1 //===--- MicrosoftCXXABI.cpp - Emit LLVM Code from ASTs for a Module ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This provides C++ code generation targeting the Microsoft Visual C++ ABI.
11 // The class in this file generates structures that follow the Microsoft
12 // Visual C++ ABI, which is actually not very well documented at all outside
13 // of Microsoft.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "CGCXXABI.h"
18 #include "CGVTables.h"
19 #include "CodeGenModule.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/VTableBuilder.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/StringSet.h"
25 #include "llvm/IR/CallSite.h"
26
27 using namespace clang;
28 using namespace CodeGen;
29
30 namespace {
31
32 /// Holds all the vbtable globals for a given class.
33 struct VBTableGlobals {
34 const VPtrInfoVector *VBTables;
35 SmallVector<llvm::GlobalVariable *, 2> Globals;
36 };
37
38 class MicrosoftCXXABI : public CGCXXABI {
39 public:
MicrosoftCXXABI(CodeGenModule & CGM)40 MicrosoftCXXABI(CodeGenModule &CGM)
41 : CGCXXABI(CGM), BaseClassDescriptorType(nullptr),
42 ClassHierarchyDescriptorType(nullptr),
43 CompleteObjectLocatorType(nullptr) {}
44
45 bool HasThisReturn(GlobalDecl GD) const override;
46 bool hasMostDerivedReturn(GlobalDecl GD) const override;
47
48 bool classifyReturnType(CGFunctionInfo &FI) const override;
49
50 RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const override;
51
isSRetParameterAfterThis() const52 bool isSRetParameterAfterThis() const override { return true; }
53
getSrcArgforCopyCtor(const CXXConstructorDecl * CD,FunctionArgList & Args) const54 size_t getSrcArgforCopyCtor(const CXXConstructorDecl *CD,
55 FunctionArgList &Args) const override {
56 assert(Args.size() >= 2 &&
57 "expected the arglist to have at least two args!");
58 // The 'most_derived' parameter goes second if the ctor is variadic and
59 // has v-bases.
60 if (CD->getParent()->getNumVBases() > 0 &&
61 CD->getType()->castAs<FunctionProtoType>()->isVariadic())
62 return 2;
63 return 1;
64 }
65
GetPureVirtualCallName()66 StringRef GetPureVirtualCallName() override { return "_purecall"; }
GetDeletedVirtualCallName()67 StringRef GetDeletedVirtualCallName() override { return "_purecall"; }
68
69 void emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE,
70 llvm::Value *Ptr, QualType ElementType,
71 const CXXDestructorDecl *Dtor) override;
72
73 void emitRethrow(CodeGenFunction &CGF, bool isNoReturn) override;
74
75 llvm::GlobalVariable *getMSCompleteObjectLocator(const CXXRecordDecl *RD,
76 const VPtrInfo *Info);
77
78 llvm::Constant *getAddrOfRTTIDescriptor(QualType Ty) override;
79
80 bool shouldTypeidBeNullChecked(bool IsDeref, QualType SrcRecordTy) override;
81 void EmitBadTypeidCall(CodeGenFunction &CGF) override;
82 llvm::Value *EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy,
83 llvm::Value *ThisPtr,
84 llvm::Type *StdTypeInfoPtrTy) override;
85
86 bool shouldDynamicCastCallBeNullChecked(bool SrcIsPtr,
87 QualType SrcRecordTy) override;
88
89 llvm::Value *EmitDynamicCastCall(CodeGenFunction &CGF, llvm::Value *Value,
90 QualType SrcRecordTy, QualType DestTy,
91 QualType DestRecordTy,
92 llvm::BasicBlock *CastEnd) override;
93
94 llvm::Value *EmitDynamicCastToVoid(CodeGenFunction &CGF, llvm::Value *Value,
95 QualType SrcRecordTy,
96 QualType DestTy) override;
97
98 bool EmitBadCastCall(CodeGenFunction &CGF) override;
99
100 llvm::Value *
101 GetVirtualBaseClassOffset(CodeGenFunction &CGF, llvm::Value *This,
102 const CXXRecordDecl *ClassDecl,
103 const CXXRecordDecl *BaseClassDecl) override;
104
105 llvm::BasicBlock *
106 EmitCtorCompleteObjectHandler(CodeGenFunction &CGF,
107 const CXXRecordDecl *RD) override;
108
109 void initializeHiddenVirtualInheritanceMembers(CodeGenFunction &CGF,
110 const CXXRecordDecl *RD) override;
111
112 void EmitCXXConstructors(const CXXConstructorDecl *D) override;
113
114 // Background on MSVC destructors
115 // ==============================
116 //
117 // Both Itanium and MSVC ABIs have destructor variants. The variant names
118 // roughly correspond in the following way:
119 // Itanium Microsoft
120 // Base -> no name, just ~Class
121 // Complete -> vbase destructor
122 // Deleting -> scalar deleting destructor
123 // vector deleting destructor
124 //
125 // The base and complete destructors are the same as in Itanium, although the
126 // complete destructor does not accept a VTT parameter when there are virtual
127 // bases. A separate mechanism involving vtordisps is used to ensure that
128 // virtual methods of destroyed subobjects are not called.
129 //
130 // The deleting destructors accept an i32 bitfield as a second parameter. Bit
131 // 1 indicates if the memory should be deleted. Bit 2 indicates if the this
132 // pointer points to an array. The scalar deleting destructor assumes that
133 // bit 2 is zero, and therefore does not contain a loop.
134 //
135 // For virtual destructors, only one entry is reserved in the vftable, and it
136 // always points to the vector deleting destructor. The vector deleting
137 // destructor is the most general, so it can be used to destroy objects in
138 // place, delete single heap objects, or delete arrays.
139 //
140 // A TU defining a non-inline destructor is only guaranteed to emit a base
141 // destructor, and all of the other variants are emitted on an as-needed basis
142 // in COMDATs. Because a non-base destructor can be emitted in a TU that
143 // lacks a definition for the destructor, non-base destructors must always
144 // delegate to or alias the base destructor.
145
146 void buildStructorSignature(const CXXMethodDecl *MD, StructorType T,
147 SmallVectorImpl<CanQualType> &ArgTys) override;
148
149 /// Non-base dtors should be emitted as delegating thunks in this ABI.
useThunkForDtorVariant(const CXXDestructorDecl * Dtor,CXXDtorType DT) const150 bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor,
151 CXXDtorType DT) const override {
152 return DT != Dtor_Base;
153 }
154
155 void EmitCXXDestructors(const CXXDestructorDecl *D) override;
156
157 const CXXRecordDecl *
getThisArgumentTypeForMethod(const CXXMethodDecl * MD)158 getThisArgumentTypeForMethod(const CXXMethodDecl *MD) override {
159 MD = MD->getCanonicalDecl();
160 if (MD->isVirtual() && !isa<CXXDestructorDecl>(MD)) {
161 MicrosoftVTableContext::MethodVFTableLocation ML =
162 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(MD);
163 // The vbases might be ordered differently in the final overrider object
164 // and the complete object, so the "this" argument may sometimes point to
165 // memory that has no particular type (e.g. past the complete object).
166 // In this case, we just use a generic pointer type.
167 // FIXME: might want to have a more precise type in the non-virtual
168 // multiple inheritance case.
169 if (ML.VBase || !ML.VFPtrOffset.isZero())
170 return nullptr;
171 }
172 return MD->getParent();
173 }
174
175 llvm::Value *
176 adjustThisArgumentForVirtualFunctionCall(CodeGenFunction &CGF, GlobalDecl GD,
177 llvm::Value *This,
178 bool VirtualCall) override;
179
180 void addImplicitStructorParams(CodeGenFunction &CGF, QualType &ResTy,
181 FunctionArgList &Params) override;
182
183 llvm::Value *adjustThisParameterInVirtualFunctionPrologue(
184 CodeGenFunction &CGF, GlobalDecl GD, llvm::Value *This) override;
185
186 void EmitInstanceFunctionProlog(CodeGenFunction &CGF) override;
187
188 unsigned addImplicitConstructorArgs(CodeGenFunction &CGF,
189 const CXXConstructorDecl *D,
190 CXXCtorType Type, bool ForVirtualBase,
191 bool Delegating,
192 CallArgList &Args) override;
193
194 void EmitDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *DD,
195 CXXDtorType Type, bool ForVirtualBase,
196 bool Delegating, llvm::Value *This) override;
197
198 void emitVTableDefinitions(CodeGenVTables &CGVT,
199 const CXXRecordDecl *RD) override;
200
201 llvm::Value *getVTableAddressPointInStructor(
202 CodeGenFunction &CGF, const CXXRecordDecl *VTableClass,
203 BaseSubobject Base, const CXXRecordDecl *NearestVBase,
204 bool &NeedsVirtualOffset) override;
205
206 llvm::Constant *
207 getVTableAddressPointForConstExpr(BaseSubobject Base,
208 const CXXRecordDecl *VTableClass) override;
209
210 llvm::GlobalVariable *getAddrOfVTable(const CXXRecordDecl *RD,
211 CharUnits VPtrOffset) override;
212
213 llvm::Value *getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD,
214 llvm::Value *This,
215 llvm::Type *Ty) override;
216
217 llvm::Value *EmitVirtualDestructorCall(CodeGenFunction &CGF,
218 const CXXDestructorDecl *Dtor,
219 CXXDtorType DtorType,
220 llvm::Value *This,
221 const CXXMemberCallExpr *CE) override;
222
adjustCallArgsForDestructorThunk(CodeGenFunction & CGF,GlobalDecl GD,CallArgList & CallArgs)223 void adjustCallArgsForDestructorThunk(CodeGenFunction &CGF, GlobalDecl GD,
224 CallArgList &CallArgs) override {
225 assert(GD.getDtorType() == Dtor_Deleting &&
226 "Only deleting destructor thunks are available in this ABI");
227 CallArgs.add(RValue::get(getStructorImplicitParamValue(CGF)),
228 CGM.getContext().IntTy);
229 }
230
231 void emitVirtualInheritanceTables(const CXXRecordDecl *RD) override;
232
233 llvm::GlobalVariable *
234 getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD,
235 llvm::GlobalVariable::LinkageTypes Linkage);
236
237 void emitVBTableDefinition(const VPtrInfo &VBT, const CXXRecordDecl *RD,
238 llvm::GlobalVariable *GV) const;
239
setThunkLinkage(llvm::Function * Thunk,bool ForVTable,GlobalDecl GD,bool ReturnAdjustment)240 void setThunkLinkage(llvm::Function *Thunk, bool ForVTable,
241 GlobalDecl GD, bool ReturnAdjustment) override {
242 // Never dllimport/dllexport thunks.
243 Thunk->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
244
245 GVALinkage Linkage =
246 getContext().GetGVALinkageForFunction(cast<FunctionDecl>(GD.getDecl()));
247
248 if (Linkage == GVA_Internal)
249 Thunk->setLinkage(llvm::GlobalValue::InternalLinkage);
250 else if (ReturnAdjustment)
251 Thunk->setLinkage(llvm::GlobalValue::WeakODRLinkage);
252 else
253 Thunk->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage);
254 }
255
256 llvm::Value *performThisAdjustment(CodeGenFunction &CGF, llvm::Value *This,
257 const ThisAdjustment &TA) override;
258
259 llvm::Value *performReturnAdjustment(CodeGenFunction &CGF, llvm::Value *Ret,
260 const ReturnAdjustment &RA) override;
261
262 void EmitThreadLocalInitFuncs(
263 CodeGenModule &CGM,
264 ArrayRef<std::pair<const VarDecl *, llvm::GlobalVariable *>>
265 CXXThreadLocals,
266 ArrayRef<llvm::Function *> CXXThreadLocalInits,
267 ArrayRef<llvm::GlobalVariable *> CXXThreadLocalInitVars) override;
268
usesThreadWrapperFunction() const269 bool usesThreadWrapperFunction() const override { return false; }
270 LValue EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, const VarDecl *VD,
271 QualType LValType) override;
272
273 void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
274 llvm::GlobalVariable *DeclPtr,
275 bool PerformInit) override;
276 void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D,
277 llvm::Constant *Dtor, llvm::Constant *Addr) override;
278
279 // ==== Notes on array cookies =========
280 //
281 // MSVC seems to only use cookies when the class has a destructor; a
282 // two-argument usual array deallocation function isn't sufficient.
283 //
284 // For example, this code prints "100" and "1":
285 // struct A {
286 // char x;
287 // void *operator new[](size_t sz) {
288 // printf("%u\n", sz);
289 // return malloc(sz);
290 // }
291 // void operator delete[](void *p, size_t sz) {
292 // printf("%u\n", sz);
293 // free(p);
294 // }
295 // };
296 // int main() {
297 // A *p = new A[100];
298 // delete[] p;
299 // }
300 // Whereas it prints "104" and "104" if you give A a destructor.
301
302 bool requiresArrayCookie(const CXXDeleteExpr *expr,
303 QualType elementType) override;
304 bool requiresArrayCookie(const CXXNewExpr *expr) override;
305 CharUnits getArrayCookieSizeImpl(QualType type) override;
306 llvm::Value *InitializeArrayCookie(CodeGenFunction &CGF,
307 llvm::Value *NewPtr,
308 llvm::Value *NumElements,
309 const CXXNewExpr *expr,
310 QualType ElementType) override;
311 llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF,
312 llvm::Value *allocPtr,
313 CharUnits cookieSize) override;
314
315 friend struct MSRTTIBuilder;
316
isImageRelative() const317 bool isImageRelative() const {
318 return CGM.getTarget().getPointerWidth(/*AddressSpace=*/0) == 64;
319 }
320
321 // 5 routines for constructing the llvm types for MS RTTI structs.
getTypeDescriptorType(StringRef TypeInfoString)322 llvm::StructType *getTypeDescriptorType(StringRef TypeInfoString) {
323 llvm::SmallString<32> TDTypeName("rtti.TypeDescriptor");
324 TDTypeName += llvm::utostr(TypeInfoString.size());
325 llvm::StructType *&TypeDescriptorType =
326 TypeDescriptorTypeMap[TypeInfoString.size()];
327 if (TypeDescriptorType)
328 return TypeDescriptorType;
329 llvm::Type *FieldTypes[] = {
330 CGM.Int8PtrPtrTy,
331 CGM.Int8PtrTy,
332 llvm::ArrayType::get(CGM.Int8Ty, TypeInfoString.size() + 1)};
333 TypeDescriptorType =
334 llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, TDTypeName);
335 return TypeDescriptorType;
336 }
337
getImageRelativeType(llvm::Type * PtrType)338 llvm::Type *getImageRelativeType(llvm::Type *PtrType) {
339 if (!isImageRelative())
340 return PtrType;
341 return CGM.IntTy;
342 }
343
getBaseClassDescriptorType()344 llvm::StructType *getBaseClassDescriptorType() {
345 if (BaseClassDescriptorType)
346 return BaseClassDescriptorType;
347 llvm::Type *FieldTypes[] = {
348 getImageRelativeType(CGM.Int8PtrTy),
349 CGM.IntTy,
350 CGM.IntTy,
351 CGM.IntTy,
352 CGM.IntTy,
353 CGM.IntTy,
354 getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()),
355 };
356 BaseClassDescriptorType = llvm::StructType::create(
357 CGM.getLLVMContext(), FieldTypes, "rtti.BaseClassDescriptor");
358 return BaseClassDescriptorType;
359 }
360
getClassHierarchyDescriptorType()361 llvm::StructType *getClassHierarchyDescriptorType() {
362 if (ClassHierarchyDescriptorType)
363 return ClassHierarchyDescriptorType;
364 // Forward-declare RTTIClassHierarchyDescriptor to break a cycle.
365 ClassHierarchyDescriptorType = llvm::StructType::create(
366 CGM.getLLVMContext(), "rtti.ClassHierarchyDescriptor");
367 llvm::Type *FieldTypes[] = {
368 CGM.IntTy,
369 CGM.IntTy,
370 CGM.IntTy,
371 getImageRelativeType(
372 getBaseClassDescriptorType()->getPointerTo()->getPointerTo()),
373 };
374 ClassHierarchyDescriptorType->setBody(FieldTypes);
375 return ClassHierarchyDescriptorType;
376 }
377
getCompleteObjectLocatorType()378 llvm::StructType *getCompleteObjectLocatorType() {
379 if (CompleteObjectLocatorType)
380 return CompleteObjectLocatorType;
381 CompleteObjectLocatorType = llvm::StructType::create(
382 CGM.getLLVMContext(), "rtti.CompleteObjectLocator");
383 llvm::Type *FieldTypes[] = {
384 CGM.IntTy,
385 CGM.IntTy,
386 CGM.IntTy,
387 getImageRelativeType(CGM.Int8PtrTy),
388 getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()),
389 getImageRelativeType(CompleteObjectLocatorType),
390 };
391 llvm::ArrayRef<llvm::Type *> FieldTypesRef(FieldTypes);
392 if (!isImageRelative())
393 FieldTypesRef = FieldTypesRef.drop_back();
394 CompleteObjectLocatorType->setBody(FieldTypesRef);
395 return CompleteObjectLocatorType;
396 }
397
getImageBase()398 llvm::GlobalVariable *getImageBase() {
399 StringRef Name = "__ImageBase";
400 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name))
401 return GV;
402
403 return new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty,
404 /*isConstant=*/true,
405 llvm::GlobalValue::ExternalLinkage,
406 /*Initializer=*/nullptr, Name);
407 }
408
getImageRelativeConstant(llvm::Constant * PtrVal)409 llvm::Constant *getImageRelativeConstant(llvm::Constant *PtrVal) {
410 if (!isImageRelative())
411 return PtrVal;
412
413 llvm::Constant *ImageBaseAsInt =
414 llvm::ConstantExpr::getPtrToInt(getImageBase(), CGM.IntPtrTy);
415 llvm::Constant *PtrValAsInt =
416 llvm::ConstantExpr::getPtrToInt(PtrVal, CGM.IntPtrTy);
417 llvm::Constant *Diff =
418 llvm::ConstantExpr::getSub(PtrValAsInt, ImageBaseAsInt,
419 /*HasNUW=*/true, /*HasNSW=*/true);
420 return llvm::ConstantExpr::getTrunc(Diff, CGM.IntTy);
421 }
422
423 private:
getMangleContext()424 MicrosoftMangleContext &getMangleContext() {
425 return cast<MicrosoftMangleContext>(CodeGen::CGCXXABI::getMangleContext());
426 }
427
getZeroInt()428 llvm::Constant *getZeroInt() {
429 return llvm::ConstantInt::get(CGM.IntTy, 0);
430 }
431
getAllOnesInt()432 llvm::Constant *getAllOnesInt() {
433 return llvm::Constant::getAllOnesValue(CGM.IntTy);
434 }
435
getConstantOrZeroInt(llvm::Constant * C)436 llvm::Constant *getConstantOrZeroInt(llvm::Constant *C) {
437 return C ? C : getZeroInt();
438 }
439
getValueOrZeroInt(llvm::Value * C)440 llvm::Value *getValueOrZeroInt(llvm::Value *C) {
441 return C ? C : getZeroInt();
442 }
443
444 CharUnits getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD);
445
446 void
447 GetNullMemberPointerFields(const MemberPointerType *MPT,
448 llvm::SmallVectorImpl<llvm::Constant *> &fields);
449
450 /// \brief Shared code for virtual base adjustment. Returns the offset from
451 /// the vbptr to the virtual base. Optionally returns the address of the
452 /// vbptr itself.
