1 /*	$NetBSD: kern_resource.c,v 1.175 2016/07/13 09:52:00 njoly Exp $	*/
2 
3 /*-
4  * Copyright (c) 1982, 1986, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)kern_resource.c	8.8 (Berkeley) 2/14/95
37  */
38 
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.175 2016/07/13 09:52:00 njoly Exp $");
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/file.h>
46 #include <sys/resourcevar.h>
47 #include <sys/kmem.h>
48 #include <sys/namei.h>
49 #include <sys/pool.h>
50 #include <sys/proc.h>
51 #include <sys/sysctl.h>
52 #include <sys/timevar.h>
53 #include <sys/kauth.h>
54 #include <sys/atomic.h>
55 #include <sys/mount.h>
56 #include <sys/syscallargs.h>
57 #include <sys/atomic.h>
58 
59 #include <uvm/uvm_extern.h>
60 
61 /*
62  * Maximum process data and stack limits.
63  * They are variables so they are patchable.
64  */
65 rlim_t			maxdmap = MAXDSIZ;
66 rlim_t			maxsmap = MAXSSIZ;
67 
68 static pool_cache_t	plimit_cache	__read_mostly;
69 static pool_cache_t	pstats_cache	__read_mostly;
70 
71 static kauth_listener_t	resource_listener;
72 static struct sysctllog	*proc_sysctllog;
73 
74 static int	donice(struct lwp *, struct proc *, int);
75 static void	sysctl_proc_setup(void);
76 
77 static int
resource_listener_cb(kauth_cred_t cred,kauth_action_t action,void * cookie,void * arg0,void * arg1,void * arg2,void * arg3)78 resource_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
79     void *arg0, void *arg1, void *arg2, void *arg3)
80 {
81 	struct proc *p;
82 	int result;
83 
84 	result = KAUTH_RESULT_DEFER;
85 	p = arg0;
86 
87 	switch (action) {
88 	case KAUTH_PROCESS_NICE:
89 		if (kauth_cred_geteuid(cred) != kauth_cred_geteuid(p->p_cred) &&
90 		    kauth_cred_getuid(cred) != kauth_cred_geteuid(p->p_cred)) {
91 			break;
92 		}
93 
94 		if ((u_long)arg1 >= p->p_nice)
95 			result = KAUTH_RESULT_ALLOW;
96 
97 		break;
98 
99 	case KAUTH_PROCESS_RLIMIT: {
100 		enum kauth_process_req req;
101 
102 		req = (enum kauth_process_req)(unsigned long)arg1;
103 
104 		switch (req) {
105 		case KAUTH_REQ_PROCESS_RLIMIT_GET:
106 			result = KAUTH_RESULT_ALLOW;
107 			break;
108 
109 		case KAUTH_REQ_PROCESS_RLIMIT_SET: {
110 			struct rlimit *new_rlimit;
111 			u_long which;
112 
113 			if ((p != curlwp->l_proc) &&
114 			    (proc_uidmatch(cred, p->p_cred) != 0))
115 				break;
116 
117 			new_rlimit = arg2;
118 			which = (u_long)arg3;
119 
120 			if (new_rlimit->rlim_max <= p->p_rlimit[which].rlim_max)
121 				result = KAUTH_RESULT_ALLOW;
122 
123 			break;
124 			}
125 
126 		default:
127 			break;
128 		}
129 
130 		break;
131 	}
132 
133 	default:
134 		break;
135 	}
136 
137 	return result;
138 }
139 
140 void
resource_init(void)141 resource_init(void)
142 {
143 
144 	plimit_cache = pool_cache_init(sizeof(struct plimit), 0, 0, 0,
145 	    "plimitpl", NULL, IPL_NONE, NULL, NULL, NULL);
146 	pstats_cache = pool_cache_init(sizeof(struct pstats), 0, 0, 0,
147 	    "pstatspl", NULL, IPL_NONE, NULL, NULL, NULL);
148 
149 	resource_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
150 	    resource_listener_cb, NULL);
151 
152 	sysctl_proc_setup();
153 }
154 
155 /*
156  * Resource controls and accounting.
