1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * drivers/base/core.c - core driver model code (device registration, etc)
4 *
5 * Copyright (c) 2002-3 Patrick Mochel
6 * Copyright (c) 2002-3 Open Source Development Labs
7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8 * Copyright (c) 2006 Novell, Inc.
9 */
10
11 #include <linux/acpi.h>
12 #include <linux/blkdev.h>
13 #include <linux/cleanup.h>
14 #include <linux/cpufreq.h>
15 #include <linux/device.h>
16 #include <linux/dma-map-ops.h> /* for dma_default_coherent */
17 #include <linux/err.h>
18 #include <linux/fwnode.h>
19 #include <linux/init.h>
20 #include <linux/kdev_t.h>
21 #include <linux/kstrtox.h>
22 #include <linux/module.h>
23 #include <linux/mutex.h>
24 #include <linux/netdevice.h>
25 #include <linux/notifier.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/sched/mm.h>
30 #include <linux/sched/signal.h>
31 #include <linux/slab.h>
32 #include <linux/string_helpers.h>
33 #include <linux/swiotlb.h>
34 #include <linux/sysfs.h>
35
36 #include "base.h"
37 #include "physical_location.h"
38 #include "power/power.h"
39
40 /* Device links support. */
41 static LIST_HEAD(deferred_sync);
42 static unsigned int defer_sync_state_count = 1;
43 static DEFINE_MUTEX(fwnode_link_lock);
44 static bool fw_devlink_is_permissive(void);
45 static void __fw_devlink_link_to_consumers(struct device *dev);
46 static bool fw_devlink_drv_reg_done;
47 static bool fw_devlink_best_effort;
48 static struct workqueue_struct *device_link_wq;
49
50 /**
51 * __fwnode_link_add - Create a link between two fwnode_handles.
52 * @con: Consumer end of the link.
53 * @sup: Supplier end of the link.
54 * @flags: Link flags.
55 *
56 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
57 * represents the detail that the firmware lists @sup fwnode as supplying a
58 * resource to @con.
59 *
60 * The driver core will use the fwnode link to create a device link between the
61 * two device objects corresponding to @con and @sup when they are created. The
62 * driver core will automatically delete the fwnode link between @con and @sup
63 * after doing that.
64 *
65 * Attempts to create duplicate links between the same pair of fwnode handles
66 * are ignored and there is no reference counting.
67 */
__fwnode_link_add(struct fwnode_handle * con,struct fwnode_handle * sup,u8 flags)68 static int __fwnode_link_add(struct fwnode_handle *con,
69 struct fwnode_handle *sup, u8 flags)
70 {
71 struct fwnode_link *link;
72
73 list_for_each_entry(link, &sup->consumers, s_hook)
74 if (link->consumer == con) {
75 link->flags |= flags;
76 return 0;
77 }
78
79 link = kzalloc(sizeof(*link), GFP_KERNEL);
80 if (!link)
81 return -ENOMEM;
82
83 link->supplier = sup;
84 INIT_LIST_HEAD(&link->s_hook);
85 link->consumer = con;
86 INIT_LIST_HEAD(&link->c_hook);
87 link->flags = flags;
88
89 list_add(&link->s_hook, &sup->consumers);
90 list_add(&link->c_hook, &con->suppliers);
91 pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n",
92 con, sup);
93
94 return 0;
95 }
96
fwnode_link_add(struct fwnode_handle * con,struct fwnode_handle * sup,u8 flags)97 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup,
98 u8 flags)
99 {
100 guard(mutex)(&fwnode_link_lock);
101
102 return __fwnode_link_add(con, sup, flags);
103 }
104
105 /**
106 * __fwnode_link_del - Delete a link between two fwnode_handles.
107 * @link: the fwnode_link to be deleted
108 *
109 * The fwnode_link_lock needs to be held when this function is called.
110 */
__fwnode_link_del(struct fwnode_link * link)111 static void __fwnode_link_del(struct fwnode_link *link)
112 {
113 pr_debug("%pfwf Dropping the fwnode link to %pfwf\n",
114 link->consumer, link->supplier);
115 list_del(&link->s_hook);
116 list_del(&link->c_hook);
117 kfree(link);
118 }
119
120 /**
121 * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle.
122 * @link: the fwnode_link to be marked
123 *
124 * The fwnode_link_lock needs to be held when this function is called.
125 */
__fwnode_link_cycle(struct fwnode_link * link)126 static void __fwnode_link_cycle(struct fwnode_link *link)
127 {
128 pr_debug("%pfwf: cycle: depends on %pfwf\n",
129 link->consumer, link->supplier);
130 link->flags |= FWLINK_FLAG_CYCLE;
131 }
132
133 /**
134 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
135 * @fwnode: fwnode whose supplier links need to be deleted
136 *
137 * Deletes all supplier links connecting directly to @fwnode.
138 */
fwnode_links_purge_suppliers(struct fwnode_handle * fwnode)139 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
140 {
141 struct fwnode_link *link, *tmp;
142
143 guard(mutex)(&fwnode_link_lock);
144
145 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook)
146 __fwnode_link_del(link);
147 }
148
149 /**
150 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
151 * @fwnode: fwnode whose consumer links need to be deleted
152 *
153 * Deletes all consumer links connecting directly to @fwnode.
154 */
fwnode_links_purge_consumers(struct fwnode_handle * fwnode)155 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
156 {
157 struct fwnode_link *link, *tmp;
158
159 guard(mutex)(&fwnode_link_lock);
160
161 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook)
162 __fwnode_link_del(link);
163 }
164
165 /**
166 * fwnode_links_purge - Delete all links connected to a fwnode_handle.
167 * @fwnode: fwnode whose links needs to be deleted
168 *
169 * Deletes all links connecting directly to a fwnode.
170 */
fwnode_links_purge(struct fwnode_handle * fwnode)171 void fwnode_links_purge(struct fwnode_handle *fwnode)
172 {
173 fwnode_links_purge_suppliers(fwnode);
174 fwnode_links_purge_consumers(fwnode);
175 }
176
fw_devlink_purge_absent_suppliers(struct fwnode_handle * fwnode)177 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
178 {
179 struct fwnode_handle *child;
180
181 /* Don't purge consumer links of an added child */
182 if (fwnode->dev)
183 return;
184
185 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
186 fwnode_links_purge_consumers(fwnode);
187
188 fwnode_for_each_available_child_node(fwnode, child)
189 fw_devlink_purge_absent_suppliers(child);
190 }
191 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
192
193 /**
194 * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle
195 * @from: move consumers away from this fwnode
196 * @to: move consumers to this fwnode
197 *
198 * Move all consumer links from @from fwnode to @to fwnode.
199 */
__fwnode_links_move_consumers(struct fwnode_handle * from,struct fwnode_handle * to)200 static void __fwnode_links_move_consumers(struct fwnode_handle *from,
201 struct fwnode_handle *to)
202 {
203 struct fwnode_link *link, *tmp;
204
205 list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) {
206 __fwnode_link_add(link->consumer, to, link->flags);
207 __fwnode_link_del(link);
208 }
209 }
210
211 /**
212 * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers
213 * @fwnode: fwnode from which to pick up dangling consumers
214 * @new_sup: fwnode of new supplier
215 *
216 * If the @fwnode has a corresponding struct device and the device supports
217 * probing (that is, added to a bus), then we want to let fw_devlink create
218 * MANAGED device links to this device, so leave @fwnode and its descendant's
219 * fwnode links alone.
220 *
221 * Otherwise, move its consumers to the new supplier @new_sup.
222 */
__fw_devlink_pickup_dangling_consumers(struct fwnode_handle * fwnode,struct fwnode_handle * new_sup)223 static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode,
224 struct fwnode_handle *new_sup)
225 {
226 struct fwnode_handle *child;
227
228 if (fwnode->dev && fwnode->dev->bus)
229 return;
230
231 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
232 __fwnode_links_move_consumers(fwnode, new_sup);
233
234 fwnode_for_each_available_child_node(fwnode, child)
235 __fw_devlink_pickup_dangling_consumers(child, new_sup);
236 }
237
238 static DEFINE_MUTEX(device_links_lock);
239 DEFINE_STATIC_SRCU(device_links_srcu);
240
device_links_write_lock(void)241 static inline void device_links_write_lock(void)
242 {
243 mutex_lock(&device_links_lock);
244 }
245
device_links_write_unlock(void)246 static inline void device_links_write_unlock(void)
247 {
248 mutex_unlock(&device_links_lock);
249 }
250
device_links_read_lock(void)251 int device_links_read_lock(void) __acquires(&device_links_srcu)
252 {
253 return srcu_read_lock(&device_links_srcu);
254 }
255
device_links_read_unlock(int idx)256 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
257 {
258 srcu_read_unlock(&device_links_srcu, idx);
259 }
260
device_links_read_lock_held(void)261 int device_links_read_lock_held(void)
262 {
263 return srcu_read_lock_held(&device_links_srcu);
264 }
265
device_link_synchronize_removal(void)266 static void device_link_synchronize_removal(void)
267 {
268 synchronize_srcu(&device_links_srcu);
269 }
270
device_link_remove_from_lists(struct device_link * link)271 static void device_link_remove_from_lists(struct device_link *link)
272 {
273 list_del_rcu(&link->s_node);
274 list_del_rcu(&link->c_node);
275 }
276
device_is_ancestor(struct device * dev,struct device * target)277 static bool device_is_ancestor(struct device *dev, struct device *target)
278 {
279 while (target->parent) {
280 target = target->parent;
281 if (dev == target)
282 return true;
283 }
284 return false;
285 }
286
287 #define DL_MARKER_FLAGS (DL_FLAG_INFERRED | \
288 DL_FLAG_CYCLE | \
289 DL_FLAG_MANAGED)
device_link_flag_is_sync_state_only(u32 flags)290 static inline bool device_link_flag_is_sync_state_only(u32 flags)
291 {
292 return (flags & ~DL_MARKER_FLAGS) == DL_FLAG_SYNC_STATE_ONLY;
293 }
294
295 /**
296 * device_is_dependent - Check if one device depends on another one
297 * @dev: Device to check dependencies for.
298 * @target: Device to check against.
299 *
300 * Check if @target depends on @dev or any device dependent on it (its child or
301 * its consumer etc). Return 1 if that is the case or 0 otherwise.
302 */
device_is_dependent(struct device * dev,void * target)303 static int device_is_dependent(struct device *dev, void *target)
304 {
305 struct device_link *link;
306 int ret;
307
308 /*
309 * The "ancestors" check is needed to catch the case when the target
310 * device has not been completely initialized yet and it is still
311 * missing from the list of children of its parent device.
312 */
313 if (dev == target || device_is_ancestor(dev, target))
314 return 1;
315
316 ret = device_for_each_child(dev, target, device_is_dependent);
317 if (ret)
318 return ret;
319
320 list_for_each_entry(link, &dev->links.consumers, s_node) {
321 if (device_link_flag_is_sync_state_only(link->flags))
322 continue;
323
324 if (link->consumer == target)
325 return 1;
326
327 ret = device_is_dependent(link->consumer, target);
328 if (ret)
329 break;
330 }
331 return ret;
332 }
333
device_link_init_status(struct device_link * link,struct device * consumer,struct device * supplier)334 static void device_link_init_status(struct device_link *link,
335 struct device *consumer,
336 struct device *supplier)
337 {
338 switch (supplier->links.status) {
339 case DL_DEV_PROBING:
340 switch (consumer->links.status) {
341 case DL_DEV_PROBING:
342 /*
343 * A consumer driver can create a link to a supplier
344 * that has not completed its probing yet as long as it
345 * knows that the supplier is already functional (for
346 * example, it has just acquired some resources from the
347 * supplier).
348 */
349 link->status = DL_STATE_CONSUMER_PROBE;
350 break;
351 default:
352 link->status = DL_STATE_DORMANT;
353 break;
354 }
355 break;
356 case DL_DEV_DRIVER_BOUND:
357 switch (consumer->links.status) {
358 case DL_DEV_PROBING:
359 link->status = DL_STATE_CONSUMER_PROBE;
360 break;
361 case DL_DEV_DRIVER_BOUND:
362 link->status = DL_STATE_ACTIVE;
363 break;
364 default:
365 link->status = DL_STATE_AVAILABLE;
366 break;
367 }
368 break;
369 case DL_DEV_UNBINDING:
370 link->status = DL_STATE_SUPPLIER_UNBIND;
371 break;
372 default:
373 link->status = DL_STATE_DORMANT;
374 break;
375 }
376 }
377
device_reorder_to_tail(struct device * dev,void * not_used)378 static int device_reorder_to_tail(struct device *dev, void *not_used)
379 {
380 struct device_link *link;
381
382 /*
383 * Devices that have not been registered yet will be put to the ends
384 * of the lists during the registration, so skip them here.
385 */
386 if (device_is_registered(dev))
387 devices_kset_move_last(dev);
388
389 if (device_pm_initialized(dev))
390 device_pm_move_last(dev);
391
392 device_for_each_child(dev, NULL, device_reorder_to_tail);
393 list_for_each_entry(link, &dev->links.consumers, s_node) {
394 if (device_link_flag_is_sync_state_only(link->flags))
395 continue;
396 device_reorder_to_tail(link->consumer, NULL);
397 }
398
399 return 0;
400 }
401
402 /**
403 * device_pm_move_to_tail - Move set of devices to the end of device lists
404 * @dev: Device to move
405 *
406 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
407 *
408 * It moves the @dev along with all of its children and all of its consumers
409 * to the ends of the device_kset and dpm_list, recursively.
410 */
device_pm_move_to_tail(struct device * dev)411 void device_pm_move_to_tail(struct device *dev)
412 {
413 int idx;
414
415 idx = device_links_read_lock();
416 device_pm_lock();
417 device_reorder_to_tail(dev, NULL);
418 device_pm_unlock();
419 device_links_read_unlock(idx);
420 }
421
422 #define to_devlink(dev) container_of((dev), struct device_link, link_dev)
423
status_show(struct device * dev,struct device_attribute * attr,char * buf)424 static ssize_t status_show(struct device *dev,
425 struct device_attribute *attr, char *buf)
426 {
427 const char *output;
428
429 switch (to_devlink(dev)->status) {
430 case DL_STATE_NONE:
431 output = "not tracked";
432 break;
433 case DL_STATE_DORMANT:
434 output = "dormant";
435 break;
436 case DL_STATE_AVAILABLE:
437 output = "available";
438 break;
439 case DL_STATE_CONSUMER_PROBE:
440 output = "consumer probing";
441 break;
442 case DL_STATE_ACTIVE:
443 output = "active";
444 break;
445 case DL_STATE_SUPPLIER_UNBIND:
446 output = "supplier unbinding";
447 break;
448 default:
449 output = "unknown";
450 break;
451 }
452
453 return sysfs_emit(buf, "%s\n", output);
454 }
455 static DEVICE_ATTR_RO(status);
456
auto_remove_on_show(struct device * dev,struct device_attribute * attr,char * buf)457 static ssize_t auto_remove_on_show(struct device *dev,
458 struct device_attribute *attr, char *buf)
459 {
460 struct device_link *link = to_devlink(dev);
461 const char *output;
462
463 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
464 output = "supplier unbind";
465 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
466 output = "consumer unbind";
467 else
468 output = "never";
469
470 return sysfs_emit(buf, "%s\n", output);
471 }
472 static DEVICE_ATTR_RO(auto_remove_on);
473
runtime_pm_show(struct device * dev,struct device_attribute * attr,char * buf)474 static ssize_t runtime_pm_show(struct device *dev,
475 struct device_attribute *attr, char *buf)
476 {
477 struct device_link *link = to_devlink(dev);
478
479 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
480 }
481 static DEVICE_ATTR_RO(runtime_pm);
482
sync_state_only_show(struct device * dev,struct device_attribute * attr,char * buf)483 static ssize_t sync_state_only_show(struct device *dev,
484 struct device_attribute *attr, char *buf)
485 {
486 struct device_link *link = to_devlink(dev);
487
488 return sysfs_emit(buf, "%d\n",
489 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
490 }
491 static DEVICE_ATTR_RO(sync_state_only);
492
493 static struct attribute *devlink_attrs[] = {
494 &dev_attr_status.attr,
495 &dev_attr_auto_remove_on.attr,
496 &dev_attr_runtime_pm.attr,
497 &dev_attr_sync_state_only.attr,
498 NULL,
499 };
500 ATTRIBUTE_GROUPS(devlink);
501
device_link_release_fn(struct work_struct * work)502 static void device_link_release_fn(struct work_struct *work)
503 {
504 struct device_link *link = container_of(work, struct device_link, rm_work);
505
506 /* Ensure that all references to the link object have been dropped. */
507 device_link_synchronize_removal();
508
509 pm_runtime_release_supplier(link);
510 /*
511 * If supplier_preactivated is set, the link has been dropped between
512 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls
513 * in __driver_probe_device(). In that case, drop the supplier's
514 * PM-runtime usage counter to remove the reference taken by
515 * pm_runtime_get_suppliers().
516 */
517 if (link->supplier_preactivated)
518 pm_runtime_put_noidle(link->supplier);
519
520 pm_request_idle(link->supplier);
521
522 put_device(link->consumer);
523 put_device(link->supplier);
524 kfree(link);
525 }
526
devlink_dev_release(struct device * dev)527 static void devlink_dev_release(struct device *dev)
528 {
529 struct device_link *link = to_devlink(dev);
530
531 INIT_WORK(&link->rm_work, device_link_release_fn);
532 /*
533 * It may take a while to complete this work because of the SRCU
534 * synchronization in device_link_release_fn() and if the consumer or
535 * supplier devices get deleted when it runs, so put it into the
536 * dedicated workqueue.
537 */
538 queue_work(device_link_wq, &link->rm_work);
539 }
540
541 /**
542 * device_link_wait_removal - Wait for ongoing devlink removal jobs to terminate
543 */
device_link_wait_removal(void)544 void device_link_wait_removal(void)
545 {
546 /*
547 * devlink removal jobs are queued in the dedicated work queue.
548 * To be sure that all removal jobs are terminated, ensure that any
549 * scheduled work has run to completion.
550 */
551 flush_workqueue(device_link_wq);
552 }
553 EXPORT_SYMBOL_GPL(device_link_wait_removal);
554
555 static struct class devlink_class = {
556 .name = "devlink",
557 .dev_groups = devlink_groups,
558 .dev_release = devlink_dev_release,
559 };
560
devlink_add_symlinks(struct device * dev)561 static int devlink_add_symlinks(struct device *dev)
562 {
563 char *buf_con __free(kfree) = NULL, *buf_sup __free(kfree) = NULL;
564 int ret;
565 struct device_link *link = to_devlink(dev);
566 struct device *sup = link->supplier;
567 struct device *con = link->consumer;
568
569 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
570 if (ret)
571 goto out;
572
573 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
574 if (ret)
575 goto err_con;
576
577 buf_con = kasprintf(GFP_KERNEL, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
578 if (!buf_con) {
579 ret = -ENOMEM;
580 goto err_con_dev;
581 }
582
583 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf_con);
584 if (ret)
585 goto err_con_dev;
586
587 buf_sup = kasprintf(GFP_KERNEL, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
588 if (!buf_sup) {
589 ret = -ENOMEM;
590 goto err_sup_dev;
591 }
592
593 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf_sup);
594 if (ret)
595 goto err_sup_dev;
596
597 goto out;
598
599 err_sup_dev:
600 sysfs_remove_link(&sup->kobj, buf_con);
601 err_con_dev:
602 sysfs_remove_link(&link->link_dev.kobj, "consumer");
603 err_con:
604 sysfs_remove_link(&link->link_dev.kobj, "supplier");
605 out:
606 return ret;
607 }
608
devlink_remove_symlinks(struct device * dev)609 static void devlink_remove_symlinks(struct device *dev)
610 {
611 char *buf_con __free(kfree) = NULL, *buf_sup __free(kfree) = NULL;
612 struct device_link *link = to_devlink(dev);
613 struct device *sup = link->supplier;
614 struct device *con = link->consumer;
615
616 sysfs_remove_link(&link->link_dev.kobj, "consumer");
617 sysfs_remove_link(&link->link_dev.kobj, "supplier");
618
619 if (device_is_registered(con)) {
620 buf_sup = kasprintf(GFP_KERNEL, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
621 if (!buf_sup)
622 goto out;
623 sysfs_remove_link(&con->kobj, buf_sup);
624 }
625
626 buf_con = kasprintf(GFP_KERNEL, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
627 if (!buf_con)
628 goto out;
629 sysfs_remove_link(&sup->kobj, buf_con);
630
631 return;
632
633 out:
634 WARN(1, "Unable to properly free device link symlinks!\n");
635 }
636
637 static struct class_interface devlink_class_intf = {
638 .class = &devlink_class,
639 .add_dev = devlink_add_symlinks,
640 .remove_dev = devlink_remove_symlinks,
641 };
642
devlink_class_init(void)643 static int __init devlink_class_init(void)
644 {
645 int ret;
646
647 ret = class_register(&devlink_class);
648 if (ret)
649 return ret;
650
651 ret = class_interface_register(&devlink_class_intf);
652 if (ret)
653 class_unregister(&devlink_class);
654
655 return ret;
656 }
657 postcore_initcall(devlink_class_init);
658
659 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
660 DL_FLAG_AUTOREMOVE_SUPPLIER | \
661 DL_FLAG_AUTOPROBE_CONSUMER | \
662 DL_FLAG_SYNC_STATE_ONLY | \
663 DL_FLAG_INFERRED | \
664 DL_FLAG_CYCLE)
665
666 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
667 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
668
669 /**
670 * device_link_add - Create a link between two devices.
671 * @consumer: Consumer end of the link.
672 * @supplier: Supplier end of the link.
673 * @flags: Link flags.
674 *
675 * Return: On success, a device_link struct will be returned.