453 llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
454 llvm::Value *Base,
455 llvm::Value *VBPtrOffset,
456 llvm::Value *VBTableOffset,
457 llvm::Value **VBPtr = nullptr);
458
GetVBaseOffsetFromVBPtr(CodeGenFunction & CGF,llvm::Value * Base,int32_t VBPtrOffset,int32_t VBTableOffset,llvm::Value ** VBPtr=nullptr)459 llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
460 llvm::Value *Base,
461 int32_t VBPtrOffset,
462 int32_t VBTableOffset,
463 llvm::Value **VBPtr = nullptr) {
464 assert(VBTableOffset % 4 == 0 && "should be byte offset into table of i32s");
465 llvm::Value *VBPOffset = llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset),
466 *VBTOffset = llvm::ConstantInt::get(CGM.IntTy, VBTableOffset);
467 return GetVBaseOffsetFromVBPtr(CGF, Base, VBPOffset, VBTOffset, VBPtr);
468 }
469
470 /// \brief Performs a full virtual base adjustment. Used to dereference
471 /// pointers to members of virtual bases.
472 llvm::Value *AdjustVirtualBase(CodeGenFunction &CGF, const Expr *E,
473 const CXXRecordDecl *RD, llvm::Value *Base,
474 llvm::Value *VirtualBaseAdjustmentOffset,
475 llvm::Value *VBPtrOffset /* optional */);
476
477 /// \brief Emits a full member pointer with the fields common to data and
478 /// function member pointers.
479 llvm::Constant *EmitFullMemberPointer(llvm::Constant *FirstField,
480 bool IsMemberFunction,
481 const CXXRecordDecl *RD,
482 CharUnits NonVirtualBaseAdjustment);
483
484 llvm::Constant *BuildMemberPointer(const CXXRecordDecl *RD,
485 const CXXMethodDecl *MD,
486 CharUnits NonVirtualBaseAdjustment);
487
488 bool MemberPointerConstantIsNull(const MemberPointerType *MPT,
489 llvm::Constant *MP);
490
491 /// \brief - Initialize all vbptrs of 'this' with RD as the complete type.
492 void EmitVBPtrStores(CodeGenFunction &CGF, const CXXRecordDecl *RD);
493
494 /// \brief Caching wrapper around VBTableBuilder::enumerateVBTables().
495 const VBTableGlobals &enumerateVBTables(const CXXRecordDecl *RD);
496
497 /// \brief Generate a thunk for calling a virtual member function MD.
498 llvm::Function *EmitVirtualMemPtrThunk(
499 const CXXMethodDecl *MD,
500 const MicrosoftVTableContext::MethodVFTableLocation &ML);
501
502 public:
503 llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT) override;
504
505 bool isZeroInitializable(const MemberPointerType *MPT) override;
506
isMemberPointerConvertible(const MemberPointerType * MPT) const507 bool isMemberPointerConvertible(const MemberPointerType *MPT) const override {
508 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
509 return RD->hasAttr<MSInheritanceAttr>();
510 }
511
isTypeInfoCalculable(QualType Ty) const512 bool isTypeInfoCalculable(QualType Ty) const override {
513 if (!CGCXXABI::isTypeInfoCalculable(Ty))
514 return false;
515 if (const auto *MPT = Ty->getAs<MemberPointerType>()) {
516 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
517 if (!RD->hasAttr<MSInheritanceAttr>())
518 return false;
519 }
520 return true;
521 }
522
523 llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT) override;
524
525 llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT,
526 CharUnits offset) override;
527 llvm::Constant *EmitMemberPointer(const CXXMethodDecl *MD) override;
528 llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT) override;
529
530 llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF,
531 llvm::Value *L,
532 llvm::Value *R,
533 const MemberPointerType *MPT,
534 bool Inequality) override;
535
536 llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
537 llvm::Value *MemPtr,
538 const MemberPointerType *MPT) override;
539
540 llvm::Value *
541 EmitMemberDataPointerAddress(CodeGenFunction &CGF, const Expr *E,
542 llvm::Value *Base, llvm::Value *MemPtr,
543 const MemberPointerType *MPT) override;
544
545 llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF,
546 const CastExpr *E,
547 llvm::Value *Src) override;
548
549 llvm::Constant *EmitMemberPointerConversion(const CastExpr *E,
550 llvm::Constant *Src) override;
551
552 llvm::Value *
553 EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, const Expr *E,
554 llvm::Value *&This, llvm::Value *MemPtr,
555 const MemberPointerType *MPT) override;
556
557 void emitCXXStructor(const CXXMethodDecl *MD, StructorType Type) override;
558
559 private:
560 typedef std::pair<const CXXRecordDecl *, CharUnits> VFTableIdTy;
561 typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalVariable *> VTablesMapTy;
562 typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalValue *> VFTablesMapTy;
563 /// \brief All the vftables that have been referenced.
564 VFTablesMapTy VFTablesMap;
565 VTablesMapTy VTablesMap;
566
567 /// \brief This set holds the record decls we've deferred vtable emission for.
568 llvm::SmallPtrSet<const CXXRecordDecl *, 4> DeferredVFTables;
569
570
571 /// \brief All the vbtables which have been referenced.
572 llvm::DenseMap<const CXXRecordDecl *, VBTableGlobals> VBTablesMap;
573
574 /// Info on the global variable used to guard initialization of static locals.
575 /// The BitIndex field is only used for externally invisible declarations.
576 struct GuardInfo {
GuardInfo__anond02e9b3e0111::MicrosoftCXXABI::GuardInfo577 GuardInfo() : Guard(nullptr), BitIndex(0) {}
578 llvm::GlobalVariable *Guard;
579 unsigned BitIndex;
580 };
581
582 /// Map from DeclContext to the current guard variable. We assume that the
583 /// AST is visited in source code order.
584 llvm::DenseMap<const DeclContext *, GuardInfo> GuardVariableMap;
585
586 llvm::DenseMap<size_t, llvm::StructType *> TypeDescriptorTypeMap;
587 llvm::StructType *BaseClassDescriptorType;
588 llvm::StructType *ClassHierarchyDescriptorType;
589 llvm::StructType *CompleteObjectLocatorType;
590 };
591
592 }
593
594 CGCXXABI::RecordArgABI
getRecordArgABI(const CXXRecordDecl * RD) const595 MicrosoftCXXABI::getRecordArgABI(const CXXRecordDecl *RD) const {
596 switch (CGM.getTarget().getTriple().getArch()) {
597 default:
598 // FIXME: Implement for other architectures.
599 return RAA_Default;
600
601 case llvm::Triple::x86:
602 // All record arguments are passed in memory on x86. Decide whether to
603 // construct the object directly in argument memory, or to construct the
604 // argument elsewhere and copy the bytes during the call.
605
606 // If C++ prohibits us from making a copy, construct the arguments directly
607 // into argument memory.
608 if (!canCopyArgument(RD))
609 return RAA_DirectInMemory;
610
611 // Otherwise, construct the argument into a temporary and copy the bytes
612 // into the outgoing argument memory.
613 return RAA_Default;
614
615 case llvm::Triple::x86_64:
616 // Win64 passes objects with non-trivial copy ctors indirectly.
617 if (RD->hasNonTrivialCopyConstructor())
618 return RAA_Indirect;
619
620 // If an object has a destructor, we'd really like to pass it indirectly
621 // because it allows us to elide copies. Unfortunately, MSVC makes that
622 // impossible for small types, which it will pass in a single register or
623 // stack slot. Most objects with dtors are large-ish, so handle that early.
624 // We can't call out all large objects as being indirect because there are
625 // multiple x64 calling conventions and the C++ ABI code shouldn't dictate
626 // how we pass large POD types.
627 if (RD->hasNonTrivialDestructor() &&
628 getContext().getTypeSize(RD->getTypeForDecl()) > 64)
629 return RAA_Indirect;
630
631 // We have a trivial copy constructor or no copy constructors, but we have
632 // to make sure it isn't deleted.
633 bool CopyDeleted = false;
634 for (const CXXConstructorDecl *CD : RD->ctors()) {
635 if (CD->isCopyConstructor()) {
636 assert(CD->isTrivial());
637 // We had at least one undeleted trivial copy ctor. Return directly.
638 if (!CD->isDeleted())
639 return RAA_Default;
640 CopyDeleted = true;
641 }
642 }
643
644 // The trivial copy constructor was deleted. Return indirectly.
645 if (CopyDeleted)
646 return RAA_Indirect;
647
648 // There were no copy ctors. Return in RAX.
649 return RAA_Default;
650 }
651
652 llvm_unreachable("invalid enum");
653 }
654
emitVirtualObjectDelete(CodeGenFunction & CGF,const CXXDeleteExpr * DE,llvm::Value * Ptr,QualType ElementType,const CXXDestructorDecl * Dtor)655 void MicrosoftCXXABI::emitVirtualObjectDelete(CodeGenFunction &CGF,
656 const CXXDeleteExpr *DE,
657 llvm::Value *Ptr,
658 QualType ElementType,
659 const CXXDestructorDecl *Dtor) {
660 // FIXME: Provide a source location here even though there's no
661 // CXXMemberCallExpr for dtor call.
662 bool UseGlobalDelete = DE->isGlobalDelete();
663 CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting;
664 llvm::Value *MDThis =
665 EmitVirtualDestructorCall(CGF, Dtor, DtorType, Ptr, /*CE=*/nullptr);
666 if (UseGlobalDelete)
667 CGF.EmitDeleteCall(DE->getOperatorDelete(), MDThis, ElementType);
668 }
669
getRethrowFn(CodeGenModule & CGM)670 static llvm::Function *getRethrowFn(CodeGenModule &CGM) {
671 // _CxxThrowException takes two pointer width arguments: a value and a context
672 // object which points to a TypeInfo object.
673 llvm::Type *ArgTypes[] = {CGM.Int8PtrTy, CGM.Int8PtrTy};
674 llvm::FunctionType *FTy =
675 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
676 auto *Fn = cast<llvm::Function>(
677 CGM.CreateRuntimeFunction(FTy, "_CxxThrowException"));
678 // _CxxThrowException is stdcall on 32-bit x86 platforms.
679 if (CGM.getTarget().getTriple().getArch() == llvm::Triple::x86)
680 Fn->setCallingConv(llvm::CallingConv::X86_StdCall);
681 return Fn;
682 }
683
emitRethrow(CodeGenFunction & CGF,bool isNoReturn)684 void MicrosoftCXXABI::emitRethrow(CodeGenFunction &CGF, bool isNoReturn) {
685 llvm::Value *Args[] = {llvm::ConstantPointerNull::get(CGM.Int8PtrTy),
686 llvm::ConstantPointerNull::get(CGM.Int8PtrTy)};
687 auto *Fn = getRethrowFn(CGM);
688 if (isNoReturn)
689 CGF.EmitNoreturnRuntimeCallOrInvoke(Fn, Args);
690 else
691 CGF.EmitRuntimeCallOrInvoke(Fn, Args);
692 }
693
694 /// \brief Gets the offset to the virtual base that contains the vfptr for
695 /// MS-ABI polymorphic types.
getPolymorphicOffset(CodeGenFunction & CGF,const CXXRecordDecl * RD,llvm::Value * Value)696 static llvm::Value *getPolymorphicOffset(CodeGenFunction &CGF,
697 const CXXRecordDecl *RD,
698 llvm::Value *Value) {
699 const ASTContext &Context = RD->getASTContext();
700 for (const CXXBaseSpecifier &Base : RD->vbases())
701 if (Context.getASTRecordLayout(Base.getType()->getAsCXXRecordDecl())
702 .hasExtendableVFPtr())
703 return CGF.CGM.getCXXABI().GetVirtualBaseClassOffset(
704 CGF, Value, RD, Base.getType()->getAsCXXRecordDecl());
705 llvm_unreachable("One of our vbases should be polymorphic.");
706 }
707
708 static std::pair<llvm::Value *, llvm::Value *>
performBaseAdjustment(CodeGenFunction & CGF,llvm::Value * Value,QualType SrcRecordTy)709 performBaseAdjustment(CodeGenFunction &CGF, llvm::Value *Value,
710 QualType SrcRecordTy) {
711 Value = CGF.Builder.CreateBitCast(Value, CGF.Int8PtrTy);
712 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
713
714 if (CGF.getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr())
715 return std::make_pair(Value, llvm::ConstantInt::get(CGF.Int32Ty, 0));
716
717 // Perform a base adjustment.
718 llvm::Value *Offset = getPolymorphicOffset(CGF, SrcDecl, Value);
719 Value = CGF.Builder.CreateInBoundsGEP(Value, Offset);
720 Offset = CGF.Builder.CreateTrunc(Offset, CGF.Int32Ty);
721 return std::make_pair(Value, Offset);
722 }
723
shouldTypeidBeNullChecked(bool IsDeref,QualType SrcRecordTy)724 bool MicrosoftCXXABI::shouldTypeidBeNullChecked(bool IsDeref,
725 QualType SrcRecordTy) {
726 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
727 return IsDeref &&
728 !CGM.getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr();
729 }
730
emitRTtypeidCall(CodeGenFunction & CGF,llvm::Value * Argument)731 static llvm::CallSite emitRTtypeidCall(CodeGenFunction &CGF,
732 llvm::Value *Argument) {
733 llvm::Type *ArgTypes[] = {CGF.Int8PtrTy};
734 llvm::FunctionType *FTy =
735 llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false);
736 llvm::Value *Args[] = {Argument};
737 llvm::Constant *Fn = CGF.CGM.CreateRuntimeFunction(FTy, "__RTtypeid");
738 return CGF.EmitRuntimeCallOrInvoke(Fn, Args);
739 }
740
EmitBadTypeidCall(CodeGenFunction & CGF)741 void MicrosoftCXXABI::EmitBadTypeidCall(CodeGenFunction &CGF) {
742 llvm::CallSite Call =
743 emitRTtypeidCall(CGF, llvm::Constant::getNullValue(CGM.VoidPtrTy));
744 Call.setDoesNotReturn();
745 CGF.Builder.CreateUnreachable();
746 }
747
EmitTypeid(CodeGenFunction & CGF,QualType SrcRecordTy,llvm::Value * ThisPtr,llvm::Type * StdTypeInfoPtrTy)748 llvm::Value *MicrosoftCXXABI::EmitTypeid(CodeGenFunction &CGF,
749 QualType SrcRecordTy,
750 llvm::Value *ThisPtr,
751 llvm::Type *StdTypeInfoPtrTy) {
752 llvm::Value *Offset;
753 std::tie(ThisPtr, Offset) = performBaseAdjustment(CGF, ThisPtr, SrcRecordTy);
754 return CGF.Builder.CreateBitCast(
755 emitRTtypeidCall(CGF, ThisPtr).getInstruction(), StdTypeInfoPtrTy);
756 }
757
shouldDynamicCastCallBeNullChecked(bool SrcIsPtr,QualType SrcRecordTy)758 bool MicrosoftCXXABI::shouldDynamicCastCallBeNullChecked(bool SrcIsPtr,
759 QualType SrcRecordTy) {
760 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
761 return SrcIsPtr &&
762 !CGM.getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr();
763 }
764
EmitDynamicCastCall(CodeGenFunction & CGF,llvm::Value * Value,QualType SrcRecordTy,QualType DestTy,QualType DestRecordTy,llvm::BasicBlock * CastEnd)765 llvm::Value *MicrosoftCXXABI::EmitDynamicCastCall(
766 CodeGenFunction &CGF, llvm::Value *Value, QualType SrcRecordTy,
767 QualType DestTy, QualType DestRecordTy, llvm::BasicBlock *CastEnd) {
768 llvm::Type *DestLTy = CGF.ConvertType(DestTy);
769
770 llvm::Value *SrcRTTI =
771 CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType());
772 llvm::Value *DestRTTI =
773 CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType());
774
775 llvm::Value *Offset;
776 std::tie(Value, Offset) = performBaseAdjustment(CGF, Value, SrcRecordTy);
777
778 // PVOID __RTDynamicCast(
779 // PVOID inptr,
780 // LONG VfDelta,
781 // PVOID SrcType,
782 // PVOID TargetType,
783 // BOOL isReference)
784 llvm::Type *ArgTypes[] = {CGF.Int8PtrTy, CGF.Int32Ty, CGF.Int8PtrTy,
785 CGF.Int8PtrTy, CGF.Int32Ty};
786 llvm::Constant *Function = CGF.CGM.CreateRuntimeFunction(
787 llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false),
788 "__RTDynamicCast");
789 llvm::Value *Args[] = {
790 Value, Offset, SrcRTTI, DestRTTI,
791 llvm::ConstantInt::get(CGF.Int32Ty, DestTy->isReferenceType())};
792 Value = CGF.EmitRuntimeCallOrInvoke(Function, Args).getInstruction();
793 return CGF.Builder.CreateBitCast(Value, DestLTy);
794 }
795
796 llvm::Value *
EmitDynamicCastToVoid(CodeGenFunction & CGF,llvm::Value * Value,QualType SrcRecordTy,QualType DestTy)797 MicrosoftCXXABI::EmitDynamicCastToVoid(CodeGenFunction &CGF, llvm::Value *Value,
798 QualType SrcRecordTy,
799 QualType DestTy) {
800 llvm::Value *Offset;
801 std::tie(Value, Offset) = performBaseAdjustment(CGF, Value, SrcRecordTy);
802
803 // PVOID __RTCastToVoid(
804 // PVOID inptr)
805 llvm::Type *ArgTypes[] = {CGF.Int8PtrTy};
806 llvm::Constant *Function = CGF.CGM.CreateRuntimeFunction(
807 llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false),
808 "__RTCastToVoid");
809 llvm::Value *Args[] = {Value};
810 return CGF.EmitRuntimeCall(Function, Args);
811 }
812
EmitBadCastCall(CodeGenFunction & CGF)813 bool MicrosoftCXXABI::EmitBadCastCall(CodeGenFunction &CGF) {
814 return false;
815 }
816
GetVirtualBaseClassOffset(CodeGenFunction & CGF,llvm::Value * This,const CXXRecordDecl * ClassDecl,const CXXRecordDecl * BaseClassDecl)817 llvm::Value *MicrosoftCXXABI::GetVirtualBaseClassOffset(
818 CodeGenFunction &CGF, llvm::Value *This, const CXXRecordDecl *ClassDecl,
819 const CXXRecordDecl *BaseClassDecl) {
820 int64_t VBPtrChars =
821 getContext().getASTRecordLayout(ClassDecl).getVBPtrOffset().getQuantity();
822 llvm::Value *VBPtrOffset = llvm::ConstantInt::get(CGM.PtrDiffTy, VBPtrChars);
823 CharUnits IntSize = getContext().getTypeSizeInChars(getContext().IntTy);
824 CharUnits VBTableChars =
825 IntSize *
826 CGM.getMicrosoftVTableContext().getVBTableIndex(ClassDecl, BaseClassDecl);
827 llvm::Value *VBTableOffset =
828 llvm::ConstantInt::get(CGM.IntTy, VBTableChars.getQuantity());
829
830 llvm::Value *VBPtrToNewBase =
831 GetVBaseOffsetFromVBPtr(CGF, This, VBPtrOffset, VBTableOffset);
832 VBPtrToNewBase =
833 CGF.Builder.CreateSExtOrBitCast(VBPtrToNewBase, CGM.PtrDiffTy);
834 return CGF.Builder.CreateNSWAdd(VBPtrOffset, VBPtrToNewBase);
835 }
836
HasThisReturn(GlobalDecl GD) const837 bool MicrosoftCXXABI::HasThisReturn(GlobalDecl GD) const {
838 return isa<CXXConstructorDecl>(GD.getDecl());
839 }
840
isDeletingDtor(GlobalDecl GD)841 static bool isDeletingDtor(GlobalDecl GD) {
842 return isa<CXXDestructorDecl>(GD.getDecl()) &&
843 GD.getDtorType() == Dtor_Deleting;
844 }
845
hasMostDerivedReturn(GlobalDecl GD) const846 bool MicrosoftCXXABI::hasMostDerivedReturn(GlobalDecl GD) const {
847 return isDeletingDtor(GD);
848 }
849
classifyReturnType(CGFunctionInfo & FI) const850 bool MicrosoftCXXABI::classifyReturnType(CGFunctionInfo &FI) const {
851 const CXXRecordDecl *RD = FI.getReturnType()->getAsCXXRecordDecl();
852 if (!RD)
853 return false;
854
855 if (FI.isInstanceMethod()) {
856 // If it's an instance method, aggregates are always returned indirectly via
857 // the second parameter.
