1 // Splay tree utilities -*- C++ -*- 2 // Copyright (C) 2020-2022 Free Software Foundation, Inc. 3 // 4 // This file is part of GCC. 5 // 6 // GCC is free software; you can redistribute it and/or modify it under 7 // the terms of the GNU General Public License as published by the Free 8 // Software Foundation; either version 3, or (at your option) any later 9 // version. 10 // 11 // GCC is distributed in the hope that it will be useful, but WITHOUT ANY 12 // WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 // for more details. 15 // 16 // You should have received a copy of the GNU General Public License 17 // along with GCC; see the file COPYING3. If not see 18 // <http://www.gnu.org/licenses/>. 19 20 // Implement splay tree node accessors for a class that stores its 21 // two child nodes in a member variable of the form: 22 // 23 // Node m_children[2]; 24 template<typename Node> 25 class default_splay_tree_accessors 26 { 27 public: 28 using node_type = Node; 29 30 static auto 31 child (node_type node, unsigned int index) 32 -> decltype (node->m_children[index]) & 33 { 34 return node->m_children[index]; 35 } 36 }; 37 38 // Implement splay tree node accessors for a class that stores its 39 // two child nodes in a member variable of the form: 40 // 41 // Node m_children[2]; 42 // 43 // and also stores its parent node in a member variable of the form: 44 // 45 // Node m_parent; 46 template<typename Node> 47 class default_splay_tree_accessors_with_parent 48 : public default_splay_tree_accessors<Node> 49 { 50 public: 51 using node_type = Node; 52 53 static auto 54 parent (node_type node) -> decltype (node->m_parent) & 55 { 56 return node->m_parent; 57 } 58 }; 59 60 // Base is a splay tree accessor class for nodes that have no parent field. 61 // Base therefore provides a Base::child method but does not provide a 62 // Base::parent method. Extend Base with dummy routines for setting the 63 // parent, which is a no-op when the parent is not stored. 64 template<typename Base> 65 class splay_tree_accessors_without_parent : public Base 66 { 67 public: 68 using typename Base::node_type; 69 set_parent(node_type,node_type)70 static void set_parent (node_type, node_type) {} 71 }; 72 73 // Base is splay tree accessor class for nodes that have a parent field. 74 // Base therefore provides both Base::child and Base::parent methods. 75 // Extend Base with routines for setting the parent. 76 template<typename Base> 77 class splay_tree_accessors_with_parent : public Base 78 { 79 public: 80 using typename Base::node_type; 81 82 // Record that NODE's parent is now NEW_PARENT. 83 static void set_parent(node_type node,node_type new_parent)84 set_parent (node_type node, node_type new_parent) 85 { 86 Base::parent (node) = new_parent; 87 } 88 }; 89 90 // A base class that provides some splay tree operations that are common 91 // to both rooted_splay_tree and rootless_splay_tree. 92 // 93 // Nodes in the splay tree have type Accessors::node_type; this is 94 // usually a pointer type. The Accessors class provides the following 95 // static member functions for accessing nodes: 96 // 97 // - Accessors::child (NODE, INDEX) 98 // INDEX is guaranteed to be 0 or 1. If INDEX is 0, return a reference 99 // to where NODE's left child is stored, otherwise return a reference 100 // to where NODE's right child is stored. 101 // 102 // - Accessors::set_parent (NODE, PARENT) 103 // Record that NODE's parent node is now PARENT. 104 template<typename Accessors> 105 class base_splay_tree : protected Accessors 106 { 107 public: 108 using typename Accessors::node_type; 109 110 // INDEX is either 0 or 1. If INDEX is 0, insert CHILD immediately 111 // before NODE, otherwise insert CHILD immediately after NODE. 112 // 113 // Complexity: O(1). 114 static void insert_child (node_type node, unsigned int index, 115 node_type child); 116 117 // Print NODE and its child nodes to PP for debugging purposes, 118 // using PRINTER (PP, N) to print the data for node N. 119 template<typename Printer> 120 static void print (pretty_printer *pp, node_type node, Printer printer); 121 122 protected: 123 using Accessors::set_parent; 124 125 static node_type get_child (node_type, unsigned int); 126 static void set_child (node_type, unsigned int, node_type); 127 static node_type promote_child (node_type, unsigned int); 128 static void promote_child (node_type, unsigned int, node_type); 129 130 template<unsigned int N> 131 static node_type splay_limit (node_type); 132 133 static