676 * On error or invalid flag settings, NULL will be returned.
677 *
678 * The caller is responsible for the proper synchronization of the link creation
679 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the
680 * runtime PM framework to take the link into account. Second, if the
681 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
682 * be forced into the active meta state and reference-counted upon the creation
683 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
684 * ignored.
685 *
686 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
687 * expected to release the link returned by it directly with the help of either
688 * device_link_del() or device_link_remove().
689 *
690 * If that flag is not set, however, the caller of this function is handing the
691 * management of the link over to the driver core entirely and its return value
692 * can only be used to check whether or not the link is present. In that case,
693 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
694 * flags can be used to indicate to the driver core when the link can be safely
695 * deleted. Namely, setting one of them in @flags indicates to the driver core
696 * that the link is not going to be used (by the given caller of this function)
697 * after unbinding the consumer or supplier driver, respectively, from its
698 * device, so the link can be deleted at that point. If none of them is set,
699 * the link will be maintained until one of the devices pointed to by it (either
700 * the consumer or the supplier) is unregistered.
701 *
702 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
703 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
704 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
705 * be used to request the driver core to automatically probe for a consumer
706 * driver after successfully binding a driver to the supplier device.
707 *
708 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
709 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
710 * the same time is invalid and will cause NULL to be returned upfront.
711 * However, if a device link between the given @consumer and @supplier pair
712 * exists already when this function is called for them, the existing link will
713 * be returned regardless of its current type and status (the link's flags may
714 * be modified then). The caller of this function is then expected to treat
715 * the link as though it has just been created, so (in particular) if
716 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
717 * explicitly when not needed any more (as stated above).
718 *
719 * A side effect of the link creation is re-ordering of dpm_list and the
720 * devices_kset list by moving the consumer device and all devices depending
721 * on it to the ends of these lists (that does not happen to devices that have
722 * not been registered when this function is called).
723 *
724 * The supplier device is required to be registered when this function is called
725 * and NULL will be returned if that is not the case. The consumer device need
726 * not be registered, however.
727 */
device_link_add(struct device * consumer,struct device * supplier,u32 flags)728 struct device_link *device_link_add(struct device *consumer,
729 struct device *supplier, u32 flags)
730 {
731 struct device_link *link;
732
733 if (!consumer || !supplier || consumer == supplier ||
734 flags & ~DL_ADD_VALID_FLAGS ||
735 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
736 (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
737 flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
738 DL_FLAG_AUTOREMOVE_SUPPLIER)))
739 return NULL;
740
741 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
742 if (pm_runtime_get_sync(supplier) < 0) {
743 pm_runtime_put_noidle(supplier);
744 return NULL;
745 }
746 }
747
748 if (!(flags & DL_FLAG_STATELESS))
749 flags |= DL_FLAG_MANAGED;
750
751 if (flags & DL_FLAG_SYNC_STATE_ONLY &&
752 !device_link_flag_is_sync_state_only(flags))
753 return NULL;
754
755 device_links_write_lock();
756 device_pm_lock();
757
758 /*
759 * If the supplier has not been fully registered yet or there is a
760 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
761 * the supplier already in the graph, return NULL. If the link is a
762 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
763 * because it only affects sync_state() callbacks.
764 */
765 if (!device_pm_initialized(supplier)
766 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
767 device_is_dependent(consumer, supplier))) {
768 link = NULL;
769 goto out;
770 }
771
772 /*
773 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
774 * So, only create it if the consumer hasn't probed yet.
775 */
776 if (flags & DL_FLAG_SYNC_STATE_ONLY &&
777 consumer->links.status != DL_DEV_NO_DRIVER &&
778 consumer->links.status != DL_DEV_PROBING) {
779 link = NULL;
780 goto out;
781 }
782
783 /*
784 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
785 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
786 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
787 */
788 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
789 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
790
791 list_for_each_entry(link, &supplier->links.consumers, s_node) {
792 if (link->consumer != consumer)
793 continue;
794
795 if (link->flags & DL_FLAG_INFERRED &&
796 !(flags & DL_FLAG_INFERRED))
797 link->flags &= ~DL_FLAG_INFERRED;
798
799 if (flags & DL_FLAG_PM_RUNTIME) {
800 if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
801 pm_runtime_new_link(consumer);
802 link->flags |= DL_FLAG_PM_RUNTIME;
803 }
804 if (flags & DL_FLAG_RPM_ACTIVE)
805 refcount_inc(&link->rpm_active);
806 }
807
808 if (flags & DL_FLAG_STATELESS) {
809 kref_get(&link->kref);
810 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
811 !(link->flags & DL_FLAG_STATELESS)) {
812 link->flags |= DL_FLAG_STATELESS;
813 goto reorder;
814 } else {
815 link->flags |= DL_FLAG_STATELESS;
816 goto out;
817 }
818 }
819
820 /*
821 * If the life time of the link following from the new flags is
822 * longer than indicated by the flags of the existing link,
823 * update the existing link to stay around longer.
824 */
825 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
826 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
827 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
828 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
829 }
830 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
831 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
832 DL_FLAG_AUTOREMOVE_SUPPLIER);
833 }
834 if (!(link->flags & DL_FLAG_MANAGED)) {
835 kref_get(&link->kref);
836 link->flags |= DL_FLAG_MANAGED;
837 device_link_init_status(link, consumer, supplier);
838 }
839 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
840 !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
841 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
842 goto reorder;
843 }
844
845 goto out;
846 }
847
848 link = kzalloc(sizeof(*link), GFP_KERNEL);
849 if (!link)
850 goto out;
851
852 refcount_set(&link->rpm_active, 1);
853
854 get_device(supplier);
855 link->supplier = supplier;
856 INIT_LIST_HEAD(&link->s_node);
857 get_device(consumer);
858 link->consumer = consumer;
859 INIT_LIST_HEAD(&link->c_node);
860 link->flags = flags;
861 kref_init(&link->kref);
862
863 link->link_dev.class = &devlink_class;
864 device_set_pm_not_required(&link->link_dev);
865 dev_set_name(&link->link_dev, "%s:%s--%s:%s",
866 dev_bus_name(supplier), dev_name(supplier),
867 dev_bus_name(consumer), dev_name(consumer));
868 if (device_register(&link->link_dev)) {
869 put_device(&link->link_dev);
870 link = NULL;
871 goto out;
872 }
873
874 if (flags & DL_FLAG_PM_RUNTIME) {
875 if (flags & DL_FLAG_RPM_ACTIVE)
876 refcount_inc(&link->rpm_active);
877
878 pm_runtime_new_link(consumer);
879 }
880
881 /* Determine the initial link state. */
882 if (flags & DL_FLAG_STATELESS)
883 link->status = DL_STATE_NONE;
884 else
885 device_link_init_status(link, consumer, supplier);
886
887 /*
888 * Some callers expect the link creation during consumer driver probe to
889 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
890 */
891 if (link->status == DL_STATE_CONSUMER_PROBE &&
892 flags & DL_FLAG_PM_RUNTIME)
893 pm_runtime_resume(supplier);
894
895 list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
896 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
897
898 if (flags & DL_FLAG_SYNC_STATE_ONLY) {
899 dev_dbg(consumer,
900 "Linked as a sync state only consumer to %s\n",
901 dev_name(supplier));
902 goto out;
903 }
904
905 reorder:
906 /*
907 * Move the consumer and all of the devices depending on it to the end
908 * of dpm_list and the devices_kset list.
909 *
910 * It is necessary to hold dpm_list locked throughout all that or else
911 * we may end up suspending with a wrong ordering of it.
912 */
913 device_reorder_to_tail(consumer, NULL);
914
915 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
916
917 out:
918 device_pm_unlock();
919 device_links_write_unlock();
920
921 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
922 pm_runtime_put(supplier);
923
924 return link;
925 }
926 EXPORT_SYMBOL_GPL(device_link_add);
927
__device_link_del(struct kref * kref)928 static void __device_link_del(struct kref *kref)
929 {
930 struct device_link *link = container_of(kref, struct device_link, kref);
931
932 dev_dbg(link->consumer, "Dropping the link to %s\n",
933 dev_name(link->supplier));
934
935 pm_runtime_drop_link(link);
936
937 device_link_remove_from_lists(link);
938 device_unregister(&link->link_dev);
939 }
940
device_link_put_kref(struct device_link * link)941 static void device_link_put_kref(struct device_link *link)
942 {
943 if (link->flags & DL_FLAG_STATELESS)
944 kref_put(&link->kref, __device_link_del);
945 else if (!device_is_registered(link->consumer))
946 __device_link_del(&link->kref);
947 else
948 WARN(1, "Unable to drop a managed device link reference\n");
949 }
950
951 /**
952 * device_link_del - Delete a stateless link between two devices.
953 * @link: Device link to delete.
954 *
955 * The caller must ensure proper synchronization of this function with runtime
956 * PM. If the link was added multiple times, it needs to be deleted as often.
957 * Care is required for hotplugged devices: Their links are purged on removal
958 * and calling device_link_del() is then no longer allowed.
959 */
device_link_del(struct device_link * link)960 void device_link_del(struct device_link *link)
961 {
962 device_links_write_lock();
963 device_link_put_kref(link);
964 device_links_write_unlock();
965 }
966 EXPORT_SYMBOL_GPL(device_link_del);
967
968 /**
969 * device_link_remove - Delete a stateless link between two devices.
970 * @consumer: Consumer end of the link.
971 * @supplier: Supplier end of the link.
972 *
973 * The caller must ensure proper synchronization of this function with runtime
974 * PM.
975 */
device_link_remove(void * consumer,struct device * supplier)976 void device_link_remove(void *consumer, struct device *supplier)
977 {
978 struct device_link *link;
979
980 if (WARN_ON(consumer == supplier))
981 return;
982
983 device_links_write_lock();
984
985 list_for_each_entry(link, &supplier->links.consumers, s_node) {
986 if (link->consumer == consumer) {
987 device_link_put_kref(link);
988 break;
989 }
990 }
991
992 device_links_write_unlock();
993 }
994 EXPORT_SYMBOL_GPL(device_link_remove);
995
device_links_missing_supplier(struct device * dev)996 static void device_links_missing_supplier(struct device *dev)
997 {
998 struct device_link *link;
999
1000 list_for_each_entry(link, &dev->links.suppliers, c_node) {
1001 if (link->status != DL_STATE_CONSUMER_PROBE)
1002 continue;
1003
1004 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1005 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1006 } else {
1007 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1008 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1009 }
1010 }
1011 }
1012
dev_is_best_effort(struct device * dev)1013 static bool dev_is_best_effort(struct device *dev)
1014 {
1015 return (fw_devlink_best_effort && dev->can_match) ||
1016 (dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT));
1017 }
1018
fwnode_links_check_suppliers(struct fwnode_handle * fwnode)1019 static struct fwnode_handle *fwnode_links_check_suppliers(
1020 struct fwnode_handle *fwnode)
1021 {
1022 struct fwnode_link *link;
1023
1024 if (!fwnode || fw_devlink_is_permissive())
1025 return NULL;
1026
1027 list_for_each_entry(link, &fwnode->suppliers, c_hook)
1028 if (!(link->flags &
1029 (FWLINK_FLAG_CYCLE | FWLINK_FLAG_IGNORE)))
1030 return link->supplier;
1031
1032 return NULL;
1033 }
1034
1035 /**
1036 * device_links_check_suppliers - Check presence of supplier drivers.
1037 * @dev: Consumer device.
1038 *
1039 * Check links from this device to any suppliers. Walk the list of the device's
1040 * links to suppliers and see if all of them are available. If not, simply
1041 * return -EPROBE_DEFER.
1042 *
1043 * We need to guarantee that the supplier will not go away after the check has
1044 * been positive here. It only can go away in __device_release_driver() and
1045 * that function checks the device's links to consumers. This means we need to
1046 * mark the link as "consumer probe in progress" to make the supplier removal
1047 * wait for us to complete (or bad things may happen).
1048 *
1049 * Links without the DL_FLAG_MANAGED flag set are ignored.
1050 */
device_links_check_suppliers(struct device * dev)1051 int device_links_check_suppliers(struct device *dev)
1052 {
1053 struct device_link *link;
1054 int ret = 0, fwnode_ret = 0;
1055 struct fwnode_handle *sup_fw;
1056
1057 /*
1058 * Device waiting for supplier to become available is not allowed to
1059 * probe.
1060 */
1061 scoped_guard(mutex, &fwnode_link_lock) {
1062 sup_fw = fwnode_links_check_suppliers(dev->fwnode);
1063 if (sup_fw) {
1064 if (dev_is_best_effort(dev))
1065 fwnode_ret = -EAGAIN;
1066 else
1067 return dev_err_probe(dev, -EPROBE_DEFER,
1068 "wait for supplier %pfwf\n", sup_fw);
1069 }
1070 }
1071
1072 device_links_write_lock();
1073
1074 list_for_each_entry(link, &dev->links.suppliers, c_node) {
1075 if (!(link->flags & DL_FLAG_MANAGED))
1076 continue;
1077
1078 if (link->status != DL_STATE_AVAILABLE &&
1079 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1080
1081 if (dev_is_best_effort(dev) &&
1082 link->flags & DL_FLAG_INFERRED &&
1083 !link->supplier->can_match) {
1084 ret = -EAGAIN;
1085 continue;
1086 }
1087
1088 device_links_missing_supplier(dev);
1089 ret = dev_err_probe(dev, -EPROBE_DEFER,
1090 "supplier %s not ready\n", dev_name(link->supplier));
1091 break;
1092 }
1093 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1094 }
1095 dev->links.status = DL_DEV_PROBING;
1096
1097 device_links_write_unlock();
1098
1099 return ret ? ret : fwnode_ret;
1100 }
1101
1102 /**
1103 * __device_links_queue_sync_state - Queue a device for sync_state() callback
1104 * @dev: Device to call sync_state() on
1105 * @list: List head to queue the @dev on
1106 *
1107 * Queues a device for a sync_state() callback when the device links write lock
1108 * isn't held. This allows the sync_state() execution flow to use device links
1109 * APIs. The caller must ensure this function is called with
1110 * device_links_write_lock() held.
1111 *
1112 * This function does a get_device() to make sure the device is not freed while
1113 * on this list.
1114 *
1115 * So the caller must also ensure that device_links_flush_sync_list() is called
1116 * as soon as the caller releases device_links_write_lock(). This is necessary
1117 * to make sure the sync_state() is called in a timely fashion and the
1118 * put_device() is called on this device.
1119 */
__device_links_queue_sync_state(struct device * dev,struct list_head * list)1120 static void __device_links_queue_sync_state(struct device *dev,
1121 struct list_head *list)
1122 {
1123 struct device_link *link;
1124
1125 if (!dev_has_sync_state(dev))
1126 return;
1127 if (dev->state_synced)
1128 return;
1129
1130 list_for_each_entry(link, &dev->links.consumers, s_node) {
1131 if (!(link->flags & DL_FLAG_MANAGED))
1132 continue;
1133 if (link->status != DL_STATE_ACTIVE)
1134 return;
1135 }
1136
1137 /*
1138 * Set the flag here to avoid adding the same device to a list more
1139 * than once. This can happen if new consumers get added to the device
1140 * and probed before the list is flushed.
1141 */
1142 dev->state_synced = true;
1143
1144 if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1145 return;
1146
1147 get_device(dev);
1148 list_add_tail(&dev->links.defer_sync, list);
1149 }
1150
1151 /**
1152 * device_links_flush_sync_list - Call sync_state() on a list of devices
1153 * @list: List of devices to call sync_state() on
1154 * @dont_lock_dev: Device for which lock is already held by the caller
1155 *
1156 * Calls sync_state() on all the devices that have been queued for it. This
1157 * function is used in conjunction with __device_links_queue_sync_state(). The
1158 * @dont_lock_dev parameter is useful when this function is called from a
1159 * context where a device lock is already held.
1160 */
device_links_flush_sync_list(struct list_head * list,struct device * dont_lock_dev)1161 static void device_links_flush_sync_list(struct list_head *list,
1162 struct device *dont_lock_dev)
1163 {
1164 struct device *dev, *tmp;
1165
1166 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1167 list_del_init(&dev->links.defer_sync);
1168
1169 if (dev != dont_lock_dev)
1170 device_lock(dev);
1171
1172 dev_sync_state(dev);
1173
1174 if (dev != dont_lock_dev)
1175 device_unlock(dev);
1176
1177 put_device(dev);
1178 }
1179 }
1180
device_links_supplier_sync_state_pause(void)1181 void device_links_supplier_sync_state_pause(void)
1182 {
1183 device_links_write_lock();
1184 defer_sync_state_count++;
1185 device_links_write_unlock();
1186 }
1187
device_links_supplier_sync_state_resume(void)1188 void device_links_supplier_sync_state_resume(void)
1189 {
1190 struct device *dev, *tmp;
1191 LIST_HEAD(sync_list);
1192
1193 device_links_write_lock();
1194 if (!defer_sync_state_count) {
1195 WARN(true, "Unmatched sync_state pause/resume!");
1196 goto out;
1197 }
1198 defer_sync_state_count--;
1199 if (defer_sync_state_count)
1200 goto out;
1201
1202 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1203 /*
1204 * Delete from deferred_sync list before queuing it to
1205 * sync_list because defer_sync is used for both lists.
1206 */
1207 list_del_init(&dev->links.defer_sync);
1208 __device_links_queue_sync_state(dev, &sync_list);
1209 }
1210 out:
1211 device_links_write_unlock();
1212
1213 device_links_flush_sync_list(&sync_list, NULL);
1214 }
1215
sync_state_resume_initcall(void)1216 static int sync_state_resume_initcall(void)
1217 {
1218 device_links_supplier_sync_state_resume();
1219 return 0;
1220 }
1221 late_initcall(sync_state_resume_initcall);
1222
__device_links_supplier_defer_sync(struct device * sup)1223 static void __device_links_supplier_defer_sync(struct device *sup)
1224 {
1225 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1226 list_add_tail(&sup->links.defer_sync, &deferred_sync);
1227 }
1228
device_link_drop_managed(struct device_link * link)1229 static void device_link_drop_managed(struct device_link *link)
1230 {
1231 link->flags &= ~DL_FLAG_MANAGED;
1232 WRITE_ONCE(link->status, DL_STATE_NONE);
1233 kref_put(&link->kref, __device_link_del);
1234 }
1235
waiting_for_supplier_show(struct device * dev,struct device_attribute * attr,char * buf)1236 static ssize_t waiting_for_supplier_show(struct device *dev,
1237 struct device_attribute *attr,
1238 char *buf)
1239 {
1240 bool val;
1241
1242 device_lock(dev);
1243 scoped_guard(mutex, &fwnode_link_lock)
1244 val = !!fwnode_links_check_suppliers(dev->fwnode);
1245 device_unlock(dev);
1246 return sysfs_emit(buf, "%u\n", val);
1247 }
1248 static DEVICE_ATTR_RO(waiting_for_supplier);
1249
1250 /**
1251 * device_links_force_bind - Prepares device to be force bound
1252 * @dev: Consumer device.
1253 *
1254 * device_bind_driver() force binds a device to a driver without calling any
1255 * driver probe functions. So the consumer really isn't going to wait for any
1256 * supplier before it's bound to the driver. We still want the device link
1257 * states to be sensible when this happens.
1258 *
1259 * In preparation for device_bind_driver(), this function goes through each
1260 * supplier device links and checks if the supplier is bound. If it is, then
1261 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1262 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1263 */
device_links_force_bind(struct device * dev)1264 void device_links_force_bind(struct device *dev)
1265 {
1266 struct device_link *link, *ln;
1267
1268 device_links_write_lock();
1269
1270 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1271 if (!(link->flags & DL_FLAG_MANAGED))
1272 continue;
1273
1274 if (link->status != DL_STATE_AVAILABLE) {
1275 device_link_drop_managed(link);
1276 continue;
1277 }
1278 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1279 }
1280 dev->links.status = DL_DEV_PROBING;
1281
1282 device_links_write_unlock();
1283 }
1284
1285 /**
1286 * device_links_driver_bound - Update device links after probing its driver.
1287 * @dev: Device to update the links for.
1288 *
1289 * The probe has been successful, so update links from this device to any
1290 * consumers by changing their status to "available".
1291 *
1292 * Also change the status of @dev's links to suppliers to "active".
1293 *
1294 * Links without the DL_FLAG_MANAGED flag set are ignored.
1295 */
device_links_driver_bound(struct device * dev)1296 void device_links_driver_bound(struct device *dev)
1297 {
1298 struct device_link *link, *ln;
1299 LIST_HEAD(sync_list);
1300
1301 /*
1302 * If a device binds successfully, it's expected to have created all
1303 * the device links it needs to or make new device links as it needs
1304 * them. So, fw_devlink no longer needs to create device links to any
1305 * of the device's suppliers.
1306 *
1307 * Also, if a child firmware node of this bound device is not added as a
1308 * device by now, assume it is never going to be added. Make this bound
1309 * device the fallback supplier to the dangling consumers of the child
1310 * firmware node because this bound device is probably implementing the
1311 * child firmware node functionality and we don't want the dangling
1312 * consumers to defer probe indefinitely waiting for a device for the
1313 * child firmware node.
1314 */
1315 if (dev->fwnode && dev->fwnode->dev == dev) {
1316 struct fwnode_handle *child;
1317
1318 fwnode_links_purge_suppliers(dev->fwnode);
1319
1320 guard(mutex)(&fwnode_link_lock);
1321
1322 fwnode_for_each_available_child_node(dev->fwnode, child)
1323 __fw_devlink_pickup_dangling_consumers(child,
1324 dev->fwnode);
1325 __fw_devlink_link_to_consumers(dev);
1326 }
1327 device_remove_file(dev, &dev_attr_waiting_for_supplier);
1328
1329 device_links_write_lock();
1330
1331 list_for_each_entry(link, &dev->links.consumers, s_node) {
1332 if (!(link->flags & DL_FLAG_MANAGED))
1333 continue;
1334
1335 /*
1336 * Links created during consumer probe may be in the "consumer
1337 * probe" state to start with if the supplier is still probing
1338 * when they are created and they may become "active" if the
1339 * consumer probe returns first. Skip them here.