858 FI.getReturnInfo() = ABIArgInfo::getIndirect(0, /*ByVal=*/false);
859 FI.getReturnInfo().setSRetAfterThis(FI.isInstanceMethod());
860 return true;
861 } else if (!RD->isPOD()) {
862 // If it's a free function, non-POD types are returned indirectly.
863 FI.getReturnInfo() = ABIArgInfo::getIndirect(0, /*ByVal=*/false);
864 return true;
865 }
866
867 // Otherwise, use the C ABI rules.
868 return false;
869 }
870
871 llvm::BasicBlock *
EmitCtorCompleteObjectHandler(CodeGenFunction & CGF,const CXXRecordDecl * RD)872 MicrosoftCXXABI::EmitCtorCompleteObjectHandler(CodeGenFunction &CGF,
873 const CXXRecordDecl *RD) {
874 llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF);
875 assert(IsMostDerivedClass &&
876 "ctor for a class with virtual bases must have an implicit parameter");
877 llvm::Value *IsCompleteObject =
878 CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object");
879
880 llvm::BasicBlock *CallVbaseCtorsBB = CGF.createBasicBlock("ctor.init_vbases");
881 llvm::BasicBlock *SkipVbaseCtorsBB = CGF.createBasicBlock("ctor.skip_vbases");
882 CGF.Builder.CreateCondBr(IsCompleteObject,
883 CallVbaseCtorsBB, SkipVbaseCtorsBB);
884
885 CGF.EmitBlock(CallVbaseCtorsBB);
886
887 // Fill in the vbtable pointers here.
888 EmitVBPtrStores(CGF, RD);
889
890 // CGF will put the base ctor calls in this basic block for us later.
891
892 return SkipVbaseCtorsBB;
893 }
894
initializeHiddenVirtualInheritanceMembers(CodeGenFunction & CGF,const CXXRecordDecl * RD)895 void MicrosoftCXXABI::initializeHiddenVirtualInheritanceMembers(
896 CodeGenFunction &CGF, const CXXRecordDecl *RD) {
897 // In most cases, an override for a vbase virtual method can adjust
898 // the "this" parameter by applying a constant offset.
899 // However, this is not enough while a constructor or a destructor of some
900 // class X is being executed if all the following conditions are met:
901 // - X has virtual bases, (1)
902 // - X overrides a virtual method M of a vbase Y, (2)
903 // - X itself is a vbase of the most derived class.
904 //
905 // If (1) and (2) are true, the vtorDisp for vbase Y is a hidden member of X
906 // which holds the extra amount of "this" adjustment we must do when we use
907 // the X vftables (i.e. during X ctor or dtor).
908 // Outside the ctors and dtors, the values of vtorDisps are zero.
909
910 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
911 typedef ASTRecordLayout::VBaseOffsetsMapTy VBOffsets;
912 const VBOffsets &VBaseMap = Layout.getVBaseOffsetsMap();
913 CGBuilderTy &Builder = CGF.Builder;
914
915 unsigned AS =
916 cast<llvm::PointerType>(getThisValue(CGF)->getType())->getAddressSpace();
917 llvm::Value *Int8This = nullptr; // Initialize lazily.
918
919 for (VBOffsets::const_iterator I = VBaseMap.begin(), E = VBaseMap.end();
920 I != E; ++I) {
921 if (!I->second.hasVtorDisp())
922 continue;
923
924 llvm::Value *VBaseOffset =
925 GetVirtualBaseClassOffset(CGF, getThisValue(CGF), RD, I->first);
926 // FIXME: it doesn't look right that we SExt in GetVirtualBaseClassOffset()
927 // just to Trunc back immediately.
928 VBaseOffset = Builder.CreateTruncOrBitCast(VBaseOffset, CGF.Int32Ty);
929 uint64_t ConstantVBaseOffset =
930 Layout.getVBaseClassOffset(I->first).getQuantity();
931
932 // vtorDisp_for_vbase = vbptr[vbase_idx] - offsetof(RD, vbase).
933 llvm::Value *VtorDispValue = Builder.CreateSub(
934 VBaseOffset, llvm::ConstantInt::get(CGM.Int32Ty, ConstantVBaseOffset),
935 "vtordisp.value");
936
937 if (!Int8This)
938 Int8This = Builder.CreateBitCast(getThisValue(CGF),
939 CGF.Int8Ty->getPointerTo(AS));
940 llvm::Value *VtorDispPtr = Builder.CreateInBoundsGEP(Int8This, VBaseOffset);
941 // vtorDisp is always the 32-bits before the vbase in the class layout.
942 VtorDispPtr = Builder.CreateConstGEP1_32(VtorDispPtr, -4);
943 VtorDispPtr = Builder.CreateBitCast(
944 VtorDispPtr, CGF.Int32Ty->getPointerTo(AS), "vtordisp.ptr");
945
946 Builder.CreateStore(VtorDispValue, VtorDispPtr);
947 }
948 }
949
EmitCXXConstructors(const CXXConstructorDecl * D)950 void MicrosoftCXXABI::EmitCXXConstructors(const CXXConstructorDecl *D) {
951 // There's only one constructor type in this ABI.
952 CGM.EmitGlobal(GlobalDecl(D, Ctor_Complete));
953 }
954
EmitVBPtrStores(CodeGenFunction & CGF,const CXXRecordDecl * RD)955 void MicrosoftCXXABI::EmitVBPtrStores(CodeGenFunction &CGF,
956 const CXXRecordDecl *RD) {
957 llvm::Value *ThisInt8Ptr =
958 CGF.Builder.CreateBitCast(getThisValue(CGF), CGM.Int8PtrTy, "this.int8");
959 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
960
961 const VBTableGlobals &VBGlobals = enumerateVBTables(RD);
962 for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) {
963 const VPtrInfo *VBT = (*VBGlobals.VBTables)[I];
964 llvm::GlobalVariable *GV = VBGlobals.Globals[I];
965 const ASTRecordLayout &SubobjectLayout =
966 CGM.getContext().getASTRecordLayout(VBT->BaseWithVPtr);
967 CharUnits Offs = VBT->NonVirtualOffset;
968 Offs += SubobjectLayout.getVBPtrOffset();
969 if (VBT->getVBaseWithVPtr())
970 Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr());
971 llvm::Value *VBPtr =
972 CGF.Builder.CreateConstInBoundsGEP1_64(ThisInt8Ptr, Offs.getQuantity());
973 llvm::Value *GVPtr = CGF.Builder.CreateConstInBoundsGEP2_32(GV, 0, 0);
974 VBPtr = CGF.Builder.CreateBitCast(VBPtr, GVPtr->getType()->getPointerTo(0),
975 "vbptr." + VBT->ReusingBase->getName());
976 CGF.Builder.CreateStore(GVPtr, VBPtr);
977 }
978 }
979
980 void
buildStructorSignature(const CXXMethodDecl * MD,StructorType T,SmallVectorImpl<CanQualType> & ArgTys)981 MicrosoftCXXABI::buildStructorSignature(const CXXMethodDecl *MD, StructorType T,
982 SmallVectorImpl<CanQualType> &ArgTys) {
983 // TODO: 'for base' flag
984 if (T == StructorType::Deleting) {
985 // The scalar deleting destructor takes an implicit int parameter.
986 ArgTys.push_back(CGM.getContext().IntTy);
987 }
988 auto *CD = dyn_cast<CXXConstructorDecl>(MD);
989 if (!CD)
990 return;
991
992 // All parameters are already in place except is_most_derived, which goes
993 // after 'this' if it's variadic and last if it's not.
994
995 const CXXRecordDecl *Class = CD->getParent();
996 const FunctionProtoType *FPT = CD->getType()->castAs<FunctionProtoType>();
997 if (Class->getNumVBases()) {
998 if (FPT->isVariadic())
999 ArgTys.insert(ArgTys.begin() + 1, CGM.getContext().IntTy);
1000 else
1001 ArgTys.push_back(CGM.getContext().IntTy);
1002 }
1003 }
1004
EmitCXXDestructors(const CXXDestructorDecl * D)1005 void MicrosoftCXXABI::EmitCXXDestructors(const CXXDestructorDecl *D) {
1006 // The TU defining a dtor is only guaranteed to emit a base destructor. All
1007 // other destructor variants are delegating thunks.
1008 CGM.EmitGlobal(GlobalDecl(D, Dtor_Base));
1009 }
1010
1011 CharUnits
getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD)1012 MicrosoftCXXABI::getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) {
1013 GD = GD.getCanonicalDecl();
1014 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1015
1016 GlobalDecl LookupGD = GD;
1017 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1018 // Complete destructors take a pointer to the complete object as a
1019 // parameter, thus don't need this adjustment.
1020 if (GD.getDtorType() == Dtor_Complete)
1021 return CharUnits();
1022
1023 // There's no Dtor_Base in vftable but it shares the this adjustment with
1024 // the deleting one, so look it up instead.
1025 LookupGD = GlobalDecl(DD, Dtor_Deleting);
1026 }
1027
1028 MicrosoftVTableContext::MethodVFTableLocation ML =
1029 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD);
1030 CharUnits Adjustment = ML.VFPtrOffset;
1031
1032 // Normal virtual instance methods need to adjust from the vfptr that first
1033 // defined the virtual method to the virtual base subobject, but destructors
1034 // do not. The vector deleting destructor thunk applies this adjustment for
1035 // us if necessary.
1036 if (isa<CXXDestructorDecl>(MD))
1037 Adjustment = CharUnits::Zero();
1038
1039 if (ML.VBase) {
1040 const ASTRecordLayout &DerivedLayout =
1041 CGM.getContext().getASTRecordLayout(MD->getParent());
1042 Adjustment += DerivedLayout.getVBaseClassOffset(ML.VBase);
1043 }
1044
1045 return Adjustment;
1046 }
1047
adjustThisArgumentForVirtualFunctionCall(CodeGenFunction & CGF,GlobalDecl GD,llvm::Value * This,bool VirtualCall)1048 llvm::Value *MicrosoftCXXABI::adjustThisArgumentForVirtualFunctionCall(
1049 CodeGenFunction &CGF, GlobalDecl GD, llvm::Value *This, bool VirtualCall) {
1050 if (!VirtualCall) {
1051 // If the call of a virtual function is not virtual, we just have to
1052 // compensate for the adjustment the virtual function does in its prologue.
1053 CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD);
1054 if (Adjustment.isZero())
1055 return This;
1056
1057 unsigned AS = cast<llvm::PointerType>(This->getType())->getAddressSpace();
1058 llvm::Type *charPtrTy = CGF.Int8Ty->getPointerTo(AS);
1059 This = CGF.Builder.CreateBitCast(This, charPtrTy);
1060 assert(Adjustment.isPositive());
1061 return CGF.Builder.CreateConstGEP1_32(This, Adjustment.getQuantity());
1062 }
1063
1064 GD = GD.getCanonicalDecl();
1065 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1066
1067 GlobalDecl LookupGD = GD;
1068 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1069 // Complete dtors take a pointer to the complete object,
1070 // thus don't need adjustment.
1071 if (GD.getDtorType() == Dtor_Complete)
1072 return This;
1073
1074 // There's only Dtor_Deleting in vftable but it shares the this adjustment
1075 // with the base one, so look up the deleting one instead.
1076 LookupGD = GlobalDecl(DD, Dtor_Deleting);
1077 }
1078 MicrosoftVTableContext::MethodVFTableLocation ML =
1079 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD);
1080
1081 unsigned AS = cast<llvm::PointerType>(This->getType())->getAddressSpace();
1082 llvm::Type *charPtrTy = CGF.Int8Ty->getPointerTo(AS);
1083 CharUnits StaticOffset = ML.VFPtrOffset;
1084
1085 // Base destructors expect 'this' to point to the beginning of the base
1086 // subobject, not the first vfptr that happens to contain the virtual dtor.
1087 // However, we still need to apply the virtual base adjustment.
1088 if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base)
1089 StaticOffset = CharUnits::Zero();
1090
1091 if (ML.VBase) {
1092 This = CGF.Builder.CreateBitCast(This, charPtrTy);
1093 llvm::Value *VBaseOffset =
1094 GetVirtualBaseClassOffset(CGF, This, MD->getParent(), ML.VBase);
1095 This = CGF.Builder.CreateInBoundsGEP(This, VBaseOffset);
1096 }
1097 if (!StaticOffset.isZero()) {
1098 assert(StaticOffset.isPositive());
1099 This = CGF.Builder.CreateBitCast(This, charPtrTy);
1100 if (ML.VBase) {
1101 // Non-virtual adjustment might result in a pointer outside the allocated
1102 // object, e.g. if the final overrider class is laid out after the virtual
1103 // base that declares a method in the most derived class.
1104 // FIXME: Update the code that emits this adjustment in thunks prologues.
1105 This = CGF.Builder.CreateConstGEP1_32(This, StaticOffset.getQuantity());
1106 } else {
1107 This = CGF.Builder.CreateConstInBoundsGEP1_32(This,
1108 StaticOffset.getQuantity());
1109 }
1110 }
1111 return This;
1112 }
1113
addImplicitStructorParams(CodeGenFunction & CGF,QualType & ResTy,FunctionArgList & Params)1114 void MicrosoftCXXABI::addImplicitStructorParams(CodeGenFunction &CGF,
1115 QualType &ResTy,
1116 FunctionArgList &Params) {
1117 ASTContext &Context = getContext();
1118 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
1119 assert(isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD));
1120 if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) {
1121 ImplicitParamDecl *IsMostDerived
1122 = ImplicitParamDecl::Create(Context, nullptr,
1123 CGF.CurGD.getDecl()->getLocation(),
1124 &Context.Idents.get("is_most_derived"),
1125 Context.IntTy);
1126 // The 'most_derived' parameter goes second if the ctor is variadic and last
1127 // if it's not. Dtors can't be variadic.
1128 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
1129 if (FPT->isVariadic())
1130 Params.insert(Params.begin() + 1, IsMostDerived);
1131 else
1132 Params.push_back(IsMostDerived);
1133 getStructorImplicitParamDecl(CGF) = IsMostDerived;
1134 } else if (isDeletingDtor(CGF.CurGD)) {
1135 ImplicitParamDecl *ShouldDelete
1136 = ImplicitParamDecl::Create(Context, nullptr,
1137 CGF.CurGD.getDecl()->getLocation(),
1138 &Context.Idents.get("should_call_delete"),
1139 Context.IntTy);
1140 Params.push_back(ShouldDelete);
1141 getStructorImplicitParamDecl(CGF) = ShouldDelete;
1142 }
1143 }
1144
adjustThisParameterInVirtualFunctionPrologue(CodeGenFunction & CGF,GlobalDecl GD,llvm::Value * This)1145 llvm::Value *MicrosoftCXXABI::adjustThisParameterInVirtualFunctionPrologue(
1146 CodeGenFunction &CGF, GlobalDecl GD, llvm::Value *This) {
1147 // In this ABI, every virtual function takes a pointer to one of the
1148 // subobjects that first defines it as the 'this' parameter, rather than a
1149 // pointer to the final overrider subobject. Thus, we need to adjust it back
1150 // to the final overrider subobject before use.
1151 // See comments in the MicrosoftVFTableContext implementation for the details.
1152 CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD);
1153 if (Adjustment.isZero())
1154 return This;
1155
1156 unsigned AS = cast<llvm::PointerType>(This->getType())->getAddressSpace();
1157 llvm::Type *charPtrTy = CGF.Int8Ty->getPointerTo(AS),
1158 *thisTy = This->getType();
1159
1160 This = CGF.Builder.CreateBitCast(This, charPtrTy);
1161 assert(Adjustment.isPositive());
1162 This =
1163 CGF.Builder.CreateConstInBoundsGEP1_32(This, -Adjustment.getQuantity());
1164 return CGF.Builder.CreateBitCast(This, thisTy);
1165 }
1166
EmitInstanceFunctionProlog(CodeGenFunction & CGF)1167 void MicrosoftCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) {
1168 EmitThisParam(CGF);
1169
1170 /// If this is a function that the ABI specifies returns 'this', initialize
1171 /// the return slot to 'this' at the start of the function.
1172 ///
1173 /// Unlike the setting of return types, this is done within the ABI
1174 /// implementation instead of by clients of CGCXXABI because:
1175 /// 1) getThisValue is currently protected
1176 /// 2) in theory, an ABI could implement 'this' returns some other way;
1177 /// HasThisReturn only specifies a contract, not the implementation
1178 if (HasThisReturn(CGF.CurGD))
1179 CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue);
1180 else if (hasMostDerivedReturn(CGF.CurGD))
1181 CGF.Builder.CreateStore(CGF.EmitCastToVoidPtr(getThisValue(CGF)),
1182 CGF.ReturnValue);
1183
1184 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
1185 if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) {
1186 assert(getStructorImplicitParamDecl(CGF) &&
1187 "no implicit parameter for a constructor with virtual bases?");
1188 getStructorImplicitParamValue(CGF)
1189 = CGF.Builder.CreateLoad(
1190 CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)),
1191 "is_most_derived");
1192 }
1193
1194 if (isDeletingDtor(CGF.CurGD)) {
1195 assert(getStructorImplicitParamDecl(CGF) &&
1196 "no implicit parameter for a deleting destructor?");
1197 getStructorImplicitParamValue(CGF)
1198 = CGF.Builder.CreateLoad(
1199 CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)),
1200 "should_call_delete");
1201 }
1202 }
1203
addImplicitConstructorArgs(CodeGenFunction & CGF,const CXXConstructorDecl * D,CXXCtorType Type,bool ForVirtualBase,bool Delegating,CallArgList & Args)1204 unsigned MicrosoftCXXABI::addImplicitConstructorArgs(
1205 CodeGenFunction &CGF, const CXXConstructorDecl *D, CXXCtorType Type,
1206 bool ForVirtualBase, bool Delegating, CallArgList &Args) {
1207 assert(Type == Ctor_Complete || Type == Ctor_Base);
1208
1209 // Check if we need a 'most_derived' parameter.
1210 if (!D->getParent()->getNumVBases())
1211 return 0;
1212
1213 // Add the 'most_derived' argument second if we are variadic or last if not.
1214 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
1215 llvm::Value *MostDerivedArg =
1216 llvm::ConstantInt::get(CGM.Int32Ty, Type == Ctor_Complete);
1217 RValue RV = RValue::get(MostDerivedArg);
1218 if (MostDerivedArg) {
1219 if (FPT->isVariadic())
1220 Args.insert(Args.begin() + 1,
1221 CallArg(RV, getContext().IntTy, /*needscopy=*/false));
1222 else
1223 Args.add(RV, getContext().IntTy);
1224 }
1225
1226 return 1; // Added one arg.