157  */
158 
159 int
sys_getpriority(struct lwp * l,const struct sys_getpriority_args * uap,register_t * retval)160 sys_getpriority(struct lwp *l, const struct sys_getpriority_args *uap,
161     register_t *retval)
162 {
163 	/* {
164 		syscallarg(int) which;
165 		syscallarg(id_t) who;
166 	} */
167 	struct proc *curp = l->l_proc, *p;
168 	id_t who = SCARG(uap, who);
169 	int low = NZERO + PRIO_MAX + 1;
170 
171 	mutex_enter(proc_lock);
172 	switch (SCARG(uap, which)) {
173 	case PRIO_PROCESS:
174 		p = who ? proc_find(who) : curp;
175 		if (p != NULL)
176 			low = p->p_nice;
177 		break;
178 
179 	case PRIO_PGRP: {
180 		struct pgrp *pg;
181 
182 		if (who == 0)
183 			pg = curp->p_pgrp;
184 		else if ((pg = pgrp_find(who)) == NULL)
185 			break;
186 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
187 			if (p->p_nice < low)
188 				low = p->p_nice;
189 		}
190 		break;
191 	}
192 
193 	case PRIO_USER:
194 		if (who == 0)
195 			who = (int)kauth_cred_geteuid(l->l_cred);
196 		PROCLIST_FOREACH(p, &allproc) {
197 			mutex_enter(p->p_lock);
198 			if (kauth_cred_geteuid(p->p_cred) ==
199 			    (uid_t)who && p->p_nice < low)
200 				low = p->p_nice;
201 			mutex_exit(p->p_lock);
202 		}
203 		break;
204 
205 	default:
206 		mutex_exit(proc_lock);
207 		return EINVAL;
208 	}
209 	mutex_exit(proc_lock);
210 
211 	if (low == NZERO + PRIO_MAX + 1) {
212 		return ESRCH;
213 	}
214 	*retval = low - NZERO;
215 	return 0;
216 }
217 
218 int
sys_setpriority(struct lwp * l,const struct sys_setpriority_args * uap,register_t * retval)219 sys_setpriority(struct lwp *l, const struct sys_setpriority_args *uap,
220     register_t *retval)
221 {
222 	/* {
223 		syscallarg(int) which;
224 		syscallarg(id_t) who;
225 		syscallarg(int) prio;
226 	} */
227 	struct proc *curp = l->l_proc, *p;
228 	id_t who = SCARG(uap, who);
229 	int found = 0, error = 0;
230 
231 	mutex_enter(proc_lock);
232 	switch (SCARG(uap, which)) {
233 	case PRIO_PROCESS:
234 		p = who ? proc_find(who) : curp;
235 		if (p != NULL) {
236 			mutex_enter(p->p_lock);
237 			found++;
238 			error = donice(l, p, SCARG(uap, prio));
239 			mutex_exit(p->p_lock);
240 		}
241 		break;
242 
243 	case PRIO_PGRP: {
244 		struct pgrp *pg;
245 
246 		if (who == 0)
247 			pg = curp->p_pgrp;
248 		else if ((pg = pgrp_find(who)) == NULL)
249 			break;
250 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
251 			mutex_enter(p->p_lock);
252 			found++;
253 			error = donice(l, p, SCARG(uap, prio));
254 			mutex_exit(p->p_lock);
255 			if (error)
256 				break;
257 		}
258 		break;
259 	}
260 
261 	case PRIO_USER:
262 		if (who == 0)
263 			who = (int)kauth_cred_geteuid(l->l_cred);
264 		PROCLIST_FOREACH(p, &allproc) {
265 			mutex_enter(p->p_lock);
266 			if (kauth_cred_geteuid(p->p_cred) ==
267 			    (uid_t)SCARG(uap, who)) {
268 				found++;
269 				error = donice(l, p, SCARG(uap, prio));
270 			}
271 			mutex_exit(p->p_lock);
272 			if (error)
273 				break;
274 		}
275 		break;
276 
277 	default:
278 		mutex_exit(proc_lock);
279 		return EINVAL;
280 	}
281 	mutex_exit(proc_lock);
282 
283 	return (found == 0) ? ESRCH : error;
284 }
285 
286 /*
287  * Renice a process.
288  *
289  * Call with the target process' credentials locked.
290  */
291 static int
donice(struct lwp * l,struct proc * chgp,int n)292 donice(struct lwp *l, struct proc *chgp, int n)
293 {
294 	kauth_cred_t cred = l->l_cred;
295 
296 	KASSERT(mutex_owned(chgp->p_lock));
297 
298 	if (kauth_cred_geteuid(cred) && kauth_cred_getuid(cred) &&
299 	    kauth_cred_geteuid(cred) != kauth_cred_geteuid(chgp->p_cred) &&
300 	    kauth_cred_getuid(cred) != kauth_cred_geteuid(chgp->p_cred))
301 		return EPERM;
302 
303 	if (n > PRIO_MAX) {
304 		n = PRIO_MAX;
305 	}
306 	if (n < PRIO_MIN) {
307 		n = PRIO_MIN;
308 	}
309 	n += NZERO;
310 
311 	if (kauth_authorize_process(cred, KAUTH_PROCESS_NICE, chgp,
312 	    KAUTH_ARG(n), NULL, NULL)) {
313 		return EACCES;
314 	}
315 
316 	sched_nice(chgp, n);
317 	return 0;
318 }
319 
320 int
sys_setrlimit(struct lwp * l,const struct sys_setrlimit_args * uap,register_t * retval)321 sys_setrlimit(struct lwp *l, const struct sys_setrlimit_args *uap,
322     register_t *retval)
323 {
324 	/* {
325 		syscallarg(int) which;
326 		syscallarg(const struct rlimit *) rlp;
327 	} */
328 	int error, which = SCARG(uap, which);
329 	struct rlimit alim;
330 
331 	error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
332 	if (error) {
333 		return error;
334 	}
335 	return dosetrlimit(l, l->l_proc, which, &alim);
336 }
337 
338 int
dosetrlimit(struct lwp * l,struct proc * p,int which,struct rlimit * limp)339 dosetrlimit(struct lwp *l, struct proc *p, int which, struct rlimit *limp)
340 {
341 	struct rlimit *alimp;
342 	int error;
343 
344 	if ((u_int)which >= RLIM_NLIMITS)
345 		return EINVAL;
346 
347 	if (limp->rlim_cur > limp->rlim_max) {
348 		/*
349 		 * This is programming error. According to SUSv2, we should
350 		 * return error in this case.
