1 /*
2 * drm_irq.c IRQ and vblank support
3 *
4 * \author Rickard E. (Rik) Faith <faith@valinux.com>
5 * \author Gareth Hughes <gareth@valinux.com>
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
22 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
23 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
24 * OTHER DEALINGS IN THE SOFTWARE.
25 */
26
27 #include <linux/export.h>
28 #include <linux/kthread.h>
29 #include <linux/moduleparam.h>
30
31 #include <drm/drm_crtc.h>
32 #include <drm/drm_drv.h>
33 #include <drm/drm_framebuffer.h>
34 #include <drm/drm_managed.h>
35 #include <drm/drm_modeset_helper_vtables.h>
36 #include <drm/drm_print.h>
37 #include <drm/drm_vblank.h>
38
39 #include "drm_internal.h"
40 #include "drm_trace.h"
41
42 /**
43 * DOC: vblank handling
44 *
45 * From the computer's perspective, every time the monitor displays
46 * a new frame the scanout engine has "scanned out" the display image
47 * from top to bottom, one row of pixels at a time. The current row
48 * of pixels is referred to as the current scanline.
49 *
50 * In addition to the display's visible area, there's usually a couple of
51 * extra scanlines which aren't actually displayed on the screen.
52 * These extra scanlines don't contain image data and are occasionally used
53 * for features like audio and infoframes. The region made up of these
54 * scanlines is referred to as the vertical blanking region, or vblank for
55 * short.
56 *
57 * For historical reference, the vertical blanking period was designed to
58 * give the electron gun (on CRTs) enough time to move back to the top of
59 * the screen to start scanning out the next frame. Similar for horizontal
60 * blanking periods. They were designed to give the electron gun enough
61 * time to move back to the other side of the screen to start scanning the
62 * next scanline.
63 *
64 * ::
65 *
66 *
67 * physical → ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽
68 * top of | |
69 * display | |
70 * | New frame |
71 * | |
72 * |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓|
73 * |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~| ← Scanline,
74 * |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓| updates the
75 * | | frame as it
76 * | | travels down
77 * | | ("scan out")
78 * | Old frame |
79 * | |
80 * | |
81 * | |
82 * | | physical
83 * | | bottom of
84 * vertical |⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽| ← display
85 * blanking ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆
86 * region → ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆
87 * ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆
88 * start of → ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽
89 * new frame
90 *
91 * "Physical top of display" is the reference point for the high-precision/
92 * corrected timestamp.
93 *
94 * On a lot of display hardware, programming needs to take effect during the
95 * vertical blanking period so that settings like gamma, the image buffer
96 * buffer to be scanned out, etc. can safely be changed without showing
97 * any visual artifacts on the screen. In some unforgiving hardware, some of
98 * this programming has to both start and end in the same vblank. To help
99 * with the timing of the hardware programming, an interrupt is usually
100 * available to notify the driver when it can start the updating of registers.
101 * The interrupt is in this context named the vblank interrupt.
102 *
103 * The vblank interrupt may be fired at different points depending on the
104 * hardware. Some hardware implementations will fire the interrupt when the
105 * new frame start, other implementations will fire the interrupt at different
106 * points in time.
107 *
108 * Vertical blanking plays a major role in graphics rendering. To achieve
109 * tear-free display, users must synchronize page flips and/or rendering to
110 * vertical blanking. The DRM API offers ioctls to perform page flips
111 * synchronized to vertical blanking and wait for vertical blanking.
112 *
113 * The DRM core handles most of the vertical blanking management logic, which
114 * involves filtering out spurious interrupts, keeping race-free blanking
115 * counters, coping with counter wrap-around and resets and keeping use counts.
116 * It relies on the driver to generate vertical blanking interrupts and
117 * optionally provide a hardware vertical blanking counter.
118 *
119 * Drivers must initialize the vertical blanking handling core with a call to
120 * drm_vblank_init(). Minimally, a driver needs to implement
121 * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call
122 * drm_crtc_handle_vblank() in its vblank interrupt handler for working vblank
123 * support.
124 *
125 * Vertical blanking interrupts can be enabled by the DRM core or by drivers
126 * themselves (for instance to handle page flipping operations). The DRM core
127 * maintains a vertical blanking use count to ensure that the interrupts are not
128 * disabled while a user still needs them. To increment the use count, drivers
129 * call drm_crtc_vblank_get() and release the vblank reference again with
130 * drm_crtc_vblank_put(). In between these two calls vblank interrupts are
131 * guaranteed to be enabled.
132 *
133 * On many hardware disabling the vblank interrupt cannot be done in a race-free
134 * manner, see &drm_driver.vblank_disable_immediate and
135 * &drm_driver.max_vblank_count. In that case the vblank core only disables the
136 * vblanks after a timer has expired, which can be configured through the
137 * ``vblankoffdelay`` module parameter.
138 *
139 * Drivers for hardware without support for vertical-blanking interrupts
140 * must not call drm_vblank_init(). For such drivers, atomic helpers will
141 * automatically generate fake vblank events as part of the display update.
142 * This functionality also can be controlled by the driver by enabling and
143 * disabling struct drm_crtc_state.no_vblank.
144 */
145
146 /* Retry timestamp calculation up to 3 times to satisfy
147 * drm_timestamp_precision before giving up.
148 */
149 #define DRM_TIMESTAMP_MAXRETRIES 3
150
151 /* Threshold in nanoseconds for detection of redundant
152 * vblank irq in drm_handle_vblank(). 1 msec should be ok.
153 */
154 #define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000
155
156 static bool
157 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
158 ktime_t *tvblank, bool in_vblank_irq);
159
160 static unsigned int drm_timestamp_precision = 20; /* Default to 20 usecs. */
161
162 static int drm_vblank_offdelay = 5000; /* Default to 5000 msecs. */
163
164 module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600);
165 module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600);
166 MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)");
167 MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]");
168
store_vblank(struct drm_device * dev,unsigned int pipe,u32 vblank_count_inc,ktime_t t_vblank,u32 last)169 static void store_vblank(struct drm_device *dev, unsigned int pipe,
170 u32 vblank_count_inc,
171 ktime_t t_vblank, u32 last)
172 {
173 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
174
175 assert_spin_locked(&dev->vblank_time_lock);
176
177 vblank->last = last;
178
179 write_seqlock(&vblank->seqlock);
180 vblank->time = t_vblank;
181 atomic64_add(vblank_count_inc, &vblank->count);
182 write_sequnlock(&vblank->seqlock);
183 }
184
drm_max_vblank_count(struct drm_device * dev,unsigned int pipe)185 static u32 drm_max_vblank_count(struct drm_device *dev, unsigned int pipe)
186 {
187 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
188
189 return vblank->max_vblank_count ?: dev->max_vblank_count;
190 }
191
192 /*
193 * "No hw counter" fallback implementation of .get_vblank_counter() hook,
194 * if there is no usable hardware frame counter available.
195 */
drm_vblank_no_hw_counter(struct drm_device * dev,unsigned int pipe)196 static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe)
197 {
198 drm_WARN_ON_ONCE(dev, drm_max_vblank_count(dev, pipe) != 0);
199 return 0;
200 }
201
__get_vblank_counter(struct drm_device * dev,unsigned int pipe)202 static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe)
203 {
204 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
205 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
206
207 if (drm_WARN_ON(dev, !crtc))
208 return 0;
209
210 if (crtc->funcs->get_vblank_counter)
211 return crtc->funcs->get_vblank_counter(crtc);
212 }
213 #ifdef CONFIG_DRM_LEGACY
214 else if (dev->driver->get_vblank_counter) {
215 return dev->driver->get_vblank_counter(dev, pipe);
216 }
217 #endif
218
219 return drm_vblank_no_hw_counter(dev, pipe);
220 }
221
222 /*
223 * Reset the stored timestamp for the current vblank count to correspond
224 * to the last vblank occurred.
225 *
226 * Only to be called from drm_crtc_vblank_on().
227 *
228 * Note: caller must hold &drm_device.vbl_lock since this reads & writes
229 * device vblank fields.
230 */
drm_reset_vblank_timestamp(struct drm_device * dev,unsigned int pipe)231 static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe)
232 {
233 u32 cur_vblank;
234 bool rc;
235 ktime_t t_vblank;
236 int count = DRM_TIMESTAMP_MAXRETRIES;
237
238 spin_lock(&dev->vblank_time_lock);
239
240 /*
241 * sample the current counter to avoid random jumps
242 * when drm_vblank_enable() applies the diff
243 */
244 do {
245 cur_vblank = __get_vblank_counter(dev, pipe);
246 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
247 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
248
249 /*
250 * Only reinitialize corresponding vblank timestamp if high-precision query
251 * available and didn't fail. Otherwise reinitialize delayed at next vblank
252 * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid.
253 */
254 if (!rc)
255 t_vblank = 0;
256
257 /*
258 * +1 to make sure user will never see the same
259 * vblank counter value before and after a modeset
260 */
261 store_vblank(dev, pipe, 1, t_vblank, cur_vblank);
262
263 spin_unlock(&dev->vblank_time_lock);
264 }
265
266 /*
267 * Call back into the driver to update the appropriate vblank counter
268 * (specified by @pipe). Deal with wraparound, if it occurred, and
269 * update the last read value so we can deal with wraparound on the next
270 * call if necessary.
271 *
272 * Only necessary when going from off->on, to account for frames we
273 * didn't get an interrupt for.
274 *
275 * Note: caller must hold &drm_device.vbl_lock since this reads & writes
276 * device vblank fields.
277 */
drm_update_vblank_count(struct drm_device * dev,unsigned int pipe,bool in_vblank_irq)278 static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe,
279 bool in_vblank_irq)
280 {
281 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
282 u32 cur_vblank, diff;
283 bool rc;
284 ktime_t t_vblank;
285 int count = DRM_TIMESTAMP_MAXRETRIES;
286 int framedur_ns = vblank->framedur_ns;
287 u32 max_vblank_count = drm_max_vblank_count(dev, pipe);
288
289 /*
290 * Interrupts were disabled prior to this call, so deal with counter
291 * wrap if needed.
292 * NOTE! It's possible we lost a full dev->max_vblank_count + 1 events
293 * here if the register is small or we had vblank interrupts off for
294 * a long time.
295 *
296 * We repeat the hardware vblank counter & timestamp query until
297 * we get consistent results. This to prevent races between gpu
298 * updating its hardware counter while we are retrieving the
299 * corresponding vblank timestamp.
300 */
301 do {
302 cur_vblank = __get_vblank_counter(dev, pipe);
303 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq);
304 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
305
306 if (max_vblank_count) {
307 /* trust the hw counter when it's around */
308 diff = (cur_vblank - vblank->last) & max_vblank_count;
309 } else if (rc && framedur_ns) {
310 u64 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
311
312 /*
313 * Figure out how many vblanks we've missed based
314 * on the difference in the timestamps and the
315 * frame/field duration.