1227 }
1228
EmitDestructorCall(CodeGenFunction & CGF,const CXXDestructorDecl * DD,CXXDtorType Type,bool ForVirtualBase,bool Delegating,llvm::Value * This)1229 void MicrosoftCXXABI::EmitDestructorCall(CodeGenFunction &CGF,
1230 const CXXDestructorDecl *DD,
1231 CXXDtorType Type, bool ForVirtualBase,
1232 bool Delegating, llvm::Value *This) {
1233 llvm::Value *Callee = CGM.getAddrOfCXXStructor(DD, getFromDtorType(Type));
1234
1235 if (DD->isVirtual()) {
1236 assert(Type != CXXDtorType::Dtor_Deleting &&
1237 "The deleting destructor should only be called via a virtual call");
1238 This = adjustThisArgumentForVirtualFunctionCall(CGF, GlobalDecl(DD, Type),
1239 This, false);
1240 }
1241
1242 CGF.EmitCXXStructorCall(DD, Callee, ReturnValueSlot(), This,
1243 /*ImplicitParam=*/nullptr,
1244 /*ImplicitParamTy=*/QualType(), nullptr,
1245 getFromDtorType(Type));
1246 }
1247
emitVTableDefinitions(CodeGenVTables & CGVT,const CXXRecordDecl * RD)1248 void MicrosoftCXXABI::emitVTableDefinitions(CodeGenVTables &CGVT,
1249 const CXXRecordDecl *RD) {
1250 MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext();
1251 const VPtrInfoVector &VFPtrs = VFTContext.getVFPtrOffsets(RD);
1252
1253 for (VPtrInfo *Info : VFPtrs) {
1254 llvm::GlobalVariable *VTable = getAddrOfVTable(RD, Info->FullOffsetInMDC);
1255 if (VTable->hasInitializer())
1256 continue;
1257
1258 llvm::Constant *RTTI = getContext().getLangOpts().RTTIData
1259 ? getMSCompleteObjectLocator(RD, Info)
1260 : nullptr;
1261
1262 const VTableLayout &VTLayout =
1263 VFTContext.getVFTableLayout(RD, Info->FullOffsetInMDC);
1264 llvm::Constant *Init = CGVT.CreateVTableInitializer(
1265 RD, VTLayout.vtable_component_begin(),
1266 VTLayout.getNumVTableComponents(), VTLayout.vtable_thunk_begin(),
1267 VTLayout.getNumVTableThunks(), RTTI);
1268
1269 VTable->setInitializer(Init);
1270 }
1271 }
1272
getVTableAddressPointInStructor(CodeGenFunction & CGF,const CXXRecordDecl * VTableClass,BaseSubobject Base,const CXXRecordDecl * NearestVBase,bool & NeedsVirtualOffset)1273 llvm::Value *MicrosoftCXXABI::getVTableAddressPointInStructor(
1274 CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base,
1275 const CXXRecordDecl *NearestVBase, bool &NeedsVirtualOffset) {
1276 NeedsVirtualOffset = (NearestVBase != nullptr);
1277
1278 (void)getAddrOfVTable(VTableClass, Base.getBaseOffset());
1279 VFTableIdTy ID(VTableClass, Base.getBaseOffset());
1280 llvm::GlobalValue *VTableAddressPoint = VFTablesMap[ID];
1281 if (!VTableAddressPoint) {
1282 assert(Base.getBase()->getNumVBases() &&
1283 !CGM.getContext().getASTRecordLayout(Base.getBase()).hasOwnVFPtr());
1284 }
1285 return VTableAddressPoint;
1286 }
1287
mangleVFTableName(MicrosoftMangleContext & MangleContext,const CXXRecordDecl * RD,const VPtrInfo * VFPtr,SmallString<256> & Name)1288 static void mangleVFTableName(MicrosoftMangleContext &MangleContext,
1289 const CXXRecordDecl *RD, const VPtrInfo *VFPtr,
1290 SmallString<256> &Name) {
1291 llvm::raw_svector_ostream Out(Name);
1292 MangleContext.mangleCXXVFTable(RD, VFPtr->MangledPath, Out);
1293 }
1294
getVTableAddressPointForConstExpr(BaseSubobject Base,const CXXRecordDecl * VTableClass)1295 llvm::Constant *MicrosoftCXXABI::getVTableAddressPointForConstExpr(
1296 BaseSubobject Base, const CXXRecordDecl *VTableClass) {
1297 (void)getAddrOfVTable(VTableClass, Base.getBaseOffset());
1298 VFTableIdTy ID(VTableClass, Base.getBaseOffset());
1299 llvm::GlobalValue *VFTable = VFTablesMap[ID];
1300 assert(VFTable && "Couldn't find a vftable for the given base?");
1301 return VFTable;
1302 }
1303
getAddrOfVTable(const CXXRecordDecl * RD,CharUnits VPtrOffset)1304 llvm::GlobalVariable *MicrosoftCXXABI::getAddrOfVTable(const CXXRecordDecl *RD,
1305 CharUnits VPtrOffset) {
1306 // getAddrOfVTable may return 0 if asked to get an address of a vtable which
1307 // shouldn't be used in the given record type. We want to cache this result in
1308 // VFTablesMap, thus a simple zero check is not sufficient.
1309 VFTableIdTy ID(RD, VPtrOffset);
1310 VTablesMapTy::iterator I;
1311 bool Inserted;
1312 std::tie(I, Inserted) = VTablesMap.insert(std::make_pair(ID, nullptr));
1313 if (!Inserted)
1314 return I->second;
1315
1316 llvm::GlobalVariable *&VTable = I->second;
1317
1318 MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext();
1319 const VPtrInfoVector &VFPtrs = VTContext.getVFPtrOffsets(RD);
1320
1321 if (DeferredVFTables.insert(RD).second) {
1322 // We haven't processed this record type before.
1323 // Queue up this v-table for possible deferred emission.
1324 CGM.addDeferredVTable(RD);
1325
1326 #ifndef NDEBUG
1327 // Create all the vftables at once in order to make sure each vftable has
1328 // a unique mangled name.
1329 llvm::StringSet<> ObservedMangledNames;
1330 for (size_t J = 0, F = VFPtrs.size(); J != F; ++J) {
1331 SmallString<256> Name;
1332 mangleVFTableName(getMangleContext(), RD, VFPtrs[J], Name);
1333 if (!ObservedMangledNames.insert(Name.str()).second)
1334 llvm_unreachable("Already saw this mangling before?");
1335 }
1336 #endif
1337 }
1338
1339 for (size_t J = 0, F = VFPtrs.size(); J != F; ++J) {
1340 if (VFPtrs[J]->FullOffsetInMDC != VPtrOffset)
1341 continue;
1342 SmallString<256> VFTableName;
1343 mangleVFTableName(getMangleContext(), RD, VFPtrs[J], VFTableName);
1344 StringRef VTableName = VFTableName;
1345
1346 uint64_t NumVTableSlots =
1347 VTContext.getVFTableLayout(RD, VFPtrs[J]->FullOffsetInMDC)
1348 .getNumVTableComponents();
1349 llvm::GlobalValue::LinkageTypes VTableLinkage =
1350 llvm::GlobalValue::ExternalLinkage;
1351 llvm::ArrayType *VTableType =
1352 llvm::ArrayType::get(CGM.Int8PtrTy, NumVTableSlots);
1353 if (getContext().getLangOpts().RTTIData) {
1354 VTableLinkage = llvm::GlobalValue::PrivateLinkage;
1355 VTableName = "";
1356 }
1357
1358 VTable = CGM.getModule().getNamedGlobal(VFTableName);
1359 if (!VTable) {
1360 // Create a backing variable for the contents of VTable. The VTable may
1361 // or may not include space for a pointer to RTTI data.
1362 llvm::GlobalValue *VFTable = VTable = new llvm::GlobalVariable(
1363 CGM.getModule(), VTableType, /*isConstant=*/true, VTableLinkage,
1364 /*Initializer=*/nullptr, VTableName);
1365 VTable->setUnnamedAddr(true);
1366
1367 // Only insert a pointer into the VFTable for RTTI data if we are not
1368 // importing it. We never reference the RTTI data directly so there is no
1369 // need to make room for it.
1370 if (getContext().getLangOpts().RTTIData &&
1371 !RD->hasAttr<DLLImportAttr>()) {
1372 llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.IntTy, 0),
1373 llvm::ConstantInt::get(CGM.IntTy, 1)};
1374 // Create a GEP which points just after the first entry in the VFTable,
1375 // this should be the location of the first virtual method.
1376 llvm::Constant *VTableGEP =
1377 llvm::ConstantExpr::getInBoundsGetElementPtr(VTable, GEPIndices);
1378 // The symbol for the VFTable is an alias to the GEP. It is
1379 // transparent, to other modules, what the nature of this symbol is; all
1380 // that matters is that the alias be the address of the first virtual
1381 // method.
1382 VFTable = llvm::GlobalAlias::create(
1383 cast<llvm::SequentialType>(VTableGEP->getType())->getElementType(),
1384 /*AddressSpace=*/0, llvm::GlobalValue::ExternalLinkage,
1385 VFTableName.str(), VTableGEP, &CGM.getModule());
1386 } else {
1387 // We don't need a GlobalAlias to be a symbol for the VTable if we won't
1388 // be referencing any RTTI data. The GlobalVariable will end up being
1389 // an appropriate definition of the VFTable.
1390 VTable->setName(VFTableName.str());
1391 }
1392
1393 VFTable->setUnnamedAddr(true);
1394 if (RD->hasAttr<DLLImportAttr>())
1395 VFTable->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1396 else if (RD->hasAttr<DLLExportAttr>())
1397 VFTable->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1398
1399 llvm::GlobalValue::LinkageTypes VFTableLinkage = CGM.getVTableLinkage(RD);
1400 if (VFTable != VTable) {
1401 if (llvm::GlobalValue::isAvailableExternallyLinkage(VFTableLinkage)) {
1402 // AvailableExternally implies that we grabbed the data from another
1403 // executable. No need to stick the alias in a Comdat.
1404 } else if (llvm::GlobalValue::isInternalLinkage(VFTableLinkage) ||
1405 llvm::GlobalValue::isWeakODRLinkage(VFTableLinkage) ||
1406 llvm::GlobalValue::isLinkOnceODRLinkage(VFTableLinkage)) {
1407 // The alias is going to be dropped into a Comdat, no need to make it
1408 // weak.
1409 if (!llvm::GlobalValue::isInternalLinkage(VFTableLinkage))
1410 VFTableLinkage = llvm::GlobalValue::ExternalLinkage;
1411 llvm::Comdat *C =
1412 CGM.getModule().getOrInsertComdat(VFTable->getName());
1413 // We must indicate which VFTable is larger to support linking between
1414 // translation units which do and do not have RTTI data. The largest
1415 // VFTable contains the RTTI data; translation units which reference
1416 // the smaller VFTable always reference it relative to the first
1417 // virtual method.
1418 C->setSelectionKind(llvm::Comdat::Largest);
1419 VTable->setComdat(C);
1420 } else {
1421 llvm_unreachable("unexpected linkage for vftable!");
1422 }
1423 }
1424 VFTable->setLinkage(VFTableLinkage);
1425 CGM.setGlobalVisibility(VFTable, RD);
1426 VFTablesMap[ID] = VFTable;
1427 }
1428 break;
1429 }
1430
1431 return VTable;
1432 }
1433
getVirtualFunctionPointer(CodeGenFunction & CGF,GlobalDecl GD,llvm::Value * This,llvm::Type * Ty)1434 llvm::Value *MicrosoftCXXABI::getVirtualFunctionPointer(CodeGenFunction &CGF,
1435 GlobalDecl GD,
1436 llvm::Value *This,
1437 llvm::Type *Ty) {
1438 GD = GD.getCanonicalDecl();
1439 CGBuilderTy &Builder = CGF.Builder;
1440
1441 Ty = Ty->getPointerTo()->getPointerTo();
1442 llvm::Value *VPtr =
1443 adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true);
1444 llvm::Value *VTable = CGF.GetVTablePtr(VPtr, Ty);
1445
1446 MicrosoftVTableContext::MethodVFTableLocation ML =
1447 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(GD);
1448 llvm::Value *VFuncPtr =
1449 Builder.CreateConstInBoundsGEP1_64(VTable, ML.Index, "vfn");
1450 return Builder.CreateLoad(VFuncPtr);
1451 }
1452
EmitVirtualDestructorCall(CodeGenFunction & CGF,const CXXDestructorDecl * Dtor,CXXDtorType DtorType,llvm::Value * This,const CXXMemberCallExpr * CE)1453 llvm::Value *MicrosoftCXXABI::EmitVirtualDestructorCall(
1454 CodeGenFunction &CGF, const CXXDestructorDecl *Dtor, CXXDtorType DtorType,
1455 llvm::Value *This, const CXXMemberCallExpr *CE) {
1456 assert(CE == nullptr || CE->arg_begin() == CE->arg_end());
1457 assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete);
1458
1459 // We have only one destructor in the vftable but can get both behaviors
1460 // by passing an implicit int parameter.
1461 GlobalDecl GD(Dtor, Dtor_Deleting);
1462 const CGFunctionInfo *FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
1463 Dtor, StructorType::Deleting);
1464 llvm::Type *Ty = CGF.CGM.getTypes().GetFunctionType(*FInfo);
1465 llvm::Value *Callee = getVirtualFunctionPointer(CGF, GD, This, Ty);
1466
1467 ASTContext &Context = CGF.getContext();
1468 llvm::Value *ImplicitParam = llvm::ConstantInt::get(
1469 llvm::IntegerType::getInt32Ty(CGF.getLLVMContext()),
1470 DtorType == Dtor_Deleting);
1471
1472 This = adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true);
1473 RValue RV = CGF.EmitCXXStructorCall(Dtor, Callee, ReturnValueSlot(), This,
1474 ImplicitParam, Context.IntTy, CE,
1475 StructorType::Deleting);
1476 return RV.getScalarVal();
1477 }
1478
1479 const VBTableGlobals &
enumerateVBTables(const CXXRecordDecl * RD)1480 MicrosoftCXXABI::enumerateVBTables(const CXXRecordDecl *RD) {
1481 // At this layer, we can key the cache off of a single class, which is much
1482 // easier than caching each vbtable individually.
1483 llvm::DenseMap<const CXXRecordDecl*, VBTableGlobals>::iterator Entry;
1484 bool Added;
1485 std::tie(Entry, Added) =
1486 VBTablesMap.insert(std::make_pair(RD, VBTableGlobals()));
1487 VBTableGlobals &VBGlobals = Entry->second;
1488 if (!Added)
1489 return VBGlobals;
1490
1491 MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext();
1492 VBGlobals.VBTables = &Context.enumerateVBTables(RD);
1493
1494 // Cache the globals for all vbtables so we don't have to recompute the
1495 // mangled names.
1496 llvm::GlobalVariable::LinkageTypes Linkage = CGM.getVTableLinkage(RD);
1497 for (VPtrInfoVector::const_iterator I = VBGlobals.VBTables->begin(),
1498 E = VBGlobals.VBTables->end();
1499 I != E; ++I) {
1500 VBGlobals.Globals.push_back(getAddrOfVBTable(**I, RD, Linkage));
1501 }
1502
1503 return VBGlobals;
1504 }
1505
EmitVirtualMemPtrThunk(const CXXMethodDecl * MD,const MicrosoftVTableContext::MethodVFTableLocation & ML)1506 llvm::Function *MicrosoftCXXABI::EmitVirtualMemPtrThunk(
1507 const CXXMethodDecl *MD,
1508 const MicrosoftVTableContext::MethodVFTableLocation &ML) {
1509 assert(!isa<CXXConstructorDecl>(MD) && !isa<CXXDestructorDecl>(MD) &&
1510 "can't form pointers to ctors or virtual dtors");
1511
1512 // Calculate the mangled name.
1513 SmallString<256> ThunkName;
1514 llvm::raw_svector_ostream Out(ThunkName);
1515 getMangleContext().mangleVirtualMemPtrThunk(MD, Out);
1516 Out.flush();
1517
1518 // If the thunk has been generated previously, just return it.
1519 if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName))
1520 return cast<llvm::Function>(GV);
1521
1522 // Create the llvm::Function.
1523 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeMSMemberPointerThunk(MD);
1524 llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo);
1525 llvm::Function *ThunkFn =
1526 llvm::Function::Create(ThunkTy, llvm::Function::ExternalLinkage,
1527 ThunkName.str(), &CGM.getModule());
1528 assert(ThunkFn->getName() == ThunkName && "name was uniqued!");
1529
1530 ThunkFn->setLinkage(MD->isExternallyVisible()
1531 ? llvm::GlobalValue::LinkOnceODRLinkage
1532 : llvm::GlobalValue::InternalLinkage);
1533
1534 CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn);
1535 CGM.SetLLVMFunctionAttributesForDefinition(MD, ThunkFn);
1536
1537 // Add the "thunk" attribute so that LLVM knows that the return type is
1538 // meaningless. These thunks can be used to call functions with differing
1539 // return types, and the caller is required to cast the prototype
1540 // appropriately to extract the correct value.
1541 ThunkFn->addFnAttr("thunk");
1542
1543 // These thunks can be compared, so they are not unnamed.
1544 ThunkFn->setUnnamedAddr(false);
1545
1546 // Start codegen.
1547 CodeGenFunction CGF(CGM);
1548 CGF.CurGD = GlobalDecl(MD);
1549 CGF.CurFuncIsThunk = true;
1550
1551 // Build FunctionArgs, but only include the implicit 'this' parameter
1552 // declaration.
1553 FunctionArgList FunctionArgs;
1554 buildThisParam(CGF, FunctionArgs);
1555
1556 // Start defining the function.
1557 CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo,
1558 FunctionArgs, MD->getLocation(), SourceLocation());
1559 EmitThisParam(CGF);
1560
1561 // Load the vfptr and then callee from the vftable. The callee should have
1562 // adjusted 'this' so that the vfptr is at offset zero.
1563 llvm::Value *VTable = CGF.GetVTablePtr(
1564 getThisValue(CGF), ThunkTy->getPointerTo()->getPointerTo());
1565 llvm::Value *VFuncPtr =
1566 CGF.Builder.CreateConstInBoundsGEP1_64(VTable, ML.Index, "vfn");
1567 llvm::Value *Callee = CGF.Builder.CreateLoad(VFuncPtr);
1568
1569 CGF.EmitMustTailThunk(MD, getThisValue(CGF), Callee);
1570
1571 return ThunkFn;
1572 }
1573
emitVirtualInheritanceTables(const CXXRecordDecl * RD)1574 void MicrosoftCXXABI::emitVirtualInheritanceTables(const CXXRecordDecl *RD) {
1575 const VBTableGlobals &VBGlobals = enumerateVBTables(RD);
1576 for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) {
1577 const VPtrInfo *VBT = (*VBGlobals.VBTables)[I];
1578 llvm::GlobalVariable *GV = VBGlobals.Globals[I];
1579 emitVBTableDefinition(*VBT, RD, GV);
1580 }
1581 }
1582
1583 llvm::GlobalVariable *
getAddrOfVBTable(const VPtrInfo & VBT,const CXXRecordDecl * RD,llvm::GlobalVariable::LinkageTypes Linkage)1584 MicrosoftCXXABI::getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD,
1585 llvm::GlobalVariable::LinkageTypes Linkage) {
1586 SmallString<256> OutName;
1587 llvm::raw_svector_ostream Out(OutName);
1588 getMangleContext().mangleCXXVBTable(RD, VBT.MangledPath, Out);
1589 Out.flush();
1590 StringRef Name = OutName.str();
1591
1592 llvm::ArrayType *VBTableType =
1593 llvm::ArrayType::get(CGM.IntTy, 1 + VBT.ReusingBase->getNumVBases());
1594
1595 assert(!CGM.getModule().getNamedGlobal(Name) &&
1596 "vbtable with this name already exists: mangling bug?");
1597 llvm::GlobalVariable *GV =
1598 CGM.CreateOrReplaceCXXRuntimeVariable(Name, VBTableType, Linkage);
1599 GV->setUnnamedAddr(true);
1600
1601 if (RD->hasAttr<DLLImportAttr>())
1602 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1603 else if (RD->hasAttr<DLLExportAttr>())
1604 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1605
1606 return GV;
1607 }
1608
emitVBTableDefinition(const VPtrInfo & VBT,const CXXRecordDecl * RD,llvm::GlobalVariable * GV) const1609 void MicrosoftCXXABI::emitVBTableDefinition(const VPtrInfo &VBT,
1610 const CXXRecordDecl *RD,
1611 llvm::GlobalVariable *GV) const {
1612 const CXXRecordDecl *ReusingBase = VBT.ReusingBase;
1613
1614 assert(RD->getNumVBases() && ReusingBase->getNumVBases() &&
1615 "should only emit vbtables for classes with vbtables");
1616
1617 const ASTRecordLayout &BaseLayout =
1618 CGM.getContext().getASTRecordLayout(VBT.BaseWithVPtr);
1619 const ASTRecordLayout &DerivedLayout =
1620 CGM.getContext().getASTRecordLayout(RD);
1621
1622 SmallVector<llvm::Constant *, 4> Offsets(1 + ReusingBase->getNumVBases(),
1623 nullptr);
1624
1625 // The offset from ReusingBase's vbptr to itself always leads.
