1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/page-writeback.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
7 *
8 * Contains functions related to writing back dirty pages at the
9 * address_space level.
10 *
11 * 10Apr2002 Andrew Morton
12 * Initial version
13 */
14
15 #include <linux/kernel.h>
16 #include <linux/math64.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/slab.h>
23 #include <linux/pagemap.h>
24 #include <linux/writeback.h>
25 #include <linux/init.h>
26 #include <linux/backing-dev.h>
27 #include <linux/task_io_accounting_ops.h>
28 #include <linux/blkdev.h>
29 #include <linux/mpage.h>
30 #include <linux/rmap.h>
31 #include <linux/percpu.h>
32 #include <linux/smp.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/sched/signal.h>
40 #include <linux/mm_inline.h>
41 #include <trace/events/writeback.h>
42
43 #include "internal.h"
44
45 /*
46 * Sleep at most 200ms at a time in balance_dirty_pages().
47 */
48 #define MAX_PAUSE max(HZ/5, 1)
49
50 /*
51 * Try to keep balance_dirty_pages() call intervals higher than this many pages
52 * by raising pause time to max_pause when falls below it.
53 */
54 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
55
56 /*
57 * Estimate write bandwidth at 200ms intervals.
58 */
59 #define BANDWIDTH_INTERVAL max(HZ/5, 1)
60
61 #define RATELIMIT_CALC_SHIFT 10
62
63 /*
64 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
65 * will look to see if it needs to force writeback or throttling.
66 */
67 static long ratelimit_pages = 32;
68
69 /* The following parameters are exported via /proc/sys/vm */
70
71 /*
72 * Start background writeback (via writeback threads) at this percentage
73 */
74 static int dirty_background_ratio = 10;
75
76 /*
77 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
78 * dirty_background_ratio * the amount of dirtyable memory
79 */
80 static unsigned long dirty_background_bytes;
81
82 /*
83 * free highmem will not be subtracted from the total free memory
84 * for calculating free ratios if vm_highmem_is_dirtyable is true
85 */
86 static int vm_highmem_is_dirtyable;
87
88 /*
89 * The generator of dirty data starts writeback at this percentage
90 */
91 static int vm_dirty_ratio = 20;
92
93 /*
94 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
95 * vm_dirty_ratio * the amount of dirtyable memory
96 */
97 static unsigned long vm_dirty_bytes;
98
99 /*
100 * The interval between `kupdate'-style writebacks
101 */
102 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
103
104 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
105
106 /*
107 * The longest time for which data is allowed to remain dirty
108 */
109 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
110
111 /*
112 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
113 * a full sync is triggered after this time elapses without any disk activity.
114 */
115 int laptop_mode;
116
117 EXPORT_SYMBOL(laptop_mode);
118
119 /* End of sysctl-exported parameters */
120
121 struct wb_domain global_wb_domain;
122
123 /* consolidated parameters for balance_dirty_pages() and its subroutines */
124 struct dirty_throttle_control {
125 #ifdef CONFIG_CGROUP_WRITEBACK
126 struct wb_domain *dom;
127 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */
128 #endif
129 struct bdi_writeback *wb;
130 struct fprop_local_percpu *wb_completions;
131
132 unsigned long avail; /* dirtyable */
133 unsigned long dirty; /* file_dirty + write + nfs */
134 unsigned long thresh; /* dirty threshold */
135 unsigned long bg_thresh; /* dirty background threshold */
136
137 unsigned long wb_dirty; /* per-wb counterparts */
138 unsigned long wb_thresh;
139 unsigned long wb_bg_thresh;
140
141 unsigned long pos_ratio;
142 bool freerun;
143 bool dirty_exceeded;
144 };
145
146 /*
147 * Length of period for aging writeout fractions of bdis. This is an
148 * arbitrarily chosen number. The longer the period, the slower fractions will
149 * reflect changes in current writeout rate.
150 */
151 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
152
153 #ifdef CONFIG_CGROUP_WRITEBACK
154
155 #define GDTC_INIT(__wb) .wb = (__wb), \
156 .dom = &global_wb_domain, \
157 .wb_completions = &(__wb)->completions
158
159 #define GDTC_INIT_NO_WB .dom = &global_wb_domain
160
161 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \
162 .dom = mem_cgroup_wb_domain(__wb), \
163 .wb_completions = &(__wb)->memcg_completions, \
164 .gdtc = __gdtc
165
mdtc_valid(struct dirty_throttle_control * dtc)166 static bool mdtc_valid(struct dirty_throttle_control *dtc)
167 {
168 return dtc->dom;
169 }
170
dtc_dom(struct dirty_throttle_control * dtc)171 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
172 {
173 return dtc->dom;
174 }
175
mdtc_gdtc(struct dirty_throttle_control * mdtc)176 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
177 {
178 return mdtc->gdtc;
179 }
180
wb_memcg_completions(struct bdi_writeback * wb)181 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
182 {
183 return &wb->memcg_completions;
184 }
185
wb_min_max_ratio(struct bdi_writeback * wb,unsigned long * minp,unsigned long * maxp)186 static void wb_min_max_ratio(struct bdi_writeback *wb,
187 unsigned long *minp, unsigned long *maxp)
188 {
189 unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth);
190 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
191 unsigned long long min = wb->bdi->min_ratio;
192 unsigned long long max = wb->bdi->max_ratio;
193
194 /*
195 * @wb may already be clean by the time control reaches here and
196 * the total may not include its bw.
197 */
198 if (this_bw < tot_bw) {
199 if (min) {
200 min *= this_bw;
201 min = div64_ul(min, tot_bw);
202 }
203 if (max < 100 * BDI_RATIO_SCALE) {
204 max *= this_bw;
205 max = div64_ul(max, tot_bw);
206 }
207 }
208
209 *minp = min;
210 *maxp = max;
211 }
212
213 #else /* CONFIG_CGROUP_WRITEBACK */
214
215 #define GDTC_INIT(__wb) .wb = (__wb), \
216 .wb_completions = &(__wb)->completions
217 #define GDTC_INIT_NO_WB
218 #define MDTC_INIT(__wb, __gdtc)
219
mdtc_valid(struct dirty_throttle_control * dtc)220 static bool mdtc_valid(struct dirty_throttle_control *dtc)
221 {
222 return false;
223 }
224
dtc_dom(struct dirty_throttle_control * dtc)225 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
226 {
227 return &global_wb_domain;
228 }
229
mdtc_gdtc(struct dirty_throttle_control * mdtc)230 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
231 {
232 return NULL;
233 }
234
wb_memcg_completions(struct bdi_writeback * wb)235 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
236 {
237 return NULL;
238 }
239
wb_min_max_ratio(struct bdi_writeback * wb,unsigned long * minp,unsigned long * maxp)240 static void wb_min_max_ratio(struct bdi_writeback *wb,
241 unsigned long *minp, unsigned long *maxp)
242 {
243 *minp = wb->bdi->min_ratio;
244 *maxp = wb->bdi->max_ratio;
245 }
246
247 #endif /* CONFIG_CGROUP_WRITEBACK */
248
249 /*
250 * In a memory zone, there is a certain amount of pages we consider
251 * available for the page cache, which is essentially the number of
252 * free and reclaimable pages, minus some zone reserves to protect
253 * lowmem and the ability to uphold the zone's watermarks without
254 * requiring writeback.
255 *
256 * This number of dirtyable pages is the base value of which the
257 * user-configurable dirty ratio is the effective number of pages that
258 * are allowed to be actually dirtied. Per individual zone, or
259 * globally by using the sum of dirtyable pages over all zones.
260 *
261 * Because the user is allowed to specify the dirty limit globally as
262 * absolute number of bytes, calculating the per-zone dirty limit can
263 * require translating the configured limit into a percentage of
264 * global dirtyable memory first.
265 */
266
267 /**
268 * node_dirtyable_memory - number of dirtyable pages in a node
269 * @pgdat: the node
270 *
271 * Return: the node's number of pages potentially available for dirty
272 * page cache. This is the base value for the per-node dirty limits.
273 */
node_dirtyable_memory(struct pglist_data * pgdat)274 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
275 {
276 unsigned long nr_pages = 0;
277 int z;
278
279 for (z = 0; z < MAX_NR_ZONES; z++) {
280 struct zone *zone = pgdat->node_zones + z;
281
282 if (!populated_zone(zone))
283 continue;
284
285 nr_pages += zone_page_state(zone, NR_FREE_PAGES);
286 }
287
288 /*
289 * Pages reserved for the kernel should not be considered
290 * dirtyable, to prevent a situation where reclaim has to
291 * clean pages in order to balance the zones.
292 */
293 nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
294
295 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
296 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
297
298 return nr_pages;
299 }
300
highmem_dirtyable_memory(unsigned long total)301 static unsigned long highmem_dirtyable_memory(unsigned long total)
302 {
303 #ifdef CONFIG_HIGHMEM
304 int node;
305 unsigned long x = 0;
306 int i;
307
308 for_each_node_state(node, N_HIGH_MEMORY) {
309 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
310 struct zone *z;
311 unsigned long nr_pages;
312
313 if (!is_highmem_idx(i))
314 continue;
315
316 z = &NODE_DATA(node)->node_zones[i];
317 if (!populated_zone(z))
318 continue;
319
320 nr_pages = zone_page_state(z, NR_FREE_PAGES);
321 /* watch for underflows */
322 nr_pages -= min(nr_pages, high_wmark_pages(z));
323 nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
324 nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
325 x += nr_pages;
326 }
327 }
328
329 /*
330 * Make sure that the number of highmem pages is never larger
331 * than the number of the total dirtyable memory. This can only
332 * occur in very strange VM situations but we want to make sure
333 * that this does not occur.
334 */
335 return min(x, total);
336 #else
337 return 0;
338 #endif
339 }
340
341 /**
342 * global_dirtyable_memory - number of globally dirtyable pages
343 *
344 * Return: the global number of pages potentially available for dirty
345 * page cache. This is the base value for the global dirty limits.
346 */
global_dirtyable_memory(void)347 static unsigned long global_dirtyable_memory(void)
348 {
349 unsigned long x;
350
351 x = global_zone_page_state(NR_FREE_PAGES);
352 /*
353 * Pages reserved for the kernel should not be considered
354 * dirtyable, to prevent a situation where reclaim has to
355 * clean pages in order to balance the zones.
356 */
357 x -= min(x, totalreserve_pages);
358
359 x += global_node_page_state(NR_INACTIVE_FILE);
360 x += global_node_page_state(NR_ACTIVE_FILE);
361
362 if (!vm_highmem_is_dirtyable)
363 x -= highmem_dirtyable_memory(x);
364
365 return x + 1; /* Ensure that we never return 0 */
366 }
367
368 /**
369 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
370 * @dtc: dirty_throttle_control of interest
371 *
372 * Calculate @dtc->thresh and ->bg_thresh considering
373 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller
374 * must ensure that @dtc->avail is set before calling this function. The
375 * dirty limits will be lifted by 1/4 for real-time tasks.
376 */
domain_dirty_limits(struct dirty_throttle_control * dtc)377 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
378 {
379 const unsigned long available_memory = dtc->avail;
380 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
381 unsigned long bytes = vm_dirty_bytes;
382 unsigned long bg_bytes = dirty_background_bytes;
383 /* convert ratios to per-PAGE_SIZE for higher precision */
384 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
385 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
386 unsigned long thresh;
387 unsigned long bg_thresh;
388 struct task_struct *tsk;
389
390 /* gdtc is !NULL iff @dtc is for memcg domain */
391 if (gdtc) {
392 unsigned long global_avail = gdtc->avail;
393
394 /*
395 * The byte settings can't be applied directly to memcg
396 * domains. Convert them to ratios by scaling against
397 * globally available memory. As the ratios are in
398 * per-PAGE_SIZE, they can be obtained by dividing bytes by
399 * number of pages.
400 */
401 if (bytes)
402 ratio = min(DIV_ROUND_UP(bytes, global_avail),
403 PAGE_SIZE);
404 if (bg_bytes)
405 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
406 PAGE_SIZE);
407 bytes = bg_bytes = 0;
408 }
409
410 if (bytes)
411 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
412 else
413 thresh = (ratio * available_memory) / PAGE_SIZE;
414
415 if (bg_bytes)
416 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
417 else
418 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
419
420 tsk = current;
421 if (rt_or_dl_task(tsk)) {
422 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
423 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
424 }
425 /*
426 * Dirty throttling logic assumes the limits in page units fit into
427 * 32-bits. This gives 16TB dirty limits max which is hopefully enough.
428 */
429 if (thresh > UINT_MAX)
430 thresh = UINT_MAX;
431 /* This makes sure bg_thresh is within 32-bits as well */
432 if (bg_thresh >= thresh)
433 bg_thresh = thresh / 2;
434 dtc->thresh = thresh;
435 dtc->bg_thresh = bg_thresh;
436
437 /* we should eventually report the domain in the TP */
438 if (!gdtc)
439 trace_global_dirty_state(bg_thresh, thresh);
440 }
441
442 /**
443 * global_dirty_limits - background-writeback and dirty-throttling thresholds
444 * @pbackground: out parameter for bg_thresh
445 * @pdirty: out parameter for thresh
446 *
447 * Calculate bg_thresh and thresh for global_wb_domain. See
448 * domain_dirty_limits() for details.
449 */
global_dirty_limits(unsigned long * pbackground,unsigned long * pdirty)450 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
451 {
452 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
453
454 gdtc.avail = global_dirtyable_memory();
455 domain_dirty_limits(&gdtc);
456
457 *pbackground = gdtc.bg_thresh;
458 *pdirty = gdtc.thresh;
459 }
460
461 /**
462 * node_dirty_limit - maximum number of dirty pages allowed in a node
463 * @pgdat: the node
464 *
465 * Return: the maximum number of dirty pages allowed in a node, based
466 * on the node's dirtyable memory.
467 */
node_dirty_limit(struct pglist_data * pgdat)468 static unsigned long node_dirty_limit(struct pglist_data *pgdat)
469 {
470 unsigned long node_memory = node_dirtyable_memory(pgdat);
471 struct task_struct *tsk = current;
472 unsigned long dirty;
473
474 if (vm_dirty_bytes)
475 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
476 node_memory / global_dirtyable_memory();
477 else
478 dirty = vm_dirty_ratio * node_memory / 100;
479
480 if (rt_or_dl_task(tsk))
481 dirty += dirty / 4;
482
483 /*
484 * Dirty throttling logic assumes the limits in page units fit into
485 * 32-bits. This gives 16TB dirty limits max which is hopefully enough.
