1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2011-2015 Red Hat Inc
6 *
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 */
28
29 #include "qemu/osdep.h"
30 #include "qemu/cutils.h"
31 #include "qemu/bitops.h"
32 #include "qemu/bitmap.h"
33 #include "qemu/madvise.h"
34 #include "qemu/main-loop.h"
35 #include "xbzrle.h"
36 #include "ram.h"
37 #include "migration.h"
38 #include "migration-stats.h"
39 #include "migration/register.h"
40 #include "migration/misc.h"
41 #include "qemu-file.h"
42 #include "postcopy-ram.h"
43 #include "page_cache.h"
44 #include "qemu/error-report.h"
45 #include "qapi/error.h"
46 #include "qapi/qapi-types-migration.h"
47 #include "qapi/qapi-events-migration.h"
48 #include "qapi/qapi-commands-migration.h"
49 #include "qapi/qmp/qerror.h"
50 #include "trace.h"
51 #include "exec/ram_addr.h"
52 #include "exec/target_page.h"
53 #include "qemu/rcu_queue.h"
54 #include "migration/colo.h"
55 #include "sysemu/cpu-throttle.h"
56 #include "savevm.h"
57 #include "qemu/iov.h"
58 #include "multifd.h"
59 #include "sysemu/runstate.h"
60 #include "rdma.h"
61 #include "options.h"
62 #include "sysemu/dirtylimit.h"
63 #include "sysemu/kvm.h"
64
65 #include "hw/boards.h" /* for machine_dump_guest_core() */
66
67 #if defined(__linux__)
68 #include "qemu/userfaultfd.h"
69 #endif /* defined(__linux__) */
70
71 /***********************************************************/
72 /* ram save/restore */
73
74 /*
75 * RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
76 * worked for pages that were filled with the same char. We switched
77 * it to only search for the zero value. And to avoid confusion with
78 * RAM_SAVE_FLAG_COMPRESS_PAGE just rename it.
79 *
80 * RAM_SAVE_FLAG_FULL was obsoleted in 2009.
81 *
82 * RAM_SAVE_FLAG_COMPRESS_PAGE (0x100) was removed in QEMU 9.1.
83 */
84 #define RAM_SAVE_FLAG_FULL 0x01
85 #define RAM_SAVE_FLAG_ZERO 0x02
86 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
87 #define RAM_SAVE_FLAG_PAGE 0x08
88 #define RAM_SAVE_FLAG_EOS 0x10
89 #define RAM_SAVE_FLAG_CONTINUE 0x20
90 #define RAM_SAVE_FLAG_XBZRLE 0x40
91 /* 0x80 is reserved in rdma.h for RAM_SAVE_FLAG_HOOK */
92 #define RAM_SAVE_FLAG_MULTIFD_FLUSH 0x200
93 /* We can't use any flag that is bigger than 0x200 */
94
95 /*
96 * mapped-ram migration supports O_DIRECT, so we need to make sure the
97 * userspace buffer, the IO operation size and the file offset are
98 * aligned according to the underlying device's block size. The first
99 * two are already aligned to page size, but we need to add padding to
100 * the file to align the offset. We cannot read the block size
101 * dynamically because the migration file can be moved between
102 * different systems, so use 1M to cover most block sizes and to keep
103 * the file offset aligned at page size as well.
104 */
105 #define MAPPED_RAM_FILE_OFFSET_ALIGNMENT 0x100000
106
107 /*
108 * When doing mapped-ram migration, this is the amount we read from
109 * the pages region in the migration file at a time.
110 */
111 #define MAPPED_RAM_LOAD_BUF_SIZE 0x100000
112
113 XBZRLECacheStats xbzrle_counters;
114
115 /* used by the search for pages to send */
116 struct PageSearchStatus {
117 /* The migration channel used for a specific host page */
118 QEMUFile *pss_channel;
119 /* Last block from where we have sent data */
120 RAMBlock *last_sent_block;
121 /* Current block being searched */
122 RAMBlock *block;
123 /* Current page to search from */
124 unsigned long page;
125 /* Set once we wrap around */
126 bool complete_round;
127 /* Whether we're sending a host page */
128 bool host_page_sending;
129 /* The start/end of current host page. Invalid if host_page_sending==false */
130 unsigned long host_page_start;
131 unsigned long host_page_end;
132 };
133 typedef struct PageSearchStatus PageSearchStatus;
134
135 /* struct contains XBZRLE cache and a static page
136 used by the compression */
137 static struct {
138 /* buffer used for XBZRLE encoding */
139 uint8_t *encoded_buf;
140 /* buffer for storing page content */
141 uint8_t *current_buf;
142 /* Cache for XBZRLE, Protected by lock. */
143 PageCache *cache;
144 QemuMutex lock;
145 /* it will store a page full of zeros */
146 uint8_t *zero_target_page;
147 /* buffer used for XBZRLE decoding */
148 uint8_t *decoded_buf;
149 } XBZRLE;
150
XBZRLE_cache_lock(void)151 static void XBZRLE_cache_lock(void)
152 {
153 if (migrate_xbzrle()) {
154 qemu_mutex_lock(&XBZRLE.lock);
155 }
156 }
157
XBZRLE_cache_unlock(void)158 static void XBZRLE_cache_unlock(void)
159 {
160 if (migrate_xbzrle()) {
161 qemu_mutex_unlock(&XBZRLE.lock);
162 }
163 }
164
165 /**
166 * xbzrle_cache_resize: resize the xbzrle cache
167 *
168 * This function is called from migrate_params_apply in main
169 * thread, possibly while a migration is in progress. A running
170 * migration may be using the cache and might finish during this call,
171 * hence changes to the cache are protected by XBZRLE.lock().