1340 */
1341 if (link->status == DL_STATE_CONSUMER_PROBE ||
1342 link->status == DL_STATE_ACTIVE)
1343 continue;
1344
1345 WARN_ON(link->status != DL_STATE_DORMANT);
1346 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1347
1348 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1349 driver_deferred_probe_add(link->consumer);
1350 }
1351
1352 if (defer_sync_state_count)
1353 __device_links_supplier_defer_sync(dev);
1354 else
1355 __device_links_queue_sync_state(dev, &sync_list);
1356
1357 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1358 struct device *supplier;
1359
1360 if (!(link->flags & DL_FLAG_MANAGED))
1361 continue;
1362
1363 supplier = link->supplier;
1364 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1365 /*
1366 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1367 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1368 * save to drop the managed link completely.
1369 */
1370 device_link_drop_managed(link);
1371 } else if (dev_is_best_effort(dev) &&
1372 link->flags & DL_FLAG_INFERRED &&
1373 link->status != DL_STATE_CONSUMER_PROBE &&
1374 !link->supplier->can_match) {
1375 /*
1376 * When dev_is_best_effort() is true, we ignore device
1377 * links to suppliers that don't have a driver. If the
1378 * consumer device still managed to probe, there's no
1379 * point in maintaining a device link in a weird state
1380 * (consumer probed before supplier). So delete it.
1381 */
1382 device_link_drop_managed(link);
1383 } else {
1384 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1385 WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1386 }
1387
1388 /*
1389 * This needs to be done even for the deleted
1390 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1391 * device link that was preventing the supplier from getting a
1392 * sync_state() call.
1393 */
1394 if (defer_sync_state_count)
1395 __device_links_supplier_defer_sync(supplier);
1396 else
1397 __device_links_queue_sync_state(supplier, &sync_list);
1398 }
1399
1400 dev->links.status = DL_DEV_DRIVER_BOUND;
1401
1402 device_links_write_unlock();
1403
1404 device_links_flush_sync_list(&sync_list, dev);
1405 }
1406
1407 /**
1408 * __device_links_no_driver - Update links of a device without a driver.
1409 * @dev: Device without a drvier.
1410 *
1411 * Delete all non-persistent links from this device to any suppliers.
1412 *
1413 * Persistent links stay around, but their status is changed to "available",
1414 * unless they already are in the "supplier unbind in progress" state in which
1415 * case they need not be updated.
1416 *
1417 * Links without the DL_FLAG_MANAGED flag set are ignored.
1418 */
__device_links_no_driver(struct device * dev)1419 static void __device_links_no_driver(struct device *dev)
1420 {
1421 struct device_link *link, *ln;
1422
1423 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1424 if (!(link->flags & DL_FLAG_MANAGED))
1425 continue;
1426
1427 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1428 device_link_drop_managed(link);
1429 continue;
1430 }
1431
1432 if (link->status != DL_STATE_CONSUMER_PROBE &&
1433 link->status != DL_STATE_ACTIVE)
1434 continue;
1435
1436 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1437 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1438 } else {
1439 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1440 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1441 }
1442 }
1443
1444 dev->links.status = DL_DEV_NO_DRIVER;
1445 }
1446
1447 /**
1448 * device_links_no_driver - Update links after failing driver probe.
1449 * @dev: Device whose driver has just failed to probe.
1450 *
1451 * Clean up leftover links to consumers for @dev and invoke
1452 * %__device_links_no_driver() to update links to suppliers for it as
1453 * appropriate.
1454 *
1455 * Links without the DL_FLAG_MANAGED flag set are ignored.
1456 */
device_links_no_driver(struct device * dev)1457 void device_links_no_driver(struct device *dev)
1458 {
1459 struct device_link *link;
1460
1461 device_links_write_lock();
1462
1463 list_for_each_entry(link, &dev->links.consumers, s_node) {
1464 if (!(link->flags & DL_FLAG_MANAGED))
1465 continue;
1466
1467 /*
1468 * The probe has failed, so if the status of the link is
1469 * "consumer probe" or "active", it must have been added by
1470 * a probing consumer while this device was still probing.
1471 * Change its state to "dormant", as it represents a valid
1472 * relationship, but it is not functionally meaningful.
1473 */
1474 if (link->status == DL_STATE_CONSUMER_PROBE ||
1475 link->status == DL_STATE_ACTIVE)
1476 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1477 }
1478
1479 __device_links_no_driver(dev);
1480
1481 device_links_write_unlock();
1482 }
1483
1484 /**
1485 * device_links_driver_cleanup - Update links after driver removal.
1486 * @dev: Device whose driver has just gone away.
1487 *
1488 * Update links to consumers for @dev by changing their status to "dormant" and
1489 * invoke %__device_links_no_driver() to update links to suppliers for it as
1490 * appropriate.
1491 *
1492 * Links without the DL_FLAG_MANAGED flag set are ignored.
1493 */
device_links_driver_cleanup(struct device * dev)1494 void device_links_driver_cleanup(struct device *dev)
1495 {
1496 struct device_link *link, *ln;
1497
1498 device_links_write_lock();
1499
1500 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1501 if (!(link->flags & DL_FLAG_MANAGED))
1502 continue;
1503
1504 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1505 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1506
1507 /*
1508 * autoremove the links between this @dev and its consumer
1509 * devices that are not active, i.e. where the link state
1510 * has moved to DL_STATE_SUPPLIER_UNBIND.
1511 */
1512 if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1513 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1514 device_link_drop_managed(link);
1515
1516 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1517 }
1518
1519 list_del_init(&dev->links.defer_sync);
1520 __device_links_no_driver(dev);
1521
1522 device_links_write_unlock();
1523 }
1524
1525 /**
1526 * device_links_busy - Check if there are any busy links to consumers.
1527 * @dev: Device to check.
1528 *
1529 * Check each consumer of the device and return 'true' if its link's status
1530 * is one of "consumer probe" or "active" (meaning that the given consumer is
1531 * probing right now or its driver is present). Otherwise, change the link
1532 * state to "supplier unbind" to prevent the consumer from being probed
1533 * successfully going forward.
1534 *
1535 * Return 'false' if there are no probing or active consumers.
1536 *
1537 * Links without the DL_FLAG_MANAGED flag set are ignored.
1538 */
device_links_busy(struct device * dev)1539 bool device_links_busy(struct device *dev)
1540 {
1541 struct device_link *link;
1542 bool ret = false;
1543
1544 device_links_write_lock();
1545
1546 list_for_each_entry(link, &dev->links.consumers, s_node) {
1547 if (!(link->flags & DL_FLAG_MANAGED))
1548 continue;
1549
1550 if (link->status == DL_STATE_CONSUMER_PROBE
1551 || link->status == DL_STATE_ACTIVE) {
1552 ret = true;
1553 break;
1554 }
1555 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1556 }
1557
1558 dev->links.status = DL_DEV_UNBINDING;
1559
1560 device_links_write_unlock();
1561 return ret;
1562 }
1563
1564 /**
1565 * device_links_unbind_consumers - Force unbind consumers of the given device.
1566 * @dev: Device to unbind the consumers of.
1567 *
1568 * Walk the list of links to consumers for @dev and if any of them is in the
1569 * "consumer probe" state, wait for all device probes in progress to complete
1570 * and start over.
1571 *
1572 * If that's not the case, change the status of the link to "supplier unbind"
1573 * and check if the link was in the "active" state. If so, force the consumer
1574 * driver to unbind and start over (the consumer will not re-probe as we have
1575 * changed the state of the link already).
1576 *
1577 * Links without the DL_FLAG_MANAGED flag set are ignored.
1578 */
device_links_unbind_consumers(struct device * dev)1579 void device_links_unbind_consumers(struct device *dev)
1580 {
1581 struct device_link *link;
1582
1583 start:
1584 device_links_write_lock();
1585
1586 list_for_each_entry(link, &dev->links.consumers, s_node) {
1587 enum device_link_state status;
1588
1589 if (!(link->flags & DL_FLAG_MANAGED) ||
1590 link->flags & DL_FLAG_SYNC_STATE_ONLY)
1591 continue;
1592
1593 status = link->status;
1594 if (status == DL_STATE_CONSUMER_PROBE) {
1595 device_links_write_unlock();
1596
1597 wait_for_device_probe();
1598 goto start;
1599 }
1600 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1601 if (status == DL_STATE_ACTIVE) {
1602 struct device *consumer = link->consumer;
1603
1604 get_device(consumer);
1605
1606 device_links_write_unlock();
1607
1608 device_release_driver_internal(consumer, NULL,
1609 consumer->parent);
1610 put_device(consumer);
1611 goto start;
1612 }
1613 }
1614
1615 device_links_write_unlock();
1616 }
1617
1618 /**
1619 * device_links_purge - Delete existing links to other devices.
1620 * @dev: Target device.
1621 */
device_links_purge(struct device * dev)1622 static void device_links_purge(struct device *dev)
1623 {
1624 struct device_link *link, *ln;
1625
1626 if (dev->class == &devlink_class)
1627 return;
1628
1629 /*
1630 * Delete all of the remaining links from this device to any other
1631 * devices (either consumers or suppliers).
1632 */
1633 device_links_write_lock();
1634
1635 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1636 WARN_ON(link->status == DL_STATE_ACTIVE);
1637 __device_link_del(&link->kref);
1638 }
1639
1640 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1641 WARN_ON(link->status != DL_STATE_DORMANT &&
1642 link->status != DL_STATE_NONE);
1643 __device_link_del(&link->kref);
1644 }
1645
1646 device_links_write_unlock();
1647 }
1648
1649 #define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \
1650 DL_FLAG_SYNC_STATE_ONLY)
1651 #define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \
1652 DL_FLAG_AUTOPROBE_CONSUMER)
1653 #define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \
1654 DL_FLAG_PM_RUNTIME)
1655
1656 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
fw_devlink_setup(char * arg)1657 static int __init fw_devlink_setup(char *arg)
1658 {
1659 if (!arg)
1660 return -EINVAL;
1661
1662 if (strcmp(arg, "off") == 0) {
1663 fw_devlink_flags = 0;
1664 } else if (strcmp(arg, "permissive") == 0) {
1665 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1666 } else if (strcmp(arg, "on") == 0) {
1667 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1668 } else if (strcmp(arg, "rpm") == 0) {
1669 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1670 }
1671 return 0;
1672 }
1673 early_param("fw_devlink", fw_devlink_setup);
1674
1675 static bool fw_devlink_strict;
fw_devlink_strict_setup(char * arg)1676 static int __init fw_devlink_strict_setup(char *arg)
1677 {
1678 return kstrtobool(arg, &fw_devlink_strict);
1679 }
1680 early_param("fw_devlink.strict", fw_devlink_strict_setup);
1681
1682 #define FW_DEVLINK_SYNC_STATE_STRICT 0
1683 #define FW_DEVLINK_SYNC_STATE_TIMEOUT 1
1684
1685 #ifndef CONFIG_FW_DEVLINK_SYNC_STATE_TIMEOUT
1686 static int fw_devlink_sync_state;
1687 #else
1688 static int fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1689 #endif
1690
fw_devlink_sync_state_setup(char * arg)1691 static int __init fw_devlink_sync_state_setup(char *arg)
1692 {
1693 if (!arg)
1694 return -EINVAL;
1695
1696 if (strcmp(arg, "strict") == 0) {
1697 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_STRICT;
1698 return 0;
1699 } else if (strcmp(arg, "timeout") == 0) {
1700 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1701 return 0;
1702 }
1703 return -EINVAL;
1704 }
1705 early_param("fw_devlink.sync_state", fw_devlink_sync_state_setup);
1706
fw_devlink_get_flags(u8 fwlink_flags)1707 static inline u32 fw_devlink_get_flags(u8 fwlink_flags)
1708 {
1709 if (fwlink_flags & FWLINK_FLAG_CYCLE)
1710 return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE;
1711
1712 return fw_devlink_flags;
1713 }
1714
fw_devlink_is_permissive(void)1715 static bool fw_devlink_is_permissive(void)
1716 {
1717 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1718 }
1719
fw_devlink_is_strict(void)1720 bool fw_devlink_is_strict(void)
1721 {
1722 return fw_devlink_strict && !fw_devlink_is_permissive();
1723 }
1724
fw_devlink_parse_fwnode(struct fwnode_handle * fwnode)1725 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1726 {
1727 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1728 return;
1729
1730 fwnode_call_int_op(fwnode, add_links);
1731 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1732 }
1733
fw_devlink_parse_fwtree(struct fwnode_handle * fwnode)1734 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1735 {
1736 struct fwnode_handle *child = NULL;
1737
1738 fw_devlink_parse_fwnode(fwnode);
1739
1740 while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1741 fw_devlink_parse_fwtree(child);
1742 }
1743
fw_devlink_relax_link(struct device_link * link)1744 static void fw_devlink_relax_link(struct device_link *link)
1745 {
1746 if (!(link->flags & DL_FLAG_INFERRED))
1747 return;
1748
1749 if (device_link_flag_is_sync_state_only(link->flags))
1750 return;
1751
1752 pm_runtime_drop_link(link);
1753 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1754 dev_dbg(link->consumer, "Relaxing link with %s\n",
1755 dev_name(link->supplier));
1756 }
1757
fw_devlink_no_driver(struct device * dev,void * data)1758 static int fw_devlink_no_driver(struct device *dev, void *data)
1759 {
1760 struct device_link *link = to_devlink(dev);
1761
1762 if (!link->supplier->can_match)
1763 fw_devlink_relax_link(link);
1764
1765 return 0;
1766 }
1767
fw_devlink_drivers_done(void)1768 void fw_devlink_drivers_done(void)
1769 {
1770 fw_devlink_drv_reg_done = true;
1771 device_links_write_lock();
1772 class_for_each_device(&devlink_class, NULL, NULL,
1773 fw_devlink_no_driver);
1774 device_links_write_unlock();
1775 }
1776
fw_devlink_dev_sync_state(struct device * dev,void * data)1777 static int fw_devlink_dev_sync_state(struct device *dev, void *data)
1778 {
1779 struct device_link *link = to_devlink(dev);
1780 struct device *sup = link->supplier;
1781
1782 if (!(link->flags & DL_FLAG_MANAGED) ||
1783 link->status == DL_STATE_ACTIVE || sup->state_synced ||
1784 !dev_has_sync_state(sup))
1785 return 0;
1786
1787 if (fw_devlink_sync_state == FW_DEVLINK_SYNC_STATE_STRICT) {
1788 dev_warn(sup, "sync_state() pending due to %s\n",
1789 dev_name(link->consumer));
1790 return 0;
1791 }
1792
1793 if (!list_empty(&sup->links.defer_sync))
1794 return 0;
1795
1796 dev_warn(sup, "Timed out. Forcing sync_state()\n");
1797 sup->state_synced = true;
1798 get_device(sup);
1799 list_add_tail(&sup->links.defer_sync, data);
1800
1801 return 0;
1802 }
1803
fw_devlink_probing_done(void)1804 void fw_devlink_probing_done(void)
1805 {
1806 LIST_HEAD(sync_list);
1807
1808 device_links_write_lock();
1809 class_for_each_device(&devlink_class, NULL, &sync_list,
1810 fw_devlink_dev_sync_state);
1811 device_links_write_unlock();
1812 device_links_flush_sync_list(&sync_list, NULL);
1813 }
1814
1815 /**
1816 * wait_for_init_devices_probe - Try to probe any device needed for init
1817 *
1818 * Some devices might need to be probed and bound successfully before the kernel
1819 * boot sequence can finish and move on to init/userspace. For example, a
1820 * network interface might need to be bound to be able to mount a NFS rootfs.
1821 *
1822 * With fw_devlink=on by default, some of these devices might be blocked from
1823 * probing because they are waiting on a optional supplier that doesn't have a
1824 * driver. While fw_devlink will eventually identify such devices and unblock
1825 * the probing automatically, it might be too late by the time it unblocks the
1826 * probing of devices. For example, the IP4 autoconfig might timeout before
1827 * fw_devlink unblocks probing of the network interface.
1828 *
1829 * This function is available to temporarily try and probe all devices that have
1830 * a driver even if some of their suppliers haven't been added or don't have
1831 * drivers.
1832 *
1833 * The drivers can then decide which of the suppliers are optional vs mandatory
1834 * and probe the device if possible. By the time this function returns, all such
1835 * "best effort" probes are guaranteed to be completed. If a device successfully
1836 * probes in this mode, we delete all fw_devlink discovered dependencies of that
1837 * device where the supplier hasn't yet probed successfully because they have to
1838 * be optional dependencies.
1839 *
1840 * Any devices that didn't successfully probe go back to being treated as if
1841 * this function was never called.
1842 *
1843 * This also means that some devices that aren't needed for init and could have
1844 * waited for their optional supplier to probe (when the supplier's module is
1845 * loaded later on) would end up probing prematurely with limited functionality.
1846 * So call this function only when boot would fail without it.
1847 */
wait_for_init_devices_probe(void)1848 void __init wait_for_init_devices_probe(void)
1849 {
1850 if (!fw_devlink_flags || fw_devlink_is_permissive())
1851 return;
1852
1853 /*
1854 * Wait for all ongoing probes to finish so that the "best effort" is
1855 * only applied to devices that can't probe otherwise.
1856 */
1857 wait_for_device_probe();
1858
1859 pr_info("Trying to probe devices needed for running init ...\n");
1860 fw_devlink_best_effort = true;
1861 driver_deferred_probe_trigger();
1862
1863 /*
1864 * Wait for all "best effort" probes to finish before going back to
1865 * normal enforcement.
1866 */
1867 wait_for_device_probe();
1868 fw_devlink_best_effort = false;
1869 }
1870
fw_devlink_unblock_consumers(struct device * dev)1871 static void fw_devlink_unblock_consumers(struct device *dev)
1872 {
1873 struct device_link *link;
1874
1875 if (!fw_devlink_flags || fw_devlink_is_permissive())
1876 return;
1877
1878 device_links_write_lock();
1879 list_for_each_entry(link, &dev->links.consumers, s_node)
1880 fw_devlink_relax_link(link);
1881 device_links_write_unlock();
1882 }
1883
1884 #define get_dev_from_fwnode(fwnode) get_device((fwnode)->dev)
1885
fwnode_init_without_drv(struct fwnode_handle * fwnode)1886 static bool fwnode_init_without_drv(struct fwnode_handle *fwnode)
1887 {
1888 struct device *dev;
1889 bool ret;
1890
1891 if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED))
1892 return false;
1893
1894 dev = get_dev_from_fwnode(fwnode);
1895 ret = !dev || dev->links.status == DL_DEV_NO_DRIVER;
1896 put_device(dev);
1897
1898 return ret;
1899 }
1900
fwnode_ancestor_init_without_drv(struct fwnode_handle * fwnode)1901 static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode)
1902 {
1903 struct fwnode_handle *parent;
1904
1905 fwnode_for_each_parent_node(fwnode, parent) {
1906 if (fwnode_init_without_drv(parent)) {
1907 fwnode_handle_put(parent);
1908 return true;
1909 }
1910 }
1911
1912 return false;
1913 }
1914
1915 /**
1916 * fwnode_is_ancestor_of - Test if @ancestor is ancestor of @child
1917 * @ancestor: Firmware which is tested for being an ancestor
1918 * @child: Firmware which is tested for being the child
1919 *
1920 * A node is considered an ancestor of itself too.
1921 *
1922 * Return: true if @ancestor is an ancestor of @child. Otherwise, returns false.
1923 */
fwnode_is_ancestor_of(const struct fwnode_handle * ancestor,const struct fwnode_handle * child)1924 static bool fwnode_is_ancestor_of(const struct fwnode_handle *ancestor,
1925 const struct fwnode_handle *child)
1926 {
1927 struct fwnode_handle *parent;
1928
1929 if (IS_ERR_OR_NULL(ancestor))
1930 return false;
1931
1932 if (child == ancestor)
1933 return true;
1934
1935 fwnode_for_each_parent_node(child, parent) {
1936 if (parent == ancestor) {
1937 fwnode_handle_put(parent);
1938 return true;
1939 }
1940 }
1941 return false;
1942 }
1943
1944 /**
1945 * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode
1946 * @fwnode: firmware node
1947 *
1948 * Given a firmware node (@fwnode), this function finds its closest ancestor
1949 * firmware node that has a corresponding struct device and returns that struct
1950 * device.
1951 *
1952 * The caller is responsible for calling put_device() on the returned device
1953 * pointer.
1954 *
1955 * Return: a pointer to the device of the @fwnode's closest ancestor.
1956 */
fwnode_get_next_parent_dev(const struct fwnode_handle * fwnode)1957 static struct device *fwnode_get_next_parent_dev(const struct fwnode_handle *fwnode)
1958 {
1959 struct fwnode_handle *parent;
1960 struct device *dev;
1961
1962 fwnode_for_each_parent_node(fwnode, parent) {
1963 dev = get_dev_from_fwnode(parent);
1964 if (dev) {
1965 fwnode_handle_put(parent);
1966 return dev;
1967 }
1968 }
1969 return NULL;
1970 }
1971
1972 /**
1973 * __fw_devlink_relax_cycles - Relax and mark dependency cycles.
1974 * @con: Potential consumer device.
1975 * @sup_handle: Potential supplier's fwnode.
1976 *
1977 * Needs to be called with fwnode_lock and device link lock held.