486 */
487 return min_t(unsigned long, dirty, UINT_MAX);
488 }
489
490 /**
491 * node_dirty_ok - tells whether a node is within its dirty limits
492 * @pgdat: the node to check
493 *
494 * Return: %true when the dirty pages in @pgdat are within the node's
495 * dirty limit, %false if the limit is exceeded.
496 */
node_dirty_ok(struct pglist_data * pgdat)497 bool node_dirty_ok(struct pglist_data *pgdat)
498 {
499 unsigned long limit = node_dirty_limit(pgdat);
500 unsigned long nr_pages = 0;
501
502 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
503 nr_pages += node_page_state(pgdat, NR_WRITEBACK);
504
505 return nr_pages <= limit;
506 }
507
508 #ifdef CONFIG_SYSCTL
dirty_background_ratio_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)509 static int dirty_background_ratio_handler(const struct ctl_table *table, int write,
510 void *buffer, size_t *lenp, loff_t *ppos)
511 {
512 int ret;
513
514 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
515 if (ret == 0 && write)
516 dirty_background_bytes = 0;
517 return ret;
518 }
519
dirty_background_bytes_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)520 static int dirty_background_bytes_handler(const struct ctl_table *table, int write,
521 void *buffer, size_t *lenp, loff_t *ppos)
522 {
523 int ret;
524 unsigned long old_bytes = dirty_background_bytes;
525
526 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
527 if (ret == 0 && write) {
528 if (DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE) >
529 UINT_MAX) {
530 dirty_background_bytes = old_bytes;
531 return -ERANGE;
532 }
533 dirty_background_ratio = 0;
534 }
535 return ret;
536 }
537
dirty_ratio_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)538 static int dirty_ratio_handler(const struct ctl_table *table, int write, void *buffer,
539 size_t *lenp, loff_t *ppos)
540 {
541 int old_ratio = vm_dirty_ratio;
542 int ret;
543
544 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
545 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
546 writeback_set_ratelimit();
547 vm_dirty_bytes = 0;
548 }
549 return ret;
550 }
551
dirty_bytes_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)552 static int dirty_bytes_handler(const struct ctl_table *table, int write,
553 void *buffer, size_t *lenp, loff_t *ppos)
554 {
555 unsigned long old_bytes = vm_dirty_bytes;
556 int ret;
557
558 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
559 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
560 if (DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) > UINT_MAX) {
561 vm_dirty_bytes = old_bytes;
562 return -ERANGE;
563 }
564 writeback_set_ratelimit();
565 vm_dirty_ratio = 0;
566 }
567 return ret;
568 }
569 #endif
570
wp_next_time(unsigned long cur_time)571 static unsigned long wp_next_time(unsigned long cur_time)
572 {
573 cur_time += VM_COMPLETIONS_PERIOD_LEN;
574 /* 0 has a special meaning... */
575 if (!cur_time)
576 return 1;
577 return cur_time;
578 }
579
wb_domain_writeout_add(struct wb_domain * dom,struct fprop_local_percpu * completions,unsigned int max_prop_frac,long nr)580 static void wb_domain_writeout_add(struct wb_domain *dom,
581 struct fprop_local_percpu *completions,
582 unsigned int max_prop_frac, long nr)
583 {
584 __fprop_add_percpu_max(&dom->completions, completions,
585 max_prop_frac, nr);
586 /* First event after period switching was turned off? */
587 if (unlikely(!dom->period_time)) {
588 /*
589 * We can race with other __bdi_writeout_inc calls here but
590 * it does not cause any harm since the resulting time when
591 * timer will fire and what is in writeout_period_time will be
592 * roughly the same.
593 */
594 dom->period_time = wp_next_time(jiffies);
595 mod_timer(&dom->period_timer, dom->period_time);
596 }
597 }
598
599 /*
600 * Increment @wb's writeout completion count and the global writeout
601 * completion count. Called from __folio_end_writeback().
602 */
__wb_writeout_add(struct bdi_writeback * wb,long nr)603 static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr)
604 {
605 struct wb_domain *cgdom;
606
607 wb_stat_mod(wb, WB_WRITTEN, nr);
608 wb_domain_writeout_add(&global_wb_domain, &wb->completions,
609 wb->bdi->max_prop_frac, nr);
610
611 cgdom = mem_cgroup_wb_domain(wb);
612 if (cgdom)
613 wb_domain_writeout_add(cgdom, wb_memcg_completions(wb),
614 wb->bdi->max_prop_frac, nr);
615 }
616
wb_writeout_inc(struct bdi_writeback * wb)617 void wb_writeout_inc(struct bdi_writeback *wb)
618 {
619 unsigned long flags;
620
621 local_irq_save(flags);
622 __wb_writeout_add(wb, 1);
623 local_irq_restore(flags);
624 }
625 EXPORT_SYMBOL_GPL(wb_writeout_inc);
626
627 /*
628 * On idle system, we can be called long after we scheduled because we use
629 * deferred timers so count with missed periods.
630 */
writeout_period(struct timer_list * t)631 static void writeout_period(struct timer_list *t)
632 {
633 struct wb_domain *dom = from_timer(dom, t, period_timer);
634 int miss_periods = (jiffies - dom->period_time) /
635 VM_COMPLETIONS_PERIOD_LEN;
636
637 if (fprop_new_period(&dom->completions, miss_periods + 1)) {
638 dom->period_time = wp_next_time(dom->period_time +
639 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
640 mod_timer(&dom->period_timer, dom->period_time);
641 } else {
642 /*
643 * Aging has zeroed all fractions. Stop wasting CPU on period
644 * updates.
645 */
646 dom->period_time = 0;
647 }
648 }
649
wb_domain_init(struct wb_domain * dom,gfp_t gfp)650 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
651 {
652 memset(dom, 0, sizeof(*dom));
653
654 spin_lock_init(&dom->lock);
655
656 timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
657
658 dom->dirty_limit_tstamp = jiffies;
659
660 return fprop_global_init(&dom->completions, gfp);
661 }
662
663 #ifdef CONFIG_CGROUP_WRITEBACK
wb_domain_exit(struct wb_domain * dom)664 void wb_domain_exit(struct wb_domain *dom)
665 {
666 del_timer_sync(&dom->period_timer);
667 fprop_global_destroy(&dom->completions);
668 }
669 #endif
670
671 /*
672 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
673 * registered backing devices, which, for obvious reasons, can not
674 * exceed 100%.
675 */
676 static unsigned int bdi_min_ratio;
677
bdi_check_pages_limit(unsigned long pages)678 static int bdi_check_pages_limit(unsigned long pages)
679 {
680 unsigned long max_dirty_pages = global_dirtyable_memory();
681
682 if (pages > max_dirty_pages)
683 return -EINVAL;
684
685 return 0;
686 }
687
bdi_ratio_from_pages(unsigned long pages)688 static unsigned long bdi_ratio_from_pages(unsigned long pages)
689 {
690 unsigned long background_thresh;
691 unsigned long dirty_thresh;
692 unsigned long ratio;
693
694 global_dirty_limits(&background_thresh, &dirty_thresh);
695 ratio = div64_u64(pages * 100ULL * BDI_RATIO_SCALE, dirty_thresh);
696
697 return ratio;
698 }
699
bdi_get_bytes(unsigned int ratio)700 static u64 bdi_get_bytes(unsigned int ratio)
701 {
702 unsigned long background_thresh;
703 unsigned long dirty_thresh;
704 u64 bytes;
705
706 global_dirty_limits(&background_thresh, &dirty_thresh);
707 bytes = (dirty_thresh * PAGE_SIZE * ratio) / BDI_RATIO_SCALE / 100;
708
709 return bytes;
710 }
711
__bdi_set_min_ratio(struct backing_dev_info * bdi,unsigned int min_ratio)712 static int __bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
713 {
714 unsigned int delta;
715 int ret = 0;
716
717 if (min_ratio > 100 * BDI_RATIO_SCALE)
718 return -EINVAL;
719
720 spin_lock_bh(&bdi_lock);
721 if (min_ratio > bdi->max_ratio) {
722 ret = -EINVAL;
723 } else {
724 if (min_ratio < bdi->min_ratio) {
725 delta = bdi->min_ratio - min_ratio;
726 bdi_min_ratio -= delta;
727 bdi->min_ratio = min_ratio;
728 } else {
729 delta = min_ratio - bdi->min_ratio;
730 if (bdi_min_ratio + delta < 100 * BDI_RATIO_SCALE) {
731 bdi_min_ratio += delta;
732 bdi->min_ratio = min_ratio;
733 } else {
734 ret = -EINVAL;
735 }
736 }
737 }
738 spin_unlock_bh(&bdi_lock);
739
740 return ret;
741 }
742
__bdi_set_max_ratio(struct backing_dev_info * bdi,unsigned int max_ratio)743 static int __bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
744 {
745 int ret = 0;
746
747 if (max_ratio > 100 * BDI_RATIO_SCALE)
748 return -EINVAL;
749
750 spin_lock_bh(&bdi_lock);
751 if (bdi->min_ratio > max_ratio) {
752 ret = -EINVAL;
753 } else {
754 bdi->max_ratio = max_ratio;
755 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) /
756 (100 * BDI_RATIO_SCALE);
757 }
758 spin_unlock_bh(&bdi_lock);
759
760 return ret;
761 }
762
bdi_set_min_ratio_no_scale(struct backing_dev_info * bdi,unsigned int min_ratio)763 int bdi_set_min_ratio_no_scale(struct backing_dev_info *bdi, unsigned int min_ratio)
764 {
765 return __bdi_set_min_ratio(bdi, min_ratio);
766 }
767
bdi_set_max_ratio_no_scale(struct backing_dev_info * bdi,unsigned int max_ratio)768 int bdi_set_max_ratio_no_scale(struct backing_dev_info *bdi, unsigned int max_ratio)
769 {
770 return __bdi_set_max_ratio(bdi, max_ratio);
771 }
772
bdi_set_min_ratio(struct backing_dev_info * bdi,unsigned int min_ratio)773 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
774 {
775 return __bdi_set_min_ratio(bdi, min_ratio * BDI_RATIO_SCALE);
776 }
777
bdi_set_max_ratio(struct backing_dev_info * bdi,unsigned int max_ratio)778 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
779 {
780 return __bdi_set_max_ratio(bdi, max_ratio * BDI_RATIO_SCALE);
781 }
782 EXPORT_SYMBOL(bdi_set_max_ratio);
783
bdi_get_min_bytes(struct backing_dev_info * bdi)784 u64 bdi_get_min_bytes(struct backing_dev_info *bdi)
785 {
786 return bdi_get_bytes(bdi->min_ratio);
787 }
788
bdi_set_min_bytes(struct backing_dev_info * bdi,u64 min_bytes)789 int bdi_set_min_bytes(struct backing_dev_info *bdi, u64 min_bytes)
790 {
791 int ret;
792 unsigned long pages = min_bytes >> PAGE_SHIFT;
793 unsigned long min_ratio;
794
795 ret = bdi_check_pages_limit(pages);
796 if (ret)
797 return ret;
798
799 min_ratio = bdi_ratio_from_pages(pages);
800 return __bdi_set_min_ratio(bdi, min_ratio);
801 }
802
bdi_get_max_bytes(struct backing_dev_info * bdi)803 u64 bdi_get_max_bytes(struct backing_dev_info *bdi)
804 {
805 return bdi_get_bytes(bdi->max_ratio);
806 }
807
bdi_set_max_bytes(struct backing_dev_info * bdi,u64 max_bytes)808 int bdi_set_max_bytes(struct backing_dev_info *bdi, u64 max_bytes)
809 {
810 int ret;
811 unsigned long pages = max_bytes >> PAGE_SHIFT;
812 unsigned long max_ratio;
813
814 ret = bdi_check_pages_limit(pages);
815 if (ret)
816 return ret;
817
818 max_ratio = bdi_ratio_from_pages(pages);
819 return __bdi_set_max_ratio(bdi, max_ratio);
820 }
821
bdi_set_strict_limit(struct backing_dev_info * bdi,unsigned int strict_limit)822 int bdi_set_strict_limit(struct backing_dev_info *bdi, unsigned int strict_limit)
823 {
824 if (strict_limit > 1)
825 return -EINVAL;
826
827 spin_lock_bh(&bdi_lock);
828 if (strict_limit)
829 bdi->capabilities |= BDI_CAP_STRICTLIMIT;
830 else
831 bdi->capabilities &= ~BDI_CAP_STRICTLIMIT;
832 spin_unlock_bh(&bdi_lock);
833
834 return 0;
835 }
836
dirty_freerun_ceiling(unsigned long thresh,unsigned long bg_thresh)837 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
838 unsigned long bg_thresh)
839 {
840 return (thresh + bg_thresh) / 2;
841 }
842
hard_dirty_limit(struct wb_domain * dom,unsigned long thresh)843 static unsigned long hard_dirty_limit(struct wb_domain *dom,
844 unsigned long thresh)
845 {
846 return max(thresh, dom->dirty_limit);
847 }
848
849 /*
850 * Memory which can be further allocated to a memcg domain is capped by
851 * system-wide clean memory excluding the amount being used in the domain.
852 */
mdtc_calc_avail(struct dirty_throttle_control * mdtc,unsigned long filepages,unsigned long headroom)853 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
854 unsigned long filepages, unsigned long headroom)
855 {
856 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
857 unsigned long clean = filepages - min(filepages, mdtc->dirty);
858 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
859 unsigned long other_clean = global_clean - min(global_clean, clean);
860
861 mdtc->avail = filepages + min(headroom, other_clean);
862 }
863
dtc_is_global(struct dirty_throttle_control * dtc)864 static inline bool dtc_is_global(struct dirty_throttle_control *dtc)
865 {
866 return mdtc_gdtc(dtc) == NULL;
867 }
868
869 /*
870 * Dirty background will ignore pages being written as we're trying to
871 * decide whether to put more under writeback.
