xref: /openbsd/sys/dev/pci/drm/drm_vblank.c (revision f005ef32)
1 /*
2  * drm_irq.c IRQ and vblank support
3  *
4  * \author Rickard E. (Rik) Faith <faith@valinux.com>
5  * \author Gareth Hughes <gareth@valinux.com>
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the "Software"),
9  * to deal in the Software without restriction, including without limitation
10  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11  * and/or sell copies of the Software, and to permit persons to whom the
12  * Software is furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the next
15  * paragraph) shall be included in all copies or substantial portions of the
16  * Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
21  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
22  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
23  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
24  * OTHER DEALINGS IN THE SOFTWARE.
25  */
26 
27 #include <linux/export.h>
28 #include <linux/kthread.h>
29 #include <linux/moduleparam.h>
30 
31 #include <drm/drm_crtc.h>
32 #include <drm/drm_drv.h>
33 #include <drm/drm_framebuffer.h>
34 #include <drm/drm_managed.h>
35 #include <drm/drm_modeset_helper_vtables.h>
36 #include <drm/drm_print.h>
37 #include <drm/drm_vblank.h>
38 
39 #include "drm_internal.h"
40 #include "drm_trace.h"
41 
42 /**
43  * DOC: vblank handling
44  *
45  * From the computer's perspective, every time the monitor displays
46  * a new frame the scanout engine has "scanned out" the display image
47  * from top to bottom, one row of pixels at a time. The current row
48  * of pixels is referred to as the current scanline.
49  *
50  * In addition to the display's visible area, there's usually a couple of
51  * extra scanlines which aren't actually displayed on the screen.
52  * These extra scanlines don't contain image data and are occasionally used
53  * for features like audio and infoframes. The region made up of these
54  * scanlines is referred to as the vertical blanking region, or vblank for
55  * short.
56  *
57  * For historical reference, the vertical blanking period was designed to
58  * give the electron gun (on CRTs) enough time to move back to the top of
59  * the screen to start scanning out the next frame. Similar for horizontal
60  * blanking periods. They were designed to give the electron gun enough
61  * time to move back to the other side of the screen to start scanning the
62  * next scanline.
63  *
64  * ::
65  *
66  *
67  *    physical →   ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽
68  *    top of      |                                        |
69  *    display     |                                        |
70  *                |               New frame                |
71  *                |                                        |
72  *                |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓|
73  *                |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~| ← Scanline,
74  *                |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓|   updates the
75  *                |                                        |   frame as it
76  *                |                                        |   travels down
77  *                |                                        |   ("scan out")
78  *                |               Old frame                |
79  *                |                                        |
80  *                |                                        |
81  *                |                                        |
82  *                |                                        |   physical
83  *                |                                        |   bottom of
84  *    vertical    |⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽| ← display
85  *    blanking    ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆
86  *    region   →  ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆
87  *                ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆
88  *    start of →   ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽
89  *    new frame
90  *
91  * "Physical top of display" is the reference point for the high-precision/
92  * corrected timestamp.
93  *
94  * On a lot of display hardware, programming needs to take effect during the
95  * vertical blanking period so that settings like gamma, the image buffer
96  * buffer to be scanned out, etc. can safely be changed without showing
97  * any visual artifacts on the screen. In some unforgiving hardware, some of
98  * this programming has to both start and end in the same vblank. To help
99  * with the timing of the hardware programming, an interrupt is usually
100  * available to notify the driver when it can start the updating of registers.
101  * The interrupt is in this context named the vblank interrupt.
102  *
103  * The vblank interrupt may be fired at different points depending on the
104  * hardware. Some hardware implementations will fire the interrupt when the
105  * new frame start, other implementations will fire the interrupt at different
106  * points in time.
107  *
108  * Vertical blanking plays a major role in graphics rendering. To achieve
109  * tear-free display, users must synchronize page flips and/or rendering to
110  * vertical blanking. The DRM API offers ioctls to perform page flips
111  * synchronized to vertical blanking and wait for vertical blanking.
112  *
113  * The DRM core handles most of the vertical blanking management logic, which
114  * involves filtering out spurious interrupts, keeping race-free blanking
115  * counters, coping with counter wrap-around and resets and keeping use counts.
116  * It relies on the driver to generate vertical blanking interrupts and
117  * optionally provide a hardware vertical blanking counter.
118  *
119  * Drivers must initialize the vertical blanking handling core with a call to
120  * drm_vblank_init(). Minimally, a driver needs to implement
121  * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call
122  * drm_crtc_handle_vblank() in its vblank interrupt handler for working vblank
123  * support.
124  *
125  * Vertical blanking interrupts can be enabled by the DRM core or by drivers
126  * themselves (for instance to handle page flipping operations).  The DRM core
127  * maintains a vertical blanking use count to ensure that the interrupts are not
128  * disabled while a user still needs them. To increment the use count, drivers
129  * call drm_crtc_vblank_get() and release the vblank reference again with
130  * drm_crtc_vblank_put(). In between these two calls vblank interrupts are
131  * guaranteed to be enabled.
132  *
133  * On many hardware disabling the vblank interrupt cannot be done in a race-free
134  * manner, see &drm_driver.vblank_disable_immediate and
135  * &drm_driver.max_vblank_count. In that case the vblank core only disables the
136  * vblanks after a timer has expired, which can be configured through the
137  * ``vblankoffdelay`` module parameter.
138  *
139  * Drivers for hardware without support for vertical-blanking interrupts
140  * must not call drm_vblank_init(). For such drivers, atomic helpers will
141  * automatically generate fake vblank events as part of the display update.
142  * This functionality also can be controlled by the driver by enabling and
143  * disabling struct drm_crtc_state.no_vblank.
144  */
145 
146 /* Retry timestamp calculation up to 3 times to satisfy
147  * drm_timestamp_precision before giving up.
148  */
149 #define DRM_TIMESTAMP_MAXRETRIES 3
150 
151 /* Threshold in nanoseconds for detection of redundant
152  * vblank irq in drm_handle_vblank(). 1 msec should be ok.
153  */
154 #define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000
155 
156 static bool
157 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
158 			  ktime_t *tvblank, bool in_vblank_irq);
159 
160 static unsigned int drm_timestamp_precision = 20;  /* Default to 20 usecs. */
161 
162 static int drm_vblank_offdelay = 5000;    /* Default to 5000 msecs. */
163 
164 module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600);
165 module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600);
166 MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)");
167 MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]");
168 
store_vblank(struct drm_device * dev,unsigned int pipe,u32 vblank_count_inc,ktime_t t_vblank,u32 last)169 static void store_vblank(struct drm_device *dev, unsigned int pipe,
170 			 u32 vblank_count_inc,
171 			 ktime_t t_vblank, u32 last)
172 {
173 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
174 
175 	assert_spin_locked(&dev->vblank_time_lock);
176 
177 	vblank->last = last;
178 
179 	write_seqlock(&vblank->seqlock);
180 	vblank->time = t_vblank;
181 	atomic64_add(vblank_count_inc, &vblank->count);
182 	write_sequnlock(&vblank->seqlock);
183 }
184 
drm_max_vblank_count(struct drm_device * dev,unsigned int pipe)185 static u32 drm_max_vblank_count(struct drm_device *dev, unsigned int pipe)
186 {
187 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
188 
189 	return vblank->max_vblank_count ?: dev->max_vblank_count;
190 }
191 
192 /*
193  * "No hw counter" fallback implementation of .get_vblank_counter() hook,
194  * if there is no usable hardware frame counter available.
195  */
drm_vblank_no_hw_counter(struct drm_device * dev,unsigned int pipe)196 static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe)
197 {
198 	drm_WARN_ON_ONCE(dev, drm_max_vblank_count(dev, pipe) != 0);
199 	return 0;
200 }
201 
__get_vblank_counter(struct drm_device * dev,unsigned int pipe)202 static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe)
203 {
204 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
205 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
206 
207 		if (drm_WARN_ON(dev, !crtc))
208 			return 0;
209 
210 		if (crtc->funcs->get_vblank_counter)
211 			return crtc->funcs->get_vblank_counter(crtc);
212 	}
213 #ifdef CONFIG_DRM_LEGACY
214 	else if (dev->driver->get_vblank_counter) {
215 		return dev->driver->get_vblank_counter(dev, pipe);
216 	}
217 #endif
218 
219 	return drm_vblank_no_hw_counter(dev, pipe);
220 }
221 
222 /*
223  * Reset the stored timestamp for the current vblank count to correspond
224  * to the last vblank occurred.
225  *
226  * Only to be called from drm_crtc_vblank_on().
227  *
228  * Note: caller must hold &drm_device.vbl_lock since this reads & writes
229  * device vblank fields.
230  */
drm_reset_vblank_timestamp(struct drm_device * dev,unsigned int pipe)231 static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe)
232 {
233 	u32 cur_vblank;
234 	bool rc;
235 	ktime_t t_vblank;
236 	int count = DRM_TIMESTAMP_MAXRETRIES;
237 
238 	spin_lock(&dev->vblank_time_lock);
239 
240 	/*
241 	 * sample the current counter to avoid random jumps
242 	 * when drm_vblank_enable() applies the diff
243 	 */
244 	do {
245 		cur_vblank = __get_vblank_counter(dev, pipe);
246 		rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
247 	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
248 
249 	/*
250 	 * Only reinitialize corresponding vblank timestamp if high-precision query
251 	 * available and didn't fail. Otherwise reinitialize delayed at next vblank
252 	 * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid.
253 	 */
254 	if (!rc)
255 		t_vblank = 0;
256 
257 	/*
258 	 * +1 to make sure user will never see the same
259 	 * vblank counter value before and after a modeset
260 	 */
261 	store_vblank(dev, pipe, 1, t_vblank, cur_vblank);
262 
263 	spin_unlock(&dev->vblank_time_lock);
264 }
265 
266 /*
267  * Call back into the driver to update the appropriate vblank counter
268  * (specified by @pipe).  Deal with wraparound, if it occurred, and
269  * update the last read value so we can deal with wraparound on the next
270  * call if necessary.
271  *
272  * Only necessary when going from off->on, to account for frames we
273  * didn't get an interrupt for.
274  *
275  * Note: caller must hold &drm_device.vbl_lock since this reads & writes
276  * device vblank fields.
277  */
drm_update_vblank_count(struct drm_device * dev,unsigned int pipe,bool in_vblank_irq)278 static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe,
279 				    bool in_vblank_irq)
280 {
281 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
282 	u32 cur_vblank, diff;
283 	bool rc;
284 	ktime_t t_vblank;
285 	int count = DRM_TIMESTAMP_MAXRETRIES;
286 	int framedur_ns = vblank->framedur_ns;
287 	u32 max_vblank_count = drm_max_vblank_count(dev, pipe);
288 
289 	/*
290 	 * Interrupts were disabled prior to this call, so deal with counter
291 	 * wrap if needed.
292 	 * NOTE!  It's possible we lost a full dev->max_vblank_count + 1 events
293 	 * here if the register is small or we had vblank interrupts off for
294 	 * a long time.
295 	 *
296 	 * We repeat the hardware vblank counter & timestamp query until
297 	 * we get consistent results. This to prevent races between gpu
298 	 * updating its hardware counter while we are retrieving the
299 	 * corresponding vblank timestamp.