172 *
173 * Returns 0 for success or -1 for error
174 *
175 * @new_size: new cache size
176 * @errp: set *errp if the check failed, with reason
177 */
xbzrle_cache_resize(uint64_t new_size,Error ** errp)178 int xbzrle_cache_resize(uint64_t new_size, Error **errp)
179 {
180 PageCache *new_cache;
181 int64_t ret = 0;
182
183 /* Check for truncation */
184 if (new_size != (size_t)new_size) {
185 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
186 "exceeding address space");
187 return -1;
188 }
189
190 if (new_size == migrate_xbzrle_cache_size()) {
191 /* nothing to do */
192 return 0;
193 }
194
195 XBZRLE_cache_lock();
196
197 if (XBZRLE.cache != NULL) {
198 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
199 if (!new_cache) {
200 ret = -1;
201 goto out;
202 }
203
204 cache_fini(XBZRLE.cache);
205 XBZRLE.cache = new_cache;
206 }
207 out:
208 XBZRLE_cache_unlock();
209 return ret;
210 }
211
postcopy_preempt_active(void)212 static bool postcopy_preempt_active(void)
213 {
214 return migrate_postcopy_preempt() && migration_in_postcopy();
215 }
216
migrate_ram_is_ignored(RAMBlock * block)217 bool migrate_ram_is_ignored(RAMBlock *block)
218 {
219 return !qemu_ram_is_migratable(block) ||
220 (migrate_ignore_shared() && qemu_ram_is_shared(block)
221 && qemu_ram_is_named_file(block));
222 }
223
224 #undef RAMBLOCK_FOREACH
225
foreach_not_ignored_block(RAMBlockIterFunc func,void * opaque)226 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
227 {
228 RAMBlock *block;
229 int ret = 0;
230
231 RCU_READ_LOCK_GUARD();
232
233 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
234 ret = func(block, opaque);
235 if (ret) {
236 break;
237 }
238 }
239 return ret;
240 }
241
ramblock_recv_map_init(void)242 static void ramblock_recv_map_init(void)
243 {
244 RAMBlock *rb;
245
246 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
247 assert(!rb->receivedmap);
248 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
249 }
250 }
251
ramblock_recv_bitmap_test(RAMBlock * rb,void * host_addr)252 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
253 {
254 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
255 rb->receivedmap);
256 }
257
ramblock_recv_bitmap_test_byte_offset(RAMBlock * rb,uint64_t byte_offset)258 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
259 {
260 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
261 }
262
ramblock_recv_bitmap_set(RAMBlock * rb,void * host_addr)263 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
264 {
265 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
266 }
267
ramblock_recv_bitmap_set_range(RAMBlock * rb,void * host_addr,size_t nr)268 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
269 size_t nr)
270 {
271 bitmap_set_atomic(rb->receivedmap,
272 ramblock_recv_bitmap_offset(host_addr, rb),
273 nr);
274 }
275
ramblock_recv_bitmap_set_offset(RAMBlock * rb,uint64_t byte_offset)276 void ramblock_recv_bitmap_set_offset(RAMBlock *rb, uint64_t byte_offset)
277 {
278 set_bit_atomic(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
279 }
280 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
281
282 /*
283 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
284 *
285 * Returns >0 if success with sent bytes, or <0 if error.
286 */
ramblock_recv_bitmap_send(QEMUFile * file,const char * block_name)287 int64_t ramblock_recv_bitmap_send(QEMUFile *file,
288 const char *block_name)
289 {
290 RAMBlock *block = qemu_ram_block_by_name(block_name);
291 unsigned long *le_bitmap, nbits;
292 uint64_t size;
293
294 if (!block) {
295 error_report("%s: invalid block name: %s", __func__, block_name);
296 return -1;
297 }
298
299 nbits = block->postcopy_length >> TARGET_PAGE_BITS;
300
301 /*
302 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
303 * machines we may need 4 more bytes for padding (see below
304 * comment). So extend it a bit before hand.
305 */
306 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
307
308 /*
309 * Always use little endian when sending the bitmap. This is
310 * required that when source and destination VMs are not using the
311 * same endianness. (Note: big endian won't work.)
312 */
313 bitmap_to_le(le_bitmap, block->receivedmap, nbits);
314
315 /* Size of the bitmap, in bytes */
316 size = DIV_ROUND_UP(nbits, 8);
317
318 /*
319 * size is always aligned to 8 bytes for 64bit machines, but it
320 * may not be true for 32bit machines. We need this padding to
321 * make sure the migration can survive even between 32bit and
322 * 64bit machines.
323 */
324 size = ROUND_UP(size, 8);
325
326 qemu_put_be64(file, size);
327 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
328 g_free(le_bitmap);
329 /*
330 * Mark as an end, in case the middle part is screwed up due to
331 * some "mysterious" reason.
332 */
333 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
334 int ret = qemu_fflush(file);
335 if (ret) {
336 return ret;
337 }
338
339 return size + sizeof(size);
340 }
341
342 /*
343 * An outstanding page request, on the source, having been received
344 * and queued
345 */
346 struct RAMSrcPageRequest {
347 RAMBlock *rb;
348 hwaddr offset;
349 hwaddr len;
350
351 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
352 };
353
354 /* State of RAM for migration */
355 struct RAMState {
356 /*
357 * PageSearchStatus structures for the channels when send pages.