351 		 */
352 		return EINVAL;
353 	}
354 
355 	alimp = &p->p_rlimit[which];
356 	/* if we don't change the value, no need to limcopy() */
357 	if (limp->rlim_cur == alimp->rlim_cur &&
358 	    limp->rlim_max == alimp->rlim_max)
359 		return 0;
360 
361 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
362 	    p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_SET), limp, KAUTH_ARG(which));
363 	if (error)
364 		return error;
365 
366 	lim_privatise(p);
367 	/* p->p_limit is now unchangeable */
368 	alimp = &p->p_rlimit[which];
369 
370 	switch (which) {
371 
372 	case RLIMIT_DATA:
373 		if (limp->rlim_cur > maxdmap)
374 			limp->rlim_cur = maxdmap;
375 		if (limp->rlim_max > maxdmap)
376 			limp->rlim_max = maxdmap;
377 		break;
378 
379 	case RLIMIT_STACK:
380 		if (limp->rlim_cur > maxsmap)
381 			limp->rlim_cur = maxsmap;
382 		if (limp->rlim_max > maxsmap)
383 			limp->rlim_max = maxsmap;
384 
385 		/*
386 		 * Return EINVAL if the new stack size limit is lower than
387 		 * current usage. Otherwise, the process would get SIGSEGV the
388 		 * moment it would try to access anything on its current stack.
389 		 * This conforms to SUSv2.
390 		 */
391 		if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE ||
392 		    limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE) {
393 			return EINVAL;
394 		}
395 
396 		/*
397 		 * Stack is allocated to the max at exec time with
398 		 * only "rlim_cur" bytes accessible (In other words,
399 		 * allocates stack dividing two contiguous regions at
400 		 * "rlim_cur" bytes boundary).
401 		 *
402 		 * Since allocation is done in terms of page, roundup
403 		 * "rlim_cur" (otherwise, contiguous regions
404 		 * overlap).  If stack limit is going up make more
405 		 * accessible, if going down make inaccessible.
406 		 */
407 		limp->rlim_max = round_page(limp->rlim_max);
408 		limp->rlim_cur = round_page(limp->rlim_cur);
409 		if (limp->rlim_cur != alimp->rlim_cur) {
410 			vaddr_t addr;
411 			vsize_t size;
412 			vm_prot_t prot;
413 			char *base, *tmp;
414 
415 			base = p->p_vmspace->vm_minsaddr;
416 			if (limp->rlim_cur > alimp->rlim_cur) {
417 				prot = VM_PROT_READ | VM_PROT_WRITE;
418 				size = limp->rlim_cur - alimp->rlim_cur;
419 				tmp = STACK_GROW(base, alimp->rlim_cur);
420 			} else {
421 				prot = VM_PROT_NONE;
422 				size = alimp->rlim_cur - limp->rlim_cur;
423 				tmp = STACK_GROW(base, limp->rlim_cur);
424 			}
425 			addr = (vaddr_t)STACK_ALLOC(tmp, size);
426 			(void) uvm_map_protect(&p->p_vmspace->vm_map,
427 			    addr, addr + size, prot, false);
428 		}
429 		break;
430 
431 	case RLIMIT_NOFILE:
432 		if (limp->rlim_cur > maxfiles)
433 			limp->rlim_cur = maxfiles;
434 		if (limp->rlim_max > maxfiles)
435 			limp->rlim_max = maxfiles;
436 		break;
437 
438 	case RLIMIT_NPROC:
439 		if (limp->rlim_cur > maxproc)
440 			limp->rlim_cur = maxproc;
441 		if (limp->rlim_max > maxproc)
442 			limp->rlim_max = maxproc;
443 		break;
444 
445 	case RLIMIT_NTHR:
446 		if (limp->rlim_cur > maxlwp)
447 			limp->rlim_cur = maxlwp;
448 		if (limp->rlim_max > maxlwp)
449 			limp->rlim_max = maxlwp;
450 		break;
451 	}
452 
453 	mutex_enter(&p->p_limit->pl_lock);
454 	*alimp = *limp;
455 	mutex_exit(&p->p_limit->pl_lock);
456 	return 0;
457 }
458 
459 int
sys_getrlimit(struct lwp * l,const struct sys_getrlimit_args * uap,register_t * retval)460 sys_getrlimit(struct lwp *l, const struct sys_getrlimit_args *uap,
461     register_t *retval)
462 {
463 	/* {
464 		syscallarg(int) which;
465 		syscallarg(struct rlimit *) rlp;
466 	} */
467 	struct proc *p = l->l_proc;
468 	int which = SCARG(uap, which);
469 	struct rlimit rl;
470 
471 	if ((u_int)which >= RLIM_NLIMITS)
472 		return EINVAL;
473 
474 	mutex_enter(p->p_lock);
475 	memcpy(&rl, &p->p_rlimit[which], sizeof(rl));
476 	mutex_exit(p->p_lock);
477 
478 	return copyout(&rl, SCARG(uap, rlp), sizeof(rl));
479 }
480 
481 /*
482  * Transform the running time and tick information in proc p into user,
483  * system, and interrupt time usage.
