1 /*	$NetBSD: drm_dp_helper.c,v 1.16 2021/12/19 12:41:54 riastradh Exp $	*/
2 
3 /*
4  * Copyright © 2009 Keith Packard
5  *
6  * Permission to use, copy, modify, distribute, and sell this software and its
7  * documentation for any purpose is hereby granted without fee, provided that
8  * the above copyright notice appear in all copies and that both that copyright
9  * notice and this permission notice appear in supporting documentation, and
10  * that the name of the copyright holders not be used in advertising or
11  * publicity pertaining to distribution of the software without specific,
12  * written prior permission.  The copyright holders make no representations
13  * about the suitability of this software for any purpose.  It is provided "as
14  * is" without express or implied warranty.
15  *
16  * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
17  * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
18  * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
19  * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
20  * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
21  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
22  * OF THIS SOFTWARE.
23  */
24 
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: drm_dp_helper.c,v 1.16 2021/12/19 12:41:54 riastradh Exp $");
27 
28 #include <linux/delay.h>
29 #include <linux/errno.h>
30 #include <linux/i2c.h>
31 #include <linux/init.h>
32 #include <linux/kernel.h>
33 #include <linux/module.h>
34 #include <linux/sched.h>
35 #include <linux/seq_file.h>
36 
37 #include <drm/drm_dp_helper.h>
38 #include <drm/drm_print.h>
39 #include <drm/drm_vblank.h>
40 #include <drm/drm_dp_mst_helper.h>
41 
42 #include "drm_crtc_helper_internal.h"
43 
44 #include <linux/nbsd-namespace.h>
45 
46 /**
47  * DOC: dp helpers
48  *
49  * These functions contain some common logic and helpers at various abstraction
50  * levels to deal with Display Port sink devices and related things like DP aux
51  * channel transfers, EDID reading over DP aux channels, decoding certain DPCD
52  * blocks, ...
53  */
54 
55 /* Helpers for DP link training */
dp_link_status(const u8 link_status[DP_LINK_STATUS_SIZE],int r)56 static u8 dp_link_status(const u8 link_status[DP_LINK_STATUS_SIZE], int r)
57 {
58 	return link_status[r - DP_LANE0_1_STATUS];
59 }
60 
dp_get_lane_status(const u8 link_status[DP_LINK_STATUS_SIZE],int lane)61 static u8 dp_get_lane_status(const u8 link_status[DP_LINK_STATUS_SIZE],
62 			     int lane)
63 {
64 	int i = DP_LANE0_1_STATUS + (lane >> 1);
65 	int s = (lane & 1) * 4;
66 	u8 l = dp_link_status(link_status, i);
67 	return (l >> s) & 0xf;
68 }
69 
drm_dp_channel_eq_ok(const u8 link_status[DP_LINK_STATUS_SIZE],int lane_count)70 bool drm_dp_channel_eq_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
71 			  int lane_count)
72 {
73 	u8 lane_align;
74 	u8 lane_status;
75 	int lane;
76 
77 	lane_align = dp_link_status(link_status,
78 				    DP_LANE_ALIGN_STATUS_UPDATED);
79 	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
80 		return false;
81 	for (lane = 0; lane < lane_count; lane++) {
82 		lane_status = dp_get_lane_status(link_status, lane);
83 		if ((lane_status & DP_CHANNEL_EQ_BITS) != DP_CHANNEL_EQ_BITS)
84 			return false;
85 	}
86 	return true;
87 }
88 EXPORT_SYMBOL(drm_dp_channel_eq_ok);
89 
drm_dp_clock_recovery_ok(const u8 link_status[DP_LINK_STATUS_SIZE],int lane_count)90 bool drm_dp_clock_recovery_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
91 			      int lane_count)
92 {
93 	int lane;
94 	u8 lane_status;
95 
96 	for (lane = 0; lane < lane_count; lane++) {
97 		lane_status = dp_get_lane_status(link_status, lane);
98 		if ((lane_status & DP_LANE_CR_DONE) == 0)
99 			return false;
100 	}
101 	return true;
102 }
103 EXPORT_SYMBOL(drm_dp_clock_recovery_ok);
104 
drm_dp_get_adjust_request_voltage(const u8 link_status[DP_LINK_STATUS_SIZE],int lane)105 u8 drm_dp_get_adjust_request_voltage(const u8 link_status[DP_LINK_STATUS_SIZE],
106 				     int lane)
107 {
108 	int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
109 	int s = ((lane & 1) ?
110 		 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
111 		 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
112 	u8 l = dp_link_status(link_status, i);
113 
114 	return ((l >> s) & 0x3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
115 }
116 EXPORT_SYMBOL(drm_dp_get_adjust_request_voltage);
117 
drm_dp_get_adjust_request_pre_emphasis(const u8 link_status[DP_LINK_STATUS_SIZE],int lane)118 u8 drm_dp_get_adjust_request_pre_emphasis(const u8 link_status[DP_LINK_STATUS_SIZE],
119 					  int lane)
120 {
121 	int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
122 	int s = ((lane & 1) ?
123 		 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
124 		 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
125 	u8 l = dp_link_status(link_status, i);
126 
127 	return ((l >> s) & 0x3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
128 }
129 EXPORT_SYMBOL(drm_dp_get_adjust_request_pre_emphasis);
130 
drm_dp_get_adjust_request_post_cursor(const u8 link_status[DP_LINK_STATUS_SIZE],unsigned int lane)131 u8 drm_dp_get_adjust_request_post_cursor(const u8 link_status[DP_LINK_STATUS_SIZE],
132 					 unsigned int lane)
133 {
134 	unsigned int offset = DP_ADJUST_REQUEST_POST_CURSOR2;
135 	u8 value = dp_link_status(link_status, offset);
136 
137 	return (value >> (lane << 1)) & 0x3;
138 }
139 EXPORT_SYMBOL(drm_dp_get_adjust_request_post_cursor);
140 
drm_dp_link_train_clock_recovery_delay(const u8 dpcd[DP_RECEIVER_CAP_SIZE])141 void drm_dp_link_train_clock_recovery_delay(const u8 dpcd[DP_RECEIVER_CAP_SIZE])
142 {
143 	unsigned long rd_interval = dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
144 					 DP_TRAINING_AUX_RD_MASK;
145 
146 	if (rd_interval > 4)
147 		DRM_DEBUG_KMS("AUX interval %lu, out of range (max 4)\n",
148 			      rd_interval);
149 
150 	if (rd_interval == 0 || dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14)
151 		rd_interval = 100;
152 	else
153 		rd_interval *= 4 * USEC_PER_MSEC;
154 
155 	usleep_range(rd_interval, rd_interval * 2);
156 }
157 EXPORT_SYMBOL(drm_dp_link_train_clock_recovery_delay);
158 
drm_dp_link_train_channel_eq_delay(const u8 dpcd[DP_RECEIVER_CAP_SIZE])159 void drm_dp_link_train_channel_eq_delay(const u8 dpcd[DP_RECEIVER_CAP_SIZE])
160 {
161 	unsigned long rd_interval = dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
162 					 DP_TRAINING_AUX_RD_MASK;
163 
164 	if (rd_interval > 4)
165 		DRM_DEBUG_KMS("AUX interval %lu, out of range (max 4)\n",
166 			      rd_interval);
167 
168 	if (rd_interval == 0)
169 		rd_interval = 400;
170 	else
171 		rd_interval *= 4 * USEC_PER_MSEC;
172 
173 	usleep_range(rd_interval, rd_interval * 2);
174 }
175 EXPORT_SYMBOL(drm_dp_link_train_channel_eq_delay);
176 
drm_dp_link_rate_to_bw_code(int link_rate)177 u8 drm_dp_link_rate_to_bw_code(int link_rate)
178 {
179 	/* Spec says link_bw = link_rate / 0.27Gbps */
180 	return link_rate / 27000;
181 }
182 EXPORT_SYMBOL(drm_dp_link_rate_to_bw_code);
183 
drm_dp_bw_code_to_link_rate(u8 link_bw)184 int drm_dp_bw_code_to_link_rate(u8 link_bw)
185 {
186 	/* Spec says link_rate = link_bw * 0.27Gbps */
187 	return link_bw * 27000;
188 }
189 EXPORT_SYMBOL(drm_dp_bw_code_to_link_rate);
190 
191 #define AUX_RETRY_INTERVAL 500 /* us */
192 
193 static inline void
drm_dp_dump_access(const struct drm_dp_aux * aux,u8 request,uint offset,void * buffer,int ret)194 drm_dp_dump_access(const struct drm_dp_aux *aux,
195 		   u8 request, uint offset, void *buffer, int ret)
196 {
197 	const char *arrow = request == DP_AUX_NATIVE_READ ? "->" : "<-";
198 
199 	if (ret > 0)
200 		DRM_DEBUG_DP("%s: 0x%05x AUX %s (ret=%3d) %*ph\n",
201 			     aux->name, offset, arrow, ret, min(ret, 20), buffer);
202 	else
203 		DRM_DEBUG_DP("%s: 0x%05x AUX %s (ret=%3d)\n",
204 			     aux->name, offset, arrow, ret);
205 }
206 
207 /**
208  * DOC: dp helpers
209  *
210  * The DisplayPort AUX channel is an abstraction to allow generic, driver-
211  * independent access to AUX functionality. Drivers can take advantage of
212  * this by filling in the fields of the drm_dp_aux structure.