358 * Protected by the bitmap_mutex.
359 */
360 PageSearchStatus pss[RAM_CHANNEL_MAX];
361 /* UFFD file descriptor, used in 'write-tracking' migration */
362 int uffdio_fd;
363 /* total ram size in bytes */
364 uint64_t ram_bytes_total;
365 /* Last block that we have visited searching for dirty pages */
366 RAMBlock *last_seen_block;
367 /* Last dirty target page we have sent */
368 ram_addr_t last_page;
369 /* last ram version we have seen */
370 uint32_t last_version;
371 /* How many times we have dirty too many pages */
372 int dirty_rate_high_cnt;
373 /* these variables are used for bitmap sync */
374 /* last time we did a full bitmap_sync */
375 int64_t time_last_bitmap_sync;
376 /* bytes transferred at start_time */
377 uint64_t bytes_xfer_prev;
378 /* number of dirty pages since start_time */
379 uint64_t num_dirty_pages_period;
380 /* xbzrle misses since the beginning of the period */
381 uint64_t xbzrle_cache_miss_prev;
382 /* Amount of xbzrle pages since the beginning of the period */
383 uint64_t xbzrle_pages_prev;
384 /* Amount of xbzrle encoded bytes since the beginning of the period */
385 uint64_t xbzrle_bytes_prev;
386 /* Are we really using XBZRLE (e.g., after the first round). */
387 bool xbzrle_started;
388 /* Are we on the last stage of migration */
389 bool last_stage;
390
391 /* total handled target pages at the beginning of period */
392 uint64_t target_page_count_prev;
393 /* total handled target pages since start */
394 uint64_t target_page_count;
395 /* number of dirty bits in the bitmap */
396 uint64_t migration_dirty_pages;
397 /*
398 * Protects:
399 * - dirty/clear bitmap
400 * - migration_dirty_pages
401 * - pss structures
402 */
403 QemuMutex bitmap_mutex;
404 /* The RAMBlock used in the last src_page_requests */
405 RAMBlock *last_req_rb;
406 /* Queue of outstanding page requests from the destination */
407 QemuMutex src_page_req_mutex;
408 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
409
410 /*
411 * This is only used when postcopy is in recovery phase, to communicate
412 * between the migration thread and the return path thread on dirty
413 * bitmap synchronizations. This field is unused in other stages of
414 * RAM migration.
415 */
416 unsigned int postcopy_bmap_sync_requested;
417 };
418 typedef struct RAMState RAMState;
419
420 static RAMState *ram_state;
421
422 static NotifierWithReturnList precopy_notifier_list;
423
424 /* Whether postcopy has queued requests? */
postcopy_has_request(RAMState * rs)425 static bool postcopy_has_request(RAMState *rs)
426 {
427 return !QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests);
428 }
429
precopy_infrastructure_init(void)430 void precopy_infrastructure_init(void)
431 {
432 notifier_with_return_list_init(&precopy_notifier_list);
433 }
434
precopy_add_notifier(NotifierWithReturn * n)435 void precopy_add_notifier(NotifierWithReturn *n)
436 {
437 notifier_with_return_list_add(&precopy_notifier_list, n);
438 }
439
precopy_remove_notifier(NotifierWithReturn * n)440 void precopy_remove_notifier(NotifierWithReturn *n)
441 {
442 notifier_with_return_remove(n);
443 }
444
precopy_notify(PrecopyNotifyReason reason,Error ** errp)445 int precopy_notify(PrecopyNotifyReason reason, Error **errp)
446 {
447 PrecopyNotifyData pnd;
448 pnd.reason = reason;
449
450 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd, errp);
451 }
452
ram_bytes_remaining(void)453 uint64_t ram_bytes_remaining(void)
454 {
455 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
456 0;
457 }
458
ram_transferred_add(uint64_t bytes)459 void ram_transferred_add(uint64_t bytes)
460 {
461 if (runstate_is_running()) {
462 stat64_add(&mig_stats.precopy_bytes, bytes);
463 } else if (migration_in_postcopy()) {
464 stat64_add(&mig_stats.postcopy_bytes, bytes);
465 } else {
466 stat64_add(&mig_stats.downtime_bytes, bytes);
467 }
468 }
469
470 struct MigrationOps {
471 int (*ram_save_target_page)(RAMState *rs, PageSearchStatus *pss);
472 };
473 typedef struct MigrationOps MigrationOps;
474
475 MigrationOps *migration_ops;
476
477 static int ram_save_host_page_urgent(PageSearchStatus *pss);
478
479 /* NOTE: page is the PFN not real ram_addr_t. */
pss_init(PageSearchStatus * pss,RAMBlock * rb,ram_addr_t page)480 static void pss_init(PageSearchStatus *pss, RAMBlock *rb, ram_addr_t page)
481 {
482 pss->block = rb;
483 pss->page = page;
484 pss->complete_round = false;
485 }
486
487 /*
488 * Check whether two PSSs are actively sending the same page. Return true
489 * if it is, false otherwise.