1978 *
1979 * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly
1980 * depend on @con. This function can detect multiple cyles between @sup_handle
1981 * and @con. When such dependency cycles are found, convert all device links
1982 * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark
1983 * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are
1984 * converted into a device link in the future, they are created as
1985 * SYNC_STATE_ONLY device links. This is the equivalent of doing
1986 * fw_devlink=permissive just between the devices in the cycle. We need to do
1987 * this because, at this point, fw_devlink can't tell which of these
1988 * dependencies is not a real dependency.
1989 *
1990 * Return true if one or more cycles were found. Otherwise, return false.
1991 */
__fw_devlink_relax_cycles(struct device * con,struct fwnode_handle * sup_handle)1992 static bool __fw_devlink_relax_cycles(struct device *con,
1993 struct fwnode_handle *sup_handle)
1994 {
1995 struct device *sup_dev = NULL, *par_dev = NULL;
1996 struct fwnode_link *link;
1997 struct device_link *dev_link;
1998 bool ret = false;
1999
2000 if (!sup_handle)
2001 return false;
2002
2003 /*
2004 * We aren't trying to find all cycles. Just a cycle between con and
2005 * sup_handle.
2006 */
2007 if (sup_handle->flags & FWNODE_FLAG_VISITED)
2008 return false;
2009
2010 sup_handle->flags |= FWNODE_FLAG_VISITED;
2011
2012 sup_dev = get_dev_from_fwnode(sup_handle);
2013
2014 /* Termination condition. */
2015 if (sup_dev == con) {
2016 pr_debug("----- cycle: start -----\n");
2017 ret = true;
2018 goto out;
2019 }
2020
2021 /*
2022 * If sup_dev is bound to a driver and @con hasn't started binding to a
2023 * driver, sup_dev can't be a consumer of @con. So, no need to check
2024 * further.
2025 */
2026 if (sup_dev && sup_dev->links.status == DL_DEV_DRIVER_BOUND &&
2027 con->links.status == DL_DEV_NO_DRIVER) {
2028 ret = false;
2029 goto out;
2030 }
2031
2032 list_for_each_entry(link, &sup_handle->suppliers, c_hook) {
2033 if (link->flags & FWLINK_FLAG_IGNORE)
2034 continue;
2035
2036 if (__fw_devlink_relax_cycles(con, link->supplier)) {
2037 __fwnode_link_cycle(link);
2038 ret = true;
2039 }
2040 }
2041
2042 /*
2043 * Give priority to device parent over fwnode parent to account for any
2044 * quirks in how fwnodes are converted to devices.
2045 */
2046 if (sup_dev)
2047 par_dev = get_device(sup_dev->parent);
2048 else
2049 par_dev = fwnode_get_next_parent_dev(sup_handle);
2050
2051 if (par_dev && __fw_devlink_relax_cycles(con, par_dev->fwnode)) {
2052 pr_debug("%pfwf: cycle: child of %pfwf\n", sup_handle,
2053 par_dev->fwnode);
2054 ret = true;
2055 }
2056
2057 if (!sup_dev)
2058 goto out;
2059
2060 list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) {
2061 /*
2062 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as
2063 * such due to a cycle.
2064 */
2065 if (device_link_flag_is_sync_state_only(dev_link->flags) &&
2066 !(dev_link->flags & DL_FLAG_CYCLE))
2067 continue;
2068
2069 if (__fw_devlink_relax_cycles(con,
2070 dev_link->supplier->fwnode)) {
2071 pr_debug("%pfwf: cycle: depends on %pfwf\n", sup_handle,
2072 dev_link->supplier->fwnode);
2073 fw_devlink_relax_link(dev_link);
2074 dev_link->flags |= DL_FLAG_CYCLE;
2075 ret = true;
2076 }
2077 }
2078
2079 out:
2080 sup_handle->flags &= ~FWNODE_FLAG_VISITED;
2081 put_device(sup_dev);
2082 put_device(par_dev);
2083 return ret;
2084 }
2085
2086 /**
2087 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
2088 * @con: consumer device for the device link
2089 * @sup_handle: fwnode handle of supplier
2090 * @link: fwnode link that's being converted to a device link
2091 *
2092 * This function will try to create a device link between the consumer device
2093 * @con and the supplier device represented by @sup_handle.
2094 *
2095 * The supplier has to be provided as a fwnode because incorrect cycles in
2096 * fwnode links can sometimes cause the supplier device to never be created.
2097 * This function detects such cases and returns an error if it cannot create a
2098 * device link from the consumer to a missing supplier.
2099 *
2100 * Returns,
2101 * 0 on successfully creating a device link
2102 * -EINVAL if the device link cannot be created as expected
2103 * -EAGAIN if the device link cannot be created right now, but it may be
2104 * possible to do that in the future
2105 */
fw_devlink_create_devlink(struct device * con,struct fwnode_handle * sup_handle,struct fwnode_link * link)2106 static int fw_devlink_create_devlink(struct device *con,
2107 struct fwnode_handle *sup_handle,
2108 struct fwnode_link *link)
2109 {
2110 struct device *sup_dev;
2111 int ret = 0;
2112 u32 flags;
2113
2114 if (link->flags & FWLINK_FLAG_IGNORE)
2115 return 0;
2116
2117 if (con->fwnode == link->consumer)
2118 flags = fw_devlink_get_flags(link->flags);
2119 else
2120 flags = FW_DEVLINK_FLAGS_PERMISSIVE;
2121
2122 /*
2123 * In some cases, a device P might also be a supplier to its child node
2124 * C. However, this would defer the probe of C until the probe of P
2125 * completes successfully. This is perfectly fine in the device driver
2126 * model. device_add() doesn't guarantee probe completion of the device
2127 * by the time it returns.
2128 *
2129 * However, there are a few drivers that assume C will finish probing
2130 * as soon as it's added and before P finishes probing. So, we provide
2131 * a flag to let fw_devlink know not to delay the probe of C until the
2132 * probe of P completes successfully.
2133 *
2134 * When such a flag is set, we can't create device links where P is the
2135 * supplier of C as that would delay the probe of C.
2136 */
2137 if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
2138 fwnode_is_ancestor_of(sup_handle, con->fwnode))
2139 return -EINVAL;
2140
2141 /*
2142 * SYNC_STATE_ONLY device links don't block probing and supports cycles.
2143 * So, one might expect that cycle detection isn't necessary for them.
2144 * However, if the device link was marked as SYNC_STATE_ONLY because
2145 * it's part of a cycle, then we still need to do cycle detection. This
2146 * is because the consumer and supplier might be part of multiple cycles
2147 * and we need to detect all those cycles.
2148 */
2149 if (!device_link_flag_is_sync_state_only(flags) ||
2150 flags & DL_FLAG_CYCLE) {
2151 device_links_write_lock();
2152 if (__fw_devlink_relax_cycles(con, sup_handle)) {
2153 __fwnode_link_cycle(link);
2154 flags = fw_devlink_get_flags(link->flags);
2155 pr_debug("----- cycle: end -----\n");
2156 dev_info(con, "Fixed dependency cycle(s) with %pfwf\n",
2157 sup_handle);
2158 }
2159 device_links_write_unlock();
2160 }
2161
2162 if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE)
2163 sup_dev = fwnode_get_next_parent_dev(sup_handle);
2164 else
2165 sup_dev = get_dev_from_fwnode(sup_handle);
2166
2167 if (sup_dev) {
2168 /*
2169 * If it's one of those drivers that don't actually bind to
2170 * their device using driver core, then don't wait on this
2171 * supplier device indefinitely.
2172 */
2173 if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
2174 sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
2175 dev_dbg(con,
2176 "Not linking %pfwf - dev might never probe\n",
2177 sup_handle);
2178 ret = -EINVAL;
2179 goto out;
2180 }
2181
2182 if (con != sup_dev && !device_link_add(con, sup_dev, flags)) {
2183 dev_err(con, "Failed to create device link (0x%x) with %s\n",
2184 flags, dev_name(sup_dev));
2185 ret = -EINVAL;
2186 }
2187
2188 goto out;
2189 }
2190
2191 /*
2192 * Supplier or supplier's ancestor already initialized without a struct
2193 * device or being probed by a driver.
2194 */
2195 if (fwnode_init_without_drv(sup_handle) ||
2196 fwnode_ancestor_init_without_drv(sup_handle)) {
2197 dev_dbg(con, "Not linking %pfwf - might never become dev\n",
2198 sup_handle);
2199 return -EINVAL;
2200 }
2201
2202 ret = -EAGAIN;
2203 out:
2204 put_device(sup_dev);
2205 return ret;
2206 }
2207
2208 /**
2209 * __fw_devlink_link_to_consumers - Create device links to consumers of a device
2210 * @dev: Device that needs to be linked to its consumers
2211 *
2212 * This function looks at all the consumer fwnodes of @dev and creates device
2213 * links between the consumer device and @dev (supplier).
2214 *
2215 * If the consumer device has not been added yet, then this function creates a
2216 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
2217 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
2218 * sync_state() callback before the real consumer device gets to be added and
2219 * then probed.
2220 *
2221 * Once device links are created from the real consumer to @dev (supplier), the
2222 * fwnode links are deleted.
2223 */
__fw_devlink_link_to_consumers(struct device * dev)2224 static void __fw_devlink_link_to_consumers(struct device *dev)
2225 {
2226 struct fwnode_handle *fwnode = dev->fwnode;
2227 struct fwnode_link *link, *tmp;
2228
2229 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
2230 struct device *con_dev;
2231 bool own_link = true;
2232 int ret;
2233
2234 con_dev = get_dev_from_fwnode(link->consumer);
2235 /*
2236 * If consumer device is not available yet, make a "proxy"
2237 * SYNC_STATE_ONLY link from the consumer's parent device to
2238 * the supplier device. This is necessary to make sure the
2239 * supplier doesn't get a sync_state() callback before the real
2240 * consumer can create a device link to the supplier.
2241 *
2242 * This proxy link step is needed to handle the case where the
2243 * consumer's parent device is added before the supplier.
2244 */
2245 if (!con_dev) {
2246 con_dev = fwnode_get_next_parent_dev(link->consumer);
2247 /*
2248 * However, if the consumer's parent device is also the
2249 * parent of the supplier, don't create a
2250 * consumer-supplier link from the parent to its child
2251 * device. Such a dependency is impossible.
2252 */
2253 if (con_dev &&
2254 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
2255 put_device(con_dev);
2256 con_dev = NULL;
2257 } else {
2258 own_link = false;
2259 }
2260 }
2261
2262 if (!con_dev)
2263 continue;
2264
2265 ret = fw_devlink_create_devlink(con_dev, fwnode, link);
2266 put_device(con_dev);
2267 if (!own_link || ret == -EAGAIN)
2268 continue;
2269
2270 __fwnode_link_del(link);
2271 }
2272 }
2273
2274 /**
2275 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
2276 * @dev: The consumer device that needs to be linked to its suppliers
2277 * @fwnode: Root of the fwnode tree that is used to create device links
2278 *
2279 * This function looks at all the supplier fwnodes of fwnode tree rooted at
2280 * @fwnode and creates device links between @dev (consumer) and all the
2281 * supplier devices of the entire fwnode tree at @fwnode.
2282 *
2283 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
2284 * and the real suppliers of @dev. Once these device links are created, the
2285 * fwnode links are deleted.
2286 *
2287 * In addition, it also looks at all the suppliers of the entire fwnode tree
2288 * because some of the child devices of @dev that have not been added yet
2289 * (because @dev hasn't probed) might already have their suppliers added to
2290 * driver core. So, this function creates SYNC_STATE_ONLY device links between
2291 * @dev (consumer) and these suppliers to make sure they don't execute their
2292 * sync_state() callbacks before these child devices have a chance to create
2293 * their device links. The fwnode links that correspond to the child devices
2294 * aren't delete because they are needed later to create the device links
2295 * between the real consumer and supplier devices.
2296 */
__fw_devlink_link_to_suppliers(struct device * dev,struct fwnode_handle * fwnode)2297 static void __fw_devlink_link_to_suppliers(struct device *dev,
2298 struct fwnode_handle *fwnode)
2299 {
2300 bool own_link = (dev->fwnode == fwnode);
2301 struct fwnode_link *link, *tmp;
2302 struct fwnode_handle *child = NULL;
2303
2304 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
2305 int ret;
2306 struct fwnode_handle *sup = link->supplier;
2307
2308 ret = fw_devlink_create_devlink(dev, sup, link);
2309 if (!own_link || ret == -EAGAIN)
2310 continue;
2311
2312 __fwnode_link_del(link);
2313 }
2314
2315 /*
2316 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
2317 * all the descendants. This proxy link step is needed to handle the
2318 * case where the supplier is added before the consumer's parent device
2319 * (@dev).
2320 */
2321 while ((child = fwnode_get_next_available_child_node(fwnode, child)))
2322 __fw_devlink_link_to_suppliers(dev, child);
2323 }
2324
fw_devlink_link_device(struct device * dev)2325 static void fw_devlink_link_device(struct device *dev)
2326 {
2327 struct fwnode_handle *fwnode = dev->fwnode;
2328
2329 if (!fw_devlink_flags)
2330 return;
2331
2332 fw_devlink_parse_fwtree(fwnode);
2333
2334 guard(mutex)(&fwnode_link_lock);
2335
2336 __fw_devlink_link_to_consumers(dev);
2337 __fw_devlink_link_to_suppliers(dev, fwnode);
2338 }
2339
2340 /* Device links support end. */
2341
2342 static struct kobject *dev_kobj;
2343
2344 /* /sys/dev/char */
2345 static struct kobject *sysfs_dev_char_kobj;
2346
2347 /* /sys/dev/block */
2348 static struct kobject *sysfs_dev_block_kobj;
2349
2350 static DEFINE_MUTEX(device_hotplug_lock);
2351
lock_device_hotplug(void)2352 void lock_device_hotplug(void)
2353 {
2354 mutex_lock(&device_hotplug_lock);
2355 }
2356
unlock_device_hotplug(void)2357 void unlock_device_hotplug(void)
2358 {
2359 mutex_unlock(&device_hotplug_lock);
2360 }
2361
lock_device_hotplug_sysfs(void)2362 int lock_device_hotplug_sysfs(void)
2363 {
2364 if (mutex_trylock(&device_hotplug_lock))
2365 return 0;
2366
2367 /* Avoid busy looping (5 ms of sleep should do). */
2368 msleep(5);
2369 return restart_syscall();
2370 }
2371
2372 #ifdef CONFIG_BLOCK
device_is_not_partition(struct device * dev)2373 static inline int device_is_not_partition(struct device *dev)
2374 {
2375 return !(dev->type == &part_type);
2376 }
2377 #else
device_is_not_partition(struct device * dev)2378 static inline int device_is_not_partition(struct device *dev)
2379 {
2380 return 1;
2381 }
2382 #endif
2383
device_platform_notify(struct device * dev)2384 static void device_platform_notify(struct device *dev)
2385 {
2386 acpi_device_notify(dev);
2387
2388 software_node_notify(dev);
2389 }
2390
device_platform_notify_remove(struct device * dev)2391 static void device_platform_notify_remove(struct device *dev)
2392 {
2393 software_node_notify_remove(dev);
2394
2395 acpi_device_notify_remove(dev);
2396 }
2397
2398 /**
2399 * dev_driver_string - Return a device's driver name, if at all possible
2400 * @dev: struct device to get the name of
2401 *
2402 * Will return the device's driver's name if it is bound to a device. If
2403 * the device is not bound to a driver, it will return the name of the bus
2404 * it is attached to. If it is not attached to a bus either, an empty
2405 * string will be returned.
2406 */
dev_driver_string(const struct device * dev)2407 const char *dev_driver_string(const struct device *dev)
2408 {
2409 struct device_driver *drv;
2410
2411 /* dev->driver can change to NULL underneath us because of unbinding,
2412 * so be careful about accessing it. dev->bus and dev->class should
2413 * never change once they are set, so they don't need special care.
2414 */
2415 drv = READ_ONCE(dev->driver);
2416 return drv ? drv->name : dev_bus_name(dev);
2417 }
2418 EXPORT_SYMBOL(dev_driver_string);
2419
2420 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2421
dev_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)2422 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2423 char *buf)
2424 {
2425 struct device_attribute *dev_attr = to_dev_attr(attr);
2426 struct device *dev = kobj_to_dev(kobj);
2427 ssize_t ret = -EIO;
2428
2429 if (dev_attr->show)
2430 ret = dev_attr->show(dev, dev_attr, buf);
2431 if (ret >= (ssize_t)PAGE_SIZE) {
2432 printk("dev_attr_show: %pS returned bad count\n",
2433 dev_attr->show);
2434 }
2435 return ret;
2436 }
2437
dev_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)2438 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2439 const char *buf, size_t count)
2440 {
2441 struct device_attribute *dev_attr = to_dev_attr(attr);
2442 struct device *dev = kobj_to_dev(kobj);
2443 ssize_t ret = -EIO;
2444
2445 if (dev_attr->store)
2446 ret = dev_attr->store(dev, dev_attr, buf, count);
2447 return ret;
2448 }
2449
2450 static const struct sysfs_ops dev_sysfs_ops = {
2451 .show = dev_attr_show,
2452 .store = dev_attr_store,
2453 };
2454
2455 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2456
device_store_ulong(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2457 ssize_t device_store_ulong(struct device *dev,
2458 struct device_attribute *attr,
2459 const char *buf, size_t size)
2460 {
2461 struct dev_ext_attribute *ea = to_ext_attr(attr);
2462 int ret;
2463 unsigned long new;
2464
2465 ret = kstrtoul(buf, 0, &new);
2466 if (ret)
2467 return ret;
2468 *(unsigned long *)(ea->var) = new;
2469 /* Always return full write size even if we didn't consume all */
2470 return size;
2471 }
2472 EXPORT_SYMBOL_GPL(device_store_ulong);
2473
device_show_ulong(struct device * dev,struct device_attribute * attr,char * buf)2474 ssize_t device_show_ulong(struct device *dev,
2475 struct device_attribute *attr,
2476 char *buf)
2477 {
2478 struct dev_ext_attribute *ea = to_ext_attr(attr);
2479 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2480 }
2481 EXPORT_SYMBOL_GPL(device_show_ulong);
2482
device_store_int(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2483 ssize_t device_store_int(struct device *dev,
2484 struct device_attribute *attr,
2485 const char *buf, size_t size)
2486 {
2487 struct dev_ext_attribute *ea = to_ext_attr(attr);
2488 int ret;
2489 long new;
2490
2491 ret = kstrtol(buf, 0, &new);
2492 if (ret)
2493 return ret;
2494
2495 if (new > INT_MAX || new < INT_MIN)
2496 return -EINVAL;
2497 *(int *)(ea->var) = new;
2498 /* Always return full write size even if we didn't consume all */
2499 return size;
2500 }
2501 EXPORT_SYMBOL_GPL(device_store_int);
2502
device_show_int(struct device * dev,struct device_attribute * attr,char * buf)2503 ssize_t device_show_int(struct device *dev,
2504 struct device_attribute *attr,
2505 char *buf)
2506 {
2507 struct dev_ext_attribute *ea = to_ext_attr(attr);
2508
2509 return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2510 }
2511 EXPORT_SYMBOL_GPL(device_show_int);
2512
device_store_bool(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2513 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2514 const char *buf, size_t size)
2515 {
2516 struct dev_ext_attribute *ea = to_ext_attr(attr);
2517
2518 if (kstrtobool(buf, ea->var) < 0)
2519 return -EINVAL;
2520
2521 return size;
2522 }
2523 EXPORT_SYMBOL_GPL(device_store_bool);
2524
device_show_bool(struct device * dev,struct device_attribute * attr,char * buf)2525 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2526 char *buf)
2527 {
2528 struct dev_ext_attribute *ea = to_ext_attr(attr);
2529
2530 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2531 }
2532 EXPORT_SYMBOL_GPL(device_show_bool);
2533
device_show_string(struct device * dev,struct device_attribute * attr,char * buf)2534 ssize_t device_show_string(struct device *dev,
2535 struct device_attribute *attr, char *buf)
2536 {
2537 struct dev_ext_attribute *ea = to_ext_attr(attr);
2538
2539 return sysfs_emit(buf, "%s\n", (char *)ea->var);
2540 }
2541 EXPORT_SYMBOL_GPL(device_show_string);
2542
2543 /**
2544 * device_release - free device structure.
2545 * @kobj: device's kobject.
2546 *
2547 * This is called once the reference count for the object
2548 * reaches 0. We forward the call to the device's release
2549 * method, which should handle actually freeing the structure.
2550 */
device_release(struct kobject * kobj)2551 static void device_release(struct kobject *kobj)
2552 {
2553 struct device *dev = kobj_to_dev(kobj);
2554 struct device_private *p = dev->p;
2555
2556 /*
2557 * Some platform devices are driven without driver attached
2558 * and managed resources may have been acquired. Make sure
2559 * all resources are released.
2560 *
2561 * Drivers still can add resources into device after device
2562 * is deleted but alive, so release devres here to avoid
2563 * possible memory leak.