484  *
485  * Should be called with p->p_lock held unless called from exit1().
486  */
487 void
calcru(struct proc * p,struct timeval * up,struct timeval * sp,struct timeval * ip,struct timeval * rp)488 calcru(struct proc *p, struct timeval *up, struct timeval *sp,
489     struct timeval *ip, struct timeval *rp)
490 {
491 	uint64_t u, st, ut, it, tot;
492 	struct lwp *l;
493 	struct bintime tm;
494 	struct timeval tv;
495 
496 	KASSERT(p->p_stat == SDEAD || mutex_owned(p->p_lock));
497 
498 	mutex_spin_enter(&p->p_stmutex);
499 	st = p->p_sticks;
500 	ut = p->p_uticks;
501 	it = p->p_iticks;
502 	mutex_spin_exit(&p->p_stmutex);
503 
504 	tm = p->p_rtime;
505 
506 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
507 		lwp_lock(l);
508 		bintime_add(&tm, &l->l_rtime);
509 		if ((l->l_pflag & LP_RUNNING) != 0) {
510 			struct bintime diff;
511 			/*
512 			 * Adjust for the current time slice.  This is
513 			 * actually fairly important since the error
514 			 * here is on the order of a time quantum,
515 			 * which is much greater than the sampling
516 			 * error.
517 			 */
518 			binuptime(&diff);
519 			bintime_sub(&diff, &l->l_stime);
520 			bintime_add(&tm, &diff);
521 		}
522 		lwp_unlock(l);
523 	}
524 
525 	tot = st + ut + it;
526 	bintime2timeval(&tm, &tv);
527 	u = (uint64_t)tv.tv_sec * 1000000ul + tv.tv_usec;
528 
529 	if (tot == 0) {
530 		/* No ticks, so can't use to share time out, split 50-50 */
531 		st = ut = u / 2;
532 	} else {
533 		st = (u * st) / tot;
534 		ut = (u * ut) / tot;
535 	}
536 	if (sp != NULL) {
537 		sp->tv_sec = st / 1000000;
538 		sp->tv_usec = st % 1000000;
539 	}
540 	if (up != NULL) {
541 		up->tv_sec = ut / 1000000;
542 		up->tv_usec = ut % 1000000;
543 	}
544 	if (ip != NULL) {
545 		if (it != 0)
546 			it = (u * it) / tot;
547 		ip->tv_sec = it / 1000000;
548 		ip->tv_usec = it % 1000000;
549 	}
550 	if (rp != NULL) {
551 		*rp = tv;
552 	}
553 }
554 
555 int
sys___getrusage50(struct lwp * l,const struct sys___getrusage50_args * uap,register_t * retval)556 sys___getrusage50(struct lwp *l, const struct sys___getrusage50_args *uap,
557     register_t *retval)
558 {
559 	/* {
560 		syscallarg(int) who;
561 		syscallarg(struct rusage *) rusage;
562 	} */
563 	int error;
564 	struct rusage ru;
565 	struct proc *p = l->l_proc;
566 
567 	error = getrusage1(p, SCARG(uap, who), &ru);
568 	if (error != 0)
569 		return error;
570 
571 	return copyout(&ru, SCARG(uap, rusage), sizeof(ru));
572 }
573 
574 int
getrusage1(struct proc * p,int who,struct rusage * ru)575 getrusage1(struct proc *p, int who, struct rusage *ru) {
576 
577 	switch (who) {
578 	case RUSAGE_SELF:
579 		mutex_enter(p->p_lock);
580 		memcpy(ru, &p->p_stats->p_ru, sizeof(*ru));
581 		calcru(p, &ru->ru_utime, &ru->ru_stime, NULL, NULL);
582 		rulwps(p, ru);
583 		mutex_exit(p->p_lock);
584 		break;
585 	case RUSAGE_CHILDREN:
586 		mutex_enter(p->p_lock);
587 		memcpy(ru, &p->p_stats->p_cru, sizeof(*ru));
588 		mutex_exit(p->p_lock);
589 		break;
590 	default:
591 		return EINVAL;
592 	}
593 
594 	return 0;
595 }