490 */
pss_overlap(PageSearchStatus * pss1,PageSearchStatus * pss2)491 static bool pss_overlap(PageSearchStatus *pss1, PageSearchStatus *pss2)
492 {
493 return pss1->host_page_sending && pss2->host_page_sending &&
494 (pss1->host_page_start == pss2->host_page_start);
495 }
496
497 /**
498 * save_page_header: write page header to wire
499 *
500 * If this is the 1st block, it also writes the block identification
501 *
502 * Returns the number of bytes written
503 *
504 * @pss: current PSS channel status
505 * @block: block that contains the page we want to send
506 * @offset: offset inside the block for the page
507 * in the lower bits, it contains flags
508 */
save_page_header(PageSearchStatus * pss,QEMUFile * f,RAMBlock * block,ram_addr_t offset)509 static size_t save_page_header(PageSearchStatus *pss, QEMUFile *f,
510 RAMBlock *block, ram_addr_t offset)
511 {
512 size_t size, len;
513 bool same_block = (block == pss->last_sent_block);
514
515 if (same_block) {
516 offset |= RAM_SAVE_FLAG_CONTINUE;
517 }
518 qemu_put_be64(f, offset);
519 size = 8;
520
521 if (!same_block) {
522 len = strlen(block->idstr);
523 qemu_put_byte(f, len);
524 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
525 size += 1 + len;
526 pss->last_sent_block = block;
527 }
528 return size;
529 }
530
531 /**
532 * mig_throttle_guest_down: throttle down the guest
533 *
534 * Reduce amount of guest cpu execution to hopefully slow down memory
535 * writes. If guest dirty memory rate is reduced below the rate at
536 * which we can transfer pages to the destination then we should be
537 * able to complete migration. Some workloads dirty memory way too
538 * fast and will not effectively converge, even with auto-converge.
539 */
mig_throttle_guest_down(uint64_t bytes_dirty_period,uint64_t bytes_dirty_threshold)540 static void mig_throttle_guest_down(uint64_t bytes_dirty_period,
541 uint64_t bytes_dirty_threshold)
542 {
543 uint64_t pct_initial = migrate_cpu_throttle_initial();
544 uint64_t pct_increment = migrate_cpu_throttle_increment();
545 bool pct_tailslow = migrate_cpu_throttle_tailslow();
546 int pct_max = migrate_max_cpu_throttle();
547
548 uint64_t throttle_now = cpu_throttle_get_percentage();
549 uint64_t cpu_now, cpu_ideal, throttle_inc;
550
551 /* We have not started throttling yet. Let's start it. */
552 if (!cpu_throttle_active()) {
553 cpu_throttle_set(pct_initial);
554 } else {
555 /* Throttling already on, just increase the rate */
556 if (!pct_tailslow) {
557 throttle_inc = pct_increment;
558 } else {
559 /* Compute the ideal CPU percentage used by Guest, which may
560 * make the dirty rate match the dirty rate threshold. */
561 cpu_now = 100 - throttle_now;
562 cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 /
563 bytes_dirty_period);
564 throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment);
565 }
566 cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max));
567 }
568 }
569
mig_throttle_counter_reset(void)570 void mig_throttle_counter_reset(void)
571 {
572 RAMState *rs = ram_state;
573
574 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
575 rs->num_dirty_pages_period = 0;
576 rs->bytes_xfer_prev = migration_transferred_bytes();
577 }
578
579 /**
580 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
581 *
582 * @current_addr: address for the zero page
583 *
584 * Update the xbzrle cache to reflect a page that's been sent as all 0.
585 * The important thing is that a stale (not-yet-0'd) page be replaced
586 * by the new data.
587 * As a bonus, if the page wasn't in the cache it gets added so that
588 * when a small write is made into the 0'd page it gets XBZRLE sent.
589 */
xbzrle_cache_zero_page(ram_addr_t current_addr)590 static void xbzrle_cache_zero_page(ram_addr_t current_addr)
591 {
592 /* We don't care if this fails to allocate a new cache page
593 * as long as it updated an old one */
594 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
595 stat64_get(&mig_stats.dirty_sync_count));
596 }
597
598 #define ENCODING_FLAG_XBZRLE 0x1
599
600 /**
601 * save_xbzrle_page: compress and send current page
602 *
603 * Returns: 1 means that we wrote the page
604 * 0 means that page is identical to the one already sent
605 * -1 means that xbzrle would be longer than normal
606 *
607 * @rs: current RAM state
608 * @pss: current PSS channel
609 * @current_data: pointer to the address of the page contents
610 * @current_addr: addr of the page
611 * @block: block that contains the page we want to send
612 * @offset: offset inside the block for the page
613 */
save_xbzrle_page(RAMState * rs,PageSearchStatus * pss,uint8_t ** current_data,ram_addr_t current_addr,RAMBlock * block,ram_addr_t offset)614 static int save_xbzrle_page(RAMState *rs, PageSearchStatus *pss,
615 uint8_t **current_data, ram_addr_t current_addr,
616 RAMBlock *block, ram_addr_t offset)
617 {
618 int encoded_len = 0, bytes_xbzrle;
619 uint8_t *prev_cached_page;
620 QEMUFile *file = pss->pss_channel;
621 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count);
622
623 if (!cache_is_cached(XBZRLE.cache, current_addr, generation)) {
624 xbzrle_counters.cache_miss++;
625 if (!rs->last_stage) {
626 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
627 generation) == -1) {
628 return -1;
629 } else {
630 /* update *current_data when the page has been
631 inserted into cache */
632 *current_data = get_cached_data(XBZRLE.cache, current_addr);
633 }
634 }
635 return -1;
636 }
637
638 /*
639 * Reaching here means the page has hit the xbzrle cache, no matter what
640 * encoding result it is (normal encoding, overflow or skipping the page),
641 * count the page as encoded. This is used to calculate the encoding rate.