213  *
214  * Transactions are described using a hardware-independent drm_dp_aux_msg
215  * structure, which is passed into a driver's .transfer() implementation.
216  * Both native and I2C-over-AUX transactions are supported.
217  */
218 
drm_dp_dpcd_access(struct drm_dp_aux * aux,u8 request,unsigned int offset,void * buffer,size_t size)219 static int drm_dp_dpcd_access(struct drm_dp_aux *aux, u8 request,
220 			      unsigned int offset, void *buffer, size_t size)
221 {
222 	struct drm_dp_aux_msg msg;
223 	unsigned int retry, native_reply;
224 	int err = 0, ret = 0;
225 
226 	memset(&msg, 0, sizeof(msg));
227 	msg.address = offset;
228 	msg.request = request;
229 	msg.buffer = buffer;
230 	msg.size = size;
231 
232 	mutex_lock(&aux->hw_mutex);
233 
234 	/*
235 	 * The specification doesn't give any recommendation on how often to
236 	 * retry native transactions. We used to retry 7 times like for
237 	 * aux i2c transactions but real world devices this wasn't
238 	 * sufficient, bump to 32 which makes Dell 4k monitors happier.
239 	 */
240 	for (retry = 0; retry < 32; retry++) {
241 		if (ret != 0 && ret != -ETIMEDOUT) {
242 			usleep_range(AUX_RETRY_INTERVAL,
243 				     AUX_RETRY_INTERVAL + 100);
244 		}
245 
246 		ret = aux->transfer(aux, &msg);
247 		if (ret >= 0) {
248 			native_reply = msg.reply & DP_AUX_NATIVE_REPLY_MASK;
249 			if (native_reply == DP_AUX_NATIVE_REPLY_ACK) {
250 				if (ret == size)
251 					goto unlock;
252 
253 				ret = -EPROTO;
254 			} else
255 				ret = -EIO;
256 		}
257 
258 		/*
259 		 * We want the error we return to be the error we received on
260 		 * the first transaction, since we may get a different error the
261 		 * next time we retry
262 		 */
263 		if (!err)
264 			err = ret;
265 	}
266 
267 	DRM_DEBUG_KMS("Too many retries, giving up. First error: %d\n", err);
268 	ret = err;
269 
270 unlock:
271 	mutex_unlock(&aux->hw_mutex);
272 	return ret;
273 }
274 
275 /**
276  * drm_dp_dpcd_read() - read a series of bytes from the DPCD
277  * @aux: DisplayPort AUX channel (SST or MST)
278  * @offset: address of the (first) register to read
279  * @buffer: buffer to store the register values
280  * @size: number of bytes in @buffer
281  *
282  * Returns the number of bytes transferred on success, or a negative error
283  * code on failure. -EIO is returned if the request was NAKed by the sink or
284  * if the retry count was exceeded. If not all bytes were transferred, this
285  * function returns -EPROTO. Errors from the underlying AUX channel transfer
286  * function, with the exception of -EBUSY (which causes the transaction to
287  * be retried), are propagated to the caller.
288  */
drm_dp_dpcd_read(struct drm_dp_aux * aux,unsigned int offset,void * buffer,size_t size)289 ssize_t drm_dp_dpcd_read(struct drm_dp_aux *aux, unsigned int offset,
290 			 void *buffer, size_t size)
291 {
292 	int ret;
293 
294 	/*
295 	 * HP ZR24w corrupts the first DPCD access after entering power save
296 	 * mode. Eg. on a read, the entire buffer will be filled with the same
297 	 * byte. Do a throw away read to avoid corrupting anything we care
298 	 * about. Afterwards things will work correctly until the monitor
299 	 * gets woken up and subsequently re-enters power save mode.
300 	 *
301 	 * The user pressing any button on the monitor is enough to wake it
302 	 * up, so there is no particularly good place to do the workaround.
303 	 * We just have to do it before any DPCD access and hope that the
304 	 * monitor doesn't power down exactly after the throw away read.
305 	 */
306 	if (!aux->is_remote) {
307 		ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, DP_DPCD_REV,
308 					 buffer, 1);
309 		if (ret != 1)
310 			goto out;
311 	}
312 
313 	if (aux->is_remote)
314 		ret = drm_dp_mst_dpcd_read(aux, offset, buffer, size);
315 	else
316 		ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset,
317 					 buffer, size);
318 
319 out:
320 	drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, buffer, ret);
321 	return ret;
322 }
323 EXPORT_SYMBOL(drm_dp_dpcd_read);
324 
325 /**
326  * drm_dp_dpcd_write() - write a series of bytes to the DPCD
327  * @aux: DisplayPort AUX channel (SST or MST)
328  * @offset: address of the (first) register to write
329  * @buffer: buffer containing the values to write
330  * @size: number of bytes in @buffer
331  *
332  * Returns the number of bytes transferred on success, or a negative error
333  * code on failure. -EIO is returned if the request was NAKed by the sink or
334  * if the retry count was exceeded. If not all bytes were transferred, this
335  * function returns -EPROTO. Errors from the underlying AUX channel transfer
336  * function, with the exception of -EBUSY (which causes the transaction to
337  * be retried), are propagated to the caller.
338  */
drm_dp_dpcd_write(struct drm_dp_aux * aux,unsigned int offset,void * buffer,size_t size)339 ssize_t drm_dp_dpcd_write(struct drm_dp_aux *aux, unsigned int offset,
340 			  void *buffer, size_t size)
341 {
342 	int ret;
343 
344 	if (aux->is_remote)
345 		ret = drm_dp_mst_dpcd_write(aux, offset, buffer, size);
346 	else
347 		ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_WRITE, offset,
348 					 buffer, size);
349 
350 	drm_dp_dump_access(aux, DP_AUX_NATIVE_WRITE, offset, buffer, ret);
351 	return ret;
352 }
353 EXPORT_SYMBOL(drm_dp_dpcd_write);
354 
355 /**
356  * drm_dp_dpcd_read_link_status() - read DPCD link status (bytes 0x202-0x207)
357  * @aux: DisplayPort AUX channel
358  * @status: buffer to store the link status in (must be at least 6 bytes)
359  *
360  * Returns the number of bytes transferred on success or a negative error
361  * code on failure.