316 */
317
318 drm_dbg_vbl(dev, "crtc %u: Calculating number of vblanks."
319 " diff_ns = %lld, framedur_ns = %d)\n",
320 pipe, (long long)diff_ns, framedur_ns);
321
322 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
323
324 if (diff == 0 && in_vblank_irq)
325 drm_dbg_vbl(dev, "crtc %u: Redundant vblirq ignored\n",
326 pipe);
327 } else {
328 /* some kind of default for drivers w/o accurate vbl timestamping */
329 diff = in_vblank_irq ? 1 : 0;
330 }
331
332 /*
333 * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset
334 * interval? If so then vblank irqs keep running and it will likely
335 * happen that the hardware vblank counter is not trustworthy as it
336 * might reset at some point in that interval and vblank timestamps
337 * are not trustworthy either in that interval. Iow. this can result
338 * in a bogus diff >> 1 which must be avoided as it would cause
339 * random large forward jumps of the software vblank counter.
340 */
341 if (diff > 1 && (vblank->inmodeset & 0x2)) {
342 drm_dbg_vbl(dev,
343 "clamping vblank bump to 1 on crtc %u: diffr=%u"
344 " due to pre-modeset.\n", pipe, diff);
345 diff = 1;
346 }
347
348 drm_dbg_vbl(dev, "updating vblank count on crtc %u:"
349 " current=%llu, diff=%u, hw=%u hw_last=%u\n",
350 pipe, (unsigned long long)atomic64_read(&vblank->count),
351 diff, cur_vblank, vblank->last);
352
353 if (diff == 0) {
354 drm_WARN_ON_ONCE(dev, cur_vblank != vblank->last);
355 return;
356 }
357
358 /*
359 * Only reinitialize corresponding vblank timestamp if high-precision query
360 * available and didn't fail, or we were called from the vblank interrupt.
361 * Otherwise reinitialize delayed at next vblank interrupt and assign 0
362 * for now, to mark the vblanktimestamp as invalid.
363 */
364 if (!rc && !in_vblank_irq)
365 t_vblank = 0;
366
367 store_vblank(dev, pipe, diff, t_vblank, cur_vblank);
368 }
369
drm_vblank_count(struct drm_device * dev,unsigned int pipe)370 u64 drm_vblank_count(struct drm_device *dev, unsigned int pipe)
371 {
372 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
373 u64 count;
374
375 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
376 return 0;
377
378 count = atomic64_read(&vblank->count);
379
380 /*
381 * This read barrier corresponds to the implicit write barrier of the
382 * write seqlock in store_vblank(). Note that this is the only place
383 * where we need an explicit barrier, since all other access goes
384 * through drm_vblank_count_and_time(), which already has the required
385 * read barrier curtesy of the read seqlock.
386 */
387 smp_rmb();
388
389 return count;
390 }
391
392 /**
393 * drm_crtc_accurate_vblank_count - retrieve the master vblank counter
394 * @crtc: which counter to retrieve
395 *
396 * This function is similar to drm_crtc_vblank_count() but this function
397 * interpolates to handle a race with vblank interrupts using the high precision
398 * timestamping support.
399 *
400 * This is mostly useful for hardware that can obtain the scanout position, but
401 * doesn't have a hardware frame counter.
402 */
drm_crtc_accurate_vblank_count(struct drm_crtc * crtc)403 u64 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc)
404 {
405 struct drm_device *dev = crtc->dev;
406 unsigned int pipe = drm_crtc_index(crtc);
407 u64 vblank;
408 unsigned long flags;
409
410 drm_WARN_ONCE(dev, drm_debug_enabled(DRM_UT_VBL) &&
411 !crtc->funcs->get_vblank_timestamp,
412 "This function requires support for accurate vblank timestamps.");
413
414 spin_lock_irqsave(&dev->vblank_time_lock, flags);
415
416 drm_update_vblank_count(dev, pipe, false);
417 vblank = drm_vblank_count(dev, pipe);
418
419 spin_unlock_irqrestore(&dev->vblank_time_lock, flags);
420
421 return vblank;
422 }
423 EXPORT_SYMBOL(drm_crtc_accurate_vblank_count);
424
__disable_vblank(struct drm_device * dev,unsigned int pipe)425 static void __disable_vblank(struct drm_device *dev, unsigned int pipe)
426 {
427 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
428 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
429
430 if (drm_WARN_ON(dev, !crtc))
431 return;
432
433 if (crtc->funcs->disable_vblank)
434 crtc->funcs->disable_vblank(crtc);
435 }
436 #ifdef CONFIG_DRM_LEGACY
437 else {
438 dev->driver->disable_vblank(dev, pipe);
439 }
440 #endif
441 }
442
443 /*
444 * Disable vblank irq's on crtc, make sure that last vblank count
445 * of hardware and corresponding consistent software vblank counter
446 * are preserved, even if there are any spurious vblank irq's after
447 * disable.
448 */
drm_vblank_disable_and_save(struct drm_device * dev,unsigned int pipe)449 void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe)
450 {
451 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
452 unsigned long irqflags;
453
454 assert_spin_locked(&dev->vbl_lock);
455
456 /* Prevent vblank irq processing while disabling vblank irqs,
457 * so no updates of timestamps or count can happen after we've
458 * disabled. Needed to prevent races in case of delayed irq's.
459 */
460 spin_lock_irqsave(&dev->vblank_time_lock, irqflags);
461
462 /*
463 * Update vblank count and disable vblank interrupts only if the
464 * interrupts were enabled. This avoids calling the ->disable_vblank()
465 * operation in atomic context with the hardware potentially runtime
466 * suspended.
467 */
468 if (!vblank->enabled)
469 goto out;
470
471 /*
472 * Update the count and timestamp to maintain the
473 * appearance that the counter has been ticking all along until
474 * this time. This makes the count account for the entire time
475 * between drm_crtc_vblank_on() and drm_crtc_vblank_off().
476 */
477 drm_update_vblank_count(dev, pipe, false);
478 __disable_vblank(dev, pipe);
479 vblank->enabled = false;
480
481 out:
482 spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags);
483 }
484
vblank_disable_fn(void * arg)485 static void vblank_disable_fn(void *arg)
486 {
487 struct drm_vblank_crtc *vblank = arg;
488 struct drm_device *dev = vblank->dev;
489 unsigned int pipe = vblank->pipe;
490 unsigned long irqflags;
491
492 spin_lock_irqsave(&dev->vbl_lock, irqflags);
493 if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) {
494 drm_dbg_core(dev, "disabling vblank on crtc %u\n", pipe);
495 drm_vblank_disable_and_save(dev, pipe);
496 }
497 spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
498 }
499
drm_vblank_init_release(struct drm_device * dev,void * ptr)500 static void drm_vblank_init_release(struct drm_device *dev, void *ptr)
501 {
502 struct drm_vblank_crtc *vblank = ptr;
503
504 drm_WARN_ON(dev, READ_ONCE(vblank->enabled) &&
505 drm_core_check_feature(dev, DRIVER_MODESET));
506
507 drm_vblank_destroy_worker(vblank);
508 del_timer_sync(&vblank->disable_timer);
509 }
510
511 /**
512 * drm_vblank_init - initialize vblank support
513 * @dev: DRM device
514 * @num_crtcs: number of CRTCs supported by @dev
515 *
516 * This function initializes vblank support for @num_crtcs display pipelines.
517 * Cleanup is handled automatically through a cleanup function added with
518 * drmm_add_action_or_reset().
519 *
520 * Returns:
521 * Zero on success or a negative error code on failure.
522 */
drm_vblank_init(struct drm_device * dev,unsigned int num_crtcs)523 int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs)
524 {
525 int ret;
526 unsigned int i;
527
528 mtx_init(&dev->vbl_lock, IPL_TTY);
529 mtx_init(&dev->vblank_time_lock, IPL_TTY);
530
531 dev->vblank = drmm_kcalloc(dev, num_crtcs, sizeof(*dev->vblank), GFP_KERNEL);
532 if (!dev->vblank)
533 return -ENOMEM;
534
535 dev->num_crtcs = num_crtcs;
536
537 for (i = 0; i < num_crtcs; i++) {
538 struct drm_vblank_crtc *vblank = &dev->vblank[i];
539
540 vblank->dev = dev;
541 vblank->pipe = i;
542 init_waitqueue_head(&vblank->queue);
543 #ifdef __linux__
544 timer_setup(&vblank->disable_timer, vblank_disable_fn, 0);
545 #else
546 timeout_set(&vblank->disable_timer, vblank_disable_fn, vblank);
547 #endif
548 seqlock_init(&vblank->seqlock, IPL_TTY);
549
550 ret = drmm_add_action_or_reset(dev, drm_vblank_init_release,
551 vblank);
552 if (ret)
553 return ret;
554
555 ret = drm_vblank_worker_init(vblank);
556 if (ret)
557 return ret;
558 }
559
560 return 0;
561 }
562 EXPORT_SYMBOL(drm_vblank_init);
563
564 /**
565 * drm_dev_has_vblank - test if vblanking has been initialized for
566 * a device
567 * @dev: the device
568 *
569 * Drivers may call this function to test if vblank support is
570 * initialized for a device. For most hardware this means that vblanking
571 * can also be enabled.
572 *
573 * Atomic helpers use this function to initialize
574 * &drm_crtc_state.no_vblank. See also drm_atomic_helper_check_modeset().
575 *
576 * Returns:
577 * True if vblanking has been initialized for the given device, false
578 * otherwise.
579 */
drm_dev_has_vblank(const struct drm_device * dev)580 bool drm_dev_has_vblank(const struct drm_device *dev)
581 {
582 return dev->num_crtcs != 0;
583 }
584 EXPORT_SYMBOL(drm_dev_has_vblank);
585
586 /**
587 * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC
588 * @crtc: which CRTC's vblank waitqueue to retrieve
589 *
590 * This function returns a pointer to the vblank waitqueue for the CRTC.
591 * Drivers can use this to implement vblank waits using wait_event() and related
592 * functions.
593 */
drm_crtc_vblank_waitqueue(struct drm_crtc * crtc)594 wait_queue_head_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc)
595 {
596 return &crtc->dev->vblank[drm_crtc_index(crtc)].queue;
597 }
598 EXPORT_SYMBOL(drm_crtc_vblank_waitqueue);
599
600
601 /**
602 * drm_calc_timestamping_constants - calculate vblank timestamp constants
603 * @crtc: drm_crtc whose timestamp constants should be updated.