300 	 */
301 	do {
302 		cur_vblank = __get_vblank_counter(dev, pipe);
303 		rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq);
304 	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
305 
306 	if (max_vblank_count) {
307 		/* trust the hw counter when it's around */
308 		diff = (cur_vblank - vblank->last) & max_vblank_count;
309 	} else if (rc && framedur_ns) {
310 		u64 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
311 
312 		/*
313 		 * Figure out how many vblanks we've missed based
314 		 * on the difference in the timestamps and the
315 		 * frame/field duration.
316 		 */
317 
318 		drm_dbg_vbl(dev, "crtc %u: Calculating number of vblanks."
319 			    " diff_ns = %lld, framedur_ns = %d)\n",
320 			    pipe, (long long)diff_ns, framedur_ns);
321 
322 		diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
323 
324 		if (diff == 0 && in_vblank_irq)
325 			drm_dbg_vbl(dev, "crtc %u: Redundant vblirq ignored\n",
326 				    pipe);
327 	} else {
328 		/* some kind of default for drivers w/o accurate vbl timestamping */
329 		diff = in_vblank_irq ? 1 : 0;
330 	}
331 
332 	/*
333 	 * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset
334 	 * interval? If so then vblank irqs keep running and it will likely
335 	 * happen that the hardware vblank counter is not trustworthy as it
336 	 * might reset at some point in that interval and vblank timestamps
337 	 * are not trustworthy either in that interval. Iow. this can result
338 	 * in a bogus diff >> 1 which must be avoided as it would cause
339 	 * random large forward jumps of the software vblank counter.
340 	 */
341 	if (diff > 1 && (vblank->inmodeset & 0x2)) {
342 		drm_dbg_vbl(dev,
343 			    "clamping vblank bump to 1 on crtc %u: diffr=%u"
344 			    " due to pre-modeset.\n", pipe, diff);
345 		diff = 1;
346 	}
347 
348 	drm_dbg_vbl(dev, "updating vblank count on crtc %u:"
349 		    " current=%llu, diff=%u, hw=%u hw_last=%u\n",
350 		    pipe, (unsigned long long)atomic64_read(&vblank->count),
351 		    diff, cur_vblank, vblank->last);
352 
353 	if (diff == 0) {
354 		drm_WARN_ON_ONCE(dev, cur_vblank != vblank->last);
355 		return;
356 	}
357 
358 	/*
359 	 * Only reinitialize corresponding vblank timestamp if high-precision query
360 	 * available and didn't fail, or we were called from the vblank interrupt.
361 	 * Otherwise reinitialize delayed at next vblank interrupt and assign 0
362 	 * for now, to mark the vblanktimestamp as invalid.
363 	 */
364 	if (!rc && !in_vblank_irq)
365 		t_vblank = 0;
366 
367 	store_vblank(dev, pipe, diff, t_vblank, cur_vblank);
368 }
369 
drm_vblank_count(struct drm_device * dev,unsigned int pipe)370 u64 drm_vblank_count(struct drm_device *dev, unsigned int pipe)
371 {
372 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
373 	u64 count;
374 
375 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
376 		return 0;
377 
378 	count = atomic64_read(&vblank->count);
379 
380 	/*
381 	 * This read barrier corresponds to the implicit write barrier of the
382 	 * write seqlock in store_vblank(). Note that this is the only place
383 	 * where we need an explicit barrier, since all other access goes
384 	 * through drm_vblank_count_and_time(), which already has the required
385 	 * read barrier curtesy of the read seqlock.
386 	 */
387 	smp_rmb();
388 
389 	return count;
390 }
391 
392 /**
393  * drm_crtc_accurate_vblank_count - retrieve the master vblank counter
394  * @crtc: which counter to retrieve
395  *
396  * This function is similar to drm_crtc_vblank_count() but this function
397  * interpolates to handle a race with vblank interrupts using the high precision
398  * timestamping support.
399  *
400  * This is mostly useful for hardware that can obtain the scanout position, but
401  * doesn't have a hardware frame counter.
402  */
drm_crtc_accurate_vblank_count(struct drm_crtc * crtc)403 u64 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc)
404 {
405 	struct drm_device *dev = crtc->dev;
406 	unsigned int pipe = drm_crtc_index(crtc);
407 	u64 vblank;
408 	unsigned long flags;
409 
410 	drm_WARN_ONCE(dev, drm_debug_enabled(DRM_UT_VBL) &&
411 		      !crtc->funcs->get_vblank_timestamp,
412 		      "This function requires support for accurate vblank timestamps.");
413 
414 	spin_lock_irqsave(&dev->vblank_time_lock, flags);
415 
416 	drm_update_vblank_count(dev, pipe, false);
417 	vblank = drm_vblank_count(dev, pipe);
418 
419 	spin_unlock_irqrestore(&dev->vblank_time_lock, flags);
420 
421 	return vblank;
422 }
423 EXPORT_SYMBOL(drm_crtc_accurate_vblank_count);
424 
__disable_vblank(struct drm_device * dev,unsigned int pipe)425 static void __disable_vblank(struct drm_device *dev, unsigned int pipe)
426 {
427 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
428 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
429 
430 		if (drm_WARN_ON(dev, !crtc))
431 			return;
432 
433 		if (crtc->funcs->disable_vblank)
434 			crtc->funcs->disable_vblank(crtc);
435 	}
436 #ifdef CONFIG_DRM_LEGACY
437 	else {
438 		dev->driver->disable_vblank(dev, pipe);
439 	}
440 #endif
441 }
442 
443 /*
444  * Disable vblank irq's on crtc, make sure that last vblank count
445  * of hardware and corresponding consistent software vblank counter
446  * are preserved, even if there are any spurious vblank irq's after
447  * disable.
448  */
drm_vblank_disable_and_save(struct drm_device * dev,unsigned int pipe)449 void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe)
450 {
451 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
452 	unsigned long irqflags;
453 
454 	assert_spin_locked(&dev->vbl_lock);
455 
456 	/* Prevent vblank irq processing while disabling vblank irqs,
457 	 * so no updates of timestamps or count can happen after we've
458 	 * disabled. Needed to prevent races in case of delayed irq's.
459 	 */
460 	spin_lock_irqsave(&dev->vblank_time_lock, irqflags);
461 
462 	/*
463 	 * Update vblank count and disable vblank interrupts only if the
464 	 * interrupts were enabled. This avoids calling the ->disable_vblank()
465 	 * operation in atomic context with the hardware potentially runtime
466 	 * suspended.
467 	 */
468 	if (!vblank->enabled)
469 		goto out;
470 
471 	/*
472 	 * Update the count and timestamp to maintain the
473 	 * appearance that the counter has been ticking all along until
474 	 * this time. This makes the count account for the entire time
475 	 * between drm_crtc_vblank_on() and drm_crtc_vblank_off().
476 	 */
477 	drm_update_vblank_count(dev, pipe, false);
478 	__disable_vblank(dev, pipe);
479 	vblank->enabled = false;
480 
481 out:
482 	spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags);
483 }
484 
vblank_disable_fn(void * arg)485 static void vblank_disable_fn(void *arg)
486 {
487 	struct drm_vblank_crtc *vblank = arg;
488 	struct drm_device *dev = vblank->dev;
489 	unsigned int pipe = vblank->pipe;
490 	unsigned long irqflags;
491 
492 	spin_lock_irqsave(&dev->vbl_lock, irqflags);
493 	if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) {
494 		drm_dbg_core(dev, "disabling vblank on crtc %u\n", pipe);
495 		drm_vblank_disable_and_save(dev, pipe);
496 	}
497 	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
498 }
499 
drm_vblank_init_release(struct drm_device * dev,void * ptr)500 static void drm_vblank_init_release(struct drm_device *dev, void *ptr)
501 {
502 	struct drm_vblank_crtc *vblank = ptr;
503 
504 	drm_WARN_ON(dev, READ_ONCE(vblank->enabled) &&
505 		    drm_core_check_feature(dev, DRIVER_MODESET));
506 
507 	drm_vblank_destroy_worker(vblank);
508 	del_timer_sync(&vblank->disable_timer);
509 }
510 
511 /**
512  * drm_vblank_init - initialize vblank support
513  * @dev: DRM device
514  * @num_crtcs: number of CRTCs supported by @dev
515  *
516  * This function initializes vblank support for @num_crtcs display pipelines.
517  * Cleanup is handled automatically through a cleanup function added with
518  * drmm_add_action_or_reset().
519  *
520  * Returns:
521  * Zero on success or a negative error code on failure.
522  */
drm_vblank_init(struct drm_device * dev,unsigned int num_crtcs)523 int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs)
524 {
525 	int ret;
526 	unsigned int i;
527 
528 	mtx_init(&dev->vbl_lock, IPL_TTY);
529 	mtx_init(&dev->vblank_time_lock, IPL_TTY);
530 
531 	dev->vblank = drmm_kcalloc(dev, num_crtcs, sizeof(*dev->vblank), GFP_KERNEL);
532 	if (!dev->vblank)
533 		return -ENOMEM;
534 
535 	dev->num_crtcs = num_crtcs;
536 
537 	for (i = 0; i < num_crtcs; i++) {
538 		struct drm_vblank_crtc *vblank = &dev->vblank[i];
539 
540 		vblank->dev = dev;
541 		vblank->pipe = i;
542 		init_waitqueue_head(&vblank->queue);
543 #ifdef __linux__
544 		timer_setup(&vblank->disable_timer, vblank_disable_fn, 0);
545 #else
546 		timeout_set(&vblank->disable_timer, vblank_disable_fn, vblank);
547 #endif
548 		seqlock_init(&vblank->seqlock, IPL_TTY);
549 
550 		ret = drmm_add_action_or_reset(dev, drm_vblank_init_release,
551 					       vblank);
552 		if (ret)
553 			return ret;
554 
555 		ret = drm_vblank_worker_init(vblank);
556 		if (ret)
557 			return ret;
558 	}
559 
560 	return 0;
561 }
562 EXPORT_SYMBOL(drm_vblank_init);
563 
564 /**
565  * drm_dev_has_vblank - test if vblanking has been initialized for
566  *                      a device
567  * @dev: the device
568  *
569  * Drivers may call this function to test if vblank support is
570  * initialized for a device. For most hardware this means that vblanking
571  * can also be enabled.
572  *
573  * Atomic helpers use this function to initialize
574  * &drm_crtc_state.no_vblank. See also drm_atomic_helper_check_modeset().
575  *
576  * Returns:
577  * True if vblanking has been initialized for the given device, false
578  * otherwise.
579  */
drm_dev_has_vblank(const struct drm_device * dev)580 bool drm_dev_has_vblank(const struct drm_device *dev)
581 {
582 	return dev->num_crtcs != 0;
583 }
584 EXPORT_SYMBOL(drm_dev_has_vblank);
585 
586 /**
587  * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC
588  * @crtc: which CRTC's vblank waitqueue to retrieve
589  *
590  * This function returns a pointer to the vblank waitqueue for the CRTC.
591  * Drivers can use this to implement vblank waits using wait_event() and related
592  * functions.