362  */
drm_dp_dpcd_read_link_status(struct drm_dp_aux * aux,u8 status[DP_LINK_STATUS_SIZE])363 int drm_dp_dpcd_read_link_status(struct drm_dp_aux *aux,
364 				 u8 status[DP_LINK_STATUS_SIZE])
365 {
366 	return drm_dp_dpcd_read(aux, DP_LANE0_1_STATUS, status,
367 				DP_LINK_STATUS_SIZE);
368 }
369 EXPORT_SYMBOL(drm_dp_dpcd_read_link_status);
370 
371 /**
372  * drm_dp_downstream_max_clock() - extract branch device max
373  *                                 pixel rate for legacy VGA
374  *                                 converter or max TMDS clock
375  *                                 rate for others
376  * @dpcd: DisplayPort configuration data
377  * @port_cap: port capabilities
378  *
379  * Returns max clock in kHz on success or 0 if max clock not defined
380  */
drm_dp_downstream_max_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4])381 int drm_dp_downstream_max_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
382 				const u8 port_cap[4])
383 {
384 	int type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
385 	bool detailed_cap_info = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
386 		DP_DETAILED_CAP_INFO_AVAILABLE;
387 
388 	if (!detailed_cap_info)
389 		return 0;
390 
391 	switch (type) {
392 	case DP_DS_PORT_TYPE_VGA:
393 		return port_cap[1] * 8 * 1000;
394 	case DP_DS_PORT_TYPE_DVI:
395 	case DP_DS_PORT_TYPE_HDMI:
396 	case DP_DS_PORT_TYPE_DP_DUALMODE:
397 		return port_cap[1] * 2500;
398 	default:
399 		return 0;
400 	}
401 }
402 EXPORT_SYMBOL(drm_dp_downstream_max_clock);
403 
404 /**
405  * drm_dp_downstream_max_bpc() - extract branch device max
406  *                               bits per component
407  * @dpcd: DisplayPort configuration data
408  * @port_cap: port capabilities
409  *
410  * Returns max bpc on success or 0 if max bpc not defined
411  */
drm_dp_downstream_max_bpc(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4])412 int drm_dp_downstream_max_bpc(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
413 			      const u8 port_cap[4])
414 {
415 	int type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
416 	bool detailed_cap_info = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
417 		DP_DETAILED_CAP_INFO_AVAILABLE;
418 	int bpc;
419 
420 	if (!detailed_cap_info)
421 		return 0;
422 
423 	switch (type) {
424 	case DP_DS_PORT_TYPE_VGA:
425 	case DP_DS_PORT_TYPE_DVI:
426 	case DP_DS_PORT_TYPE_HDMI:
427 	case DP_DS_PORT_TYPE_DP_DUALMODE:
428 		bpc = port_cap[2] & DP_DS_MAX_BPC_MASK;
429 
430 		switch (bpc) {
431 		case DP_DS_8BPC:
432 			return 8;
433 		case DP_DS_10BPC:
434 			return 10;
435 		case DP_DS_12BPC:
436 			return 12;
437 		case DP_DS_16BPC:
438 			return 16;
439 		}
440 		/* fall through */
441 	default:
442 		return 0;
443 	}
444 }
445 EXPORT_SYMBOL(drm_dp_downstream_max_bpc);
446 
447 /**
448  * drm_dp_downstream_id() - identify branch device
449  * @aux: DisplayPort AUX channel
450  * @id: DisplayPort branch device id
451  *
452  * Returns branch device id on success or NULL on failure
453  */
drm_dp_downstream_id(struct drm_dp_aux * aux,char id[6])454 int drm_dp_downstream_id(struct drm_dp_aux *aux, char id[6])
455 {
456 	return drm_dp_dpcd_read(aux, DP_BRANCH_ID, id, 6);
457 }
458 EXPORT_SYMBOL(drm_dp_downstream_id);
459 
460 /**
461  * drm_dp_downstream_debug() - debug DP branch devices
462  * @m: pointer for debugfs file
463  * @dpcd: DisplayPort configuration data
464  * @port_cap: port capabilities
465  * @aux: DisplayPort AUX channel
466  *
467  */
468 #ifndef __NetBSD__
drm_dp_downstream_debug(struct seq_file * m,const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],struct drm_dp_aux * aux)469 void drm_dp_downstream_debug(struct seq_file *m,
470 			     const u8 dpcd[DP_RECEIVER_CAP_SIZE],
471 			     const u8 port_cap[4], struct drm_dp_aux *aux)
472 {
473 	bool detailed_cap_info = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
474 				 DP_DETAILED_CAP_INFO_AVAILABLE;
475 	int clk;
476 	int bpc;
477 	char id[7];
478 	int len;
479 	uint8_t rev[2];
480 	int type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
481 	bool branch_device = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
482 			     DP_DWN_STRM_PORT_PRESENT;
483 
484 	seq_printf(m, "\tDP branch device present: %s\n",
485 		   branch_device ? "yes" : "no");
486 
487 	if (!branch_device)
488 		return;
489 
490 	switch (type) {
491 	case DP_DS_PORT_TYPE_DP:
492 		seq_puts(m, "\t\tType: DisplayPort\n");
493 		break;
494 	case DP_DS_PORT_TYPE_VGA:
495 		seq_puts(m, "\t\tType: VGA\n");
496 		break;
497 	case DP_DS_PORT_TYPE_DVI:
498 		seq_puts(m, "\t\tType: DVI\n");
499 		break;
500 	case DP_DS_PORT_TYPE_HDMI:
501 		seq_puts(m, "\t\tType: HDMI\n");
502 		break;
503 	case DP_DS_PORT_TYPE_NON_EDID:
504 		seq_puts(m, "\t\tType: others without EDID support\n");
505 		break;
506 	case DP_DS_PORT_TYPE_DP_DUALMODE:
507 		seq_puts(m, "\t\tType: DP++\n");
508 		break;
509 	case DP_DS_PORT_TYPE_WIRELESS:
510 		seq_puts(m, "\t\tType: Wireless\n");
511 		break;
512 	default:
513 		seq_puts(m, "\t\tType: N/A\n");
514 	}
515 
516 	memset(id, 0, sizeof(id));
517 	drm_dp_downstream_id(aux, id);
518 	seq_printf(m, "\t\tID: %s\n", id);
519 
520 	len = drm_dp_dpcd_read(aux, DP_BRANCH_HW_REV, &rev[0], 1);
521 	if (len > 0)
522 		seq_printf(m, "\t\tHW: %d.%d\n",
523 			   (rev[0] & 0xf0) >> 4, rev[0] & 0xf);
524 
525 	len = drm_dp_dpcd_read(aux, DP_BRANCH_SW_REV, rev, 2);
526 	if (len > 0)
527 		seq_printf(m, "\t\tSW: %d.%d\n", rev[0], rev[1]);
528 
529 	if (detailed_cap_info) {
530 		clk = drm_dp_downstream_max_clock(dpcd, port_cap);
531 
532 		if (clk > 0) {
533 			if (type == DP_DS_PORT_TYPE_VGA)
534 				seq_printf(m, "\t\tMax dot clock: %d kHz\n", clk);
535 			else
536 				seq_printf(m, "\t\tMax TMDS clock: %d kHz\n", clk);
537 		}
538 
539 		bpc = drm_dp_downstream_max_bpc(dpcd, port_cap);
540 
541 		if (bpc > 0)
542 			seq_printf(m, "\t\tMax bpc: %d\n", bpc);
543 	}
544 }
545 EXPORT_SYMBOL(drm_dp_downstream_debug);
546 #endif
547 
548 /*
549  * I2C-over-AUX implementation
550  */
551 
drm_dp_i2c_functionality(struct i2c_adapter * adapter)552 static u32 drm_dp_i2c_functionality(struct i2c_adapter *adapter)
553 {
554 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
555 	       I2C_FUNC_SMBUS_READ_BLOCK_DATA |
556 	       I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
557 	       I2C_FUNC_10BIT_ADDR;
558 }
559 
drm_dp_i2c_msg_write_status_update(struct drm_dp_aux_msg * msg)560 static void drm_dp_i2c_msg_write_status_update(struct drm_dp_aux_msg *msg)
561 {
562 	/*
563 	 * In case of i2c defer or short i2c ack reply to a write,
564 	 * we need to switch to WRITE_STATUS_UPDATE to drain the
565 	 * rest of the message
566 	 */
567 	if ((msg->request & ~DP_AUX_I2C_MOT) == DP_AUX_I2C_WRITE) {
568 		msg->request &= DP_AUX_I2C_MOT;
569 		msg->request |= DP_AUX_I2C_WRITE_STATUS_UPDATE;
570 	}
571 }
572 
573 #define AUX_PRECHARGE_LEN 10 /* 10 to 16 */
574 #define AUX_SYNC_LEN (16 + 4) /* preamble + AUX_SYNC_END */
575 #define AUX_STOP_LEN 4
576 #define AUX_CMD_LEN 4
577 #define AUX_ADDRESS_LEN 20
578 #define AUX_REPLY_PAD_LEN 4
579 #define AUX_LENGTH_LEN 8
580 
581 /*
582  * Calculate the duration of the AUX request/reply in usec. Gives the
583  * "best" case estimate, ie. successful while as short as possible.