1626 CharUnits VBPtrOffset = BaseLayout.getVBPtrOffset();
1627 Offsets[0] = llvm::ConstantInt::get(CGM.IntTy, -VBPtrOffset.getQuantity());
1628
1629 MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext();
1630 for (const auto &I : ReusingBase->vbases()) {
1631 const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl();
1632 CharUnits Offset = DerivedLayout.getVBaseClassOffset(VBase);
1633 assert(!Offset.isNegative());
1634
1635 // Make it relative to the subobject vbptr.
1636 CharUnits CompleteVBPtrOffset = VBT.NonVirtualOffset + VBPtrOffset;
1637 if (VBT.getVBaseWithVPtr())
1638 CompleteVBPtrOffset +=
1639 DerivedLayout.getVBaseClassOffset(VBT.getVBaseWithVPtr());
1640 Offset -= CompleteVBPtrOffset;
1641
1642 unsigned VBIndex = Context.getVBTableIndex(ReusingBase, VBase);
1643 assert(Offsets[VBIndex] == nullptr && "The same vbindex seen twice?");
1644 Offsets[VBIndex] = llvm::ConstantInt::get(CGM.IntTy, Offset.getQuantity());
1645 }
1646
1647 assert(Offsets.size() ==
1648 cast<llvm::ArrayType>(cast<llvm::PointerType>(GV->getType())
1649 ->getElementType())->getNumElements());
1650 llvm::ArrayType *VBTableType =
1651 llvm::ArrayType::get(CGM.IntTy, Offsets.size());
1652 llvm::Constant *Init = llvm::ConstantArray::get(VBTableType, Offsets);
1653 GV->setInitializer(Init);
1654
1655 // Set the right visibility.
1656 CGM.setGlobalVisibility(GV, RD);
1657 }
1658
performThisAdjustment(CodeGenFunction & CGF,llvm::Value * This,const ThisAdjustment & TA)1659 llvm::Value *MicrosoftCXXABI::performThisAdjustment(CodeGenFunction &CGF,
1660 llvm::Value *This,
1661 const ThisAdjustment &TA) {
1662 if (TA.isEmpty())
1663 return This;
1664
1665 llvm::Value *V = CGF.Builder.CreateBitCast(This, CGF.Int8PtrTy);
1666
1667 if (!TA.Virtual.isEmpty()) {
1668 assert(TA.Virtual.Microsoft.VtordispOffset < 0);
1669 // Adjust the this argument based on the vtordisp value.
1670 llvm::Value *VtorDispPtr =
1671 CGF.Builder.CreateConstGEP1_32(V, TA.Virtual.Microsoft.VtordispOffset);
1672 VtorDispPtr =
1673 CGF.Builder.CreateBitCast(VtorDispPtr, CGF.Int32Ty->getPointerTo());
1674 llvm::Value *VtorDisp = CGF.Builder.CreateLoad(VtorDispPtr, "vtordisp");
1675 V = CGF.Builder.CreateGEP(V, CGF.Builder.CreateNeg(VtorDisp));
1676
1677 if (TA.Virtual.Microsoft.VBPtrOffset) {
1678 // If the final overrider is defined in a virtual base other than the one
1679 // that holds the vfptr, we have to use a vtordispex thunk which looks up
1680 // the vbtable of the derived class.
1681 assert(TA.Virtual.Microsoft.VBPtrOffset > 0);
1682 assert(TA.Virtual.Microsoft.VBOffsetOffset >= 0);
1683 llvm::Value *VBPtr;
1684 llvm::Value *VBaseOffset =
1685 GetVBaseOffsetFromVBPtr(CGF, V, -TA.Virtual.Microsoft.VBPtrOffset,
1686 TA.Virtual.Microsoft.VBOffsetOffset, &VBPtr);
1687 V = CGF.Builder.CreateInBoundsGEP(VBPtr, VBaseOffset);
1688 }
1689 }
1690
1691 if (TA.NonVirtual) {
1692 // Non-virtual adjustment might result in a pointer outside the allocated
1693 // object, e.g. if the final overrider class is laid out after the virtual
1694 // base that declares a method in the most derived class.
1695 V = CGF.Builder.CreateConstGEP1_32(V, TA.NonVirtual);
1696 }
1697
1698 // Don't need to bitcast back, the call CodeGen will handle this.
1699 return V;
1700 }
1701
1702 llvm::Value *
performReturnAdjustment(CodeGenFunction & CGF,llvm::Value * Ret,const ReturnAdjustment & RA)1703 MicrosoftCXXABI::performReturnAdjustment(CodeGenFunction &CGF, llvm::Value *Ret,
1704 const ReturnAdjustment &RA) {
1705 if (RA.isEmpty())
1706 return Ret;
1707
1708 llvm::Value *V = CGF.Builder.CreateBitCast(Ret, CGF.Int8PtrTy);
1709
1710 if (RA.Virtual.Microsoft.VBIndex) {
1711 assert(RA.Virtual.Microsoft.VBIndex > 0);
1712 int32_t IntSize =
1713 getContext().getTypeSizeInChars(getContext().IntTy).getQuantity();
1714 llvm::Value *VBPtr;
1715 llvm::Value *VBaseOffset =
1716 GetVBaseOffsetFromVBPtr(CGF, V, RA.Virtual.Microsoft.VBPtrOffset,
1717 IntSize * RA.Virtual.Microsoft.VBIndex, &VBPtr);
1718 V = CGF.Builder.CreateInBoundsGEP(VBPtr, VBaseOffset);
1719 }
1720
1721 if (RA.NonVirtual)
1722 V = CGF.Builder.CreateConstInBoundsGEP1_32(V, RA.NonVirtual);
1723
1724 // Cast back to the original type.
1725 return CGF.Builder.CreateBitCast(V, Ret->getType());
1726 }
1727
requiresArrayCookie(const CXXDeleteExpr * expr,QualType elementType)1728 bool MicrosoftCXXABI::requiresArrayCookie(const CXXDeleteExpr *expr,
1729 QualType elementType) {
1730 // Microsoft seems to completely ignore the possibility of a
1731 // two-argument usual deallocation function.
1732 return elementType.isDestructedType();
1733 }
1734
requiresArrayCookie(const CXXNewExpr * expr)1735 bool MicrosoftCXXABI::requiresArrayCookie(const CXXNewExpr *expr) {
1736 // Microsoft seems to completely ignore the possibility of a
1737 // two-argument usual deallocation function.
1738 return expr->getAllocatedType().isDestructedType();
1739 }
1740
getArrayCookieSizeImpl(QualType type)1741 CharUnits MicrosoftCXXABI::getArrayCookieSizeImpl(QualType type) {
1742 // The array cookie is always a size_t; we then pad that out to the
1743 // alignment of the element type.
1744 ASTContext &Ctx = getContext();
1745 return std::max(Ctx.getTypeSizeInChars(Ctx.getSizeType()),
1746 Ctx.getTypeAlignInChars(type));
1747 }
1748
readArrayCookieImpl(CodeGenFunction & CGF,llvm::Value * allocPtr,CharUnits cookieSize)1749 llvm::Value *MicrosoftCXXABI::readArrayCookieImpl(CodeGenFunction &CGF,
1750 llvm::Value *allocPtr,
1751 CharUnits cookieSize) {
1752 unsigned AS = allocPtr->getType()->getPointerAddressSpace();
1753 llvm::Value *numElementsPtr =
1754 CGF.Builder.CreateBitCast(allocPtr, CGF.SizeTy->getPointerTo(AS));
1755 return CGF.Builder.CreateLoad(numElementsPtr);
1756 }
1757
InitializeArrayCookie(CodeGenFunction & CGF,llvm::Value * newPtr,llvm::Value * numElements,const CXXNewExpr * expr,QualType elementType)1758 llvm::Value* MicrosoftCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
1759 llvm::Value *newPtr,
1760 llvm::Value *numElements,
1761 const CXXNewExpr *expr,
1762 QualType elementType) {
1763 assert(requiresArrayCookie(expr));
1764
1765 // The size of the cookie.
1766 CharUnits cookieSize = getArrayCookieSizeImpl(elementType);
1767
1768 // Compute an offset to the cookie.
1769 llvm::Value *cookiePtr = newPtr;
1770
1771 // Write the number of elements into the appropriate slot.
1772 unsigned AS = newPtr->getType()->getPointerAddressSpace();
1773 llvm::Value *numElementsPtr
1774 = CGF.Builder.CreateBitCast(cookiePtr, CGF.SizeTy->getPointerTo(AS));
1775 CGF.Builder.CreateStore(numElements, numElementsPtr);
1776
1777 // Finally, compute a pointer to the actual data buffer by skipping
1778 // over the cookie completely.
1779 return CGF.Builder.CreateConstInBoundsGEP1_64(newPtr,
1780 cookieSize.getQuantity());
1781 }
1782
emitGlobalDtorWithTLRegDtor(CodeGenFunction & CGF,const VarDecl & VD,llvm::Constant * Dtor,llvm::Constant * Addr)1783 static void emitGlobalDtorWithTLRegDtor(CodeGenFunction &CGF, const VarDecl &VD,
1784 llvm::Constant *Dtor,
1785 llvm::Constant *Addr) {
1786 // Create a function which calls the destructor.
1787 llvm::Constant *DtorStub = CGF.createAtExitStub(VD, Dtor, Addr);
1788
1789 // extern "C" int __tlregdtor(void (*f)(void));
1790 llvm::FunctionType *TLRegDtorTy = llvm::FunctionType::get(
1791 CGF.IntTy, DtorStub->getType(), /*IsVarArg=*/false);
1792
1793 llvm::Constant *TLRegDtor =
1794 CGF.CGM.CreateRuntimeFunction(TLRegDtorTy, "__tlregdtor");
1795 if (llvm::Function *TLRegDtorFn = dyn_cast<llvm::Function>(TLRegDtor))
1796 TLRegDtorFn->setDoesNotThrow();
1797
1798 CGF.EmitNounwindRuntimeCall(TLRegDtor, DtorStub);
1799 }
1800
registerGlobalDtor(CodeGenFunction & CGF,const VarDecl & D,llvm::Constant * Dtor,llvm::Constant * Addr)1801 void MicrosoftCXXABI::registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D,
1802 llvm::Constant *Dtor,
1803 llvm::Constant *Addr) {
1804 if (D.getTLSKind())
1805 return emitGlobalDtorWithTLRegDtor(CGF, D, Dtor, Addr);
1806
1807 // The default behavior is to use atexit.
1808 CGF.registerGlobalDtorWithAtExit(D, Dtor, Addr);
1809 }
1810
EmitThreadLocalInitFuncs(CodeGenModule & CGM,ArrayRef<std::pair<const VarDecl *,llvm::GlobalVariable * >> CXXThreadLocals,ArrayRef<llvm::Function * > CXXThreadLocalInits,ArrayRef<llvm::GlobalVariable * > CXXThreadLocalInitVars)1811 void MicrosoftCXXABI::EmitThreadLocalInitFuncs(
1812 CodeGenModule &CGM,
1813 ArrayRef<std::pair<const VarDecl *, llvm::GlobalVariable *>>
1814 CXXThreadLocals,
1815 ArrayRef<llvm::Function *> CXXThreadLocalInits,
1816 ArrayRef<llvm::GlobalVariable *> CXXThreadLocalInitVars) {
1817 // This will create a GV in the .CRT$XDU section. It will point to our
1818 // initialization function. The CRT will call all of these function
1819 // pointers at start-up time and, eventually, at thread-creation time.
1820 auto AddToXDU = [&CGM](llvm::Function *InitFunc) {
1821 llvm::GlobalVariable *InitFuncPtr = new llvm::GlobalVariable(
1822 CGM.getModule(), InitFunc->getType(), /*IsConstant=*/true,
1823 llvm::GlobalVariable::InternalLinkage, InitFunc,
1824 Twine(InitFunc->getName(), "$initializer$"));
1825 InitFuncPtr->setSection(".CRT$XDU");
1826 // This variable has discardable linkage, we have to add it to @llvm.used to
1827 // ensure it won't get discarded.
1828 CGM.addUsedGlobal(InitFuncPtr);
1829 return InitFuncPtr;
1830 };
1831
1832 std::vector<llvm::Function *> NonComdatInits;
1833 for (size_t I = 0, E = CXXThreadLocalInitVars.size(); I != E; ++I) {
1834 llvm::GlobalVariable *GV = CXXThreadLocalInitVars[I];
1835 llvm::Function *F = CXXThreadLocalInits[I];
1836
1837 // If the GV is already in a comdat group, then we have to join it.
1838 llvm::Comdat *C = GV->getComdat();
1839
1840 // LinkOnce and Weak linkage are lowered down to a single-member comdat
1841 // group.
1842 // Make an explicit group so we can join it.
1843 if (!C && (GV->hasWeakLinkage() || GV->hasLinkOnceLinkage())) {
1844 C = CGM.getModule().getOrInsertComdat(GV->getName());
1845 GV->setComdat(C);
1846 AddToXDU(F)->setComdat(C);
1847 } else {
1848 NonComdatInits.push_back(F);
1849 }
1850 }
1851
1852 if (!NonComdatInits.empty()) {
1853 llvm::FunctionType *FTy =
1854 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
1855 llvm::Function *InitFunc = CGM.CreateGlobalInitOrDestructFunction(
1856 FTy, "__tls_init", SourceLocation(),
1857 /*TLS=*/true);
1858 CodeGenFunction(CGM).GenerateCXXGlobalInitFunc(InitFunc, NonComdatInits);
1859
1860 AddToXDU(InitFunc);
1861 }
1862 }
1863
EmitThreadLocalVarDeclLValue(CodeGenFunction & CGF,const VarDecl * VD,QualType LValType)1864 LValue MicrosoftCXXABI::EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF,
1865 const VarDecl *VD,
1866 QualType LValType) {
1867 CGF.CGM.ErrorUnsupported(VD, "thread wrappers");
1868 return LValue();
1869 }
1870
EmitGuardedInit(CodeGenFunction & CGF,const VarDecl & D,llvm::GlobalVariable * GV,bool PerformInit)1871 void MicrosoftCXXABI::EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
1872 llvm::GlobalVariable *GV,
1873 bool PerformInit) {
1874 // MSVC only uses guards for static locals.
1875 if (!D.isStaticLocal()) {
1876 assert(GV->hasWeakLinkage() || GV->hasLinkOnceLinkage());
1877 // GlobalOpt is allowed to discard the initializer, so use linkonce_odr.
1878 CGF.CurFn->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage);
1879 CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit);
1880 return;
1881 }
1882
1883 // MSVC always uses an i32 bitfield to guard initialization, which is *not*
1884 // threadsafe. Since the user may be linking in inline functions compiled by
1885 // cl.exe, there's no reason to provide a false sense of security by using
1886 // critical sections here.
1887
1888 if (D.getTLSKind())
1889 CGM.ErrorUnsupported(&D, "dynamic TLS initialization");
1890
1891 CGBuilderTy &Builder = CGF.Builder;
1892 llvm::IntegerType *GuardTy = CGF.Int32Ty;
1893 llvm::ConstantInt *Zero = llvm::ConstantInt::get(GuardTy, 0);
1894
1895 // Get the guard variable for this function if we have one already.
1896 GuardInfo *GI = &GuardVariableMap[D.getDeclContext()];
1897
1898 unsigned BitIndex;
1899 if (D.isStaticLocal() && D.isExternallyVisible()) {
1900 // Externally visible variables have to be numbered in Sema to properly
1901 // handle unreachable VarDecls.
1902 BitIndex = getContext().getStaticLocalNumber(&D);
1903 assert(BitIndex > 0);
1904 BitIndex--;
1905 } else {
1906 // Non-externally visible variables are numbered here in CodeGen.
1907 BitIndex = GI->BitIndex++;
1908 }
1909
1910 if (BitIndex >= 32) {
1911 if (D.isExternallyVisible())
1912 ErrorUnsupportedABI(CGF, "more than 32 guarded initializations");
1913 BitIndex %= 32;
1914 GI->Guard = nullptr;
1915 }
1916
1917 // Lazily create the i32 bitfield for this function.
1918 if (!GI->Guard) {
1919 // Mangle the name for the guard.
1920 SmallString<256> GuardName;
1921 {
1922 llvm::raw_svector_ostream Out(GuardName);
1923 getMangleContext().mangleStaticGuardVariable(&D, Out);
1924 Out.flush();
1925 }
1926
1927 // Create the guard variable with a zero-initializer. Just absorb linkage,
1928 // visibility and dll storage class from the guarded variable.
1929 GI->Guard =
1930 new llvm::GlobalVariable(CGM.getModule(), GuardTy, false,
1931 GV->getLinkage(), Zero, GuardName.str());
1932 GI->Guard->setVisibility(GV->getVisibility());
1933 GI->Guard->setDLLStorageClass(GV->getDLLStorageClass());
1934 } else {
1935 assert(GI->Guard->getLinkage() == GV->getLinkage() &&
1936 "static local from the same function had different linkage");
1937 }
1938
1939 // Pseudo code for the test:
1940 // if (!(GuardVar & MyGuardBit)) {
1941 // GuardVar |= MyGuardBit;
1942 // ... initialize the object ...;
1943 // }
1944
1945 // Test our bit from the guard variable.
1946 llvm::ConstantInt *Bit = llvm::ConstantInt::get(GuardTy, 1U << BitIndex);
1947 llvm::LoadInst *LI = Builder.CreateLoad(GI->Guard);
1948 llvm::Value *IsInitialized =
1949 Builder.CreateICmpNE(Builder.CreateAnd(LI, Bit), Zero);
1950 llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init");
1951 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end");
1952 Builder.CreateCondBr(IsInitialized, EndBlock, InitBlock);
1953
1954 // Set our bit in the guard variable and emit the initializer and add a global
1955 // destructor if appropriate.
1956 CGF.EmitBlock(InitBlock);
1957 Builder.CreateStore(Builder.CreateOr(LI, Bit), GI->Guard);
1958 CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit);
1959 Builder.CreateBr(EndBlock);
1960
1961 // Continue.
1962 CGF.EmitBlock(EndBlock);
1963 }
1964
isZeroInitializable(const MemberPointerType * MPT)1965 bool MicrosoftCXXABI::isZeroInitializable(const MemberPointerType *MPT) {
1966 // Null-ness for function memptrs only depends on the first field, which is
1967 // the function pointer. The rest don't matter, so we can zero initialize.
1968 if (MPT->isMemberFunctionPointer())
1969 return true;
1970
1971 // The virtual base adjustment field is always -1 for null, so if we have one
1972 // we can't zero initialize. The field offset is sometimes also -1 if 0 is a
1973 // valid field offset.