593  */
drm_crtc_vblank_waitqueue(struct drm_crtc * crtc)594 wait_queue_head_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc)
595 {
596 	return &crtc->dev->vblank[drm_crtc_index(crtc)].queue;
597 }
598 EXPORT_SYMBOL(drm_crtc_vblank_waitqueue);
599 
600 
601 /**
602  * drm_calc_timestamping_constants - calculate vblank timestamp constants
603  * @crtc: drm_crtc whose timestamp constants should be updated.
604  * @mode: display mode containing the scanout timings
605  *
606  * Calculate and store various constants which are later needed by vblank and
607  * swap-completion timestamping, e.g, by
608  * drm_crtc_vblank_helper_get_vblank_timestamp(). They are derived from
609  * CRTC's true scanout timing, so they take things like panel scaling or
610  * other adjustments into account.
611  */
drm_calc_timestamping_constants(struct drm_crtc * crtc,const struct drm_display_mode * mode)612 void drm_calc_timestamping_constants(struct drm_crtc *crtc,
613 				     const struct drm_display_mode *mode)
614 {
615 	struct drm_device *dev = crtc->dev;
616 	unsigned int pipe = drm_crtc_index(crtc);
617 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
618 	int linedur_ns = 0, framedur_ns = 0;
619 	int dotclock = mode->crtc_clock;
620 
621 	if (!drm_dev_has_vblank(dev))
622 		return;
623 
624 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
625 		return;
626 
627 	/* Valid dotclock? */
628 	if (dotclock > 0) {
629 		int frame_size = mode->crtc_htotal * mode->crtc_vtotal;
630 
631 		/*
632 		 * Convert scanline length in pixels and video
633 		 * dot clock to line duration and frame duration
634 		 * in nanoseconds:
635 		 */
636 		linedur_ns  = div_u64((u64) mode->crtc_htotal * 1000000, dotclock);
637 		framedur_ns = div_u64((u64) frame_size * 1000000, dotclock);
638 
639 		/*
640 		 * Fields of interlaced scanout modes are only half a frame duration.
641 		 */
642 		if (mode->flags & DRM_MODE_FLAG_INTERLACE)
643 			framedur_ns /= 2;
644 	} else {
645 		drm_err(dev, "crtc %u: Can't calculate constants, dotclock = 0!\n",
646 			crtc->base.id);
647 	}
648 
649 	vblank->linedur_ns  = linedur_ns;
650 	vblank->framedur_ns = framedur_ns;
651 	drm_mode_copy(&vblank->hwmode, mode);
652 
653 	drm_dbg_core(dev,
654 		     "crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n",
655 		     crtc->base.id, mode->crtc_htotal,
656 		     mode->crtc_vtotal, mode->crtc_vdisplay);
657 	drm_dbg_core(dev, "crtc %u: clock %d kHz framedur %d linedur %d\n",
658 		     crtc->base.id, dotclock, framedur_ns, linedur_ns);
659 }
660 EXPORT_SYMBOL(drm_calc_timestamping_constants);
661 
662 /**
663  * drm_crtc_vblank_helper_get_vblank_timestamp_internal - precise vblank
664  *                                                        timestamp helper
665  * @crtc: CRTC whose vblank timestamp to retrieve
666  * @max_error: Desired maximum allowable error in timestamps (nanosecs)
667  *             On return contains true maximum error of timestamp
668  * @vblank_time: Pointer to time which should receive the timestamp
669  * @in_vblank_irq:
670  *     True when called from drm_crtc_handle_vblank().  Some drivers
671  *     need to apply some workarounds for gpu-specific vblank irq quirks
672  *     if flag is set.
673  * @get_scanout_position:
674  *     Callback function to retrieve the scanout position. See
675  *     @struct drm_crtc_helper_funcs.get_scanout_position.
676  *
677  * Implements calculation of exact vblank timestamps from given drm_display_mode
678  * timings and current video scanout position of a CRTC.
679  *
680  * The current implementation only handles standard video modes. For double scan
681  * and interlaced modes the driver is supposed to adjust the hardware mode
682  * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to
683  * match the scanout position reported.
684  *
685  * Note that atomic drivers must call drm_calc_timestamping_constants() before
686  * enabling a CRTC. The atomic helpers already take care of that in
687  * drm_atomic_helper_calc_timestamping_constants().
688  *
689  * Returns:
690  *
691  * Returns true on success, and false on failure, i.e. when no accurate
692  * timestamp could be acquired.
693  */
694 bool
drm_crtc_vblank_helper_get_vblank_timestamp_internal(struct drm_crtc * crtc,int * max_error,ktime_t * vblank_time,bool in_vblank_irq,drm_vblank_get_scanout_position_func get_scanout_position)695 drm_crtc_vblank_helper_get_vblank_timestamp_internal(
696 	struct drm_crtc *crtc, int *max_error, ktime_t *vblank_time,
697 	bool in_vblank_irq,
698 	drm_vblank_get_scanout_position_func get_scanout_position)
699 {
700 	struct drm_device *dev = crtc->dev;
701 	unsigned int pipe = crtc->index;
702 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
703 	struct timespec64 ts_etime, ts_vblank_time;
704 	ktime_t stime, etime;
705 	bool vbl_status;
706 	const struct drm_display_mode *mode;
707 	int vpos, hpos, i;
708 	int delta_ns, duration_ns;
709 
710 	if (pipe >= dev->num_crtcs) {
711 		drm_err(dev, "Invalid crtc %u\n", pipe);
712 		return false;
713 	}
714 
715 	/* Scanout position query not supported? Should not happen. */
716 	if (!get_scanout_position) {
717 		drm_err(dev, "Called from CRTC w/o get_scanout_position()!?\n");
718 		return false;
719 	}
720 
721 	if (drm_drv_uses_atomic_modeset(dev))
722 		mode = &vblank->hwmode;
723 	else
724 		mode = &crtc->hwmode;
725 
726 	/* If mode timing undefined, just return as no-op:
727 	 * Happens during initial modesetting of a crtc.
728 	 */
729 	if (mode->crtc_clock == 0) {
730 		drm_dbg_core(dev, "crtc %u: Noop due to uninitialized mode.\n",
731 			     pipe);
732 		drm_WARN_ON_ONCE(dev, drm_drv_uses_atomic_modeset(dev));
733 		return false;
734 	}
735 
736 	/* Get current scanout position with system timestamp.
737 	 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times
738 	 * if single query takes longer than max_error nanoseconds.
739 	 *
740 	 * This guarantees a tight bound on maximum error if
741 	 * code gets preempted or delayed for some reason.
742 	 */
743 	for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) {
744 		/*
745 		 * Get vertical and horizontal scanout position vpos, hpos,
746 		 * and bounding timestamps stime, etime, pre/post query.
747 		 */
748 		vbl_status = get_scanout_position(crtc, in_vblank_irq,
749 						  &vpos, &hpos,
750 						  &stime, &etime,
751 						  mode);
752 
753 		/* Return as no-op if scanout query unsupported or failed. */
754 		if (!vbl_status) {
755 			drm_dbg_core(dev,
756 				     "crtc %u : scanoutpos query failed.\n",
757 				     pipe);
758 			return false;
759 		}
760 
761 		/* Compute uncertainty in timestamp of scanout position query. */
762 		duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime);
763 
764 		/* Accept result with <  max_error nsecs timing uncertainty. */
765 		if (duration_ns <= *max_error)
766 			break;
767 	}
768 
769 	/* Noisy system timing? */
770 	if (i == DRM_TIMESTAMP_MAXRETRIES) {
771 		drm_dbg_core(dev,
772 			     "crtc %u: Noisy timestamp %d us > %d us [%d reps].\n",
773 			     pipe, duration_ns / 1000, *max_error / 1000, i);
774 	}
775 
776 	/* Return upper bound of timestamp precision error. */
777 	*max_error = duration_ns;
778 
779 	/* Convert scanout position into elapsed time at raw_time query
780 	 * since start of scanout at first display scanline. delta_ns
781 	 * can be negative if start of scanout hasn't happened yet.
782 	 */
783 	delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos),
784 			   mode->crtc_clock);
785 
786 	/* Subtract time delta from raw timestamp to get final
787 	 * vblank_time timestamp for end of vblank.
788 	 */
789 	*vblank_time = ktime_sub_ns(etime, delta_ns);
790 
791 	if (!drm_debug_enabled(DRM_UT_VBL))
792 		return true;
793 
794 	ts_etime = ktime_to_timespec64(etime);
795 	ts_vblank_time = ktime_to_timespec64(*vblank_time);
796 
797 	drm_dbg_vbl(dev,
798 		    "crtc %u : v p(%d,%d)@ %lld.%06ld -> %lld.%06ld [e %d us, %d rep]\n",
799 		    pipe, hpos, vpos,
800 		    (u64)ts_etime.tv_sec, ts_etime.tv_nsec / 1000,
801 		    (u64)ts_vblank_time.tv_sec, ts_vblank_time.tv_nsec / 1000,
802 		    duration_ns / 1000, i);
803 
804 	return true;
805 }
806 EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp_internal);
807 
808 /**
809  * drm_crtc_vblank_helper_get_vblank_timestamp - precise vblank timestamp
810  *                                               helper
811  * @crtc: CRTC whose vblank timestamp to retrieve
812  * @max_error: Desired maximum allowable error in timestamps (nanosecs)
813  *             On return contains true maximum error of timestamp
814  * @vblank_time: Pointer to time which should receive the timestamp
815  * @in_vblank_irq:
816  *     True when called from drm_crtc_handle_vblank().  Some drivers
817  *     need to apply some workarounds for gpu-specific vblank irq quirks
818  *     if flag is set.
819  *
820  * Implements calculation of exact vblank timestamps from given drm_display_mode
821  * timings and current video scanout position of a CRTC. This can be directly
822  * used as the &drm_crtc_funcs.get_vblank_timestamp implementation of a kms
823  * driver if &drm_crtc_helper_funcs.get_scanout_position is implemented.
824  *
825  * The current implementation only handles standard video modes. For double scan
826  * and interlaced modes the driver is supposed to adjust the hardware mode
827  * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to
828  * match the scanout position reported.
829  *
830  * Note that atomic drivers must call drm_calc_timestamping_constants() before
831  * enabling a CRTC. The atomic helpers already take care of that in
832  * drm_atomic_helper_calc_timestamping_constants().
833  *
834  * Returns:
835  *
836  * Returns true on success, and false on failure, i.e. when no accurate
837  * timestamp could be acquired.
838  */
drm_crtc_vblank_helper_get_vblank_timestamp(struct drm_crtc * crtc,int * max_error,ktime_t * vblank_time,bool in_vblank_irq)839 bool drm_crtc_vblank_helper_get_vblank_timestamp(struct drm_crtc *crtc,
840 						 int *max_error,
841 						 ktime_t *vblank_time,
842 						 bool in_vblank_irq)
843 {
844 	return drm_crtc_vblank_helper_get_vblank_timestamp_internal(
845 		crtc, max_error, vblank_time, in_vblank_irq,
846 		crtc->helper_private->get_scanout_position);
847 }
848 EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp);
849 
850 /**
851  * drm_crtc_get_last_vbltimestamp - retrieve raw timestamp for the most
852  *                                  recent vblank interval
853  * @crtc: CRTC whose vblank timestamp to retrieve
854  * @tvblank: Pointer to target time which should receive the timestamp
855  * @in_vblank_irq:
856  *     True when called from drm_crtc_handle_vblank().  Some drivers
857  *     need to apply some workarounds for gpu-specific vblank irq quirks
858  *     if flag is set.