584  */
drm_dp_aux_req_duration(const struct drm_dp_aux_msg * msg)585 static int drm_dp_aux_req_duration(const struct drm_dp_aux_msg *msg)
586 {
587 	int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
588 		AUX_CMD_LEN + AUX_ADDRESS_LEN + AUX_LENGTH_LEN;
589 
590 	if ((msg->request & DP_AUX_I2C_READ) == 0)
591 		len += msg->size * 8;
592 
593 	return len;
594 }
595 
drm_dp_aux_reply_duration(const struct drm_dp_aux_msg * msg)596 static int drm_dp_aux_reply_duration(const struct drm_dp_aux_msg *msg)
597 {
598 	int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
599 		AUX_CMD_LEN + AUX_REPLY_PAD_LEN;
600 
601 	/*
602 	 * For read we expect what was asked. For writes there will
603 	 * be 0 or 1 data bytes. Assume 0 for the "best" case.
604 	 */
605 	if (msg->request & DP_AUX_I2C_READ)
606 		len += msg->size * 8;
607 
608 	return len;
609 }
610 
611 #define I2C_START_LEN 1
612 #define I2C_STOP_LEN 1
613 #define I2C_ADDR_LEN 9 /* ADDRESS + R/W + ACK/NACK */
614 #define I2C_DATA_LEN 9 /* DATA + ACK/NACK */
615 
616 /*
617  * Calculate the length of the i2c transfer in usec, assuming
618  * the i2c bus speed is as specified. Gives the the "worst"
619  * case estimate, ie. successful while as long as possible.
620  * Doesn't account the the "MOT" bit, and instead assumes each
621  * message includes a START, ADDRESS and STOP. Neither does it
622  * account for additional random variables such as clock stretching.
623  */
drm_dp_i2c_msg_duration(const struct drm_dp_aux_msg * msg,int i2c_speed_khz)624 static int drm_dp_i2c_msg_duration(const struct drm_dp_aux_msg *msg,
625 				   int i2c_speed_khz)
626 {
627 	/* AUX bitrate is 1MHz, i2c bitrate as specified */
628 	return DIV_ROUND_UP((I2C_START_LEN + I2C_ADDR_LEN +
629 			     msg->size * I2C_DATA_LEN +
630 			     I2C_STOP_LEN) * 1000, i2c_speed_khz);
631 }
632 
633 /*
634  * Deterine how many retries should be attempted to successfully transfer
635  * the specified message, based on the estimated durations of the
636  * i2c and AUX transfers.
637  */
drm_dp_i2c_retry_count(const struct drm_dp_aux_msg * msg,int i2c_speed_khz)638 static int drm_dp_i2c_retry_count(const struct drm_dp_aux_msg *msg,
639 			      int i2c_speed_khz)
640 {
641 	int aux_time_us = drm_dp_aux_req_duration(msg) +
642 		drm_dp_aux_reply_duration(msg);
643 	int i2c_time_us = drm_dp_i2c_msg_duration(msg, i2c_speed_khz);
644 
645 	return DIV_ROUND_UP(i2c_time_us, aux_time_us + AUX_RETRY_INTERVAL);
646 }
647 
648 /*
649  * FIXME currently assumes 10 kHz as some real world devices seem
650  * to require it. We should query/set the speed via DPCD if supported.
651  */
652 static int dp_aux_i2c_speed_khz __read_mostly = 10;
653 module_param_unsafe(dp_aux_i2c_speed_khz, int, 0644);
654 MODULE_PARM_DESC(dp_aux_i2c_speed_khz,
655 		 "Assumed speed of the i2c bus in kHz, (1-400, default 10)");
656 
657 /*
658  * Transfer a single I2C-over-AUX message and handle various error conditions,
659  * retrying the transaction as appropriate.  It is assumed that the
660  * &drm_dp_aux.transfer function does not modify anything in the msg other than the
661  * reply field.
662  *
663  * Returns bytes transferred on success, or a negative error code on failure.
664  */
drm_dp_i2c_do_msg(struct drm_dp_aux * aux,struct drm_dp_aux_msg * msg)665 static int drm_dp_i2c_do_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
666 {
667 	unsigned int retry, defer_i2c;
668 	int ret;
669 	/*
670 	 * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device
671 	 * is required to retry at least seven times upon receiving AUX_DEFER
672 	 * before giving up the AUX transaction.
673 	 *
674 	 * We also try to account for the i2c bus speed.
675 	 */
676 	int max_retries = max(7, drm_dp_i2c_retry_count(msg, dp_aux_i2c_speed_khz));
677 
678 	for (retry = 0, defer_i2c = 0; retry < (max_retries + defer_i2c); retry++) {
679 		ret = aux->transfer(aux, msg);
680 		if (ret < 0) {
681 			if (ret == -EBUSY)
682 				continue;
683 
684 			/*
685 			 * While timeouts can be errors, they're usually normal
686 			 * behavior (for instance, when a driver tries to
687 			 * communicate with a non-existant DisplayPort device).
688 			 * Avoid spamming the kernel log with timeout errors.
689 			 */
690 			if (ret == -ETIMEDOUT)
691 				DRM_DEBUG_KMS_RATELIMITED("transaction timed out\n");
692 			else
693 				DRM_DEBUG_KMS("transaction failed: %d\n", ret);
694 
695 			return ret;
696 		}
697 
698 
699 		switch (msg->reply & DP_AUX_NATIVE_REPLY_MASK) {
700 		case DP_AUX_NATIVE_REPLY_ACK:
701 			/*
702 			 * For I2C-over-AUX transactions this isn't enough, we
703 			 * need to check for the I2C ACK reply.
704 			 */
705 			break;
706 
707 		case DP_AUX_NATIVE_REPLY_NACK:
708 			DRM_DEBUG_KMS("native nack (result=%d, size=%zu)\n", ret, msg->size);
709 			return -EREMOTEIO;
710 
711 		case DP_AUX_NATIVE_REPLY_DEFER:
712 			DRM_DEBUG_KMS("native defer\n");
713 			/*
714 			 * We could check for I2C bit rate capabilities and if
715 			 * available adjust this interval. We could also be
716 			 * more careful with DP-to-legacy adapters where a
717 			 * long legacy cable may force very low I2C bit rates.
