.dcn.clk, &dc->clk_mgr->clks, offsetof(struct dc_clocks, prev_p_state_change_support)) != 0) {
1797 dc->optimized_required = true;
1798 }
1799 }
1800
1801 return type;
1802 }
1803
stream_get_status(struct dc_state * ctx,struct dc_stream_state * stream)1804 static struct dc_stream_status *stream_get_status(
1805 struct dc_state *ctx,
1806 struct dc_stream_state *stream)
1807 {
1808 uint8_t i;
1809
1810 for (i = 0; i < ctx->stream_count; i++) {
1811 if (stream == ctx->streams[i]) {
1812 return &ctx->stream_status[i];
1813 }
1814 }
1815
1816 return NULL;
1817 }
1818
1819 static const enum surface_update_type update_surface_trace_level = UPDATE_TYPE_FULL;
1820
copy_surface_update_to_plane(struct dc_plane_state * surface,struct dc_surface_update * srf_update)1821 static void copy_surface_update_to_plane(
1822 struct dc_plane_state *surface,
1823 struct dc_surface_update *srf_update)
1824 {
1825 if (srf_update->flip_addr) {
1826 surface->address = srf_update->flip_addr->address;
1827 surface->flip_immediate =
1828 srf_update->flip_addr->flip_immediate;
1829 surface->time.time_elapsed_in_us[surface->time.index] =
1830 srf_update->flip_addr->flip_timestamp_in_us -
1831 surface->time.prev_update_time_in_us;
1832 surface->time.prev_update_time_in_us =
1833 srf_update->flip_addr->flip_timestamp_in_us;
1834 surface->time.index++;
1835 if (surface->time.index >= DC_PLANE_UPDATE_TIMES_MAX)
1836 surface->time.index = 0;
1837 }
1838
1839 if (srf_update->scaling_info) {
1840 surface->scaling_quality =
1841 srf_update->scaling_info->scaling_quality;
1842 surface->dst_rect =
1843 srf_update->scaling_info->dst_rect;
1844 surface->src_rect =
1845 srf_update->scaling_info->src_rect;
1846 surface->clip_rect =
1847 srf_update->scaling_info->clip_rect;
1848 }
1849
1850 if (srf_update->plane_info) {
1851 surface->color_space =
1852 srf_update->plane_info->color_space;
1853 surface->format =
1854 srf_update->plane_info->format;
1855 surface->plane_size =
1856 srf_update->plane_info->plane_size;
1857 surface->rotation =
1858 srf_update->plane_info->rotation;
1859 surface->horizontal_mirror =
1860 srf_update->plane_info->horizontal_mirror;
1861 surface->stereo_format =
1862 srf_update->plane_info->stereo_format;
1863 surface->tiling_info =
1864 srf_update->plane_info->tiling_info;
1865 surface->visible =
1866 srf_update->plane_info->visible;
1867 surface->per_pixel_alpha =
1868 srf_update->plane_info->per_pixel_alpha;
1869 surface->global_alpha =
1870 srf_update->plane_info->global_alpha;
1871 surface->global_alpha_value =
1872 srf_update->plane_info->global_alpha_value;
1873 surface->dcc =
1874 srf_update->plane_info->dcc;
1875 surface->layer_index =
1876 srf_update->plane_info->layer_index;
1877 }
1878
1879 if (srf_update->gamma &&
1880 (surface->gamma_correction !=
1881 srf_update->gamma)) {
1882 memcpy(&surface->gamma_correction->entries,
1883 &srf_update->gamma->entries,
1884 sizeof(struct dc_gamma_entries));
1885 surface->gamma_correction->is_identity =
1886 srf_update->gamma->is_identity;
1887 surface->gamma_correction->num_entries =
1888 srf_update->gamma->num_entries;
1889 surface->gamma_correction->type =
1890 srf_update->gamma->type;
1891 }
1892
1893 if (srf_update->in_transfer_func &&
1894 (surface->in_transfer_func !=
1895 srf_update->in_transfer_func)) {
1896 surface->in_transfer_func->sdr_ref_white_level =
1897 srf_update->in_transfer_func->sdr_ref_white_level;
1898 surface->in_transfer_func->tf =
1899 srf_update->in_transfer_func->tf;
1900 surface->in_transfer_func->type =
1901 srf_update->in_transfer_func->type;
1902 memcpy(&surface->in_transfer_func->tf_pts,
1903 &srf_update->in_transfer_func->tf_pts,
1904 sizeof(struct dc_transfer_func_distributed_points));
1905 }
1906
1907 if (srf_update->func_shaper &&
1908 (surface->in_shaper_func !=
1909 srf_update->func_shaper))
1910 memcpy(surface->in_shaper_func, srf_update->func_shaper,
1911 sizeof(*surface->in_shaper_func));
