xref: /openbsd/sys/dev/pci/drm/include/linux/dma-resv.h (revision 1bb76ff1)
1 /*
2  * Header file for reservations for dma-buf and ttm
3  *
4  * Copyright(C) 2011 Linaro Limited. All rights reserved.
5  * Copyright (C) 2012-2013 Canonical Ltd
6  * Copyright (C) 2012 Texas Instruments
7  *
8  * Authors:
9  * Rob Clark <robdclark@gmail.com>
10  * Maarten Lankhorst <maarten.lankhorst@canonical.com>
11  * Thomas Hellstrom <thellstrom-at-vmware-dot-com>
12  *
13  * Based on bo.c which bears the following copyright notice,
14  * but is dual licensed:
15  *
16  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
17  * All Rights Reserved.
18  *
19  * Permission is hereby granted, free of charge, to any person obtaining a
20  * copy of this software and associated documentation files (the
21  * "Software"), to deal in the Software without restriction, including
22  * without limitation the rights to use, copy, modify, merge, publish,
23  * distribute, sub license, and/or sell copies of the Software, and to
24  * permit persons to whom the Software is furnished to do so, subject to
25  * the following conditions:
26  *
27  * The above copyright notice and this permission notice (including the
28  * next paragraph) shall be included in all copies or substantial portions
29  * of the Software.
30  *
31  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
32  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
33  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
34  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
35  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
36  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
37  * USE OR OTHER DEALINGS IN THE SOFTWARE.
38  */
39 #ifndef _LINUX_RESERVATION_H
40 #define _LINUX_RESERVATION_H
41 
42 #include <linux/ww_mutex.h>
43 #include <linux/dma-fence.h>
44 #include <linux/slab.h>
45 #include <linux/seqlock.h>
46 #include <linux/rcupdate.h>
47 
48 extern struct ww_class reservation_ww_class;
49 
50 struct dma_resv_list;
51 struct seq_file;
52 
53 /**
54  * enum dma_resv_usage - how the fences from a dma_resv obj are used
55  *
56  * This enum describes the different use cases for a dma_resv object and
57  * controls which fences are returned when queried.
58  *
59  * An important fact is that there is the order KERNEL<WRITE<READ<BOOKKEEP and
60  * when the dma_resv object is asked for fences for one use case the fences
61  * for the lower use case are returned as well.
62  *
63  * For example when asking for WRITE fences then the KERNEL fences are returned
64  * as well. Similar when asked for READ fences then both WRITE and KERNEL
65  * fences are returned as well.
66  *
67  * Already used fences can be promoted in the sense that a fence with
68  * DMA_RESV_USAGE_BOOKKEEP could become DMA_RESV_USAGE_READ by adding it again
69  * with this usage. But fences can never be degraded in the sense that a fence
70  * with DMA_RESV_USAGE_WRITE could become DMA_RESV_USAGE_READ.
71  */
72 enum dma_resv_usage {
73 	/**
74 	 * @DMA_RESV_USAGE_KERNEL: For in kernel memory management only.
75 	 *
76 	 * This should only be used for things like copying or clearing memory
77 	 * with a DMA hardware engine for the purpose of kernel memory
78 	 * management.
79 	 *
80 	 * Drivers *always* must wait for those fences before accessing the
81 	 * resource protected by the dma_resv object. The only exception for
82 	 * that is when the resource is known to be locked down in place by
83 	 * pinning it previously.
84 	 */
85 	DMA_RESV_USAGE_KERNEL,
86 
87 	/**
88 	 * @DMA_RESV_USAGE_WRITE: Implicit write synchronization.
89 	 *
90 	 * This should only be used for userspace command submissions which add
91 	 * an implicit write dependency.
92 	 */
93 	DMA_RESV_USAGE_WRITE,
94 
95 	/**
96 	 * @DMA_RESV_USAGE_READ: Implicit read synchronization.
97 	 *
98 	 * This should only be used for userspace command submissions which add
99 	 * an implicit read dependency.
100 	 */
101 	DMA_RESV_USAGE_READ,
102 
103 	/**
104 	 * @DMA_RESV_USAGE_BOOKKEEP: No implicit sync.
105 	 *
106 	 * This should be used by submissions which don't want to participate in
107 	 * any implicit synchronization.
