1 /*
2 ** License Applicability. Except to the extent portions of this file are
3 ** made subject to an alternative license as permitted in the SGI Free
4 ** Software License B, Version 1.1 (the "License"), the contents of this
5 ** file are subject only to the provisions of the License. You may not use
6 ** this file except in compliance with the License. You may obtain a copy
7 ** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600
8 ** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at:
9 **
10 ** http://oss.sgi.com/projects/FreeB
11 **
12 ** Note that, as provided in the License, the Software is distributed on an
13 ** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS
14 ** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND
15 ** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A
16 ** PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
17 **
18 ** Original Code. The Original Code is: OpenGL Sample Implementation,
19 ** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics,
20 ** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc.
21 ** Copyright in any portions created by third parties is as indicated
22 ** elsewhere herein. All Rights Reserved.
23 **
24 ** Additional Notice Provisions: The application programming interfaces
25 ** established by SGI in conjunction with the Original Code are The
26 ** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released
27 ** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version
28 ** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X
29 ** Window System(R) (Version 1.3), released October 19, 1998. This software
30 ** was created using the OpenGL(R) version 1.2.1 Sample Implementation
31 ** published by SGI, but has not been independently verified as being
32 ** compliant with the OpenGL(R) version 1.2.1 Specification.
33 **
34 */
35 /*
36 */
37 
38 //#include <stdlib.h>
39 //#include <stdio.h>
40 #include <assert.h>
41 #include <math.h>
42 //#include "bezierEval.h"
43 
44 #ifdef __WATCOMC__
45 #pragma warning 14  10
46 #endif
47 
48 #define TOLERANCE 0.0001
49 
50 #ifndef MAX_ORDER
51 #define MAX_ORDER 16
52 #endif
53 
54 #ifndef MAX_DIMENSION
55 #define MAX_DIMENSION 4
56 #endif
57 
58 static void normalize(float vec[3]);
59 static void crossProduct(float x[3], float y[3], float ret[3]);
60 #if 0 // UNUSED
61 static void bezierCurveEvalfast(float u0, float u1, int order, float *ctlpoints, int stride,  int dimension, float u, float retpoint[]);
62 #endif
63 
64 static float binomialCoefficients[8][8] = {
65   {1,0,0,0,0,0,0,0},
66   {1,1,0,0,0,0,0,0},
67   {1,2,1,0,0,0,0,0},
68   {1,3,3,1,0,0,0,0},
69   {1,4,6,4,1,0,0,0},
70   {1,5,10,10,5,1,0,0},
71   {1,6,15,20,15,6,1,0},
72   {1,7,21,35,35,21,7,1}
73 };
74 
bezierCurveEval(float u0,float u1,int order,float * ctlpoints,int stride,int dimension,float u,float retpoint[])75 void bezierCurveEval(float u0, float u1, int order, float *ctlpoints, int stride, int dimension, float u, float retpoint[])
76 {
77   float uprime = (u-u0)/(u1-u0);
78   float *ctlptr = ctlpoints;
79   float oneMinusX = 1.0f-uprime;
80   float XPower = 1.0f;
81 
82   int i,k;
83   for(k=0; k<dimension; k++)
84     retpoint[k] = (*(ctlptr + k));
85 
86   for(i=1; i<order; i++){
87     ctlptr += stride;
88     XPower *= uprime;
89     for(k=0; k<dimension; k++) {
90       retpoint[k] = retpoint[k]*oneMinusX + ctlptr[k]* binomialCoefficients[order-1][i] * XPower;
91     }
92   }
93 }
94 
95 
96 #if 0 // UNUSED
97 /*order = degree +1 >=1.
98  */
99 void bezierCurveEvalfast(float u0, float u1, int order, float *ctlpoints, int stride,  int dimension, float u, float retpoint[])
100 {
101   float uprime = (u-u0)/(u1-u0);
102   float buf[MAX_ORDER][MAX_ORDER][MAX_DIMENSION];
103   float* ctlptr = ctlpoints;
104   int r, i,j;
105   for(i=0; i<order; i++) {
106     for(j=0; j<dimension; j++)
107       buf[0][i][j] = ctlptr[j];
108     ctlptr += stride;
109   }
110   for(r=1; r<order; r++){
111     for(i=0; i<order-r; i++) {
112       for(j=0; j<dimension; j++)
113 	buf[r][i][j] = (1-uprime)*buf[r-1][i][j] + uprime*buf[r-1][i+1][j];
114     }
115   }
116 
117   for(j=0; j<dimension; j++)
118     retpoint[j] = buf[order-1][0][j];
119 }
120 #endif
121 
122 
123 /*order = degree +1 >=1.