872 */
domain_dirty_avail(struct dirty_throttle_control * dtc,bool include_writeback)873 static void domain_dirty_avail(struct dirty_throttle_control *dtc,
874 bool include_writeback)
875 {
876 if (dtc_is_global(dtc)) {
877 dtc->avail = global_dirtyable_memory();
878 dtc->dirty = global_node_page_state(NR_FILE_DIRTY);
879 if (include_writeback)
880 dtc->dirty += global_node_page_state(NR_WRITEBACK);
881 } else {
882 unsigned long filepages = 0, headroom = 0, writeback = 0;
883
884 mem_cgroup_wb_stats(dtc->wb, &filepages, &headroom, &dtc->dirty,
885 &writeback);
886 if (include_writeback)
887 dtc->dirty += writeback;
888 mdtc_calc_avail(dtc, filepages, headroom);
889 }
890 }
891
892 /**
893 * __wb_calc_thresh - @wb's share of dirty threshold
894 * @dtc: dirty_throttle_context of interest
895 * @thresh: dirty throttling or dirty background threshold of wb_domain in @dtc
896 *
897 * Note that balance_dirty_pages() will only seriously take dirty throttling
898 * threshold as a hard limit when sleeping max_pause per page is not enough
899 * to keep the dirty pages under control. For example, when the device is
900 * completely stalled due to some error conditions, or when there are 1000
901 * dd tasks writing to a slow 10MB/s USB key.
902 * In the other normal situations, it acts more gently by throttling the tasks
903 * more (rather than completely block them) when the wb dirty pages go high.
904 *
905 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
906 * - starving fast devices
907 * - piling up dirty pages (that will take long time to sync) on slow devices
908 *
909 * The wb's share of dirty limit will be adapting to its throughput and
910 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
911 *
912 * Return: @wb's dirty limit in pages. For dirty throttling limit, the term
913 * "dirty" in the context of dirty balancing includes all PG_dirty and
914 * PG_writeback pages.
915 */
__wb_calc_thresh(struct dirty_throttle_control * dtc,unsigned long thresh)916 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc,
917 unsigned long thresh)
918 {
919 struct wb_domain *dom = dtc_dom(dtc);
920 u64 wb_thresh;
921 unsigned long numerator, denominator;
922 unsigned long wb_min_ratio, wb_max_ratio;
923
924 /*
925 * Calculate this wb's share of the thresh ratio.
926 */
927 fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
928 &numerator, &denominator);
929
930 wb_thresh = (thresh * (100 * BDI_RATIO_SCALE - bdi_min_ratio)) / (100 * BDI_RATIO_SCALE);
931 wb_thresh *= numerator;
932 wb_thresh = div64_ul(wb_thresh, denominator);
933
934 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
935
936 wb_thresh += (thresh * wb_min_ratio) / (100 * BDI_RATIO_SCALE);
937 if (wb_thresh > (thresh * wb_max_ratio) / (100 * BDI_RATIO_SCALE))
938 wb_thresh = thresh * wb_max_ratio / (100 * BDI_RATIO_SCALE);
939
940 return wb_thresh;
941 }
942
wb_calc_thresh(struct bdi_writeback * wb,unsigned long thresh)943 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
944 {
945 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
946
947 return __wb_calc_thresh(&gdtc, thresh);
948 }
949
cgwb_calc_thresh(struct bdi_writeback * wb)950 unsigned long cgwb_calc_thresh(struct bdi_writeback *wb)
951 {
952 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
953 struct dirty_throttle_control mdtc = { MDTC_INIT(wb, &gdtc) };
954
955 domain_dirty_avail(&gdtc, true);
956 domain_dirty_avail(&mdtc, true);
957 domain_dirty_limits(&mdtc);
958
959 return __wb_calc_thresh(&mdtc, mdtc.thresh);
960 }
961
962 /*
963 * setpoint - dirty 3
964 * f(dirty) := 1.0 + (----------------)
965 * limit - setpoint
966 *
967 * it's a 3rd order polynomial that subjects to
968 *
969 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
970 * (2) f(setpoint) = 1.0 => the balance point
971 * (3) f(limit) = 0 => the hard limit
972 * (4) df/dx <= 0 => negative feedback control
973 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
974 * => fast response on large errors; small oscillation near setpoint
975 */
pos_ratio_polynom(unsigned long setpoint,unsigned long dirty,unsigned long limit)976 static long long pos_ratio_polynom(unsigned long setpoint,
977 unsigned long dirty,
978 unsigned long limit)
979 {
980 long long pos_ratio;
981 long x;
982
983 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
984 (limit - setpoint) | 1);
985 pos_ratio = x;
986 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
987 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
988 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
989
990 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
991 }
992
993 /*
994 * Dirty position control.
995 *
996 * (o) global/bdi setpoints
997 *
998 * We want the dirty pages be balanced around the global/wb setpoints.
999 * When the number of dirty pages is higher/lower than the setpoint, the
1000 * dirty position control ratio (and hence task dirty ratelimit) will be
1001 * decreased/increased to bring the dirty pages back to the setpoint.
1002 *
1003 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
1004 *
1005 * if (dirty < setpoint) scale up pos_ratio
1006 * if (dirty > setpoint) scale down pos_ratio
1007 *
1008 * if (wb_dirty < wb_setpoint) scale up pos_ratio
1009 * if (wb_dirty > wb_setpoint) scale down pos_ratio
1010 *
1011 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
1012 *
1013 * (o) global control line
1014 *
1015 * ^ pos_ratio
1016 * |
1017 * | |<===== global dirty control scope ======>|
1018 * 2.0 * * * * * * *
1019 * | .*
1020 * | . *
1021 * | . *
1022 * | . *
1023 * | . *
1024 * | . *
1025 * 1.0 ................................*
1026 * | . . *
1027 * | . . *
1028 * | . . *
1029 * | . . *
1030 * | . . *
1031 * 0 +------------.------------------.----------------------*------------->
1032 * freerun^ setpoint^ limit^ dirty pages
1033 *
1034 * (o) wb control line
1035 *
1036 * ^ pos_ratio
1037 * |
1038 * | *
1039 * | *
1040 * | *
1041 * | *
1042 * | * |<=========== span ============>|
1043 * 1.0 .......................*
1044 * | . *
1045 * | . *
1046 * | . *
1047 * | . *
1048 * | . *
1049 * | . *
1050 * | . *
1051 * | . *
1052 * | . *
1053 * | . *
1054 * | . *
1055 * 1/4 ...............................................* * * * * * * * * * * *
1056 * | . .
1057 * | . .
1058 * | . .
1059 * 0 +----------------------.-------------------------------.------------->
1060 * wb_setpoint^ x_intercept^
1061 *
1062 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
1063 * be smoothly throttled down to normal if it starts high in situations like
1064 * - start writing to a slow SD card and a fast disk at the same time. The SD
1065 * card's wb_dirty may rush to many times higher than wb_setpoint.
1066 * - the wb dirty thresh drops quickly due to change of JBOD workload
1067 */
wb_position_ratio(struct dirty_throttle_control * dtc)1068 static void wb_position_ratio(struct dirty_throttle_control *dtc)
1069 {
1070 struct bdi_writeback *wb = dtc->wb;
1071 unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth);
1072 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1073 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1074 unsigned long wb_thresh = dtc->wb_thresh;
1075 unsigned long x_intercept;
1076 unsigned long setpoint; /* dirty pages' target balance point */
1077 unsigned long wb_setpoint;
1078 unsigned long span;
1079 long long pos_ratio; /* for scaling up/down the rate limit */
1080 long x;
1081
1082 dtc->pos_ratio = 0;
1083
1084 if (unlikely(dtc->dirty >= limit))
1085 return;
1086
1087 /*
1088 * global setpoint
1089 *
1090 * See comment for pos_ratio_polynom().
1091 */
1092 setpoint = (freerun + limit) / 2;
1093 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
1094
1095 /*
1096 * The strictlimit feature is a tool preventing mistrusted filesystems
1097 * from growing a large number of dirty pages before throttling. For
1098 * such filesystems balance_dirty_pages always checks wb counters
1099 * against wb limits. Even if global "nr_dirty" is under "freerun".
1100 * This is especially important for fuse which sets bdi->max_ratio to
1101 * 1% by default. Without strictlimit feature, fuse writeback may
1102 * consume arbitrary amount of RAM because it is accounted in
1103 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
1104 *
1105 * Here, in wb_position_ratio(), we calculate pos_ratio based on
1106 * two values: wb_dirty and wb_thresh. Let's consider an example:
1107 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
1108 * limits are set by default to 10% and 20% (background and throttle).
1109 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
1110 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
1111 * about ~6K pages (as the average of background and throttle wb
1112 * limits). The 3rd order polynomial will provide positive feedback if
1113 * wb_dirty is under wb_setpoint and vice versa.
1114 *
1115 * Note, that we cannot use global counters in these calculations
1116 * because we want to throttle process writing to a strictlimit wb
1117 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
1118 * in the example above).
1119 */
1120 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1121 long long wb_pos_ratio;
1122
1123 if (dtc->wb_dirty < 8) {
1124 dtc->pos_ratio = min_t(long long, pos_ratio * 2,
1125 2 << RATELIMIT_CALC_SHIFT);
1126 return;
1127 }
1128
1129 if (dtc->wb_dirty >= wb_thresh)
1130 return;
1131
1132 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
1133 dtc->wb_bg_thresh);
1134
1135 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
1136 return;
1137
1138 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
1139 wb_thresh);
1140
1141 /*
1142 * Typically, for strictlimit case, wb_setpoint << setpoint
1143 * and pos_ratio >> wb_pos_ratio. In the other words global
1144 * state ("dirty") is not limiting factor and we have to
1145 * make decision based on wb counters. But there is an
1146 * important case when global pos_ratio should get precedence:
1147 * global limits are exceeded (e.g. due to activities on other
1148 * wb's) while given strictlimit wb is below limit.
1149 *
1150 * "pos_ratio * wb_pos_ratio" would work for the case above,
1151 * but it would look too non-natural for the case of all
1152 * activity in the system coming from a single strictlimit wb
1153 * with bdi->max_ratio == 100%.
1154 *
1155 * Note that min() below somewhat changes the dynamics of the
1156 * control system. Normally, pos_ratio value can be well over 3
1157 * (when globally we are at freerun and wb is well below wb
1158 * setpoint). Now the maximum pos_ratio in the same situation
1159 * is 2. We might want to tweak this if we observe the control
1160 * system is too slow to adapt.
1161 */
1162 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
1163 return;
1164 }
1165
1166 /*
1167 * We have computed basic pos_ratio above based on global situation. If
1168 * the wb is over/under its share of dirty pages, we want to scale
1169 * pos_ratio further down/up. That is done by the following mechanism.
1170 */
1171
1172 /*
1173 * wb setpoint
1174 *
1175 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1176 *
1177 * x_intercept - wb_dirty
1178 * := --------------------------
1179 * x_intercept - wb_setpoint
1180 *
1181 * The main wb control line is a linear function that subjects to
1182 *
1183 * (1) f(wb_setpoint) = 1.0
1184 * (2) k = - 1 / (8 * write_bw) (in single wb case)
1185 * or equally: x_intercept = wb_setpoint + 8 * write_bw
1186 *
1187 * For single wb case, the dirty pages are observed to fluctuate
1188 * regularly within range
1189 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1190 * for various filesystems, where (2) can yield in a reasonable 12.5%
1191 * fluctuation range for pos_ratio.
1192 *
1193 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1194 * own size, so move the slope over accordingly and choose a slope that
1195 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1196 */
1197 if (unlikely(wb_thresh > dtc->thresh))
1198 wb_thresh = dtc->thresh;
1199 /*
1200 * It's very possible that wb_thresh is close to 0 not because the
1201 * device is slow, but that it has remained inactive for long time.
1202 * Honour such devices a reasonable good (hopefully IO efficient)
1203 * threshold, so that the occasional writes won't be blocked and active
1204 * writes can rampup the threshold quickly.
1205 */
1206 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1207 /*
1208 * scale global setpoint to wb's:
1209 * wb_setpoint = setpoint * wb_thresh / thresh
1210 */
1211 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1212 wb_setpoint = setpoint * (u64)x >> 16;
1213 /*
1214 * Use span=(8*write_bw) in single wb case as indicated by
1215 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1216 *
1217 * wb_thresh thresh - wb_thresh
1218 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1219 * thresh thresh
1220 */
1221 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1222 x_intercept = wb_setpoint + span;
1223
1224 if (dtc->wb_dirty < x_intercept - span / 4) {
1225 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1226 (x_intercept - wb_setpoint) | 1);
1227 } else
1228 pos_ratio /= 4;
1229
1230 /*
1231 * wb reserve area, safeguard against dirty pool underrun and disk idle
1232 * It may push the desired control point of global dirty pages higher
1233 * than setpoint.
1234 */
1235 x_intercept = wb_thresh / 2;
1236 if (dtc->wb_dirty < x_intercept) {
1237 if (dtc->wb_dirty > x_intercept / 8)
1238 pos_ratio = div_u64(pos_ratio * x_intercept,
1239 dtc->wb_dirty);
1240 else
1241 pos_ratio *= 8;
1242 }
1243
1244 dtc->pos_ratio = pos_ratio;
1245 }
1246
wb_update_write_bandwidth(struct bdi_writeback * wb,unsigned long elapsed,unsigned long written)1247 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1248 unsigned long elapsed,
1249 unsigned long written)
1250 {
1251 const unsigned long period = roundup_pow_of_two(3 * HZ);
1252 unsigned long avg = wb->avg_write_bandwidth;
1253 unsigned long old = wb->write_bandwidth;
1254 u64 bw;
1255
1256 /*
1257 * bw = written * HZ / elapsed
1258 *
1259 * bw * elapsed + write_bandwidth * (period - elapsed)
1260 * write_bandwidth = ---------------------------------------------------
1261 * period
1262 *
1263 * @written may have decreased due to folio_redirty_for_writepage().
1264 * Avoid underflowing @bw calculation.
1265 */
1266 bw = written - min(written, wb->written_stamp);
1267 bw *= HZ;
1268 if (unlikely(elapsed > period)) {
1269 bw = div64_ul(bw, elapsed);
1270 avg = bw;
1271 goto out;
1272 }
1273 bw += (u64)wb->write_bandwidth * (period - elapsed);
1274 bw >>= ilog2(period);
1275
1276 /*
1277 * one more level of smoothing, for filtering out sudden spikes
1278 */
1279 if (avg > old && old >= (unsigned long)bw)
1280 avg -= (avg - old) >> 3;
1281
1282 if (avg < old && old <= (unsigned long)bw)
1283 avg += (old - avg) >> 3;
1284
1285 out:
1286 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1287 avg = max(avg, 1LU);
1288 if (wb_has_dirty_io(wb)) {
1289 long delta = avg - wb->avg_write_bandwidth;
1290 WARN_ON_ONCE(atomic_long_add_return(delta,
1291 &wb->bdi->tot_write_bandwidth) <= 0);
1292 }
1293 wb->write_bandwidth = bw;
1294 WRITE_ONCE(wb->avg_write_bandwidth, avg);
1295 }
1296
update_dirty_limit(struct dirty_throttle_control * dtc)1297 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1298 {
1299 struct wb_domain *dom = dtc_dom(dtc);
1300 unsigned long thresh = dtc->thresh;
1301 unsigned long limit = dom->dirty_limit;
1302
1303 /*
1304 * Follow up in one step.