604 * @mode: display mode containing the scanout timings
605 *
606 * Calculate and store various constants which are later needed by vblank and
607 * swap-completion timestamping, e.g, by
608 * drm_crtc_vblank_helper_get_vblank_timestamp(). They are derived from
609 * CRTC's true scanout timing, so they take things like panel scaling or
610 * other adjustments into account.
611 */
drm_calc_timestamping_constants(struct drm_crtc * crtc,const struct drm_display_mode * mode)612 void drm_calc_timestamping_constants(struct drm_crtc *crtc,
613 const struct drm_display_mode *mode)
614 {
615 struct drm_device *dev = crtc->dev;
616 unsigned int pipe = drm_crtc_index(crtc);
617 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
618 int linedur_ns = 0, framedur_ns = 0;
619 int dotclock = mode->crtc_clock;
620
621 if (!drm_dev_has_vblank(dev))
622 return;
623
624 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
625 return;
626
627 /* Valid dotclock? */
628 if (dotclock > 0) {
629 int frame_size = mode->crtc_htotal * mode->crtc_vtotal;
630
631 /*
632 * Convert scanline length in pixels and video
633 * dot clock to line duration and frame duration
634 * in nanoseconds:
635 */
636 linedur_ns = div_u64((u64) mode->crtc_htotal * 1000000, dotclock);
637 framedur_ns = div_u64((u64) frame_size * 1000000, dotclock);
638
639 /*
640 * Fields of interlaced scanout modes are only half a frame duration.
641 */
642 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
643 framedur_ns /= 2;
644 } else {
645 drm_err(dev, "crtc %u: Can't calculate constants, dotclock = 0!\n",
646 crtc->base.id);
647 }
648
649 vblank->linedur_ns = linedur_ns;
650 vblank->framedur_ns = framedur_ns;
651 drm_mode_copy(&vblank->hwmode, mode);
652
653 drm_dbg_core(dev,
654 "crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n",
655 crtc->base.id, mode->crtc_htotal,
656 mode->crtc_vtotal, mode->crtc_vdisplay);
657 drm_dbg_core(dev, "crtc %u: clock %d kHz framedur %d linedur %d\n",
658 crtc->base.id, dotclock, framedur_ns, linedur_ns);
659 }
660 EXPORT_SYMBOL(drm_calc_timestamping_constants);
661
662 /**
663 * drm_crtc_vblank_helper_get_vblank_timestamp_internal - precise vblank
664 * timestamp helper
665 * @crtc: CRTC whose vblank timestamp to retrieve
666 * @max_error: Desired maximum allowable error in timestamps (nanosecs)
667 * On return contains true maximum error of timestamp
668 * @vblank_time: Pointer to time which should receive the timestamp
669 * @in_vblank_irq:
670 * True when called from drm_crtc_handle_vblank(). Some drivers
671 * need to apply some workarounds for gpu-specific vblank irq quirks
672 * if flag is set.
673 * @get_scanout_position:
674 * Callback function to retrieve the scanout position. See
675 * @struct drm_crtc_helper_funcs.get_scanout_position.
676 *
677 * Implements calculation of exact vblank timestamps from given drm_display_mode
678 * timings and current video scanout position of a CRTC.
679 *
680 * The current implementation only handles standard video modes. For double scan
681 * and interlaced modes the driver is supposed to adjust the hardware mode
682 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to
683 * match the scanout position reported.
684 *
685 * Note that atomic drivers must call drm_calc_timestamping_constants() before
686 * enabling a CRTC. The atomic helpers already take care of that in
687 * drm_atomic_helper_calc_timestamping_constants().
688 *
689 * Returns:
690 *
691 * Returns true on success, and false on failure, i.e. when no accurate
692 * timestamp could be acquired.
693 */
694 bool
drm_crtc_vblank_helper_get_vblank_timestamp_internal(struct drm_crtc * crtc,int * max_error,ktime_t * vblank_time,bool in_vblank_irq,drm_vblank_get_scanout_position_func get_scanout_position)695 drm_crtc_vblank_helper_get_vblank_timestamp_internal(
696 struct drm_crtc *crtc, int *max_error, ktime_t *vblank_time,
697 bool in_vblank_irq,
698 drm_vblank_get_scanout_position_func get_scanout_position)
699 {
700 struct drm_device *dev = crtc->dev;
701 unsigned int pipe = crtc->index;
702 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
703 struct timespec64 ts_etime, ts_vblank_time;
704 ktime_t stime, etime;
705 bool vbl_status;
706 const struct drm_display_mode *mode;
707 int vpos, hpos, i;
708 int delta_ns, duration_ns;
709
710 if (pipe >= dev->num_crtcs) {
711 drm_err(dev, "Invalid crtc %u\n", pipe);
712 return false;
713 }
714
715 /* Scanout position query not supported? Should not happen. */
716 if (!get_scanout_position) {
717 drm_err(dev, "Called from CRTC w/o get_scanout_position()!?\n");
718 return false;
719 }
720
721 if (drm_drv_uses_atomic_modeset(dev))
722 mode = &vblank->hwmode;
723 else
724 mode = &crtc->hwmode;
725
726 /* If mode timing undefined, just return as no-op:
727 * Happens during initial modesetting of a crtc.
728 */
729 if (mode->crtc_clock == 0) {
730 drm_dbg_core(dev, "crtc %u: Noop due to uninitialized mode.\n",
731 pipe);
732 drm_WARN_ON_ONCE(dev, drm_drv_uses_atomic_modeset(dev));
733 return false;
734 }
735
736 /* Get current scanout position with system timestamp.
737 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times
738 * if single query takes longer than max_error nanoseconds.
739 *
740 * This guarantees a tight bound on maximum error if
741 * code gets preempted or delayed for some reason.
742 */
743 for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) {
744 /*
745 * Get vertical and horizontal scanout position vpos, hpos,
746 * and bounding timestamps stime, etime, pre/post query.
747 */
748 vbl_status = get_scanout_position(crtc, in_vblank_irq,
749 &vpos, &hpos,
750 &stime, &etime,
751 mode);
752
753 /* Return as no-op if scanout query unsupported or failed. */
754 if (!vbl_status) {
755 drm_dbg_core(dev,
756 "crtc %u : scanoutpos query failed.\n",
757 pipe);
758 return false;
759 }
760
761 /* Compute uncertainty in timestamp of scanout position query. */
762 duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime);
763
764 /* Accept result with < max_error nsecs timing uncertainty. */
765 if (duration_ns <= *max_error)
766 break;
767 }
768
769 /* Noisy system timing? */
770 if (i == DRM_TIMESTAMP_MAXRETRIES) {
771 drm_dbg_core(dev,
772 "crtc %u: Noisy timestamp %d us > %d us [%d reps].\n",
773 pipe, duration_ns / 1000, *max_error / 1000, i);
774 }
775
776 /* Return upper bound of timestamp precision error. */
777 *max_error = duration_ns;
778
779 /* Convert scanout position into elapsed time at raw_time query
780 * since start of scanout at first display scanline. delta_ns
781 * can be negative if start of scanout hasn't happened yet.
782 */
783 delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos),
784 mode->crtc_clock);
785
786 /* Subtract time delta from raw timestamp to get final
787 * vblank_time timestamp for end of vblank.
788 */
789 *vblank_time = ktime_sub_ns(etime, delta_ns);
790
791 if (!drm_debug_enabled(DRM_UT_VBL))
792 return true;
793
794 ts_etime = ktime_to_timespec64(etime);
795 ts_vblank_time = ktime_to_timespec64(*vblank_time);
796
797 drm_dbg_vbl(dev,
798 "crtc %u : v p(%d,%d)@ %lld.%06ld -> %lld.%06ld [e %d us, %d rep]\n",
799 pipe, hpos, vpos,
800 (u64)ts_etime.tv_sec, ts_etime.tv_nsec / 1000,
801 (u64)ts_vblank_time.tv_sec, ts_vblank_time.tv_nsec / 1000,
802 duration_ns / 1000, i);
803
804 return true;
805 }
806 EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp_internal);
807
808 /**
809 * drm_crtc_vblank_helper_get_vblank_timestamp - precise vblank timestamp
810 * helper
811 * @crtc: CRTC whose vblank timestamp to retrieve
812 * @max_error: Desired maximum allowable error in timestamps (nanosecs)
813 * On return contains true maximum error of timestamp
814 * @vblank_time: Pointer to time which should receive the timestamp
815 * @in_vblank_irq:
816 * True when called from drm_crtc_handle_vblank(). Some drivers
817 * need to apply some workarounds for gpu-specific vblank irq quirks
818 * if flag is set.
819 *
820 * Implements calculation of exact vblank timestamps from given drm_display_mode
821 * timings and current video scanout position of a CRTC. This can be directly
822 * used as the &drm_crtc_funcs.get_vblank_timestamp implementation of a kms
823 * driver if &drm_crtc_helper_funcs.get_scanout_position is implemented.
824 *
825 * The current implementation only handles standard video modes. For double scan
826 * and interlaced modes the driver is supposed to adjust the hardware mode
827 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to
828 * match the scanout position reported.
829 *
830 * Note that atomic drivers must call drm_calc_timestamping_constants() before
831 * enabling a CRTC. The atomic helpers already take care of that in
832 * drm_atomic_helper_calc_timestamping_constants().
833 *
834 * Returns:
835 *
836 * Returns true on success, and false on failure, i.e. when no accurate
837 * timestamp could be acquired.
838 */
drm_crtc_vblank_helper_get_vblank_timestamp(struct drm_crtc * crtc,int * max_error,ktime_t * vblank_time,bool in_vblank_irq)839 bool drm_crtc_vblank_helper_get_vblank_timestamp(struct drm_crtc *crtc,
840 int *max_error,
841 ktime_t *vblank_time,
842 bool in_vblank_irq)
843 {
844 return drm_crtc_vblank_helper_get_vblank_timestamp_internal(
845 crtc, max_error, vblank_time, in_vblank_irq,
846 crtc->helper_private->get_scanout_position);
847 }
848 EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp);
849
850 /**
851 * drm_crtc_get_last_vbltimestamp - retrieve raw timestamp for the most
852 * recent vblank interval
853 * @crtc: CRTC whose vblank timestamp to retrieve
854 * @tvblank: Pointer to target time which should receive the timestamp
855 * @in_vblank_irq:
856 * True when called from drm_crtc_handle_vblank(). Some drivers
857 * need to apply some workarounds for gpu-specific vblank irq quirks
858 * if flag is set.
859 *
860 * Fetches the system timestamp corresponding to the time of the most recent
861 * vblank interval on specified CRTC. May call into kms-driver to
862 * compute the timestamp with a high-precision GPU specific method.