2564 */
2565 devres_release_all(dev);
2566
2567 kfree(dev->dma_range_map);
2568
2569 if (dev->release)
2570 dev->release(dev);
2571 else if (dev->type && dev->type->release)
2572 dev->type->release(dev);
2573 else if (dev->class && dev->class->dev_release)
2574 dev->class->dev_release(dev);
2575 else
2576 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2577 dev_name(dev));
2578 kfree(p);
2579 }
2580
device_namespace(const struct kobject * kobj)2581 static const void *device_namespace(const struct kobject *kobj)
2582 {
2583 const struct device *dev = kobj_to_dev(kobj);
2584 const void *ns = NULL;
2585
2586 if (dev->class && dev->class->namespace)
2587 ns = dev->class->namespace(dev);
2588
2589 return ns;
2590 }
2591
device_get_ownership(const struct kobject * kobj,kuid_t * uid,kgid_t * gid)2592 static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2593 {
2594 const struct device *dev = kobj_to_dev(kobj);
2595
2596 if (dev->class && dev->class->get_ownership)
2597 dev->class->get_ownership(dev, uid, gid);
2598 }
2599
2600 static const struct kobj_type device_ktype = {
2601 .release = device_release,
2602 .sysfs_ops = &dev_sysfs_ops,
2603 .namespace = device_namespace,
2604 .get_ownership = device_get_ownership,
2605 };
2606
2607
dev_uevent_filter(const struct kobject * kobj)2608 static int dev_uevent_filter(const struct kobject *kobj)
2609 {
2610 const struct kobj_type *ktype = get_ktype(kobj);
2611
2612 if (ktype == &device_ktype) {
2613 const struct device *dev = kobj_to_dev(kobj);
2614 if (dev->bus)
2615 return 1;
2616 if (dev->class)
2617 return 1;
2618 }
2619 return 0;
2620 }
2621
dev_uevent_name(const struct kobject * kobj)2622 static const char *dev_uevent_name(const struct kobject *kobj)
2623 {
2624 const struct device *dev = kobj_to_dev(kobj);
2625
2626 if (dev->bus)
2627 return dev->bus->name;
2628 if (dev->class)
2629 return dev->class->name;
2630 return NULL;
2631 }
2632
dev_uevent(const struct kobject * kobj,struct kobj_uevent_env * env)2633 static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
2634 {
2635 const struct device *dev = kobj_to_dev(kobj);
2636 int retval = 0;
2637
2638 /* add device node properties if present */
2639 if (MAJOR(dev->devt)) {
2640 const char *tmp;
2641 const char *name;
2642 umode_t mode = 0;
2643 kuid_t uid = GLOBAL_ROOT_UID;
2644 kgid_t gid = GLOBAL_ROOT_GID;
2645
2646 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2647 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2648 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2649 if (name) {
2650 add_uevent_var(env, "DEVNAME=%s", name);
2651 if (mode)
2652 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2653 if (!uid_eq(uid, GLOBAL_ROOT_UID))
2654 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2655 if (!gid_eq(gid, GLOBAL_ROOT_GID))
2656 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2657 kfree(tmp);
2658 }
2659 }
2660
2661 if (dev->type && dev->type->name)
2662 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2663
2664 if (dev->driver)
2665 add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2666
2667 /* Add common DT information about the device */
2668 of_device_uevent(dev, env);
2669
2670 /* have the bus specific function add its stuff */
2671 if (dev->bus && dev->bus->uevent) {
2672 retval = dev->bus->uevent(dev, env);
2673 if (retval)
2674 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2675 dev_name(dev), __func__, retval);
2676 }
2677
2678 /* have the class specific function add its stuff */
2679 if (dev->class && dev->class->dev_uevent) {
2680 retval = dev->class->dev_uevent(dev, env);
2681 if (retval)
2682 pr_debug("device: '%s': %s: class uevent() "
2683 "returned %d\n", dev_name(dev),
2684 __func__, retval);
2685 }
2686
2687 /* have the device type specific function add its stuff */
2688 if (dev->type && dev->type->uevent) {
2689 retval = dev->type->uevent(dev, env);
2690 if (retval)
2691 pr_debug("device: '%s': %s: dev_type uevent() "
2692 "returned %d\n", dev_name(dev),
2693 __func__, retval);
2694 }
2695
2696 return retval;
2697 }
2698
2699 static const struct kset_uevent_ops device_uevent_ops = {
2700 .filter = dev_uevent_filter,
2701 .name = dev_uevent_name,
2702 .uevent = dev_uevent,
2703 };
2704
uevent_show(struct device * dev,struct device_attribute * attr,char * buf)2705 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2706 char *buf)
2707 {
2708 struct kobject *top_kobj;
2709 struct kset *kset;
2710 struct kobj_uevent_env *env = NULL;
2711 int i;
2712 int len = 0;
2713 int retval;
2714
2715 /* search the kset, the device belongs to */
2716 top_kobj = &dev->kobj;
2717 while (!top_kobj->kset && top_kobj->parent)
2718 top_kobj = top_kobj->parent;
2719 if (!top_kobj->kset)
2720 goto out;
2721
2722 kset = top_kobj->kset;
2723 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2724 goto out;
2725
2726 /* respect filter */
2727 if (kset->uevent_ops && kset->uevent_ops->filter)
2728 if (!kset->uevent_ops->filter(&dev->kobj))
2729 goto out;
2730
2731 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2732 if (!env)
2733 return -ENOMEM;
2734
2735 /* Synchronize with really_probe() */
2736 device_lock(dev);
2737 /* let the kset specific function add its keys */
2738 retval = kset->uevent_ops->uevent(&dev->kobj, env);
2739 device_unlock(dev);
2740 if (retval)
2741 goto out;
2742
2743 /* copy keys to file */
2744 for (i = 0; i < env->envp_idx; i++)
2745 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2746 out:
2747 kfree(env);
2748 return len;
2749 }
2750
uevent_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2751 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2752 const char *buf, size_t count)
2753 {
2754 int rc;
2755
2756 rc = kobject_synth_uevent(&dev->kobj, buf, count);
2757
2758 if (rc) {
2759 dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc);
2760 return rc;
2761 }
2762
2763 return count;
2764 }
2765 static DEVICE_ATTR_RW(uevent);
2766
online_show(struct device * dev,struct device_attribute * attr,char * buf)2767 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2768 char *buf)
2769 {
2770 bool val;
2771
2772 device_lock(dev);
2773 val = !dev->offline;
2774 device_unlock(dev);
2775 return sysfs_emit(buf, "%u\n", val);
2776 }
2777
online_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2778 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2779 const char *buf, size_t count)
2780 {
2781 bool val;
2782 int ret;
2783
2784 ret = kstrtobool(buf, &val);
2785 if (ret < 0)
2786 return ret;
2787
2788 ret = lock_device_hotplug_sysfs();
2789 if (ret)
2790 return ret;
2791
2792 ret = val ? device_online(dev) : device_offline(dev);
2793 unlock_device_hotplug();
2794 return ret < 0 ? ret : count;
2795 }
2796 static DEVICE_ATTR_RW(online);
2797
removable_show(struct device * dev,struct device_attribute * attr,char * buf)2798 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2799 char *buf)
2800 {
2801 const char *loc;
2802
2803 switch (dev->removable) {
2804 case DEVICE_REMOVABLE:
2805 loc = "removable";
2806 break;
2807 case DEVICE_FIXED:
2808 loc = "fixed";
2809 break;
2810 default:
2811 loc = "unknown";
2812 }
2813 return sysfs_emit(buf, "%s\n", loc);
2814 }
2815 static DEVICE_ATTR_RO(removable);
2816
device_add_groups(struct device * dev,const struct attribute_group ** groups)2817 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2818 {
2819 return sysfs_create_groups(&dev->kobj, groups);
2820 }
2821 EXPORT_SYMBOL_GPL(device_add_groups);
2822
device_remove_groups(struct device * dev,const struct attribute_group ** groups)2823 void device_remove_groups(struct device *dev,
2824 const struct attribute_group **groups)
2825 {
2826 sysfs_remove_groups(&dev->kobj, groups);
2827 }
2828 EXPORT_SYMBOL_GPL(device_remove_groups);
2829
2830 union device_attr_group_devres {
2831 const struct attribute_group *group;
2832 const struct attribute_group **groups;
2833 };
2834
devm_attr_group_remove(struct device * dev,void * res)2835 static void devm_attr_group_remove(struct device *dev, void *res)
2836 {
2837 union device_attr_group_devres *devres = res;
2838 const struct attribute_group *group = devres->group;
2839
2840 dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2841 sysfs_remove_group(&dev->kobj, group);
2842 }
2843
2844 /**
2845 * devm_device_add_group - given a device, create a managed attribute group
2846 * @dev: The device to create the group for
2847 * @grp: The attribute group to create
2848 *
2849 * This function creates a group for the first time. It will explicitly
2850 * warn and error if any of the attribute files being created already exist.
2851 *
2852 * Returns 0 on success or error code on failure.
2853 */
devm_device_add_group(struct device * dev,const struct attribute_group * grp)2854 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2855 {
2856 union device_attr_group_devres *devres;
2857 int error;
2858
2859 devres = devres_alloc(devm_attr_group_remove,
2860 sizeof(*devres), GFP_KERNEL);
2861 if (!devres)
2862 return -ENOMEM;
2863
2864 error = sysfs_create_group(&dev->kobj, grp);
2865 if (error) {
2866 devres_free(devres);
2867 return error;
2868 }
2869
2870 devres->group = grp;
2871 devres_add(dev, devres);
2872 return 0;
2873 }
2874 EXPORT_SYMBOL_GPL(devm_device_add_group);
2875
device_add_attrs(struct device * dev)2876 static int device_add_attrs(struct device *dev)
2877 {
2878 const struct class *class = dev->class;
2879 const struct device_type *type = dev->type;
2880 int error;
2881
2882 if (class) {
2883 error = device_add_groups(dev, class->dev_groups);
2884 if (error)
2885 return error;
2886 }
2887
2888 if (type) {
2889 error = device_add_groups(dev, type->groups);
2890 if (error)
2891 goto err_remove_class_groups;
2892 }
2893
2894 error = device_add_groups(dev, dev->groups);
2895 if (error)
2896 goto err_remove_type_groups;
2897
2898 if (device_supports_offline(dev) && !dev->offline_disabled) {
2899 error = device_create_file(dev, &dev_attr_online);
2900 if (error)
2901 goto err_remove_dev_groups;
2902 }
2903
2904 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2905 error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2906 if (error)
2907 goto err_remove_dev_online;
2908 }
2909
2910 if (dev_removable_is_valid(dev)) {
2911 error = device_create_file(dev, &dev_attr_removable);
2912 if (error)
2913 goto err_remove_dev_waiting_for_supplier;
2914 }
2915
2916 if (dev_add_physical_location(dev)) {
2917 error = device_add_group(dev,
2918 &dev_attr_physical_location_group);
2919 if (error)
2920 goto err_remove_dev_removable;
2921 }
2922
2923 return 0;
2924
2925 err_remove_dev_removable:
2926 device_remove_file(dev, &dev_attr_removable);
2927 err_remove_dev_waiting_for_supplier:
2928 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2929 err_remove_dev_online:
2930 device_remove_file(dev, &dev_attr_online);
2931 err_remove_dev_groups:
2932 device_remove_groups(dev, dev->groups);
2933 err_remove_type_groups:
2934 if (type)
2935 device_remove_groups(dev, type->groups);
2936 err_remove_class_groups:
2937 if (class)
2938 device_remove_groups(dev, class->dev_groups);
2939
2940 return error;
2941 }
2942
device_remove_attrs(struct device * dev)2943 static void device_remove_attrs(struct device *dev)
2944 {
2945 const struct class *class = dev->class;
2946 const struct device_type *type = dev->type;
2947
2948 if (dev->physical_location) {
2949 device_remove_group(dev, &dev_attr_physical_location_group);
2950 kfree(dev->physical_location);
2951 }
2952
2953 device_remove_file(dev, &dev_attr_removable);
2954 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2955 device_remove_file(dev, &dev_attr_online);
2956 device_remove_groups(dev, dev->groups);
2957
2958 if (type)
2959 device_remove_groups(dev, type->groups);
2960
2961 if (class)
2962 device_remove_groups(dev, class->dev_groups);
2963 }
2964
dev_show(struct device * dev,struct device_attribute * attr,char * buf)2965 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2966 char *buf)
2967 {
2968 return print_dev_t(buf, dev->devt);
2969 }
2970 static DEVICE_ATTR_RO(dev);
2971
2972 /* /sys/devices/ */
2973 struct kset *devices_kset;
2974
2975 /**
2976 * devices_kset_move_before - Move device in the devices_kset's list.
2977 * @deva: Device to move.
2978 * @devb: Device @deva should come before.
2979 */
devices_kset_move_before(struct device * deva,struct device * devb)2980 static void devices_kset_move_before(struct device *deva, struct device *devb)
2981 {
2982 if (!devices_kset)
2983 return;
2984 pr_debug("devices_kset: Moving %s before %s\n",
2985 dev_name(deva), dev_name(devb));
2986 spin_lock(&devices_kset->list_lock);
2987 list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2988 spin_unlock(&devices_kset->list_lock);
2989 }
2990
2991 /**
2992 * devices_kset_move_after - Move device in the devices_kset's list.
2993 * @deva: Device to move
2994 * @devb: Device @deva should come after.
2995 */
devices_kset_move_after(struct device * deva,struct device * devb)2996 static void devices_kset_move_after(struct device *deva, struct device *devb)
2997 {
2998 if (!devices_kset)
2999 return;
3000 pr_debug("devices_kset: Moving %s after %s\n",
3001 dev_name(deva), dev_name(devb));
3002 spin_lock(&devices_kset->list_lock);
3003 list_move(&deva->kobj.entry, &devb->kobj.entry);
3004 spin_unlock(&devices_kset->list_lock);
3005 }
3006
3007 /**
3008 * devices_kset_move_last - move the device to the end of devices_kset's list.
3009 * @dev: device to move
3010 */
devices_kset_move_last(struct device * dev)3011 void devices_kset_move_last(struct device *dev)
3012 {
3013 if (!devices_kset)
3014 return;
3015 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
3016 spin_lock(&devices_kset->list_lock);
3017 list_move_tail(&dev->kobj.entry, &devices_kset->list);
3018 spin_unlock(&devices_kset->list_lock);
3019 }
3020
3021 /**
3022 * device_create_file - create sysfs attribute file for device.
3023 * @dev: device.
3024 * @attr: device attribute descriptor.
3025 */
device_create_file(struct device * dev,const struct device_attribute * attr)3026 int device_create_file(struct device *dev,
3027 const struct device_attribute *attr)
3028 {
3029 int error = 0;
3030
3031 if (dev) {
3032 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
3033 "Attribute %s: write permission without 'store'\n",
3034 attr->attr.name);
3035 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
3036 "Attribute %s: read permission without 'show'\n",
3037 attr->attr.name);
3038 error = sysfs_create_file(&dev->kobj, &attr->attr);
3039 }
3040
3041 return error;
3042 }
3043 EXPORT_SYMBOL_GPL(device_create_file);
3044
3045 /**
3046 * device_remove_file - remove sysfs attribute file.
3047 * @dev: device.
3048 * @attr: device attribute descriptor.
3049 */
device_remove_file(struct device * dev,const struct device_attribute * attr)3050 void device_remove_file(struct device *dev,
3051 const struct device_attribute *attr)
3052 {
3053 if (dev)
3054 sysfs_remove_file(&dev->kobj, &attr->attr);
3055 }
3056 EXPORT_SYMBOL_GPL(device_remove_file);
3057
3058 /**
3059 * device_remove_file_self - remove sysfs attribute file from its own method.
3060 * @dev: device.
3061 * @attr: device attribute descriptor.
3062 *
3063 * See kernfs_remove_self() for details.
3064 */
device_remove_file_self(struct device * dev,const struct device_attribute * attr)3065 bool device_remove_file_self(struct device *dev,
3066 const struct device_attribute *attr)
3067 {
3068 if (dev)
3069 return sysfs_remove_file_self(&dev->kobj, &attr->attr);
3070 else
3071 return false;
3072 }
3073 EXPORT_SYMBOL_GPL(device_remove_file_self);
3074
3075 /**
3076 * device_create_bin_file - create sysfs binary attribute file for device.
3077 * @dev: device.
3078 * @attr: device binary attribute descriptor.
3079 */
device_create_bin_file(struct device * dev,const struct bin_attribute * attr)3080 int device_create_bin_file(struct device *dev,
3081 const struct bin_attribute *attr)
3082 {
3083 int error = -EINVAL;
3084 if (dev)
3085 error = sysfs_create_bin_file(&dev->kobj, attr);
3086 return error;
3087 }
3088 EXPORT_SYMBOL_GPL(device_create_bin_file);
3089
3090 /**
3091 * device_remove_bin_file - remove sysfs binary attribute file
3092 * @dev: device.
3093 * @attr: device binary attribute descriptor.
3094 */
device_remove_bin_file(struct device * dev,const struct bin_attribute * attr)3095 void device_remove_bin_file(struct device *dev,
3096 const struct bin_attribute *attr)
3097 {
3098 if (dev)
3099 sysfs_remove_bin_file(&dev->kobj, attr);
3100 }
3101 EXPORT_SYMBOL_GPL(device_remove_bin_file);
3102
klist_children_get(struct klist_node * n)3103 static void klist_children_get(struct klist_node *n)
3104 {
3105 struct device_private *p = to_device_private_parent(n);
3106 struct device *dev = p->device;
3107
3108 get_device(dev);
3109 }
3110
klist_children_put(struct klist_node * n)3111 static void klist_children_put(struct klist_node *n)
3112 {
3113 struct device_private *p = to_device_private_parent(n);
3114 struct device *dev = p->device;
3115
3116 put_device(dev);
3117 }
3118
3119 /**
3120 * device_initialize - init device structure.
3121 * @dev: device.
3122 *
3123 * This prepares the device for use by other layers by initializing
3124 * its fields.
3125 * It is the first half of device_register(), if called by
3126 * that function, though it can also be called separately, so one
3127 * may use @dev's fields. In particular, get_device()/put_device()
3128 * may be used for reference counting of @dev after calling this
3129 * function.
3130 *
3131 * All fields in @dev must be initialized by the caller to 0, except
3132 * for those explicitly set to some other value. The simplest
3133 * approach is to use kzalloc() to allocate the structure containing
3134 * @dev.
3135 *
3136 * NOTE: Use put_device() to give up your reference instead of freeing
3137 * @dev directly once you have called this function.
3138 */
device_initialize(struct device * dev)3139 void device_initialize(struct device *dev)
3140 {
3141 dev->kobj.kset = devices_kset;
3142 kobject_init(&dev->kobj, &device_ktype);
3143 INIT_LIST_HEAD(&dev->dma_pools);
3144 mutex_init(&dev->mutex);
3145 lockdep_set_novalidate_class(&dev->mutex);
3146 spin_lock_init(&dev->devres_lock);
3147 INIT_LIST_HEAD(&dev->devres_head);
3148 device_pm_init(dev);
3149 set_dev_node(dev, NUMA_NO_NODE);
3150 INIT_LIST_HEAD(&dev->links.consumers);
3151 INIT_LIST_HEAD(&dev->links.suppliers);
3152 INIT_LIST_HEAD(&dev->links.defer_sync);
3153 dev->links.status = DL_DEV_NO_DRIVER;
3154 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
3155 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
3156 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
3157 dev->dma_coherent = dma_default_coherent;
3158 #endif
3159 swiotlb_dev_init(dev);
3160 }
3161 EXPORT_SYMBOL_GPL(device_initialize);
3162
virtual_device_parent(void)3163 struct kobject *virtual_device_parent(void)
3164 {
3165 static struct kobject *virtual_dir = NULL;
3166
3167 if (!virtual_dir)
3168 virtual_dir = kobject_create_and_add("virtual",
3169 &devices_kset->kobj);
3170
3171 return virtual_dir;
3172 }
3173
3174 struct class_dir {
3175 struct kobject kobj;
3176 const struct class *class;
3177 };
3178
3179 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
3180
class_dir_release(struct kobject * kobj)3181 static void class_dir_release(struct kobject *kobj)
3182 {
3183 struct class_dir *dir = to_class_dir(kobj);
3184 kfree(dir);
3185 }
3186
3187 static const
class_dir_child_ns_type(const struct kobject * kobj)3188 struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj)
3189 {
3190 const struct class_dir *dir = to_class_dir(kobj);
3191 return dir->class->ns_type;
3192 }
3193
3194 static const struct kobj_type class_dir_ktype = {
3195 .release = class_dir_release,
3196 .sysfs_ops = &kobj_sysfs_ops,
3197 .child_ns_type = class_dir_child_ns_type
3198 };
3199
class_dir_create_and_add(struct subsys_private * sp,struct kobject * parent_kobj)3200 static struct kobject *class_dir_create_and_add(struct subsys_private *sp,
3201 struct kobject *parent_kobj)
3202 {
3203 struct class_dir *dir;
3204 int retval;
3205
3206 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
3207 if (!dir)
3208 return ERR_PTR(-ENOMEM);
3209
3210 dir->class = sp->class;
3211 kobject_init(&dir->kobj, &class_dir_ktype);
3212
3213 dir->kobj.kset = &sp->glue_dirs;
3214
3215 retval = kobject_add(&dir->kobj, parent_kobj, "%s", sp->class->name);
3216 if (retval < 0) {
3217 kobject_put(&dir->kobj);
3218 return ERR_PTR(retval);
3219 }
3220 return &dir->kobj;
3221 }
3222
3223 static DEFINE_MUTEX(gdp_mutex);
3224
get_device_parent(struct device * dev,struct device * parent)3225 static struct kobject *get_device_parent(struct device *dev,
3226 struct device *parent)
3227 {
3228 struct subsys_private *sp = class_to_subsys(dev->class);
3229 struct kobject *kobj = NULL;
3230
3231 if (sp) {
3232 struct kobject *parent_kobj;
3233 struct kobject *k;
3234
3235 /*
3236 * If we have no parent, we live in "virtual".
3237 * Class-devices with a non class-device as parent, live
3238 * in a "glue" directory to prevent namespace collisions.