718 			 *
719 			 * For now just defer for long enough to hopefully be
720 			 * safe for all use-cases.
721 			 */
722 			usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
723 			continue;
724 
725 		default:
726 			DRM_ERROR("invalid native reply %#04x\n", msg->reply);
727 			return -EREMOTEIO;
728 		}
729 
730 		switch (msg->reply & DP_AUX_I2C_REPLY_MASK) {
731 		case DP_AUX_I2C_REPLY_ACK:
732 			/*
733 			 * Both native ACK and I2C ACK replies received. We
734 			 * can assume the transfer was successful.
735 			 */
736 			if (ret != msg->size)
737 				drm_dp_i2c_msg_write_status_update(msg);
738 			return ret;
739 
740 		case DP_AUX_I2C_REPLY_NACK:
741 			DRM_DEBUG_KMS("I2C nack (result=%d, size=%zu)\n",
742 				      ret, msg->size);
743 			aux->i2c_nack_count++;
744 			return -EREMOTEIO;
745 
746 		case DP_AUX_I2C_REPLY_DEFER:
747 			DRM_DEBUG_KMS("I2C defer\n");
748 			/* DP Compliance Test 4.2.2.5 Requirement:
749 			 * Must have at least 7 retries for I2C defers on the
750 			 * transaction to pass this test
751 			 */
752 			aux->i2c_defer_count++;
753 			if (defer_i2c < 7)
754 				defer_i2c++;
755 			usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
756 			drm_dp_i2c_msg_write_status_update(msg);
757 
758 			continue;
759 
760 		default:
761 			DRM_ERROR("invalid I2C reply %#04x\n", msg->reply);
762 			return -EREMOTEIO;
763 		}
764 	}
765 
766 	DRM_DEBUG_KMS("too many retries, giving up\n");
767 	return -EREMOTEIO;
768 }
769 
drm_dp_i2c_msg_set_request(struct drm_dp_aux_msg * msg,const struct i2c_msg * i2c_msg)770 static void drm_dp_i2c_msg_set_request(struct drm_dp_aux_msg *msg,
771 				       const struct i2c_msg *i2c_msg)
772 {
773 	msg->request = (i2c_msg->flags & I2C_M_RD) ?
774 		DP_AUX_I2C_READ : DP_AUX_I2C_WRITE;
775 	if (!(i2c_msg->flags & I2C_M_STOP))
776 		msg->request |= DP_AUX_I2C_MOT;
777 }
778 
779 /*
780  * Keep retrying drm_dp_i2c_do_msg until all data has been transferred.
781  *
782  * Returns an error code on failure, or a recommended transfer size on success.
783  */
drm_dp_i2c_drain_msg(struct drm_dp_aux * aux,struct drm_dp_aux_msg * orig_msg)784 static int drm_dp_i2c_drain_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *orig_msg)
785 {
786 	int err, ret = orig_msg->size;
787 	struct drm_dp_aux_msg msg = *orig_msg;
788 
789 	while (msg.size > 0) {
790 		err = drm_dp_i2c_do_msg(aux, &msg);
791 		if (err <= 0)
792 			return err == 0 ? -EPROTO : err;
793 
794 		if (err < msg.size && err < ret) {
795 			DRM_DEBUG_KMS("Partial I2C reply: requested %zu bytes got %d bytes\n",
796 				      msg.size, err);
797 			ret = err;
798 		}
799 
800 		msg.size -= err;
801 		msg.buffer += err;
802 	}
803 
804 	return ret;
805 }
806 
807 /*
808  * Bizlink designed DP->DVI-D Dual Link adapters require the I2C over AUX
809  * packets to be as large as possible. If not, the I2C transactions never
810  * succeed. Hence the default is maximum.
811  */
812 static int dp_aux_i2c_transfer_size __read_mostly = DP_AUX_MAX_PAYLOAD_BYTES;
813 module_param_unsafe(dp_aux_i2c_transfer_size, int, 0644);
814 MODULE_PARM_DESC(dp_aux_i2c_transfer_size,
815 		 "Number of bytes to transfer in a single I2C over DP AUX CH message, (1-16, default 16)");
816 
drm_dp_i2c_xfer(struct i2c_adapter * adapter,struct i2c_msg * msgs,int num)817 static int drm_dp_i2c_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs,
818 			   int num)
819 {
820 	struct drm_dp_aux *aux = adapter->algo_data;
821 	unsigned int i, j;
822 	unsigned transfer_size;
823 	struct drm_dp_aux_msg msg;
824 	int err = 0;
825 
826 	dp_aux_i2c_transfer_size = clamp(dp_aux_i2c_transfer_size, 1, DP_AUX_MAX_PAYLOAD_BYTES);
827 
828 	memset(&msg, 0, sizeof(msg));
829 
830 	for (i = 0; i < num; i++) {
831 		msg.address = msgs[i].addr;
832 		drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
833 		/* Send a bare address packet to start the transaction.
834 		 * Zero sized messages specify an address only (bare
835 		 * address) transaction.
836 		 */
837 		msg.buffer = NULL;
838 		msg.size = 0;
839 		err = drm_dp_i2c_do_msg(aux, &msg);
840 
841 		/*
842 		 * Reset msg.request in case in case it got
843 		 * changed into a WRITE_STATUS_UPDATE.
844 		 */
845 		drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
846 
847 		if (err < 0)
848 			break;
849 		/* We want each transaction to be as large as possible, but
850 		 * we'll go to smaller sizes if the hardware gives us a
851 		 * short reply.
852 		 */
853 		transfer_size = dp_aux_i2c_transfer_size;
854 		for (j = 0; j < msgs[i].len; j += msg.size) {
855 			msg.buffer = msgs[i].buf + j;
856 			msg.size = min(transfer_size, msgs[i].len - j);
857 
858 			err = drm_dp_i2c_drain_msg(aux, &msg);
859 
860 			/*
861 			 * Reset msg.request in case in case it got
862 			 * changed into a WRITE_STATUS_UPDATE.
863 			 */
864 			drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
865 
866 			if (err < 0)
867 				break;
868 			transfer_size = err;
869 		}
870 		if (err < 0)
871 			break;
872 	}
873 	if (err >= 0)
874 		err = num;
875 	/* Send a bare address packet to close out the transaction.
876 	 * Zero sized messages specify an address only (bare
877 	 * address) transaction.
878 	 */
879 	msg.request &= ~DP_AUX_I2C_MOT;
880 	msg.buffer = NULL;
881 	msg.size = 0;
882 	(void)drm_dp_i2c_do_msg(aux, &msg);
883 
884 	return err;
885 }
886 
887 static const struct i2c_algorithm drm_dp_i2c_algo = {
888 	.functionality = drm_dp_i2c_functionality,
889 	.master_xfer = drm_dp_i2c_xfer,
890 };
891 
i2c_to_aux(struct i2c_adapter * i2c)892 static struct drm_dp_aux *i2c_to_aux(struct i2c_adapter *i2c)
893 {
894 	return container_of(i2c, struct drm_dp_aux, ddc);
895 }
896 
lock_bus(struct i2c_adapter * i2c,unsigned int flags)897 static void lock_bus(struct i2c_adapter *i2c, unsigned int flags)
898 {
899 	mutex_lock(&i2c_to_aux(i2c)->hw_mutex);
900 }
901 
trylock_bus(struct i2c_adapter * i2c,unsigned int flags)902 static int trylock_bus(struct i2c_adapter *i2c, unsigned int flags)
903 {
904 	return mutex_trylock(&i2c_to_aux(i2c)->hw_mutex);
905 }
906 
unlock_bus(struct i2c_adapter * i2c,unsigned int flags)907 static void unlock_bus(struct i2c_adapter *i2c, unsigned int flags)
908 {
909 	mutex_unlock(&i2c_to_aux(i2c)->hw_mutex);
910 }
911 
912 static const struct i2c_lock_operations drm_dp_i2c_lock_ops = {
913 	.lock_bus = lock_bus,
914 	.trylock_bus = trylock_bus,
915 	.unlock_bus = unlock_bus,
916 };
917 
drm_dp_aux_get_crc(struct drm_dp_aux * aux,u8 * crc)918 static int drm_dp_aux_get_crc(struct drm_dp_aux *aux, u8 *crc)
919 {
920 	u8 buf, count;
921 	int ret;
922 
923 	ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
924 	if (ret < 0)
925 		return ret;
926 
927 	WARN_ON(!(buf & DP_TEST_SINK_START));
928 
929 	ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK_MISC, &buf);
930 	if (ret < 0)
931 		return ret;
932 
933 	count = buf & DP_TEST_COUNT_MASK;
934 	if (count == aux->crc_count)
935 		return -EAGAIN; /* No CRC yet */
936 
937 	aux->crc_count = count;
938 
939 	/*
940 	 * At DP_TEST_CRC_R_CR, there's 6 bytes containing CRC data, 2 bytes
941 	 * per component (RGB or CrYCb).