863 *
864 * Returns zero if timestamp originates from uncorrected do_gettimeofday()
865 * call, i.e., it isn't very precisely locked to the true vblank.
866 *
867 * Returns:
868 * True if timestamp is considered to be very precise, false otherwise.
869 */
870 static bool
drm_crtc_get_last_vbltimestamp(struct drm_crtc * crtc,ktime_t * tvblank,bool in_vblank_irq)871 drm_crtc_get_last_vbltimestamp(struct drm_crtc *crtc, ktime_t *tvblank,
872 bool in_vblank_irq)
873 {
874 bool ret = false;
875
876 /* Define requested maximum error on timestamps (nanoseconds). */
877 int max_error = (int) drm_timestamp_precision * 1000;
878
879 /* Query driver if possible and precision timestamping enabled. */
880 if (crtc && crtc->funcs->get_vblank_timestamp && max_error > 0) {
881 ret = crtc->funcs->get_vblank_timestamp(crtc, &max_error,
882 tvblank, in_vblank_irq);
883 }
884
885 /* GPU high precision timestamp query unsupported or failed.
886 * Return current monotonic/gettimeofday timestamp as best estimate.
887 */
888 if (!ret)
889 *tvblank = ktime_get();
890
891 return ret;
892 }
893
894 static bool
drm_get_last_vbltimestamp(struct drm_device * dev,unsigned int pipe,ktime_t * tvblank,bool in_vblank_irq)895 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
896 ktime_t *tvblank, bool in_vblank_irq)
897 {
898 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
899
900 return drm_crtc_get_last_vbltimestamp(crtc, tvblank, in_vblank_irq);
901 }
902
903 /**
904 * drm_crtc_vblank_count - retrieve "cooked" vblank counter value
905 * @crtc: which counter to retrieve
906 *
907 * Fetches the "cooked" vblank count value that represents the number of
908 * vblank events since the system was booted, including lost events due to
909 * modesetting activity. Note that this timer isn't correct against a racing
910 * vblank interrupt (since it only reports the software vblank counter), see
911 * drm_crtc_accurate_vblank_count() for such use-cases.
912 *
913 * Note that for a given vblank counter value drm_crtc_handle_vblank()
914 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
915 * provide a barrier: Any writes done before calling
916 * drm_crtc_handle_vblank() will be visible to callers of the later
917 * functions, if the vblank count is the same or a later one.
918 *
919 * See also &drm_vblank_crtc.count.
920 *
921 * Returns:
922 * The software vblank counter.
923 */
drm_crtc_vblank_count(struct drm_crtc * crtc)924 u64 drm_crtc_vblank_count(struct drm_crtc *crtc)
925 {
926 return drm_vblank_count(crtc->dev, drm_crtc_index(crtc));
927 }
928 EXPORT_SYMBOL(drm_crtc_vblank_count);
929
930 /**
931 * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the
932 * system timestamp corresponding to that vblank counter value.
933 * @dev: DRM device
934 * @pipe: index of CRTC whose counter to retrieve
935 * @vblanktime: Pointer to ktime_t to receive the vblank timestamp.
936 *
937 * Fetches the "cooked" vblank count value that represents the number of
938 * vblank events since the system was booted, including lost events due to
939 * modesetting activity. Returns corresponding system timestamp of the time
940 * of the vblank interval that corresponds to the current vblank counter value.
941 *
942 * This is the legacy version of drm_crtc_vblank_count_and_time().
943 */
drm_vblank_count_and_time(struct drm_device * dev,unsigned int pipe,ktime_t * vblanktime)944 static u64 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe,
945 ktime_t *vblanktime)
946 {
947 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
948 u64 vblank_count;
949 unsigned int seq;
950
951 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) {
952 *vblanktime = 0;
953 return 0;
954 }
955
956 do {
957 seq = read_seqbegin(&vblank->seqlock);
958 vblank_count = atomic64_read(&vblank->count);
959 *vblanktime = vblank->time;
960 } while (read_seqretry(&vblank->seqlock, seq));
961
962 return vblank_count;
963 }
964
965 /**
966 * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value
967 * and the system timestamp corresponding to that vblank counter value
968 * @crtc: which counter to retrieve
969 * @vblanktime: Pointer to time to receive the vblank timestamp.
970 *
971 * Fetches the "cooked" vblank count value that represents the number of
972 * vblank events since the system was booted, including lost events due to
973 * modesetting activity. Returns corresponding system timestamp of the time
974 * of the vblank interval that corresponds to the current vblank counter value.
975 *
976 * Note that for a given vblank counter value drm_crtc_handle_vblank()
977 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
978 * provide a barrier: Any writes done before calling
979 * drm_crtc_handle_vblank() will be visible to callers of the later
980 * functions, if the vblank count is the same or a later one.
981 *
982 * See also &drm_vblank_crtc.count.
983 */
drm_crtc_vblank_count_and_time(struct drm_crtc * crtc,ktime_t * vblanktime)984 u64 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc,
985 ktime_t *vblanktime)
986 {
987 return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc),
988 vblanktime);
989 }
990 EXPORT_SYMBOL(drm_crtc_vblank_count_and_time);
991
992 /**
993 * drm_crtc_next_vblank_start - calculate the time of the next vblank
994 * @crtc: the crtc for which to calculate next vblank time
995 * @vblanktime: pointer to time to receive the next vblank timestamp.
996 *
997 * Calculate the expected time of the start of the next vblank period,
998 * based on time of previous vblank and frame duration
999 */
drm_crtc_next_vblank_start(struct drm_crtc * crtc,ktime_t * vblanktime)1000 int drm_crtc_next_vblank_start(struct drm_crtc *crtc, ktime_t *vblanktime)
1001 {
1002 unsigned int pipe = drm_crtc_index(crtc);
1003 struct drm_vblank_crtc *vblank;
1004 struct drm_display_mode *mode;
1005 u64 vblank_start;
1006
1007 if (!drm_dev_has_vblank(crtc->dev))
1008 return -EINVAL;
1009
1010 vblank = &crtc->dev->vblank[pipe];
1011 mode = &vblank->hwmode;
1012
1013 if (!vblank->framedur_ns || !vblank->linedur_ns)
1014 return -EINVAL;
1015
1016 if (!drm_crtc_get_last_vbltimestamp(crtc, vblanktime, false))
1017 return -EINVAL;
1018
1019 vblank_start = DIV_ROUND_DOWN_ULL(
1020 (u64)vblank->framedur_ns * mode->crtc_vblank_start,
1021 mode->crtc_vtotal);
1022 *vblanktime = ktime_add(*vblanktime, ns_to_ktime(vblank_start));
1023
1024 return 0;
1025 }
1026 EXPORT_SYMBOL(drm_crtc_next_vblank_start);
1027
send_vblank_event(struct drm_device * dev,struct drm_pending_vblank_event * e,u64 seq,ktime_t now)1028 static void send_vblank_event(struct drm_device *dev,
1029 struct drm_pending_vblank_event *e,
1030 u64 seq, ktime_t now)
1031 {
1032 struct timespec64 tv;
1033
1034 switch (e->event.base.type) {
1035 case DRM_EVENT_VBLANK:
1036 case DRM_EVENT_FLIP_COMPLETE:
1037 tv = ktime_to_timespec64(now);
1038 e->event.vbl.sequence = seq;
1039 /*
1040 * e->event is a user space structure, with hardcoded unsigned
1041 * 32-bit seconds/microseconds. This is safe as we always use
1042 * monotonic timestamps since linux-4.15
1043 */
1044 e->event.vbl.tv_sec = tv.tv_sec;
1045 e->event.vbl.tv_usec = tv.tv_nsec / 1000;
1046 break;
1047 case DRM_EVENT_CRTC_SEQUENCE:
1048 if (seq)
1049 e->event.seq.sequence = seq;
1050 e->event.seq.time_ns = ktime_to_ns(now);
1051 break;
1052 }
1053 trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, seq);
1054 /*
1055 * Use the same timestamp for any associated fence signal to avoid
1056 * mismatch in timestamps for vsync & fence events triggered by the
1057 * same HW event. Frameworks like SurfaceFlinger in Android expects the
1058 * retire-fence timestamp to match exactly with HW vsync as it uses it
1059 * for its software vsync modeling.
1060 */
1061 drm_send_event_timestamp_locked(dev, &e->base, now);
1062 }
1063
1064 /**
1065 * drm_crtc_arm_vblank_event - arm vblank event after pageflip
1066 * @crtc: the source CRTC of the vblank event
1067 * @e: the event to send
1068 *
1069 * A lot of drivers need to generate vblank events for the very next vblank
1070 * interrupt. For example when the page flip interrupt happens when the page
1071 * flip gets armed, but not when it actually executes within the next vblank
1072 * period. This helper function implements exactly the required vblank arming
1073 * behaviour.
1074 *
1075 * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an
1076 * atomic commit must ensure that the next vblank happens at exactly the same
1077 * time as the atomic commit is committed to the hardware. This function itself
1078 * does **not** protect against the next vblank interrupt racing with either this
1079 * function call or the atomic commit operation. A possible sequence could be:
1080 *
1081 * 1. Driver commits new hardware state into vblank-synchronized registers.
1082 * 2. A vblank happens, committing the hardware state. Also the corresponding
1083 * vblank interrupt is fired off and fully processed by the interrupt
1084 * handler.
1085 * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event().
1086 * 4. The event is only send out for the next vblank, which is wrong.
1087 *
1088 * An equivalent race can happen when the driver calls
1089 * drm_crtc_arm_vblank_event() before writing out the new hardware state.
1090 *
1091 * The only way to make this work safely is to prevent the vblank from firing
1092 * (and the hardware from committing anything else) until the entire atomic
1093 * commit sequence has run to completion. If the hardware does not have such a
1094 * feature (e.g. using a "go" bit), then it is unsafe to use this functions.
1095 * Instead drivers need to manually send out the event from their interrupt
1096 * handler by calling drm_crtc_send_vblank_event() and make sure that there's no
1097 * possible race with the hardware committing the atomic update.
1098 *
1099 * Caller must hold a vblank reference for the event @e acquired by a
1100 * drm_crtc_vblank_get(), which will be dropped when the next vblank arrives.
1101 */
drm_crtc_arm_vblank_event(struct drm_crtc * crtc,struct drm_pending_vblank_event * e)1102 void drm_crtc_arm_vblank_event(struct drm_crtc *crtc,
1103 struct drm_pending_vblank_event *e)
1104 {
1105 struct drm_device *dev = crtc->dev;
1106 unsigned int pipe = drm_crtc_index(crtc);
1107
1108 assert_spin_locked(&dev->event_lock);
1109
1110 e->pipe = pipe;
1111 e->sequence = drm_crtc_accurate_vblank_count(crtc) + 1;
1112 list_add_tail(&e->base.link, &dev->vblank_event_list);
1113 }
1114 EXPORT_SYMBOL(drm_crtc_arm_vblank_event);
1115
1116 /**
1117 * drm_crtc_send_vblank_event - helper to send vblank event after pageflip
1118 * @crtc: the source CRTC of the vblank event
1119 * @e: the event to send
1120 *
1121 * Updates sequence # and timestamp on event for the most recently processed
1122 * vblank, and sends it to userspace. Caller must hold event lock.