1912
1913 if (srf_update->lut3d_func &&
1914 (surface->lut3d_func !=
1915 srf_update->lut3d_func))
1916 memcpy(surface->lut3d_func, srf_update->lut3d_func,
1917 sizeof(*surface->lut3d_func));
1918
1919 if (srf_update->hdr_mult.value)
1920 surface->hdr_mult =
1921 srf_update->hdr_mult;
1922
1923 if (srf_update->blend_tf &&
1924 (surface->blend_tf !=
1925 srf_update->blend_tf))
1926 memcpy(surface->blend_tf, srf_update->blend_tf,
1927 sizeof(*surface->blend_tf));
1928
1929 if (srf_update->input_csc_color_matrix)
1930 surface->input_csc_color_matrix =
1931 *srf_update->input_csc_color_matrix;
1932
1933 if (srf_update->coeff_reduction_factor)
1934 surface->coeff_reduction_factor =
1935 *srf_update->coeff_reduction_factor;
1936 }
1937
copy_stream_update_to_stream(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,struct dc_stream_update * update)1938 static void copy_stream_update_to_stream(struct dc *dc,
1939 struct dc_state *context,
1940 struct dc_stream_state *stream,
1941 struct dc_stream_update *update)
1942 {
1943 struct dc_context *dc_ctx = dc->ctx;
1944
1945 if (update == NULL || stream == NULL)
1946 return;
1947
1948 if (update->src.height && update->src.width)
1949 stream->src = update->src;
1950
1951 if (update->dst.height && update->dst.width)
1952 stream->dst = update->dst;
1953
1954 if (update->out_transfer_func &&
1955 stream->out_transfer_func != update->out_transfer_func) {
1956 stream->out_transfer_func->sdr_ref_white_level =
1957 update->out_transfer_func->sdr_ref_white_level;
1958 stream->out_transfer_func->tf = update->out_transfer_func->tf;
1959 stream->out_transfer_func->type =
1960 update->out_transfer_func->type;
1961 memcpy(&stream->out_transfer_func->tf_pts,
1962 &update->out_transfer_func->tf_pts,
1963 sizeof(struct dc_transfer_func_distributed_points));
1964 }
1965
1966 if (update->hdr_static_metadata)
1967 stream->hdr_static_metadata = *update->hdr_static_metadata;
1968
1969 if (update->abm_level)
1970 stream->abm_level = *update->abm_level;
1971
1972 if (update->periodic_interrupt0)
1973 stream->periodic_interrupt0 = *update->periodic_interrupt0;
1974
1975 if (update->periodic_interrupt1)
1976 stream->periodic_interrupt1 = *update->periodic_interrupt1;
1977
1978 if (update->gamut_remap)
1979 stream->gamut_remap_matrix = *update->gamut_remap;
1980
1981 /* Note: this being updated after mode set is currently not a use case
1982 * however if it arises OCSC would need to be reprogrammed at the
1983 * minimum
1984 */
1985 if (update->output_color_space)
1986 stream->output_color_space = *update->output_color_space;
1987
1988 if (update->output_csc_transform)
1989 stream->csc_color_matrix = *update->output_csc_transform;
1990
1991 if (update->vrr_infopacket)
1992 stream->vrr_infopacket = *update->vrr_infopacket;
1993
1994 if (update->dpms_off)
1995 stream->dpms_off = *update->dpms_off;
1996
1997 if (update->vsc_infopacket)
1998 stream->vsc_infopacket = *update->vsc_infopacket;
1999
2000 if (update->vsp_infopacket)
2001 stream->vsp_infopacket = *update->vsp_infopacket;
2002
2003 if (update->dither_option)
2004 stream->dither_option = *update->dither_option;
2005 /* update current stream with writeback info */
2006 if (update->wb_update) {
2007 int i;
2008
2009 stream->num_wb_info = update->wb_update->num_wb_info;
2010 ASSERT(stream->num_wb_info <= MAX_DWB_PIPES);
2011 for (i = 0; i < stream->num_wb_info; i++)
2012 stream->writeback_info[i] =
2013 update->wb_update->writeback_info[i];
2014 }
2015 if (update->dsc_config) {
2016 struct dc_dsc_config old_dsc_cfg = stream->timing.dsc_cfg;
2017 uint32_t old_dsc_enabled = stream->timing.flags.DSC;
2018 uint32_t enable_dsc = (update->dsc_config->num_slices_h != 0 &&
2019 update->dsc_config->num_slices_v != 0);
2020
2021 /* Use temporarry context for validating new DSC config */
2022 struct dc_state *dsc_validate_context = dc_create_state(dc);
2023
2024 if (dsc_validate_context) {