108 	 *
109 	 * The most common case are preemption fences, page table updates, TLB
110 	 * flushes as well as explicit synced user submissions.
111 	 *
112 	 * Explicit synced user user submissions can be promoted to
113 	 * DMA_RESV_USAGE_READ or DMA_RESV_USAGE_WRITE as needed using
114 	 * dma_buf_import_sync_file() when implicit synchronization should
115 	 * become necessary after initial adding of the fence.
116 	 */
117 	DMA_RESV_USAGE_BOOKKEEP
118 };
119 
120 /**
121  * dma_resv_usage_rw - helper for implicit sync
122  * @write: true if we create a new implicit sync write
123  *
124  * This returns the implicit synchronization usage for write or read accesses,
125  * see enum dma_resv_usage and &dma_buf.resv.
126  */
dma_resv_usage_rw(bool write)127 static inline enum dma_resv_usage dma_resv_usage_rw(bool write)
128 {
129 	/* This looks confusing at first sight, but is indeed correct.
130 	 *
131 	 * The rational is that new write operations needs to wait for the
132 	 * existing read and write operations to finish.
133 	 * But a new read operation only needs to wait for the existing write
134 	 * operations to finish.
135 	 */
136 	return write ? DMA_RESV_USAGE_READ : DMA_RESV_USAGE_WRITE;
137 }
138 
139 /**
140  * struct dma_resv - a reservation object manages fences for a buffer
141  *
142  * This is a container for dma_fence objects which needs to handle multiple use
143  * cases.
144  *
145  * One use is to synchronize cross-driver access to a struct dma_buf, either for
146  * dynamic buffer management or just to handle implicit synchronization between
147  * different users of the buffer in userspace. See &dma_buf.resv for a more
148  * in-depth discussion.
149  *
150  * The other major use is to manage access and locking within a driver in a
151  * buffer based memory manager. struct ttm_buffer_object is the canonical
152  * example here, since this is where reservation objects originated from. But
153  * use in drivers is spreading and some drivers also manage struct
154  * drm_gem_object with the same scheme.
155  */
156 struct dma_resv {
157 	/**
158 	 * @lock:
159 	 *
160 	 * Update side lock. Don't use directly, instead use the wrapper
161 	 * functions like dma_resv_lock() and dma_resv_unlock().
162 	 *
163 	 * Drivers which use the reservation object to manage memory dynamically
164 	 * also use this lock to protect buffer object state like placement,
165 	 * allocation policies or throughout command submission.
166 	 */
167 	struct ww_mutex lock;
168 
169 	/**
170 	 * @fences:
171 	 *
172 	 * Array of fences which where added to the dma_resv object
173 	 *
174 	 * A new fence is added by calling dma_resv_add_fence(). Since this
175 	 * often needs to be done past the point of no return in command
176 	 * submission it cannot fail, and therefore sufficient slots need to be
177 	 * reserved by calling dma_resv_reserve_fences().
178 	 */
179 	struct dma_resv_list __rcu *fences;
180 };
181 
182 /**
183  * struct dma_resv_iter - current position into the dma_resv fences
184  *
185  * Don't touch this directly in the driver, use the accessor function instead.
186  *
187  * IMPORTANT
188  *
189  * When using the lockless iterators like dma_resv_iter_next_unlocked() or
190  * dma_resv_for_each_fence_unlocked() beware that the iterator can be restarted.
191  * Code which accumulates statistics or similar needs to check for this with
192  * dma_resv_iter_is_restarted().