1123 *
1124 * See drm_crtc_arm_vblank_event() for a helper which can be used in certain
1125 * situation, especially to send out events for atomic commit operations.
1126 */
drm_crtc_send_vblank_event(struct drm_crtc * crtc,struct drm_pending_vblank_event * e)1127 void drm_crtc_send_vblank_event(struct drm_crtc *crtc,
1128 struct drm_pending_vblank_event *e)
1129 {
1130 struct drm_device *dev = crtc->dev;
1131 u64 seq;
1132 unsigned int pipe = drm_crtc_index(crtc);
1133 ktime_t now;
1134
1135 if (drm_dev_has_vblank(dev)) {
1136 seq = drm_vblank_count_and_time(dev, pipe, &now);
1137 } else {
1138 seq = 0;
1139
1140 now = ktime_get();
1141 }
1142 e->pipe = pipe;
1143 send_vblank_event(dev, e, seq, now);
1144 }
1145 EXPORT_SYMBOL(drm_crtc_send_vblank_event);
1146
__enable_vblank(struct drm_device * dev,unsigned int pipe)1147 static int __enable_vblank(struct drm_device *dev, unsigned int pipe)
1148 {
1149 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1150 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1151
1152 if (drm_WARN_ON(dev, !crtc))
1153 return 0;
1154
1155 if (crtc->funcs->enable_vblank)
1156 return crtc->funcs->enable_vblank(crtc);
1157 }
1158 #ifdef CONFIG_DRM_LEGACY
1159 else if (dev->driver->enable_vblank) {
1160 return dev->driver->enable_vblank(dev, pipe);
1161 }
1162 #endif
1163
1164 return -EINVAL;
1165 }
1166
drm_vblank_enable(struct drm_device * dev,unsigned int pipe)1167 static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe)
1168 {
1169 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1170 int ret = 0;
1171
1172 assert_spin_locked(&dev->vbl_lock);
1173
1174 spin_lock(&dev->vblank_time_lock);
1175
1176 if (!vblank->enabled) {
1177 /*
1178 * Enable vblank irqs under vblank_time_lock protection.
1179 * All vblank count & timestamp updates are held off
1180 * until we are done reinitializing master counter and
1181 * timestamps. Filtercode in drm_handle_vblank() will
1182 * prevent double-accounting of same vblank interval.
1183 */
1184 ret = __enable_vblank(dev, pipe);
1185 drm_dbg_core(dev, "enabling vblank on crtc %u, ret: %d\n",
1186 pipe, ret);
1187 if (ret) {
1188 atomic_dec(&vblank->refcount);
1189 } else {
1190 drm_update_vblank_count(dev, pipe, 0);
1191 /* drm_update_vblank_count() includes a wmb so we just
1192 * need to ensure that the compiler emits the write
1193 * to mark the vblank as enabled after the call
1194 * to drm_update_vblank_count().
1195 */
1196 WRITE_ONCE(vblank->enabled, true);
1197 }
1198 }
1199
1200 spin_unlock(&dev->vblank_time_lock);
1201
1202 return ret;
1203 }
1204
drm_vblank_get(struct drm_device * dev,unsigned int pipe)1205 int drm_vblank_get(struct drm_device *dev, unsigned int pipe)
1206 {
1207 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1208 unsigned long irqflags;
1209 int ret = 0;
1210
1211 if (!drm_dev_has_vblank(dev))
1212 return -EINVAL;
1213
1214 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1215 return -EINVAL;
1216
1217 spin_lock_irqsave(&dev->vbl_lock, irqflags);
1218 /* Going from 0->1 means we have to enable interrupts again */
1219 if (atomic_add_return(1, &vblank->refcount) == 1) {
1220 ret = drm_vblank_enable(dev, pipe);
1221 } else {
1222 if (!vblank->enabled) {
1223 atomic_dec(&vblank->refcount);
1224 ret = -EINVAL;
1225 }
1226 }
1227 spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1228
1229 return ret;
1230 }
1231
1232 /**
1233 * drm_crtc_vblank_get - get a reference count on vblank events
1234 * @crtc: which CRTC to own
1235 *
1236 * Acquire a reference count on vblank events to avoid having them disabled
1237 * while in use.
1238 *
1239 * Returns:
1240 * Zero on success or a negative error code on failure.
1241 */
drm_crtc_vblank_get(struct drm_crtc * crtc)1242 int drm_crtc_vblank_get(struct drm_crtc *crtc)
1243 {
1244 return drm_vblank_get(crtc->dev, drm_crtc_index(crtc));
1245 }
1246 EXPORT_SYMBOL(drm_crtc_vblank_get);
1247
drm_vblank_put(struct drm_device * dev,unsigned int pipe)1248 void drm_vblank_put(struct drm_device *dev, unsigned int pipe)
1249 {
1250 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1251
1252 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1253 return;
1254
1255 if (drm_WARN_ON(dev, atomic_read(&vblank->refcount) == 0))
1256 return;
1257
1258 /* Last user schedules interrupt disable */
1259 if (atomic_dec_and_test(&vblank->refcount)) {
1260 if (drm_vblank_offdelay == 0)
1261 return;
1262 else if (drm_vblank_offdelay < 0)
1263 vblank_disable_fn(vblank);
1264 else if (!dev->vblank_disable_immediate)
1265 mod_timer(&vblank->disable_timer,
1266 jiffies + ((drm_vblank_offdelay * HZ)/1000));
1267 }
1268 }
1269
1270 /**
1271 * drm_crtc_vblank_put - give up ownership of vblank events
1272 * @crtc: which counter to give up
1273 *
1274 * Release ownership of a given vblank counter, turning off interrupts
1275 * if possible. Disable interrupts after drm_vblank_offdelay milliseconds.
1276 */
drm_crtc_vblank_put(struct drm_crtc * crtc)1277 void drm_crtc_vblank_put(struct drm_crtc *crtc)
1278 {
1279 drm_vblank_put(crtc->dev, drm_crtc_index(crtc));
1280 }
1281 EXPORT_SYMBOL(drm_crtc_vblank_put);
1282
1283 /**
1284 * drm_wait_one_vblank - wait for one vblank
1285 * @dev: DRM device
1286 * @pipe: CRTC index
1287 *
1288 * This waits for one vblank to pass on @pipe, using the irq driver interfaces.
1289 * It is a failure to call this when the vblank irq for @pipe is disabled, e.g.
1290 * due to lack of driver support or because the crtc is off.
1291 *
1292 * This is the legacy version of drm_crtc_wait_one_vblank().
1293 */
drm_wait_one_vblank(struct drm_device * dev,unsigned int pipe)1294 void drm_wait_one_vblank(struct drm_device *dev, unsigned int pipe)
1295 {
1296 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1297 int ret;
1298 u64 last;
1299
1300 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1301 return;
1302
1303 #ifdef __OpenBSD__
1304 /*
1305 * If we're cold, vblank interrupts won't happen even if
1306 * they're turned on by the driver. Just stall long enough
1307 * for a vblank to pass. This assumes a vrefresh of at least
1308 * 25 Hz.
1309 */
1310 if (cold) {
1311 delay(40000);
1312 return;
1313 }
1314 #endif
1315
1316 ret = drm_vblank_get(dev, pipe);
1317 if (drm_WARN(dev, ret, "vblank not available on crtc %i, ret=%i\n",
1318 pipe, ret))
1319 return;
1320
1321 last = drm_vblank_count(dev, pipe);
1322
1323 ret = wait_event_timeout(vblank->queue,
1324 last != drm_vblank_count(dev, pipe),
1325 msecs_to_jiffies(100));
1326
1327 drm_WARN(dev, ret == 0, "vblank wait timed out on crtc %i\n", pipe);
1328
1329 drm_vblank_put(dev, pipe);
1330 }
1331 EXPORT_SYMBOL(drm_wait_one_vblank);
1332
1333 /**
1334 * drm_crtc_wait_one_vblank - wait for one vblank
1335 * @crtc: DRM crtc
1336 *
1337 * This waits for one vblank to pass on @crtc, using the irq driver interfaces.
1338 * It is a failure to call this when the vblank irq for @crtc is disabled, e.g.
1339 * due to lack of driver support or because the crtc is off.
1340 */
drm_crtc_wait_one_vblank(struct drm_crtc * crtc)1341 void drm_crtc_wait_one_vblank(struct drm_crtc *crtc)
1342 {
1343 drm_wait_one_vblank(crtc->dev, drm_crtc_index(crtc));
1344 }
1345 EXPORT_SYMBOL(drm_crtc_wait_one_vblank);
1346
1347 /**
1348 * drm_crtc_vblank_off - disable vblank events on a CRTC
1349 * @crtc: CRTC in question
1350 *
1351 * Drivers can use this function to shut down the vblank interrupt handling when
1352 * disabling a crtc. This function ensures that the latest vblank frame count is
1353 * stored so that drm_vblank_on can restore it again.
1354 *
1355 * Drivers must use this function when the hardware vblank counter can get
1356 * reset, e.g. when suspending or disabling the @crtc in general.
1357 */
drm_crtc_vblank_off(struct drm_crtc * crtc)1358 void drm_crtc_vblank_off(struct drm_crtc *crtc)
1359 {
1360 struct drm_device *dev = crtc->dev;
1361 unsigned int pipe = drm_crtc_index(crtc);
1362 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1363 struct drm_pending_vblank_event *e, *t;
1364 ktime_t now;
1365 u64 seq;
1366
1367 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1368 return;
1369
1370 /*
1371 * Grab event_lock early to prevent vblank work from being scheduled
1372 * while we're in the middle of shutting down vblank interrupts
1373 */
1374 spin_lock_irq(&dev->event_lock);
1375
1376 spin_lock(&dev->vbl_lock);
1377 drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n",
1378 pipe, vblank->enabled, vblank->inmodeset);
1379
1380 /* Avoid redundant vblank disables without previous
1381 * drm_crtc_vblank_on(). */
1382 if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset)
1383 drm_vblank_disable_and_save(dev, pipe);
1384
1385 wake_up(&vblank->queue);
1386
1387 /*
1388 * Prevent subsequent drm_vblank_get() from re-enabling
1389 * the vblank interrupt by bumping the refcount.