124  */
bezierCurveEvalDer(float u0,float u1,int order,float * ctlpoints,int stride,int dimension,float u,float retDer[])125 void bezierCurveEvalDer(float u0, float u1, int order, float *ctlpoints, int stride,  int dimension, float u, float retDer[])
126 {
127   int i,k;
128   float width = u1-u0;
129   float *ctlptr = ctlpoints;
130 
131   float buf[MAX_ORDER][MAX_DIMENSION];
132   if(order == 1){
133     for(k=0; k<dimension; k++)
134       retDer[k]=0;
135   }
136   for(i=0; i<order-1; i++){
137     for(k=0; k<dimension; k++) {
138       buf[i][k] = (ctlptr[stride+k] - ctlptr[k])*(order-1)/width;
139     }
140     ctlptr += stride;
141   }
142 
143   bezierCurveEval(u0, u1, order-1, (float*) buf, MAX_DIMENSION,  dimension, u, retDer);
144 }
145 
bezierCurveEvalDerGen(int der,float u0,float u1,int order,float * ctlpoints,int stride,int dimension,float u,float retDer[])146 void bezierCurveEvalDerGen(int der, float u0, float u1, int order, float *ctlpoints, int stride,  int dimension, float u, float retDer[])
147 {
148   int i,k,r;
149   float *ctlptr = ctlpoints;
150   float width=u1-u0;
151   float buf[MAX_ORDER][MAX_ORDER][MAX_DIMENSION];
152   if(der<0) der=0;
153   for(i=0; i<order; i++){
154     for(k=0; k<dimension; k++){
155       buf[0][i][k] = ctlptr[k];
156     }
157     ctlptr += stride;
158   }
159 
160 
161   for(r=1; r<=der; r++){
162     for(i=0; i<order-r; i++){
163       for(k=0; k<dimension; k++){
164 	buf[r][i][k] = (buf[r-1][i+1][k] - buf[r-1][i][k])*(order-r)/width;
165       }
166     }
167   }
168 
169   bezierCurveEval(u0, u1, order-der, (float *) (buf[der]), MAX_DIMENSION, dimension, u, retDer);
170 }
171 
172 /*the Bezier bivarite polynomial is:
173  * sum[i:0,uorder-1][j:0,vorder-1] { ctlpoints[i*ustride+j*vstride] * B(i)*B(j)
174  * where B(i) and B(j) are basis functions
175  */
bezierSurfEvalDerGen(int uder,int vder,float u0,float u1,int uorder,float v0,float v1,int vorder,int dimension,float * ctlpoints,int ustride,int vstride,float u,float v,float ret[])176 void bezierSurfEvalDerGen(int uder, int vder, float u0, float u1, int uorder, float v0, float v1, int vorder, int dimension, float *ctlpoints, int ustride, int vstride, float u, float v, float ret[])
177 {
178   int i;
179   float newPoints[MAX_ORDER][MAX_DIMENSION];
180 
181   for(i=0; i<uorder; i++){
182 
183     bezierCurveEvalDerGen(vder, v0, v1, vorder, ctlpoints+ustride*i, vstride, dimension, v, newPoints[i]);
184 
185   }
186 
187   bezierCurveEvalDerGen(uder, u0, u1, uorder, (float *) newPoints, MAX_DIMENSION, dimension, u, ret);
188 }
189 
190 
191 /*division by w is performed*/
bezierSurfEval(float u0,float u1,int uorder,float v0,float v1,int vorder,int dimension,float * ctlpoints,int ustride,int vstride,float u,float v,float ret[])192 void bezierSurfEval(float u0, float u1, int uorder, float v0, float v1, int vorder, int dimension, float *ctlpoints, int ustride, int vstride, float u, float v, float ret[])
193 {
194   bezierSurfEvalDerGen(0, 0, u0, u1, uorder, v0, v1, vorder, dimension, ctlpoints, ustride, vstride, u, v, ret);
195   if(dimension == 4) /*homogeneous*/{
196     ret[0] /= ret[3];
197     ret[1] /= ret[3];
198     ret[2] /= ret[3];
199   }
200 }
201 
bezierSurfEvalNormal(float u0,float u1,int uorder,float v0,float v1,int vorder,int dimension,float * ctlpoints,int ustride,int vstride,float u,float v,float retNormal[])202 void bezierSurfEvalNormal(float u0, float u1, int uorder, float v0, float v1, int vorder, int dimension, float *ctlpoints, int ustride, int vstride, float u, float v, float retNormal[])
203 {
204   float partialU[4];
205   float partialV[4];
206   assert(dimension>=3 && dimension <=4);
207   bezierSurfEvalDerGen(1,0, u0, u1, uorder, v0, v1, vorder, dimension, ctlpoints, ustride, vstride, u, v, partialU);
208   bezierSurfEvalDerGen(0,1, u0, u1, uorder, v0, v1, vorder, dimension, ctlpoints, ustride, vstride, u, v, partialV);
209 
210   if(dimension == 3){/*inhomogeneous*/
211     crossProduct(partialU, partialV, retNormal);
212 
213     normalize(retNormal);
214 
215     return;
216   }
217   else { /*homogeneous*/
218     float val[4]; /*the point coordinates (without derivative)*/
219     float newPartialU[MAX_DIMENSION];
220     float newPartialV[MAX_DIMENSION];
221     int i;
222     bezierSurfEvalDerGen(0,0, u0, u1, uorder, v0, v1, vorder, dimension, ctlpoints, ustride, vstride, u, v, val);
223 
224     for(i=0; i<=2; i++){
225       newPartialU[i] = partialU[i] * val[3] - val[i] * partialU[3];
226       newPartialV[i] = partialV[i] * val[3] - val[i] * partialV[3];
227     }
228     crossProduct(newPartialU, newPartialV, retNormal);
229     normalize(retNormal);
230   }
231 }
232 
233 /*if size is 0, then nothing is done*/
normalize(float vec[3])234 static void normalize(float vec[3])
235 {
236   float size = (float)sqrt(vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2]);
237 
238   if(size < TOLERANCE)
239     {
240 #ifdef DEBUG
241       fprintf(stderr, "Warning: in oglBSpline.c normal is 0\n");
242 #endif
243       return;
244     }
245   else {
246     vec[0] = vec[0]/size;
247     vec[1] = vec[1]/size;
248     vec[2] = vec[2]/size;
249   }
250 }
251 
252 
crossProduct(float x[3],float y[3],float ret[3])253 static void crossProduct(float x[3], float y[3], float ret[3])
254 {
255   ret[0] = x[1]*y[2] - y[1]*x[2];
256   ret[1] = x[2]*y[0] - y[2]*x[0];
257   ret[2] = x[0]*y[1] - y[0]*x[1];
258 
259 }
260 
261