1 // Splay tree utilities                                             -*- C++ -*-
2 // Copyright (C) 2020-2022 Free Software Foundation, Inc.
3 //
4 // This file is part of GCC.
5 //
6 // GCC is free software; you can redistribute it and/or modify it under
7 // the terms of the GNU General Public License as published by the Free
8 // Software Foundation; either version 3, or (at your option) any later
9 // version.
10 //
11 // GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 // WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 // for more details.
15 //
16 // You should have received a copy of the GNU General Public License
17 // along with GCC; see the file COPYING3.  If not see
18 // <http://www.gnu.org/licenses/>.
19 
20 // Implement splay tree node accessors for a class that stores its
21 // two child nodes in a member variable of the form:
22 //
23 //    Node m_children[2];
24 template<typename Node>
25 class default_splay_tree_accessors
26 {
27 public:
28   using node_type = Node;
29 
30   static auto
31   child (node_type node, unsigned int index)
32     -> decltype (node->m_children[index]) &
33   {
34     return node->m_children[index];
35   }
36 };
37 
38 // Implement splay tree node accessors for a class that stores its
39 // two child nodes in a member variable of the form:
40 //
41 //    Node m_children[2];
42 //
43 // and also stores its parent node in a member variable of the form:
44 //
45 //    Node m_parent;
46 template<typename Node>
47 class default_splay_tree_accessors_with_parent
48   : public default_splay_tree_accessors<Node>
49 {
50 public:
51   using node_type = Node;
52 
53   static auto
54   parent (node_type node) -> decltype (node->m_parent) &
55   {
56     return node->m_parent;
57   }
58 };
59 
60 // Base is a splay tree accessor class for nodes that have no parent field.
61 // Base therefore provides a Base::child method but does not provide a
62 // Base::parent method.  Extend Base with dummy routines for setting the
63 // parent, which is a no-op when the parent is not stored.
64 template<typename Base>
65 class splay_tree_accessors_without_parent : public Base
66 {
67 public:
68   using typename Base::node_type;
69 
set_parent(node_type,node_type)70   static void set_parent (node_type, node_type) {}
71 };
72 
73 // Base is splay tree accessor class for nodes that have a parent field.
74 // Base therefore provides both Base::child and Base::parent methods.
75 // Extend Base with routines for setting the parent.
76 template<typename Base>
77 class splay_tree_accessors_with_parent : public Base
78 {
79 public:
80   using typename Base::node_type;
81 
82   // Record that NODE's parent is now NEW_PARENT.
83   static void
set_parent(node_type node,node_type new_parent)84   set_parent (node_type node, node_type new_parent)
85   {
86     Base::parent (node) = new_parent;
87   }
88 };
89 
90 // A base class that provides some splay tree operations that are common
91 // to both rooted_splay_tree and rootless_splay_tree.
92 //
93 // Nodes in the splay tree have type Accessors::node_type; this is
94 // usually a pointer type.  The Accessors class provides the following
95 // static member functions for accessing nodes:
96 //
97 // - Accessors::child (NODE, INDEX)
98 //     INDEX is guaranteed to be 0 or 1.  If INDEX is 0, return a reference
99 //     to where NODE's left child is stored, otherwise return a reference
100 //     to where NODE's right child is stored.
101 //
102 // - Accessors::set_parent (NODE, PARENT)
103 //     Record that NODE's parent node is now PARENT.
104 template<typename Accessors>
105 class base_splay_tree : protected Accessors
106 {
107 public:
108   using typename Accessors::node_type;
109 
110   // INDEX is either 0 or 1.  If INDEX is 0, insert CHILD immediately
111   // before NODE, otherwise insert CHILD immediately after NODE.
112   //
113   // Complexity: O(1).
114   static void insert_child (node_type node, unsigned int index,
115 			    node_type child);
116 
117   // Print NODE and its child nodes to PP for debugging purposes,
118   // using PRINTER (PP, N) to print the data for node N.
119   template<typename Printer>
120   static void print (pretty_printer *pp, node_type node, Printer printer);
121 
122 protected:
123   using Accessors::set_parent;
124 
125   static node_type get_child (node_type, unsigned int);
126   static void set_child (node_type, unsigned int, node_type);
127   static node_type promote_child (node_type, unsigned int);
128   static void promote_child (node_type, unsigned int, node_type);
129 
130   template<unsigned int N>
131   static node_type splay_limit (node_type);
132 
133   static node_type remove_node_internal (node_type);
134 
135   template<typename Printer>
136   static void print (pretty_printer *pp, node_type node, Printer printer,
137 		     char, vec<char> &);
138 };
139 
140 // This class provides splay tree routines for cases in which the root
141 // of the splay tree is known.  It works with both nodes that store
142 // their parent node and nodes that don't.