1390 */
1391 if (!vblank->inmodeset) {
1392 atomic_inc(&vblank->refcount);
1393 vblank->inmodeset = 1;
1394 }
1395 spin_unlock(&dev->vbl_lock);
1396
1397 /* Send any queued vblank events, lest the natives grow disquiet */
1398 seq = drm_vblank_count_and_time(dev, pipe, &now);
1399
1400 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1401 if (e->pipe != pipe)
1402 continue;
1403 drm_dbg_core(dev, "Sending premature vblank event on disable: "
1404 "wanted %llu, current %llu\n",
1405 e->sequence, seq);
1406 list_del(&e->base.link);
1407 drm_vblank_put(dev, pipe);
1408 send_vblank_event(dev, e, seq, now);
1409 }
1410
1411 /* Cancel any leftover pending vblank work */
1412 drm_vblank_cancel_pending_works(vblank);
1413
1414 spin_unlock_irq(&dev->event_lock);
1415
1416 /* Will be reset by the modeset helpers when re-enabling the crtc by
1417 * calling drm_calc_timestamping_constants(). */
1418 vblank->hwmode.crtc_clock = 0;
1419
1420 /* Wait for any vblank work that's still executing to finish */
1421 drm_vblank_flush_worker(vblank);
1422 }
1423 EXPORT_SYMBOL(drm_crtc_vblank_off);
1424
1425 /**
1426 * drm_crtc_vblank_reset - reset vblank state to off on a CRTC
1427 * @crtc: CRTC in question
1428 *
1429 * Drivers can use this function to reset the vblank state to off at load time.
1430 * Drivers should use this together with the drm_crtc_vblank_off() and
1431 * drm_crtc_vblank_on() functions. The difference compared to
1432 * drm_crtc_vblank_off() is that this function doesn't save the vblank counter
1433 * and hence doesn't need to call any driver hooks.
1434 *
1435 * This is useful for recovering driver state e.g. on driver load, or on resume.
1436 */
drm_crtc_vblank_reset(struct drm_crtc * crtc)1437 void drm_crtc_vblank_reset(struct drm_crtc *crtc)
1438 {
1439 struct drm_device *dev = crtc->dev;
1440 unsigned int pipe = drm_crtc_index(crtc);
1441 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1442
1443 spin_lock_irq(&dev->vbl_lock);
1444 /*
1445 * Prevent subsequent drm_vblank_get() from enabling the vblank
1446 * interrupt by bumping the refcount.
1447 */
1448 if (!vblank->inmodeset) {
1449 atomic_inc(&vblank->refcount);
1450 vblank->inmodeset = 1;
1451 }
1452 spin_unlock_irq(&dev->vbl_lock);
1453
1454 drm_WARN_ON(dev, !list_empty(&dev->vblank_event_list));
1455 drm_WARN_ON(dev, !list_empty(&vblank->pending_work));
1456 }
1457 EXPORT_SYMBOL(drm_crtc_vblank_reset);
1458
1459 /**
1460 * drm_crtc_set_max_vblank_count - configure the hw max vblank counter value
1461 * @crtc: CRTC in question
1462 * @max_vblank_count: max hardware vblank counter value
1463 *
1464 * Update the maximum hardware vblank counter value for @crtc
1465 * at runtime. Useful for hardware where the operation of the
1466 * hardware vblank counter depends on the currently active
1467 * display configuration.
1468 *
1469 * For example, if the hardware vblank counter does not work
1470 * when a specific connector is active the maximum can be set
1471 * to zero. And when that specific connector isn't active the
1472 * maximum can again be set to the appropriate non-zero value.
1473 *
1474 * If used, must be called before drm_vblank_on().
1475 */
drm_crtc_set_max_vblank_count(struct drm_crtc * crtc,u32 max_vblank_count)1476 void drm_crtc_set_max_vblank_count(struct drm_crtc *crtc,
1477 u32 max_vblank_count)
1478 {
1479 struct drm_device *dev = crtc->dev;
1480 unsigned int pipe = drm_crtc_index(crtc);
1481 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1482
1483 drm_WARN_ON(dev, dev->max_vblank_count);
1484 drm_WARN_ON(dev, !READ_ONCE(vblank->inmodeset));
1485
1486 vblank->max_vblank_count = max_vblank_count;
1487 }
1488 EXPORT_SYMBOL(drm_crtc_set_max_vblank_count);
1489
1490 /**
1491 * drm_crtc_vblank_on - enable vblank events on a CRTC
1492 * @crtc: CRTC in question
1493 *
1494 * This functions restores the vblank interrupt state captured with
1495 * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note
1496 * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be
1497 * unbalanced and so can also be unconditionally called in driver load code to
1498 * reflect the current hardware state of the crtc.
1499 */
drm_crtc_vblank_on(struct drm_crtc * crtc)1500 void drm_crtc_vblank_on(struct drm_crtc *crtc)
1501 {
1502 struct drm_device *dev = crtc->dev;
1503 unsigned int pipe = drm_crtc_index(crtc);
1504 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1505
1506 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1507 return;
1508
1509 spin_lock_irq(&dev->vbl_lock);
1510 drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n",
1511 pipe, vblank->enabled, vblank->inmodeset);
1512
1513 /* Drop our private "prevent drm_vblank_get" refcount */
1514 if (vblank->inmodeset) {
1515 atomic_dec(&vblank->refcount);
1516 vblank->inmodeset = 0;
1517 }
1518
1519 drm_reset_vblank_timestamp(dev, pipe);
1520
1521 /*
1522 * re-enable interrupts if there are users left, or the
1523 * user wishes vblank interrupts to be enabled all the time.
1524 */
1525 if (atomic_read(&vblank->refcount) != 0 || drm_vblank_offdelay == 0)
1526 drm_WARN_ON(dev, drm_vblank_enable(dev, pipe));
1527 spin_unlock_irq(&dev->vbl_lock);
1528 }
1529 EXPORT_SYMBOL(drm_crtc_vblank_on);
1530
drm_vblank_restore(struct drm_device * dev,unsigned int pipe)1531 static void drm_vblank_restore(struct drm_device *dev, unsigned int pipe)
1532 {
1533 ktime_t t_vblank;
1534 struct drm_vblank_crtc *vblank;
1535 int framedur_ns;
1536 u64 diff_ns;
1537 u32 cur_vblank, diff = 1;
1538 int count = DRM_TIMESTAMP_MAXRETRIES;
1539 u32 max_vblank_count = drm_max_vblank_count(dev, pipe);
1540
1541 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1542 return;
1543
1544 assert_spin_locked(&dev->vbl_lock);
1545 assert_spin_locked(&dev->vblank_time_lock);
1546
1547 vblank = &dev->vblank[pipe];
1548 drm_WARN_ONCE(dev,
1549 drm_debug_enabled(DRM_UT_VBL) && !vblank->framedur_ns,
1550 "Cannot compute missed vblanks without frame duration\n");
1551 framedur_ns = vblank->framedur_ns;
1552
1553 do {
1554 cur_vblank = __get_vblank_counter(dev, pipe);
1555 drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
1556 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
1557
1558 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
1559 if (framedur_ns)
1560 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
1561
1562
1563 drm_dbg_vbl(dev,
1564 "missed %d vblanks in %lld ns, frame duration=%d ns, hw_diff=%d\n",
1565 diff, diff_ns, framedur_ns, cur_vblank - vblank->last);
1566 vblank->last = (cur_vblank - diff) & max_vblank_count;
1567 }
1568
1569 /**
1570 * drm_crtc_vblank_restore - estimate missed vblanks and update vblank count.
1571 * @crtc: CRTC in question
1572 *
1573 * Power manamement features can cause frame counter resets between vblank
1574 * disable and enable. Drivers can use this function in their
1575 * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since
1576 * the last &drm_crtc_funcs.disable_vblank using timestamps and update the
1577 * vblank counter.
1578 *
1579 * Note that drivers must have race-free high-precision timestamping support,
1580 * i.e. &drm_crtc_funcs.get_vblank_timestamp must be hooked up and
1581 * &drm_driver.vblank_disable_immediate must be set to indicate the
1582 * time-stamping functions are race-free against vblank hardware counter
1583 * increments.
1584 */
drm_crtc_vblank_restore(struct drm_crtc * crtc)1585 void drm_crtc_vblank_restore(struct drm_crtc *crtc)
1586 {
1587 WARN_ON_ONCE(!crtc->funcs->get_vblank_timestamp);
1588 WARN_ON_ONCE(!crtc->dev->vblank_disable_immediate);
1589
1590 drm_vblank_restore(crtc->dev, drm_crtc_index(crtc));
1591 }
1592 EXPORT_SYMBOL(drm_crtc_vblank_restore);
1593
drm_legacy_vblank_pre_modeset(struct drm_device * dev,unsigned int pipe)1594 static void drm_legacy_vblank_pre_modeset(struct drm_device *dev,
1595 unsigned int pipe)
1596 {
1597 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1598
1599 /* vblank is not initialized (IRQ not installed ?), or has been freed */
1600 if (!drm_dev_has_vblank(dev))
1601 return;
1602
1603 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1604 return;
1605
1606 /*
1607 * To avoid all the problems that might happen if interrupts
1608 * were enabled/disabled around or between these calls, we just
1609 * have the kernel take a reference on the CRTC (just once though
1610 * to avoid corrupting the count if multiple, mismatch calls occur),
1611 * so that interrupts remain enabled in the interim.