node_type remove_node_internal (node_type); 134 135 template<typename Printer> 136 static void print (pretty_printer *pp, node_type node, Printer printer, 137 char, vec<char> &); 138 }; 139 140 // This class provides splay tree routines for cases in which the root 141 // of the splay tree is known. It works with both nodes that store 142 // their parent node and nodes that don't. 143 // 144 // The class is lightweight: it only contains a single root node. 145 template<typename Accessors> 146 class rooted_splay_tree : public base_splay_tree<Accessors> 147 { 148 using parent = base_splay_tree<Accessors>; 149 150 public: 151 using typename Accessors::node_type; 152 153 protected: 154 // The root of the splay tree, or node_type () if the tree is empty. 155 node_type m_root; 156 157 public: rooted_splay_tree()158 rooted_splay_tree () : m_root () {} 159 160 // Construct a tree with the specified root node. rooted_splay_tree(node_type root)161 rooted_splay_tree (node_type root) : m_root (root) {} 162 163 // Return the root of the tree. root()164 node_type root () const { return m_root; } 165 166 // Return true if the tree contains any nodes. 167 explicit operator bool () const { return m_root; } 168 169 // Dereference the root node. 170 node_type operator-> () { return m_root; } 171 172 // Insert NEW_NODE into the splay tree, if no equivalent node already 173 // exists. For a given node N, COMPARE (N) should return: 174 // 175 // - a negative value if NEW_NODE should come before N 176 // - zero if NEW_NODE and N are the same 177 // - a positive value if NEW_NODE should come after N 178 // 179 // Return true if NEW_NODE was inserted. 180 // 181 // On return, NEW_NODE or its equivalent is the root of the tree. 182 // 183 // Complexity: amortized O(C log N), worst-cast O(C N), where C is 184 // the complexity of the comparison. 185 template<typename Comparator> 186 bool insert (node_type new_node, Comparator compare); 187 188 // Insert NEW_NODE into the splay tree, given that NEW_NODE is the 189 // maximum node of the new tree. On return, NEW_NODE is also the 190 // root of the tree. 191 // 192 // Complexity: O(1). 193 void insert_max_node (node_type new_node); 194 195 // Splice NEXT_TREE onto this one, given that all nodes in NEXT_TREE 196 // are greater than the maximum node in this tree. NEXT_TREE should 197 // not be used afterwards. 198 // 199 // Complexity: O(1) if the root of the splay tree is already the maximum 200 // node. Otherwise amortized O(log N), worst-cast O(N). 201 void splice_next_tree (rooted_splay_tree next_tree); 202 203 // The root of the tree is currently the maximum node. Replace it 204 // with NEW_NODE. 205 // 206 // Complexity: O(1). 207 void replace_max_node_at_root (node_type new_node); 208 209 // Remove the root node of the splay tree. 210 // 211 // Complexity: O(1) if removing the maximum or minimum node. 212 // Otherwise amortized O(log N), worst-cast O(N). 213 void remove_root (); 214 215 // Split the left child of the current root out into a separate tree 216 // and return the new tree. 217 rooted_splay_tree split_before_root (); 218 219 // Split the right child of the current root out into a separate tree 220 // and return the new tree. 221 rooted_splay_tree split_after_root (); 222 223 // If the root is not the minimum node of the splay tree, bring the previous 224 // node to the root and return true, otherwise return false. 225 // 226 // Complexity: amortized O(log N), worst-cast O(N). 227 bool splay_prev_node (); 228 229 // If the root is not the maximum node of the splay tree, bring the next 230 // node to the root and return true, otherwise return false. 231 // 232 // Complexity: amortized O(log N), worst-cast O(N). 233 bool splay_next_node (); 234 235 // Bring the minimum node of the splay tree to the root. 236 // 237 // Complexity: amortized O(log N), worst-cast O(N). 238 void splay_min_node (); 239 240 // Bring the maximum node of the splay tree to the root. 241 // 242 // Complexity: amortized O(log N), worst-cast O(N). 243 void splay_max_node (); 244 245 // Return the minimum node of the splay tree, or node_type () if the 246 // tree is empty. On return, the minimum node (if any) is also the 247 // root of the tree. 248 // 249 // Complexity: amortized O(log N), worst-cast O(N). 250 node_type min_node (); 251 252 // Return the maximum node of the splay tree, or node_type () if the 253 // tree is empty. On return, the maximum node (if any) is also the 254 // root of the tree. 255 // 256 // Complexity: amortized O(log N), worst-cast O(N). 