2025 dc_resource_state_copy_construct(dc->current_state, dsc_validate_context);
2026
2027 stream->timing.dsc_cfg = *update->dsc_config;
2028 stream->timing.flags.DSC = enable_dsc;
2029 if (!dc->res_pool->funcs->validate_bandwidth(dc, dsc_validate_context, true)) {
2030 stream->timing.dsc_cfg = old_dsc_cfg;
2031 stream->timing.flags.DSC = old_dsc_enabled;
2032 update->dsc_config = NULL;
2033 }
2034
2035 dc_release_state(dsc_validate_context);
2036 } else {
2037 DC_ERROR("Failed to allocate new validate context for DSC change\n");
2038 update->dsc_config = NULL;
2039 }
2040 }
2041 }
2042
commit_planes_do_stream_update(struct dc * dc,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)2043 static void commit_planes_do_stream_update(struct dc *dc,
2044 struct dc_stream_state *stream,
2045 struct dc_stream_update *stream_update,
2046 enum surface_update_type update_type,
2047 struct dc_state *context)
2048 {
2049 int j;
2050 bool should_program_abm;
2051
2052 // Stream updates
2053 for (j = 0; j < dc->res_pool->pipe_count; j++) {
2054 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2055
2056 if (!pipe_ctx->top_pipe && !pipe_ctx->prev_odm_pipe && pipe_ctx->stream == stream) {
2057
2058 if (stream_update->periodic_interrupt0 &&
2059 dc->hwss.setup_periodic_interrupt)
2060 dc->hwss.setup_periodic_interrupt(dc, pipe_ctx, VLINE0);
2061
2062 if (stream_update->periodic_interrupt1 &&
2063 dc->hwss.setup_periodic_interrupt)
2064 dc->hwss.setup_periodic_interrupt(dc, pipe_ctx, VLINE1);
2065
2066 if ((stream_update->hdr_static_metadata && !stream->use_dynamic_meta) ||
2067 stream_update->vrr_infopacket ||
2068 stream_update->vsc_infopacket ||
2069 stream_update->vsp_infopacket) {
2070 resource_build_info_frame(pipe_ctx);
2071 dc->hwss.update_info_frame(pipe_ctx);
2072 }
2073
2074 if (stream_update->hdr_static_metadata &&
2075 stream->use_dynamic_meta &&
2076 dc->hwss.set_dmdata_attributes &&
2077 pipe_ctx->stream->dmdata_address.quad_part != 0)
2078 dc->hwss.set_dmdata_attributes(pipe_ctx);
2079
2080 if (stream_update->gamut_remap)
2081 dc_stream_set_gamut_remap(dc, stream);
2082
2083 if (stream_update->output_csc_transform)
2084 dc_stream_program_csc_matrix(dc, stream);
2085
2086 if (stream_update->dither_option) {
2087 struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
2088 resource_build_bit_depth_reduction_params(pipe_ctx->stream,
2089 &pipe_ctx->stream->bit_depth_params);
2090 pipe_ctx->stream_res.opp->funcs->opp_program_fmt(pipe_ctx->stream_res.opp,
2091 &stream->bit_depth_params,
2092 &stream->clamping);
2093 while (odm_pipe) {
2094 odm_pipe->stream_res.opp->funcs->opp_program_fmt(odm_pipe->stream_res.opp,
2095 &stream->bit_depth_params,
2096 &stream->clamping);
2097 odm_pipe = odm_pipe->next_odm_pipe;
2098 }
2099 }
2100
2101 if (stream_update->dsc_config && dc->hwss.pipe_control_lock_global) {
2102 dc->hwss.pipe_control_lock_global(dc, pipe_ctx, true);
2103 dp_update_dsc_config(pipe_ctx);
2104 dc->hwss.pipe_control_lock_global(dc, pipe_ctx, false);
2105 }
2106 /* Full fe update*/
2107 if (update_type == UPDATE_TYPE_FAST)
2108 continue;
2109
2110 if (stream_update->dpms_off) {
2111 dc->hwss.pipe_control_lock(dc, pipe_ctx, true);
2112
2113 if (*stream_update->dpms_off) {
2114 core_link_disable_stream(pipe_ctx);
2115 /* for dpms, keep acquired resources*/
2116 if (pipe_ctx->stream_res.audio && !dc->debug.az_endpoint_mute_only)
2117 pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);
2118
2119 dc->hwss.optimize_bandwidth(dc, dc->current_state);
2120 } else {
2121 if (dc->optimize_seamless_boot_streams == 0)
2122 dc->hwss.prepare_bandwidth(dc, dc->current_state);
2123
2124 core_link_enable_stream(dc->current_state, pipe_ctx);
2125 }
2126
2127 dc->hwss.pipe_control_lock(dc, pipe_ctx, false);
2128 }
2129
2130 if (stream_update->abm_level && pipe_ctx->stream_res.abm) {
2131 should_program_abm = true;
2132
2133 // if otg funcs defined check if blanked before programming