859  *
860  * Fetches the system timestamp corresponding to the time of the most recent
861  * vblank interval on specified CRTC. May call into kms-driver to
862  * compute the timestamp with a high-precision GPU specific method.
863  *
864  * Returns zero if timestamp originates from uncorrected do_gettimeofday()
865  * call, i.e., it isn't very precisely locked to the true vblank.
866  *
867  * Returns:
868  * True if timestamp is considered to be very precise, false otherwise.
869  */
870 static bool
drm_crtc_get_last_vbltimestamp(struct drm_crtc * crtc,ktime_t * tvblank,bool in_vblank_irq)871 drm_crtc_get_last_vbltimestamp(struct drm_crtc *crtc, ktime_t *tvblank,
872 			       bool in_vblank_irq)
873 {
874 	bool ret = false;
875 
876 	/* Define requested maximum error on timestamps (nanoseconds). */
877 	int max_error = (int) drm_timestamp_precision * 1000;
878 
879 	/* Query driver if possible and precision timestamping enabled. */
880 	if (crtc && crtc->funcs->get_vblank_timestamp && max_error > 0) {
881 		ret = crtc->funcs->get_vblank_timestamp(crtc, &max_error,
882 							tvblank, in_vblank_irq);
883 	}
884 
885 	/* GPU high precision timestamp query unsupported or failed.
886 	 * Return current monotonic/gettimeofday timestamp as best estimate.
887 	 */
888 	if (!ret)
889 		*tvblank = ktime_get();
890 
891 	return ret;
892 }
893 
894 static bool
drm_get_last_vbltimestamp(struct drm_device * dev,unsigned int pipe,ktime_t * tvblank,bool in_vblank_irq)895 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
896 			  ktime_t *tvblank, bool in_vblank_irq)
897 {
898 	struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
899 
900 	return drm_crtc_get_last_vbltimestamp(crtc, tvblank, in_vblank_irq);
901 }
902 
903 /**
904  * drm_crtc_vblank_count - retrieve "cooked" vblank counter value
905  * @crtc: which counter to retrieve
906  *
907  * Fetches the "cooked" vblank count value that represents the number of
908  * vblank events since the system was booted, including lost events due to
909  * modesetting activity. Note that this timer isn't correct against a racing
910  * vblank interrupt (since it only reports the software vblank counter), see
911  * drm_crtc_accurate_vblank_count() for such use-cases.
912  *
913  * Note that for a given vblank counter value drm_crtc_handle_vblank()
914  * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
915  * provide a barrier: Any writes done before calling
916  * drm_crtc_handle_vblank() will be visible to callers of the later
917  * functions, if the vblank count is the same or a later one.
918  *
919  * See also &drm_vblank_crtc.count.
920  *
921  * Returns:
922  * The software vblank counter.
923  */
drm_crtc_vblank_count(struct drm_crtc * crtc)924 u64 drm_crtc_vblank_count(struct drm_crtc *crtc)
925 {
926 	return drm_vblank_count(crtc->dev, drm_crtc_index(crtc));
927 }
928 EXPORT_SYMBOL(drm_crtc_vblank_count);
929 
930 /**
931  * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the
932  *     system timestamp corresponding to that vblank counter value.
933  * @dev: DRM device
934  * @pipe: index of CRTC whose counter to retrieve
935  * @vblanktime: Pointer to ktime_t to receive the vblank timestamp.
936  *
937  * Fetches the "cooked" vblank count value that represents the number of
938  * vblank events since the system was booted, including lost events due to
939  * modesetting activity. Returns corresponding system timestamp of the time
940  * of the vblank interval that corresponds to the current vblank counter value.
941  *
942  * This is the legacy version of drm_crtc_vblank_count_and_time().
943  */
drm_vblank_count_and_time(struct drm_device * dev,unsigned int pipe,ktime_t * vblanktime)944 static u64 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe,
945 				     ktime_t *vblanktime)
946 {
947 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
948 	u64 vblank_count;
949 	unsigned int seq;
950 
951 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) {
952 		*vblanktime = 0;
953 		return 0;
954 	}
955 
956 	do {
957 		seq = read_seqbegin(&vblank->seqlock);
958 		vblank_count = atomic64_read(&vblank->count);
959 		*vblanktime = vblank->time;
960 	} while (read_seqretry(&vblank->seqlock, seq));
961 
962 	return vblank_count;
963 }
964 
965 /**
966  * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value
967  *     and the system timestamp corresponding to that vblank counter value
968  * @crtc: which counter to retrieve
969  * @vblanktime: Pointer to time to receive the vblank timestamp.
970  *
971  * Fetches the "cooked" vblank count value that represents the number of
972  * vblank events since the system was booted, including lost events due to
973  * modesetting activity. Returns corresponding system timestamp of the time
974  * of the vblank interval that corresponds to the current vblank counter value.
975  *
976  * Note that for a given vblank counter value drm_crtc_handle_vblank()
977  * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
978  * provide a barrier: Any writes done before calling
979  * drm_crtc_handle_vblank() will be visible to callers of the later
980  * functions, if the vblank count is the same or a later one.
981  *
982  * See also &drm_vblank_crtc.count.
983  */
drm_crtc_vblank_count_and_time(struct drm_crtc * crtc,ktime_t * vblanktime)984 u64 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc,
985 				   ktime_t *vblanktime)
986 {
987 	return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc),
988 					 vblanktime);
989 }
990 EXPORT_SYMBOL(drm_crtc_vblank_count_and_time);
991 
992 /**
993  * drm_crtc_next_vblank_start - calculate the time of the next vblank
994  * @crtc: the crtc for which to calculate next vblank time
995  * @vblanktime: pointer to time to receive the next vblank timestamp.
996  *
997  * Calculate the expected time of the start of the next vblank period,
998  * based on time of previous vblank and frame duration
999  */
drm_crtc_next_vblank_start(struct drm_crtc * crtc,ktime_t * vblanktime)1000 int drm_crtc_next_vblank_start(struct drm_crtc *crtc, ktime_t *vblanktime)
1001 {
1002 	unsigned int pipe = drm_crtc_index(crtc);
1003 	struct drm_vblank_crtc *vblank;
1004 	struct drm_display_mode *mode;
1005 	u64 vblank_start;
1006 
1007 	if (!drm_dev_has_vblank(crtc->dev))
1008 		return -EINVAL;
1009 
1010 	vblank = &crtc->dev->vblank[pipe];
1011 	mode = &vblank->hwmode;
1012 
1013 	if (!vblank->framedur_ns || !vblank->linedur_ns)
1014 		return -EINVAL;
1015 
1016 	if (!drm_crtc_get_last_vbltimestamp(crtc, vblanktime, false))
1017 		return -EINVAL;
1018 
1019 	vblank_start = DIV_ROUND_DOWN_ULL(
1020 			(u64)vblank->framedur_ns * mode->crtc_vblank_start,
1021 			mode->crtc_vtotal);
1022 	*vblanktime  = ktime_add(*vblanktime, ns_to_ktime(vblank_start));
1023 
1024 	return 0;
1025 }
1026 EXPORT_SYMBOL(drm_crtc_next_vblank_start);
1027 
send_vblank_event(struct drm_device * dev,struct drm_pending_vblank_event * e,u64 seq,ktime_t now)1028 static void send_vblank_event(struct drm_device *dev,
1029 		struct drm_pending_vblank_event *e,
1030 		u64 seq, ktime_t now)
1031 {
1032 	struct timespec64 tv;
1033 
1034 	switch (e->event.base.type) {
1035 	case DRM_EVENT_VBLANK:
1036 	case DRM_EVENT_FLIP_COMPLETE:
1037 		tv = ktime_to_timespec64(now);
1038 		e->event.vbl.sequence = seq;
1039 		/*
1040 		 * e->event is a user space structure, with hardcoded unsigned
1041 		 * 32-bit seconds/microseconds. This is safe as we always use
1042 		 * monotonic timestamps since linux-4.15
1043 		 */
1044 		e->event.vbl.tv_sec = tv.tv_sec;
1045 		e->event.vbl.tv_usec = tv.tv_nsec / 1000;
1046 		break;
1047 	case DRM_EVENT_CRTC_SEQUENCE:
1048 		if (seq)
1049 			e->event.seq.sequence = seq;
1050 		e->event.seq.time_ns = ktime_to_ns(now);
1051 		break;
1052 	}
1053 	trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, seq);
1054 	/*
1055 	 * Use the same timestamp for any associated fence signal to avoid
1056 	 * mismatch in timestamps for vsync & fence events triggered by the
1057 	 * same HW event. Frameworks like SurfaceFlinger in Android expects the
1058 	 * retire-fence timestamp to match exactly with HW vsync as it uses it
1059 	 * for its software vsync modeling.
1060 	 */
1061 	drm_send_event_timestamp_locked(dev, &e->base, now);
1062 }
1063 
1064 /**
1065  * drm_crtc_arm_vblank_event - arm vblank event after pageflip
1066  * @crtc: the source CRTC of the vblank event
1067  * @e: the event to send
1068  *
1069  * A lot of drivers need to generate vblank events for the very next vblank
1070  * interrupt. For example when the page flip interrupt happens when the page
1071  * flip gets armed, but not when it actually executes within the next vblank
1072  * period. This helper function implements exactly the required vblank arming
1073  * behaviour.
1074  *
1075  * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an
1076  * atomic commit must ensure that the next vblank happens at exactly the same
1077  * time as the atomic commit is committed to the hardware. This function itself
1078  * does **not** protect against the next vblank interrupt racing with either this
1079  * function call or the atomic commit operation. A possible sequence could be:
1080  *
1081  * 1. Driver commits new hardware state into vblank-synchronized registers.
1082  * 2. A vblank happens, committing the hardware state. Also the corresponding
1083  *    vblank interrupt is fired off and fully processed by the interrupt
1084  *    handler.
1085  * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event().
1086  * 4. The event is only send out for the next vblank, which is wrong.
1087  *
1088  * An equivalent race can happen when the driver calls
1089  * drm_crtc_arm_vblank_event() before writing out the new hardware state.
1090  *
1091  * The only way to make this work safely is to prevent the vblank from firing
1092  * (and the hardware from committing anything else) until the entire atomic
1093  * commit sequence has run to completion. If the hardware does not have such a
1094  * feature (e.g. using a "go" bit), then it is unsafe to use this functions.
1095  * Instead drivers need to manually send out the event from their interrupt
1096  * handler by calling drm_crtc_send_vblank_event() and make sure that there's no
1097  * possible race with the hardware committing the atomic update.
1098  *
1099  * Caller must hold a vblank reference for the event @e acquired by a
1100  * drm_crtc_vblank_get(), which will be dropped when the next vblank arrives.