942 	 */
943 	ret = drm_dp_dpcd_read(aux, DP_TEST_CRC_R_CR, crc, 6);
944 	if (ret < 0)
945 		return ret;
946 
947 	return 0;
948 }
949 
drm_dp_aux_crc_work(struct work_struct * work)950 static void drm_dp_aux_crc_work(struct work_struct *work)
951 {
952 	struct drm_dp_aux *aux = container_of(work, struct drm_dp_aux,
953 					      crc_work);
954 	struct drm_crtc *crtc;
955 	u8 crc_bytes[6];
956 	uint32_t crcs[3];
957 	int ret;
958 
959 	if (WARN_ON(!aux->crtc))
960 		return;
961 
962 	crtc = aux->crtc;
963 	while (crtc->crc.opened) {
964 		drm_crtc_wait_one_vblank(crtc);
965 		if (!crtc->crc.opened)
966 			break;
967 
968 		ret = drm_dp_aux_get_crc(aux, crc_bytes);
969 		if (ret == -EAGAIN) {
970 			usleep_range(1000, 2000);
971 			ret = drm_dp_aux_get_crc(aux, crc_bytes);
972 		}
973 
974 		if (ret == -EAGAIN) {
975 			DRM_DEBUG_KMS("Get CRC failed after retrying: %d\n",
976 				      ret);
977 			continue;
978 		} else if (ret) {
979 			DRM_DEBUG_KMS("Failed to get a CRC: %d\n", ret);
980 			continue;
981 		}
982 
983 		crcs[0] = crc_bytes[0] | crc_bytes[1] << 8;
984 		crcs[1] = crc_bytes[2] | crc_bytes[3] << 8;
985 		crcs[2] = crc_bytes[4] | crc_bytes[5] << 8;
986 		drm_crtc_add_crc_entry(crtc, false, 0, crcs);
987 	}
988 }
989 
990 /**
991  * drm_dp_remote_aux_init() - minimally initialise a remote aux channel
992  * @aux: DisplayPort AUX channel
993  *
994  * Used for remote aux channel in general. Merely initialize the crc work
995  * struct.
996  */
drm_dp_remote_aux_init(struct drm_dp_aux * aux)997 void drm_dp_remote_aux_init(struct drm_dp_aux *aux)
998 {
999 	INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
1000 }
1001 EXPORT_SYMBOL(drm_dp_remote_aux_init);
1002 
1003 /**
1004  * drm_dp_aux_init() - minimally initialise an aux channel
1005  * @aux: DisplayPort AUX channel
1006  *
1007  * If you need to use the drm_dp_aux's i2c adapter prior to registering it
1008  * with the outside world, call drm_dp_aux_init() first. You must still
1009  * call drm_dp_aux_register() once the connector has been registered to
1010  * allow userspace access to the auxiliary DP channel.
1011  */
drm_dp_aux_init(struct drm_dp_aux * aux)1012 void drm_dp_aux_init(struct drm_dp_aux *aux)
1013 {
1014 	mutex_init(&aux->hw_mutex);
1015 	mutex_init(&aux->cec.lock);
1016 	INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
1017 
1018 	aux->ddc.algo = &drm_dp_i2c_algo;
1019 	aux->ddc.algo_data = aux;
1020 	aux->ddc.retries = 3;
1021 
1022 	aux->ddc.lock_ops = &drm_dp_i2c_lock_ops;
1023 }
1024 EXPORT_SYMBOL(drm_dp_aux_init);
1025 
1026 /**
1027  * drm_dp_aux_fini() - undo what drm_dp_aux_init() does.
1028  * @aux: DisplayPort AUX channel
1029  */
drm_dp_aux_fini(struct drm_dp_aux * aux)1030 void drm_dp_aux_fini(struct drm_dp_aux *aux)
1031 {
1032 	mutex_destroy(&aux->cec.lock);
1033 	mutex_destroy(&aux->hw_mutex);
1034 }
1035 EXPORT_SYMBOL(drm_dp_aux_fini);
1036 
1037 /**
1038  * drm_dp_aux_register() - initialise and register aux channel
1039  * @aux: DisplayPort AUX channel
1040  *
1041  * Automatically calls drm_dp_aux_init() if this hasn't been done yet.
1042  * This should only be called when the underlying &struct drm_connector is
1043  * initialiazed already. Therefore the best place to call this is from
1044  * &drm_connector_funcs.late_register. Not that drivers which don't follow this
1045  * will Oops when CONFIG_DRM_DP_AUX_CHARDEV is enabled.
1046  *
1047  * Drivers which need to use the aux channel before that point (e.g. at driver
1048  * load time, before drm_dev_register() has been called) need to call
1049  * drm_dp_aux_init().
1050  *
1051  * Returns 0 on success or a negative error code on failure.
1052  */
drm_dp_aux_register(struct drm_dp_aux * aux)1053 int drm_dp_aux_register(struct drm_dp_aux *aux)
1054 {
1055 	int ret;
1056 
1057 	if (!aux->ddc.algo)
1058 		drm_dp_aux_init(aux);
1059 
1060 	aux->ddc.class = I2C_CLASS_DDC;
1061 	aux->ddc.owner = THIS_MODULE;
1062 	aux->ddc.dev.parent = aux->dev;
1063 
1064 	strlcpy(aux->ddc.name, aux->name ? aux->name : dev_name(aux->dev),
1065 		sizeof(aux->ddc.name));
1066 
1067 	ret = drm_dp_aux_register_devnode(aux);
1068 	if (ret)
1069 		return ret;
1070 
1071 	ret = i2c_add_adapter(&aux->ddc);
1072 	if (ret) {
1073 		drm_dp_aux_unregister_devnode(aux);
1074 		return ret;
1075 	}
1076 
1077 	return 0;
1078 }
1079 EXPORT_SYMBOL(drm_dp_aux_register);
1080 
1081 /**
1082  * drm_dp_aux_unregister() - unregister an AUX adapter
1083  * @aux: DisplayPort AUX channel
1084  */
drm_dp_aux_unregister(struct drm_dp_aux * aux)1085 void drm_dp_aux_unregister(struct drm_dp_aux *aux)
1086 {
1087 	drm_dp_aux_unregister_devnode(aux);
1088 	i2c_del_adapter(&aux->ddc);
1089 	drm_dp_aux_fini(aux);
1090 }
1091 EXPORT_SYMBOL(drm_dp_aux_unregister);
1092 
1093 #define PSR_SETUP_TIME(x) [DP_PSR_SETUP_TIME_ ## x >> DP_PSR_SETUP_TIME_SHIFT] = (x)
1094 
1095 /**
1096  * drm_dp_psr_setup_time() - PSR setup in time usec
1097  * @psr_cap: PSR capabilities from DPCD
1098  *
1099  * Returns:
1100  * PSR setup time for the panel in microseconds,  negative
1101  * error code on failure.