3239 */
3240 if (parent == NULL)
3241 parent_kobj = virtual_device_parent();
3242 else if (parent->class && !dev->class->ns_type) {
3243 subsys_put(sp);
3244 return &parent->kobj;
3245 } else {
3246 parent_kobj = &parent->kobj;
3247 }
3248
3249 mutex_lock(&gdp_mutex);
3250
3251 /* find our class-directory at the parent and reference it */
3252 spin_lock(&sp->glue_dirs.list_lock);
3253 list_for_each_entry(k, &sp->glue_dirs.list, entry)
3254 if (k->parent == parent_kobj) {
3255 kobj = kobject_get(k);
3256 break;
3257 }
3258 spin_unlock(&sp->glue_dirs.list_lock);
3259 if (kobj) {
3260 mutex_unlock(&gdp_mutex);
3261 subsys_put(sp);
3262 return kobj;
3263 }
3264
3265 /* or create a new class-directory at the parent device */
3266 k = class_dir_create_and_add(sp, parent_kobj);
3267 /* do not emit an uevent for this simple "glue" directory */
3268 mutex_unlock(&gdp_mutex);
3269 subsys_put(sp);
3270 return k;
3271 }
3272
3273 /* subsystems can specify a default root directory for their devices */
3274 if (!parent && dev->bus) {
3275 struct device *dev_root = bus_get_dev_root(dev->bus);
3276
3277 if (dev_root) {
3278 kobj = &dev_root->kobj;
3279 put_device(dev_root);
3280 return kobj;
3281 }
3282 }
3283
3284 if (parent)
3285 return &parent->kobj;
3286 return NULL;
3287 }
3288
live_in_glue_dir(struct kobject * kobj,struct device * dev)3289 static inline bool live_in_glue_dir(struct kobject *kobj,
3290 struct device *dev)
3291 {
3292 struct subsys_private *sp;
3293 bool retval;
3294
3295 if (!kobj || !dev->class)
3296 return false;
3297
3298 sp = class_to_subsys(dev->class);
3299 if (!sp)
3300 return false;
3301
3302 if (kobj->kset == &sp->glue_dirs)
3303 retval = true;
3304 else
3305 retval = false;
3306
3307 subsys_put(sp);
3308 return retval;
3309 }
3310
get_glue_dir(struct device * dev)3311 static inline struct kobject *get_glue_dir(struct device *dev)
3312 {
3313 return dev->kobj.parent;
3314 }
3315
3316 /**
3317 * kobject_has_children - Returns whether a kobject has children.
3318 * @kobj: the object to test
3319 *
3320 * This will return whether a kobject has other kobjects as children.
3321 *
3322 * It does NOT account for the presence of attribute files, only sub
3323 * directories. It also assumes there is no concurrent addition or
3324 * removal of such children, and thus relies on external locking.
3325 */
kobject_has_children(struct kobject * kobj)3326 static inline bool kobject_has_children(struct kobject *kobj)
3327 {
3328 WARN_ON_ONCE(kref_read(&kobj->kref) == 0);
3329
3330 return kobj->sd && kobj->sd->dir.subdirs;
3331 }
3332
3333 /*
3334 * make sure cleaning up dir as the last step, we need to make
3335 * sure .release handler of kobject is run with holding the
3336 * global lock
3337 */
cleanup_glue_dir(struct device * dev,struct kobject * glue_dir)3338 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3339 {
3340 unsigned int ref;
3341
3342 /* see if we live in a "glue" directory */
3343 if (!live_in_glue_dir(glue_dir, dev))
3344 return;
3345
3346 mutex_lock(&gdp_mutex);
3347 /**
3348 * There is a race condition between removing glue directory
3349 * and adding a new device under the glue directory.
3350 *
3351 * CPU1: CPU2:
3352 *
3353 * device_add()
3354 * get_device_parent()
3355 * class_dir_create_and_add()
3356 * kobject_add_internal()
3357 * create_dir() // create glue_dir
3358 *
3359 * device_add()
3360 * get_device_parent()
3361 * kobject_get() // get glue_dir
3362 *
3363 * device_del()
3364 * cleanup_glue_dir()
3365 * kobject_del(glue_dir)
3366 *
3367 * kobject_add()
3368 * kobject_add_internal()
3369 * create_dir() // in glue_dir
3370 * sysfs_create_dir_ns()
3371 * kernfs_create_dir_ns(sd)
3372 *
3373 * sysfs_remove_dir() // glue_dir->sd=NULL
3374 * sysfs_put() // free glue_dir->sd
3375 *
3376 * // sd is freed
3377 * kernfs_new_node(sd)
3378 * kernfs_get(glue_dir)
3379 * kernfs_add_one()
3380 * kernfs_put()
3381 *
3382 * Before CPU1 remove last child device under glue dir, if CPU2 add
3383 * a new device under glue dir, the glue_dir kobject reference count
3384 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3385 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3386 * and sysfs_put(). This result in glue_dir->sd is freed.
3387 *
3388 * Then the CPU2 will see a stale "empty" but still potentially used
3389 * glue dir around in kernfs_new_node().
3390 *
3391 * In order to avoid this happening, we also should make sure that
3392 * kernfs_node for glue_dir is released in CPU1 only when refcount
3393 * for glue_dir kobj is 1.
3394 */
3395 ref = kref_read(&glue_dir->kref);
3396 if (!kobject_has_children(glue_dir) && !--ref)
3397 kobject_del(glue_dir);
3398 kobject_put(glue_dir);
3399 mutex_unlock(&gdp_mutex);
3400 }
3401
device_add_class_symlinks(struct device * dev)3402 static int device_add_class_symlinks(struct device *dev)
3403 {
3404 struct device_node *of_node = dev_of_node(dev);
3405 struct subsys_private *sp;
3406 int error;
3407
3408 if (of_node) {
3409 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3410 if (error)
3411 dev_warn(dev, "Error %d creating of_node link\n",error);
3412 /* An error here doesn't warrant bringing down the device */
3413 }
3414
3415 sp = class_to_subsys(dev->class);
3416 if (!sp)
3417 return 0;
3418
3419 error = sysfs_create_link(&dev->kobj, &sp->subsys.kobj, "subsystem");
3420 if (error)
3421 goto out_devnode;
3422
3423 if (dev->parent && device_is_not_partition(dev)) {
3424 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3425 "device");
3426 if (error)
3427 goto out_subsys;
3428 }
3429
3430 /* link in the class directory pointing to the device */
3431 error = sysfs_create_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3432 if (error)
3433 goto out_device;
3434 goto exit;
3435
3436 out_device:
3437 sysfs_remove_link(&dev->kobj, "device");
3438 out_subsys:
3439 sysfs_remove_link(&dev->kobj, "subsystem");
3440 out_devnode:
3441 sysfs_remove_link(&dev->kobj, "of_node");
3442 exit:
3443 subsys_put(sp);
3444 return error;
3445 }
3446
device_remove_class_symlinks(struct device * dev)3447 static void device_remove_class_symlinks(struct device *dev)
3448 {
3449 struct subsys_private *sp = class_to_subsys(dev->class);
3450
3451 if (dev_of_node(dev))
3452 sysfs_remove_link(&dev->kobj, "of_node");
3453
3454 if (!sp)
3455 return;
3456
3457 if (dev->parent && device_is_not_partition(dev))
3458 sysfs_remove_link(&dev->kobj, "device");
3459 sysfs_remove_link(&dev->kobj, "subsystem");
3460 sysfs_delete_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3461 subsys_put(sp);
3462 }
3463
3464 /**
3465 * dev_set_name - set a device name
3466 * @dev: device
3467 * @fmt: format string for the device's name
3468 */
dev_set_name(struct device * dev,const char * fmt,...)3469 int dev_set_name(struct device *dev, const char *fmt, ...)
3470 {
3471 va_list vargs;
3472 int err;
3473
3474 va_start(vargs, fmt);
3475 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3476 va_end(vargs);
3477 return err;
3478 }
3479 EXPORT_SYMBOL_GPL(dev_set_name);
3480
3481 /* select a /sys/dev/ directory for the device */
device_to_dev_kobj(struct device * dev)3482 static struct kobject *device_to_dev_kobj(struct device *dev)
3483 {
3484 if (is_blockdev(dev))
3485 return sysfs_dev_block_kobj;
3486 else
3487 return sysfs_dev_char_kobj;
3488 }
3489
device_create_sys_dev_entry(struct device * dev)3490 static int device_create_sys_dev_entry(struct device *dev)
3491 {
3492 struct kobject *kobj = device_to_dev_kobj(dev);
3493 int error = 0;
3494 char devt_str[15];
3495
3496 if (kobj) {
3497 format_dev_t(devt_str, dev->devt);
3498 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3499 }
3500
3501 return error;
3502 }
3503
device_remove_sys_dev_entry(struct device * dev)3504 static void device_remove_sys_dev_entry(struct device *dev)
3505 {
3506 struct kobject *kobj = device_to_dev_kobj(dev);
3507 char devt_str[15];
3508
3509 if (kobj) {
3510 format_dev_t(devt_str, dev->devt);
3511 sysfs_remove_link(kobj, devt_str);
3512 }
3513 }
3514
device_private_init(struct device * dev)3515 static int device_private_init(struct device *dev)
3516 {
3517 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3518 if (!dev->p)
3519 return -ENOMEM;
3520 dev->p->device = dev;
3521 klist_init(&dev->p->klist_children, klist_children_get,
3522 klist_children_put);
3523 INIT_LIST_HEAD(&dev->p->deferred_probe);
3524 return 0;
3525 }
3526
3527 /**
3528 * device_add - add device to device hierarchy.
3529 * @dev: device.
3530 *
3531 * This is part 2 of device_register(), though may be called
3532 * separately _iff_ device_initialize() has been called separately.
3533 *
3534 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3535 * to the global and sibling lists for the device, then
3536 * adds it to the other relevant subsystems of the driver model.
3537 *
3538 * Do not call this routine or device_register() more than once for
3539 * any device structure. The driver model core is not designed to work
3540 * with devices that get unregistered and then spring back to life.
3541 * (Among other things, it's very hard to guarantee that all references
3542 * to the previous incarnation of @dev have been dropped.) Allocate
3543 * and register a fresh new struct device instead.
3544 *
3545 * NOTE: _Never_ directly free @dev after calling this function, even
3546 * if it returned an error! Always use put_device() to give up your
3547 * reference instead.
3548 *
3549 * Rule of thumb is: if device_add() succeeds, you should call
3550 * device_del() when you want to get rid of it. If device_add() has
3551 * *not* succeeded, use *only* put_device() to drop the reference
3552 * count.
3553 */
device_add(struct device * dev)3554 int device_add(struct device *dev)
3555 {
3556 struct subsys_private *sp;
3557 struct device *parent;
3558 struct kobject *kobj;
3559 struct class_interface *class_intf;
3560 int error = -EINVAL;
3561 struct kobject *glue_dir = NULL;
3562
3563 dev = get_device(dev);
3564 if (!dev)
3565 goto done;
3566
3567 if (!dev->p) {
3568 error = device_private_init(dev);
3569 if (error)
3570 goto done;
3571 }
3572
3573 /*
3574 * for statically allocated devices, which should all be converted
3575 * some day, we need to initialize the name. We prevent reading back
3576 * the name, and force the use of dev_name()
3577 */
3578 if (dev->init_name) {
3579 error = dev_set_name(dev, "%s", dev->init_name);
3580 dev->init_name = NULL;
3581 }
3582
3583 if (dev_name(dev))
3584 error = 0;
3585 /* subsystems can specify simple device enumeration */
3586 else if (dev->bus && dev->bus->dev_name)
3587 error = dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3588 else
3589 error = -EINVAL;
3590 if (error)
3591 goto name_error;
3592
3593 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3594
3595 parent = get_device(dev->parent);
3596 kobj = get_device_parent(dev, parent);
3597 if (IS_ERR(kobj)) {
3598 error = PTR_ERR(kobj);
3599 goto parent_error;
3600 }
3601 if (kobj)
3602 dev->kobj.parent = kobj;
3603
3604 /* use parent numa_node */
3605 if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3606 set_dev_node(dev, dev_to_node(parent));
3607
3608 /* first, register with generic layer. */
3609 /* we require the name to be set before, and pass NULL */
3610 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3611 if (error) {
3612 glue_dir = kobj;
3613 goto Error;
3614 }
3615
3616 /* notify platform of device entry */
3617 device_platform_notify(dev);
3618
3619 error = device_create_file(dev, &dev_attr_uevent);
3620 if (error)
3621 goto attrError;
3622
3623 error = device_add_class_symlinks(dev);
3624 if (error)
3625 goto SymlinkError;
3626 error = device_add_attrs(dev);
3627 if (error)
3628 goto AttrsError;
3629 error = bus_add_device(dev);
3630 if (error)
3631 goto BusError;
3632 error = dpm_sysfs_add(dev);
3633 if (error)
3634 goto DPMError;
3635 device_pm_add(dev);
3636
3637 if (MAJOR(dev->devt)) {
3638 error = device_create_file(dev, &dev_attr_dev);
3639 if (error)
3640 goto DevAttrError;
3641
3642 error = device_create_sys_dev_entry(dev);
3643 if (error)
3644 goto SysEntryError;
3645
3646 devtmpfs_create_node(dev);
3647 }
3648
3649 /* Notify clients of device addition. This call must come
3650 * after dpm_sysfs_add() and before kobject_uevent().
3651 */
3652 bus_notify(dev, BUS_NOTIFY_ADD_DEVICE);
3653 kobject_uevent(&dev->kobj, KOBJ_ADD);
3654
3655 /*
3656 * Check if any of the other devices (consumers) have been waiting for
3657 * this device (supplier) to be added so that they can create a device
3658 * link to it.
3659 *
3660 * This needs to happen after device_pm_add() because device_link_add()
3661 * requires the supplier be registered before it's called.
3662 *
3663 * But this also needs to happen before bus_probe_device() to make sure
3664 * waiting consumers can link to it before the driver is bound to the
3665 * device and the driver sync_state callback is called for this device.
3666 */
3667 if (dev->fwnode && !dev->fwnode->dev) {
3668 dev->fwnode->dev = dev;
3669 fw_devlink_link_device(dev);
3670 }
3671
3672 bus_probe_device(dev);
3673
3674 /*
3675 * If all driver registration is done and a newly added device doesn't
3676 * match with any driver, don't block its consumers from probing in
3677 * case the consumer device is able to operate without this supplier.
3678 */
3679 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3680 fw_devlink_unblock_consumers(dev);
3681
3682 if (parent)
3683 klist_add_tail(&dev->p->knode_parent,
3684 &parent->p->klist_children);
3685
3686 sp = class_to_subsys(dev->class);
3687 if (sp) {
3688 mutex_lock(&sp->mutex);
3689 /* tie the class to the device */
3690 klist_add_tail(&dev->p->knode_class, &sp->klist_devices);
3691
3692 /* notify any interfaces that the device is here */
3693 list_for_each_entry(class_intf, &sp->interfaces, node)
3694 if (class_intf->add_dev)
3695 class_intf->add_dev(dev);
3696 mutex_unlock(&sp->mutex);
3697 subsys_put(sp);
3698 }
3699 done:
3700 put_device(dev);
3701 return error;
3702 SysEntryError:
3703 if (MAJOR(dev->devt))
3704 device_remove_file(dev, &dev_attr_dev);
3705 DevAttrError:
3706 device_pm_remove(dev);
3707 dpm_sysfs_remove(dev);
3708 DPMError:
3709 dev->driver = NULL;
3710 bus_remove_device(dev);
3711 BusError:
3712 device_remove_attrs(dev);
3713 AttrsError:
3714 device_remove_class_symlinks(dev);
3715 SymlinkError:
3716 device_remove_file(dev, &dev_attr_uevent);
3717 attrError:
3718 device_platform_notify_remove(dev);
3719 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3720 glue_dir = get_glue_dir(dev);
3721 kobject_del(&dev->kobj);
3722 Error:
3723 cleanup_glue_dir(dev, glue_dir);
3724 parent_error:
3725 put_device(parent);
3726 name_error:
3727 kfree(dev->p);
3728 dev->p = NULL;
3729 goto done;
3730 }
3731 EXPORT_SYMBOL_GPL(device_add);
3732
3733 /**
3734 * device_register - register a device with the system.
3735 * @dev: pointer to the device structure
3736 *
3737 * This happens in two clean steps - initialize the device
3738 * and add it to the system. The two steps can be called
3739 * separately, but this is the easiest and most common.
3740 * I.e. you should only call the two helpers separately if
3741 * have a clearly defined need to use and refcount the device
3742 * before it is added to the hierarchy.
3743 *
3744 * For more information, see the kerneldoc for device_initialize()
3745 * and device_add().
3746 *
3747 * NOTE: _Never_ directly free @dev after calling this function, even
3748 * if it returned an error! Always use put_device() to give up the
3749 * reference initialized in this function instead.
3750 */
device_register(struct device * dev)3751 int device_register(struct device *dev)
3752 {
3753 device_initialize(dev);
3754 return device_add(dev);
3755 }
3756 EXPORT_SYMBOL_GPL(device_register);
3757
3758 /**
3759 * get_device - increment reference count for device.
3760 * @dev: device.
3761 *
3762 * This simply forwards the call to kobject_get(), though
3763 * we do take care to provide for the case that we get a NULL
3764 * pointer passed in.
3765 */
get_device(struct device * dev)3766 struct device *get_device(struct device *dev)
3767 {
3768 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3769 }
3770 EXPORT_SYMBOL_GPL(get_device);
3771
3772 /**
3773 * put_device - decrement reference count.
3774 * @dev: device in question.
3775 */
put_device(struct device * dev)3776 void put_device(struct device *dev)
3777 {
3778 /* might_sleep(); */
3779 if (dev)
3780 kobject_put(&dev->kobj);
3781 }
3782 EXPORT_SYMBOL_GPL(put_device);
3783
kill_device(struct device * dev)3784 bool kill_device(struct device *dev)
3785 {
3786 /*
3787 * Require the device lock and set the "dead" flag to guarantee that
3788 * the update behavior is consistent with the other bitfields near
3789 * it and that we cannot have an asynchronous probe routine trying
3790 * to run while we are tearing out the bus/class/sysfs from
3791 * underneath the device.
3792 */
3793 device_lock_assert(dev);
3794
3795 if (dev->p->dead)
3796 return false;
3797 dev->p->dead = true;
3798 return true;
3799 }
3800 EXPORT_SYMBOL_GPL(kill_device);
3801
3802 /**
3803 * device_del - delete device from system.
3804 * @dev: device.
3805 *
3806 * This is the first part of the device unregistration
3807 * sequence. This removes the device from the lists we control
3808 * from here, has it removed from the other driver model
3809 * subsystems it was added to in device_add(), and removes it
3810 * from the kobject hierarchy.
3811 *
3812 * NOTE: this should be called manually _iff_ device_add() was
3813 * also called manually.
3814 */
device_del(struct device * dev)3815 void device_del(struct device *dev)
3816 {
3817 struct subsys_private *sp;
3818 struct device *parent = dev->parent;
3819 struct kobject *glue_dir = NULL;
3820 struct class_interface *class_intf;
3821 unsigned int noio_flag;
3822
3823 device_lock(dev);
3824 kill_device(dev);
3825 device_unlock(dev);
3826
3827 if (dev->fwnode && dev->fwnode->dev == dev)
3828 dev->fwnode->dev = NULL;
3829
3830 /* Notify clients of device removal. This call must come
3831 * before dpm_sysfs_remove().
3832 */
3833 noio_flag = memalloc_noio_save();
3834 bus_notify(dev, BUS_NOTIFY_DEL_DEVICE);
3835
3836 dpm_sysfs_remove(dev);
3837 if (parent)
3838 klist_del(&dev->p->knode_parent);
3839 if (MAJOR(dev->devt)) {
3840 devtmpfs_delete_node(dev);
3841 device_remove_sys_dev_entry(dev);
3842 device_remove_file(dev, &dev_attr_dev);
3843 }
3844
3845 sp = class_to_subsys(dev->class);
3846 if (sp) {
3847 device_remove_class_symlinks(dev);
3848
3849 mutex_lock(&sp->mutex);
3850 /* notify any interfaces that the device is now gone */
3851 list_for_each_entry(class_intf, &sp->interfaces, node)
3852 if (class_intf->remove_dev)
3853 class_intf->remove_dev(dev);
3854 /* remove the device from the class list */
3855 klist_del(&dev->p->knode_class);
3856 mutex_unlock(&sp->mutex);
3857 subsys_put(sp);
3858 }
3859 device_remove_file(dev, &dev_attr_uevent);
3860 device_remove_attrs(dev);
3861 bus_remove_device(dev);
3862 device_pm_remove(dev);
3863 driver_deferred_probe_del(dev);
3864 device_platform_notify_remove(dev);
3865 device_links_purge(dev);
3866
3867 /*
3868 * If a device does not have a driver attached, we need to clean
3869 * up any managed resources. We do this in device_release(), but
3870 * it's never called (and we leak the device) if a managed
3871 * resource holds a reference to the device. So release all
3872 * managed resources here, like we do in driver_detach(). We
3873 * still need to do so again in device_release() in case someone
3874 * adds a new resource after this point, though.
3875 */
3876 devres_release_all(dev);
3877
3878 bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE);
3879 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3880 glue_dir = get_glue_dir(dev);
3881 kobject_del(&dev->kobj);
3882 cleanup_glue_dir(dev, glue_dir);
3883 memalloc_noio_restore(noio_flag);
3884 put_device(parent);
3885 }
3886 EXPORT_SYMBOL_GPL(device_del);
3887
3888 /**
3889 * device_unregister - unregister device from system.
3890 * @dev: device going away.
3891 *
3892 * We do this in two parts, like we do device_register(). First,
3893 * we remove it from all the subsystems with device_del(), then
3894 * we decrement the reference count via put_device(). If that
3895 * is the final reference count, the device will be cleaned up
3896 * via device_release() above. Otherwise, the structure will
3897 * stick around until the final reference to the device is dropped.