257 node_type max_node (); 258 259 // Search the splay tree. For a given node N, COMPARE (N) should return: 260 // 261 // - a negative value if N is bigger than the node being searched for 262 // - zero if N is the node being searched for 263 // - a positive value if N is smaller than the node being searched for 264 // 265 // If the node that COMPARE is looking for exists, install it as the root 266 // node of the splay tree. Otherwise, arbitrarily pick either: 267 // 268 // - the maximum node that is smaller than the node being searched for or 269 // - the minimum node that is bigger than the node being searched for 270 // 271 // and install that node as the root instead. 272 // 273 // Return the result of COMPARE for the new root. 274 // 275 // This form of lookup is intended for cases in which both the following 276 // are true: 277 // 278 // (a) The work that COMPARE needs to do to detect if a node is too big 279 // is the same as the work that COMPARE needs to do to detect if a 280 // node is too small. (This is not true of range comparisons, 281 // for example.) 282 // 283 // (b) COMPARE is (or might be) relatively complex. 284 // 285 // This form of lookup is also useful if the items being compared naturally 286 // provide a <=>-style comparison result, without the result having to be 287 // forced by the equivalent of a ?: expression. 288 // 289 // The implementation only invokes COMPARE once per node. 290 // 291 // Complexity: amortized O(C log N), worst-cast O(C N), where C is 292 // the complexity of the comparison. 293 template<typename Comparator> 294 auto lookup (Comparator compare) -> decltype (compare (m_root)); 295 296 // Search the splay tree. For a given node N, WANT_SOMETHING_SMALLER (N) 297 // is true if N is too big and WANT_SOMETHING_BIGGER (N) is true if N 298 // is too small. Both functions return false if N is the node being 299 // searched for. 300 // 301 // If the node that is being searched for exists, install it as the root 302 // node of the splay tree and return 0. Otherwise, arbitrarily choose 303 // between these two options: 304 // 305 // - Install the maximum node that is smaller than the node being 306 // searched for as the root of the splay tree and return 1. 307 // 308 // - Install the minimum node that is bigger than the node being 309 // searched for and return -1. 310 // 311 // This form of lookup is intended for cases in which either of the 312 // following are true: 313 // 314 // (a) WANT_SOMETHING_SMALLER and WANT_SOMETHING_BIGGER test different 315 // parts of the node's data. For example, when comparing ranges, 316 // WANT_SOMETHING_SMALLER would test the lower limit of the given 317 // node's range while WANT_SOMETHING_BIGGER would test the upper 318 // limit of the given node's range. 319 // 320 // (b) There is no significant overhead to calling both 321 // WANT_SOMETHING_SMALLER and WANT_SOMETHING_BIGGER for the same node. 322 // 323 // Complexity: amortized O(C log N), worst-cast O(C N), where C is 324 // the complexity of the comparisons. 325 template<typename LeftPredicate, typename RightPredicate> 326 int lookup (LeftPredicate want_something_smaller, 327 RightPredicate want_something_bigger); 328 329 // Keep the ability to print subtrees. 330 using parent::print; 331 332 // Print the tree to PP for debugging purposes, using PRINTER (PP, N) 333 // to print the data for node N. 334 template<typename Printer> 335 void print (pretty_printer *pp, Printer printer) const; 336 337 protected: 338 using parent::get_child; 339 using parent::set_child; 340 using parent::promote_child; 341 342 using parent::set_parent; 343 344 template<unsigned int N> 345 bool splay_neighbor (); 346 }; 347 348 // Provide splay tree routines for nodes of type Accessors::node_type, 349 // which doesn't have a parent field. Use Accessors::child to access 350 // the children of a node. 351 template<typename Accessors> 352 using splay_tree_without_parent 353 = rooted_splay_tree<splay_tree_accessors_without_parent<Accessors>>; 354 355 // A splay tree for nodes of type Node, which is usually a pointer type. 356 // The child nodes are stored in a member variable: 357 // 358 // Node m_children[2]; 359 // 360 // Node does not have a parent field. 