596 
597 void
ruadd(struct rusage * ru,struct rusage * ru2)598 ruadd(struct rusage *ru, struct rusage *ru2)
599 {
600 	long *ip, *ip2;
601 	int i;
602 
603 	timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
604 	timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
605 	if (ru->ru_maxrss < ru2->ru_maxrss)
606 		ru->ru_maxrss = ru2->ru_maxrss;
607 	ip = &ru->ru_first; ip2 = &ru2->ru_first;
608 	for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
609 		*ip++ += *ip2++;
610 }
611 
612 void
rulwps(proc_t * p,struct rusage * ru)613 rulwps(proc_t *p, struct rusage *ru)
614 {
615 	lwp_t *l;
616 
617 	KASSERT(mutex_owned(p->p_lock));
618 
619 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
620 		ruadd(ru, &l->l_ru);
621 		ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
622 		ru->ru_nivcsw += l->l_nivcsw;
623 	}
624 }
625 
626 /*
627  * lim_copy: make a copy of the plimit structure.
628  *
629  * We use copy-on-write after fork, and copy when a limit is changed.
630  */
631 struct plimit *
lim_copy(struct plimit * lim)632 lim_copy(struct plimit *lim)
633 {
634 	struct plimit *newlim;
635 	char *corename;
636 	size_t alen, len;
637 
638 	newlim = pool_cache_get(plimit_cache, PR_WAITOK);
639 	mutex_init(&newlim->pl_lock, MUTEX_DEFAULT, IPL_NONE);
640 	newlim->pl_writeable = false;
641 	newlim->pl_refcnt = 1;
642 	newlim->pl_sv_limit = NULL;
643 
644 	mutex_enter(&lim->pl_lock);
645 	memcpy(newlim->pl_rlimit, lim->pl_rlimit,
646 	    sizeof(struct rlimit) * RLIM_NLIMITS);
647 
648 	/*
649 	 * Note: the common case is a use of default core name.
650 	 */
651 	alen = 0;
652 	corename = NULL;
653 	for (;;) {
654 		if (lim->pl_corename == defcorename) {
655 			newlim->pl_corename = defcorename;
656 			newlim->pl_cnlen = 0;
657 			break;
658 		}
659 		len = lim->pl_cnlen;
660 		if (len == alen) {
661 			newlim->pl_corename = corename;
662 			newlim->pl_cnlen = len;
663 			memcpy(corename, lim->pl_corename, len);
664 			corename = NULL;
665 			break;
666 		}
667 		mutex_exit(&lim->pl_lock);
668 		if (corename) {
669 			kmem_free(corename, alen);
670 		}
671 		alen = len;
672 		corename = kmem_alloc(alen, KM_SLEEP);
673 		mutex_enter(&lim->pl_lock);
674 	}
675 	mutex_exit(&lim->pl_lock);
676 
677 	if (corename) {
678 		kmem_free(corename, alen);
679 	}
680 	return newlim;
681 }
682 
683 void
lim_addref(struct plimit * lim)684 lim_addref(struct plimit *lim)
685 {
686 	atomic_inc_uint(&lim->pl_refcnt);
687 }
688 
689 /*
690  * lim_privatise: give a process its own private plimit structure.
691  */
692 void
lim_privatise(proc_t * p)693 lim_privatise(proc_t *p)
694 {
695 	struct plimit *lim = p->p_limit, *newlim;
696 
697 	if (lim->pl_writeable) {
698 		return;
699 	}
700 
701 	newlim = lim_copy(lim);
702 
703 	mutex_enter(p->p_lock);
704 	if (p->p_limit->pl_writeable) {
705 		/* Other thread won the race. */
706 		mutex_exit(p->p_lock);
707 		lim_free(newlim);
708 		return;
709 	}
710 
711 	/*
712 	 * Since p->p_limit can be accessed without locked held,
713 	 * old limit structure must not be deleted yet.