1101  */
drm_crtc_arm_vblank_event(struct drm_crtc * crtc,struct drm_pending_vblank_event * e)1102 void drm_crtc_arm_vblank_event(struct drm_crtc *crtc,
1103 			       struct drm_pending_vblank_event *e)
1104 {
1105 	struct drm_device *dev = crtc->dev;
1106 	unsigned int pipe = drm_crtc_index(crtc);
1107 
1108 	assert_spin_locked(&dev->event_lock);
1109 
1110 	e->pipe = pipe;
1111 	e->sequence = drm_crtc_accurate_vblank_count(crtc) + 1;
1112 	list_add_tail(&e->base.link, &dev->vblank_event_list);
1113 }
1114 EXPORT_SYMBOL(drm_crtc_arm_vblank_event);
1115 
1116 /**
1117  * drm_crtc_send_vblank_event - helper to send vblank event after pageflip
1118  * @crtc: the source CRTC of the vblank event
1119  * @e: the event to send
1120  *
1121  * Updates sequence # and timestamp on event for the most recently processed
1122  * vblank, and sends it to userspace.  Caller must hold event lock.
1123  *
1124  * See drm_crtc_arm_vblank_event() for a helper which can be used in certain
1125  * situation, especially to send out events for atomic commit operations.
1126  */
drm_crtc_send_vblank_event(struct drm_crtc * crtc,struct drm_pending_vblank_event * e)1127 void drm_crtc_send_vblank_event(struct drm_crtc *crtc,
1128 				struct drm_pending_vblank_event *e)
1129 {
1130 	struct drm_device *dev = crtc->dev;
1131 	u64 seq;
1132 	unsigned int pipe = drm_crtc_index(crtc);
1133 	ktime_t now;
1134 
1135 	if (drm_dev_has_vblank(dev)) {
1136 		seq = drm_vblank_count_and_time(dev, pipe, &now);
1137 	} else {
1138 		seq = 0;
1139 
1140 		now = ktime_get();
1141 	}
1142 	e->pipe = pipe;
1143 	send_vblank_event(dev, e, seq, now);
1144 }
1145 EXPORT_SYMBOL(drm_crtc_send_vblank_event);
1146 
__enable_vblank(struct drm_device * dev,unsigned int pipe)1147 static int __enable_vblank(struct drm_device *dev, unsigned int pipe)
1148 {
1149 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1150 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1151 
1152 		if (drm_WARN_ON(dev, !crtc))
1153 			return 0;
1154 
1155 		if (crtc->funcs->enable_vblank)
1156 			return crtc->funcs->enable_vblank(crtc);
1157 	}
1158 #ifdef CONFIG_DRM_LEGACY
1159 	else if (dev->driver->enable_vblank) {
1160 		return dev->driver->enable_vblank(dev, pipe);
1161 	}
1162 #endif
1163 
1164 	return -EINVAL;
1165 }
1166 
drm_vblank_enable(struct drm_device * dev,unsigned int pipe)1167 static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe)
1168 {
1169 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1170 	int ret = 0;
1171 
1172 	assert_spin_locked(&dev->vbl_lock);
1173 
1174 	spin_lock(&dev->vblank_time_lock);
1175 
1176 	if (!vblank->enabled) {
1177 		/*
1178 		 * Enable vblank irqs under vblank_time_lock protection.
1179 		 * All vblank count & timestamp updates are held off
1180 		 * until we are done reinitializing master counter and
1181 		 * timestamps. Filtercode in drm_handle_vblank() will
1182 		 * prevent double-accounting of same vblank interval.
1183 		 */
1184 		ret = __enable_vblank(dev, pipe);
1185 		drm_dbg_core(dev, "enabling vblank on crtc %u, ret: %d\n",
1186 			     pipe, ret);
1187 		if (ret) {
1188 			atomic_dec(&vblank->refcount);
1189 		} else {
1190 			drm_update_vblank_count(dev, pipe, 0);
1191 			/* drm_update_vblank_count() includes a wmb so we just
1192 			 * need to ensure that the compiler emits the write
1193 			 * to mark the vblank as enabled after the call
1194 			 * to drm_update_vblank_count().
1195 			 */
1196 			WRITE_ONCE(vblank->enabled, true);
1197 		}
1198 	}
1199 
1200 	spin_unlock(&dev->vblank_time_lock);
1201 
1202 	return ret;
1203 }
1204 
drm_vblank_get(struct drm_device * dev,unsigned int pipe)1205 int drm_vblank_get(struct drm_device *dev, unsigned int pipe)
1206 {
1207 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1208 	unsigned long irqflags;
1209 	int ret = 0;
1210 
1211 	if (!drm_dev_has_vblank(dev))
1212 		return -EINVAL;
1213 
1214 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1215 		return -EINVAL;
1216 
1217 	spin_lock_irqsave(&dev->vbl_lock, irqflags);
1218 	/* Going from 0->1 means we have to enable interrupts again */
1219 	if (atomic_add_return(1, &vblank->refcount) == 1) {
1220 		ret = drm_vblank_enable(dev, pipe);
1221 	} else {
1222 		if (!vblank->enabled) {
1223 			atomic_dec(&vblank->refcount);
1224 			ret = -EINVAL;
1225 		}
1226 	}
1227 	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1228 
1229 	return ret;
1230 }
1231 
1232 /**
1233  * drm_crtc_vblank_get - get a reference count on vblank events
1234  * @crtc: which CRTC to own
1235  *
1236  * Acquire a reference count on vblank events to avoid having them disabled
1237  * while in use.
1238  *
1239  * Returns:
1240  * Zero on success or a negative error code on failure.
1241  */
drm_crtc_vblank_get(struct drm_crtc * crtc)1242 int drm_crtc_vblank_get(struct drm_crtc *crtc)
1243 {
1244 	return drm_vblank_get(crtc->dev, drm_crtc_index(crtc));
1245 }
1246 EXPORT_SYMBOL(drm_crtc_vblank_get);
1247 
drm_vblank_put(struct drm_device * dev,unsigned int pipe)1248 void drm_vblank_put(struct drm_device *dev, unsigned int pipe)
1249 {
1250 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1251 
1252 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1253 		return;
1254 
1255 	if (drm_WARN_ON(dev, atomic_read(&vblank->refcount) == 0))
1256 		return;
1257 
1258 	/* Last user schedules interrupt disable */
1259 	if (atomic_dec_and_test(&vblank->refcount)) {
1260 		if (drm_vblank_offdelay == 0)
1261 			return;
1262 		else if (drm_vblank_offdelay < 0)
1263 			vblank_disable_fn(vblank);
1264 		else if (!dev->vblank_disable_immediate)
1265 			mod_timer(&vblank->disable_timer,
1266 				  jiffies + ((drm_vblank_offdelay * HZ)/1000));
1267 	}
1268 }
1269 
1270 /**
1271  * drm_crtc_vblank_put - give up ownership of vblank events
1272  * @crtc: which counter to give up
1273  *
1274  * Release ownership of a given vblank counter, turning off interrupts
1275  * if possible. Disable interrupts after drm_vblank_offdelay milliseconds.
1276  */
drm_crtc_vblank_put(struct drm_crtc * crtc)1277 void drm_crtc_vblank_put(struct drm_crtc *crtc)
1278 {
1279 	drm_vblank_put(crtc->dev, drm_crtc_index(crtc));
1280 }
1281 EXPORT_SYMBOL(drm_crtc_vblank_put);
1282 
1283 /**
1284  * drm_wait_one_vblank - wait for one vblank
1285  * @dev: DRM device
1286  * @pipe: CRTC index
1287  *
1288  * This waits for one vblank to pass on @pipe, using the irq driver interfaces.
1289  * It is a failure to call this when the vblank irq for @pipe is disabled, e.g.
1290  * due to lack of driver support or because the crtc is off.
1291  *
1292  * This is the legacy version of drm_crtc_wait_one_vblank().
1293  */
drm_wait_one_vblank(struct drm_device * dev,unsigned int pipe)1294 void drm_wait_one_vblank(struct drm_device *dev, unsigned int pipe)
1295 {
1296 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1297 	int ret;
1298 	u64 last;
1299 
1300 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1301 		return;
1302 
1303 #ifdef __OpenBSD__
1304 	/*
1305 	 * If we're cold, vblank interrupts won't happen even if
1306 	 * they're turned on by the driver.  Just stall long enough
1307 	 * for a vblank to pass.  This assumes a vrefresh of at least
1308 	 * 25 Hz.
1309 	 */
1310 	if (cold) {
1311 		delay(40000);
1312 		return;
1313 	}
1314 #endif
1315 
1316 	ret = drm_vblank_get(dev, pipe);
1317 	if (drm_WARN(dev, ret, "vblank not available on crtc %i, ret=%i\n",
1318 		     pipe, ret))
1319 		return;
1320 
1321 	last = drm_vblank_count(dev, pipe);
1322 
1323 	ret = wait_event_timeout(vblank->queue,
1324 				 last != drm_vblank_count(dev, pipe),
1325 				 msecs_to_jiffies(100));
1326 
1327 	drm_WARN(dev, ret == 0, "vblank wait timed out on crtc %i\n", pipe);
1328 
1329 	drm_vblank_put(dev, pipe);
1330 }
1331 EXPORT_SYMBOL(drm_wait_one_vblank);
1332 
1333 /**
1334  * drm_crtc_wait_one_vblank - wait for one vblank
1335  * @crtc: DRM crtc
1336  *
1337  * This waits for one vblank to pass on @crtc, using the irq driver interfaces.
1338  * It is a failure to call this when the vblank irq for @crtc is disabled, e.g.
1339  * due to lack of driver support or because the crtc is off.
1340  */
drm_crtc_wait_one_vblank(struct drm_crtc * crtc)1341 void drm_crtc_wait_one_vblank(struct drm_crtc *crtc)
1342 {
1343 	drm_wait_one_vblank(crtc->dev, drm_crtc_index(crtc));
1344 }
1345 EXPORT_SYMBOL(drm_crtc_wait_one_vblank);
1346 
1347 /**
1348  * drm_crtc_vblank_off - disable vblank events on a CRTC
1349  * @crtc: CRTC in question
1350  *
1351  * Drivers can use this function to shut down the vblank interrupt handling when
1352  * disabling a crtc. This function ensures that the latest vblank frame count is
1353  * stored so that drm_vblank_on can restore it again.
1354  *
1355  * Drivers must use this function when the hardware vblank counter can get
1356  * reset, e.g. when suspending or disabling the @crtc in general.
1357  */
drm_crtc_vblank_off(struct drm_crtc * crtc)1358 void drm_crtc_vblank_off(struct drm_crtc *crtc)
1359 {
1360 	struct drm_device *dev = crtc->dev;
1361 	unsigned int pipe = drm_crtc_index(crtc);
1362 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1363 	struct drm_pending_vblank_event *e, *t;
1364 	ktime_t now;
1365 	u64 seq;
1366 
1367 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1368 		return;
1369 
1370 	/*
1371 	 * Grab event_lock early to prevent vblank work from being scheduled
1372 	 * while we're in the middle of shutting down vblank interrupts
1373 	 */
1374 	spin_lock_irq(&dev->event_lock);
1375 
1376 	spin_lock(&dev->vbl_lock);
1377 	drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n",
1378 		    pipe, vblank->enabled, vblank->inmodeset);
1379 
1380 	/* Avoid redundant vblank disables without previous
1381 	 * drm_crtc_vblank_on(). */
1382 	if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset)
1383 		drm_vblank_disable_and_save(dev, pipe);
1384 
1385 	wake_up(&vblank->queue);
1386 
1387 	/*
1388 	 * Prevent subsequent drm_vblank_get() from re-enabling
1389 	 * the vblank interrupt by bumping the refcount.