193  */
194 struct dma_resv_iter {
195 	/** @obj: The dma_resv object we iterate over */
196 	struct dma_resv *obj;
197 
198 	/** @usage: Return fences with this usage or lower. */
199 	enum dma_resv_usage usage;
200 
201 	/** @fence: the currently handled fence */
202 	struct dma_fence *fence;
203 
204 	/** @fence_usage: the usage of the current fence */
205 	enum dma_resv_usage fence_usage;
206 
207 	/** @index: index into the shared fences */
208 	unsigned int index;
209 
210 	/** @fences: the shared fences; private, *MUST* not dereference  */
211 	struct dma_resv_list *fences;
212 
213 	/** @num_fences: number of fences */
214 	unsigned int num_fences;
215 
216 	/** @is_restarted: true if this is the first returned fence */
217 	bool is_restarted;
218 };
219 
220 struct dma_fence *dma_resv_iter_first_unlocked(struct dma_resv_iter *cursor);
221 struct dma_fence *dma_resv_iter_next_unlocked(struct dma_resv_iter *cursor);
222 struct dma_fence *dma_resv_iter_first(struct dma_resv_iter *cursor);
223 struct dma_fence *dma_resv_iter_next(struct dma_resv_iter *cursor);
224 
225 /**
226  * dma_resv_iter_begin - initialize a dma_resv_iter object
227  * @cursor: The dma_resv_iter object to initialize
228  * @obj: The dma_resv object which we want to iterate over
229  * @usage: controls which fences to include, see enum dma_resv_usage.
230  */
dma_resv_iter_begin(struct dma_resv_iter * cursor,struct dma_resv * obj,enum dma_resv_usage usage)231 static inline void dma_resv_iter_begin(struct dma_resv_iter *cursor,
232 				       struct dma_resv *obj,
233 				       enum dma_resv_usage usage)
234 {
235 	cursor->obj = obj;
236 	cursor->usage = usage;
237 	cursor->fence = NULL;
238 }
239 
240 /**
241  * dma_resv_iter_end - cleanup a dma_resv_iter object
242  * @cursor: the dma_resv_iter object which should be cleaned up
243  *
244  * Make sure that the reference to the fence in the cursor is properly
245  * dropped.
246  */
dma_resv_iter_end(struct dma_resv_iter * cursor)247 static inline void dma_resv_iter_end(struct dma_resv_iter *cursor)
248 {
249 	dma_fence_put(cursor->fence);
250 }
251 
252 /**
253  * dma_resv_iter_usage - Return the usage of the current fence
254  * @cursor: the cursor of the current position
255  *
256  * Returns the usage of the currently processed fence.
257  */
258 static inline enum dma_resv_usage
dma_resv_iter_usage(struct dma_resv_iter * cursor)259 dma_resv_iter_usage(struct dma_resv_iter *cursor)
260 {
261 	return cursor->fence_usage;
262 }
263 
264 /**
265  * dma_resv_iter_is_restarted - test if this is the first fence after a restart
266  * @cursor: the cursor with the current position
267  *
268  * Return true if this is the first fence in an iteration after a restart.
269  */
dma_resv_iter_is_restarted(struct dma_resv_iter * cursor)270 static inline bool dma_resv_iter_is_restarted(struct dma_resv_iter *cursor)
271 {
272 	return cursor->is_restarted;
273 }
274 
275 /**
276  * dma_resv_for_each_fence_unlocked - unlocked fence iterator
277  * @cursor: a struct dma_resv_iter pointer
278  * @fence: the current fence
279  *
280  * Iterate over the fences in a struct dma_resv object without holding the
281  * &dma_resv.lock and using RCU instead. The cursor needs to be initialized
282  * with dma_resv_iter_begin() and cleaned up with dma_resv_iter_end(). Inside
283  * the iterator a reference to the dma_fence is held and the RCU lock dropped.
284  *
285  * Beware that the iterator can be restarted when the struct dma_resv for
286  * @cursor is modified. Code which accumulates statistics or similar needs to
287  * check for this with dma_resv_iter_is_restarted(). For this reason prefer the
288  * lock iterator dma_resv_for_each_fence() whenever possible.
289  */
290 #define dma_resv_for_each_fence_unlocked(cursor, fence)			\
291 	for (fence = dma_resv_iter_first_unlocked(cursor);		\
292 	     fence; fence = dma_resv_iter_next_unlocked(cursor))
293 
294 /**
295  * dma_resv_for_each_fence - fence iterator
296  * @cursor: a struct dma_resv_iter pointer
297  * @obj: a dma_resv object pointer
298  * @usage: controls which fences to return
299  * @fence: the current fence
300  *
301  * Iterate over the fences in a struct dma_resv object while holding the
302  * &dma_resv.lock. @all_fences controls if the shared fences are returned as
303  * well. The cursor initialisation is part of the iterator and the fence stays
304  * valid as long as the lock is held and so no extra reference to the fence is
305  * taken.