3898 */
device_unregister(struct device * dev)3899 void device_unregister(struct device *dev)
3900 {
3901 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3902 device_del(dev);
3903 put_device(dev);
3904 }
3905 EXPORT_SYMBOL_GPL(device_unregister);
3906
prev_device(struct klist_iter * i)3907 static struct device *prev_device(struct klist_iter *i)
3908 {
3909 struct klist_node *n = klist_prev(i);
3910 struct device *dev = NULL;
3911 struct device_private *p;
3912
3913 if (n) {
3914 p = to_device_private_parent(n);
3915 dev = p->device;
3916 }
3917 return dev;
3918 }
3919
next_device(struct klist_iter * i)3920 static struct device *next_device(struct klist_iter *i)
3921 {
3922 struct klist_node *n = klist_next(i);
3923 struct device *dev = NULL;
3924 struct device_private *p;
3925
3926 if (n) {
3927 p = to_device_private_parent(n);
3928 dev = p->device;
3929 }
3930 return dev;
3931 }
3932
3933 /**
3934 * device_get_devnode - path of device node file
3935 * @dev: device
3936 * @mode: returned file access mode
3937 * @uid: returned file owner
3938 * @gid: returned file group
3939 * @tmp: possibly allocated string
3940 *
3941 * Return the relative path of a possible device node.
3942 * Non-default names may need to allocate a memory to compose
3943 * a name. This memory is returned in tmp and needs to be
3944 * freed by the caller.
3945 */
device_get_devnode(const struct device * dev,umode_t * mode,kuid_t * uid,kgid_t * gid,const char ** tmp)3946 const char *device_get_devnode(const struct device *dev,
3947 umode_t *mode, kuid_t *uid, kgid_t *gid,
3948 const char **tmp)
3949 {
3950 char *s;
3951
3952 *tmp = NULL;
3953
3954 /* the device type may provide a specific name */
3955 if (dev->type && dev->type->devnode)
3956 *tmp = dev->type->devnode(dev, mode, uid, gid);
3957 if (*tmp)
3958 return *tmp;
3959
3960 /* the class may provide a specific name */
3961 if (dev->class && dev->class->devnode)
3962 *tmp = dev->class->devnode(dev, mode);
3963 if (*tmp)
3964 return *tmp;
3965
3966 /* return name without allocation, tmp == NULL */
3967 if (strchr(dev_name(dev), '!') == NULL)
3968 return dev_name(dev);
3969
3970 /* replace '!' in the name with '/' */
3971 s = kstrdup_and_replace(dev_name(dev), '!', '/', GFP_KERNEL);
3972 if (!s)
3973 return NULL;
3974 return *tmp = s;
3975 }
3976
3977 /**
3978 * device_for_each_child - device child iterator.
3979 * @parent: parent struct device.
3980 * @fn: function to be called for each device.
3981 * @data: data for the callback.
3982 *
3983 * Iterate over @parent's child devices, and call @fn for each,
3984 * passing it @data.
3985 *
3986 * We check the return of @fn each time. If it returns anything
3987 * other than 0, we break out and return that value.
3988 */
device_for_each_child(struct device * parent,void * data,int (* fn)(struct device * dev,void * data))3989 int device_for_each_child(struct device *parent, void *data,
3990 int (*fn)(struct device *dev, void *data))
3991 {
3992 struct klist_iter i;
3993 struct device *child;
3994 int error = 0;
3995
3996 if (!parent || !parent->p)
3997 return 0;
3998
3999 klist_iter_init(&parent->p->klist_children, &i);
4000 while (!error && (child = next_device(&i)))
4001 error = fn(child, data);
4002 klist_iter_exit(&i);
4003 return error;
4004 }
4005 EXPORT_SYMBOL_GPL(device_for_each_child);
4006
4007 /**
4008 * device_for_each_child_reverse - device child iterator in reversed order.
4009 * @parent: parent struct device.
4010 * @fn: function to be called for each device.
4011 * @data: data for the callback.
4012 *
4013 * Iterate over @parent's child devices, and call @fn for each,
4014 * passing it @data.
4015 *
4016 * We check the return of @fn each time. If it returns anything
4017 * other than 0, we break out and return that value.
4018 */
device_for_each_child_reverse(struct device * parent,void * data,int (* fn)(struct device * dev,void * data))4019 int device_for_each_child_reverse(struct device *parent, void *data,
4020 int (*fn)(struct device *dev, void *data))
4021 {
4022 struct klist_iter i;
4023 struct device *child;
4024 int error = 0;
4025
4026 if (!parent || !parent->p)
4027 return 0;
4028
4029 klist_iter_init(&parent->p->klist_children, &i);
4030 while ((child = prev_device(&i)) && !error)
4031 error = fn(child, data);
4032 klist_iter_exit(&i);
4033 return error;
4034 }
4035 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
4036
4037 /**
4038 * device_for_each_child_reverse_from - device child iterator in reversed order.
4039 * @parent: parent struct device.
4040 * @from: optional starting point in child list
4041 * @fn: function to be called for each device.
4042 * @data: data for the callback.
4043 *
4044 * Iterate over @parent's child devices, starting at @from, and call @fn
4045 * for each, passing it @data. This helper is identical to
4046 * device_for_each_child_reverse() when @from is NULL.
4047 *
4048 * @fn is checked each iteration. If it returns anything other than 0,
4049 * iteration stop and that value is returned to the caller of
4050 * device_for_each_child_reverse_from();
4051 */
device_for_each_child_reverse_from(struct device * parent,struct device * from,const void * data,int (* fn)(struct device *,const void *))4052 int device_for_each_child_reverse_from(struct device *parent,
4053 struct device *from, const void *data,
4054 int (*fn)(struct device *, const void *))
4055 {
4056 struct klist_iter i;
4057 struct device *child;
4058 int error = 0;
4059
4060 if (!parent->p)
4061 return 0;
4062
4063 klist_iter_init_node(&parent->p->klist_children, &i,
4064 (from ? &from->p->knode_parent : NULL));
4065 while ((child = prev_device(&i)) && !error)
4066 error = fn(child, data);
4067 klist_iter_exit(&i);
4068 return error;
4069 }
4070 EXPORT_SYMBOL_GPL(device_for_each_child_reverse_from);
4071
4072 /**
4073 * device_find_child - device iterator for locating a particular device.
4074 * @parent: parent struct device
4075 * @match: Callback function to check device
4076 * @data: Data to pass to match function
4077 *
4078 * This is similar to the device_for_each_child() function above, but it
4079 * returns a reference to a device that is 'found' for later use, as
4080 * determined by the @match callback.
4081 *
4082 * The callback should return 0 if the device doesn't match and non-zero
4083 * if it does. If the callback returns non-zero and a reference to the
4084 * current device can be obtained, this function will return to the caller
4085 * and not iterate over any more devices.
4086 *
4087 * NOTE: you will need to drop the reference with put_device() after use.
4088 */
device_find_child(struct device * parent,void * data,int (* match)(struct device * dev,void * data))4089 struct device *device_find_child(struct device *parent, void *data,
4090 int (*match)(struct device *dev, void *data))
4091 {
4092 struct klist_iter i;
4093 struct device *child;
4094
4095 if (!parent || !parent->p)
4096 return NULL;
4097
4098 klist_iter_init(&parent->p->klist_children, &i);
4099 while ((child = next_device(&i)))
4100 if (match(child, data) && get_device(child))
4101 break;
4102 klist_iter_exit(&i);
4103 return child;
4104 }
4105 EXPORT_SYMBOL_GPL(device_find_child);
4106
4107 /**
4108 * device_find_child_by_name - device iterator for locating a child device.
4109 * @parent: parent struct device
4110 * @name: name of the child device
4111 *
4112 * This is similar to the device_find_child() function above, but it
4113 * returns a reference to a device that has the name @name.
4114 *
4115 * NOTE: you will need to drop the reference with put_device() after use.
4116 */
device_find_child_by_name(struct device * parent,const char * name)4117 struct device *device_find_child_by_name(struct device *parent,
4118 const char *name)
4119 {
4120 struct klist_iter i;
4121 struct device *child;
4122
4123 if (!parent)
4124 return NULL;
4125
4126 klist_iter_init(&parent->p->klist_children, &i);
4127 while ((child = next_device(&i)))
4128 if (sysfs_streq(dev_name(child), name) && get_device(child))
4129 break;
4130 klist_iter_exit(&i);
4131 return child;
4132 }
4133 EXPORT_SYMBOL_GPL(device_find_child_by_name);
4134
match_any(struct device * dev,void * unused)4135 static int match_any(struct device *dev, void *unused)
4136 {
4137 return 1;
4138 }
4139
4140 /**
4141 * device_find_any_child - device iterator for locating a child device, if any.
4142 * @parent: parent struct device
4143 *
4144 * This is similar to the device_find_child() function above, but it
4145 * returns a reference to a child device, if any.
4146 *
4147 * NOTE: you will need to drop the reference with put_device() after use.
4148 */
device_find_any_child(struct device * parent)4149 struct device *device_find_any_child(struct device *parent)
4150 {
4151 return device_find_child(parent, NULL, match_any);
4152 }
4153 EXPORT_SYMBOL_GPL(device_find_any_child);
4154
devices_init(void)4155 int __init devices_init(void)
4156 {
4157 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
4158 if (!devices_kset)
4159 return -ENOMEM;
4160 dev_kobj = kobject_create_and_add("dev", NULL);
4161 if (!dev_kobj)
4162 goto dev_kobj_err;
4163 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
4164 if (!sysfs_dev_block_kobj)
4165 goto block_kobj_err;
4166 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
4167 if (!sysfs_dev_char_kobj)
4168 goto char_kobj_err;
4169 device_link_wq = alloc_workqueue("device_link_wq", 0, 0);
4170 if (!device_link_wq)
4171 goto wq_err;
4172
4173 return 0;
4174
4175 wq_err:
4176 kobject_put(sysfs_dev_char_kobj);
4177 char_kobj_err:
4178 kobject_put(sysfs_dev_block_kobj);
4179 block_kobj_err:
4180 kobject_put(dev_kobj);
4181 dev_kobj_err:
4182 kset_unregister(devices_kset);
4183 return -ENOMEM;
4184 }
4185
device_check_offline(struct device * dev,void * not_used)4186 static int device_check_offline(struct device *dev, void *not_used)
4187 {
4188 int ret;
4189
4190 ret = device_for_each_child(dev, NULL, device_check_offline);
4191 if (ret)
4192 return ret;
4193
4194 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
4195 }
4196
4197 /**
4198 * device_offline - Prepare the device for hot-removal.
4199 * @dev: Device to be put offline.
4200 *
4201 * Execute the device bus type's .offline() callback, if present, to prepare
4202 * the device for a subsequent hot-removal. If that succeeds, the device must
4203 * not be used until either it is removed or its bus type's .online() callback
4204 * is executed.
4205 *
4206 * Call under device_hotplug_lock.
4207 */
device_offline(struct device * dev)4208 int device_offline(struct device *dev)
4209 {
4210 int ret;
4211
4212 if (dev->offline_disabled)
4213 return -EPERM;
4214
4215 ret = device_for_each_child(dev, NULL, device_check_offline);
4216 if (ret)
4217 return ret;
4218
4219 device_lock(dev);
4220 if (device_supports_offline(dev)) {
4221 if (dev->offline) {
4222 ret = 1;
4223 } else {
4224 ret = dev->bus->offline(dev);
4225 if (!ret) {
4226 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
4227 dev->offline = true;
4228 }
4229 }
4230 }
4231 device_unlock(dev);
4232
4233 return ret;
4234 }
4235
4236 /**
4237 * device_online - Put the device back online after successful device_offline().
4238 * @dev: Device to be put back online.
4239 *
4240 * If device_offline() has been successfully executed for @dev, but the device
4241 * has not been removed subsequently, execute its bus type's .online() callback
4242 * to indicate that the device can be used again.
4243 *
4244 * Call under device_hotplug_lock.
4245 */
device_online(struct device * dev)4246 int device_online(struct device *dev)
4247 {
4248 int ret = 0;
4249
4250 device_lock(dev);
4251 if (device_supports_offline(dev)) {
4252 if (dev->offline) {
4253 ret = dev->bus->online(dev);
4254 if (!ret) {
4255 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
4256 dev->offline = false;
4257 }
4258 } else {
4259 ret = 1;
4260 }
4261 }
4262 device_unlock(dev);
4263
4264 return ret;
4265 }
4266
4267 struct root_device {
4268 struct device dev;
4269 struct module *owner;
4270 };
4271
to_root_device(struct device * d)4272 static inline struct root_device *to_root_device(struct device *d)
4273 {
4274 return container_of(d, struct root_device, dev);
4275 }
4276
root_device_release(struct device * dev)4277 static void root_device_release(struct device *dev)
4278 {
4279 kfree(to_root_device(dev));
4280 }
4281
4282 /**
4283 * __root_device_register - allocate and register a root device
4284 * @name: root device name
4285 * @owner: owner module of the root device, usually THIS_MODULE
4286 *
4287 * This function allocates a root device and registers it
4288 * using device_register(). In order to free the returned
4289 * device, use root_device_unregister().
4290 *
4291 * Root devices are dummy devices which allow other devices
4292 * to be grouped under /sys/devices. Use this function to
4293 * allocate a root device and then use it as the parent of
4294 * any device which should appear under /sys/devices/{name}
4295 *
4296 * The /sys/devices/{name} directory will also contain a
4297 * 'module' symlink which points to the @owner directory
4298 * in sysfs.
4299 *
4300 * Returns &struct device pointer on success, or ERR_PTR() on error.
4301 *
4302 * Note: You probably want to use root_device_register().
4303 */
__root_device_register(const char * name,struct module * owner)4304 struct device *__root_device_register(const char *name, struct module *owner)
4305 {
4306 struct root_device *root;
4307 int err = -ENOMEM;
4308
4309 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
4310 if (!root)
4311 return ERR_PTR(err);
4312
4313 err = dev_set_name(&root->dev, "%s", name);
4314 if (err) {
4315 kfree(root);
4316 return ERR_PTR(err);
4317 }
4318
4319 root->dev.release = root_device_release;
4320
4321 err = device_register(&root->dev);
4322 if (err) {
4323 put_device(&root->dev);
4324 return ERR_PTR(err);
4325 }
4326
4327 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
4328 if (owner) {
4329 struct module_kobject *mk = &owner->mkobj;
4330
4331 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
4332 if (err) {
4333 device_unregister(&root->dev);
4334 return ERR_PTR(err);
4335 }
4336 root->owner = owner;
4337 }
4338 #endif
4339
4340 return &root->dev;
4341 }
4342 EXPORT_SYMBOL_GPL(__root_device_register);
4343
4344 /**
4345 * root_device_unregister - unregister and free a root device
4346 * @dev: device going away
4347 *
4348 * This function unregisters and cleans up a device that was created by
4349 * root_device_register().
4350 */
root_device_unregister(struct device * dev)4351 void root_device_unregister(struct device *dev)
4352 {
4353 struct root_device *root = to_root_device(dev);
4354
4355 if (root->owner)
4356 sysfs_remove_link(&root->dev.kobj, "module");
4357
4358 device_unregister(dev);
4359 }
4360 EXPORT_SYMBOL_GPL(root_device_unregister);
4361
4362
device_create_release(struct device * dev)4363 static void device_create_release(struct device *dev)
4364 {
4365 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4366 kfree(dev);
4367 }
4368
4369 static __printf(6, 0) struct device *
device_create_groups_vargs(const struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,va_list args)4370 device_create_groups_vargs(const struct class *class, struct device *parent,
4371 dev_t devt, void *drvdata,
4372 const struct attribute_group **groups,
4373 const char *fmt, va_list args)
4374 {
4375 struct device *dev = NULL;
4376 int retval = -ENODEV;
4377
4378 if (IS_ERR_OR_NULL(class))
4379 goto error;
4380
4381 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4382 if (!dev) {
4383 retval = -ENOMEM;
4384 goto error;
4385 }
4386
4387 device_initialize(dev);
4388 dev->devt = devt;
4389 dev->class = class;
4390 dev->parent = parent;
4391 dev->groups = groups;
4392 dev->release = device_create_release;
4393 dev_set_drvdata(dev, drvdata);
4394
4395 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4396 if (retval)
4397 goto error;
4398
4399 retval = device_add(dev);
4400 if (retval)
4401 goto error;
4402
4403 return dev;
4404
4405 error:
4406 put_device(dev);
4407 return ERR_PTR(retval);
4408 }
4409
4410 /**
4411 * device_create - creates a device and registers it with sysfs
4412 * @class: pointer to the struct class that this device should be registered to
4413 * @parent: pointer to the parent struct device of this new device, if any
4414 * @devt: the dev_t for the char device to be added
4415 * @drvdata: the data to be added to the device for callbacks
4416 * @fmt: string for the device's name
4417 *
4418 * This function can be used by char device classes. A struct device
4419 * will be created in sysfs, registered to the specified class.
4420 *
4421 * A "dev" file will be created, showing the dev_t for the device, if
4422 * the dev_t is not 0,0.
4423 * If a pointer to a parent struct device is passed in, the newly created
4424 * struct device will be a child of that device in sysfs.
4425 * The pointer to the struct device will be returned from the call.
4426 * Any further sysfs files that might be required can be created using this
4427 * pointer.
4428 *
4429 * Returns &struct device pointer on success, or ERR_PTR() on error.
4430 */
device_create(const struct class * class,struct device * parent,dev_t devt,void * drvdata,const char * fmt,...)4431 struct device *device_create(const struct class *class, struct device *parent,
4432 dev_t devt, void *drvdata, const char *fmt, ...)
4433 {
4434 va_list vargs;
4435 struct device *dev;
4436
4437 va_start(vargs, fmt);
4438 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4439 fmt, vargs);
4440 va_end(vargs);
4441 return dev;
4442 }
4443 EXPORT_SYMBOL_GPL(device_create);
4444
4445 /**
4446 * device_create_with_groups - creates a device and registers it with sysfs
4447 * @class: pointer to the struct class that this device should be registered to
4448 * @parent: pointer to the parent struct device of this new device, if any
4449 * @devt: the dev_t for the char device to be added
4450 * @drvdata: the data to be added to the device for callbacks
4451 * @groups: NULL-terminated list of attribute groups to be created
4452 * @fmt: string for the device's name
4453 *
4454 * This function can be used by char device classes. A struct device
4455 * will be created in sysfs, registered to the specified class.
4456 * Additional attributes specified in the groups parameter will also
4457 * be created automatically.
4458 *
4459 * A "dev" file will be created, showing the dev_t for the device, if
4460 * the dev_t is not 0,0.
4461 * If a pointer to a parent struct device is passed in, the newly created
4462 * struct device will be a child of that device in sysfs.
4463 * The pointer to the struct device will be returned from the call.
4464 * Any further sysfs files that might be required can be created using this
4465 * pointer.
4466 *
4467 * Returns &struct device pointer on success, or ERR_PTR() on error.
4468 */
device_create_with_groups(const struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,...)4469 struct device *device_create_with_groups(const struct class *class,
4470 struct device *parent, dev_t devt,
4471 void *drvdata,
4472 const struct attribute_group **groups,
4473 const char *fmt, ...)
4474 {
4475 va_list vargs;
4476 struct device *dev;
4477
4478 va_start(vargs, fmt);
4479 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4480 fmt, vargs);
4481 va_end(vargs);
4482 return dev;
4483 }
4484 EXPORT_SYMBOL_GPL(device_create_with_groups);
4485
4486 /**
4487 * device_destroy - removes a device that was created with device_create()
4488 * @class: pointer to the struct class that this device was registered with
4489 * @devt: the dev_t of the device that was previously registered
4490 *
4491 * This call unregisters and cleans up a device that was created with a
4492 * call to device_create().
4493 */
device_destroy(const struct class * class,dev_t devt)4494 void device_destroy(const struct class *class, dev_t devt)
4495 {
4496 struct device *dev;
4497
4498 dev = class_find_device_by_devt(class, devt);
4499 if (dev) {
4500 put_device(dev);
4501 device_unregister(dev);
4502 }
4503 }
4504 EXPORT_SYMBOL_GPL(device_destroy);
4505
4506 /**
4507 * device_rename - renames a device
4508 * @dev: the pointer to the struct device to be renamed
4509 * @new_name: the new name of the device
4510 *
4511 * It is the responsibility of the caller to provide mutual
4512 * exclusion between two different calls of device_rename
4513 * on the same device to ensure that new_name is valid and
4514 * won't conflict with other devices.
4515 *
4516 * Note: given that some subsystems (networking and infiniband) use this
4517 * function, with no immediate plans for this to change, we cannot assume or
4518 * require that this function not be called at all.
4519 *
4520 * However, if you're writing new code, do not call this function. The following
4521 * text from Kay Sievers offers some insight:
4522 *
4523 * Renaming devices is racy at many levels, symlinks and other stuff are not
4524 * replaced atomically, and you get a "move" uevent, but it's not easy to
4525 * connect the event to the old and new device. Device nodes are not renamed at
4526 * all, there isn't even support for that in the kernel now.
4527 *
4528 * In the meantime, during renaming, your target name might be taken by another
4529 * driver, creating conflicts. Or the old name is taken directly after you
4530 * renamed it -- then you get events for the same DEVPATH, before you even see
4531 * the "move" event. It's just a mess, and nothing new should ever rely on
4532 * kernel device renaming. Besides that, it's not even implemented now for
4533 * other things than (driver-core wise very simple) network devices.