1974 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
1975 MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
1976 return (!MSInheritanceAttr::hasVBTableOffsetField(Inheritance) &&
1977 RD->nullFieldOffsetIsZero());
1978 }
1979
1980 llvm::Type *
ConvertMemberPointerType(const MemberPointerType * MPT)1981 MicrosoftCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) {
1982 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
1983 MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
1984 llvm::SmallVector<llvm::Type *, 4> fields;
1985 if (MPT->isMemberFunctionPointer())
1986 fields.push_back(CGM.VoidPtrTy); // FunctionPointerOrVirtualThunk
1987 else
1988 fields.push_back(CGM.IntTy); // FieldOffset
1989
1990 if (MSInheritanceAttr::hasNVOffsetField(MPT->isMemberFunctionPointer(),
1991 Inheritance))
1992 fields.push_back(CGM.IntTy);
1993 if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance))
1994 fields.push_back(CGM.IntTy);
1995 if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
1996 fields.push_back(CGM.IntTy); // VirtualBaseAdjustmentOffset
1997
1998 if (fields.size() == 1)
1999 return fields[0];
2000 return llvm::StructType::get(CGM.getLLVMContext(), fields);
2001 }
2002
2003 void MicrosoftCXXABI::
GetNullMemberPointerFields(const MemberPointerType * MPT,llvm::SmallVectorImpl<llvm::Constant * > & fields)2004 GetNullMemberPointerFields(const MemberPointerType *MPT,
2005 llvm::SmallVectorImpl<llvm::Constant *> &fields) {
2006 assert(fields.empty());
2007 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2008 MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
2009 if (MPT->isMemberFunctionPointer()) {
2010 // FunctionPointerOrVirtualThunk
2011 fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy));
2012 } else {
2013 if (RD->nullFieldOffsetIsZero())
2014 fields.push_back(getZeroInt()); // FieldOffset
2015 else
2016 fields.push_back(getAllOnesInt()); // FieldOffset
2017 }
2018
2019 if (MSInheritanceAttr::hasNVOffsetField(MPT->isMemberFunctionPointer(),
2020 Inheritance))
2021 fields.push_back(getZeroInt());
2022 if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance))
2023 fields.push_back(getZeroInt());
2024 if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
2025 fields.push_back(getAllOnesInt());
2026 }
2027
2028 llvm::Constant *
EmitNullMemberPointer(const MemberPointerType * MPT)2029 MicrosoftCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) {
2030 llvm::SmallVector<llvm::Constant *, 4> fields;
2031 GetNullMemberPointerFields(MPT, fields);
2032 if (fields.size() == 1)
2033 return fields[0];
2034 llvm::Constant *Res = llvm::ConstantStruct::getAnon(fields);
2035 assert(Res->getType() == ConvertMemberPointerType(MPT));
2036 return Res;
2037 }
2038
2039 llvm::Constant *
EmitFullMemberPointer(llvm::Constant * FirstField,bool IsMemberFunction,const CXXRecordDecl * RD,CharUnits NonVirtualBaseAdjustment)2040 MicrosoftCXXABI::EmitFullMemberPointer(llvm::Constant *FirstField,
2041 bool IsMemberFunction,
2042 const CXXRecordDecl *RD,
2043 CharUnits NonVirtualBaseAdjustment)
2044 {
2045 MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
2046
2047 // Single inheritance class member pointer are represented as scalars instead
2048 // of aggregates.
2049 if (MSInheritanceAttr::hasOnlyOneField(IsMemberFunction, Inheritance))
2050 return FirstField;
2051
2052 llvm::SmallVector<llvm::Constant *, 4> fields;
2053 fields.push_back(FirstField);
2054
2055 if (MSInheritanceAttr::hasNVOffsetField(IsMemberFunction, Inheritance))
2056 fields.push_back(llvm::ConstantInt::get(
2057 CGM.IntTy, NonVirtualBaseAdjustment.getQuantity()));
2058
2059 if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance)) {
2060 CharUnits Offs = CharUnits::Zero();
2061 if (RD->getNumVBases())
2062 Offs = getContext().getASTRecordLayout(RD).getVBPtrOffset();
2063 fields.push_back(llvm::ConstantInt::get(CGM.IntTy, Offs.getQuantity()));
2064 }
2065
2066 // The rest of the fields are adjusted by conversions to a more derived class.
2067 if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
2068 fields.push_back(getZeroInt());
2069
2070 return llvm::ConstantStruct::getAnon(fields);
2071 }
2072
2073 llvm::Constant *
EmitMemberDataPointer(const MemberPointerType * MPT,CharUnits offset)2074 MicrosoftCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT,
2075 CharUnits offset) {
2076 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2077 llvm::Constant *FirstField =
2078 llvm::ConstantInt::get(CGM.IntTy, offset.getQuantity());
2079 return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/false, RD,
2080 CharUnits::Zero());
2081 }
2082
EmitMemberPointer(const CXXMethodDecl * MD)2083 llvm::Constant *MicrosoftCXXABI::EmitMemberPointer(const CXXMethodDecl *MD) {
2084 return BuildMemberPointer(MD->getParent(), MD, CharUnits::Zero());
2085 }
2086
EmitMemberPointer(const APValue & MP,QualType MPType)2087 llvm::Constant *MicrosoftCXXABI::EmitMemberPointer(const APValue &MP,
2088 QualType MPType) {
2089 const MemberPointerType *MPT = MPType->castAs<MemberPointerType>();
2090 const ValueDecl *MPD = MP.getMemberPointerDecl();
2091 if (!MPD)
2092 return EmitNullMemberPointer(MPT);
2093
2094 CharUnits ThisAdjustment = getMemberPointerPathAdjustment(MP);
2095
2096 // FIXME PR15713: Support virtual inheritance paths.
2097
2098 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MPD))
2099 return BuildMemberPointer(MPT->getMostRecentCXXRecordDecl(), MD,
2100 ThisAdjustment);
2101
2102 CharUnits FieldOffset =
2103 getContext().toCharUnitsFromBits(getContext().getFieldOffset(MPD));
2104 return EmitMemberDataPointer(MPT, ThisAdjustment + FieldOffset);
2105 }
2106
2107 llvm::Constant *
BuildMemberPointer(const CXXRecordDecl * RD,const CXXMethodDecl * MD,CharUnits NonVirtualBaseAdjustment)2108 MicrosoftCXXABI::BuildMemberPointer(const CXXRecordDecl *RD,
2109 const CXXMethodDecl *MD,
2110 CharUnits NonVirtualBaseAdjustment) {
2111 assert(MD->isInstance() && "Member function must not be static!");
2112 MD = MD->getCanonicalDecl();
2113 RD = RD->getMostRecentDecl();
2114 CodeGenTypes &Types = CGM.getTypes();
2115
2116 llvm::Constant *FirstField;
2117 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
2118 if (!MD->isVirtual()) {
2119 llvm::Type *Ty;
2120 // Check whether the function has a computable LLVM signature.
2121 if (Types.isFuncTypeConvertible(FPT)) {
2122 // The function has a computable LLVM signature; use the correct type.
2123 Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD));
2124 } else {
2125 // Use an arbitrary non-function type to tell GetAddrOfFunction that the
2126 // function type is incomplete.
2127 Ty = CGM.PtrDiffTy;
2128 }
2129 FirstField = CGM.GetAddrOfFunction(MD, Ty);
2130 FirstField = llvm::ConstantExpr::getBitCast(FirstField, CGM.VoidPtrTy);
2131 } else {
2132 MicrosoftVTableContext::MethodVFTableLocation ML =
2133 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(MD);
2134 if (!CGM.getTypes().isFuncTypeConvertible(
2135 MD->getType()->castAs<FunctionType>())) {
2136 CGM.ErrorUnsupported(MD, "pointer to virtual member function with "
2137 "incomplete return or parameter type");
2138 FirstField = llvm::Constant::getNullValue(CGM.VoidPtrTy);
2139 } else if (FPT->getCallConv() == CC_X86FastCall) {
2140 CGM.ErrorUnsupported(MD, "pointer to fastcall virtual member function");
2141 FirstField = llvm::Constant::getNullValue(CGM.VoidPtrTy);
2142 } else if (ML.VBase) {
2143 CGM.ErrorUnsupported(MD, "pointer to virtual member function overriding "
2144 "member function in virtual base class");
2145 FirstField = llvm::Constant::getNullValue(CGM.VoidPtrTy);
2146 } else {
2147 llvm::Function *Thunk = EmitVirtualMemPtrThunk(MD, ML);
2148 FirstField = llvm::ConstantExpr::getBitCast(Thunk, CGM.VoidPtrTy);
2149 // Include the vfptr adjustment if the method is in a non-primary vftable.
2150 NonVirtualBaseAdjustment += ML.VFPtrOffset;
2151 }
2152 }
2153
2154 // The rest of the fields are common with data member pointers.
2155 return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/true, RD,
2156 NonVirtualBaseAdjustment);
2157 }
2158
2159 /// Member pointers are the same if they're either bitwise identical *or* both
2160 /// null. Null-ness for function members is determined by the first field,
2161 /// while for data member pointers we must compare all fields.
2162 llvm::Value *
EmitMemberPointerComparison(CodeGenFunction & CGF,llvm::Value * L,llvm::Value * R,const MemberPointerType * MPT,bool Inequality)2163 MicrosoftCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF,
2164 llvm::Value *L,
2165 llvm::Value *R,
2166 const MemberPointerType *MPT,
2167 bool Inequality) {
2168 CGBuilderTy &Builder = CGF.Builder;
2169
2170 // Handle != comparisons by switching the sense of all boolean operations.
2171 llvm::ICmpInst::Predicate Eq;
2172 llvm::Instruction::BinaryOps And, Or;
2173 if (Inequality) {
2174 Eq = llvm::ICmpInst::ICMP_NE;
2175 And = llvm::Instruction::Or;
2176 Or = llvm::Instruction::And;
2177 } else {
2178 Eq = llvm::ICmpInst::ICMP_EQ;
2179 And = llvm::Instruction::And;
2180 Or = llvm::Instruction::Or;
2181 }
2182
2183 // If this is a single field member pointer (single inheritance), this is a
2184 // single icmp.
2185 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2186 MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
2187 if (MSInheritanceAttr::hasOnlyOneField(MPT->isMemberFunctionPointer(),
2188 Inheritance))
2189 return Builder.CreateICmp(Eq, L, R);
2190
2191 // Compare the first field.
2192 llvm::Value *L0 = Builder.CreateExtractValue(L, 0, "lhs.0");
2193 llvm::Value *R0 = Builder.CreateExtractValue(R, 0, "rhs.0");
2194 llvm::Value *Cmp0 = Builder.CreateICmp(Eq, L0, R0, "memptr.cmp.first");
2195
2196 // Compare everything other than the first field.
2197 llvm::Value *Res = nullptr;
2198 llvm::StructType *LType = cast<llvm::StructType>(L->getType());
2199 for (unsigned I = 1, E = LType->getNumElements(); I != E; ++I) {
2200 llvm::Value *LF = Builder.CreateExtractValue(L, I);
2201 llvm::Value *RF = Builder.CreateExtractValue(R, I);
2202 llvm::Value *Cmp = Builder.CreateICmp(Eq, LF, RF, "memptr.cmp.rest");
2203 if (Res)
2204 Res = Builder.CreateBinOp(And, Res, Cmp);
2205 else
2206 Res = Cmp;
2207 }
2208
2209 // Check if the first field is 0 if this is a function pointer.
2210 if (MPT->isMemberFunctionPointer()) {
2211 // (l1 == r1 && ...) || l0 == 0
2212 llvm::Value *Zero = llvm::Constant::getNullValue(L0->getType());
2213 llvm::Value *IsZero = Builder.CreateICmp(Eq, L0, Zero, "memptr.cmp.iszero");
2214 Res = Builder.CreateBinOp(Or, Res, IsZero);
2215 }
2216
2217 // Combine the comparison of the first field, which must always be true for
2218 // this comparison to succeeed.
2219 return Builder.CreateBinOp(And, Res, Cmp0, "memptr.cmp");
2220 }
2221
2222 llvm::Value *
EmitMemberPointerIsNotNull(CodeGenFunction & CGF,llvm::Value * MemPtr,const MemberPointerType * MPT)2223 MicrosoftCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
2224 llvm::Value *MemPtr,
2225 const MemberPointerType *MPT) {
2226 CGBuilderTy &Builder = CGF.Builder;
2227 llvm::SmallVector<llvm::Constant *, 4> fields;
2228 // We only need one field for member functions.
2229 if (MPT->isMemberFunctionPointer())
2230 fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy));
2231 else
2232 GetNullMemberPointerFields(MPT, fields);
2233 assert(!fields.empty());
2234 llvm::Value *FirstField = MemPtr;
2235 if (MemPtr->getType()->isStructTy())
2236 FirstField = Builder.CreateExtractValue(MemPtr, 0);
2237 llvm::Value *Res = Builder.CreateICmpNE(FirstField, fields[0], "memptr.cmp0");
2238
2239 // For function member pointers, we only need to test the function pointer
2240 // field. The other fields if any can be garbage.
2241 if (MPT->isMemberFunctionPointer())
2242 return Res;
2243
2244 // Otherwise, emit a series of compares and combine the results.
2245 for (int I = 1, E = fields.size(); I < E; ++I) {
2246 llvm::Value *Field = Builder.CreateExtractValue(MemPtr, I);
2247 llvm::Value *Next = Builder.CreateICmpNE(Field, fields[I], "memptr.cmp");
2248 Res = Builder.CreateOr(Res, Next, "memptr.tobool");
2249 }
2250 return Res;
2251 }
2252
MemberPointerConstantIsNull(const MemberPointerType * MPT,llvm::Constant * Val)2253 bool MicrosoftCXXABI::MemberPointerConstantIsNull(const MemberPointerType *MPT,
2254 llvm::Constant *Val) {
2255 // Function pointers are null if the pointer in the first field is null.
2256 if (MPT->isMemberFunctionPointer()) {
2257 llvm::Constant *FirstField = Val->getType()->isStructTy() ?
2258 Val->getAggregateElement(0U) : Val;
2259 return FirstField->isNullValue();
2260 }
2261
2262 // If it's not a function pointer and it's zero initializable, we can easily
2263 // check zero.
2264 if (isZeroInitializable(MPT) && Val->isNullValue())
2265 return true;
2266
2267 // Otherwise, break down all the fields for comparison. Hopefully these
2268 // little Constants are reused, while a big null struct might not be.
2269 llvm::SmallVector<llvm::Constant *, 4> Fields;
2270 GetNullMemberPointerFields(MPT, Fields);
2271 if (Fields.size() == 1) {
2272 assert(Val->getType()->isIntegerTy());
2273 return Val == Fields[0];
2274 }
2275
2276 unsigned I, E;
2277 for (I = 0, E = Fields.size(); I != E; ++I) {
2278 if (Val->getAggregateElement(I) != Fields[I])
2279 break;
2280 }
2281 return I == E;
2282 }
2283
2284 llvm::Value *
GetVBaseOffsetFromVBPtr(CodeGenFunction & CGF,llvm::Value * This,llvm::Value * VBPtrOffset,llvm::Value * VBTableOffset,llvm::Value ** VBPtrOut)2285 MicrosoftCXXABI::GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
2286 llvm::Value *This,
2287 llvm::Value *VBPtrOffset,
2288 llvm::Value *VBTableOffset,
2289 llvm::Value **VBPtrOut) {
2290 CGBuilderTy &Builder = CGF.Builder;
2291 // Load the vbtable pointer from the vbptr in the instance.
2292 This = Builder.CreateBitCast(This, CGM.Int8PtrTy);
2293 llvm::Value *VBPtr =
2294 Builder.CreateInBoundsGEP(This, VBPtrOffset, "vbptr");
2295 if (VBPtrOut) *VBPtrOut = VBPtr;
2296 VBPtr = Builder.CreateBitCast(VBPtr,
2297 CGM.Int32Ty->getPointerTo(0)->getPointerTo(0));
2298 llvm::Value *VBTable = Builder.CreateLoad(VBPtr, "vbtable");
2299
2300 // Translate from byte offset to table index. It improves analyzability.
2301 llvm::Value *VBTableIndex = Builder.CreateAShr(
2302 VBTableOffset, llvm::ConstantInt::get(VBTableOffset->getType(), 2),
2303 "vbtindex", /*isExact=*/true);
2304
2305 // Load an i32 offset from the vb-table.
2306 llvm::Value *VBaseOffs = Builder.CreateInBoundsGEP(VBTable, VBTableIndex);
2307 VBaseOffs = Builder.CreateBitCast(VBaseOffs, CGM.Int32Ty->getPointerTo(0));
2308 return Builder.CreateLoad(VBaseOffs, "vbase_offs");
2309 }
2310
2311 // Returns an adjusted base cast to i8*, since we do more address arithmetic on
2312 // it.
AdjustVirtualBase(CodeGenFunction & CGF,const Expr * E,const CXXRecordDecl * RD,llvm::Value * Base,llvm::Value * VBTableOffset,llvm::Value * VBPtrOffset)2313 llvm::Value *MicrosoftCXXABI::AdjustVirtualBase(
2314 CodeGenFunction &CGF, const Expr *E, const CXXRecordDecl *RD,
2315 llvm::Value *Base, llvm::Value *VBTableOffset, llvm::Value *VBPtrOffset) {
2316 CGBuilderTy &Builder = CGF.Builder;
2317 Base = Builder.CreateBitCast(Base, CGM.Int8PtrTy);
2318 llvm::BasicBlock *OriginalBB = nullptr;
2319 llvm::BasicBlock *SkipAdjustBB = nullptr;
2320 llvm::BasicBlock *VBaseAdjustBB = nullptr;
2321
2322 // In the unspecified inheritance model, there might not be a vbtable at all,
2323 // in which case we need to skip the virtual base lookup. If there is a
2324 // vbtable, the first entry is a no-op entry that gives back the original
2325 // base, so look for a virtual base adjustment offset of zero.
2326 if (VBPtrOffset) {
2327 OriginalBB = Builder.GetInsertBlock();
2328 VBaseAdjustBB = CGF.createBasicBlock("memptr.vadjust");
2329 SkipAdjustBB = CGF.createBasicBlock("memptr.skip_vadjust");
2330 llvm::Value *IsVirtual =
2331 Builder.CreateICmpNE(VBTableOffset, getZeroInt(),
2332 "memptr.is_vbase");
2333 Builder.CreateCondBr(IsVirtual, VBaseAdjustBB, SkipAdjustBB);
2334 CGF.EmitBlock(VBaseAdjustBB);
2335 }
2336
2337 // If we weren't given a dynamic vbptr offset, RD should be complete and we'll
2338 // know the vbptr offset.
2339 if (!VBPtrOffset) {
2340 CharUnits offs = CharUnits::Zero();
2341 if (!RD->hasDefinition()) {
2342 DiagnosticsEngine &Diags = CGF.CGM.getDiags();
2343 unsigned DiagID = Diags.getCustomDiagID(
2344 DiagnosticsEngine::Error,
2345 "member pointer representation requires a "
2346 "complete class type for %0 to perform this expression");
2347 Diags.Report(E->getExprLoc(), DiagID) << RD << E->getSourceRange();
2348 } else if (RD->getNumVBases())
2349 offs = getContext().getASTRecordLayout(RD).getVBPtrOffset();
2350 VBPtrOffset = llvm::ConstantInt::get(CGM.IntTy, offs.getQuantity());
2351 }
2352 llvm::Value *VBPtr = nullptr;
2353 llvm::Value *VBaseOffs =
2354 GetVBaseOffsetFromVBPtr(CGF, Base, VBPtrOffset, VBTableOffset, &VBPtr);
2355 llvm::Value *AdjustedBase = Builder.CreateInBoundsGEP(VBPtr, VBaseOffs);
2356
2357 // Merge control flow with the case where we didn't have to adjust.