1612 */
1613 if (!vblank->inmodeset) {
1614 vblank->inmodeset = 0x1;
1615 if (drm_vblank_get(dev, pipe) == 0)
1616 vblank->inmodeset |= 0x2;
1617 }
1618 }
1619
drm_legacy_vblank_post_modeset(struct drm_device * dev,unsigned int pipe)1620 static void drm_legacy_vblank_post_modeset(struct drm_device *dev,
1621 unsigned int pipe)
1622 {
1623 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1624
1625 /* vblank is not initialized (IRQ not installed ?), or has been freed */
1626 if (!drm_dev_has_vblank(dev))
1627 return;
1628
1629 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1630 return;
1631
1632 if (vblank->inmodeset) {
1633 spin_lock_irq(&dev->vbl_lock);
1634 drm_reset_vblank_timestamp(dev, pipe);
1635 spin_unlock_irq(&dev->vbl_lock);
1636
1637 if (vblank->inmodeset & 0x2)
1638 drm_vblank_put(dev, pipe);
1639
1640 vblank->inmodeset = 0;
1641 }
1642 }
1643
drm_legacy_modeset_ctl_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1644 int drm_legacy_modeset_ctl_ioctl(struct drm_device *dev, void *data,
1645 struct drm_file *file_priv)
1646 {
1647 struct drm_modeset_ctl *modeset = data;
1648 unsigned int pipe;
1649
1650 /* If drm_vblank_init() hasn't been called yet, just no-op */
1651 if (!drm_dev_has_vblank(dev))
1652 return 0;
1653
1654 /* KMS drivers handle this internally */
1655 if (!drm_core_check_feature(dev, DRIVER_LEGACY))
1656 return 0;
1657
1658 pipe = modeset->crtc;
1659 if (pipe >= dev->num_crtcs)
1660 return -EINVAL;
1661
1662 switch (modeset->cmd) {
1663 case _DRM_PRE_MODESET:
1664 drm_legacy_vblank_pre_modeset(dev, pipe);
1665 break;
1666 case _DRM_POST_MODESET:
1667 drm_legacy_vblank_post_modeset(dev, pipe);
1668 break;
1669 default:
1670 return -EINVAL;
1671 }
1672
1673 return 0;
1674 }
1675
drm_queue_vblank_event(struct drm_device * dev,unsigned int pipe,u64 req_seq,union drm_wait_vblank * vblwait,struct drm_file * file_priv)1676 static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe,
1677 u64 req_seq,
1678 union drm_wait_vblank *vblwait,
1679 struct drm_file *file_priv)
1680 {
1681 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1682 struct drm_pending_vblank_event *e;
1683 ktime_t now;
1684 u64 seq;
1685 int ret;
1686
1687 e = kzalloc(sizeof(*e), GFP_KERNEL);
1688 if (e == NULL) {
1689 ret = -ENOMEM;
1690 goto err_put;
1691 }
1692
1693 e->pipe = pipe;
1694 e->event.base.type = DRM_EVENT_VBLANK;
1695 e->event.base.length = sizeof(e->event.vbl);
1696 e->event.vbl.user_data = vblwait->request.signal;
1697 e->event.vbl.crtc_id = 0;
1698 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1699 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1700
1701 if (crtc)
1702 e->event.vbl.crtc_id = crtc->base.id;
1703 }
1704
1705 spin_lock_irq(&dev->event_lock);
1706
1707 /*
1708 * drm_crtc_vblank_off() might have been called after we called
1709 * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
1710 * vblank disable, so no need for further locking. The reference from
1711 * drm_vblank_get() protects against vblank disable from another source.
1712 */
1713 if (!READ_ONCE(vblank->enabled)) {
1714 ret = -EINVAL;
1715 goto err_unlock;
1716 }
1717
1718 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
1719 &e->event.base);
1720
1721 if (ret)
1722 goto err_unlock;
1723
1724 seq = drm_vblank_count_and_time(dev, pipe, &now);
1725
1726 drm_dbg_core(dev, "event on vblank count %llu, current %llu, crtc %u\n",
1727 req_seq, seq, pipe);
1728
1729 trace_drm_vblank_event_queued(file_priv, pipe, req_seq);
1730
1731 e->sequence = req_seq;
1732 if (drm_vblank_passed(seq, req_seq)) {
1733 drm_vblank_put(dev, pipe);
1734 send_vblank_event(dev, e, seq, now);
1735 vblwait->reply.sequence = seq;
1736 } else {
1737 /* drm_handle_vblank_events will call drm_vblank_put */
1738 list_add_tail(&e->base.link, &dev->vblank_event_list);
1739 vblwait->reply.sequence = req_seq;
1740 }
1741
1742 spin_unlock_irq(&dev->event_lock);
1743
1744 return 0;
1745
1746 err_unlock:
1747 spin_unlock_irq(&dev->event_lock);
1748 kfree(e);
1749 err_put:
1750 drm_vblank_put(dev, pipe);
1751 return ret;
1752 }
1753
drm_wait_vblank_is_query(union drm_wait_vblank * vblwait)1754 static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait)
1755 {
1756 if (vblwait->request.sequence)
1757 return false;
1758
1759 return _DRM_VBLANK_RELATIVE ==
1760 (vblwait->request.type & (_DRM_VBLANK_TYPES_MASK |
1761 _DRM_VBLANK_EVENT |
1762 _DRM_VBLANK_NEXTONMISS));
1763 }
1764
1765 /*
1766 * Widen a 32-bit param to 64-bits.
1767 *
1768 * \param narrow 32-bit value (missing upper 32 bits)
1769 * \param near 64-bit value that should be 'close' to near
1770 *
1771 * This function returns a 64-bit value using the lower 32-bits from
1772 * 'narrow' and constructing the upper 32-bits so that the result is
1773 * as close as possible to 'near'.
1774 */
1775
widen_32_to_64(u32 narrow,u64 near)1776 static u64 widen_32_to_64(u32 narrow, u64 near)
1777 {
1778 return near + (s32) (narrow - near);
1779 }
1780
drm_wait_vblank_reply(struct drm_device * dev,unsigned int pipe,struct drm_wait_vblank_reply * reply)1781 static void drm_wait_vblank_reply(struct drm_device *dev, unsigned int pipe,
1782 struct drm_wait_vblank_reply *reply)
1783 {
1784 ktime_t now;
1785 struct timespec64 ts;
1786
1787 /*
1788 * drm_wait_vblank_reply is a UAPI structure that uses 'long'
1789 * to store the seconds. This is safe as we always use monotonic
1790 * timestamps since linux-4.15.
1791 */
1792 reply->sequence = drm_vblank_count_and_time(dev, pipe, &now);
1793 ts = ktime_to_timespec64(now);
1794 reply->tval_sec = (u32)ts.tv_sec;
1795 reply->tval_usec = ts.tv_nsec / 1000;
1796 }
1797
drm_wait_vblank_supported(struct drm_device * dev)1798 static bool drm_wait_vblank_supported(struct drm_device *dev)
1799 {
1800 #if IS_ENABLED(CONFIG_DRM_LEGACY)
1801 if (unlikely(drm_core_check_feature(dev, DRIVER_LEGACY)))
1802 return dev->irq_enabled;
1803 #endif
1804 return drm_dev_has_vblank(dev);
1805 }
1806
drm_wait_vblank_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1807 int drm_wait_vblank_ioctl(struct drm_device *dev, void *data,
1808 struct drm_file *file_priv)
1809 {
1810 struct drm_crtc *crtc;
1811 struct drm_vblank_crtc *vblank;
1812 union drm_wait_vblank *vblwait = data;
1813 int ret;
1814 u64 req_seq, seq;
1815 unsigned int pipe_index;
1816 unsigned int flags, pipe, high_pipe;
1817
1818 if (!drm_wait_vblank_supported(dev))
1819 return -EOPNOTSUPP;
1820
1821 if (vblwait->request.type & _DRM_VBLANK_SIGNAL)
1822 return -EINVAL;
1823
1824 if (vblwait->request.type &
1825 ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1826 _DRM_VBLANK_HIGH_CRTC_MASK)) {
1827 drm_dbg_core(dev,
1828 "Unsupported type value 0x%x, supported mask 0x%x\n",
1829 vblwait->request.type,
1830 (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1831 _DRM_VBLANK_HIGH_CRTC_MASK));
1832 return -EINVAL;
1833 }
1834
1835 flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK;
1836 high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK);
1837 if (high_pipe)
1838 pipe_index = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT;
1839 else
1840 pipe_index = flags & _DRM_VBLANK_SECONDARY ? 1 : 0;
1841
1842 /* Convert lease-relative crtc index into global crtc index */
1843 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1844 pipe = 0;
1845 drm_for_each_crtc(crtc, dev) {
1846 if (drm_lease_held(file_priv, crtc->base.id)) {
1847 if (pipe_index == 0)
1848 break;
1849 pipe_index--;
1850 }
1851 pipe++;
1852 }
1853 } else {
1854 pipe = pipe_index;
1855 }
1856
1857 if (pipe >= dev->num_crtcs)
1858 return -EINVAL;
1859
1860 vblank = &dev->vblank[pipe];
1861
1862 /* If the counter is currently enabled and accurate, short-circuit
1863 * queries to return the cached timestamp of the last vblank.
1864 */
1865 if (dev->vblank_disable_immediate &&
1866 drm_wait_vblank_is_query(vblwait) &&
1867 READ_ONCE(vblank->enabled)) {
1868 drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1869 return 0;
1870 }
1871
1872 ret = drm_vblank_get(dev, pipe);
1873 if (ret) {
1874 drm_dbg_core(dev,
1875 "crtc %d failed to acquire vblank counter, %d\n",
1876 pipe, ret);
1877 return ret;
1878 }
1879 seq = drm_vblank_count(dev, pipe);
1880
1881 switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) {
1882 case _DRM_VBLANK_RELATIVE:
1883 req_seq = seq + vblwait->request.sequence;
1884 vblwait->request.sequence = req_seq;
1885 vblwait->request.type &= ~_DRM_VBLANK_RELATIVE;
1886 break;
1887 case _DRM_VBLANK_ABSOLUTE:
1888 req_seq = widen_32_to_64(vblwait->request.sequence, seq);
1889 break;
1890 default:
1891 ret = -EINVAL;
1892 goto done;
1893 }
1894
1895 if ((flags & _DRM_VBLANK_NEXTONMISS) &&
1896 drm_vblank_passed(seq, req_seq)) {
1897 req_seq = seq + 1;
1898 vblwait->request.type &= ~_DRM_VBLANK_NEXTONMISS;
1899 vblwait->request.sequence = req_seq;
1900 }
1901
1902 if (flags & _DRM_VBLANK_EVENT) {
1903 /* must hold on to the vblank ref until the event fires
1904 * drm_vblank_put will be called asynchronously
1905 */
1906 return drm_queue_vblank_event(dev, pipe, req_seq, vblwait, file_priv);
1907 }
1908
1909 if (req_seq != seq) {
1910 int wait;
1911
1912 drm_dbg_core(dev, "waiting on vblank count %llu, crtc %u\n",
1913 req_seq, pipe);
1914 wait = wait_event_interruptible_timeout(vblank->queue,
1915 drm_vblank_passed(drm_vblank_count(dev, pipe), req_seq) ||
1916 !READ_ONCE(vblank->enabled),
1917 msecs_to_jiffies(3000));
1918
1919 switch (wait) {
1920 case 0:
1921 /* timeout */
1922 ret = -EBUSY;
1923 break;
1924 case -ERESTARTSYS:
1925 /* interrupted by signal */
1926 ret = -EINTR;
1927 break;
1928 default:
1929 ret = 0;
1930 break;
1931 }
1932 }
1933
1934 if (ret != -EINTR) {
1935 drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1936
1937 drm_dbg_core(dev, "crtc %d returning %u to client\n",
1938 pipe, vblwait->reply.sequence);
1939 } else {
1940 drm_dbg_core(dev, "crtc %d vblank wait interrupted by signal\n",
1941 pipe);
1942 }
1943
1944 done:
1945 drm_vblank_put(dev, pipe);
1946 return ret;
1947 }
1948
drm_handle_vblank_events(struct drm_device * dev,unsigned int pipe)1949 static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe)
1950 {
1951 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1952 bool high_prec = false;
1953 struct drm_pending_vblank_event *e, *t;
1954 ktime_t now;
1955 u64 seq;
1956
1957 assert_spin_locked(&dev->event_lock);
1958
1959 seq = drm_vblank_count_and_time(dev, pipe, &now);
1960
1961 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1962 if (e->pipe != pipe)
1963 continue;
1964 if (!drm_vblank_passed(seq, e->sequence))
1965 continue;
1966
1967 drm_dbg_core(dev, "vblank event on %llu, current %llu\n",
1968 e->sequence, seq);
1969
1970 list_del(&e->base.link);
1971 drm_vblank_put(dev, pipe);
1972 send_vblank_event(dev, e, seq, now);
1973 }
1974
1975 if (crtc && crtc->funcs->get_vblank_timestamp)
1976 high_prec = true;
1977
1978 trace_drm_vblank_event(pipe, seq, now, high_prec);
1979 }
1980
1981 /**
1982 * drm_handle_vblank - handle a vblank event
1983 * @dev: DRM device
1984 * @pipe: index of CRTC where this event occurred
1985 *
1986 * Drivers should call this routine in their vblank interrupt handlers to
1987 * update the vblank counter and send any signals that may be pending.