1390 	 */
1391 	if (!vblank->inmodeset) {
1392 		atomic_inc(&vblank->refcount);
1393 		vblank->inmodeset = 1;
1394 	}
1395 	spin_unlock(&dev->vbl_lock);
1396 
1397 	/* Send any queued vblank events, lest the natives grow disquiet */
1398 	seq = drm_vblank_count_and_time(dev, pipe, &now);
1399 
1400 	list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1401 		if (e->pipe != pipe)
1402 			continue;
1403 		drm_dbg_core(dev, "Sending premature vblank event on disable: "
1404 			     "wanted %llu, current %llu\n",
1405 			     e->sequence, seq);
1406 		list_del(&e->base.link);
1407 		drm_vblank_put(dev, pipe);
1408 		send_vblank_event(dev, e, seq, now);
1409 	}
1410 
1411 	/* Cancel any leftover pending vblank work */
1412 	drm_vblank_cancel_pending_works(vblank);
1413 
1414 	spin_unlock_irq(&dev->event_lock);
1415 
1416 	/* Will be reset by the modeset helpers when re-enabling the crtc by
1417 	 * calling drm_calc_timestamping_constants(). */
1418 	vblank->hwmode.crtc_clock = 0;
1419 
1420 	/* Wait for any vblank work that's still executing to finish */
1421 	drm_vblank_flush_worker(vblank);
1422 }
1423 EXPORT_SYMBOL(drm_crtc_vblank_off);
1424 
1425 /**
1426  * drm_crtc_vblank_reset - reset vblank state to off on a CRTC
1427  * @crtc: CRTC in question
1428  *
1429  * Drivers can use this function to reset the vblank state to off at load time.
1430  * Drivers should use this together with the drm_crtc_vblank_off() and
1431  * drm_crtc_vblank_on() functions. The difference compared to
1432  * drm_crtc_vblank_off() is that this function doesn't save the vblank counter
1433  * and hence doesn't need to call any driver hooks.
1434  *
1435  * This is useful for recovering driver state e.g. on driver load, or on resume.
1436  */
drm_crtc_vblank_reset(struct drm_crtc * crtc)1437 void drm_crtc_vblank_reset(struct drm_crtc *crtc)
1438 {
1439 	struct drm_device *dev = crtc->dev;
1440 	unsigned int pipe = drm_crtc_index(crtc);
1441 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1442 
1443 	spin_lock_irq(&dev->vbl_lock);
1444 	/*
1445 	 * Prevent subsequent drm_vblank_get() from enabling the vblank
1446 	 * interrupt by bumping the refcount.
1447 	 */
1448 	if (!vblank->inmodeset) {
1449 		atomic_inc(&vblank->refcount);
1450 		vblank->inmodeset = 1;
1451 	}
1452 	spin_unlock_irq(&dev->vbl_lock);
1453 
1454 	drm_WARN_ON(dev, !list_empty(&dev->vblank_event_list));
1455 	drm_WARN_ON(dev, !list_empty(&vblank->pending_work));
1456 }
1457 EXPORT_SYMBOL(drm_crtc_vblank_reset);
1458 
1459 /**
1460  * drm_crtc_set_max_vblank_count - configure the hw max vblank counter value
1461  * @crtc: CRTC in question
1462  * @max_vblank_count: max hardware vblank counter value
1463  *
1464  * Update the maximum hardware vblank counter value for @crtc
1465  * at runtime. Useful for hardware where the operation of the
1466  * hardware vblank counter depends on the currently active
1467  * display configuration.
1468  *
1469  * For example, if the hardware vblank counter does not work
1470  * when a specific connector is active the maximum can be set
1471  * to zero. And when that specific connector isn't active the
1472  * maximum can again be set to the appropriate non-zero value.
1473  *
1474  * If used, must be called before drm_vblank_on().
1475  */
drm_crtc_set_max_vblank_count(struct drm_crtc * crtc,u32 max_vblank_count)1476 void drm_crtc_set_max_vblank_count(struct drm_crtc *crtc,
1477 				   u32 max_vblank_count)
1478 {
1479 	struct drm_device *dev = crtc->dev;
1480 	unsigned int pipe = drm_crtc_index(crtc);
1481 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1482 
1483 	drm_WARN_ON(dev, dev->max_vblank_count);
1484 	drm_WARN_ON(dev, !READ_ONCE(vblank->inmodeset));
1485 
1486 	vblank->max_vblank_count = max_vblank_count;
1487 }
1488 EXPORT_SYMBOL(drm_crtc_set_max_vblank_count);
1489 
1490 /**
1491  * drm_crtc_vblank_on - enable vblank events on a CRTC
1492  * @crtc: CRTC in question
1493  *
1494  * This functions restores the vblank interrupt state captured with
1495  * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note
1496  * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be
1497  * unbalanced and so can also be unconditionally called in driver load code to
1498  * reflect the current hardware state of the crtc.
1499  */
drm_crtc_vblank_on(struct drm_crtc * crtc)1500 void drm_crtc_vblank_on(struct drm_crtc *crtc)
1501 {
1502 	struct drm_device *dev = crtc->dev;
1503 	unsigned int pipe = drm_crtc_index(crtc);
1504 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1505 
1506 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1507 		return;
1508 
1509 	spin_lock_irq(&dev->vbl_lock);
1510 	drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n",
1511 		    pipe, vblank->enabled, vblank->inmodeset);
1512 
1513 	/* Drop our private "prevent drm_vblank_get" refcount */
1514 	if (vblank->inmodeset) {
1515 		atomic_dec(&vblank->refcount);
1516 		vblank->inmodeset = 0;
1517 	}
1518 
1519 	drm_reset_vblank_timestamp(dev, pipe);
1520 
1521 	/*
1522 	 * re-enable interrupts if there are users left, or the
1523 	 * user wishes vblank interrupts to be enabled all the time.
1524 	 */
1525 	if (atomic_read(&vblank->refcount) != 0 || drm_vblank_offdelay == 0)
1526 		drm_WARN_ON(dev, drm_vblank_enable(dev, pipe));
1527 	spin_unlock_irq(&dev->vbl_lock);
1528 }
1529 EXPORT_SYMBOL(drm_crtc_vblank_on);
1530 
drm_vblank_restore(struct drm_device * dev,unsigned int pipe)1531 static void drm_vblank_restore(struct drm_device *dev, unsigned int pipe)
1532 {
1533 	ktime_t t_vblank;
1534 	struct drm_vblank_crtc *vblank;
1535 	int framedur_ns;
1536 	u64 diff_ns;
1537 	u32 cur_vblank, diff = 1;
1538 	int count = DRM_TIMESTAMP_MAXRETRIES;
1539 	u32 max_vblank_count = drm_max_vblank_count(dev, pipe);
1540 
1541 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1542 		return;
1543 
1544 	assert_spin_locked(&dev->vbl_lock);
1545 	assert_spin_locked(&dev->vblank_time_lock);
1546 
1547 	vblank = &dev->vblank[pipe];
1548 	drm_WARN_ONCE(dev,
1549 		      drm_debug_enabled(DRM_UT_VBL) && !vblank->framedur_ns,
1550 		      "Cannot compute missed vblanks without frame duration\n");
1551 	framedur_ns = vblank->framedur_ns;
1552 
1553 	do {
1554 		cur_vblank = __get_vblank_counter(dev, pipe);
1555 		drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
1556 	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
1557 
1558 	diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
1559 	if (framedur_ns)
1560 		diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
1561 
1562 
1563 	drm_dbg_vbl(dev,
1564 		    "missed %d vblanks in %lld ns, frame duration=%d ns, hw_diff=%d\n",
1565 		    diff, diff_ns, framedur_ns, cur_vblank - vblank->last);
1566 	vblank->last = (cur_vblank - diff) & max_vblank_count;
1567 }
1568 
1569 /**
1570  * drm_crtc_vblank_restore - estimate missed vblanks and update vblank count.
1571  * @crtc: CRTC in question
1572  *
1573  * Power manamement features can cause frame counter resets between vblank
1574  * disable and enable. Drivers can use this function in their
1575  * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since
1576  * the last &drm_crtc_funcs.disable_vblank using timestamps and update the
1577  * vblank counter.
1578  *
1579  * Note that drivers must have race-free high-precision timestamping support,
1580  * i.e.  &drm_crtc_funcs.get_vblank_timestamp must be hooked up and
1581  * &drm_driver.vblank_disable_immediate must be set to indicate the
1582  * time-stamping functions are race-free against vblank hardware counter
1583  * increments.
1584  */
drm_crtc_vblank_restore(struct drm_crtc * crtc)1585 void drm_crtc_vblank_restore(struct drm_crtc *crtc)
1586 {
1587 	WARN_ON_ONCE(!crtc->funcs->get_vblank_timestamp);
1588 	WARN_ON_ONCE(!crtc->dev->vblank_disable_immediate);
1589 
1590 	drm_vblank_restore(crtc->dev, drm_crtc_index(crtc));
1591 }
1592 EXPORT_SYMBOL(drm_crtc_vblank_restore);
1593 
drm_legacy_vblank_pre_modeset(struct drm_device * dev,unsigned int pipe)1594 static void drm_legacy_vblank_pre_modeset(struct drm_device *dev,
1595 					  unsigned int pipe)
1596 {
1597 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1598 
1599 	/* vblank is not initialized (IRQ not installed ?), or has been freed */
1600 	if (!drm_dev_has_vblank(dev))
1601 		return;
1602 
1603 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1604 		return;
1605 
1606 	/*
1607 	 * To avoid all the problems that might happen if interrupts
1608 	 * were enabled/disabled around or between these calls, we just
1609 	 * have the kernel take a reference on the CRTC (just once though
1610 	 * to avoid corrupting the count if multiple, mismatch calls occur),
1611 	 * so that interrupts remain enabled in the interim.