2358 if (VBaseAdjustBB) {
2359 Builder.CreateBr(SkipAdjustBB);
2360 CGF.EmitBlock(SkipAdjustBB);
2361 llvm::PHINode *Phi = Builder.CreatePHI(CGM.Int8PtrTy, 2, "memptr.base");
2362 Phi->addIncoming(Base, OriginalBB);
2363 Phi->addIncoming(AdjustedBase, VBaseAdjustBB);
2364 return Phi;
2365 }
2366 return AdjustedBase;
2367 }
2368
EmitMemberDataPointerAddress(CodeGenFunction & CGF,const Expr * E,llvm::Value * Base,llvm::Value * MemPtr,const MemberPointerType * MPT)2369 llvm::Value *MicrosoftCXXABI::EmitMemberDataPointerAddress(
2370 CodeGenFunction &CGF, const Expr *E, llvm::Value *Base, llvm::Value *MemPtr,
2371 const MemberPointerType *MPT) {
2372 assert(MPT->isMemberDataPointer());
2373 unsigned AS = Base->getType()->getPointerAddressSpace();
2374 llvm::Type *PType =
2375 CGF.ConvertTypeForMem(MPT->getPointeeType())->getPointerTo(AS);
2376 CGBuilderTy &Builder = CGF.Builder;
2377 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2378 MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
2379
2380 // Extract the fields we need, regardless of model. We'll apply them if we
2381 // have them.
2382 llvm::Value *FieldOffset = MemPtr;
2383 llvm::Value *VirtualBaseAdjustmentOffset = nullptr;
2384 llvm::Value *VBPtrOffset = nullptr;
2385 if (MemPtr->getType()->isStructTy()) {
2386 // We need to extract values.
2387 unsigned I = 0;
2388 FieldOffset = Builder.CreateExtractValue(MemPtr, I++);
2389 if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance))
2390 VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++);
2391 if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
2392 VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++);
2393 }
2394
2395 if (VirtualBaseAdjustmentOffset) {
2396 Base = AdjustVirtualBase(CGF, E, RD, Base, VirtualBaseAdjustmentOffset,
2397 VBPtrOffset);
2398 }
2399
2400 // Cast to char*.
2401 Base = Builder.CreateBitCast(Base, Builder.getInt8Ty()->getPointerTo(AS));
2402
2403 // Apply the offset, which we assume is non-null.
2404 llvm::Value *Addr =
2405 Builder.CreateInBoundsGEP(Base, FieldOffset, "memptr.offset");
2406
2407 // Cast the address to the appropriate pointer type, adopting the address
2408 // space of the base pointer.
2409 return Builder.CreateBitCast(Addr, PType);
2410 }
2411
2412 static MSInheritanceAttr::Spelling
getInheritanceFromMemptr(const MemberPointerType * MPT)2413 getInheritanceFromMemptr(const MemberPointerType *MPT) {
2414 return MPT->getMostRecentCXXRecordDecl()->getMSInheritanceModel();
2415 }
2416
2417 llvm::Value *
EmitMemberPointerConversion(CodeGenFunction & CGF,const CastExpr * E,llvm::Value * Src)2418 MicrosoftCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF,
2419 const CastExpr *E,
2420 llvm::Value *Src) {
2421 assert(E->getCastKind() == CK_DerivedToBaseMemberPointer ||
2422 E->getCastKind() == CK_BaseToDerivedMemberPointer ||
2423 E->getCastKind() == CK_ReinterpretMemberPointer);
2424
2425 // Use constant emission if we can.
2426 if (isa<llvm::Constant>(Src))
2427 return EmitMemberPointerConversion(E, cast<llvm::Constant>(Src));
2428
2429 // We may be adding or dropping fields from the member pointer, so we need
2430 // both types and the inheritance models of both records.
2431 const MemberPointerType *SrcTy =
2432 E->getSubExpr()->getType()->castAs<MemberPointerType>();
2433 const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>();
2434 bool IsFunc = SrcTy->isMemberFunctionPointer();
2435
2436 // If the classes use the same null representation, reinterpret_cast is a nop.
2437 bool IsReinterpret = E->getCastKind() == CK_ReinterpretMemberPointer;
2438 if (IsReinterpret && IsFunc)
2439 return Src;
2440
2441 CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl();
2442 CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl();
2443 if (IsReinterpret &&
2444 SrcRD->nullFieldOffsetIsZero() == DstRD->nullFieldOffsetIsZero())
2445 return Src;
2446
2447 CGBuilderTy &Builder = CGF.Builder;
2448
2449 // Branch past the conversion if Src is null.
2450 llvm::Value *IsNotNull = EmitMemberPointerIsNotNull(CGF, Src, SrcTy);
2451 llvm::Constant *DstNull = EmitNullMemberPointer(DstTy);
2452
2453 // C++ 5.2.10p9: The null member pointer value is converted to the null member
2454 // pointer value of the destination type.
2455 if (IsReinterpret) {
2456 // For reinterpret casts, sema ensures that src and dst are both functions
2457 // or data and have the same size, which means the LLVM types should match.
2458 assert(Src->getType() == DstNull->getType());
2459 return Builder.CreateSelect(IsNotNull, Src, DstNull);
2460 }
2461
2462 llvm::BasicBlock *OriginalBB = Builder.GetInsertBlock();
2463 llvm::BasicBlock *ConvertBB = CGF.createBasicBlock("memptr.convert");
2464 llvm::BasicBlock *ContinueBB = CGF.createBasicBlock("memptr.converted");
2465 Builder.CreateCondBr(IsNotNull, ConvertBB, ContinueBB);
2466 CGF.EmitBlock(ConvertBB);
2467
2468 // Decompose src.
2469 llvm::Value *FirstField = Src;
2470 llvm::Value *NonVirtualBaseAdjustment = nullptr;
2471 llvm::Value *VirtualBaseAdjustmentOffset = nullptr;
2472 llvm::Value *VBPtrOffset = nullptr;
2473 MSInheritanceAttr::Spelling SrcInheritance = SrcRD->getMSInheritanceModel();
2474 if (!MSInheritanceAttr::hasOnlyOneField(IsFunc, SrcInheritance)) {
2475 // We need to extract values.
2476 unsigned I = 0;
2477 FirstField = Builder.CreateExtractValue(Src, I++);
2478 if (MSInheritanceAttr::hasNVOffsetField(IsFunc, SrcInheritance))
2479 NonVirtualBaseAdjustment = Builder.CreateExtractValue(Src, I++);
2480 if (MSInheritanceAttr::hasVBPtrOffsetField(SrcInheritance))
2481 VBPtrOffset = Builder.CreateExtractValue(Src, I++);
2482 if (MSInheritanceAttr::hasVBTableOffsetField(SrcInheritance))
2483 VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(Src, I++);
2484 }
2485
2486 // For data pointers, we adjust the field offset directly. For functions, we
2487 // have a separate field.
2488 llvm::Constant *Adj = getMemberPointerAdjustment(E);
2489 if (Adj) {
2490 Adj = llvm::ConstantExpr::getTruncOrBitCast(Adj, CGM.IntTy);
2491 llvm::Value *&NVAdjustField = IsFunc ? NonVirtualBaseAdjustment : FirstField;
2492 bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer);
2493 if (!NVAdjustField) // If this field didn't exist in src, it's zero.
2494 NVAdjustField = getZeroInt();
2495 if (isDerivedToBase)
2496 NVAdjustField = Builder.CreateNSWSub(NVAdjustField, Adj, "adj");
2497 else
2498 NVAdjustField = Builder.CreateNSWAdd(NVAdjustField, Adj, "adj");
2499 }
2500
2501 // FIXME PR15713: Support conversions through virtually derived classes.
2502
2503 // Recompose dst from the null struct and the adjusted fields from src.
2504 MSInheritanceAttr::Spelling DstInheritance = DstRD->getMSInheritanceModel();
2505 llvm::Value *Dst;
2506 if (MSInheritanceAttr::hasOnlyOneField(IsFunc, DstInheritance)) {
2507 Dst = FirstField;
2508 } else {
2509 Dst = llvm::UndefValue::get(DstNull->getType());
2510 unsigned Idx = 0;
2511 Dst = Builder.CreateInsertValue(Dst, FirstField, Idx++);
2512 if (MSInheritanceAttr::hasNVOffsetField(IsFunc, DstInheritance))
2513 Dst = Builder.CreateInsertValue(
2514 Dst, getValueOrZeroInt(NonVirtualBaseAdjustment), Idx++);
2515 if (MSInheritanceAttr::hasVBPtrOffsetField(DstInheritance))
2516 Dst = Builder.CreateInsertValue(
2517 Dst, getValueOrZeroInt(VBPtrOffset), Idx++);
2518 if (MSInheritanceAttr::hasVBTableOffsetField(DstInheritance))
2519 Dst = Builder.CreateInsertValue(
2520 Dst, getValueOrZeroInt(VirtualBaseAdjustmentOffset), Idx++);
2521 }
2522 Builder.CreateBr(ContinueBB);
2523
2524 // In the continuation, choose between DstNull and Dst.
2525 CGF.EmitBlock(ContinueBB);
2526 llvm::PHINode *Phi = Builder.CreatePHI(DstNull->getType(), 2, "memptr.converted");
2527 Phi->addIncoming(DstNull, OriginalBB);
2528 Phi->addIncoming(Dst, ConvertBB);
2529 return Phi;
2530 }
2531
2532 llvm::Constant *
EmitMemberPointerConversion(const CastExpr * E,llvm::Constant * Src)2533 MicrosoftCXXABI::EmitMemberPointerConversion(const CastExpr *E,
2534 llvm::Constant *Src) {
2535 const MemberPointerType *SrcTy =
2536 E->getSubExpr()->getType()->castAs<MemberPointerType>();
2537 const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>();
2538
2539 // If src is null, emit a new null for dst. We can't return src because dst
2540 // might have a new representation.
2541 if (MemberPointerConstantIsNull(SrcTy, Src))
2542 return EmitNullMemberPointer(DstTy);
2543
2544 // We don't need to do anything for reinterpret_casts of non-null member
2545 // pointers. We should only get here when the two type representations have
2546 // the same size.
2547 if (E->getCastKind() == CK_ReinterpretMemberPointer)
2548 return Src;
2549
2550 MSInheritanceAttr::Spelling SrcInheritance = getInheritanceFromMemptr(SrcTy);
2551 MSInheritanceAttr::Spelling DstInheritance = getInheritanceFromMemptr(DstTy);
2552
2553 // Decompose src.
2554 llvm::Constant *FirstField = Src;
2555 llvm::Constant *NonVirtualBaseAdjustment = nullptr;
2556 llvm::Constant *VirtualBaseAdjustmentOffset = nullptr;
2557 llvm::Constant *VBPtrOffset = nullptr;
2558 bool IsFunc = SrcTy->isMemberFunctionPointer();
2559 if (!MSInheritanceAttr::hasOnlyOneField(IsFunc, SrcInheritance)) {
2560 // We need to extract values.
2561 unsigned I = 0;
2562 FirstField = Src->getAggregateElement(I++);
2563 if (MSInheritanceAttr::hasNVOffsetField(IsFunc, SrcInheritance))
2564 NonVirtualBaseAdjustment = Src->getAggregateElement(I++);
2565 if (MSInheritanceAttr::hasVBPtrOffsetField(SrcInheritance))
2566 VBPtrOffset = Src->getAggregateElement(I++);
2567 if (MSInheritanceAttr::hasVBTableOffsetField(SrcInheritance))
2568 VirtualBaseAdjustmentOffset = Src->getAggregateElement(I++);
2569 }
2570
2571 // For data pointers, we adjust the field offset directly. For functions, we
2572 // have a separate field.
2573 llvm::Constant *Adj = getMemberPointerAdjustment(E);
2574 if (Adj) {
2575 Adj = llvm::ConstantExpr::getTruncOrBitCast(Adj, CGM.IntTy);
2576 llvm::Constant *&NVAdjustField =
2577 IsFunc ? NonVirtualBaseAdjustment : FirstField;
2578 bool IsDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer);
2579 if (!NVAdjustField) // If this field didn't exist in src, it's zero.
2580 NVAdjustField = getZeroInt();
2581 if (IsDerivedToBase)
2582 NVAdjustField = llvm::ConstantExpr::getNSWSub(NVAdjustField, Adj);
2583 else
2584 NVAdjustField = llvm::ConstantExpr::getNSWAdd(NVAdjustField, Adj);
2585 }
2586
2587 // FIXME PR15713: Support conversions through virtually derived classes.
2588
2589 // Recompose dst from the null struct and the adjusted fields from src.
2590 if (MSInheritanceAttr::hasOnlyOneField(IsFunc, DstInheritance))
2591 return FirstField;
2592
2593 llvm::SmallVector<llvm::Constant *, 4> Fields;
2594 Fields.push_back(FirstField);
2595 if (MSInheritanceAttr::hasNVOffsetField(IsFunc, DstInheritance))
2596 Fields.push_back(getConstantOrZeroInt(NonVirtualBaseAdjustment));
2597 if (MSInheritanceAttr::hasVBPtrOffsetField(DstInheritance))
2598 Fields.push_back(getConstantOrZeroInt(VBPtrOffset));
2599 if (MSInheritanceAttr::hasVBTableOffsetField(DstInheritance))
2600 Fields.push_back(getConstantOrZeroInt(VirtualBaseAdjustmentOffset));
2601 return llvm::ConstantStruct::getAnon(Fields);
2602 }
2603
EmitLoadOfMemberFunctionPointer(CodeGenFunction & CGF,const Expr * E,llvm::Value * & This,llvm::Value * MemPtr,const MemberPointerType * MPT)2604 llvm::Value *MicrosoftCXXABI::EmitLoadOfMemberFunctionPointer(
2605 CodeGenFunction &CGF, const Expr *E, llvm::Value *&This,
2606 llvm::Value *MemPtr, const MemberPointerType *MPT) {
2607 assert(MPT->isMemberFunctionPointer());
2608 const FunctionProtoType *FPT =
2609 MPT->getPointeeType()->castAs<FunctionProtoType>();
2610 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2611 llvm::FunctionType *FTy =
2612 CGM.getTypes().GetFunctionType(
2613 CGM.getTypes().arrangeCXXMethodType(RD, FPT));
2614 CGBuilderTy &Builder = CGF.Builder;
2615
2616 MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
2617
2618 // Extract the fields we need, regardless of model. We'll apply them if we
2619 // have them.
2620 llvm::Value *FunctionPointer = MemPtr;
2621 llvm::Value *NonVirtualBaseAdjustment = nullptr;
2622 llvm::Value *VirtualBaseAdjustmentOffset = nullptr;
2623 llvm::Value *VBPtrOffset = nullptr;
2624 if (MemPtr->getType()->isStructTy()) {
2625 // We need to extract values.
2626 unsigned I = 0;
2627 FunctionPointer = Builder.CreateExtractValue(MemPtr, I++);
2628 if (MSInheritanceAttr::hasNVOffsetField(MPT, Inheritance))
2629 NonVirtualBaseAdjustment = Builder.CreateExtractValue(MemPtr, I++);
2630 if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance))
2631 VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++);
2632 if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
2633 VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++);
2634 }
2635
2636 if (VirtualBaseAdjustmentOffset) {
2637 This = AdjustVirtualBase(CGF, E, RD, This, VirtualBaseAdjustmentOffset,
2638 VBPtrOffset);
2639 }
2640
2641 if (NonVirtualBaseAdjustment) {
2642 // Apply the adjustment and cast back to the original struct type.
2643 llvm::Value *Ptr = Builder.CreateBitCast(This, Builder.getInt8PtrTy());
2644 Ptr = Builder.CreateInBoundsGEP(Ptr, NonVirtualBaseAdjustment);
2645 This = Builder.CreateBitCast(Ptr, This->getType(), "this.adjusted");
2646 }
2647
2648 return Builder.CreateBitCast(FunctionPointer, FTy->getPointerTo());
2649 }
2650
CreateMicrosoftCXXABI(CodeGenModule & CGM)2651 CGCXXABI *clang::CodeGen::CreateMicrosoftCXXABI(CodeGenModule &CGM) {
2652 return new MicrosoftCXXABI(CGM);
2653 }
2654
2655 // MS RTTI Overview:
2656 // The run time type information emitted by cl.exe contains 5 distinct types of
2657 // structures. Many of them reference each other.
2658 //
2659 // TypeInfo: Static classes that are returned by typeid.
2660 //
2661 // CompleteObjectLocator: Referenced by vftables. They contain information
2662 // required for dynamic casting, including OffsetFromTop. They also contain
2663 // a reference to the TypeInfo for the type and a reference to the
2664 // CompleteHierarchyDescriptor for the type.
2665 //
2666 // ClassHieararchyDescriptor: Contains information about a class hierarchy.
2667 // Used during dynamic_cast to walk a class hierarchy. References a base
2668 // class array and the size of said array.
2669 //
2670 // BaseClassArray: Contains a list of classes in a hierarchy. BaseClassArray is
2671 // somewhat of a misnomer because the most derived class is also in the list
2672 // as well as multiple copies of virtual bases (if they occur multiple times
2673 // in the hiearchy.) The BaseClassArray contains one BaseClassDescriptor for
2674 // every path in the hierarchy, in pre-order depth first order. Note, we do
2675 // not declare a specific llvm type for BaseClassArray, it's merely an array
2676 // of BaseClassDescriptor pointers.
2677 //
2678 // BaseClassDescriptor: Contains information about a class in a class hierarchy.
2679 // BaseClassDescriptor is also somewhat of a misnomer for the same reason that
2680 // BaseClassArray is. It contains information about a class within a
2681 // hierarchy such as: is this base is ambiguous and what is its offset in the
2682 // vbtable. The names of the BaseClassDescriptors have all of their fields
2683 // mangled into them so they can be aggressively deduplicated by the linker.
2684
getTypeInfoVTable(CodeGenModule & CGM)2685 static llvm::GlobalVariable *getTypeInfoVTable(CodeGenModule &CGM) {
2686 StringRef MangledName("\01??_7type_info@@6B@");
2687 if (auto VTable = CGM.getModule().getNamedGlobal(MangledName))
2688 return VTable;
2689 return new llvm::GlobalVariable(CGM.getModule(), CGM.Int8PtrTy,
2690 /*Constant=*/true,
2691 llvm::GlobalVariable::ExternalLinkage,
2692 /*Initializer=*/nullptr, MangledName);
2693 }
2694
2695 namespace {
2696
2697 /// \brief A Helper struct that stores information about a class in a class
2698 /// hierarchy. The information stored in these structs struct is used during
2699 /// the generation of ClassHierarchyDescriptors and BaseClassDescriptors.
2700 // During RTTI creation, MSRTTIClasses are stored in a contiguous array with
2701 // implicit depth first pre-order tree connectivity. getFirstChild and
2702 // getNextSibling allow us to walk the tree efficiently.