642 *
643 * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB,
644 * 2nd page turns out to be skipped (i.e. no new bytes written to the
645 * page), the overall encoding rate will be 8KB / 2KB = 4, which has the
646 * skipped page included. In this way, the encoding rate can tell if the
647 * guest page is good for xbzrle encoding.
648 */
649 xbzrle_counters.pages++;
650 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
651
652 /* save current buffer into memory */
653 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
654
655 /* XBZRLE encoding (if there is no overflow) */
656 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
657 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
658 TARGET_PAGE_SIZE);
659
660 /*
661 * Update the cache contents, so that it corresponds to the data
662 * sent, in all cases except where we skip the page.
663 */
664 if (!rs->last_stage && encoded_len != 0) {
665 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
666 /*
667 * In the case where we couldn't compress, ensure that the caller
668 * sends the data from the cache, since the guest might have
669 * changed the RAM since we copied it.
670 */
671 *current_data = prev_cached_page;
672 }
673
674 if (encoded_len == 0) {
675 trace_save_xbzrle_page_skipping();
676 return 0;
677 } else if (encoded_len == -1) {
678 trace_save_xbzrle_page_overflow();
679 xbzrle_counters.overflow++;
680 xbzrle_counters.bytes += TARGET_PAGE_SIZE;
681 return -1;
682 }
683
684 /* Send XBZRLE based compressed page */
685 bytes_xbzrle = save_page_header(pss, pss->pss_channel, block,
686 offset | RAM_SAVE_FLAG_XBZRLE);
687 qemu_put_byte(file, ENCODING_FLAG_XBZRLE);
688 qemu_put_be16(file, encoded_len);
689 qemu_put_buffer(file, XBZRLE.encoded_buf, encoded_len);
690 bytes_xbzrle += encoded_len + 1 + 2;
691 /*
692 * The xbzrle encoded bytes don't count the 8 byte header with
693 * RAM_SAVE_FLAG_CONTINUE.
694 */
695 xbzrle_counters.bytes += bytes_xbzrle - 8;
696 ram_transferred_add(bytes_xbzrle);
697
698 return 1;
699 }
700
701 /**
702 * pss_find_next_dirty: find the next dirty page of current ramblock
703 *
704 * This function updates pss->page to point to the next dirty page index
705 * within the ramblock to migrate, or the end of ramblock when nothing
706 * found. Note that when pss->host_page_sending==true it means we're
707 * during sending a host page, so we won't look for dirty page that is
708 * outside the host page boundary.
709 *
710 * @pss: the current page search status
711 */
pss_find_next_dirty(PageSearchStatus * pss)712 static void pss_find_next_dirty(PageSearchStatus *pss)
713 {
714 RAMBlock *rb = pss->block;
715 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
716 unsigned long *bitmap = rb->bmap;
717
718 if (migrate_ram_is_ignored(rb)) {
719 /* Points directly to the end, so we know no dirty page */
720 pss->page = size;
721 return;
722 }
723
724 /*
725 * If during sending a host page, only look for dirty pages within the
726 * current host page being send.
727 */
728 if (pss->host_page_sending) {
729 assert(pss->host_page_end);
730 size = MIN(size, pss->host_page_end);
731 }
732
733 pss->page = find_next_bit(bitmap, size, pss->page);
734 }
735
migration_clear_memory_region_dirty_bitmap(RAMBlock * rb,unsigned long page)736 static void migration_clear_memory_region_dirty_bitmap(RAMBlock *rb,
737 unsigned long page)
738 {
739 uint8_t shift;
740 hwaddr size, start;
741
742 if (!rb->clear_bmap || !clear_bmap_test_and_clear(rb, page)) {
743 return;
744 }
745
746 shift = rb->clear_bmap_shift;
747 /*
748 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
749 * can make things easier sometimes since then start address
750 * of the small chunk will always be 64 pages aligned so the
751 * bitmap will always be aligned to unsigned long. We should
752 * even be able to remove this restriction but I'm simply
753 * keeping it.
754 */
755 assert(shift >= 6);
756
757 size = 1ULL << (TARGET_PAGE_BITS + shift);
758 start = QEMU_ALIGN_DOWN((ram_addr_t)page << TARGET_PAGE_BITS, size);
759 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
760 memory_region_clear_dirty_bitmap(rb->mr, start, size);
761 }
762
763 static void
migration_clear_memory_region_dirty_bitmap_range(RAMBlock * rb,unsigned long start,unsigned long npages)764 migration_clear_memory_region_dirty_bitmap_range(RAMBlock *rb,
765 unsigned long start,
766 unsigned long npages)
767 {
768 unsigned long i, chunk_pages = 1UL << rb->clear_bmap_shift;
769 unsigned long chunk_start = QEMU_ALIGN_DOWN(start, chunk_pages);
770 unsigned long chunk_end = QEMU_ALIGN_UP(start + npages, chunk_pages);
771
772 /*
773 * Clear pages from start to start + npages - 1, so the end boundary is
774 * exclusive.