1612 	 */
1613 	if (!vblank->inmodeset) {
1614 		vblank->inmodeset = 0x1;
1615 		if (drm_vblank_get(dev, pipe) == 0)
1616 			vblank->inmodeset |= 0x2;
1617 	}
1618 }
1619 
drm_legacy_vblank_post_modeset(struct drm_device * dev,unsigned int pipe)1620 static void drm_legacy_vblank_post_modeset(struct drm_device *dev,
1621 					   unsigned int pipe)
1622 {
1623 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1624 
1625 	/* vblank is not initialized (IRQ not installed ?), or has been freed */
1626 	if (!drm_dev_has_vblank(dev))
1627 		return;
1628 
1629 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1630 		return;
1631 
1632 	if (vblank->inmodeset) {
1633 		spin_lock_irq(&dev->vbl_lock);
1634 		drm_reset_vblank_timestamp(dev, pipe);
1635 		spin_unlock_irq(&dev->vbl_lock);
1636 
1637 		if (vblank->inmodeset & 0x2)
1638 			drm_vblank_put(dev, pipe);
1639 
1640 		vblank->inmodeset = 0;
1641 	}
1642 }
1643 
drm_legacy_modeset_ctl_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1644 int drm_legacy_modeset_ctl_ioctl(struct drm_device *dev, void *data,
1645 				 struct drm_file *file_priv)
1646 {
1647 	struct drm_modeset_ctl *modeset = data;
1648 	unsigned int pipe;
1649 
1650 	/* If drm_vblank_init() hasn't been called yet, just no-op */
1651 	if (!drm_dev_has_vblank(dev))
1652 		return 0;
1653 
1654 	/* KMS drivers handle this internally */
1655 	if (!drm_core_check_feature(dev, DRIVER_LEGACY))
1656 		return 0;
1657 
1658 	pipe = modeset->crtc;
1659 	if (pipe >= dev->num_crtcs)
1660 		return -EINVAL;
1661 
1662 	switch (modeset->cmd) {
1663 	case _DRM_PRE_MODESET:
1664 		drm_legacy_vblank_pre_modeset(dev, pipe);
1665 		break;
1666 	case _DRM_POST_MODESET:
1667 		drm_legacy_vblank_post_modeset(dev, pipe);
1668 		break;
1669 	default:
1670 		return -EINVAL;
1671 	}
1672 
1673 	return 0;
1674 }
1675 
drm_queue_vblank_event(struct drm_device * dev,unsigned int pipe,u64 req_seq,union drm_wait_vblank * vblwait,struct drm_file * file_priv)1676 static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe,
1677 				  u64 req_seq,
1678 				  union drm_wait_vblank *vblwait,
1679 				  struct drm_file *file_priv)
1680 {
1681 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1682 	struct drm_pending_vblank_event *e;
1683 	ktime_t now;
1684 	u64 seq;
1685 	int ret;
1686 
1687 	e = kzalloc(sizeof(*e), GFP_KERNEL);
1688 	if (e == NULL) {
1689 		ret = -ENOMEM;
1690 		goto err_put;
1691 	}
1692 
1693 	e->pipe = pipe;
1694 	e->event.base.type = DRM_EVENT_VBLANK;
1695 	e->event.base.length = sizeof(e->event.vbl);
1696 	e->event.vbl.user_data = vblwait->request.signal;
1697 	e->event.vbl.crtc_id = 0;
1698 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1699 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1700 
1701 		if (crtc)
1702 			e->event.vbl.crtc_id = crtc->base.id;
1703 	}
1704 
1705 	spin_lock_irq(&dev->event_lock);
1706 
1707 	/*
1708 	 * drm_crtc_vblank_off() might have been called after we called
1709 	 * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
1710 	 * vblank disable, so no need for further locking.  The reference from
1711 	 * drm_vblank_get() protects against vblank disable from another source.
1712 	 */
1713 	if (!READ_ONCE(vblank->enabled)) {
1714 		ret = -EINVAL;
1715 		goto err_unlock;
1716 	}
1717 
1718 	ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
1719 					    &e->event.base);
1720 
1721 	if (ret)
1722 		goto err_unlock;
1723 
1724 	seq = drm_vblank_count_and_time(dev, pipe, &now);
1725 
1726 	drm_dbg_core(dev, "event on vblank count %llu, current %llu, crtc %u\n",
1727 		     req_seq, seq, pipe);
1728 
1729 	trace_drm_vblank_event_queued(file_priv, pipe, req_seq);
1730 
1731 	e->sequence = req_seq;
1732 	if (drm_vblank_passed(seq, req_seq)) {
1733 		drm_vblank_put(dev, pipe);
1734 		send_vblank_event(dev, e, seq, now);
1735 		vblwait->reply.sequence = seq;
1736 	} else {
1737 		/* drm_handle_vblank_events will call drm_vblank_put */
1738 		list_add_tail(&e->base.link, &dev->vblank_event_list);
1739 		vblwait->reply.sequence = req_seq;
1740 	}
1741 
1742 	spin_unlock_irq(&dev->event_lock);
1743 
1744 	return 0;
1745 
1746 err_unlock:
1747 	spin_unlock_irq(&dev->event_lock);
1748 	kfree(e);
1749 err_put:
1750 	drm_vblank_put(dev, pipe);
1751 	return ret;
1752 }
1753 
drm_wait_vblank_is_query(union drm_wait_vblank * vblwait)1754 static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait)
1755 {
1756 	if (vblwait->request.sequence)
1757 		return false;
1758 
1759 	return _DRM_VBLANK_RELATIVE ==
1760 		(vblwait->request.type & (_DRM_VBLANK_TYPES_MASK |
1761 					  _DRM_VBLANK_EVENT |
1762 					  _DRM_VBLANK_NEXTONMISS));
1763 }
1764 
1765 /*
1766  * Widen a 32-bit param to 64-bits.
1767  *
1768  * \param narrow 32-bit value (missing upper 32 bits)
1769  * \param near 64-bit value that should be 'close' to near
1770  *
1771  * This function returns a 64-bit value using the lower 32-bits from
1772  * 'narrow' and constructing the upper 32-bits so that the result is
1773  * as close as possible to 'near'.
1774  */
1775 
widen_32_to_64(u32 narrow,u64 near)1776 static u64 widen_32_to_64(u32 narrow, u64 near)
1777 {
1778 	return near + (s32) (narrow - near);
1779 }
1780 
drm_wait_vblank_reply(struct drm_device * dev,unsigned int pipe,struct drm_wait_vblank_reply * reply)1781 static void drm_wait_vblank_reply(struct drm_device *dev, unsigned int pipe,
1782 				  struct drm_wait_vblank_reply *reply)
1783 {
1784 	ktime_t now;
1785 	struct timespec64 ts;
1786 
1787 	/*
1788 	 * drm_wait_vblank_reply is a UAPI structure that uses 'long'
1789 	 * to store the seconds. This is safe as we always use monotonic
1790 	 * timestamps since linux-4.15.
1791 	 */
1792 	reply->sequence = drm_vblank_count_and_time(dev, pipe, &now);
1793 	ts = ktime_to_timespec64(now);
1794 	reply->tval_sec = (u32)ts.tv_sec;
1795 	reply->tval_usec = ts.tv_nsec / 1000;
1796 }
1797 
drm_wait_vblank_supported(struct drm_device * dev)1798 static bool drm_wait_vblank_supported(struct drm_device *dev)
1799 {
1800 #if IS_ENABLED(CONFIG_DRM_LEGACY)
1801 	if (unlikely(drm_core_check_feature(dev, DRIVER_LEGACY)))
1802 		return dev->irq_enabled;
1803 #endif
1804 	return drm_dev_has_vblank(dev);
1805 }
1806 
drm_wait_vblank_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1807 int drm_wait_vblank_ioctl(struct drm_device *dev, void *data,
1808 			  struct drm_file *file_priv)
1809 {
1810 	struct drm_crtc *crtc;
1811 	struct drm_vblank_crtc *vblank;
1812 	union drm_wait_vblank *vblwait = data;
1813 	int ret;
1814 	u64 req_seq, seq;
1815 	unsigned int pipe_index;
1816 	unsigned int flags, pipe, high_pipe;
1817 
1818 	if (!drm_wait_vblank_supported(dev))
1819 		return -EOPNOTSUPP;
1820 
1821 	if (vblwait->request.type & _DRM_VBLANK_SIGNAL)
1822 		return -EINVAL;
1823 
1824 	if (vblwait->request.type &
1825 	    ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1826 	      _DRM_VBLANK_HIGH_CRTC_MASK)) {
1827 		drm_dbg_core(dev,
1828 			     "Unsupported type value 0x%x, supported mask 0x%x\n",
1829 			     vblwait->request.type,
1830 			     (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1831 			      _DRM_VBLANK_HIGH_CRTC_MASK));
1832 		return -EINVAL;
1833 	}
1834 
1835 	flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK;
1836 	high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK);
1837 	if (high_pipe)
1838 		pipe_index = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT;
1839 	else
1840 		pipe_index = flags & _DRM_VBLANK_SECONDARY ? 1 : 0;
1841 
1842 	/* Convert lease-relative crtc index into global crtc index */
1843 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1844 		pipe = 0;
1845 		drm_for_each_crtc(crtc, dev) {
1846 			if (drm_lease_held(file_priv, crtc->base.id)) {
1847 				if (pipe_index == 0)
1848 					break;
1849 				pipe_index--;
1850 			}
1851 			pipe++;
1852 		}
1853 	} else {
1854 		pipe = pipe_index;
1855 	}
1856 
1857 	if (pipe >= dev->num_crtcs)
1858 		return -EINVAL;
1859 
1860 	vblank = &dev->vblank[pipe];
1861 
1862 	/* If the counter is currently enabled and accurate, short-circuit
1863 	 * queries to return the cached timestamp of the last vblank.
1864 	 */
1865 	if (dev->vblank_disable_immediate &&
1866 	    drm_wait_vblank_is_query(vblwait) &&
1867 	    READ_ONCE(vblank->enabled)) {
1868 		drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1869 		return 0;
1870 	}
1871 
1872 	ret = drm_vblank_get(dev, pipe);
1873 	if (ret) {
1874 		drm_dbg_core(dev,
1875 			     "crtc %d failed to acquire vblank counter, %d\n",
1876 			     pipe, ret);
1877 		return ret;
1878 	}
1879 	seq = drm_vblank_count(dev, pipe);
1880 
1881 	switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) {
1882 	case _DRM_VBLANK_RELATIVE:
1883 		req_seq = seq + vblwait->request.sequence;
1884 		vblwait->request.sequence = req_seq;
1885 		vblwait->request.type &= ~_DRM_VBLANK_RELATIVE;
1886 		break;
1887 	case _DRM_VBLANK_ABSOLUTE:
1888 		req_seq = widen_32_to_64(vblwait->request.sequence, seq);
1889 		break;
1890 	default:
1891 		ret = -EINVAL;
1892 		goto done;
1893 	}
1894 
1895 	if ((flags & _DRM_VBLANK_NEXTONMISS) &&
1896 	    drm_vblank_passed(seq, req_seq)) {
1897 		req_seq = seq + 1;
1898 		vblwait->request.type &= ~_DRM_VBLANK_NEXTONMISS;
1899 		vblwait->request.sequence = req_seq;
1900 	}
1901 
1902 	if (flags & _DRM_VBLANK_EVENT) {
1903 		/* must hold on to the vblank ref until the event fires
1904 		 * drm_vblank_put will be called asynchronously
1905 		 */
1906 		return drm_queue_vblank_event(dev, pipe, req_seq, vblwait, file_priv);
1907 	}
1908 
1909 	if (req_seq != seq) {
1910 		int wait;
1911 
1912 		drm_dbg_core(dev, "waiting on vblank count %llu, crtc %u\n",
1913 			     req_seq, pipe);
1914 		wait = wait_event_interruptible_timeout(vblank->queue,
1915 			drm_vblank_passed(drm_vblank_count(dev, pipe), req_seq) ||
1916 				      !READ_ONCE(vblank->enabled),
1917 			msecs_to_jiffies(3000));
1918 
1919 		switch (wait) {
1920 		case 0:
1921 			/* timeout */
1922 			ret = -EBUSY;
1923 			break;
1924 		case -ERESTARTSYS:
1925 			/* interrupted by signal */
1926 			ret = -EINTR;
1927 			break;
1928 		default:
1929 			ret = 0;
1930 			break;
1931 		}
1932 	}
1933 
1934 	if (ret != -EINTR) {
1935 		drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1936 
1937 		drm_dbg_core(dev, "crtc %d returning %u to client\n",
1938 			     pipe, vblwait->reply.sequence);
1939 	} else {
1940 		drm_dbg_core(dev, "crtc %d vblank wait interrupted by signal\n",
1941 			     pipe);
1942 	}
1943 
1944 done:
1945 	drm_vblank_put(dev, pipe);
1946 	return ret;
1947 }
1948 
drm_handle_vblank_events(struct drm_device * dev,unsigned int pipe)1949 static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe)
1950 {
1951 	struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1952 	bool high_prec = false;
1953 	struct drm_pending_vblank_event *e, *t;
1954 	ktime_t now;
1955 	u64 seq;
1956 
1957 	assert_spin_locked(&dev->event_lock);
1958 
1959 	seq = drm_vblank_count_and_time(dev, pipe, &now);
1960 
1961 	list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1962 		if (e->pipe != pipe)
1963 			continue;
1964 		if (!drm_vblank_passed(seq, e->sequence))
1965 			continue;
1966 
1967 		drm_dbg_core(dev, "vblank event on %llu, current %llu\n",
1968 			     e->sequence, seq);
1969 
1970 		list_del(&e->base.link);
1971 		drm_vblank_put(dev, pipe);
1972 		send_vblank_event(dev, e, seq, now);
1973 	}
1974 
1975 	if (crtc && crtc->funcs->get_vblank_timestamp)
1976 		high_prec = true;
1977 
1978 	trace_drm_vblank_event(pipe, seq, now, high_prec);
1979 }
1980 
1981 /**
1982  * drm_handle_vblank - handle a vblank event
1983  * @dev: DRM device
1984  * @pipe: index of CRTC where this event occurred
1985  *
1986  * Drivers should call this routine in their vblank interrupt handlers to
1987  * update the vblank counter and send any signals that may be pending.