714 	 */
715 	newlim->pl_sv_limit = p->p_limit;
716 	newlim->pl_writeable = true;
717 	p->p_limit = newlim;
718 	mutex_exit(p->p_lock);
719 }
720 
721 void
lim_setcorename(proc_t * p,char * name,size_t len)722 lim_setcorename(proc_t *p, char *name, size_t len)
723 {
724 	struct plimit *lim;
725 	char *oname;
726 	size_t olen;
727 
728 	lim_privatise(p);
729 	lim = p->p_limit;
730 
731 	mutex_enter(&lim->pl_lock);
732 	oname = lim->pl_corename;
733 	olen = lim->pl_cnlen;
734 	lim->pl_corename = name;
735 	lim->pl_cnlen = len;
736 	mutex_exit(&lim->pl_lock);
737 
738 	if (oname != defcorename) {
739 		kmem_free(oname, olen);
740 	}
741 }
742 
743 void
lim_free(struct plimit * lim)744 lim_free(struct plimit *lim)
745 {
746 	struct plimit *sv_lim;
747 
748 	do {
749 		if (atomic_dec_uint_nv(&lim->pl_refcnt) > 0) {
750 			return;
751 		}
752 		if (lim->pl_corename != defcorename) {
753 			kmem_free(lim->pl_corename, lim->pl_cnlen);
754 		}
755 		sv_lim = lim->pl_sv_limit;
756 		mutex_destroy(&lim->pl_lock);
757 		pool_cache_put(plimit_cache, lim);
758 	} while ((lim = sv_lim) != NULL);
759 }
760 
761 struct pstats *
pstatscopy(struct pstats * ps)762 pstatscopy(struct pstats *ps)
763 {
764 	struct pstats *nps;
765 	size_t len;
766 
767 	nps = pool_cache_get(pstats_cache, PR_WAITOK);
768 
769 	len = (char *)&nps->pstat_endzero - (char *)&nps->pstat_startzero;
770 	memset(&nps->pstat_startzero, 0, len);
771 
772 	len = (char *)&nps->pstat_endcopy - (char *)&nps->pstat_startcopy;
773 	memcpy(&nps->pstat_startcopy, &ps->pstat_startcopy, len);
774 
775 	return nps;
776 }
777 
778 void
pstatsfree(struct pstats * ps)779 pstatsfree(struct pstats *ps)
780 {
781 
782 	pool_cache_put(pstats_cache, ps);
783 }
784 
785 /*
786  * sysctl_proc_findproc: a routine for sysctl proc subtree helpers that
787  * need to pick a valid process by PID.
788  *
789  * => Hold a reference on the process, on success.
790  */
791 static int
sysctl_proc_findproc(lwp_t * l,pid_t pid,proc_t ** p2)792 sysctl_proc_findproc(lwp_t *l, pid_t pid, proc_t **p2)
793 {
794 	proc_t *p;
795 	int error;
796 
797 	if (pid == PROC_CURPROC) {
798 		p = l->l_proc;
799 	} else {
800 		mutex_enter(proc_lock);
801 		p = proc_find(pid);
802 		if (p == NULL) {
803 			mutex_exit(proc_lock);
804 			return ESRCH;
805 		}
806 	}
807 	error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
808 	if (pid != PROC_CURPROC) {
809 		mutex_exit(proc_lock);
810 	}
811 	*p2 = p;
812 	return error;
813 }
814 
815 /*
816  * sysctl_proc_corename: helper routine to get or set the core file name
817  * for a process specified by PID.
818  */
819 static int
sysctl_proc_corename(SYSCTLFN_ARGS)820 sysctl_proc_corename(SYSCTLFN_ARGS)
821 {
822 	struct proc *p;
823 	struct plimit *lim;
824 	char *cnbuf, *cname;
825 	struct sysctlnode node;
826 	size_t len;
827 	int error;
828 
829 	/* First, validate the request. */
830 	if (namelen != 0 || name[-1] != PROC_PID_CORENAME)
831 		return EINVAL;
832 
833 	/* Find the process.  Hold a reference (p_reflock), if found. */
834 	error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
835 	if (error)
836 		return error;
837 
838 	/* XXX-elad */
839 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
840 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
841 	if (error) {
842 		rw_exit(&p->p_reflock);
843 		return error;
844 	}
845 
846 	cnbuf = PNBUF_GET();
847 
848 	if (oldp) {
849 		/* Get case: copy the core name into the buffer. */
850 		error = kauth_authorize_process(l->l_cred,
851 		    KAUTH_PROCESS_CORENAME, p,
852 		    KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_GET), NULL, NULL);
853 		if (error) {
854 			goto done;
855 		}
856 		lim = p->p_limit;
857 		mutex_enter(&lim->pl_lock);
858 		strlcpy(cnbuf, lim->pl_corename, MAXPATHLEN);
859 		mutex_exit(&lim->pl_lock);
860 	}
861 
862 	node = *rnode;
863 	node.sysctl_data = cnbuf;
864 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
865 
866 	/* Return if error, or if caller is only getting the core name. */
867 	if (error || newp == NULL) {
868 		goto done;
869 	}
870 
871 	/*
872 	 * Set case.  Check permission and then validate new core name.