4534 *
4535 * Make up a "real" name in the driver before you register anything, or add
4536 * some other attributes for userspace to find the device, or use udev to add
4537 * symlinks -- but never rename kernel devices later, it's a complete mess. We
4538 * don't even want to get into that and try to implement the missing pieces in
4539 * the core. We really have other pieces to fix in the driver core mess. :)
4540 */
device_rename(struct device * dev,const char * new_name)4541 int device_rename(struct device *dev, const char *new_name)
4542 {
4543 struct subsys_private *sp = NULL;
4544 struct kobject *kobj = &dev->kobj;
4545 char *old_device_name = NULL;
4546 int error;
4547 bool is_link_renamed = false;
4548
4549 dev = get_device(dev);
4550 if (!dev)
4551 return -EINVAL;
4552
4553 dev_dbg(dev, "renaming to %s\n", new_name);
4554
4555 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4556 if (!old_device_name) {
4557 error = -ENOMEM;
4558 goto out;
4559 }
4560
4561 if (dev->class) {
4562 sp = class_to_subsys(dev->class);
4563
4564 if (!sp) {
4565 error = -EINVAL;
4566 goto out;
4567 }
4568
4569 error = sysfs_rename_link_ns(&sp->subsys.kobj, kobj, old_device_name,
4570 new_name, kobject_namespace(kobj));
4571 if (error)
4572 goto out;
4573
4574 is_link_renamed = true;
4575 }
4576
4577 error = kobject_rename(kobj, new_name);
4578 out:
4579 if (error && is_link_renamed)
4580 sysfs_rename_link_ns(&sp->subsys.kobj, kobj, new_name,
4581 old_device_name, kobject_namespace(kobj));
4582 subsys_put(sp);
4583
4584 put_device(dev);
4585
4586 kfree(old_device_name);
4587
4588 return error;
4589 }
4590 EXPORT_SYMBOL_GPL(device_rename);
4591
device_move_class_links(struct device * dev,struct device * old_parent,struct device * new_parent)4592 static int device_move_class_links(struct device *dev,
4593 struct device *old_parent,
4594 struct device *new_parent)
4595 {
4596 int error = 0;
4597
4598 if (old_parent)
4599 sysfs_remove_link(&dev->kobj, "device");
4600 if (new_parent)
4601 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4602 "device");
4603 return error;
4604 }
4605
4606 /**
4607 * device_move - moves a device to a new parent
4608 * @dev: the pointer to the struct device to be moved
4609 * @new_parent: the new parent of the device (can be NULL)
4610 * @dpm_order: how to reorder the dpm_list
4611 */
device_move(struct device * dev,struct device * new_parent,enum dpm_order dpm_order)4612 int device_move(struct device *dev, struct device *new_parent,
4613 enum dpm_order dpm_order)
4614 {
4615 int error;
4616 struct device *old_parent;
4617 struct kobject *new_parent_kobj;
4618
4619 dev = get_device(dev);
4620 if (!dev)
4621 return -EINVAL;
4622
4623 device_pm_lock();
4624 new_parent = get_device(new_parent);
4625 new_parent_kobj = get_device_parent(dev, new_parent);
4626 if (IS_ERR(new_parent_kobj)) {
4627 error = PTR_ERR(new_parent_kobj);
4628 put_device(new_parent);
4629 goto out;
4630 }
4631
4632 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4633 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4634 error = kobject_move(&dev->kobj, new_parent_kobj);
4635 if (error) {
4636 cleanup_glue_dir(dev, new_parent_kobj);
4637 put_device(new_parent);
4638 goto out;
4639 }
4640 old_parent = dev->parent;
4641 dev->parent = new_parent;
4642 if (old_parent)
4643 klist_remove(&dev->p->knode_parent);
4644 if (new_parent) {
4645 klist_add_tail(&dev->p->knode_parent,
4646 &new_parent->p->klist_children);
4647 set_dev_node(dev, dev_to_node(new_parent));
4648 }
4649
4650 if (dev->class) {
4651 error = device_move_class_links(dev, old_parent, new_parent);
4652 if (error) {
4653 /* We ignore errors on cleanup since we're hosed anyway... */
4654 device_move_class_links(dev, new_parent, old_parent);
4655 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4656 if (new_parent)
4657 klist_remove(&dev->p->knode_parent);
4658 dev->parent = old_parent;
4659 if (old_parent) {
4660 klist_add_tail(&dev->p->knode_parent,
4661 &old_parent->p->klist_children);
4662 set_dev_node(dev, dev_to_node(old_parent));
4663 }
4664 }
4665 cleanup_glue_dir(dev, new_parent_kobj);
4666 put_device(new_parent);
4667 goto out;
4668 }
4669 }
4670 switch (dpm_order) {
4671 case DPM_ORDER_NONE:
4672 break;
4673 case DPM_ORDER_DEV_AFTER_PARENT:
4674 device_pm_move_after(dev, new_parent);
4675 devices_kset_move_after(dev, new_parent);
4676 break;
4677 case DPM_ORDER_PARENT_BEFORE_DEV:
4678 device_pm_move_before(new_parent, dev);
4679 devices_kset_move_before(new_parent, dev);
4680 break;
4681 case DPM_ORDER_DEV_LAST:
4682 device_pm_move_last(dev);
4683 devices_kset_move_last(dev);
4684 break;
4685 }
4686
4687 put_device(old_parent);
4688 out:
4689 device_pm_unlock();
4690 put_device(dev);
4691 return error;
4692 }
4693 EXPORT_SYMBOL_GPL(device_move);
4694
device_attrs_change_owner(struct device * dev,kuid_t kuid,kgid_t kgid)4695 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4696 kgid_t kgid)
4697 {
4698 struct kobject *kobj = &dev->kobj;
4699 const struct class *class = dev->class;
4700 const struct device_type *type = dev->type;
4701 int error;
4702
4703 if (class) {
4704 /*
4705 * Change the device groups of the device class for @dev to
4706 * @kuid/@kgid.
4707 */
4708 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4709 kgid);
4710 if (error)
4711 return error;
4712 }
4713
4714 if (type) {
4715 /*
4716 * Change the device groups of the device type for @dev to
4717 * @kuid/@kgid.
4718 */
4719 error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4720 kgid);
4721 if (error)
4722 return error;
4723 }
4724
4725 /* Change the device groups of @dev to @kuid/@kgid. */
4726 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4727 if (error)
4728 return error;
4729
4730 if (device_supports_offline(dev) && !dev->offline_disabled) {
4731 /* Change online device attributes of @dev to @kuid/@kgid. */
4732 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4733 kuid, kgid);
4734 if (error)
4735 return error;
4736 }
4737
4738 return 0;
4739 }
4740
4741 /**
4742 * device_change_owner - change the owner of an existing device.
4743 * @dev: device.
4744 * @kuid: new owner's kuid
4745 * @kgid: new owner's kgid
4746 *
4747 * This changes the owner of @dev and its corresponding sysfs entries to
4748 * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4749 * core.
4750 *
4751 * Returns 0 on success or error code on failure.
4752 */
device_change_owner(struct device * dev,kuid_t kuid,kgid_t kgid)4753 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4754 {
4755 int error;
4756 struct kobject *kobj = &dev->kobj;
4757 struct subsys_private *sp;
4758
4759 dev = get_device(dev);
4760 if (!dev)
4761 return -EINVAL;
4762
4763 /*
4764 * Change the kobject and the default attributes and groups of the
4765 * ktype associated with it to @kuid/@kgid.
4766 */
4767 error = sysfs_change_owner(kobj, kuid, kgid);
4768 if (error)
4769 goto out;
4770
4771 /*
4772 * Change the uevent file for @dev to the new owner. The uevent file
4773 * was created in a separate step when @dev got added and we mirror
4774 * that step here.
4775 */
4776 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4777 kgid);
4778 if (error)
4779 goto out;
4780
4781 /*
4782 * Change the device groups, the device groups associated with the
4783 * device class, and the groups associated with the device type of @dev
4784 * to @kuid/@kgid.
4785 */
4786 error = device_attrs_change_owner(dev, kuid, kgid);
4787 if (error)
4788 goto out;
4789
4790 error = dpm_sysfs_change_owner(dev, kuid, kgid);
4791 if (error)
4792 goto out;
4793
4794 /*
4795 * Change the owner of the symlink located in the class directory of
4796 * the device class associated with @dev which points to the actual
4797 * directory entry for @dev to @kuid/@kgid. This ensures that the
4798 * symlink shows the same permissions as its target.
4799 */
4800 sp = class_to_subsys(dev->class);
4801 if (!sp) {
4802 error = -EINVAL;
4803 goto out;
4804 }
4805 error = sysfs_link_change_owner(&sp->subsys.kobj, &dev->kobj, dev_name(dev), kuid, kgid);
4806 subsys_put(sp);
4807
4808 out:
4809 put_device(dev);
4810 return error;
4811 }
4812 EXPORT_SYMBOL_GPL(device_change_owner);
4813
4814 /**
4815 * device_shutdown - call ->shutdown() on each device to shutdown.
4816 */
device_shutdown(void)4817 void device_shutdown(void)
4818 {
4819 struct device *dev, *parent;
4820
4821 wait_for_device_probe();
4822 device_block_probing();
4823
4824 cpufreq_suspend();
4825
4826 spin_lock(&devices_kset->list_lock);
4827 /*
4828 * Walk the devices list backward, shutting down each in turn.
4829 * Beware that device unplug events may also start pulling
4830 * devices offline, even as the system is shutting down.
4831 */
4832 while (!list_empty(&devices_kset->list)) {
4833 dev = list_entry(devices_kset->list.prev, struct device,
4834 kobj.entry);
4835
4836 /*
4837 * hold reference count of device's parent to
4838 * prevent it from being freed because parent's
4839 * lock is to be held
4840 */
4841 parent = get_device(dev->parent);
4842 get_device(dev);
4843 /*
4844 * Make sure the device is off the kset list, in the
4845 * event that dev->*->shutdown() doesn't remove it.
4846 */
4847 list_del_init(&dev->kobj.entry);
4848 spin_unlock(&devices_kset->list_lock);
4849
4850 /* hold lock to avoid race with probe/release */
4851 if (parent)
4852 device_lock(parent);
4853 device_lock(dev);
4854
4855 /* Don't allow any more runtime suspends */
4856 pm_runtime_get_noresume(dev);
4857 pm_runtime_barrier(dev);
4858
4859 if (dev->class && dev->class->shutdown_pre) {
4860 if (initcall_debug)
4861 dev_info(dev, "shutdown_pre\n");
4862 dev->class->shutdown_pre(dev);
4863 }
4864 if (dev->bus && dev->bus->shutdown) {
4865 if (initcall_debug)
4866 dev_info(dev, "shutdown\n");
4867 dev->bus->shutdown(dev);
4868 } else if (dev->driver && dev->driver->shutdown) {
4869 if (initcall_debug)
4870 dev_info(dev, "shutdown\n");
4871 dev->driver->shutdown(dev);
4872 }
4873
4874 device_unlock(dev);
4875 if (parent)
4876 device_unlock(parent);
4877
4878 put_device(dev);
4879 put_device(parent);
4880
4881 spin_lock(&devices_kset->list_lock);
4882 }
4883 spin_unlock(&devices_kset->list_lock);
4884 }
4885
4886 /*
4887 * Device logging functions
4888 */
4889
4890 #ifdef CONFIG_PRINTK
4891 static void
set_dev_info(const struct device * dev,struct dev_printk_info * dev_info)4892 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4893 {
4894 const char *subsys;
4895
4896 memset(dev_info, 0, sizeof(*dev_info));
4897
4898 if (dev->class)
4899 subsys = dev->class->name;
4900 else if (dev->bus)
4901 subsys = dev->bus->name;
4902 else
4903 return;
4904
4905 strscpy(dev_info->subsystem, subsys);
4906
4907 /*
4908 * Add device identifier DEVICE=:
4909 * b12:8 block dev_t
4910 * c127:3 char dev_t
4911 * n8 netdev ifindex
4912 * +sound:card0 subsystem:devname
4913 */
4914 if (MAJOR(dev->devt)) {
4915 char c;
4916
4917 if (strcmp(subsys, "block") == 0)
4918 c = 'b';
4919 else
4920 c = 'c';
4921
4922 snprintf(dev_info->device, sizeof(dev_info->device),
4923 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4924 } else if (strcmp(subsys, "net") == 0) {
4925 struct net_device *net = to_net_dev(dev);
4926
4927 snprintf(dev_info->device, sizeof(dev_info->device),
4928 "n%u", net->ifindex);
4929 } else {
4930 snprintf(dev_info->device, sizeof(dev_info->device),
4931 "+%s:%s", subsys, dev_name(dev));
4932 }
4933 }
4934
dev_vprintk_emit(int level,const struct device * dev,const char * fmt,va_list args)4935 int dev_vprintk_emit(int level, const struct device *dev,
4936 const char *fmt, va_list args)
4937 {
4938 struct dev_printk_info dev_info;
4939
4940 set_dev_info(dev, &dev_info);
4941
4942 return vprintk_emit(0, level, &dev_info, fmt, args);
4943 }
4944 EXPORT_SYMBOL(dev_vprintk_emit);
4945
dev_printk_emit(int level,const struct device * dev,const char * fmt,...)4946 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4947 {
4948 va_list args;
4949 int r;
4950
4951 va_start(args, fmt);
4952
4953 r = dev_vprintk_emit(level, dev, fmt, args);
4954
4955 va_end(args);
4956
4957 return r;
4958 }
4959 EXPORT_SYMBOL(dev_printk_emit);
4960
__dev_printk(const char * level,const struct device * dev,struct va_format * vaf)4961 static void __dev_printk(const char *level, const struct device *dev,
4962 struct va_format *vaf)
4963 {
4964 if (dev)
4965 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4966 dev_driver_string(dev), dev_name(dev), vaf);
4967 else
4968 printk("%s(NULL device *): %pV", level, vaf);
4969 }
4970
_dev_printk(const char * level,const struct device * dev,const char * fmt,...)4971 void _dev_printk(const char *level, const struct device *dev,
4972 const char *fmt, ...)
4973 {
4974 struct va_format vaf;
4975 va_list args;
4976
4977 va_start(args, fmt);
4978
4979 vaf.fmt = fmt;
4980 vaf.va = &args;
4981
4982 __dev_printk(level, dev, &vaf);
4983
4984 va_end(args);
4985 }
4986 EXPORT_SYMBOL(_dev_printk);
4987
4988 #define define_dev_printk_level(func, kern_level) \
4989 void func(const struct device *dev, const char *fmt, ...) \
4990 { \
4991 struct va_format vaf; \
4992 va_list args; \
4993 \
4994 va_start(args, fmt); \
4995 \
4996 vaf.fmt = fmt; \
4997 vaf.va = &args; \
4998 \
4999 __dev_printk(kern_level, dev, &vaf); \
5000 \
5001 va_end(args); \
5002 } \
5003 EXPORT_SYMBOL(func);
5004
5005 define_dev_printk_level(_dev_emerg, KERN_EMERG);
5006 define_dev_printk_level(_dev_alert, KERN_ALERT);
5007 define_dev_printk_level(_dev_crit, KERN_CRIT);
5008 define_dev_printk_level(_dev_err, KERN_ERR);
5009 define_dev_printk_level(_dev_warn, KERN_WARNING);
5010 define_dev_printk_level(_dev_notice, KERN_NOTICE);
5011 define_dev_printk_level(_dev_info, KERN_INFO);
5012
5013 #endif
5014
5015 /**
5016 * dev_err_probe - probe error check and log helper
5017 * @dev: the pointer to the struct device
5018 * @err: error value to test
5019 * @fmt: printf-style format string
5020 * @...: arguments as specified in the format string
5021 *
5022 * This helper implements common pattern present in probe functions for error
5023 * checking: print debug or error message depending if the error value is
5024 * -EPROBE_DEFER and propagate error upwards.
5025 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
5026 * checked later by reading devices_deferred debugfs attribute.
5027 * It replaces code sequence::
5028 *
5029 * if (err != -EPROBE_DEFER)
5030 * dev_err(dev, ...);
5031 * else
5032 * dev_dbg(dev, ...);
5033 * return err;
5034 *
5035 * with::
5036 *
5037 * return dev_err_probe(dev, err, ...);
5038 *
5039 * Using this helper in your probe function is totally fine even if @err is
5040 * known to never be -EPROBE_DEFER.
5041 * The benefit compared to a normal dev_err() is the standardized format
5042 * of the error code, it being emitted symbolically (i.e. you get "EAGAIN"
5043 * instead of "-35") and the fact that the error code is returned which allows
5044 * more compact error paths.
5045 *
5046 * Returns @err.
5047 */
dev_err_probe(const struct device * dev,int err,const char * fmt,...)5048 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
5049 {
5050 struct va_format vaf;
5051 va_list args;
5052
5053 va_start(args, fmt);
5054 vaf.fmt = fmt;
5055 vaf.va = &args;
5056
5057 switch (err) {
5058 case -EPROBE_DEFER:
5059 device_set_deferred_probe_reason(dev, &vaf);
5060 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5061 break;
5062
5063 case -ENOMEM:
5064 /*
5065 * We don't print anything on -ENOMEM, there is already enough
5066 * output.
5067 */
5068 break;
5069
5070 default:
5071 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5072 break;
5073 }
5074
5075 va_end(args);
5076
5077 return err;
5078 }
5079 EXPORT_SYMBOL_GPL(dev_err_probe);
5080
fwnode_is_primary(struct fwnode_handle * fwnode)5081 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
5082 {
5083 return fwnode && !IS_ERR(fwnode->secondary);
5084 }
5085
5086 /**
5087 * set_primary_fwnode - Change the primary firmware node of a given device.
5088 * @dev: Device to handle.
5089 * @fwnode: New primary firmware node of the device.
5090 *
5091 * Set the device's firmware node pointer to @fwnode, but if a secondary
5092 * firmware node of the device is present, preserve it.
5093 *
5094 * Valid fwnode cases are:
5095 * - primary --> secondary --> -ENODEV
5096 * - primary --> NULL
5097 * - secondary --> -ENODEV
5098 * - NULL
5099 */
set_primary_fwnode(struct device * dev,struct fwnode_handle * fwnode)5100 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5101 {
5102 struct device *parent = dev->parent;
5103 struct fwnode_handle *fn = dev->fwnode;
5104
5105 if (fwnode) {
5106 if (fwnode_is_primary(fn))
5107 fn = fn->secondary;
5108
5109 if (fn) {
5110 WARN_ON(fwnode->secondary);
5111 fwnode->secondary = fn;
5112 }
5113 dev->fwnode = fwnode;
5114 } else {
5115 if (fwnode_is_primary(fn)) {
5116 dev->fwnode = fn->secondary;
5117
5118 /* Skip nullifying fn->secondary if the primary is shared */
5119 if (parent && fn == parent->fwnode)
5120 return;
5121
5122 /* Set fn->secondary = NULL, so fn remains the primary fwnode */
5123 fn->secondary = NULL;
5124 } else {
5125 dev->fwnode = NULL;
5126 }
5127 }
5128 }
5129 EXPORT_SYMBOL_GPL(set_primary_fwnode);
5130
5131 /**
5132 * set_secondary_fwnode - Change the secondary firmware node of a given device.
5133 * @dev: Device to handle.
5134 * @fwnode: New secondary firmware node of the device.
5135 *
5136 * If a primary firmware node of the device is present, set its secondary
5137 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to
5138 * @fwnode.
5139 */
set_secondary_fwnode(struct device * dev,struct fwnode_handle * fwnode)5140 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5141 {
5142 if (fwnode)
5143 fwnode->secondary = ERR_PTR(-ENODEV);
5144
5145 if (fwnode_is_primary(dev->fwnode))
5146 dev->fwnode->secondary = fwnode;
5147 else
5148 dev->fwnode = fwnode;
5149 }
5150 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
5151
5152 /**
5153 * device_set_of_node_from_dev - reuse device-tree node of another device
5154 * @dev: device whose device-tree node is being set
5155 * @dev2: device whose device-tree node is being reused
5156 *
5157 * Takes another reference to the new device-tree node after first dropping
5158 * any reference held to the old node.
5159 */
device_set_of_node_from_dev(struct device * dev,const struct device * dev2)5160 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
5161 {
5162 of_node_put(dev->of_node);
5163 dev->of_node = of_node_get(dev2->of_node);
5164 dev->of_node_reused = true;
5165 }
5166 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
5167
device_set_node(struct device * dev,struct fwnode_handle * fwnode)5168 void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
5169 {
5170 dev->fwnode = fwnode;
5171 dev->of_node = to_of_node(fwnode);
5172 }
5173 EXPORT_SYMBOL_GPL(device_set_node);
5174
device_match_name(struct device * dev,const void * name)5175 int device_match_name(struct device *dev, const void *name)
5176 {
5177 return sysfs_streq(dev_name(dev), name);
5178 }
5179 EXPORT_SYMBOL_GPL(device_match_name);
5180
device_match_of_node(struct device * dev,const void * np)5181 int device_match_of_node(struct device *dev, const void *np)
5182 {
5183 return dev->of_node == np;
5184 }
5185 EXPORT_SYMBOL_GPL(device_match_of_node);
5186
device_match_fwnode(struct device * dev,const void * fwnode)5187 int device_match_fwnode(struct device *dev, const void *fwnode)
5188 {
5189 return dev_fwnode(dev) == fwnode;
5190 }
5191 EXPORT_SYMBOL_GPL(device_match_fwnode);
5192
device_match_devt(struct device * dev,const void * pdevt)5193 int device_match_devt(struct device *dev, const void *pdevt)
5194 {
5195 return dev->devt == *(dev_t *)pdevt;
5196 }
5197 EXPORT_SYMBOL_GPL(device_match_devt);
5198
device_match_acpi_dev(struct device * dev,const void * adev)5199 int device_match_acpi_dev(struct device *dev, const void *adev)
5200 {
5201 return ACPI_COMPANION(dev) == adev;
5202 }
5203 EXPORT_SYMBOL(device_match_acpi_dev);
5204
device_match_acpi_handle(struct device * dev,const void * handle)5205 int device_match_acpi_handle(struct device *dev, const void *handle)
5206 {
5207 return ACPI_HANDLE(dev) == handle;
5208 }
5209 EXPORT_SYMBOL(device_match_acpi_handle);
5210
device_match_any(struct device * dev,const void * unused)5211 int device_match_any(struct device *dev, const void *unused)
5212 {
5213 return 1;
5214 }
5215 EXPORT_SYMBOL_GPL(device_match_any);
5216