2703 struct MSRTTIClass {
2704 enum {
2705 IsPrivateOnPath = 1 | 8,
2706 IsAmbiguous = 2,
2707 IsPrivate = 4,
2708 IsVirtual = 16,
2709 HasHierarchyDescriptor = 64
2710 };
MSRTTIClass__anond02e9b3e0311::MSRTTIClass2711 MSRTTIClass(const CXXRecordDecl *RD) : RD(RD) {}
2712 uint32_t initialize(const MSRTTIClass *Parent,
2713 const CXXBaseSpecifier *Specifier);
2714
getFirstChild__anond02e9b3e0311::MSRTTIClass2715 MSRTTIClass *getFirstChild() { return this + 1; }
getNextChild__anond02e9b3e0311::MSRTTIClass2716 static MSRTTIClass *getNextChild(MSRTTIClass *Child) {
2717 return Child + 1 + Child->NumBases;
2718 }
2719
2720 const CXXRecordDecl *RD, *VirtualRoot;
2721 uint32_t Flags, NumBases, OffsetInVBase;
2722 };
2723
2724 /// \brief Recursively initialize the base class array.
initialize(const MSRTTIClass * Parent,const CXXBaseSpecifier * Specifier)2725 uint32_t MSRTTIClass::initialize(const MSRTTIClass *Parent,
2726 const CXXBaseSpecifier *Specifier) {
2727 Flags = HasHierarchyDescriptor;
2728 if (!Parent) {
2729 VirtualRoot = nullptr;
2730 OffsetInVBase = 0;
2731 } else {
2732 if (Specifier->getAccessSpecifier() != AS_public)
2733 Flags |= IsPrivate | IsPrivateOnPath;
2734 if (Specifier->isVirtual()) {
2735 Flags |= IsVirtual;
2736 VirtualRoot = RD;
2737 OffsetInVBase = 0;
2738 } else {
2739 if (Parent->Flags & IsPrivateOnPath)
2740 Flags |= IsPrivateOnPath;
2741 VirtualRoot = Parent->VirtualRoot;
2742 OffsetInVBase = Parent->OffsetInVBase + RD->getASTContext()
2743 .getASTRecordLayout(Parent->RD).getBaseClassOffset(RD).getQuantity();
2744 }
2745 }
2746 NumBases = 0;
2747 MSRTTIClass *Child = getFirstChild();
2748 for (const CXXBaseSpecifier &Base : RD->bases()) {
2749 NumBases += Child->initialize(this, &Base) + 1;
2750 Child = getNextChild(Child);
2751 }
2752 return NumBases;
2753 }
2754
getLinkageForRTTI(QualType Ty)2755 static llvm::GlobalValue::LinkageTypes getLinkageForRTTI(QualType Ty) {
2756 switch (Ty->getLinkage()) {
2757 case NoLinkage:
2758 case InternalLinkage:
2759 case UniqueExternalLinkage:
2760 return llvm::GlobalValue::InternalLinkage;
2761
2762 case VisibleNoLinkage:
2763 case ExternalLinkage:
2764 return llvm::GlobalValue::LinkOnceODRLinkage;
2765 }
2766 llvm_unreachable("Invalid linkage!");
2767 }
2768
2769 /// \brief An ephemeral helper class for building MS RTTI types. It caches some
2770 /// calls to the module and information about the most derived class in a
2771 /// hierarchy.
2772 struct MSRTTIBuilder {
2773 enum {
2774 HasBranchingHierarchy = 1,
2775 HasVirtualBranchingHierarchy = 2,
2776 HasAmbiguousBases = 4
2777 };
2778
MSRTTIBuilder__anond02e9b3e0311::MSRTTIBuilder2779 MSRTTIBuilder(MicrosoftCXXABI &ABI, const CXXRecordDecl *RD)
2780 : CGM(ABI.CGM), Context(CGM.getContext()),
2781 VMContext(CGM.getLLVMContext()), Module(CGM.getModule()), RD(RD),
2782 Linkage(getLinkageForRTTI(CGM.getContext().getTagDeclType(RD))),
2783 ABI(ABI) {}
2784
2785 llvm::GlobalVariable *getBaseClassDescriptor(const MSRTTIClass &Classes);
2786 llvm::GlobalVariable *
2787 getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes);
2788 llvm::GlobalVariable *getClassHierarchyDescriptor();
2789 llvm::GlobalVariable *getCompleteObjectLocator(const VPtrInfo *Info);
2790
2791 CodeGenModule &CGM;
2792 ASTContext &Context;
2793 llvm::LLVMContext &VMContext;
2794 llvm::Module &Module;
2795 const CXXRecordDecl *RD;
2796 llvm::GlobalVariable::LinkageTypes Linkage;
2797 MicrosoftCXXABI &ABI;
2798 };
2799
2800 } // namespace
2801
2802 /// \brief Recursively serializes a class hierarchy in pre-order depth first
2803 /// order.
serializeClassHierarchy(SmallVectorImpl<MSRTTIClass> & Classes,const CXXRecordDecl * RD)2804 static void serializeClassHierarchy(SmallVectorImpl<MSRTTIClass> &Classes,
2805 const CXXRecordDecl *RD) {
2806 Classes.push_back(MSRTTIClass(RD));
2807 for (const CXXBaseSpecifier &Base : RD->bases())
2808 serializeClassHierarchy(Classes, Base.getType()->getAsCXXRecordDecl());
2809 }
2810
2811 /// \brief Find ambiguity among base classes.
2812 static void
detectAmbiguousBases(SmallVectorImpl<MSRTTIClass> & Classes)2813 detectAmbiguousBases(SmallVectorImpl<MSRTTIClass> &Classes) {
2814 llvm::SmallPtrSet<const CXXRecordDecl *, 8> VirtualBases;
2815 llvm::SmallPtrSet<const CXXRecordDecl *, 8> UniqueBases;
2816 llvm::SmallPtrSet<const CXXRecordDecl *, 8> AmbiguousBases;
2817 for (MSRTTIClass *Class = &Classes.front(); Class <= &Classes.back();) {
2818 if ((Class->Flags & MSRTTIClass::IsVirtual) &&
2819 !VirtualBases.insert(Class->RD).second) {
2820 Class = MSRTTIClass::getNextChild(Class);
2821 continue;
2822 }
2823 if (!UniqueBases.insert(Class->RD).second)
2824 AmbiguousBases.insert(Class->RD);
2825 Class++;
2826 }
2827 if (AmbiguousBases.empty())
2828 return;
2829 for (MSRTTIClass &Class : Classes)
2830 if (AmbiguousBases.count(Class.RD))
2831 Class.Flags |= MSRTTIClass::IsAmbiguous;
2832 }
2833
getClassHierarchyDescriptor()2834 llvm::GlobalVariable *MSRTTIBuilder::getClassHierarchyDescriptor() {
2835 SmallString<256> MangledName;
2836 {
2837 llvm::raw_svector_ostream Out(MangledName);
2838 ABI.getMangleContext().mangleCXXRTTIClassHierarchyDescriptor(RD, Out);
2839 }
2840
2841 // Check to see if we've already declared this ClassHierarchyDescriptor.
2842 if (auto CHD = Module.getNamedGlobal(MangledName))
2843 return CHD;
2844
2845 // Serialize the class hierarchy and initialize the CHD Fields.
2846 SmallVector<MSRTTIClass, 8> Classes;
2847 serializeClassHierarchy(Classes, RD);
2848 Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr);
2849 detectAmbiguousBases(Classes);
2850 int Flags = 0;
2851 for (auto Class : Classes) {
2852 if (Class.RD->getNumBases() > 1)
2853 Flags |= HasBranchingHierarchy;
2854 // Note: cl.exe does not calculate "HasAmbiguousBases" correctly. We
2855 // believe the field isn't actually used.
2856 if (Class.Flags & MSRTTIClass::IsAmbiguous)
2857 Flags |= HasAmbiguousBases;
2858 }
2859 if ((Flags & HasBranchingHierarchy) && RD->getNumVBases() != 0)
2860 Flags |= HasVirtualBranchingHierarchy;
2861 // These gep indices are used to get the address of the first element of the
2862 // base class array.
2863 llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.IntTy, 0),
2864 llvm::ConstantInt::get(CGM.IntTy, 0)};
2865
2866 // Forward-declare the class hierarchy descriptor
2867 auto Type = ABI.getClassHierarchyDescriptorType();
2868 auto CHD = new llvm::GlobalVariable(Module, Type, /*Constant=*/true, Linkage,
2869 /*Initializer=*/nullptr,
2870 MangledName.c_str());
2871
2872 // Initialize the base class ClassHierarchyDescriptor.
2873 llvm::Constant *Fields[] = {
2874 llvm::ConstantInt::get(CGM.IntTy, 0), // Unknown
2875 llvm::ConstantInt::get(CGM.IntTy, Flags),
2876 llvm::ConstantInt::get(CGM.IntTy, Classes.size()),
2877 ABI.getImageRelativeConstant(llvm::ConstantExpr::getInBoundsGetElementPtr(
2878 getBaseClassArray(Classes),
2879 llvm::ArrayRef<llvm::Value *>(GEPIndices))),
2880 };
2881 CHD->setInitializer(llvm::ConstantStruct::get(Type, Fields));
2882 return CHD;
2883 }
2884
2885 llvm::GlobalVariable *
getBaseClassArray(SmallVectorImpl<MSRTTIClass> & Classes)2886 MSRTTIBuilder::getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes) {
2887 SmallString<256> MangledName;
2888 {
2889 llvm::raw_svector_ostream Out(MangledName);
2890 ABI.getMangleContext().mangleCXXRTTIBaseClassArray(RD, Out);
2891 }
2892
2893 // Forward-declare the base class array.
2894 // cl.exe pads the base class array with 1 (in 32 bit mode) or 4 (in 64 bit
2895 // mode) bytes of padding. We provide a pointer sized amount of padding by
2896 // adding +1 to Classes.size(). The sections have pointer alignment and are
2897 // marked pick-any so it shouldn't matter.
2898 llvm::Type *PtrType = ABI.getImageRelativeType(
2899 ABI.getBaseClassDescriptorType()->getPointerTo());
2900 auto *ArrType = llvm::ArrayType::get(PtrType, Classes.size() + 1);
2901 auto *BCA = new llvm::GlobalVariable(
2902 Module, ArrType,
2903 /*Constant=*/true, Linkage, /*Initializer=*/nullptr, MangledName.c_str());
2904
2905 // Initialize the BaseClassArray.
2906 SmallVector<llvm::Constant *, 8> BaseClassArrayData;
2907 for (MSRTTIClass &Class : Classes)
2908 BaseClassArrayData.push_back(
2909 ABI.getImageRelativeConstant(getBaseClassDescriptor(Class)));
2910 BaseClassArrayData.push_back(llvm::Constant::getNullValue(PtrType));
2911 BCA->setInitializer(llvm::ConstantArray::get(ArrType, BaseClassArrayData));
2912 return BCA;
2913 }
2914
2915 llvm::GlobalVariable *
getBaseClassDescriptor(const MSRTTIClass & Class)2916 MSRTTIBuilder::getBaseClassDescriptor(const MSRTTIClass &Class) {
2917 // Compute the fields for the BaseClassDescriptor. They are computed up front
2918 // because they are mangled into the name of the object.
2919 uint32_t OffsetInVBTable = 0;
2920 int32_t VBPtrOffset = -1;
2921 if (Class.VirtualRoot) {
2922 auto &VTableContext = CGM.getMicrosoftVTableContext();
2923 OffsetInVBTable = VTableContext.getVBTableIndex(RD, Class.VirtualRoot) * 4;
2924 VBPtrOffset = Context.getASTRecordLayout(RD).getVBPtrOffset().getQuantity();
2925 }
2926
2927 SmallString<256> MangledName;
2928 {
2929 llvm::raw_svector_ostream Out(MangledName);
2930 ABI.getMangleContext().mangleCXXRTTIBaseClassDescriptor(
2931 Class.RD, Class.OffsetInVBase, VBPtrOffset, OffsetInVBTable,
2932 Class.Flags, Out);
2933 }
2934
2935 // Check to see if we've already declared this object.
2936 if (auto BCD = Module.getNamedGlobal(MangledName))
2937 return BCD;
2938
2939 // Forward-declare the base class descriptor.
2940 auto Type = ABI.getBaseClassDescriptorType();
2941 auto BCD = new llvm::GlobalVariable(Module, Type, /*Constant=*/true, Linkage,
2942 /*Initializer=*/nullptr,
2943 MangledName.c_str());
2944
2945 // Initialize the BaseClassDescriptor.
2946 llvm::Constant *Fields[] = {
2947 ABI.getImageRelativeConstant(
2948 ABI.getAddrOfRTTIDescriptor(Context.getTypeDeclType(Class.RD))),
2949 llvm::ConstantInt::get(CGM.IntTy, Class.NumBases),
2950 llvm::ConstantInt::get(CGM.IntTy, Class.OffsetInVBase),
2951 llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset),
2952 llvm::ConstantInt::get(CGM.IntTy, OffsetInVBTable),
2953 llvm::ConstantInt::get(CGM.IntTy, Class.Flags),
2954 ABI.getImageRelativeConstant(
2955 MSRTTIBuilder(ABI, Class.RD).getClassHierarchyDescriptor()),
2956 };
2957 BCD->setInitializer(llvm::ConstantStruct::get(Type, Fields));
2958 return BCD;
2959 }
2960
2961 llvm::GlobalVariable *
getCompleteObjectLocator(const VPtrInfo * Info)2962 MSRTTIBuilder::getCompleteObjectLocator(const VPtrInfo *Info) {
2963 SmallString<256> MangledName;
2964 {
2965 llvm::raw_svector_ostream Out(MangledName);
2966 ABI.getMangleContext().mangleCXXRTTICompleteObjectLocator(RD, Info->MangledPath, Out);
2967 }
2968
2969 // Check to see if we've already computed this complete object locator.
2970 if (auto COL = Module.getNamedGlobal(MangledName))
2971 return COL;
2972
2973 // Compute the fields of the complete object locator.
2974 int OffsetToTop = Info->FullOffsetInMDC.getQuantity();
2975 int VFPtrOffset = 0;
2976 // The offset includes the vtordisp if one exists.
2977 if (const CXXRecordDecl *VBase = Info->getVBaseWithVPtr())
2978 if (Context.getASTRecordLayout(RD)
2979 .getVBaseOffsetsMap()
2980 .find(VBase)
2981 ->second.hasVtorDisp())
2982 VFPtrOffset = Info->NonVirtualOffset.getQuantity() + 4;
2983
2984 // Forward-declare the complete object locator.
2985 llvm::StructType *Type = ABI.getCompleteObjectLocatorType();
2986 auto COL = new llvm::GlobalVariable(Module, Type, /*Constant=*/true, Linkage,
2987 /*Initializer=*/nullptr, MangledName.c_str());
2988
2989 // Initialize the CompleteObjectLocator.
2990 llvm::Constant *Fields[] = {
2991 llvm::ConstantInt::get(CGM.IntTy, ABI.isImageRelative()),
2992 llvm::ConstantInt::get(CGM.IntTy, OffsetToTop),
2993 llvm::ConstantInt::get(CGM.IntTy, VFPtrOffset),
2994 ABI.getImageRelativeConstant(
2995 CGM.GetAddrOfRTTIDescriptor(Context.getTypeDeclType(RD))),
2996 ABI.getImageRelativeConstant(getClassHierarchyDescriptor()),
2997 ABI.getImageRelativeConstant(COL),
2998 };
2999 llvm::ArrayRef<llvm::Constant *> FieldsRef(Fields);
3000 if (!ABI.isImageRelative())
3001 FieldsRef = FieldsRef.drop_back();
3002 COL->setInitializer(llvm::ConstantStruct::get(Type, FieldsRef));
3003 return COL;
3004 }
3005
3006 /// \brief Gets a TypeDescriptor. Returns a llvm::Constant * rather than a
3007 /// llvm::GlobalVariable * because different type descriptors have different
3008 /// types, and need to be abstracted. They are abstracting by casting the
3009 /// address to an Int8PtrTy.
getAddrOfRTTIDescriptor(QualType Type)3010 llvm::Constant *MicrosoftCXXABI::getAddrOfRTTIDescriptor(QualType Type) {
3011 SmallString<256> MangledName, TypeInfoString;
3012 {
3013 llvm::raw_svector_ostream Out(MangledName);
3014 getMangleContext().mangleCXXRTTI(Type, Out);
3015 }
3016
3017 // Check to see if we've already declared this TypeDescriptor.
3018 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName))
3019 return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy);
3020
3021 // Compute the fields for the TypeDescriptor.
3022 {
3023 llvm::raw_svector_ostream Out(TypeInfoString);
3024 getMangleContext().mangleCXXRTTIName(Type, Out);
3025 }
3026
3027 // Declare and initialize the TypeDescriptor.
3028 llvm::Constant *Fields[] = {
3029 getTypeInfoVTable(CGM), // VFPtr
3030 llvm::ConstantPointerNull::get(CGM.Int8PtrTy), // Runtime data
3031 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), TypeInfoString)};
3032 llvm::StructType *TypeDescriptorType =
3033 getTypeDescriptorType(TypeInfoString);
3034 return llvm::ConstantExpr::getBitCast(
3035 new llvm::GlobalVariable(
3036 CGM.getModule(), TypeDescriptorType, /*Constant=*/false,
3037 getLinkageForRTTI(Type),
3038 llvm::ConstantStruct::get(TypeDescriptorType, Fields),
3039 MangledName.c_str()),
3040 CGM.Int8PtrTy);
3041 }
3042
3043 /// \brief Gets or a creates a Microsoft CompleteObjectLocator.
3044 llvm::GlobalVariable *
getMSCompleteObjectLocator(const CXXRecordDecl * RD,const VPtrInfo * Info)3045 MicrosoftCXXABI::getMSCompleteObjectLocator(const CXXRecordDecl *RD,
3046 const VPtrInfo *Info) {
3047 return MSRTTIBuilder(*this, RD).getCompleteObjectLocator(Info);
3048 }
3049
emitCXXConstructor(CodeGenModule & CGM,const CXXConstructorDecl * ctor,StructorType ctorType)3050 static void emitCXXConstructor(CodeGenModule &CGM,
3051 const CXXConstructorDecl *ctor,
3052 StructorType ctorType) {
3053 // There are no constructor variants, always emit the complete destructor.
3054 CGM.codegenCXXStructor(ctor, StructorType::Complete);
3055 }
3056
emitCXXDestructor(CodeGenModule & CGM,const CXXDestructorDecl * dtor,StructorType dtorType)3057 static void emitCXXDestructor(CodeGenModule &CGM, const CXXDestructorDecl *dtor,
3058 StructorType dtorType) {
3059 // The complete destructor is equivalent to the base destructor for
3060 // classes with no virtual bases, so try to emit it as an alias.
3061 if (!dtor->getParent()->getNumVBases() &&
3062 (dtorType == StructorType::Complete || dtorType == StructorType::Base)) {
3063 bool ProducedAlias = !CGM.TryEmitDefinitionAsAlias(
3064 GlobalDecl(dtor, Dtor_Complete), GlobalDecl(dtor, Dtor_Base), true);
3065 if (ProducedAlias) {
3066 if (dtorType == StructorType::Complete)
3067 return;
3068 if (dtor->isVirtual())
3069 CGM.getVTables().EmitThunks(GlobalDecl(dtor, Dtor_Complete));
3070 }
3071 }
3072
3073 // The base destructor is equivalent to the base destructor of its
3074 // base class if there is exactly one non-virtual base class with a
3075 // non-trivial destructor, there are no fields with a non-trivial
3076 // destructor, and the body of the destructor is trivial.
3077 if (dtorType == StructorType::Base && !CGM.TryEmitBaseDestructorAsAlias(dtor))
3078 return;
3079
3080 CGM.codegenCXXStructor(dtor, dtorType);
3081 }
3082
emitCXXStructor(const CXXMethodDecl * MD,StructorType Type)3083 void MicrosoftCXXABI::emitCXXStructor(const CXXMethodDecl *MD,
3084 StructorType Type) {
3085 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
3086 emitCXXConstructor(CGM, CD, Type);
3087 return;
3088 }
3089 emitCXXDestructor(CGM, cast<CXXDestructorDecl>(MD), Type);
3090 }
3091