2134 if (pipe_ctx->stream_res.tg->funcs->is_blanked)
2135 if (pipe_ctx->stream_res.tg->funcs->is_blanked(pipe_ctx->stream_res.tg))
2136 should_program_abm = false;
2137
2138 if (should_program_abm) {
2139 if (*stream_update->abm_level == ABM_LEVEL_IMMEDIATE_DISABLE) {
2140 pipe_ctx->stream_res.abm->funcs->set_abm_immediate_disable(pipe_ctx->stream_res.abm);
2141 } else {
2142 pipe_ctx->stream_res.abm->funcs->set_abm_level(
2143 pipe_ctx->stream_res.abm, stream->abm_level);
2144 }
2145 }
2146 }
2147 }
2148 }
2149 }
2150
commit_planes_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)2151 static void commit_planes_for_stream(struct dc *dc,
2152 struct dc_surface_update *srf_updates,
2153 int surface_count,
2154 struct dc_stream_state *stream,
2155 struct dc_stream_update *stream_update,
2156 enum surface_update_type update_type,
2157 struct dc_state *context)
2158 {
2159 int i, j;
2160 struct pipe_ctx *top_pipe_to_program = NULL;
2161
2162 if (dc->optimize_seamless_boot_streams > 0 && surface_count > 0) {
2163 /* Optimize seamless boot flag keeps clocks and watermarks high until
2164 * first flip. After first flip, optimization is required to lower
2165 * bandwidth. Important to note that it is expected UEFI will
2166 * only light up a single display on POST, therefore we only expect
2167 * one stream with seamless boot flag set.
2168 */
2169 if (stream->apply_seamless_boot_optimization) {
2170 stream->apply_seamless_boot_optimization = false;
2171 dc->optimize_seamless_boot_streams--;
2172
2173 if (dc->optimize_seamless_boot_streams == 0)
2174 dc->optimized_required = true;
2175 }
2176 }
2177
2178 if (update_type == UPDATE_TYPE_FULL && dc->optimize_seamless_boot_streams == 0) {
2179 dc->hwss.prepare_bandwidth(dc, context);
2180 context_clock_trace(dc, context);
2181 }
2182
2183 // Stream updates
2184 if (stream_update)
2185 commit_planes_do_stream_update(dc, stream, stream_update, update_type, context);
2186
2187 if (surface_count == 0) {
2188 /*
2189 * In case of turning off screen, no need to program front end a second time.
2190 * just return after program blank.
2191 */
2192 if (dc->hwss.apply_ctx_for_surface)
2193 dc->hwss.apply_ctx_for_surface(dc, stream, 0, context);
2194 if (dc->hwss.program_front_end_for_ctx)
2195 dc->hwss.program_front_end_for_ctx(dc, context);
2196
2197 return;
2198 }
2199
2200 if (!IS_DIAG_DC(dc->ctx->dce_environment)) {
2201 for (i = 0; i < surface_count; i++) {
2202 struct dc_plane_state *plane_state = srf_updates[i].surface;
2203 /*set logical flag for lock/unlock use*/
2204 for (j = 0; j < dc->res_pool->pipe_count; j++) {
2205 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2206 if (!pipe_ctx->plane_state)
2207 continue;
2208 if (pipe_ctx->plane_state != plane_state)
2209 continue;
2210 plane_state->triplebuffer_flips = false;
2211 if (update_type == UPDATE_TYPE_FAST &&
2212 dc->hwss.program_triplebuffer != NULL &&
2213 !plane_state->flip_immediate &&
2214 !dc->debug.disable_tri_buf) {
2215 /*triple buffer for VUpdate only*/
2216 plane_state->triplebuffer_flips = true;
2217 }
2218 }
2219 }
2220 }
2221
2222 // Update Type FULL, Surface updates
2223 for (j = 0; j < dc->res_pool->pipe_count; j++) {
2224 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2225
2226 if (!pipe_ctx->top_pipe &&
2227 !pipe_ctx->prev_odm_pipe &&
2228 pipe_ctx->stream &&
2229 pipe_ctx->stream == stream) {
2230 struct dc_stream_status *stream_status = NULL;
2231
2232 top_pipe_to_program = pipe_ctx;
2233
2234 if (!pipe_ctx->plane_state)
2235 continue;
2236
2237 /* Full fe update*/
2238 if (update_type == UPDATE_TYPE_FAST)
2239 continue;
2240
2241 ASSERT(!pipe_ctx->plane_state->triplebuffer_flips);
2242
2243 if (dc->hwss.program_triplebuffer != NULL &&
2244 !dc->debug.disable_tri_buf) {
2245 /*turn off triple buffer for full update*/
2246 dc->hwss.program_triplebuffer(
2247 dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