1305 */
1306 if (limit < thresh) {
1307 limit = thresh;
1308 goto update;
1309 }
1310
1311 /*
1312 * Follow down slowly. Use the higher one as the target, because thresh
1313 * may drop below dirty. This is exactly the reason to introduce
1314 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1315 */
1316 thresh = max(thresh, dtc->dirty);
1317 if (limit > thresh) {
1318 limit -= (limit - thresh) >> 5;
1319 goto update;
1320 }
1321 return;
1322 update:
1323 dom->dirty_limit = limit;
1324 }
1325
domain_update_dirty_limit(struct dirty_throttle_control * dtc,unsigned long now)1326 static void domain_update_dirty_limit(struct dirty_throttle_control *dtc,
1327 unsigned long now)
1328 {
1329 struct wb_domain *dom = dtc_dom(dtc);
1330
1331 /*
1332 * check locklessly first to optimize away locking for the most time
1333 */
1334 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1335 return;
1336
1337 spin_lock(&dom->lock);
1338 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1339 update_dirty_limit(dtc);
1340 dom->dirty_limit_tstamp = now;
1341 }
1342 spin_unlock(&dom->lock);
1343 }
1344
1345 /*
1346 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1347 *
1348 * Normal wb tasks will be curbed at or below it in long term.
1349 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1350 */
wb_update_dirty_ratelimit(struct dirty_throttle_control * dtc,unsigned long dirtied,unsigned long elapsed)1351 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1352 unsigned long dirtied,
1353 unsigned long elapsed)
1354 {
1355 struct bdi_writeback *wb = dtc->wb;
1356 unsigned long dirty = dtc->dirty;
1357 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1358 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1359 unsigned long setpoint = (freerun + limit) / 2;
1360 unsigned long write_bw = wb->avg_write_bandwidth;
1361 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1362 unsigned long dirty_rate;
1363 unsigned long task_ratelimit;
1364 unsigned long balanced_dirty_ratelimit;
1365 unsigned long step;
1366 unsigned long x;
1367 unsigned long shift;
1368
1369 /*
1370 * The dirty rate will match the writeout rate in long term, except
1371 * when dirty pages are truncated by userspace or re-dirtied by FS.
1372 */
1373 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1374
1375 /*
1376 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1377 */
1378 task_ratelimit = (u64)dirty_ratelimit *
1379 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1380 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1381
1382 /*
1383 * A linear estimation of the "balanced" throttle rate. The theory is,
1384 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1385 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1386 * formula will yield the balanced rate limit (write_bw / N).
1387 *
1388 * Note that the expanded form is not a pure rate feedback:
1389 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1390 * but also takes pos_ratio into account:
1391 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1392 *
1393 * (1) is not realistic because pos_ratio also takes part in balancing
1394 * the dirty rate. Consider the state
1395 * pos_ratio = 0.5 (3)
1396 * rate = 2 * (write_bw / N) (4)
1397 * If (1) is used, it will stuck in that state! Because each dd will
1398 * be throttled at
1399 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1400 * yielding
1401 * dirty_rate = N * task_ratelimit = write_bw (6)
1402 * put (6) into (1) we get
1403 * rate_(i+1) = rate_(i) (7)
1404 *
1405 * So we end up using (2) to always keep
1406 * rate_(i+1) ~= (write_bw / N) (8)
1407 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1408 * pos_ratio is able to drive itself to 1.0, which is not only where
1409 * the dirty count meet the setpoint, but also where the slope of
1410 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1411 */
1412 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1413 dirty_rate | 1);
1414 /*
1415 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1416 */
1417 if (unlikely(balanced_dirty_ratelimit > write_bw))
1418 balanced_dirty_ratelimit = write_bw;
1419
1420 /*
1421 * We could safely do this and return immediately:
1422 *
1423 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
1424 *
1425 * However to get a more stable dirty_ratelimit, the below elaborated
1426 * code makes use of task_ratelimit to filter out singular points and
1427 * limit the step size.
1428 *
1429 * The below code essentially only uses the relative value of
1430 *
1431 * task_ratelimit - dirty_ratelimit
1432 * = (pos_ratio - 1) * dirty_ratelimit
1433 *
1434 * which reflects the direction and size of dirty position error.
1435 */
1436
1437 /*
1438 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1439 * task_ratelimit is on the same side of dirty_ratelimit, too.
1440 * For example, when
1441 * - dirty_ratelimit > balanced_dirty_ratelimit
1442 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1443 * lowering dirty_ratelimit will help meet both the position and rate
1444 * control targets. Otherwise, don't update dirty_ratelimit if it will
1445 * only help meet the rate target. After all, what the users ultimately
1446 * feel and care are stable dirty rate and small position error.
1447 *
1448 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1449 * and filter out the singular points of balanced_dirty_ratelimit. Which
1450 * keeps jumping around randomly and can even leap far away at times
1451 * due to the small 200ms estimation period of dirty_rate (we want to
1452 * keep that period small to reduce time lags).
1453 */
1454 step = 0;
1455
1456 /*
1457 * For strictlimit case, calculations above were based on wb counters
1458 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1459 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1460 * Hence, to calculate "step" properly, we have to use wb_dirty as
1461 * "dirty" and wb_setpoint as "setpoint".
1462 *
1463 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1464 * it's possible that wb_thresh is close to zero due to inactivity
1465 * of backing device.
1466 */
1467 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1468 dirty = dtc->wb_dirty;
1469 if (dtc->wb_dirty < 8)
1470 setpoint = dtc->wb_dirty + 1;
1471 else
1472 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1473 }
1474
1475 if (dirty < setpoint) {
1476 x = min3(wb->balanced_dirty_ratelimit,
1477 balanced_dirty_ratelimit, task_ratelimit);
1478 if (dirty_ratelimit < x)
1479 step = x - dirty_ratelimit;
1480 } else {
1481 x = max3(wb->balanced_dirty_ratelimit,
1482 balanced_dirty_ratelimit, task_ratelimit);
1483 if (dirty_ratelimit > x)
1484 step = dirty_ratelimit - x;
1485 }
1486
1487 /*
1488 * Don't pursue 100% rate matching. It's impossible since the balanced
1489 * rate itself is constantly fluctuating. So decrease the track speed
1490 * when it gets close to the target. Helps eliminate pointless tremors.
1491 */
1492 shift = dirty_ratelimit / (2 * step + 1);
1493 if (shift < BITS_PER_LONG)
1494 step = DIV_ROUND_UP(step >> shift, 8);
1495 else
1496 step = 0;
1497
1498 if (dirty_ratelimit < balanced_dirty_ratelimit)
1499 dirty_ratelimit += step;
1500 else
1501 dirty_ratelimit -= step;
1502
1503 WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL));
1504 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1505
1506 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1507 }
1508
__wb_update_bandwidth(struct dirty_throttle_control * gdtc,struct dirty_throttle_control * mdtc,bool update_ratelimit)1509 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1510 struct dirty_throttle_control *mdtc,
1511 bool update_ratelimit)
1512 {
1513 struct bdi_writeback *wb = gdtc->wb;
1514 unsigned long now = jiffies;
1515 unsigned long elapsed;
1516 unsigned long dirtied;
1517 unsigned long written;
1518
1519 spin_lock(&wb->list_lock);
1520
1521 /*
1522 * Lockless checks for elapsed time are racy and delayed update after
1523 * IO completion doesn't do it at all (to make sure written pages are
1524 * accounted reasonably quickly). Make sure elapsed >= 1 to avoid
1525 * division errors.
1526 */
1527 elapsed = max(now - wb->bw_time_stamp, 1UL);
1528 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1529 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1530
1531 if (update_ratelimit) {
1532 domain_update_dirty_limit(gdtc, now);
1533 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1534
1535 /*
1536 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1537 * compiler has no way to figure that out. Help it.
1538 */
1539 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1540 domain_update_dirty_limit(mdtc, now);
1541 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1542 }
1543 }
1544 wb_update_write_bandwidth(wb, elapsed, written);
1545
1546 wb->dirtied_stamp = dirtied;
1547 wb->written_stamp = written;
1548 WRITE_ONCE(wb->bw_time_stamp, now);
1549 spin_unlock(&wb->list_lock);
1550 }
1551
wb_update_bandwidth(struct bdi_writeback * wb)1552 void wb_update_bandwidth(struct bdi_writeback *wb)
1553 {
1554 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1555
1556 __wb_update_bandwidth(&gdtc, NULL, false);
1557 }
1558
1559 /* Interval after which we consider wb idle and don't estimate bandwidth */
1560 #define WB_BANDWIDTH_IDLE_JIF (HZ)
1561
wb_bandwidth_estimate_start(struct bdi_writeback * wb)1562 static void wb_bandwidth_estimate_start(struct bdi_writeback *wb)
1563 {
1564 unsigned long now = jiffies;
1565 unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp);
1566
1567 if (elapsed > WB_BANDWIDTH_IDLE_JIF &&
1568 !atomic_read(&wb->writeback_inodes)) {
1569 spin_lock(&wb->list_lock);
1570 wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED);
1571 wb->written_stamp = wb_stat(wb, WB_WRITTEN);
1572 WRITE_ONCE(wb->bw_time_stamp, now);
1573 spin_unlock(&wb->list_lock);
1574 }
1575 }
1576
1577 /*
1578 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1579 * will look to see if it needs to start dirty throttling.
1580 *
1581 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1582 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1583 * (the number of pages we may dirty without exceeding the dirty limits).
1584 */
dirty_poll_interval(unsigned long dirty,unsigned long thresh)1585 static unsigned long dirty_poll_interval(unsigned long dirty,
1586 unsigned long thresh)
1587 {
1588 if (thresh > dirty)
1589 return 1UL << (ilog2(thresh - dirty) >> 1);
1590
1591 return 1;
1592 }
1593
wb_max_pause(struct bdi_writeback * wb,unsigned long wb_dirty)1594 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1595 unsigned long wb_dirty)
1596 {
1597 unsigned long bw = READ_ONCE(wb->avg_write_bandwidth);
1598 unsigned long t;
1599
1600 /*
1601 * Limit pause time for small memory systems. If sleeping for too long
1602 * time, a small pool of dirty/writeback pages may go empty and disk go
1603 * idle.
1604 *
1605 * 8 serves as the safety ratio.
1606 */
1607 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1608 t++;
1609
1610 return min_t(unsigned long, t, MAX_PAUSE);
1611 }
1612
wb_min_pause(struct bdi_writeback * wb,long max_pause,unsigned long task_ratelimit,unsigned long dirty_ratelimit,int * nr_dirtied_pause)1613 static long wb_min_pause(struct bdi_writeback *wb,
1614 long max_pause,
1615 unsigned long task_ratelimit,
1616 unsigned long dirty_ratelimit,
1617 int *nr_dirtied_pause)
1618 {
1619 long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth));
1620 long lo = ilog2(READ_ONCE(wb->dirty_ratelimit));
1621 long t; /* target pause */
1622 long pause; /* estimated next pause */
1623 int pages; /* target nr_dirtied_pause */
1624
1625 /* target for 10ms pause on 1-dd case */
1626 t = max(1, HZ / 100);
1627
1628 /*
1629 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1630 * overheads.
1631 *
1632 * (N * 10ms) on 2^N concurrent tasks.
1633 */
1634 if (hi > lo)
1635 t += (hi - lo) * (10 * HZ) / 1024;
1636
1637 /*
1638 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1639 * on the much more stable dirty_ratelimit. However the next pause time
1640 * will be computed based on task_ratelimit and the two rate limits may
1641 * depart considerably at some time. Especially if task_ratelimit goes
1642 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1643 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1644 * result task_ratelimit won't be executed faithfully, which could
1645 * eventually bring down dirty_ratelimit.
1646 *
1647 * We apply two rules to fix it up:
1648 * 1) try to estimate the next pause time and if necessary, use a lower
1649 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1650 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1651 * 2) limit the target pause time to max_pause/2, so that the normal
1652 * small fluctuations of task_ratelimit won't trigger rule (1) and
1653 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
1654 */
1655 t = min(t, 1 + max_pause / 2);
1656 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1657
1658 /*
1659 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1660 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1661 * When the 16 consecutive reads are often interrupted by some dirty
1662 * throttling pause during the async writes, cfq will go into idles
1663 * (deadline is fine). So push nr_dirtied_pause as high as possible
1664 * until reaches DIRTY_POLL_THRESH=32 pages.
1665 */
1666 if (pages < DIRTY_POLL_THRESH) {
1667 t = max_pause;
1668 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1669 if (pages > DIRTY_POLL_THRESH) {
1670 pages = DIRTY_POLL_THRESH;
1671 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1672 }
1673 }
1674
1675 pause = HZ * pages / (task_ratelimit + 1);
1676 if (pause > max_pause) {
1677 t = max_pause;
1678 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1679 }
1680
1681 *nr_dirtied_pause = pages;
1682 /*
1683 * The minimal pause time will normally be half the target pause time.
1684 */
1685 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1686 }
1687
wb_dirty_limits(struct dirty_throttle_control * dtc)1688 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1689 {
1690 struct bdi_writeback *wb = dtc->wb;
1691 unsigned long wb_reclaimable;
1692
1693 /*
1694 * wb_thresh is not treated as some limiting factor as
1695 * dirty_thresh, due to reasons
1696 * - in JBOD setup, wb_thresh can fluctuate a lot
1697 * - in a system with HDD and USB key, the USB key may somehow
1698 * go into state (wb_dirty >> wb_thresh) either because
1699 * wb_dirty starts high, or because wb_thresh drops low.
1700 * In this case we don't want to hard throttle the USB key
1701 * dirtiers for 100 seconds until wb_dirty drops under
1702 * wb_thresh. Instead the auxiliary wb control line in
1703 * wb_position_ratio() will let the dirtier task progress
1704 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
1705 */
1706 dtc->wb_thresh = __wb_calc_thresh(dtc, dtc->thresh);
1707 dtc->wb_bg_thresh = dtc->thresh ?
1708 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1709
1710 /*
1711 * In order to avoid the stacked BDI deadlock we need
1712 * to ensure we accurately count the 'dirty' pages when
1713 * the threshold is low.
1714 *
1715 * Otherwise it would be possible to get thresh+n pages
1716 * reported dirty, even though there are thresh-m pages
1717 * actually dirty; with m+n sitting in the percpu
1718 * deltas.