1102  */
drm_dp_psr_setup_time(const u8 psr_cap[EDP_PSR_RECEIVER_CAP_SIZE])1103 int drm_dp_psr_setup_time(const u8 psr_cap[EDP_PSR_RECEIVER_CAP_SIZE])
1104 {
1105 	static const u16 psr_setup_time_us[] = {
1106 		PSR_SETUP_TIME(330),
1107 		PSR_SETUP_TIME(275),
1108 		PSR_SETUP_TIME(220),
1109 		PSR_SETUP_TIME(165),
1110 		PSR_SETUP_TIME(110),
1111 		PSR_SETUP_TIME(55),
1112 		PSR_SETUP_TIME(0),
1113 	};
1114 	int i;
1115 
1116 	i = (psr_cap[1] & DP_PSR_SETUP_TIME_MASK) >> DP_PSR_SETUP_TIME_SHIFT;
1117 	if (i >= ARRAY_SIZE(psr_setup_time_us))
1118 		return -EINVAL;
1119 
1120 	return psr_setup_time_us[i];
1121 }
1122 EXPORT_SYMBOL(drm_dp_psr_setup_time);
1123 
1124 #undef PSR_SETUP_TIME
1125 
1126 /**
1127  * drm_dp_start_crc() - start capture of frame CRCs
1128  * @aux: DisplayPort AUX channel
1129  * @crtc: CRTC displaying the frames whose CRCs are to be captured
1130  *
1131  * Returns 0 on success or a negative error code on failure.
1132  */
drm_dp_start_crc(struct drm_dp_aux * aux,struct drm_crtc * crtc)1133 int drm_dp_start_crc(struct drm_dp_aux *aux, struct drm_crtc *crtc)
1134 {
1135 	u8 buf;
1136 	int ret;
1137 
1138 	ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
1139 	if (ret < 0)
1140 		return ret;
1141 
1142 	ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK, buf | DP_TEST_SINK_START);
1143 	if (ret < 0)
1144 		return ret;
1145 
1146 	aux->crc_count = 0;
1147 	aux->crtc = crtc;
1148 	schedule_work(&aux->crc_work);
1149 
1150 	return 0;
1151 }
1152 EXPORT_SYMBOL(drm_dp_start_crc);
1153 
1154 /**
1155  * drm_dp_stop_crc() - stop capture of frame CRCs
1156  * @aux: DisplayPort AUX channel
1157  *
1158  * Returns 0 on success or a negative error code on failure.
1159  */
drm_dp_stop_crc(struct drm_dp_aux * aux)1160 int drm_dp_stop_crc(struct drm_dp_aux *aux)
1161 {
1162 	u8 buf;
1163 	int ret;
1164 
1165 	ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
1166 	if (ret < 0)
1167 		return ret;
1168 
1169 	ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK, buf & ~DP_TEST_SINK_START);
1170 	if (ret < 0)
1171 		return ret;
1172 
1173 	flush_work(&aux->crc_work);
1174 	aux->crtc = NULL;
1175 
1176 	return 0;
1177 }
1178 EXPORT_SYMBOL(drm_dp_stop_crc);
1179 
1180 struct dpcd_quirk {
1181 	u8 oui[3];
1182 	u8 device_id[6];
1183 	bool is_branch;
1184 	u32 quirks;
1185 };
1186 
1187 #define OUI(first, second, third) { (first), (second), (third) }
1188 #define DEVICE_ID(first, second, third, fourth, fifth, sixth) \
1189 	{ (first), (second), (third), (fourth), (fifth), (sixth) }
1190 
1191 #define DEVICE_ID_ANY	DEVICE_ID(0, 0, 0, 0, 0, 0)
1192 
1193 static const struct dpcd_quirk dpcd_quirk_list[] = {
1194 	/* Analogix 7737 needs reduced M and N at HBR2 link rates */
1195 	{ OUI(0x00, 0x22, 0xb9), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_CONSTANT_N) },
1196 	/* LG LP140WF6-SPM1 eDP panel */
1197 	{ OUI(0x00, 0x22, 0xb9), DEVICE_ID('s', 'i', 'v', 'a', 'r', 'T'), false, BIT(DP_DPCD_QUIRK_CONSTANT_N) },
1198 	/* Apple panels need some additional handling to support PSR */
1199 	{ OUI(0x00, 0x10, 0xfa), DEVICE_ID_ANY, false, BIT(DP_DPCD_QUIRK_NO_PSR) },
1200 	/* CH7511 seems to leave SINK_COUNT zeroed */
1201 	{ OUI(0x00, 0x00, 0x00), DEVICE_ID('C', 'H', '7', '5', '1', '1'), false, BIT(DP_DPCD_QUIRK_NO_SINK_COUNT) },
1202 	/* Synaptics DP1.4 MST hubs can support DSC without virtual DPCD */
1203 	{ OUI(0x90, 0xCC, 0x24), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_DSC_WITHOUT_VIRTUAL_DPCD) },
1204 };
1205 
1206 #undef OUI
1207 
1208 /*
1209  * Get a bit mask of DPCD quirks for the sink/branch device identified by
1210  * ident. The quirk data is shared but it's up to the drivers to act on the
1211  * data.
1212  *
1213  * For now, only the OUI (first three bytes) is used, but this may be extended
1214  * to device identification string and hardware/firmware revisions later.
1215  */
1216 static u32
drm_dp_get_quirks(const struct drm_dp_dpcd_ident * ident,bool is_branch)1217 drm_dp_get_quirks(const struct drm_dp_dpcd_ident *ident, bool is_branch)
1218 {
1219 	const struct dpcd_quirk *quirk;
1220 	u32 quirks = 0;
1221 	int i;
1222 	u8 any_device[] = DEVICE_ID_ANY;
1223 
1224 	for (i = 0; i < ARRAY_SIZE(dpcd_quirk_list); i++) {
1225 		quirk = &dpcd_quirk_list[i];
1226 
1227 		if (quirk->is_branch != is_branch)
1228 			continue;
1229 
1230 		if (memcmp(quirk->oui, ident->oui, sizeof(ident->oui)) != 0)
1231 			continue;
1232 
1233 		if (memcmp(quirk->device_id, any_device, sizeof(any_device)) != 0 &&
1234 		    memcmp(quirk->device_id, ident->device_id, sizeof(ident->device_id)) != 0)
1235 			continue;
1236 
1237 		quirks |= quirk->quirks;
1238 	}
1239 
1240 	return quirks;
1241 }
1242 
1243 #undef DEVICE_ID_ANY
1244 #undef DEVICE_ID
1245 
1246 /**
1247  * drm_dp_read_desc - read sink/branch descriptor from DPCD
1248  * @aux: DisplayPort AUX channel
1249  * @desc: Device decriptor to fill from DPCD
1250  * @is_branch: true for branch devices, false for sink devices
1251  *
1252  * Read DPCD 0x400 (sink) or 0x500 (branch) into @desc. Also debug log the
1253  * identification.
1254  *
1255  * Returns 0 on success or a negative error code on failure.