775 */
776 for (i = chunk_start; i < chunk_end; i += chunk_pages) {
777 migration_clear_memory_region_dirty_bitmap(rb, i);
778 }
779 }
780
781 /*
782 * colo_bitmap_find_diry:find contiguous dirty pages from start
783 *
784 * Returns the page offset within memory region of the start of the contiguout
785 * dirty page
786 *
787 * @rs: current RAM state
788 * @rb: RAMBlock where to search for dirty pages
789 * @start: page where we start the search
790 * @num: the number of contiguous dirty pages
791 */
792 static inline
colo_bitmap_find_dirty(RAMState * rs,RAMBlock * rb,unsigned long start,unsigned long * num)793 unsigned long colo_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
794 unsigned long start, unsigned long *num)
795 {
796 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
797 unsigned long *bitmap = rb->bmap;
798 unsigned long first, next;
799
800 *num = 0;
801
802 if (migrate_ram_is_ignored(rb)) {
803 return size;
804 }
805
806 first = find_next_bit(bitmap, size, start);
807 if (first >= size) {
808 return first;
809 }
810 next = find_next_zero_bit(bitmap, size, first + 1);
811 assert(next >= first);
812 *num = next - first;
813 return first;
814 }
815
migration_bitmap_clear_dirty(RAMState * rs,RAMBlock * rb,unsigned long page)816 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
817 RAMBlock *rb,
818 unsigned long page)
819 {
820 bool ret;
821
822 /*
823 * Clear dirty bitmap if needed. This _must_ be called before we
824 * send any of the page in the chunk because we need to make sure
825 * we can capture further page content changes when we sync dirty
826 * log the next time. So as long as we are going to send any of
827 * the page in the chunk we clear the remote dirty bitmap for all.
828 * Clearing it earlier won't be a problem, but too late will.
829 */
830 migration_clear_memory_region_dirty_bitmap(rb, page);
831
832 ret = test_and_clear_bit(page, rb->bmap);
833 if (ret) {
834 rs->migration_dirty_pages--;
835 }
836
837 return ret;
838 }
839
dirty_bitmap_clear_section(MemoryRegionSection * section,void * opaque)840 static void dirty_bitmap_clear_section(MemoryRegionSection *section,
841 void *opaque)
842 {
843 const hwaddr offset = section->offset_within_region;
844 const hwaddr size = int128_get64(section->size);
845 const unsigned long start = offset >> TARGET_PAGE_BITS;
846 const unsigned long npages = size >> TARGET_PAGE_BITS;
847 RAMBlock *rb = section->mr->ram_block;
848 uint64_t *cleared_bits = opaque;
849
850 /*
851 * We don't grab ram_state->bitmap_mutex because we expect to run
852 * only when starting migration or during postcopy recovery where
853 * we don't have concurrent access.
854 */
855 if (!migration_in_postcopy() && !migrate_background_snapshot()) {
856 migration_clear_memory_region_dirty_bitmap_range(rb, start, npages);
857 }
858 *cleared_bits += bitmap_count_one_with_offset(rb->bmap, start, npages);
859 bitmap_clear(rb->bmap, start, npages);
860 }
861
862 /*
863 * Exclude all dirty pages from migration that fall into a discarded range as
864 * managed by a RamDiscardManager responsible for the mapped memory region of
865 * the RAMBlock. Clear the corresponding bits in the dirty bitmaps.
866 *
867 * Discarded pages ("logically unplugged") have undefined content and must
868 * not get migrated, because even reading these pages for migration might
869 * result in undesired behavior.
870 *
871 * Returns the number of cleared bits in the RAMBlock dirty bitmap.
872 *
873 * Note: The result is only stable while migrating (precopy/postcopy).
874 */
ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock * rb)875 static uint64_t ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock *rb)
876 {
877 uint64_t cleared_bits = 0;
878
879 if (rb->mr && rb->bmap && memory_region_has_ram_discard_manager(rb->mr)) {
880 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
881 MemoryRegionSection section = {
882 .mr = rb->mr,
883 .offset_within_region = 0,
884 .size = int128_make64(qemu_ram_get_used_length(rb)),
885 };
886
887 ram_discard_manager_replay_discarded(rdm, §ion,
888 dirty_bitmap_clear_section,
889 &cleared_bits);
890 }
891 return cleared_bits;
892 }
893
894 /*
895 * Check if a host-page aligned page falls into a discarded range as managed by
896 * a RamDiscardManager responsible for the mapped memory region of the RAMBlock.
897 *
898 * Note: The result is only stable while migrating (precopy/postcopy).
899 */
ramblock_page_is_discarded(RAMBlock * rb,ram_addr_t start)900 bool ramblock_page_is_discarded(RAMBlock *rb, ram_addr_t start)
901 {
902 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
903 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
904 MemoryRegionSection section = {
905 .mr = rb->mr,
906 .offset_within_region = start,
907 .size = int128_make64(qemu_ram_pagesize(rb)),
908 };
909
910 return !ram_discard_manager_is_populated(rdm, §ion);
911 }
912 return false;
913 }
914
915 /* Called with RCU critical section */
ramblock_sync_dirty_bitmap(RAMState * rs,RAMBlock * rb)916 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb)
917 {
918 uint64_t new_dirty_pages =
919 cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length);
920
921 rs->migration_dirty_pages += new_dirty_pages;
922 rs->num_dirty_pages_period += new_dirty_pages;
923 }
924
925 /**
926 * ram_pagesize_summary: calculate all the pagesizes of a VM
927 *
928 * Returns a summary bitmap of the page sizes of all RAMBlocks
929 *
930 * For VMs with just normal pages this is equivalent to the host page
931 * size. If it's got some huge pages then it's the OR of all the
932 * different page sizes.