873 	 * It must be either "core", "/core", or end in ".core".
874 	 */
875 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CORENAME,
876 	    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CORENAME_SET), cnbuf, NULL);
877 	if (error) {
878 		goto done;
879 	}
880 	len = strlen(cnbuf);
881 	if ((len < 4 || strcmp(cnbuf + len - 4, "core") != 0) ||
882 	    (len > 4 && cnbuf[len - 5] != '/' && cnbuf[len - 5] != '.')) {
883 		error = EINVAL;
884 		goto done;
885 	}
886 
887 	/* Allocate, copy and set the new core name for plimit structure. */
888 	cname = kmem_alloc(++len, KM_NOSLEEP);
889 	if (cname == NULL) {
890 		error = ENOMEM;
891 		goto done;
892 	}
893 	memcpy(cname, cnbuf, len);
894 	lim_setcorename(p, cname, len);
895 done:
896 	rw_exit(&p->p_reflock);
897 	PNBUF_PUT(cnbuf);
898 	return error;
899 }
900 
901 /*
902  * sysctl_proc_stop: helper routine for checking/setting the stop flags.
903  */
904 static int
sysctl_proc_stop(SYSCTLFN_ARGS)905 sysctl_proc_stop(SYSCTLFN_ARGS)
906 {
907 	struct proc *p;
908 	int isset, flag, error = 0;
909 	struct sysctlnode node;
910 
911 	if (namelen != 0)
912 		return EINVAL;
913 
914 	/* Find the process.  Hold a reference (p_reflock), if found. */
915 	error = sysctl_proc_findproc(l, (pid_t)name[-2], &p);
916 	if (error)
917 		return error;
918 
919 	/* XXX-elad */
920 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
921 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
922 	if (error) {
923 		goto out;
924 	}
925 
926 	/* Determine the flag. */
927 	switch (rnode->sysctl_num) {
928 	case PROC_PID_STOPFORK:
929 		flag = PS_STOPFORK;
930 		break;
931 	case PROC_PID_STOPEXEC:
932 		flag = PS_STOPEXEC;
933 		break;
934 	case PROC_PID_STOPEXIT:
935 		flag = PS_STOPEXIT;
936 		break;
937 	default:
938 		error = EINVAL;
939 		goto out;
940 	}
941 	isset = (p->p_flag & flag) ? 1 : 0;
942 	node = *rnode;
943 	node.sysctl_data = &isset;
944 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
945 
946 	/* Return if error, or if callers is only getting the flag. */
947 	if (error || newp == NULL) {
948 		goto out;
949 	}
950 
951 	/* Check if caller can set the flags. */
952 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_STOPFLAG,
953 	    p, KAUTH_ARG(flag), NULL, NULL);
954 	if (error) {
955 		goto out;
956 	}
957 	mutex_enter(p->p_lock);
958 	if (isset) {
959 		p->p_sflag |= flag;
960 	} else {
961 		p->p_sflag &= ~flag;
962 	}
963 	mutex_exit(p->p_lock);
964 out:
965 	rw_exit(&p->p_reflock);
966 	return error;
967 }
968 
969 /*
970  * sysctl_proc_plimit: helper routine to get/set rlimits of a process.
971  */
972 static int
sysctl_proc_plimit(SYSCTLFN_ARGS)973 sysctl_proc_plimit(SYSCTLFN_ARGS)
974 {
975 	struct proc *p;
976 	u_int limitno;
977 	int which, error = 0;
978         struct rlimit alim;
979 	struct sysctlnode node;
980 
981 	if (namelen != 0)
982 		return EINVAL;
983 
984 	which = name[-1];
985 	if (which != PROC_PID_LIMIT_TYPE_SOFT &&
986 	    which != PROC_PID_LIMIT_TYPE_HARD)
987 		return EINVAL;
988 
989 	limitno = name[-2] - 1;
990 	if (limitno >= RLIM_NLIMITS)
991 		return EINVAL;
992 
993 	if (name[-3] != PROC_PID_LIMIT)
994 		return EINVAL;
995 
996 	/* Find the process.  Hold a reference (p_reflock), if found. */
997 	error = sysctl_proc_findproc(l, (pid_t)name[-4], &p);
998 	if (error)
999 		return error;
1000 
1001 	/* XXX-elad */
1002 	error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, p,
1003 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
1004 	if (error)
1005 		goto out;
1006 
1007 	/* Check if caller can retrieve the limits. */
1008 	if (newp == NULL) {
1009 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
1010 		    p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_GET), &alim,
1011 		    KAUTH_ARG(which));
1012 		if (error)
1013 			goto out;
1014 	}
1015 
1016 	/* Retrieve the limits. */
1017 	node = *rnode;
1018 	memcpy(&alim, &p->p_rlimit[limitno], sizeof(alim));
1019 	if (which == PROC_PID_LIMIT_TYPE_HARD) {
1020 		node.sysctl_data = &alim.rlim_max;
1021 	} else {
1022 		node.sysctl_data = &alim.rlim_cur;
1023 	}
1024 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1025 
1026 	/* Return if error, or if we are only retrieving the limits. */
1027 	if (error || newp == NULL) {
1028 		goto out;
1029 	}
1030 	error = dosetrlimit(l, p, limitno, &alim);
1031 out:
1032 	rw_exit(&p->p_reflock);
1033 	return error;
1034 }
1035 
1036 /*
1037  * Setup sysctl nodes.