1719 */
1720 if (dtc->wb_thresh < 2 * wb_stat_error()) {
1721 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1722 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1723 } else {
1724 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1725 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1726 }
1727 }
1728
domain_poll_intv(struct dirty_throttle_control * dtc,bool strictlimit)1729 static unsigned long domain_poll_intv(struct dirty_throttle_control *dtc,
1730 bool strictlimit)
1731 {
1732 unsigned long dirty, thresh;
1733
1734 if (strictlimit) {
1735 dirty = dtc->wb_dirty;
1736 thresh = dtc->wb_thresh;
1737 } else {
1738 dirty = dtc->dirty;
1739 thresh = dtc->thresh;
1740 }
1741
1742 return dirty_poll_interval(dirty, thresh);
1743 }
1744
1745 /*
1746 * Throttle it only when the background writeback cannot catch-up. This avoids
1747 * (excessively) small writeouts when the wb limits are ramping up in case of
1748 * !strictlimit.
1749 *
1750 * In strictlimit case make decision based on the wb counters and limits. Small
1751 * writeouts when the wb limits are ramping up are the price we consciously pay
1752 * for strictlimit-ing.
1753 */
domain_dirty_freerun(struct dirty_throttle_control * dtc,bool strictlimit)1754 static void domain_dirty_freerun(struct dirty_throttle_control *dtc,
1755 bool strictlimit)
1756 {
1757 unsigned long dirty, thresh, bg_thresh;
1758
1759 if (unlikely(strictlimit)) {
1760 wb_dirty_limits(dtc);
1761 dirty = dtc->wb_dirty;
1762 thresh = dtc->wb_thresh;
1763 bg_thresh = dtc->wb_bg_thresh;
1764 } else {
1765 dirty = dtc->dirty;
1766 thresh = dtc->thresh;
1767 bg_thresh = dtc->bg_thresh;
1768 }
1769 dtc->freerun = dirty <= dirty_freerun_ceiling(thresh, bg_thresh);
1770 }
1771
balance_domain_limits(struct dirty_throttle_control * dtc,bool strictlimit)1772 static void balance_domain_limits(struct dirty_throttle_control *dtc,
1773 bool strictlimit)
1774 {
1775 domain_dirty_avail(dtc, true);
1776 domain_dirty_limits(dtc);
1777 domain_dirty_freerun(dtc, strictlimit);
1778 }
1779
wb_dirty_freerun(struct dirty_throttle_control * dtc,bool strictlimit)1780 static void wb_dirty_freerun(struct dirty_throttle_control *dtc,
1781 bool strictlimit)
1782 {
1783 dtc->freerun = false;
1784
1785 /* was already handled in domain_dirty_freerun */
1786 if (strictlimit)
1787 return;
1788
1789 wb_dirty_limits(dtc);
1790 /*
1791 * LOCAL_THROTTLE tasks must not be throttled when below the per-wb
1792 * freerun ceiling.
1793 */
1794 if (!(current->flags & PF_LOCAL_THROTTLE))
1795 return;
1796
1797 dtc->freerun = dtc->wb_dirty <
1798 dirty_freerun_ceiling(dtc->wb_thresh, dtc->wb_bg_thresh);
1799 }
1800
wb_dirty_exceeded(struct dirty_throttle_control * dtc,bool strictlimit)1801 static inline void wb_dirty_exceeded(struct dirty_throttle_control *dtc,
1802 bool strictlimit)
1803 {
1804 dtc->dirty_exceeded = (dtc->wb_dirty > dtc->wb_thresh) &&
1805 ((dtc->dirty > dtc->thresh) || strictlimit);
1806 }
1807
1808 /*
1809 * The limits fields dirty_exceeded and pos_ratio won't be updated if wb is
1810 * in freerun state. Please don't use these invalid fields in freerun case.
1811 */
balance_wb_limits(struct dirty_throttle_control * dtc,bool strictlimit)1812 static void balance_wb_limits(struct dirty_throttle_control *dtc,
1813 bool strictlimit)
1814 {
1815 wb_dirty_freerun(dtc, strictlimit);
1816 if (dtc->freerun)
1817 return;
1818
1819 wb_dirty_exceeded(dtc, strictlimit);
1820 wb_position_ratio(dtc);
1821 }
1822
1823 /*
1824 * balance_dirty_pages() must be called by processes which are generating dirty
1825 * data. It looks at the number of dirty pages in the machine and will force
1826 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1827 * If we're over `background_thresh' then the writeback threads are woken to
1828 * perform some writeout.
1829 */
balance_dirty_pages(struct bdi_writeback * wb,unsigned long pages_dirtied,unsigned int flags)1830 static int balance_dirty_pages(struct bdi_writeback *wb,
1831 unsigned long pages_dirtied, unsigned int flags)
1832 {
1833 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1834 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1835 struct dirty_throttle_control * const gdtc = &gdtc_stor;
1836 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1837 &mdtc_stor : NULL;
1838 struct dirty_throttle_control *sdtc;
1839 unsigned long nr_dirty;
1840 long period;
1841 long pause;
1842 long max_pause;
1843 long min_pause;
1844 int nr_dirtied_pause;
1845 unsigned long task_ratelimit;
1846 unsigned long dirty_ratelimit;
1847 struct backing_dev_info *bdi = wb->bdi;
1848 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1849 unsigned long start_time = jiffies;
1850 int ret = 0;
1851
1852 for (;;) {
1853 unsigned long now = jiffies;
1854
1855 nr_dirty = global_node_page_state(NR_FILE_DIRTY);
1856
1857 balance_domain_limits(gdtc, strictlimit);
1858 if (mdtc) {
1859 /*
1860 * If @wb belongs to !root memcg, repeat the same
1861 * basic calculations for the memcg domain.
1862 */
1863 balance_domain_limits(mdtc, strictlimit);
1864 }
1865
1866 /*
1867 * In laptop mode, we wait until hitting the higher threshold
1868 * before starting background writeout, and then write out all
1869 * the way down to the lower threshold. So slow writers cause
1870 * minimal disk activity.
1871 *
1872 * In normal mode, we start background writeout at the lower
1873 * background_thresh, to keep the amount of dirty memory low.
1874 */
1875 if (!laptop_mode && nr_dirty > gdtc->bg_thresh &&
1876 !writeback_in_progress(wb))
1877 wb_start_background_writeback(wb);
1878
1879 /*
1880 * If memcg domain is in effect, @dirty should be under
1881 * both global and memcg freerun ceilings.
1882 */
1883 if (gdtc->freerun && (!mdtc || mdtc->freerun)) {
1884 unsigned long intv;
1885 unsigned long m_intv;
1886
1887 free_running:
1888 intv = domain_poll_intv(gdtc, strictlimit);
1889 m_intv = ULONG_MAX;
1890
1891 current->dirty_paused_when = now;
1892 current->nr_dirtied = 0;
1893 if (mdtc)
1894 m_intv = domain_poll_intv(mdtc, strictlimit);
1895 current->nr_dirtied_pause = min(intv, m_intv);
1896 break;
1897 }
1898
1899 /* Start writeback even when in laptop mode */
1900 if (unlikely(!writeback_in_progress(wb)))
1901 wb_start_background_writeback(wb);
1902
1903 mem_cgroup_flush_foreign(wb);
1904
1905 /*
1906 * Calculate global domain's pos_ratio and select the
1907 * global dtc by default.
1908 */
1909 balance_wb_limits(gdtc, strictlimit);
1910 if (gdtc->freerun)
1911 goto free_running;
1912 sdtc = gdtc;
1913
1914 if (mdtc) {
1915 /*
1916 * If memcg domain is in effect, calculate its
1917 * pos_ratio. @wb should satisfy constraints from
1918 * both global and memcg domains. Choose the one
1919 * w/ lower pos_ratio.
1920 */
1921 balance_wb_limits(mdtc, strictlimit);
1922 if (mdtc->freerun)
1923 goto free_running;
1924 if (mdtc->pos_ratio < gdtc->pos_ratio)
1925 sdtc = mdtc;
1926 }
1927
1928 wb->dirty_exceeded = gdtc->dirty_exceeded ||
1929 (mdtc && mdtc->dirty_exceeded);
1930 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
1931 BANDWIDTH_INTERVAL))
1932 __wb_update_bandwidth(gdtc, mdtc, true);
1933
1934 /* throttle according to the chosen dtc */
1935 dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit);
1936 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1937 RATELIMIT_CALC_SHIFT;
1938 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1939 min_pause = wb_min_pause(wb, max_pause,
1940 task_ratelimit, dirty_ratelimit,
1941 &nr_dirtied_pause);
1942
1943 if (unlikely(task_ratelimit == 0)) {
1944 period = max_pause;
1945 pause = max_pause;
1946 goto pause;
1947 }
1948 period = HZ * pages_dirtied / task_ratelimit;
1949 pause = period;
1950 if (current->dirty_paused_when)
1951 pause -= now - current->dirty_paused_when;
1952 /*
1953 * For less than 1s think time (ext3/4 may block the dirtier
1954 * for up to 800ms from time to time on 1-HDD; so does xfs,
1955 * however at much less frequency), try to compensate it in
1956 * future periods by updating the virtual time; otherwise just
1957 * do a reset, as it may be a light dirtier.
1958 */
1959 if (pause < min_pause) {
1960 trace_balance_dirty_pages(wb,
1961 sdtc->thresh,
1962 sdtc->bg_thresh,
1963 sdtc->dirty,
1964 sdtc->wb_thresh,
1965 sdtc->wb_dirty,
1966 dirty_ratelimit,
1967 task_ratelimit,
1968 pages_dirtied,
1969 period,
1970 min(pause, 0L),
1971 start_time);
1972 if (pause < -HZ) {
1973 current->dirty_paused_when = now;
1974 current->nr_dirtied = 0;
1975 } else if (period) {
1976 current->dirty_paused_when += period;
1977 current->nr_dirtied = 0;
1978 } else if (current->nr_dirtied_pause <= pages_dirtied)
1979 current->nr_dirtied_pause += pages_dirtied;
1980 break;
1981 }
1982 if (unlikely(pause > max_pause)) {
1983 /* for occasional dropped task_ratelimit */
1984 now += min(pause - max_pause, max_pause);
1985 pause = max_pause;
1986 }
1987
1988 pause:
1989 trace_balance_dirty_pages(wb,
1990 sdtc->thresh,
1991 sdtc->bg_thresh,
1992 sdtc->dirty,
1993 sdtc->wb_thresh,
1994 sdtc->wb_dirty,
1995 dirty_ratelimit,
1996 task_ratelimit,
1997 pages_dirtied,
1998 period,
1999 pause,
2000 start_time);
2001 if (flags & BDP_ASYNC) {
2002 ret = -EAGAIN;
2003 break;
2004 }
2005 __set_current_state(TASK_KILLABLE);
2006 bdi->last_bdp_sleep = jiffies;
2007 io_schedule_timeout(pause);
2008
2009 current->dirty_paused_when = now + pause;
2010 current->nr_dirtied = 0;
2011 current->nr_dirtied_pause = nr_dirtied_pause;
2012
2013 /*
2014 * This is typically equal to (dirty < thresh) and can also
2015 * keep "1000+ dd on a slow USB stick" under control.
2016 */
2017 if (task_ratelimit)
2018 break;
2019
2020 /*
2021 * In the case of an unresponsive NFS server and the NFS dirty
2022 * pages exceeds dirty_thresh, give the other good wb's a pipe
2023 * to go through, so that tasks on them still remain responsive.
2024 *
2025 * In theory 1 page is enough to keep the consumer-producer
2026 * pipe going: the flusher cleans 1 page => the task dirties 1
2027 * more page. However wb_dirty has accounting errors. So use
2028 * the larger and more IO friendly wb_stat_error.
2029 */
2030 if (sdtc->wb_dirty <= wb_stat_error())
2031 break;
2032
2033 if (fatal_signal_pending(current))
2034 break;
2035 }
2036 return ret;
2037 }
2038
2039 static DEFINE_PER_CPU(int, bdp_ratelimits);
2040
2041 /*
2042 * Normal tasks are throttled by
2043 * loop {
2044 * dirty tsk->nr_dirtied_pause pages;
2045 * take a snap in balance_dirty_pages();
2046 * }
2047 * However there is a worst case. If every task exit immediately when dirtied
2048 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
2049 * called to throttle the page dirties. The solution is to save the not yet
2050 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
2051 * randomly into the running tasks. This works well for the above worst case,
2052 * as the new task will pick up and accumulate the old task's leaked dirty
2053 * count and eventually get throttled.
2054 */
2055 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
2056
2057 /**
2058 * balance_dirty_pages_ratelimited_flags - Balance dirty memory state.
2059 * @mapping: address_space which was dirtied.
2060 * @flags: BDP flags.
2061 *
2062 * Processes which are dirtying memory should call in here once for each page
2063 * which was newly dirtied. The function will periodically check the system's
2064 * dirty state and will initiate writeback if needed.
2065 *
2066 * See balance_dirty_pages_ratelimited() for details.
2067 *
2068 * Return: If @flags contains BDP_ASYNC, it may return -EAGAIN to
2069 * indicate that memory is out of balance and the caller must wait
2070 * for I/O to complete. Otherwise, it will return 0 to indicate
2071 * that either memory was already in balance, or it was able to sleep
2072 * until the amount of dirty memory returned to balance.
2073 */
balance_dirty_pages_ratelimited_flags(struct address_space * mapping,unsigned int flags)2074 int balance_dirty_pages_ratelimited_flags(struct address_space *mapping,
2075 unsigned int flags)
2076 {
2077 struct inode *inode = mapping->host;
2078 struct backing_dev_info *bdi = inode_to_bdi(inode);
2079 struct bdi_writeback *wb = NULL;
2080 int ratelimit;
2081 int ret = 0;
2082 int *p;
2083
2084 if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
2085 return ret;
2086
2087 if (inode_cgwb_enabled(inode))
2088 wb = wb_get_create_current(bdi, GFP_KERNEL);
2089 if (!wb)
2090 wb = &bdi->wb;
2091
2092 ratelimit = current->nr_dirtied_pause;
2093 if (wb->dirty_exceeded)
2094 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
2095
2096 preempt_disable();
2097 /*
2098 * This prevents one CPU to accumulate too many dirtied pages without
2099 * calling into balance_dirty_pages(), which can happen when there are
2100 * 1000+ tasks, all of them start dirtying pages at exactly the same
2101 * time, hence all honoured too large initial task->nr_dirtied_pause.