933 */
ram_pagesize_summary(void)934 uint64_t ram_pagesize_summary(void)
935 {
936 RAMBlock *block;
937 uint64_t summary = 0;
938
939 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
940 summary |= block->page_size;
941 }
942
943 return summary;
944 }
945
ram_get_total_transferred_pages(void)946 uint64_t ram_get_total_transferred_pages(void)
947 {
948 return stat64_get(&mig_stats.normal_pages) +
949 stat64_get(&mig_stats.zero_pages) +
950 xbzrle_counters.pages;
951 }
952
migration_update_rates(RAMState * rs,int64_t end_time)953 static void migration_update_rates(RAMState *rs, int64_t end_time)
954 {
955 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
956
957 /* calculate period counters */
958 stat64_set(&mig_stats.dirty_pages_rate,
959 rs->num_dirty_pages_period * 1000 /
960 (end_time - rs->time_last_bitmap_sync));
961
962 if (!page_count) {
963 return;
964 }
965
966 if (migrate_xbzrle()) {
967 double encoded_size, unencoded_size;
968
969 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
970 rs->xbzrle_cache_miss_prev) / page_count;
971 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
972 unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) *
973 TARGET_PAGE_SIZE;
974 encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev;
975 if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) {
976 xbzrle_counters.encoding_rate = 0;
977 } else {
978 xbzrle_counters.encoding_rate = unencoded_size / encoded_size;
979 }
980 rs->xbzrle_pages_prev = xbzrle_counters.pages;
981 rs->xbzrle_bytes_prev = xbzrle_counters.bytes;
982 }
983 }
984
985 /*
986 * Enable dirty-limit to throttle down the guest
987 */
migration_dirty_limit_guest(void)988 static void migration_dirty_limit_guest(void)
989 {
990 /*
991 * dirty page rate quota for all vCPUs fetched from
992 * migration parameter 'vcpu_dirty_limit'
993 */
994 static int64_t quota_dirtyrate;
995 MigrationState *s = migrate_get_current();
996
997 /*
998 * If dirty limit already enabled and migration parameter
999 * vcpu-dirty-limit untouched.
1000 */
1001 if (dirtylimit_in_service() &&
1002 quota_dirtyrate == s->parameters.vcpu_dirty_limit) {
1003 return;
1004 }
1005
1006 quota_dirtyrate = s->parameters.vcpu_dirty_limit;
1007
1008 /*
1009 * Set all vCPU a quota dirtyrate, note that the second
1010 * parameter will be ignored if setting all vCPU for the vm
1011 */
1012 qmp_set_vcpu_dirty_limit(false, -1, quota_dirtyrate, NULL);
1013 trace_migration_dirty_limit_guest(quota_dirtyrate);
1014 }
1015
migration_trigger_throttle(RAMState * rs)1016 static void migration_trigger_throttle(RAMState *rs)
1017 {
1018 uint64_t threshold = migrate_throttle_trigger_threshold();
1019 uint64_t bytes_xfer_period =
1020 migration_transferred_bytes() - rs->bytes_xfer_prev;
1021 uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE;
1022 uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100;
1023
1024 /*
1025 * The following detection logic can be refined later. For now:
1026 * Check to see if the ratio between dirtied bytes and the approx.
1027 * amount of bytes that just got transferred since the last time
1028 * we were in this routine reaches the threshold. If that happens
1029 * twice, start or increase throttling.
1030 */
1031 if ((bytes_dirty_period > bytes_dirty_threshold) &&
1032 (++rs->dirty_rate_high_cnt >= 2)) {
1033 rs->dirty_rate_high_cnt = 0;
1034 if (migrate_auto_converge()) {
1035 trace_migration_throttle();
1036 mig_throttle_guest_down(bytes_dirty_period,
1037 bytes_dirty_threshold);
1038 } else if (migrate_dirty_limit()) {
1039 migration_dirty_limit_guest();
1040 }
1041 }
1042 }
1043
migration_bitmap_sync(RAMState * rs,bool last_stage)1044 static void migration_bitmap_sync(RAMState *rs, bool last_stage)
1045 {
1046 RAMBlock *block;
1047 int64_t end_time;
1048
1049 stat64_add(&mig_stats.dirty_sync_count, 1);
1050
1051 if (!rs->time_last_bitmap_sync) {
1052 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1053 }
1054
1055 trace_migration_bitmap_sync_start();
1056 memory_global_dirty_log_sync(last_stage);
1057
1058 WITH_QEMU_LOCK_GUARD(&rs->bitmap_mutex) {
1059 WITH_RCU_READ_LOCK_GUARD() {
1060 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1061 ramblock_sync_dirty_bitmap(rs, block);
1062 }
1063 stat64_set(&mig_stats.dirty_bytes_last_sync, ram_bytes_remaining());
1064 }
1065 }
1066
1067 memory_global_after_dirty_log_sync();
1068 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1069
1070 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1071
1072 /* more than 1 second = 1000 millisecons */
1073 if (end_time > rs->time_last_bitmap_sync + 1000) {
1074 migration_trigger_throttle(rs);
1075
1076 migration_update_rates(rs, end_time);
1077
1078 rs->target_page_count_prev = rs->target_page_count;
1079
1080 /* reset period counters */
1081 rs->time_last_bitmap_sync = end_time;
1082 rs->num_dirty_pages_period = 0;
1083 rs->bytes_xfer_prev = migration_transferred_bytes();
1084 }
1085 if (migrate_events()) {
1086 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count);
1087 qapi_event_send_migration_pass(generation);
1088 }
1089 }
1090
migration_bitmap_sync_precopy(bool last_stage)1091 void migration_bitmap_sync_precopy(bool last_stage)
1092 {
1093 Error *local_err = NULL;
1094 assert(ram_state);
1095
1096 /*
1097 * The current notifier usage is just an optimization to migration, so we
1098 * don't stop the normal migration process in the error case.