306  */
307 #define dma_resv_for_each_fence(cursor, obj, usage, fence)	\
308 	for (dma_resv_iter_begin(cursor, obj, usage),	\
309 	     fence = dma_resv_iter_first(cursor); fence;	\
310 	     fence = dma_resv_iter_next(cursor))
311 
312 #define dma_resv_held(obj) lockdep_is_held(&(obj)->lock.base)
313 #define dma_resv_assert_held(obj) lockdep_assert_held(&(obj)->lock.base)
314 
315 #ifdef CONFIG_DEBUG_MUTEXES
316 void dma_resv_reset_max_fences(struct dma_resv *obj);
317 #else
dma_resv_reset_max_fences(struct dma_resv * obj)318 static inline void dma_resv_reset_max_fences(struct dma_resv *obj) {}
319 #endif
320 
321 /**
322  * dma_resv_lock - lock the reservation object
323  * @obj: the reservation object
324  * @ctx: the locking context
325  *
326  * Locks the reservation object for exclusive access and modification. Note,
327  * that the lock is only against other writers, readers will run concurrently
328  * with a writer under RCU. The seqlock is used to notify readers if they
329  * overlap with a writer.
330  *
331  * As the reservation object may be locked by multiple parties in an
332  * undefined order, a #ww_acquire_ctx is passed to unwind if a cycle
333  * is detected. See ww_mutex_lock() and ww_acquire_init(). A reservation
334  * object may be locked by itself by passing NULL as @ctx.
335  *
336  * When a die situation is indicated by returning -EDEADLK all locks held by
337  * @ctx must be unlocked and then dma_resv_lock_slow() called on @obj.
338  *
339  * Unlocked by calling dma_resv_unlock().
340  *
341  * See also dma_resv_lock_interruptible() for the interruptible variant.
342  */
dma_resv_lock(struct dma_resv * obj,struct ww_acquire_ctx * ctx)343 static inline int dma_resv_lock(struct dma_resv *obj,
344 				struct ww_acquire_ctx *ctx)
345 {
346 	return ww_mutex_lock(&obj->lock, ctx);
347 }
348 
349 /**
350  * dma_resv_lock_interruptible - lock the reservation object
351  * @obj: the reservation object
352  * @ctx: the locking context
353  *
354  * Locks the reservation object interruptible for exclusive access and
355  * modification. Note, that the lock is only against other writers, readers
356  * will run concurrently with a writer under RCU. The seqlock is used to
357  * notify readers if they overlap with a writer.
358  *
359  * As the reservation object may be locked by multiple parties in an
360  * undefined order, a #ww_acquire_ctx is passed to unwind if a cycle
361  * is detected. See ww_mutex_lock() and ww_acquire_init(). A reservation
362  * object may be locked by itself by passing NULL as @ctx.
363  *
364  * When a die situation is indicated by returning -EDEADLK all locks held by
365  * @ctx must be unlocked and then dma_resv_lock_slow_interruptible() called on
366  * @obj.
367  *
368  * Unlocked by calling dma_resv_unlock().
369  */
dma_resv_lock_interruptible(struct dma_resv * obj,struct ww_acquire_ctx * ctx)370 static inline int dma_resv_lock_interruptible(struct dma_resv *obj,
371 					      struct ww_acquire_ctx *ctx)
372 {
373 	return ww_mutex_lock_interruptible(&obj->lock, ctx);
374 }
375 
376 /**
377  * dma_resv_lock_slow - slowpath lock the reservation object
378  * @obj: the reservation object
379  * @ctx: the locking context
380  *
381  * Acquires the reservation object after a die case. This function
382  * will sleep until the lock becomes available. See dma_resv_lock() as
383  * well.
384  *
385  * See also dma_resv_lock_slow_interruptible() for the interruptible variant.
386  */
dma_resv_lock_slow(struct dma_resv * obj,struct ww_acquire_ctx * ctx)387 static inline void dma_resv_lock_slow(struct dma_resv *obj,
388 				      struct ww_acquire_ctx *ctx)
389 {
390 	ww_mutex_lock_slow(&obj->lock, ctx);
391 }
392 
393 /**
394  * dma_resv_lock_slow_interruptible - slowpath lock the reservation
395  * object, interruptible
396  * @obj: the reservation object
397  * @ctx: the locking context
398  *
399  * Acquires the reservation object interruptible after a die case. This function
400  * will sleep until the lock becomes available. See
401  * dma_resv_lock_interruptible() as well.