1256  */
drm_dp_read_desc(struct drm_dp_aux * aux,struct drm_dp_desc * desc,bool is_branch)1257 int drm_dp_read_desc(struct drm_dp_aux *aux, struct drm_dp_desc *desc,
1258 		     bool is_branch)
1259 {
1260 	struct drm_dp_dpcd_ident *ident = &desc->ident;
1261 	unsigned int offset = is_branch ? DP_BRANCH_OUI : DP_SINK_OUI;
1262 	int ret, dev_id_len;
1263 
1264 	ret = drm_dp_dpcd_read(aux, offset, ident, sizeof(*ident));
1265 	if (ret < 0)
1266 		return ret;
1267 
1268 	desc->quirks = drm_dp_get_quirks(ident, is_branch);
1269 
1270 	dev_id_len = strnlen(ident->device_id, sizeof(ident->device_id));
1271 
1272 	DRM_DEBUG_KMS("DP %s: OUI %*phD dev-ID %*pE HW-rev %d.%d SW-rev %d.%d quirks 0x%04x\n",
1273 		      is_branch ? "branch" : "sink",
1274 		      (int)sizeof(ident->oui), ident->oui,
1275 		      dev_id_len, ident->device_id,
1276 		      ident->hw_rev >> 4, ident->hw_rev & 0xf,
1277 		      ident->sw_major_rev, ident->sw_minor_rev,
1278 		      desc->quirks);
1279 
1280 	return 0;
1281 }
1282 EXPORT_SYMBOL(drm_dp_read_desc);
1283 
1284 /**
1285  * drm_dp_dsc_sink_max_slice_count() - Get the max slice count
1286  * supported by the DSC sink.
1287  * @dsc_dpcd: DSC capabilities from DPCD
1288  * @is_edp: true if its eDP, false for DP
1289  *
1290  * Read the slice capabilities DPCD register from DSC sink to get
1291  * the maximum slice count supported. This is used to populate
1292  * the DSC parameters in the &struct drm_dsc_config by the driver.
1293  * Driver creates an infoframe using these parameters to populate
1294  * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
1295  * infoframe using the helper function drm_dsc_pps_infoframe_pack()
1296  *
1297  * Returns:
1298  * Maximum slice count supported by DSC sink or 0 its invalid
1299  */
drm_dp_dsc_sink_max_slice_count(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],bool is_edp)1300 u8 drm_dp_dsc_sink_max_slice_count(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],
1301 				   bool is_edp)
1302 {
1303 	u8 slice_cap1 = dsc_dpcd[DP_DSC_SLICE_CAP_1 - DP_DSC_SUPPORT];
1304 
1305 	if (is_edp) {
1306 		/* For eDP, register DSC_SLICE_CAPABILITIES_1 gives slice count */
1307 		if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK)
1308 			return 4;
1309 		if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK)
1310 			return 2;
1311 		if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK)
1312 			return 1;
1313 	} else {
1314 		/* For DP, use values from DSC_SLICE_CAP_1 and DSC_SLICE_CAP2 */
1315 		u8 slice_cap2 = dsc_dpcd[DP_DSC_SLICE_CAP_2 - DP_DSC_SUPPORT];
1316 
1317 		if (slice_cap2 & DP_DSC_24_PER_DP_DSC_SINK)
1318 			return 24;
1319 		if (slice_cap2 & DP_DSC_20_PER_DP_DSC_SINK)
1320 			return 20;
1321 		if (slice_cap2 & DP_DSC_16_PER_DP_DSC_SINK)
1322 			return 16;
1323 		if (slice_cap1 & DP_DSC_12_PER_DP_DSC_SINK)
1324 			return 12;
1325 		if (slice_cap1 & DP_DSC_10_PER_DP_DSC_SINK)
1326 			return 10;
1327 		if (slice_cap1 & DP_DSC_8_PER_DP_DSC_SINK)
1328 			return 8;
1329 		if (slice_cap1 & DP_DSC_6_PER_DP_DSC_SINK)
1330 			return 6;
1331 		if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK)
1332 			return 4;
1333 		if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK)
1334 			return 2;
1335 		if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK)
1336 			return 1;
1337 	}
1338 
1339 	return 0;
1340 }
1341 EXPORT_SYMBOL(drm_dp_dsc_sink_max_slice_count);
1342 
1343 /**
1344  * drm_dp_dsc_sink_line_buf_depth() - Get the line buffer depth in bits
1345  * @dsc_dpcd: DSC capabilities from DPCD
1346  *
1347  * Read the DSC DPCD register to parse the line buffer depth in bits which is
1348  * number of bits of precision within the decoder line buffer supported by
1349  * the DSC sink. This is used to populate the DSC parameters in the
1350  * &struct drm_dsc_config by the driver.
1351  * Driver creates an infoframe using these parameters to populate
1352  * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
1353  * infoframe using the helper function drm_dsc_pps_infoframe_pack()
1354  *
1355  * Returns:
1356  * Line buffer depth supported by DSC panel or 0 its invalid
1357  */
drm_dp_dsc_sink_line_buf_depth(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])1358 u8 drm_dp_dsc_sink_line_buf_depth(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])
1359 {
1360 	u8 line_buf_depth = dsc_dpcd[DP_DSC_LINE_BUF_BIT_DEPTH - DP_DSC_SUPPORT];
1361 
1362 	switch (line_buf_depth & DP_DSC_LINE_BUF_BIT_DEPTH_MASK) {
1363 	case DP_DSC_LINE_BUF_BIT_DEPTH_9:
1364 		return 9;
1365 	case DP_DSC_LINE_BUF_BIT_DEPTH_10:
1366 		return 10;
1367 	case DP_DSC_LINE_BUF_BIT_DEPTH_11:
1368 		return 11;
1369 	case DP_DSC_LINE_BUF_BIT_DEPTH_12:
1370 		return 12;
1371 	case DP_DSC_LINE_BUF_BIT_DEPTH_13:
1372 		return 13;
1373 	case DP_DSC_LINE_BUF_BIT_DEPTH_14:
1374 		return 14;
1375 	case DP_DSC_LINE_BUF_BIT_DEPTH_15:
1376 		return 15;
1377 	case DP_DSC_LINE_BUF_BIT_DEPTH_16:
1378 		return 16;
1379 	case DP_DSC_LINE_BUF_BIT_DEPTH_8:
1380 		return 8;
1381 	}
1382 
1383 	return 0;
1384 }
1385 EXPORT_SYMBOL(drm_dp_dsc_sink_line_buf_depth);
1386 
1387 /**
1388  * drm_dp_dsc_sink_supported_input_bpcs() - Get all the input bits per component
1389  * values supported by the DSC sink.
1390  * @dsc_dpcd: DSC capabilities from DPCD
1391  * @dsc_bpc: An array to be filled by this helper with supported
1392  *           input bpcs.
1393  *
1394  * Read the DSC DPCD from the sink device to parse the supported bits per
1395  * component values. This is used to populate the DSC parameters
1396  * in the &struct drm_dsc_config by the driver.
1397  * Driver creates an infoframe using these parameters to populate
1398  * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
1399  * infoframe using the helper function drm_dsc_pps_infoframe_pack()
1400  *
1401  * Returns:
1402  * Number of input BPC values parsed from the DPCD
1403  */
drm_dp_dsc_sink_supported_input_bpcs(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],u8 dsc_bpc[3])1404 int drm_dp_dsc_sink_supported_input_bpcs(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],
1405 					 u8 dsc_bpc[3])
1406 {
1407 	int num_bpc = 0;
1408 	u8 color_depth = dsc_dpcd[DP_DSC_DEC_COLOR_DEPTH_CAP - DP_DSC_SUPPORT];
1409 
1410 	if (color_depth & DP_DSC_12_BPC)
1411 		dsc_bpc[num_bpc++] = 12;
1412 	if (color_depth & DP_DSC_10_BPC)
1413 		dsc_bpc[num_bpc++] = 10;
1414 	if (color_depth & DP_DSC_8_BPC)
1415 		dsc_bpc[num_bpc++] = 8;
1416 
1417 	return num_bpc;
1418 }
1419 EXPORT_SYMBOL(drm_dp_dsc_sink_supported_input_bpcs);
1420