2102 */
2103 p = this_cpu_ptr(&bdp_ratelimits);
2104 if (unlikely(current->nr_dirtied >= ratelimit))
2105 *p = 0;
2106 else if (unlikely(*p >= ratelimit_pages)) {
2107 *p = 0;
2108 ratelimit = 0;
2109 }
2110 /*
2111 * Pick up the dirtied pages by the exited tasks. This avoids lots of
2112 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
2113 * the dirty throttling and livelock other long-run dirtiers.
2114 */
2115 p = this_cpu_ptr(&dirty_throttle_leaks);
2116 if (*p > 0 && current->nr_dirtied < ratelimit) {
2117 unsigned long nr_pages_dirtied;
2118 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
2119 *p -= nr_pages_dirtied;
2120 current->nr_dirtied += nr_pages_dirtied;
2121 }
2122 preempt_enable();
2123
2124 if (unlikely(current->nr_dirtied >= ratelimit))
2125 ret = balance_dirty_pages(wb, current->nr_dirtied, flags);
2126
2127 wb_put(wb);
2128 return ret;
2129 }
2130 EXPORT_SYMBOL_GPL(balance_dirty_pages_ratelimited_flags);
2131
2132 /**
2133 * balance_dirty_pages_ratelimited - balance dirty memory state.
2134 * @mapping: address_space which was dirtied.
2135 *
2136 * Processes which are dirtying memory should call in here once for each page
2137 * which was newly dirtied. The function will periodically check the system's
2138 * dirty state and will initiate writeback if needed.
2139 *
2140 * Once we're over the dirty memory limit we decrease the ratelimiting
2141 * by a lot, to prevent individual processes from overshooting the limit
2142 * by (ratelimit_pages) each.
2143 */
balance_dirty_pages_ratelimited(struct address_space * mapping)2144 void balance_dirty_pages_ratelimited(struct address_space *mapping)
2145 {
2146 balance_dirty_pages_ratelimited_flags(mapping, 0);
2147 }
2148 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
2149
2150 /*
2151 * Similar to wb_dirty_limits, wb_bg_dirty_limits also calculates dirty
2152 * and thresh, but it's for background writeback.
2153 */
wb_bg_dirty_limits(struct dirty_throttle_control * dtc)2154 static void wb_bg_dirty_limits(struct dirty_throttle_control *dtc)
2155 {
2156 struct bdi_writeback *wb = dtc->wb;
2157
2158 dtc->wb_bg_thresh = __wb_calc_thresh(dtc, dtc->bg_thresh);
2159 if (dtc->wb_bg_thresh < 2 * wb_stat_error())
2160 dtc->wb_dirty = wb_stat_sum(wb, WB_RECLAIMABLE);
2161 else
2162 dtc->wb_dirty = wb_stat(wb, WB_RECLAIMABLE);
2163 }
2164
domain_over_bg_thresh(struct dirty_throttle_control * dtc)2165 static bool domain_over_bg_thresh(struct dirty_throttle_control *dtc)
2166 {
2167 domain_dirty_avail(dtc, false);
2168 domain_dirty_limits(dtc);
2169 if (dtc->dirty > dtc->bg_thresh)
2170 return true;
2171
2172 wb_bg_dirty_limits(dtc);
2173 if (dtc->wb_dirty > dtc->wb_bg_thresh)
2174 return true;
2175
2176 return false;
2177 }
2178
2179 /**
2180 * wb_over_bg_thresh - does @wb need to be written back?
2181 * @wb: bdi_writeback of interest
2182 *
2183 * Determines whether background writeback should keep writing @wb or it's
2184 * clean enough.
2185 *
2186 * Return: %true if writeback should continue.
2187 */
wb_over_bg_thresh(struct bdi_writeback * wb)2188 bool wb_over_bg_thresh(struct bdi_writeback *wb)
2189 {
2190 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
2191 struct dirty_throttle_control mdtc = { MDTC_INIT(wb, &gdtc) };
2192
2193 if (domain_over_bg_thresh(&gdtc))
2194 return true;
2195
2196 if (mdtc_valid(&mdtc))
2197 return domain_over_bg_thresh(&mdtc);
2198
2199 return false;
2200 }
2201
2202 #ifdef CONFIG_SYSCTL
2203 /*
2204 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
2205 */
dirty_writeback_centisecs_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)2206 static int dirty_writeback_centisecs_handler(const struct ctl_table *table, int write,
2207 void *buffer, size_t *length, loff_t *ppos)
2208 {
2209 unsigned int old_interval = dirty_writeback_interval;
2210 int ret;
2211
2212 ret = proc_dointvec(table, write, buffer, length, ppos);
2213
2214 /*
2215 * Writing 0 to dirty_writeback_interval will disable periodic writeback
2216 * and a different non-zero value will wakeup the writeback threads.
2217 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
2218 * iterate over all bdis and wbs.
2219 * The reason we do this is to make the change take effect immediately.
2220 */
2221 if (!ret && write && dirty_writeback_interval &&
2222 dirty_writeback_interval != old_interval)
2223 wakeup_flusher_threads(WB_REASON_PERIODIC);
2224
2225 return ret;
2226 }
2227 #endif
2228
laptop_mode_timer_fn(struct timer_list * t)2229 void laptop_mode_timer_fn(struct timer_list *t)
2230 {
2231 struct backing_dev_info *backing_dev_info =
2232 from_timer(backing_dev_info, t, laptop_mode_wb_timer);
2233
2234 wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
2235 }
2236
2237 /*
2238 * We've spun up the disk and we're in laptop mode: schedule writeback
2239 * of all dirty data a few seconds from now. If the flush is already scheduled
2240 * then push it back - the user is still using the disk.
2241 */
laptop_io_completion(struct backing_dev_info * info)2242 void laptop_io_completion(struct backing_dev_info *info)
2243 {
2244 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2245 }
2246
2247 /*
2248 * We're in laptop mode and we've just synced. The sync's writes will have
2249 * caused another writeback to be scheduled by laptop_io_completion.
2250 * Nothing needs to be written back anymore, so we unschedule the writeback.
2251 */
laptop_sync_completion(void)2252 void laptop_sync_completion(void)
2253 {
2254 struct backing_dev_info *bdi;
2255
2256 rcu_read_lock();
2257
2258 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2259 del_timer(&bdi->laptop_mode_wb_timer);
2260
2261 rcu_read_unlock();
2262 }
2263
2264 /*
2265 * If ratelimit_pages is too high then we can get into dirty-data overload
2266 * if a large number of processes all perform writes at the same time.
2267 *
2268 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2269 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2270 * thresholds.
2271 */
2272
writeback_set_ratelimit(void)2273 void writeback_set_ratelimit(void)
2274 {
2275 struct wb_domain *dom = &global_wb_domain;
2276 unsigned long background_thresh;
2277 unsigned long dirty_thresh;
2278
2279 global_dirty_limits(&background_thresh, &dirty_thresh);
2280 dom->dirty_limit = dirty_thresh;
2281 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2282 if (ratelimit_pages < 16)
2283 ratelimit_pages = 16;
2284 }
2285
page_writeback_cpu_online(unsigned int cpu)2286 static int page_writeback_cpu_online(unsigned int cpu)
2287 {
2288 writeback_set_ratelimit();
2289 return 0;
2290 }
2291
2292 #ifdef CONFIG_SYSCTL
2293
2294 /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */
2295 static const unsigned long dirty_bytes_min = 2 * PAGE_SIZE;
2296
2297 static struct ctl_table vm_page_writeback_sysctls[] = {
2298 {
2299 .procname = "dirty_background_ratio",
2300 .data = &dirty_background_ratio,
2301 .maxlen = sizeof(dirty_background_ratio),
2302 .mode = 0644,
2303 .proc_handler = dirty_background_ratio_handler,
2304 .extra1 = SYSCTL_ZERO,
2305 .extra2 = SYSCTL_ONE_HUNDRED,
2306 },
2307 {
2308 .procname = "dirty_background_bytes",
2309 .data = &dirty_background_bytes,
2310 .maxlen = sizeof(dirty_background_bytes),
2311 .mode = 0644,
2312 .proc_handler = dirty_background_bytes_handler,
2313 .extra1 = SYSCTL_LONG_ONE,
2314 },
2315 {
2316 .procname = "dirty_ratio",
2317 .data = &vm_dirty_ratio,
2318 .maxlen = sizeof(vm_dirty_ratio),
2319 .mode = 0644,
2320 .proc_handler = dirty_ratio_handler,
2321 .extra1 = SYSCTL_ZERO,
2322 .extra2 = SYSCTL_ONE_HUNDRED,
2323 },
2324 {
2325 .procname = "dirty_bytes",
2326 .data = &vm_dirty_bytes,
2327 .maxlen = sizeof(vm_dirty_bytes),
2328 .mode = 0644,
2329 .proc_handler = dirty_bytes_handler,
2330 .extra1 = (void *)&dirty_bytes_min,
2331 },
2332 {
2333 .procname = "dirty_writeback_centisecs",
2334 .data = &dirty_writeback_interval,
2335 .maxlen = sizeof(dirty_writeback_interval),
2336 .mode = 0644,
2337 .proc_handler = dirty_writeback_centisecs_handler,
2338 },
2339 {
2340 .procname = "dirty_expire_centisecs",
2341 .data = &dirty_expire_interval,
2342 .maxlen = sizeof(dirty_expire_interval),
2343 .mode = 0644,
2344 .proc_handler = proc_dointvec_minmax,
2345 .extra1 = SYSCTL_ZERO,
2346 },
2347 #ifdef CONFIG_HIGHMEM
2348 {
2349 .procname = "highmem_is_dirtyable",
2350 .data = &vm_highmem_is_dirtyable,
2351 .maxlen = sizeof(vm_highmem_is_dirtyable),
2352 .mode = 0644,
2353 .proc_handler = proc_dointvec_minmax,
2354 .extra1 = SYSCTL_ZERO,
2355 .extra2 = SYSCTL_ONE,
2356 },
2357 #endif
2358 {
2359 .procname = "laptop_mode",
2360 .data = &laptop_mode,
2361 .maxlen = sizeof(laptop_mode),
2362 .mode = 0644,
2363 .proc_handler = proc_dointvec_jiffies,
2364 },
2365 };
2366 #endif
2367
2368 /*
2369 * Called early on to tune the page writeback dirty limits.
2370 *
2371 * We used to scale dirty pages according to how total memory
2372 * related to pages that could be allocated for buffers.
2373 *
2374 * However, that was when we used "dirty_ratio" to scale with
2375 * all memory, and we don't do that any more. "dirty_ratio"
2376 * is now applied to total non-HIGHPAGE memory, and as such we can't
2377 * get into the old insane situation any more where we had
2378 * large amounts of dirty pages compared to a small amount of
2379 * non-HIGHMEM memory.
2380 *
2381 * But we might still want to scale the dirty_ratio by how
2382 * much memory the box has..
2383 */
page_writeback_init(void)2384 void __init page_writeback_init(void)
2385 {
2386 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2387
2388 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2389 page_writeback_cpu_online, NULL);
2390 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2391 page_writeback_cpu_online);
2392 #ifdef CONFIG_SYSCTL
2393 register_sysctl_init("vm", vm_page_writeback_sysctls);
2394 #endif
2395 }
2396
2397 /**
2398 * tag_pages_for_writeback - tag pages to be written by writeback
2399 * @mapping: address space structure to write
2400 * @start: starting page index
2401 * @end: ending page index (inclusive)
2402 *
2403 * This function scans the page range from @start to @end (inclusive) and tags
2404 * all pages that have DIRTY tag set with a special TOWRITE tag. The caller
2405 * can then use the TOWRITE tag to identify pages eligible for writeback.
2406 * This mechanism is used to avoid livelocking of writeback by a process
2407 * steadily creating new dirty pages in the file (thus it is important for this
2408 * function to be quick so that it can tag pages faster than a dirtying process
2409 * can create them).
2410 */
tag_pages_for_writeback(struct address_space * mapping,pgoff_t start,pgoff_t end)2411 void tag_pages_for_writeback(struct address_space *mapping,
2412 pgoff_t start, pgoff_t end)
2413 {
2414 XA_STATE(xas, &mapping->i_pages, start);
2415 unsigned int tagged = 0;
2416 void *page;
2417
2418 xas_lock_irq(&xas);
2419 xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2420 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2421 if (++tagged % XA_CHECK_SCHED)
2422 continue;
2423
2424 xas_pause(&xas);
2425 xas_unlock_irq(&xas);
2426 cond_resched();
2427 xas_lock_irq(&xas);
2428 }
2429 xas_unlock_irq(&xas);
2430 }
2431 EXPORT_SYMBOL(tag_pages_for_writeback);
2432
folio_prepare_writeback(struct address_space * mapping,struct writeback_control * wbc,struct folio * folio)2433 static bool folio_prepare_writeback(struct address_space *mapping,
2434 struct writeback_control *wbc, struct folio *folio)
2435 {
2436 /*
2437 * Folio truncated or invalidated. We can freely skip it then,
2438 * even for data integrity operations: the folio has disappeared
2439 * concurrently, so there could be no real expectation of this
2440 * data integrity operation even if there is now a new, dirty
2441 * folio at the same pagecache index.
2442 */
2443 if (unlikely(folio->mapping != mapping))
2444 return false;
2445
2446 /*
2447 * Did somebody else write it for us?