2248 }
2249 stream_status =
2250 stream_get_status(context, pipe_ctx->stream);
2251
2252 if (dc->hwss.apply_ctx_for_surface)
2253 dc->hwss.apply_ctx_for_surface(
2254 dc, pipe_ctx->stream, stream_status->plane_count, context);
2255 }
2256 }
2257 if (dc->hwss.program_front_end_for_ctx && update_type != UPDATE_TYPE_FAST) {
2258 dc->hwss.program_front_end_for_ctx(dc, context);
2259 #ifdef CONFIG_DRM_AMD_DC_DCN
2260 if (dc->debug.validate_dml_output) {
2261 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2262 struct pipe_ctx cur_pipe = context->res_ctx.pipe_ctx[i];
2263 if (cur_pipe.stream == NULL)
2264 continue;
2265
2266 cur_pipe.plane_res.hubp->funcs->validate_dml_output(
2267 cur_pipe.plane_res.hubp, dc->ctx,
2268 &context->res_ctx.pipe_ctx[i].rq_regs,
2269 &context->res_ctx.pipe_ctx[i].dlg_regs,
2270 &context->res_ctx.pipe_ctx[i].ttu_regs);
2271 }
2272 }
2273 #endif
2274 }
2275
2276 // Update Type FAST, Surface updates
2277 if (update_type == UPDATE_TYPE_FAST) {
2278 /* Lock the top pipe while updating plane addrs, since freesync requires
2279 * plane addr update event triggers to be synchronized.
2280 * top_pipe_to_program is expected to never be NULL
2281 */
2282 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, true);
2283
2284 if (dc->hwss.set_flip_control_gsl)
2285 for (i = 0; i < surface_count; i++) {
2286 struct dc_plane_state *plane_state = srf_updates[i].surface;
2287
2288 for (j = 0; j < dc->res_pool->pipe_count; j++) {
2289 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2290
2291 if (pipe_ctx->stream != stream)
2292 continue;
2293
2294 if (pipe_ctx->plane_state != plane_state)
2295 continue;
2296
2297 // GSL has to be used for flip immediate
2298 dc->hwss.set_flip_control_gsl(pipe_ctx,
2299 plane_state->flip_immediate);
2300 }
2301 }
2302 /* Perform requested Updates */
2303 for (i = 0; i < surface_count; i++) {
2304 struct dc_plane_state *plane_state = srf_updates[i].surface;
2305
2306 for (j = 0; j < dc->res_pool->pipe_count; j++) {
2307 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2308
2309 if (pipe_ctx->stream != stream)
2310 continue;
2311
2312 if (pipe_ctx->plane_state != plane_state)
2313 continue;
2314 /*program triple buffer after lock based on flip type*/
2315 if (dc->hwss.program_triplebuffer != NULL &&
2316 !dc->debug.disable_tri_buf) {
2317 /*only enable triplebuffer for fast_update*/
2318 dc->hwss.program_triplebuffer(
2319 dc, pipe_ctx, plane_state->triplebuffer_flips);
2320 }
2321 if (srf_updates[i].flip_addr)
2322 dc->hwss.update_plane_addr(dc, pipe_ctx);
2323 }
2324 }
2325
2326 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
2327 }
2328
2329 // Fire manual trigger only when bottom plane is flipped
2330 for (j = 0; j < dc->res_pool->pipe_count; j++) {
2331 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2332
2333 if (pipe_ctx->bottom_pipe ||
2334 !pipe_ctx->stream ||
2335 pipe_ctx->stream != stream ||
2336 !pipe_ctx->plane_state->update_flags.bits.addr_update)
2337 continue;
2338
2339 if (pipe_ctx->stream_res.tg->funcs->program_manual_trigger)
2340 pipe_ctx->stream_res.tg->funcs->program_manual_trigger(pipe_ctx->stream_res.tg);
2341 }
2342 }
2343
dc_commit_updates_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,struct dc_state * state)2344 void dc_commit_updates_for_stream(struct dc *dc,
2345 struct dc_surface_update *srf_updates,
2346 int surface_count,
2347 struct dc_stream_state *stream,
2348 struct dc_stream_update *stream_update,
2349 struct dc_state *state)
2350 {
2351 const struct dc_stream_status *stream_status;
2352 enum surface_update_type update_type;
2353 struct dc_state *context;
2354 struct dc_context *dc_ctx = dc->ctx;
2355 int i;
2356
2357 stream_status = dc_stream_get_status(stream);
2358 context = dc->current_state;
2359
2360 update_type = dc_check_update_surfaces_for_stream(
2361 dc, srf_updates, surface_count, stream_update, stream_status);
2362