1988 *
1989 * This is the legacy version of drm_crtc_handle_vblank().
1990 */
drm_handle_vblank(struct drm_device * dev,unsigned int pipe)1991 bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe)
1992 {
1993 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1994 unsigned long irqflags;
1995 bool disable_irq;
1996
1997 if (drm_WARN_ON_ONCE(dev, !drm_dev_has_vblank(dev)))
1998 return false;
1999
2000 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
2001 return false;
2002
2003 spin_lock_irqsave(&dev->event_lock, irqflags);
2004
2005 /* Need timestamp lock to prevent concurrent execution with
2006 * vblank enable/disable, as this would cause inconsistent
2007 * or corrupted timestamps and vblank counts.
2008 */
2009 spin_lock(&dev->vblank_time_lock);
2010
2011 /* Vblank irq handling disabled. Nothing to do. */
2012 if (!vblank->enabled) {
2013 spin_unlock(&dev->vblank_time_lock);
2014 spin_unlock_irqrestore(&dev->event_lock, irqflags);
2015 return false;
2016 }
2017
2018 drm_update_vblank_count(dev, pipe, true);
2019
2020 spin_unlock(&dev->vblank_time_lock);
2021
2022 wake_up(&vblank->queue);
2023
2024 /* With instant-off, we defer disabling the interrupt until after
2025 * we finish processing the following vblank after all events have
2026 * been signaled. The disable has to be last (after
2027 * drm_handle_vblank_events) so that the timestamp is always accurate.
2028 */
2029 disable_irq = (dev->vblank_disable_immediate &&
2030 drm_vblank_offdelay > 0 &&
2031 !atomic_read(&vblank->refcount));
2032
2033 drm_handle_vblank_events(dev, pipe);
2034 drm_handle_vblank_works(vblank);
2035
2036 spin_unlock_irqrestore(&dev->event_lock, irqflags);
2037
2038 if (disable_irq)
2039 vblank_disable_fn(vblank);
2040
2041 return true;
2042 }
2043 EXPORT_SYMBOL(drm_handle_vblank);
2044
2045 /**
2046 * drm_crtc_handle_vblank - handle a vblank event
2047 * @crtc: where this event occurred
2048 *
2049 * Drivers should call this routine in their vblank interrupt handlers to
2050 * update the vblank counter and send any signals that may be pending.
2051 *
2052 * This is the native KMS version of drm_handle_vblank().
2053 *
2054 * Note that for a given vblank counter value drm_crtc_handle_vblank()
2055 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
2056 * provide a barrier: Any writes done before calling
2057 * drm_crtc_handle_vblank() will be visible to callers of the later
2058 * functions, if the vblank count is the same or a later one.
2059 *
2060 * See also &drm_vblank_crtc.count.
2061 *
2062 * Returns:
2063 * True if the event was successfully handled, false on failure.
2064 */
drm_crtc_handle_vblank(struct drm_crtc * crtc)2065 bool drm_crtc_handle_vblank(struct drm_crtc *crtc)
2066 {
2067 return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc));
2068 }
2069 EXPORT_SYMBOL(drm_crtc_handle_vblank);
2070
2071 /*
2072 * Get crtc VBLANK count.
2073 *
2074 * \param dev DRM device
2075 * \param data user argument, pointing to a drm_crtc_get_sequence structure.
2076 * \param file_priv drm file private for the user's open file descriptor
2077 */
2078
drm_crtc_get_sequence_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)2079 int drm_crtc_get_sequence_ioctl(struct drm_device *dev, void *data,
2080 struct drm_file *file_priv)
2081 {
2082 struct drm_crtc *crtc;
2083 struct drm_vblank_crtc *vblank;
2084 int pipe;
2085 struct drm_crtc_get_sequence *get_seq = data;
2086 ktime_t now;
2087 bool vblank_enabled;
2088 int ret;
2089
2090 if (!drm_core_check_feature(dev, DRIVER_MODESET))
2091 return -EOPNOTSUPP;
2092
2093 if (!drm_dev_has_vblank(dev))
2094 return -EOPNOTSUPP;
2095
2096 crtc = drm_crtc_find(dev, file_priv, get_seq->crtc_id);
2097 if (!crtc)
2098 return -ENOENT;
2099
2100 pipe = drm_crtc_index(crtc);
2101
2102 vblank = &dev->vblank[pipe];
2103 vblank_enabled = dev->vblank_disable_immediate && READ_ONCE(vblank->enabled);
2104
2105 if (!vblank_enabled) {
2106 ret = drm_crtc_vblank_get(crtc);
2107 if (ret) {
2108 drm_dbg_core(dev,
2109 "crtc %d failed to acquire vblank counter, %d\n",
2110 pipe, ret);
2111 return ret;
2112 }
2113 }
2114 drm_modeset_lock(&crtc->mutex, NULL);
2115 if (crtc->state)
2116 get_seq->active = crtc->state->enable;
2117 else
2118 get_seq->active = crtc->enabled;
2119 drm_modeset_unlock(&crtc->mutex);
2120 get_seq->sequence = drm_vblank_count_and_time(dev, pipe, &now);
2121 get_seq->sequence_ns = ktime_to_ns(now);
2122 if (!vblank_enabled)
2123 drm_crtc_vblank_put(crtc);
2124 return 0;
2125 }
2126
2127 /*
2128 * Queue a event for VBLANK sequence
2129 *
2130 * \param dev DRM device
2131 * \param data user argument, pointing to a drm_crtc_queue_sequence structure.
2132 * \param file_priv drm file private for the user's open file descriptor
2133 */
2134
drm_crtc_queue_sequence_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)2135 int drm_crtc_queue_sequence_ioctl(struct drm_device *dev, void *data,
2136 struct drm_file *file_priv)
2137 {
2138 struct drm_crtc *crtc;
2139 struct drm_vblank_crtc *vblank;
2140 int pipe;
2141 struct drm_crtc_queue_sequence *queue_seq = data;
2142 ktime_t now;
2143 struct drm_pending_vblank_event *e;
2144 u32 flags;
2145 u64 seq;
2146 u64 req_seq;
2147 int ret;
2148
2149 if (!drm_core_check_feature(dev, DRIVER_MODESET))
2150 return -EOPNOTSUPP;
2151
2152 if (!drm_dev_has_vblank(dev))
2153 return -EOPNOTSUPP;
2154
2155 crtc = drm_crtc_find(dev, file_priv, queue_seq->crtc_id);
2156 if (!crtc)
2157 return -ENOENT;
2158
2159 flags = queue_seq->flags;
2160 /* Check valid flag bits */
2161 if (flags & ~(DRM_CRTC_SEQUENCE_RELATIVE|
2162 DRM_CRTC_SEQUENCE_NEXT_ON_MISS))
2163 return -EINVAL;
2164
2165 pipe = drm_crtc_index(crtc);
2166
2167 vblank = &dev->vblank[pipe];
2168
2169 e = kzalloc(sizeof(*e), GFP_KERNEL);
2170 if (e == NULL)
2171 return -ENOMEM;
2172
2173 ret = drm_crtc_vblank_get(crtc);
2174 if (ret) {
2175 drm_dbg_core(dev,
2176 "crtc %d failed to acquire vblank counter, %d\n",
2177 pipe, ret);
2178 goto err_free;
2179 }
2180
2181 seq = drm_vblank_count_and_time(dev, pipe, &now);
2182 req_seq = queue_seq->sequence;
2183
2184 if (flags & DRM_CRTC_SEQUENCE_RELATIVE)
2185 req_seq += seq;
2186
2187 if ((flags & DRM_CRTC_SEQUENCE_NEXT_ON_MISS) && drm_vblank_passed(seq, req_seq))
2188 req_seq = seq + 1;
2189
2190 e->pipe = pipe;
2191 e->event.base.type = DRM_EVENT_CRTC_SEQUENCE;
2192 e->event.base.length = sizeof(e->event.seq);
2193 e->event.seq.user_data = queue_seq->user_data;
2194
2195 spin_lock_irq(&dev->event_lock);
2196
2197 /*
2198 * drm_crtc_vblank_off() might have been called after we called
2199 * drm_crtc_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
2200 * vblank disable, so no need for further locking. The reference from
2201 * drm_crtc_vblank_get() protects against vblank disable from another source.
2202 */
2203 if (!READ_ONCE(vblank->enabled)) {
2204 ret = -EINVAL;
2205 goto err_unlock;
2206 }
2207
2208 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
2209 &e->event.base);
2210
2211 if (ret)
2212 goto err_unlock;
2213
2214 e->sequence = req_seq;
2215
2216 if (drm_vblank_passed(seq, req_seq)) {
2217 drm_crtc_vblank_put(crtc);
2218 send_vblank_event(dev, e, seq, now);
2219 queue_seq->sequence = seq;
2220 } else {
2221 /* drm_handle_vblank_events will call drm_vblank_put */
2222 list_add_tail(&e->base.link, &dev->vblank_event_list);
2223 queue_seq->sequence = req_seq;
2224 }
2225
2226 spin_unlock_irq(&dev->event_lock);
2227 return 0;
2228
2229 err_unlock:
2230 spin_unlock_irq(&dev->event_lock);
2231 drm_crtc_vblank_put(crtc);
2232 err_free:
2233 kfree(e);
2234 return ret;
2235 }
2236
2237