143 //
144 // The class is lightweight: it only contains a single root node.
145 template<typename Accessors>
146 class rooted_splay_tree : public base_splay_tree<Accessors>
147 {
148   using parent = base_splay_tree<Accessors>;
149 
150 public:
151   using typename Accessors::node_type;
152 
153 protected:
154   // The root of the splay tree, or node_type () if the tree is empty.
155   node_type m_root;
156 
157 public:
rooted_splay_tree()158   rooted_splay_tree () : m_root () {}
159 
160   // Construct a tree with the specified root node.
rooted_splay_tree(node_type root)161   rooted_splay_tree (node_type root) : m_root (root) {}
162 
163   // Return the root of the tree.
root()164   node_type root () const { return m_root; }
165 
166   // Return true if the tree contains any nodes.
167   explicit operator bool () const { return m_root; }
168 
169   // Dereference the root node.
170   node_type operator-> () { return m_root; }
171 
172   // Insert NEW_NODE into the splay tree, if no equivalent node already
173   // exists.  For a given node N, COMPARE (N) should return:
174   //
175   // - a negative value if NEW_NODE should come before N
176   // - zero if NEW_NODE and N are the same
177   // - a positive value if NEW_NODE should come after N
178   //
179   // Return true if NEW_NODE was inserted.
180   //
181   // On return, NEW_NODE or its equivalent is the root of the tree.
182   //
183   // Complexity: amortized O(C log N), worst-cast O(C N), where C is
184   // the complexity of the comparison.
185   template<typename Comparator>
186   bool insert (node_type new_node, Comparator compare);
187 
188   // Insert NEW_NODE into the splay tree, given that NEW_NODE is the
189   // maximum node of the new tree.  On return, NEW_NODE is also the
190   // root of the tree.
191   //
192   // Complexity: O(1).
193   void insert_max_node (node_type new_node);
194 
195   // Splice NEXT_TREE onto this one, given that all nodes in NEXT_TREE
196   // are greater than the maximum node in this tree.  NEXT_TREE should
197   // not be used afterwards.
198   //
199   // Complexity: O(1) if the root of the splay tree is already the maximum
200   // node.  Otherwise amortized O(log N), worst-cast O(N).
201   void splice_next_tree (rooted_splay_tree next_tree);
202 
203   // The root of the tree is currently the maximum node.  Replace it
204   // with NEW_NODE.
205   //
206   // Complexity: O(1).
207   void replace_max_node_at_root (node_type new_node);
208 
209   // Remove the root node of the splay tree.
210   //
211   // Complexity: O(1) if removing the maximum or minimum node.
212   // Otherwise amortized O(log N), worst-cast O(N).
213   void remove_root ();
214 
215   // Split the left child of the current root out into a separate tree
216   // and return the new tree.
217   rooted_splay_tree split_before_root ();
218 
219   // Split the right child of the current root out into a separate tree
220   // and return the new tree.
221   rooted_splay_tree split_after_root ();
222 
223   // If the root is not the minimum node of the splay tree, bring the previous
224   // node to the root and return true, otherwise return false.
225   //
226   // Complexity: amortized O(log N), worst-cast O(N).
227   bool splay_prev_node ();
228 
229   // If the root is not the maximum node of the splay tree, bring the next
230   // node to the root and return true, otherwise return false.
231   //
232   // Complexity: amortized O(log N), worst-cast O(N).
233   bool splay_next_node ();
234 
235   // Bring the minimum node of the splay tree to the root.
236   //
237   // Complexity: amortized O(log N), worst-cast O(N).
238   void splay_min_node ();
239 
240   // Bring the maximum node of the splay tree to the root.
241   //
242   // Complexity: amortized O(log N), worst-cast O(N).
243   void splay_max_node ();
244 
245   // Return the minimum node of the splay tree, or node_type () if the
246   // tree is empty.  On return, the minimum node (if any) is also the
247   // root of the tree.
248   //
249   // Complexity: amortized O(log N), worst-cast O(N).
250   node_type min_node ();
251 
252   // Return the maximum node of the splay tree, or node_type () if the
253   // tree is empty.  On return, the maximum node (if any) is also the
254   // root of the tree.
255   //
256   // Complexity: amortized O(log N), worst-cast O(N).