2363 if (update_type >= update_surface_trace_level)
2364 update_surface_trace(dc, srf_updates, surface_count);
2365
2366
2367 if (update_type >= UPDATE_TYPE_FULL) {
2368
2369 /* initialize scratch memory for building context */
2370 context = dc_create_state(dc);
2371 if (context == NULL) {
2372 DC_ERROR("Failed to allocate new validate context!\n");
2373 return;
2374 }
2375
2376 dc_resource_state_copy_construct(state, context);
2377
2378 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2379 struct pipe_ctx *new_pipe = &context->res_ctx.pipe_ctx[i];
2380 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2381
2382 if (new_pipe->plane_state && new_pipe->plane_state != old_pipe->plane_state)
2383 new_pipe->plane_state->force_full_update = true;
2384 }
2385 }
2386
2387
2388 for (i = 0; i < surface_count; i++) {
2389 struct dc_plane_state *surface = srf_updates[i].surface;
2390
2391 copy_surface_update_to_plane(surface, &srf_updates[i]);
2392
2393 }
2394
2395 copy_stream_update_to_stream(dc, context, stream, stream_update);
2396
2397 commit_planes_for_stream(
2398 dc,
2399 srf_updates,
2400 surface_count,
2401 stream,
2402 stream_update,
2403 update_type,
2404 context);
2405 /*update current_State*/
2406 if (dc->current_state != context) {
2407
2408 struct dc_state *old = dc->current_state;
2409
2410 dc->current_state = context;
2411 dc_release_state(old);
2412
2413 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2414 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2415
2416 if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
2417 pipe_ctx->plane_state->force_full_update = false;
2418 }
2419 }
2420 /*let's use current_state to update watermark etc*/
2421 if (update_type >= UPDATE_TYPE_FULL)
2422 dc_post_update_surfaces_to_stream(dc);
2423
2424 return;
2425
2426 }
2427
dc_get_current_stream_count(struct dc * dc)2428 uint8_t dc_get_current_stream_count(struct dc *dc)
2429 {
2430 return dc->current_state->stream_count;
2431 }
2432
dc_get_stream_at_index(struct dc * dc,uint8_t i)2433 struct dc_stream_state *dc_get_stream_at_index(struct dc *dc, uint8_t i)
2434 {
2435 if (i < dc->current_state->stream_count)
2436 return dc->current_state->streams[i];
2437 return NULL;
2438 }
2439
dc_interrupt_to_irq_source(struct dc * dc,uint32_t src_id,uint32_t ext_id)2440 enum dc_irq_source dc_interrupt_to_irq_source(
2441 struct dc *dc,
2442 uint32_t src_id,
2443 uint32_t ext_id)
2444 {
2445 return dal_irq_service_to_irq_source(dc->res_pool->irqs, src_id, ext_id);
2446 }
2447
2448 /**
2449 * dc_interrupt_set() - Enable/disable an AMD hw interrupt source
2450 */
dc_interrupt_set(struct dc * dc,enum dc_irq_source src,bool enable)2451 bool dc_interrupt_set(struct dc *dc, enum dc_irq_source src, bool enable)
2452 {
2453
2454 if (dc == NULL)
2455 return false;
2456
2457 return dal_irq_service_set(dc->res_pool->irqs, src, enable);
2458 }
2459
dc_interrupt_ack(struct dc * dc,enum dc_irq_source src)2460 void dc_interrupt_ack(struct dc *dc, enum dc_irq_source src)
2461 {
2462 dal_irq_service_ack(dc->res_pool->irqs, src);
2463 }
2464
dc_set_power_state(struct dc * dc,enum dc_acpi_cm_power_state power_state)2465 void dc_set_power_state(
2466 struct dc *dc,
2467 enum dc_acpi_cm_power_state power_state)
2468 {
2469 struct kref refcount;
2470 struct display_mode_lib *dml;
2471
2472 switch (power_state) {
2473 case DC_ACPI_CM_POWER_STATE_D0:
2474 dc_resource_state_construct(dc, dc->current_state);
2475
2476 if (dc->ctx->dmub_srv)
2477 dc_dmub_srv_wait_phy_init(dc->ctx->dmub_srv);
2478
2479 dc->hwss.init_hw(dc);
2480
2481 if (dc->hwss.init_sys_ctx != NULL &&
2482 dc->vm_pa_config.valid) {
2483 dc->hwss.init_sys_ctx(dc->hwseq, dc, &dc->vm_pa_config);
2484 }
2485
2486 break;
2487 default:
2488 ASSERT(dc->current_state->stream_count == 0);
2489 /* Zero out the current context so that on resume we start with
2490 * clean state, and dc hw programming optimizations will not
2491 * cause any trouble.