2448 */
2449 if (!folio_test_dirty(folio))
2450 return false;
2451
2452 if (folio_test_writeback(folio)) {
2453 if (wbc->sync_mode == WB_SYNC_NONE)
2454 return false;
2455 folio_wait_writeback(folio);
2456 }
2457 BUG_ON(folio_test_writeback(folio));
2458
2459 if (!folio_clear_dirty_for_io(folio))
2460 return false;
2461
2462 return true;
2463 }
2464
wbc_to_tag(struct writeback_control * wbc)2465 static xa_mark_t wbc_to_tag(struct writeback_control *wbc)
2466 {
2467 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2468 return PAGECACHE_TAG_TOWRITE;
2469 return PAGECACHE_TAG_DIRTY;
2470 }
2471
wbc_end(struct writeback_control * wbc)2472 static pgoff_t wbc_end(struct writeback_control *wbc)
2473 {
2474 if (wbc->range_cyclic)
2475 return -1;
2476 return wbc->range_end >> PAGE_SHIFT;
2477 }
2478
writeback_get_folio(struct address_space * mapping,struct writeback_control * wbc)2479 static struct folio *writeback_get_folio(struct address_space *mapping,
2480 struct writeback_control *wbc)
2481 {
2482 struct folio *folio;
2483
2484 retry:
2485 folio = folio_batch_next(&wbc->fbatch);
2486 if (!folio) {
2487 folio_batch_release(&wbc->fbatch);
2488 cond_resched();
2489 filemap_get_folios_tag(mapping, &wbc->index, wbc_end(wbc),
2490 wbc_to_tag(wbc), &wbc->fbatch);
2491 folio = folio_batch_next(&wbc->fbatch);
2492 if (!folio)
2493 return NULL;
2494 }
2495
2496 folio_lock(folio);
2497 if (unlikely(!folio_prepare_writeback(mapping, wbc, folio))) {
2498 folio_unlock(folio);
2499 goto retry;
2500 }
2501
2502 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2503 return folio;
2504 }
2505
2506 /**
2507 * writeback_iter - iterate folio of a mapping for writeback
2508 * @mapping: address space structure to write
2509 * @wbc: writeback context
2510 * @folio: previously iterated folio (%NULL to start)
2511 * @error: in-out pointer for writeback errors (see below)
2512 *
2513 * This function returns the next folio for the writeback operation described by
2514 * @wbc on @mapping and should be called in a while loop in the ->writepages
2515 * implementation.
2516 *
2517 * To start the writeback operation, %NULL is passed in the @folio argument, and
2518 * for every subsequent iteration the folio returned previously should be passed
2519 * back in.
2520 *
2521 * If there was an error in the per-folio writeback inside the writeback_iter()
2522 * loop, @error should be set to the error value.
2523 *
2524 * Once the writeback described in @wbc has finished, this function will return
2525 * %NULL and if there was an error in any iteration restore it to @error.
2526 *
2527 * Note: callers should not manually break out of the loop using break or goto
2528 * but must keep calling writeback_iter() until it returns %NULL.
2529 *
2530 * Return: the folio to write or %NULL if the loop is done.
2531 */
writeback_iter(struct address_space * mapping,struct writeback_control * wbc,struct folio * folio,int * error)2532 struct folio *writeback_iter(struct address_space *mapping,
2533 struct writeback_control *wbc, struct folio *folio, int *error)
2534 {
2535 if (!folio) {
2536 folio_batch_init(&wbc->fbatch);
2537 wbc->saved_err = *error = 0;
2538
2539 /*
2540 * For range cyclic writeback we remember where we stopped so
2541 * that we can continue where we stopped.
2542 *
2543 * For non-cyclic writeback we always start at the beginning of
2544 * the passed in range.
2545 */
2546 if (wbc->range_cyclic)
2547 wbc->index = mapping->writeback_index;
2548 else
2549 wbc->index = wbc->range_start >> PAGE_SHIFT;
2550
2551 /*
2552 * To avoid livelocks when other processes dirty new pages, we
2553 * first tag pages which should be written back and only then
2554 * start writing them.
2555 *
2556 * For data-integrity writeback we have to be careful so that we
2557 * do not miss some pages (e.g., because some other process has
2558 * cleared the TOWRITE tag we set). The rule we follow is that
2559 * TOWRITE tag can be cleared only by the process clearing the
2560 * DIRTY tag (and submitting the page for I/O).
2561 */
2562 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2563 tag_pages_for_writeback(mapping, wbc->index,
2564 wbc_end(wbc));
2565 } else {
2566 wbc->nr_to_write -= folio_nr_pages(folio);
2567
2568 WARN_ON_ONCE(*error > 0);
2569
2570 /*
2571 * For integrity writeback we have to keep going until we have
2572 * written all the folios we tagged for writeback above, even if
2573 * we run past wbc->nr_to_write or encounter errors.
2574 * We stash away the first error we encounter in wbc->saved_err
2575 * so that it can be retrieved when we're done. This is because
2576 * the file system may still have state to clear for each folio.
2577 *
2578 * For background writeback we exit as soon as we run past
2579 * wbc->nr_to_write or encounter the first error.
2580 */
2581 if (wbc->sync_mode == WB_SYNC_ALL) {
2582 if (*error && !wbc->saved_err)
2583 wbc->saved_err = *error;
2584 } else {
2585 if (*error || wbc->nr_to_write <= 0)
2586 goto done;
2587 }
2588 }
2589
2590 folio = writeback_get_folio(mapping, wbc);
2591 if (!folio) {
2592 /*
2593 * To avoid deadlocks between range_cyclic writeback and callers
2594 * that hold pages in PageWriteback to aggregate I/O until
2595 * the writeback iteration finishes, we do not loop back to the
2596 * start of the file. Doing so causes a page lock/page
2597 * writeback access order inversion - we should only ever lock
2598 * multiple pages in ascending page->index order, and looping
2599 * back to the start of the file violates that rule and causes
2600 * deadlocks.
2601 */
2602 if (wbc->range_cyclic)
2603 mapping->writeback_index = 0;
2604
2605 /*
2606 * Return the first error we encountered (if there was any) to
2607 * the caller.
2608 */
2609 *error = wbc->saved_err;
2610 }
2611 return folio;
2612
2613 done:
2614 if (wbc->range_cyclic)
2615 mapping->writeback_index = folio_next_index(folio);
2616 folio_batch_release(&wbc->fbatch);
2617 return NULL;
2618 }
2619 EXPORT_SYMBOL_GPL(writeback_iter);
2620
2621 /**
2622 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2623 * @mapping: address space structure to write
2624 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2625 * @writepage: function called for each page
2626 * @data: data passed to writepage function
2627 *
2628 * Return: %0 on success, negative error code otherwise
2629 *
2630 * Note: please use writeback_iter() instead.
2631 */
write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,writepage_t writepage,void * data)2632 int write_cache_pages(struct address_space *mapping,
2633 struct writeback_control *wbc, writepage_t writepage,
2634 void *data)
2635 {
2636 struct folio *folio = NULL;
2637 int error;
2638
2639 while ((folio = writeback_iter(mapping, wbc, folio, &error))) {
2640 error = writepage(folio, wbc, data);
2641 if (error == AOP_WRITEPAGE_ACTIVATE) {
2642 folio_unlock(folio);
2643 error = 0;
2644 }
2645 }
2646
2647 return error;
2648 }
2649 EXPORT_SYMBOL(write_cache_pages);
2650
writeback_use_writepage(struct address_space * mapping,struct writeback_control * wbc)2651 static int writeback_use_writepage(struct address_space *mapping,
2652 struct writeback_control *wbc)
2653 {
2654 struct folio *folio = NULL;
2655 struct blk_plug plug;
2656 int err;
2657
2658 blk_start_plug(&plug);
2659 while ((folio = writeback_iter(mapping, wbc, folio, &err))) {
2660 err = mapping->a_ops->writepage(&folio->page, wbc);
2661 if (err == AOP_WRITEPAGE_ACTIVATE) {
2662 folio_unlock(folio);
2663 err = 0;
2664 }
2665 mapping_set_error(mapping, err);
2666 }
2667 blk_finish_plug(&plug);
2668
2669 return err;
2670 }
2671
do_writepages(struct address_space * mapping,struct writeback_control * wbc)2672 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2673 {
2674 int ret;
2675 struct bdi_writeback *wb;
2676
2677 if (wbc->nr_to_write <= 0)
2678 return 0;
2679 wb = inode_to_wb_wbc(mapping->host, wbc);
2680 wb_bandwidth_estimate_start(wb);
2681 while (1) {
2682 if (mapping->a_ops->writepages) {
2683 ret = mapping->a_ops->writepages(mapping, wbc);
2684 } else if (mapping->a_ops->writepage) {
2685 ret = writeback_use_writepage(mapping, wbc);
2686 } else {
2687 /* deal with chardevs and other special files */
2688 ret = 0;
2689 }
2690 if (ret != -ENOMEM || wbc->sync_mode != WB_SYNC_ALL)
2691 break;
2692
2693 /*
2694 * Lacking an allocation context or the locality or writeback
2695 * state of any of the inode's pages, throttle based on
2696 * writeback activity on the local node. It's as good a
2697 * guess as any.
2698 */
2699 reclaim_throttle(NODE_DATA(numa_node_id()),
2700 VMSCAN_THROTTLE_WRITEBACK);
2701 }
2702 /*
2703 * Usually few pages are written by now from those we've just submitted
2704 * but if there's constant writeback being submitted, this makes sure
2705 * writeback bandwidth is updated once in a while.
2706 */
2707 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
2708 BANDWIDTH_INTERVAL))
2709 wb_update_bandwidth(wb);
2710 return ret;
2711 }
2712
2713 /*
2714 * For address_spaces which do not use buffers nor write back.
2715 */
noop_dirty_folio(struct address_space * mapping,struct folio * folio)2716 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio)
2717 {
2718 if (!folio_test_dirty(folio))
2719 return !folio_test_set_dirty(folio);
2720 return false;
2721 }
2722 EXPORT_SYMBOL(noop_dirty_folio);
2723
2724 /*
2725 * Helper function for set_page_dirty family.
2726 *
2727 * Caller must hold folio_memcg_lock().
2728 *
2729 * NOTE: This relies on being atomic wrt interrupts.
2730 */
folio_account_dirtied(struct folio * folio,struct address_space * mapping)2731 static void folio_account_dirtied(struct folio *folio,
2732 struct address_space *mapping)
2733 {
2734 struct inode *inode = mapping->host;
2735
2736 trace_writeback_dirty_folio(folio, mapping);
2737
2738 if (mapping_can_writeback(mapping)) {
2739 struct bdi_writeback *wb;
2740 long nr = folio_nr_pages(folio);
2741
2742 inode_attach_wb(inode, folio);
2743 wb = inode_to_wb(inode);
2744
2745 __lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr);
2746 __zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
2747 __node_stat_mod_folio(folio, NR_DIRTIED, nr);
2748 wb_stat_mod(wb, WB_RECLAIMABLE, nr);
2749 wb_stat_mod(wb, WB_DIRTIED, nr);
2750 task_io_account_write(nr * PAGE_SIZE);
2751 current->nr_dirtied += nr;
2752 __this_cpu_add(bdp_ratelimits, nr);
2753
2754 mem_cgroup_track_foreign_dirty(folio, wb);
2755 }
2756 }
2757
2758 /*
2759 * Helper function for deaccounting dirty page without writeback.
2760 *
2761 * Caller must hold folio_memcg_lock().
2762 */
folio_account_cleaned(struct folio * folio,struct bdi_writeback * wb)2763 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb)
2764 {
2765 long nr = folio_nr_pages(folio);
2766
2767 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2768 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2769 wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2770 task_io_account_cancelled_write(nr * PAGE_SIZE);
2771 }
2772
2773 /*
2774 * Mark the folio dirty, and set it dirty in the page cache.
2775 *
2776 * If warn is true, then emit a warning if the folio is not uptodate and has
2777 * not been truncated.
2778 *
2779 * The caller must hold folio_memcg_lock(). It is the caller's
2780 * responsibility to prevent the folio from being truncated while
2781 * this function is in progress, although it may have been truncated
2782 * before this function is called. Most callers have the folio locked.
2783 * A few have the folio blocked from truncation through other means (e.g.
2784 * zap_vma_pages() has it mapped and is holding the page table lock).
2785 * When called from mark_buffer_dirty(), the filesystem should hold a
2786 * reference to the buffer_head that is being marked dirty, which causes
2787 * try_to_free_buffers() to fail.
2788 */
__folio_mark_dirty(struct folio * folio,struct address_space * mapping,int warn)2789 void __folio_mark_dirty(struct folio *folio, struct address_space *mapping,
2790 int warn)
2791 {
2792 unsigned long flags;
2793
2794 xa_lock_irqsave(&mapping->i_pages, flags);
2795 if (folio->mapping) { /* Race with truncate? */
2796 WARN_ON_ONCE(warn && !folio_test_uptodate(folio));
2797 folio_account_dirtied(folio, mapping);
2798 __xa_set_mark(&mapping->i_pages, folio_index(folio),
2799 PAGECACHE_TAG_DIRTY);
2800 }
2801 xa_unlock_irqrestore(&mapping->i_pages, flags);
2802 }
2803
2804 /**
2805 * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads.
2806 * @mapping: Address space this folio belongs to.
2807 * @folio: Folio to be marked as dirty.
2808 *
2809 * Filesystems which do not use buffer heads should call this function
2810 * from their dirty_folio address space operation. It ignores the
2811 * contents of folio_get_private(), so if the filesystem marks individual
2812 * blocks as dirty, the filesystem should handle that itself.
2813 *
2814 * This is also sometimes used by filesystems which use buffer_heads when
2815 * a single buffer is being dirtied: we want to set the folio dirty in
2816 * that case, but not all the buffers. This is a "bottom-up" dirtying,
2817 * whereas block_dirty_folio() is a "top-down" dirtying.
2818 *
2819 * The caller must ensure this doesn't race with truncation. Most will
2820 * simply hold the folio lock, but e.g. zap_pte_range() calls with the
2821 * folio mapped and the pte lock held, which also locks out truncation.
2822 */
filemap_dirty_folio(struct address_space * mapping,struct folio * folio)2823 bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio)
2824 {
2825 folio_memcg_lock(folio);
2826 if (folio_test_set_dirty(folio)) {
2827 folio_memcg_unlock(folio);
2828 return false;
2829 }
2830
2831 __folio_mark_dirty(folio, mapping, !folio_test_private(folio));
2832 folio_memcg_unlock(folio);
2833
2834 if (mapping->host) {
2835 /* !PageAnon && !swapper_space */
2836 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2837 }
2838 return true;
2839 }
2840 EXPORT_SYMBOL(filemap_dirty_folio);
2841
2842 /**
2843 * folio_redirty_for_writepage - Decline to write a dirty folio.
2844 * @wbc: The writeback control.
2845 * @folio: The folio.
2846 *
2847 * When a writepage implementation decides that it doesn't want to write
2848 * @folio for some reason, it should call this function, unlock @folio and
2849 * return 0.
2850 *
2851 * Return: True if we redirtied the folio. False if someone else dirtied
2852 * it first.