1988  *
1989  * This is the legacy version of drm_crtc_handle_vblank().
1990  */
drm_handle_vblank(struct drm_device * dev,unsigned int pipe)1991 bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe)
1992 {
1993 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1994 	unsigned long irqflags;
1995 	bool disable_irq;
1996 
1997 	if (drm_WARN_ON_ONCE(dev, !drm_dev_has_vblank(dev)))
1998 		return false;
1999 
2000 	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
2001 		return false;
2002 
2003 	spin_lock_irqsave(&dev->event_lock, irqflags);
2004 
2005 	/* Need timestamp lock to prevent concurrent execution with
2006 	 * vblank enable/disable, as this would cause inconsistent
2007 	 * or corrupted timestamps and vblank counts.
2008 	 */
2009 	spin_lock(&dev->vblank_time_lock);
2010 
2011 	/* Vblank irq handling disabled. Nothing to do. */
2012 	if (!vblank->enabled) {
2013 		spin_unlock(&dev->vblank_time_lock);
2014 		spin_unlock_irqrestore(&dev->event_lock, irqflags);
2015 		return false;
2016 	}
2017 
2018 	drm_update_vblank_count(dev, pipe, true);
2019 
2020 	spin_unlock(&dev->vblank_time_lock);
2021 
2022 	wake_up(&vblank->queue);
2023 
2024 	/* With instant-off, we defer disabling the interrupt until after
2025 	 * we finish processing the following vblank after all events have
2026 	 * been signaled. The disable has to be last (after
2027 	 * drm_handle_vblank_events) so that the timestamp is always accurate.
2028 	 */
2029 	disable_irq = (dev->vblank_disable_immediate &&
2030 		       drm_vblank_offdelay > 0 &&
2031 		       !atomic_read(&vblank->refcount));
2032 
2033 	drm_handle_vblank_events(dev, pipe);
2034 	drm_handle_vblank_works(vblank);
2035 
2036 	spin_unlock_irqrestore(&dev->event_lock, irqflags);
2037 
2038 	if (disable_irq)
2039 		vblank_disable_fn(vblank);
2040 
2041 	return true;
2042 }
2043 EXPORT_SYMBOL(drm_handle_vblank);
2044 
2045 /**
2046  * drm_crtc_handle_vblank - handle a vblank event
2047  * @crtc: where this event occurred
2048  *
2049  * Drivers should call this routine in their vblank interrupt handlers to
2050  * update the vblank counter and send any signals that may be pending.
2051  *
2052  * This is the native KMS version of drm_handle_vblank().
2053  *
2054  * Note that for a given vblank counter value drm_crtc_handle_vblank()
2055  * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
2056  * provide a barrier: Any writes done before calling
2057  * drm_crtc_handle_vblank() will be visible to callers of the later
2058  * functions, if the vblank count is the same or a later one.
2059  *
2060  * See also &drm_vblank_crtc.count.
2061  *
2062  * Returns:
2063  * True if the event was successfully handled, false on failure.
2064  */
drm_crtc_handle_vblank(struct drm_crtc * crtc)2065 bool drm_crtc_handle_vblank(struct drm_crtc *crtc)
2066 {
2067 	return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc));
2068 }
2069 EXPORT_SYMBOL(drm_crtc_handle_vblank);
2070 
2071 /*
2072  * Get crtc VBLANK count.
2073  *
2074  * \param dev DRM device
2075  * \param data user argument, pointing to a drm_crtc_get_sequence structure.
2076  * \param file_priv drm file private for the user's open file descriptor
2077  */
2078 
drm_crtc_get_sequence_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)2079 int drm_crtc_get_sequence_ioctl(struct drm_device *dev, void *data,
2080 				struct drm_file *file_priv)
2081 {
2082 	struct drm_crtc *crtc;
2083 	struct drm_vblank_crtc *vblank;
2084 	int pipe;
2085 	struct drm_crtc_get_sequence *get_seq = data;
2086 	ktime_t now;
2087 	bool vblank_enabled;
2088 	int ret;
2089 
2090 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
2091 		return -EOPNOTSUPP;
2092 
2093 	if (!drm_dev_has_vblank(dev))
2094 		return -EOPNOTSUPP;
2095 
2096 	crtc = drm_crtc_find(dev, file_priv, get_seq->crtc_id);
2097 	if (!crtc)
2098 		return -ENOENT;
2099 
2100 	pipe = drm_crtc_index(crtc);
2101 
2102 	vblank = &dev->vblank[pipe];
2103 	vblank_enabled = dev->vblank_disable_immediate && READ_ONCE(vblank->enabled);
2104 
2105 	if (!vblank_enabled) {
2106 		ret = drm_crtc_vblank_get(crtc);
2107 		if (ret) {
2108 			drm_dbg_core(dev,
2109 				     "crtc %d failed to acquire vblank counter, %d\n",
2110 				     pipe, ret);
2111 			return ret;
2112 		}
2113 	}
2114 	drm_modeset_lock(&crtc->mutex, NULL);
2115 	if (crtc->state)
2116 		get_seq->active = crtc->state->enable;
2117 	else
2118 		get_seq->active = crtc->enabled;
2119 	drm_modeset_unlock(&crtc->mutex);
2120 	get_seq->sequence = drm_vblank_count_and_time(dev, pipe, &now);
2121 	get_seq->sequence_ns = ktime_to_ns(now);
2122 	if (!vblank_enabled)
2123 		drm_crtc_vblank_put(crtc);
2124 	return 0;
2125 }
2126 
2127 /*
2128  * Queue a event for VBLANK sequence
2129  *
2130  * \param dev DRM device
2131  * \param data user argument, pointing to a drm_crtc_queue_sequence structure.
2132  * \param file_priv drm file private for the user's open file descriptor
2133  */
2134 
drm_crtc_queue_sequence_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)2135 int drm_crtc_queue_sequence_ioctl(struct drm_device *dev, void *data,
2136 				  struct drm_file *file_priv)
2137 {
2138 	struct drm_crtc *crtc;
2139 	struct drm_vblank_crtc *vblank;
2140 	int pipe;
2141 	struct drm_crtc_queue_sequence *queue_seq = data;
2142 	ktime_t now;
2143 	struct drm_pending_vblank_event *e;
2144 	u32 flags;
2145 	u64 seq;
2146 	u64 req_seq;
2147 	int ret;
2148 
2149 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
2150 		return -EOPNOTSUPP;
2151 
2152 	if (!drm_dev_has_vblank(dev))
2153 		return -EOPNOTSUPP;
2154 
2155 	crtc = drm_crtc_find(dev, file_priv, queue_seq->crtc_id);
2156 	if (!crtc)
2157 		return -ENOENT;
2158 
2159 	flags = queue_seq->flags;
2160 	/* Check valid flag bits */
2161 	if (flags & ~(DRM_CRTC_SEQUENCE_RELATIVE|
2162 		      DRM_CRTC_SEQUENCE_NEXT_ON_MISS))
2163 		return -EINVAL;
2164 
2165 	pipe = drm_crtc_index(crtc);
2166 
2167 	vblank = &dev->vblank[pipe];
2168 
2169 	e = kzalloc(sizeof(*e), GFP_KERNEL);
2170 	if (e == NULL)
2171 		return -ENOMEM;
2172 
2173 	ret = drm_crtc_vblank_get(crtc);
2174 	if (ret) {
2175 		drm_dbg_core(dev,
2176 			     "crtc %d failed to acquire vblank counter, %d\n",
2177 			     pipe, ret);
2178 		goto err_free;
2179 	}
2180 
2181 	seq = drm_vblank_count_and_time(dev, pipe, &now);
2182 	req_seq = queue_seq->sequence;
2183 
2184 	if (flags & DRM_CRTC_SEQUENCE_RELATIVE)
2185 		req_seq += seq;
2186 
2187 	if ((flags & DRM_CRTC_SEQUENCE_NEXT_ON_MISS) && drm_vblank_passed(seq, req_seq))
2188 		req_seq = seq + 1;
2189 
2190 	e->pipe = pipe;
2191 	e->event.base.type = DRM_EVENT_CRTC_SEQUENCE;
2192 	e->event.base.length = sizeof(e->event.seq);
2193 	e->event.seq.user_data = queue_seq->user_data;
2194 
2195 	spin_lock_irq(&dev->event_lock);
2196 
2197 	/*
2198 	 * drm_crtc_vblank_off() might have been called after we called
2199 	 * drm_crtc_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
2200 	 * vblank disable, so no need for further locking.  The reference from
2201 	 * drm_crtc_vblank_get() protects against vblank disable from another source.
2202 	 */
2203 	if (!READ_ONCE(vblank->enabled)) {
2204 		ret = -EINVAL;
2205 		goto err_unlock;
2206 	}
2207 
2208 	ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
2209 					    &e->event.base);
2210 
2211 	if (ret)
2212 		goto err_unlock;
2213 
2214 	e->sequence = req_seq;
2215 
2216 	if (drm_vblank_passed(seq, req_seq)) {
2217 		drm_crtc_vblank_put(crtc);
2218 		send_vblank_event(dev, e, seq, now);
2219 		queue_seq->sequence = seq;
2220 	} else {
2221 		/* drm_handle_vblank_events will call drm_vblank_put */
2222 		list_add_tail(&e->base.link, &dev->vblank_event_list);
2223 		queue_seq->sequence = req_seq;
2224 	}
2225 
2226 	spin_unlock_irq(&dev->event_lock);
2227 	return 0;
2228 
2229 err_unlock:
2230 	spin_unlock_irq(&dev->event_lock);
2231 	drm_crtc_vblank_put(crtc);
2232 err_free:
2233 	kfree(e);
2234 	return ret;
2235 }
2236 
2237