1038  */
1039 static void
sysctl_proc_setup(void)1040 sysctl_proc_setup(void)
1041 {
1042 
1043 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1044 		       CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
1045 		       CTLTYPE_NODE, "curproc",
1046 		       SYSCTL_DESCR("Per-process settings"),
1047 		       NULL, 0, NULL, 0,
1048 		       CTL_PROC, PROC_CURPROC, CTL_EOL);
1049 
1050 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1051 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1052 		       CTLTYPE_STRING, "corename",
1053 		       SYSCTL_DESCR("Core file name"),
1054 		       sysctl_proc_corename, 0, NULL, MAXPATHLEN,
1055 		       CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
1056 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1057 		       CTLFLAG_PERMANENT,
1058 		       CTLTYPE_NODE, "rlimit",
1059 		       SYSCTL_DESCR("Process limits"),
1060 		       NULL, 0, NULL, 0,
1061 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
1062 
1063 #define create_proc_plimit(s, n) do {					\
1064 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,			\
1065 		       CTLFLAG_PERMANENT,				\
1066 		       CTLTYPE_NODE, s,					\
1067 		       SYSCTL_DESCR("Process " s " limits"),		\
1068 		       NULL, 0, NULL, 0,				\
1069 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
1070 		       CTL_EOL);					\
1071 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,			\
1072 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
1073 		       CTLTYPE_QUAD, "soft",				\
1074 		       SYSCTL_DESCR("Process soft " s " limit"),	\
1075 		       sysctl_proc_plimit, 0, NULL, 0,			\
1076 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
1077 		       PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL);		\
1078 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,			\
1079 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
1080 		       CTLTYPE_QUAD, "hard",				\
1081 		       SYSCTL_DESCR("Process hard " s " limit"),	\
1082 		       sysctl_proc_plimit, 0, NULL, 0,			\
1083 		       CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n,	\
1084 		       PROC_PID_LIMIT_TYPE_HARD, CTL_EOL);		\
1085 	} while (0/*CONSTCOND*/)
1086 
1087 	create_proc_plimit("cputime",		PROC_PID_LIMIT_CPU);
1088 	create_proc_plimit("filesize",		PROC_PID_LIMIT_FSIZE);
1089 	create_proc_plimit("datasize",		PROC_PID_LIMIT_DATA);
1090 	create_proc_plimit("stacksize",		PROC_PID_LIMIT_STACK);
1091 	create_proc_plimit("coredumpsize",	PROC_PID_LIMIT_CORE);
1092 	create_proc_plimit("memoryuse",		PROC_PID_LIMIT_RSS);
1093 	create_proc_plimit("memorylocked",	PROC_PID_LIMIT_MEMLOCK);
1094 	create_proc_plimit("maxproc",		PROC_PID_LIMIT_NPROC);
1095 	create_proc_plimit("descriptors",	PROC_PID_LIMIT_NOFILE);
1096 	create_proc_plimit("sbsize",		PROC_PID_LIMIT_SBSIZE);
1097 	create_proc_plimit("vmemoryuse",	PROC_PID_LIMIT_AS);
1098 	create_proc_plimit("maxlwp",		PROC_PID_LIMIT_NTHR);
1099 
1100 #undef create_proc_plimit
1101 
1102 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1103 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1104 		       CTLTYPE_INT, "stopfork",
1105 		       SYSCTL_DESCR("Stop process at fork(2)"),
1106 		       sysctl_proc_stop, 0, NULL, 0,
1107 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
1108 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1109 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1110 		       CTLTYPE_INT, "stopexec",
1111 		       SYSCTL_DESCR("Stop process at execve(2)"),
1112 		       sysctl_proc_stop, 0, NULL, 0,
1113 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
1114 	sysctl_createv(&proc_sysctllog, 0, NULL, NULL,
1115 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
1116 		       CTLTYPE_INT, "stopexit",
1117 		       SYSCTL_DESCR("Stop process before completing exit"),
1118 		       sysctl_proc_stop, 0, NULL, 0,
1119 		       CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
1120 }
1121