2492 */
2493 dml = kzalloc(sizeof(struct display_mode_lib),
2494 GFP_KERNEL);
2495
2496 ASSERT(dml);
2497 if (!dml)
2498 return;
2499
2500 /* Preserve refcount */
2501 refcount = dc->current_state->refcount;
2502 /* Preserve display mode lib */
2503 memcpy(dml, &dc->current_state->bw_ctx.dml, sizeof(struct display_mode_lib));
2504
2505 dc_resource_state_destruct(dc->current_state);
2506 memset(dc->current_state, 0,
2507 sizeof(*dc->current_state));
2508
2509 dc->current_state->refcount = refcount;
2510 dc->current_state->bw_ctx.dml = *dml;
2511
2512 kfree(dml);
2513
2514 break;
2515 }
2516 }
2517
dc_resume(struct dc * dc)2518 void dc_resume(struct dc *dc)
2519 {
2520
2521 uint32_t i;
2522
2523 for (i = 0; i < dc->link_count; i++)
2524 core_link_resume(dc->links[i]);
2525 }
2526
dc_get_current_backlight_pwm(struct dc * dc)2527 unsigned int dc_get_current_backlight_pwm(struct dc *dc)
2528 {
2529 struct abm *abm = dc->res_pool->abm;
2530
2531 if (abm)
2532 return abm->funcs->get_current_backlight(abm);
2533
2534 return 0;
2535 }
2536
dc_get_target_backlight_pwm(struct dc * dc)2537 unsigned int dc_get_target_backlight_pwm(struct dc *dc)
2538 {
2539 struct abm *abm = dc->res_pool->abm;
2540
2541 if (abm)
2542 return abm->funcs->get_target_backlight(abm);
2543
2544 return 0;
2545 }
2546
dc_is_dmcu_initialized(struct dc * dc)2547 bool dc_is_dmcu_initialized(struct dc *dc)
2548 {
2549 struct dmcu *dmcu = dc->res_pool->dmcu;
2550
2551 if (dmcu)
2552 return dmcu->funcs->is_dmcu_initialized(dmcu);
2553 return false;
2554 }
2555
dc_submit_i2c(struct dc * dc,uint32_t link_index,struct i2c_command * cmd)2556 bool dc_submit_i2c(
2557 struct dc *dc,
2558 uint32_t link_index,
2559 struct i2c_command *cmd)
2560 {
2561
2562 struct dc_link *link = dc->links[link_index];
2563 struct ddc_service *ddc = link->ddc;
2564 return dce_i2c_submit_command(
2565 dc->res_pool,
2566 ddc->ddc_pin,
2567 cmd);
2568 }
2569
dc_submit_i2c_oem(struct dc * dc,struct i2c_command * cmd)2570 bool dc_submit_i2c_oem(
2571 struct dc *dc,
2572 struct i2c_command *cmd)
2573 {
2574 struct ddc_service *ddc = dc->res_pool->oem_device;
2575 return dce_i2c_submit_command(
2576 dc->res_pool,
2577 ddc->ddc_pin,
2578 cmd);
2579 }
2580
link_add_remote_sink_helper(struct dc_link * dc_link,struct dc_sink * sink)2581 static bool link_add_remote_sink_helper(struct dc_link *dc_link, struct dc_sink *sink)
2582 {
2583 if (dc_link->sink_count >= MAX_SINKS_PER_LINK) {
2584 BREAK_TO_DEBUGGER();
2585 return false;
2586 }
2587
2588 dc_sink_retain(sink);
2589
2590 dc_link->remote_sinks[dc_link->sink_count] = sink;
2591 dc_link->sink_count++;
2592
2593 return true;
2594 }
2595
2596 /**
2597 * dc_link_add_remote_sink() - Create a sink and attach it to an existing link
2598 *
2599 * EDID length is in bytes
2600 */
dc_link_add_remote_sink(struct dc_link * link,const uint8_t * edid,int len,struct dc_sink_init_data * init_data)2601 struct dc_sink *dc_link_add_remote_sink(
2602 struct dc_link *link,
2603 const uint8_t *edid,
2604 int len,
2605 struct dc_sink_init_data *init_data)
2606 {
2607 struct dc_sink *dc_sink;
2608 enum dc_edid_status edid_status;
2609
2610 if (len > DC_MAX_EDID_BUFFER_SIZE) {
2611 dm_error("Max EDID buffer size breached!\n");
2612 return NULL;
2613 }
2614
2615 if (!init_data) {
2616 BREAK_TO_DEBUGGER();