402  */
dma_resv_lock_slow_interruptible(struct dma_resv * obj,struct ww_acquire_ctx * ctx)403 static inline int dma_resv_lock_slow_interruptible(struct dma_resv *obj,
404 						   struct ww_acquire_ctx *ctx)
405 {
406 	return ww_mutex_lock_slow_interruptible(&obj->lock, ctx);
407 }
408 
409 /**
410  * dma_resv_trylock - trylock the reservation object
411  * @obj: the reservation object
412  *
413  * Tries to lock the reservation object for exclusive access and modification.
414  * Note, that the lock is only against other writers, readers will run
415  * concurrently with a writer under RCU. The seqlock is used to notify readers
416  * if they overlap with a writer.
417  *
418  * Also note that since no context is provided, no deadlock protection is
419  * possible, which is also not needed for a trylock.
420  *
421  * Returns true if the lock was acquired, false otherwise.
422  */
dma_resv_trylock(struct dma_resv * obj)423 static inline bool __must_check dma_resv_trylock(struct dma_resv *obj)
424 {
425 	return ww_mutex_trylock(&obj->lock, NULL);
426 }
427 
428 /**
429  * dma_resv_is_locked - is the reservation object locked
430  * @obj: the reservation object
431  *
432  * Returns true if the mutex is locked, false if unlocked.
433  */
dma_resv_is_locked(struct dma_resv * obj)434 static inline bool dma_resv_is_locked(struct dma_resv *obj)
435 {
436 	return ww_mutex_is_locked(&obj->lock);
437 }
438 
439 /**
440  * dma_resv_locking_ctx - returns the context used to lock the object
441  * @obj: the reservation object
442  *
443  * Returns the context used to lock a reservation object or NULL if no context
444  * was used or the object is not locked at all.
445  *
446  * WARNING: This interface is pretty horrible, but TTM needs it because it
447  * doesn't pass the struct ww_acquire_ctx around in some very long callchains.
448  * Everyone else just uses it to check whether they're holding a reservation or
449  * not.
450  */
dma_resv_locking_ctx(struct dma_resv * obj)451 static inline struct ww_acquire_ctx *dma_resv_locking_ctx(struct dma_resv *obj)
452 {
453 	return READ_ONCE(obj->lock.ctx);
454 }
455 
456 /**
457  * dma_resv_unlock - unlock the reservation object
458  * @obj: the reservation object
459  *
460  * Unlocks the reservation object following exclusive access.
461  */
dma_resv_unlock(struct dma_resv * obj)462 static inline void dma_resv_unlock(struct dma_resv *obj)
463 {
464 	dma_resv_reset_max_fences(obj);
465 	ww_mutex_unlock(&obj->lock);
466 }
467 
468 void dma_resv_init(struct dma_resv *obj);
469 void dma_resv_fini(struct dma_resv *obj);
470 int dma_resv_reserve_fences(struct dma_resv *obj, unsigned int num_fences);
471 void dma_resv_add_fence(struct dma_resv *obj, struct dma_fence *fence,
472 			enum dma_resv_usage usage);
473 void dma_resv_replace_fences(struct dma_resv *obj, uint64_t context,
474 			     struct dma_fence *fence,
475 			     enum dma_resv_usage usage);
476 int dma_resv_get_fences(struct dma_resv *obj, enum dma_resv_usage usage,
477 			unsigned int *num_fences, struct dma_fence ***fences);
478 int dma_resv_get_singleton(struct dma_resv *obj, enum dma_resv_usage usage,
479 			   struct dma_fence **fence);
480 int dma_resv_copy_fences(struct dma_resv *dst, struct dma_resv *src);
481 long dma_resv_wait_timeout(struct dma_resv *obj, enum dma_resv_usage usage,
482 			   bool intr, unsigned long timeout);
483 bool dma_resv_test_signaled(struct dma_resv *obj, enum dma_resv_usage usage);
484 void dma_resv_describe(struct dma_resv *obj, struct seq_file *seq);
485 
486 #endif /* _LINUX_RESERVATION_H */
487