257   node_type max_node ();
258 
259   // Search the splay tree.  For a given node N, COMPARE (N) should return:
260   //
261   // - a negative value if N is bigger than the node being searched for
262   // - zero if N is the node being searched for
263   // - a positive value if N is smaller than the node being searched for
264   //
265   // If the node that COMPARE is looking for exists, install it as the root
266   // node of the splay tree.  Otherwise, arbitrarily pick either:
267   //
268   // - the maximum node that is smaller than the node being searched for or
269   // - the minimum node that is bigger than the node being searched for
270   //
271   // and install that node as the root instead.
272   //
273   // Return the result of COMPARE for the new root.
274   //
275   // This form of lookup is intended for cases in which both the following
276   // are true:
277   //
278   // (a) The work that COMPARE needs to do to detect if a node is too big
279   //     is the same as the work that COMPARE needs to do to detect if a
280   //     node is too small.  (This is not true of range comparisons,
281   //     for example.)
282   //
283   // (b) COMPARE is (or might be) relatively complex.
284   //
285   // This form of lookup is also useful if the items being compared naturally
286   // provide a <=>-style comparison result, without the result having to be
287   // forced by the equivalent of a ?: expression.
288   //
289   // The implementation only invokes COMPARE once per node.
290   //
291   // Complexity: amortized O(C log N), worst-cast O(C N), where C is
292   // the complexity of the comparison.
293   template<typename Comparator>
294   auto lookup (Comparator compare) -> decltype (compare (m_root));
295 
296   // Search the splay tree.  For a given node N, WANT_SOMETHING_SMALLER (N)
297   // is true if N is too big and WANT_SOMETHING_BIGGER (N) is true if N
298   // is too small.  Both functions return false if N is the node being
299   // searched for.
300   //
301   // If the node that is being searched for exists, install it as the root
302   // node of the splay tree and return 0.  Otherwise, arbitrarily choose
303   // between these two options:
304   //
305   // - Install the maximum node that is smaller than the node being
306   //   searched for as the root of the splay tree and return 1.
307   //
308   // - Install the minimum node that is bigger than the node being
309   //   searched for and return -1.
310   //
311   // This form of lookup is intended for cases in which either of the
312   // following are true:
313   //
314   // (a) WANT_SOMETHING_SMALLER and WANT_SOMETHING_BIGGER test different
315   //     parts of the node's data.  For example, when comparing ranges,
316   //     WANT_SOMETHING_SMALLER would test the lower limit of the given
317   //     node's range while WANT_SOMETHING_BIGGER would test the upper
318   //     limit of the given node's range.
319   //
320   // (b) There is no significant overhead to calling both
321   //     WANT_SOMETHING_SMALLER and WANT_SOMETHING_BIGGER for the same node.
322   //
323   // Complexity: amortized O(C log N), worst-cast O(C N), where C is
324   // the complexity of the comparisons.
325   template<typename LeftPredicate, typename RightPredicate>
326   int lookup (LeftPredicate want_something_smaller,
327 	      RightPredicate want_something_bigger);
328 
329   // Keep the ability to print subtrees.
330   using parent::print;
331 
332   // Print the tree to PP for debugging purposes, using PRINTER (PP, N)
333   // to print the data for node N.
334   template<typename Printer>
335   void print (pretty_printer *pp, Printer printer) const;
336 
337 protected:
338   using parent::get_child;
339   using parent::set_child;
340   using parent::promote_child;
341 
342   using parent::set_parent;
343 
344   template<unsigned int N>
345   bool splay_neighbor ();
346 };
347 
348 // Provide splay tree routines for nodes of type Accessors::node_type,
349 // which doesn't have a parent field.  Use Accessors::child to access
350 // the children of a node.
351 template<typename Accessors>
352 using splay_tree_without_parent
353   = rooted_splay_tree<splay_tree_accessors_without_parent<Accessors>>;
354 
355 // A splay tree for nodes of type Node, which is usually a pointer type.
356 // The child nodes are stored in a member variable:
357 //
358 //    Node m_children[2];
359 //
360 // Node does not have a parent field.
361 template<typename Node>
362 using default_splay_tree
363   = splay_tree_without_parent<default_splay_tree_accessors<Node>>;
364 
365 // A simple splay tree node that stores a value of type T.