361 template<typename Node> 362 using default_splay_tree 363 = splay_tree_without_parent<default_splay_tree_accessors<Node>>; 364 365 // A simple splay tree node that stores a value of type T. 366 template<typename T> 367 class splay_tree_node 368 { 369 friend class default_splay_tree_accessors<splay_tree_node *>; 370 371 public: 372 splay_tree_node () = default; splay_tree_node(T value)373 splay_tree_node (T value) : m_value (value), m_children () {} 374 value()375 T &value () { return m_value; } value()376 const T &value () const { return m_value; } 377 378 private: 379 T m_value; 380 splay_tree_node *m_children[2]; 381 }; 382 383 // A splay tree whose nodes hold values of type T. 384 template<typename T> 385 using splay_tree = default_splay_tree<splay_tree_node<T> *>; 386 387 // Provide splay tree routines for cases in which the root of the tree 388 // is not explicitly stored. 389 // 390 // The nodes of the tree have type Accessors::node_type, which is usually 391 // a pointer type. The nodes have a link back to their parent. 392 // 393 // The Accessors class provides the following static member functions: 394 // 395 // - Accessors::child (NODE, INDEX) 396 // INDEX is guaranteed to be 0 or 1. If INDEX is 0, return a reference 397 // to where NODE's left child is stored, otherwise return a reference 398 // to where NODE's right child is stored. 399 // 400 // - Accessors::parent (NODE) 401 // Return a reference to where NODE's parent is stored. 402 template<typename Accessors> 403 class rootless_splay_tree 404 : public base_splay_tree<splay_tree_accessors_with_parent<Accessors>> 405 { 406 using full_accessors = splay_tree_accessors_with_parent<Accessors>; 407 using parent = base_splay_tree<full_accessors>; 408 409 public: 410 using rooted = rooted_splay_tree<full_accessors>; 411 412 using typename Accessors::node_type; 413 414 // Remove NODE from the splay tree. Return the node that replaces it, 415 // or null if NODE had no children. 416 // 417 // Complexity: O(1) if removing the maximum or minimum node. 418 // Otherwise amortized O(log N), worst-cast O(N). 419 static node_type remove_node (node_type node); 420 421 // Splay NODE so that it becomes the root of the splay tree. 422 // 423 // Complexity: amortized O(log N), worst-cast O(N). 424 static void splay (node_type node); 425 426 // Like splay, but take advantage of the fact that NODE is known to be 427 // the minimum node in the tree. 428 // 429 // Complexity: amortized O(log N), worst-cast O(N). 430 static void splay_known_min_node (node_type node); 431 432 // Like splay, but take advantage of the fact that NODE is known to be 433 // the maximum node in the tree. 434 // 435 // Complexity: amortized O(log N), worst-cast O(N). 436 static void splay_known_max_node (node_type node); 437 438 // Splay NODE while looking for an ancestor node N for which PREDICATE (N) 439 // is true. If such an ancestor node exists, stop the splay operation 440 // early and return PREDICATE (N). Otherwise, complete the splay operation 441 // and return DEFAULT_RESULT. In the latter case, NODE is now the root of 442 // the splay tree. 443 // 444 // Note that this routine only examines nodes that happen to be ancestors 445 // of NODE. It does not search the full tree. 446 // 447 // Complexity: amortized O(P log N), worst-cast O(P N), where P is the 448 // complexity of the predicate. 449 template<typename DefaultResult, typename Predicate> 450 static auto splay_and_search (node_type node, DefaultResult default_result, 451 Predicate predicate) 452 -> decltype (predicate (node, 0)); 453 454 // NODE1 and NODE2 are known to belong to the same splay tree. Return: 455 // 456 // -1 if NODE1 < NODE2 457 // 0 if NODE1 == NODE2 458 // 1 if NODE1 > NODE2 459 // 460 // Complexity: amortized O(log N), worst-cast O(N). 461 static int compare_nodes (node_type node1, node_type node2); 462 463 protected: 464 using parent::get_child; 465 using parent::set_child; 466 using parent::promote_child; 467 468 static node_type get_parent (node_type); 469 using parent::set_parent; 470 471 static unsigned int child_index (node_type, node_type); 472 473 static int compare_nodes_one_way (node_type, node_type); 474 475 template<unsigned int N> 476 static void splay_known_limit (node_type); 477 }; 478 479 // Provide rootless splay tree routines for nodes of type Node. 480 // The child nodes are stored in a member variable: 481 // 482 // Node m_children[2]; 483 // 484 // and the parent node is stored in a member variable: 485 // 486 // Node m_parent; 487 template<typename Node> 488 using default_rootless_splay_tree 489 = rootless_splay_tree<default_splay_tree_accessors_with_parent<Node>>; 490 491 #include "splay-tree-utils.tcc" 492