2853 */
folio_redirty_for_writepage(struct writeback_control * wbc,struct folio * folio)2854 bool folio_redirty_for_writepage(struct writeback_control *wbc,
2855 struct folio *folio)
2856 {
2857 struct address_space *mapping = folio->mapping;
2858 long nr = folio_nr_pages(folio);
2859 bool ret;
2860
2861 wbc->pages_skipped += nr;
2862 ret = filemap_dirty_folio(mapping, folio);
2863 if (mapping && mapping_can_writeback(mapping)) {
2864 struct inode *inode = mapping->host;
2865 struct bdi_writeback *wb;
2866 struct wb_lock_cookie cookie = {};
2867
2868 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2869 current->nr_dirtied -= nr;
2870 node_stat_mod_folio(folio, NR_DIRTIED, -nr);
2871 wb_stat_mod(wb, WB_DIRTIED, -nr);
2872 unlocked_inode_to_wb_end(inode, &cookie);
2873 }
2874 return ret;
2875 }
2876 EXPORT_SYMBOL(folio_redirty_for_writepage);
2877
2878 /**
2879 * folio_mark_dirty - Mark a folio as being modified.
2880 * @folio: The folio.
2881 *
2882 * The folio may not be truncated while this function is running.
2883 * Holding the folio lock is sufficient to prevent truncation, but some
2884 * callers cannot acquire a sleeping lock. These callers instead hold
2885 * the page table lock for a page table which contains at least one page
2886 * in this folio. Truncation will block on the page table lock as it
2887 * unmaps pages before removing the folio from its mapping.
2888 *
2889 * Return: True if the folio was newly dirtied, false if it was already dirty.
2890 */
folio_mark_dirty(struct folio * folio)2891 bool folio_mark_dirty(struct folio *folio)
2892 {
2893 struct address_space *mapping = folio_mapping(folio);
2894
2895 if (likely(mapping)) {
2896 /*
2897 * readahead/folio_deactivate could remain
2898 * PG_readahead/PG_reclaim due to race with folio_end_writeback
2899 * About readahead, if the folio is written, the flags would be
2900 * reset. So no problem.
2901 * About folio_deactivate, if the folio is redirtied,
2902 * the flag will be reset. So no problem. but if the
2903 * folio is used by readahead it will confuse readahead
2904 * and make it restart the size rampup process. But it's
2905 * a trivial problem.
2906 */
2907 if (folio_test_reclaim(folio))
2908 folio_clear_reclaim(folio);
2909 return mapping->a_ops->dirty_folio(mapping, folio);
2910 }
2911
2912 return noop_dirty_folio(mapping, folio);
2913 }
2914 EXPORT_SYMBOL(folio_mark_dirty);
2915
2916 /*
2917 * set_page_dirty() is racy if the caller has no reference against
2918 * page->mapping->host, and if the page is unlocked. This is because another
2919 * CPU could truncate the page off the mapping and then free the mapping.
2920 *
2921 * Usually, the page _is_ locked, or the caller is a user-space process which
2922 * holds a reference on the inode by having an open file.
2923 *
2924 * In other cases, the page should be locked before running set_page_dirty().
2925 */
set_page_dirty_lock(struct page * page)2926 int set_page_dirty_lock(struct page *page)
2927 {
2928 int ret;
2929
2930 lock_page(page);
2931 ret = set_page_dirty(page);
2932 unlock_page(page);
2933 return ret;
2934 }
2935 EXPORT_SYMBOL(set_page_dirty_lock);
2936
2937 /*
2938 * This cancels just the dirty bit on the kernel page itself, it does NOT
2939 * actually remove dirty bits on any mmap's that may be around. It also
2940 * leaves the page tagged dirty, so any sync activity will still find it on
2941 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2942 * look at the dirty bits in the VM.
2943 *
2944 * Doing this should *normally* only ever be done when a page is truncated,
2945 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2946 * this when it notices that somebody has cleaned out all the buffers on a
2947 * page without actually doing it through the VM. Can you say "ext3 is
2948 * horribly ugly"? Thought you could.
2949 */
__folio_cancel_dirty(struct folio * folio)2950 void __folio_cancel_dirty(struct folio *folio)
2951 {
2952 struct address_space *mapping = folio_mapping(folio);
2953
2954 if (mapping_can_writeback(mapping)) {
2955 struct inode *inode = mapping->host;
2956 struct bdi_writeback *wb;
2957 struct wb_lock_cookie cookie = {};
2958
2959 folio_memcg_lock(folio);
2960 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2961
2962 if (folio_test_clear_dirty(folio))
2963 folio_account_cleaned(folio, wb);
2964
2965 unlocked_inode_to_wb_end(inode, &cookie);
2966 folio_memcg_unlock(folio);
2967 } else {
2968 folio_clear_dirty(folio);
2969 }
2970 }
2971 EXPORT_SYMBOL(__folio_cancel_dirty);
2972
2973 /*
2974 * Clear a folio's dirty flag, while caring for dirty memory accounting.
2975 * Returns true if the folio was previously dirty.
2976 *
2977 * This is for preparing to put the folio under writeout. We leave
2978 * the folio tagged as dirty in the xarray so that a concurrent
2979 * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk.
2980 * The ->writepage implementation will run either folio_start_writeback()
2981 * or folio_mark_dirty(), at which stage we bring the folio's dirty flag
2982 * and xarray dirty tag back into sync.
2983 *
2984 * This incoherency between the folio's dirty flag and xarray tag is
2985 * unfortunate, but it only exists while the folio is locked.
2986 */
folio_clear_dirty_for_io(struct folio * folio)2987 bool folio_clear_dirty_for_io(struct folio *folio)
2988 {
2989 struct address_space *mapping = folio_mapping(folio);
2990 bool ret = false;
2991
2992 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2993
2994 if (mapping && mapping_can_writeback(mapping)) {
2995 struct inode *inode = mapping->host;
2996 struct bdi_writeback *wb;
2997 struct wb_lock_cookie cookie = {};
2998
2999 /*
3000 * Yes, Virginia, this is indeed insane.
3001 *
3002 * We use this sequence to make sure that
3003 * (a) we account for dirty stats properly
3004 * (b) we tell the low-level filesystem to
3005 * mark the whole folio dirty if it was
3006 * dirty in a pagetable. Only to then
3007 * (c) clean the folio again and return 1 to
3008 * cause the writeback.
3009 *
3010 * This way we avoid all nasty races with the
3011 * dirty bit in multiple places and clearing
3012 * them concurrently from different threads.
3013 *
3014 * Note! Normally the "folio_mark_dirty(folio)"
3015 * has no effect on the actual dirty bit - since
3016 * that will already usually be set. But we
3017 * need the side effects, and it can help us
3018 * avoid races.
3019 *
3020 * We basically use the folio "master dirty bit"
3021 * as a serialization point for all the different
3022 * threads doing their things.
3023 */
3024 if (folio_mkclean(folio))
3025 folio_mark_dirty(folio);
3026 /*
3027 * We carefully synchronise fault handlers against
3028 * installing a dirty pte and marking the folio dirty
3029 * at this point. We do this by having them hold the
3030 * page lock while dirtying the folio, and folios are
3031 * always locked coming in here, so we get the desired
3032 * exclusion.
3033 */
3034 wb = unlocked_inode_to_wb_begin(inode, &cookie);
3035 if (folio_test_clear_dirty(folio)) {
3036 long nr = folio_nr_pages(folio);
3037 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
3038 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
3039 wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
3040 ret = true;
3041 }
3042 unlocked_inode_to_wb_end(inode, &cookie);
3043 return ret;
3044 }
3045 return folio_test_clear_dirty(folio);
3046 }
3047 EXPORT_SYMBOL(folio_clear_dirty_for_io);
3048
wb_inode_writeback_start(struct bdi_writeback * wb)3049 static void wb_inode_writeback_start(struct bdi_writeback *wb)
3050 {
3051 atomic_inc(&wb->writeback_inodes);
3052 }
3053
wb_inode_writeback_end(struct bdi_writeback * wb)3054 static void wb_inode_writeback_end(struct bdi_writeback *wb)
3055 {
3056 unsigned long flags;
3057 atomic_dec(&wb->writeback_inodes);
3058 /*
3059 * Make sure estimate of writeback throughput gets updated after
3060 * writeback completed. We delay the update by BANDWIDTH_INTERVAL
3061 * (which is the interval other bandwidth updates use for batching) so
3062 * that if multiple inodes end writeback at a similar time, they get
3063 * batched into one bandwidth update.
3064 */
3065 spin_lock_irqsave(&wb->work_lock, flags);
3066 if (test_bit(WB_registered, &wb->state))
3067 queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL);
3068 spin_unlock_irqrestore(&wb->work_lock, flags);
3069 }
3070
__folio_end_writeback(struct folio * folio)3071 bool __folio_end_writeback(struct folio *folio)
3072 {
3073 long nr = folio_nr_pages(folio);
3074 struct address_space *mapping = folio_mapping(folio);
3075 bool ret;
3076
3077 folio_memcg_lock(folio);
3078 if (mapping && mapping_use_writeback_tags(mapping)) {
3079 struct inode *inode = mapping->host;
3080 struct backing_dev_info *bdi = inode_to_bdi(inode);
3081 unsigned long flags;
3082
3083 xa_lock_irqsave(&mapping->i_pages, flags);
3084 ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback);
3085 __xa_clear_mark(&mapping->i_pages, folio_index(folio),
3086 PAGECACHE_TAG_WRITEBACK);
3087 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
3088 struct bdi_writeback *wb = inode_to_wb(inode);
3089
3090 wb_stat_mod(wb, WB_WRITEBACK, -nr);
3091 __wb_writeout_add(wb, nr);
3092 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
3093 wb_inode_writeback_end(wb);
3094 }
3095
3096 if (mapping->host && !mapping_tagged(mapping,
3097 PAGECACHE_TAG_WRITEBACK))
3098 sb_clear_inode_writeback(mapping->host);
3099
3100 xa_unlock_irqrestore(&mapping->i_pages, flags);
3101 } else {
3102 ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback);
3103 }
3104
3105 lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr);
3106 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
3107 node_stat_mod_folio(folio, NR_WRITTEN, nr);
3108 folio_memcg_unlock(folio);
3109
3110 return ret;
3111 }
3112
__folio_start_writeback(struct folio * folio,bool keep_write)3113 void __folio_start_writeback(struct folio *folio, bool keep_write)
3114 {
3115 long nr = folio_nr_pages(folio);
3116 struct address_space *mapping = folio_mapping(folio);
3117 int access_ret;
3118
3119 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
3120
3121 folio_memcg_lock(folio);
3122 if (mapping && mapping_use_writeback_tags(mapping)) {
3123 XA_STATE(xas, &mapping->i_pages, folio_index(folio));
3124 struct inode *inode = mapping->host;
3125 struct backing_dev_info *bdi = inode_to_bdi(inode);
3126 unsigned long flags;
3127 bool on_wblist;
3128
3129 xas_lock_irqsave(&xas, flags);
3130 xas_load(&xas);
3131 folio_test_set_writeback(folio);
3132
3133 on_wblist = mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK);
3134
3135 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
3136 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
3137 struct bdi_writeback *wb = inode_to_wb(inode);
3138
3139 wb_stat_mod(wb, WB_WRITEBACK, nr);
3140 if (!on_wblist)
3141 wb_inode_writeback_start(wb);
3142 }
3143
3144 /*
3145 * We can come through here when swapping anonymous
3146 * folios, so we don't necessarily have an inode to
3147 * track for sync.
3148 */
3149 if (mapping->host && !on_wblist)
3150 sb_mark_inode_writeback(mapping->host);
3151 if (!folio_test_dirty(folio))
3152 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
3153 if (!keep_write)
3154 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
3155 xas_unlock_irqrestore(&xas, flags);
3156 } else {
3157 folio_test_set_writeback(folio);
3158 }
3159
3160 lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr);
3161 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
3162 folio_memcg_unlock(folio);
3163
3164 access_ret = arch_make_folio_accessible(folio);
3165 /*
3166 * If writeback has been triggered on a page that cannot be made
3167 * accessible, it is too late to recover here.
3168 */
3169 VM_BUG_ON_FOLIO(access_ret != 0, folio);
3170 }
3171 EXPORT_SYMBOL(__folio_start_writeback);
3172
3173 /**
3174 * folio_wait_writeback - Wait for a folio to finish writeback.
3175 * @folio: The folio to wait for.
3176 *
3177 * If the folio is currently being written back to storage, wait for the
3178 * I/O to complete.
3179 *
3180 * Context: Sleeps. Must be called in process context and with
3181 * no spinlocks held. Caller should hold a reference on the folio.
3182 * If the folio is not locked, writeback may start again after writeback
3183 * has finished.
3184 */
folio_wait_writeback(struct folio * folio)3185 void folio_wait_writeback(struct folio *folio)
3186 {
3187 while (folio_test_writeback(folio)) {
3188 trace_folio_wait_writeback(folio, folio_mapping(folio));
3189 folio_wait_bit(folio, PG_writeback);
3190 }
3191 }
3192 EXPORT_SYMBOL_GPL(folio_wait_writeback);
3193
3194 /**
3195 * folio_wait_writeback_killable - Wait for a folio to finish writeback.
3196 * @folio: The folio to wait for.
3197 *
3198 * If the folio is currently being written back to storage, wait for the
3199 * I/O to complete or a fatal signal to arrive.
3200 *
3201 * Context: Sleeps. Must be called in process context and with
3202 * no spinlocks held. Caller should hold a reference on the folio.
3203 * If the folio is not locked, writeback may start again after writeback
3204 * has finished.
3205 * Return: 0 on success, -EINTR if we get a fatal signal while waiting.
3206 */
folio_wait_writeback_killable(struct folio * folio)3207 int folio_wait_writeback_killable(struct folio *folio)
3208 {
3209 while (folio_test_writeback(folio)) {
3210 trace_folio_wait_writeback(folio, folio_mapping(folio));
3211 if (folio_wait_bit_killable(folio, PG_writeback))
3212 return -EINTR;
3213 }
3214
3215 return 0;
3216 }
3217 EXPORT_SYMBOL_GPL(folio_wait_writeback_killable);
3218
3219 /**
3220 * folio_wait_stable() - wait for writeback to finish, if necessary.
3221 * @folio: The folio to wait on.
3222 *
3223 * This function determines if the given folio is related to a backing
3224 * device that requires folio contents to be held stable during writeback.
3225 * If so, then it will wait for any pending writeback to complete.
3226 *
3227 * Context: Sleeps. Must be called in process context and with
3228 * no spinlocks held. Caller should hold a reference on the folio.
3229 * If the folio is not locked, writeback may start again after writeback
3230 * has finished.
3231 */
folio_wait_stable(struct folio * folio)3232 void folio_wait_stable(struct folio *folio)
3233 {
3234 if (mapping_stable_writes(folio_mapping(folio)))
3235 folio_wait_writeback(folio);
3236 }
3237 EXPORT_SYMBOL_GPL(folio_wait_stable);
3238