2617 return NULL;
2618 }
2619
2620 if (!init_data->link) {
2621 BREAK_TO_DEBUGGER();
2622 return NULL;
2623 }
2624
2625 dc_sink = dc_sink_create(init_data);
2626
2627 if (!dc_sink)
2628 return NULL;
2629
2630 memmove(dc_sink->dc_edid.raw_edid, edid, len);
2631 dc_sink->dc_edid.length = len;
2632
2633 if (!link_add_remote_sink_helper(
2634 link,
2635 dc_sink))
2636 goto fail_add_sink;
2637
2638 edid_status = dm_helpers_parse_edid_caps(
2639 link->ctx,
2640 &dc_sink->dc_edid,
2641 &dc_sink->edid_caps);
2642
2643 /*
2644 * Treat device as no EDID device if EDID
2645 * parsing fails
2646 */
2647 if (edid_status != EDID_OK) {
2648 dc_sink->dc_edid.length = 0;
2649 dm_error("Bad EDID, status%d!\n", edid_status);
2650 }
2651
2652 return dc_sink;
2653
2654 fail_add_sink:
2655 dc_sink_release(dc_sink);
2656 return NULL;
2657 }
2658
2659 /**
2660 * dc_link_remove_remote_sink() - Remove a remote sink from a dc_link
2661 *
2662 * Note that this just removes the struct dc_sink - it doesn't
2663 * program hardware or alter other members of dc_link
2664 */
dc_link_remove_remote_sink(struct dc_link * link,struct dc_sink * sink)2665 void dc_link_remove_remote_sink(struct dc_link *link, struct dc_sink *sink)
2666 {
2667 int i;
2668
2669 if (!link->sink_count) {
2670 BREAK_TO_DEBUGGER();
2671 return;
2672 }
2673
2674 for (i = 0; i < link->sink_count; i++) {
2675 if (link->remote_sinks[i] == sink) {
2676 dc_sink_release(sink);
2677 link->remote_sinks[i] = NULL;
2678
2679 /* shrink array to remove empty place */
2680 while (i < link->sink_count - 1) {
2681 link->remote_sinks[i] = link->remote_sinks[i+1];
2682 i++;
2683 }
2684 link->remote_sinks[i] = NULL;
2685 link->sink_count--;
2686 return;
2687 }
2688 }
2689 }
2690
get_clock_requirements_for_state(struct dc_state * state,struct AsicStateEx * info)2691 void get_clock_requirements_for_state(struct dc_state *state, struct AsicStateEx *info)
2692 {
2693 info->displayClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dispclk_khz;
2694 info->engineClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_khz;
2695 info->memoryClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dramclk_khz;
2696 info->maxSupportedDppClock = (unsigned int)state->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz;
2697 info->dppClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dppclk_khz;
2698 info->socClock = (unsigned int)state->bw_ctx.bw.dcn.clk.socclk_khz;
2699 info->dcfClockDeepSleep = (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz;
2700 info->fClock = (unsigned int)state->bw_ctx.bw.dcn.clk.fclk_khz;
2701 info->phyClock = (unsigned int)state->bw_ctx.bw.dcn.clk.phyclk_khz;
2702 }
dc_set_clock(struct dc * dc,enum dc_clock_type clock_type,uint32_t clk_khz,uint32_t stepping)2703 enum dc_status dc_set_clock(struct dc *dc, enum dc_clock_type clock_type, uint32_t clk_khz, uint32_t stepping)
2704 {
2705 if (dc->hwss.set_clock)
2706 return dc->hwss.set_clock(dc, clock_type, clk_khz, stepping);
2707 return DC_ERROR_UNEXPECTED;
2708 }
dc_get_clock(struct dc * dc,enum dc_clock_type clock_type,struct dc_clock_config * clock_cfg)2709 void dc_get_clock(struct dc *dc, enum dc_clock_type clock_type, struct dc_clock_config *clock_cfg)
2710 {
2711 if (dc->hwss.get_clock)
2712 dc->hwss.get_clock(dc, clock_type, clock_cfg);
2713 }
2714