366 template<typename T>
367 class splay_tree_node
368 {
369   friend class default_splay_tree_accessors<splay_tree_node *>;
370 
371 public:
372   splay_tree_node () = default;
splay_tree_node(T value)373   splay_tree_node (T value) : m_value (value), m_children () {}
374 
value()375   T &value () { return m_value; }
value()376   const T &value () const { return m_value; }
377 
378 private:
379   T m_value;
380   splay_tree_node *m_children[2];
381 };
382 
383 // A splay tree whose nodes hold values of type T.
384 template<typename T>
385 using splay_tree = default_splay_tree<splay_tree_node<T> *>;
386 
387 // Provide splay tree routines for cases in which the root of the tree
388 // is not explicitly stored.
389 //
390 // The nodes of the tree have type Accessors::node_type, which is usually
391 // a pointer type.  The nodes have a link back to their parent.
392 //
393 // The Accessors class provides the following static member functions:
394 //
395 // - Accessors::child (NODE, INDEX)
396 //     INDEX is guaranteed to be 0 or 1.  If INDEX is 0, return a reference
397 //     to where NODE's left child is stored, otherwise return a reference
398 //     to where NODE's right child is stored.
399 //
400 // - Accessors::parent (NODE)
401 //     Return a reference to where NODE's parent is stored.
402 template<typename Accessors>
403 class rootless_splay_tree
404   : public base_splay_tree<splay_tree_accessors_with_parent<Accessors>>
405 {
406   using full_accessors = splay_tree_accessors_with_parent<Accessors>;
407   using parent = base_splay_tree<full_accessors>;
408 
409 public:
410   using rooted = rooted_splay_tree<full_accessors>;
411 
412   using typename Accessors::node_type;
413 
414   // Remove NODE from the splay tree.  Return the node that replaces it,
415   // or null if NODE had no children.
416   //
417   // Complexity: O(1) if removing the maximum or minimum node.
418   // Otherwise amortized O(log N), worst-cast O(N).
419   static node_type remove_node (node_type node);
420 
421   // Splay NODE so that it becomes the root of the splay tree.
422   //
423   // Complexity: amortized O(log N), worst-cast O(N).
424   static void splay (node_type node);
425 
426   // Like splay, but take advantage of the fact that NODE is known to be
427   // the minimum node in the tree.
428   //
429   // Complexity: amortized O(log N), worst-cast O(N).
430   static void splay_known_min_node (node_type node);
431 
432   // Like splay, but take advantage of the fact that NODE is known to be
433   // the maximum node in the tree.
434   //
435   // Complexity: amortized O(log N), worst-cast O(N).
436   static void splay_known_max_node (node_type node);
437 
438   // Splay NODE while looking for an ancestor node N for which PREDICATE (N)
439   // is true.  If such an ancestor node exists, stop the splay operation
440   // early and return PREDICATE (N).  Otherwise, complete the splay operation
441   // and return DEFAULT_RESULT.  In the latter case, NODE is now the root of
442   // the splay tree.
443   //
444   // Note that this routine only examines nodes that happen to be ancestors
445   // of NODE.  It does not search the full tree.
446   //
447   // Complexity: amortized O(P log N), worst-cast O(P N), where P is the
448   // complexity of the predicate.
449   template<typename DefaultResult, typename Predicate>
450   static auto splay_and_search (node_type node, DefaultResult default_result,
451 				Predicate predicate)
452     -> decltype (predicate (node, 0));
453 
454   // NODE1 and NODE2 are known to belong to the same splay tree.  Return:
455   //
456   // -1 if NODE1 < NODE2
457   // 0 if NODE1 == NODE2
458   // 1 if NODE1 > NODE2
459   //
460   // Complexity: amortized O(log N), worst-cast O(N).
461   static int compare_nodes (node_type node1, node_type node2);
462 
463 protected:
464   using parent::get_child;
465   using parent::set_child;
466   using parent::promote_child;
467 
468   static node_type get_parent (node_type);
469   using parent::set_parent;
470 
471   static unsigned int child_index (node_type, node_type);
472 
473   static int compare_nodes_one_way (node_type, node_type);
474 
475   template<unsigned int N>
476   static void splay_known_limit (node_type);
477 };
478 
479 // Provide rootless splay tree routines for nodes of type Node.
480 // The child nodes are stored in a member variable:
481 //
482 //    Node m_children[2];
483 //
484 // and the parent node is stored in a member variable:
485 //
486 //    Node m_parent;
487 template<typename Node>
488 using default_rootless_splay_tree
489   = rootless_splay_tree<default_splay_tree_accessors_with_parent<Node>>;
490 
491 #include "splay-tree-utils.tcc"
492