1099 */
1100 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1101 error_report_err(local_err);
1102 local_err = NULL;
1103 }
1104
1105 migration_bitmap_sync(ram_state, last_stage);
1106
1107 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1108 error_report_err(local_err);
1109 }
1110 }
1111
ram_release_page(const char * rbname,uint64_t offset)1112 void ram_release_page(const char *rbname, uint64_t offset)
1113 {
1114 if (!migrate_release_ram() || !migration_in_postcopy()) {
1115 return;
1116 }
1117
1118 ram_discard_range(rbname, offset, TARGET_PAGE_SIZE);
1119 }
1120
1121 /**
1122 * save_zero_page: send the zero page to the stream
1123 *
1124 * Returns the number of pages written.
1125 *
1126 * @rs: current RAM state
1127 * @pss: current PSS channel
1128 * @offset: offset inside the block for the page
1129 */
save_zero_page(RAMState * rs,PageSearchStatus * pss,ram_addr_t offset)1130 static int save_zero_page(RAMState *rs, PageSearchStatus *pss,
1131 ram_addr_t offset)
1132 {
1133 uint8_t *p = pss->block->host + offset;
1134 QEMUFile *file = pss->pss_channel;
1135 int len = 0;
1136
1137 if (migrate_zero_page_detection() == ZERO_PAGE_DETECTION_NONE) {
1138 return 0;
1139 }
1140
1141 if (!buffer_is_zero(p, TARGET_PAGE_SIZE)) {
1142 return 0;
1143 }
1144
1145 stat64_add(&mig_stats.zero_pages, 1);
1146
1147 if (migrate_mapped_ram()) {
1148 /* zero pages are not transferred with mapped-ram */
1149 clear_bit_atomic(offset >> TARGET_PAGE_BITS, pss->block->file_bmap);
1150 return 1;
1151 }
1152
1153 len += save_page_header(pss, file, pss->block, offset | RAM_SAVE_FLAG_ZERO);
1154 qemu_put_byte(file, 0);
1155 len += 1;
1156 ram_release_page(pss->block->idstr, offset);
1157 ram_transferred_add(len);
1158
1159 /*
1160 * Must let xbzrle know, otherwise a previous (now 0'd) cached
1161 * page would be stale.
1162 */
1163 if (rs->xbzrle_started) {
1164 XBZRLE_cache_lock();
1165 xbzrle_cache_zero_page(pss->block->offset + offset);
1166 XBZRLE_cache_unlock();
1167 }
1168
1169 return len;
1170 }
1171
1172 /*
1173 * @pages: the number of pages written by the control path,
1174 * < 0 - error
1175 * > 0 - number of pages written
1176 *
1177 * Return true if the pages has been saved, otherwise false is returned.
1178 */
control_save_page(PageSearchStatus * pss,ram_addr_t offset,int * pages)1179 static bool control_save_page(PageSearchStatus *pss,
1180 ram_addr_t offset, int *pages)
1181 {
1182 int ret;
1183
1184 ret = rdma_control_save_page(pss->pss_channel, pss->block->offset, offset,
1185 TARGET_PAGE_SIZE);
1186 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1187 return false;
1188 }
1189
1190 if (ret == RAM_SAVE_CONTROL_DELAYED) {
1191 *pages = 1;
1192 return true;
1193 }
1194 *pages = ret;
1195 return true;
1196 }
1197
1198 /*
1199 * directly send the page to the stream
1200 *
1201 * Returns the number of pages written.
1202 *
1203 * @pss: current PSS channel
1204 * @block: block that contains the page we want to send
1205 * @offset: offset inside the block for the page
1206 * @buf: the page to be sent
1207 * @async: send to page asyncly
1208 */
save_normal_page(PageSearchStatus * pss,RAMBlock * block,ram_addr_t offset,uint8_t * buf,bool async)1209 static int save_normal_page(PageSearchStatus *pss, RAMBlock *block,
1210 ram_addr_t offset, uint8_t *buf, bool async)
1211 {
1212 QEMUFile *file = pss->pss_channel;
1213
1214 if (migrate_mapped_ram()) {
1215 qemu_put_buffer_at(file, buf, TARGET_PAGE_SIZE,
1216 block->pages_offset + offset);
1217 set_bit(offset >> TARGET_PAGE_BITS, block->file_bmap);
1218 } else {
1219 ram_transferred_add(save_page_header(pss, pss->pss_channel, block,
1220 offset | RAM_SAVE_FLAG_PAGE));
1221 if (async) {
1222 qemu_put_buffer_async(file, buf, TARGET_PAGE_SIZE,
1223 migrate_release_ram() &&
1224 migration_in_postcopy());
1225 } else {
1226 qemu_put_buffer(file, buf, TARGET_PAGE_SIZE);
1227 }
1228 }
1229 ram_transferred_add(TARGET_PAGE_SIZE);
1230 stat64_add(&mig_stats.normal_pages, 1);
1231 return 1;
1232 }
1233
1234 /**
1235 * ram_save_page: send the given page to the stream
1236 *
1237 * Returns the number of pages written.
1238 * < 0 - error
1239 * >=0 - Number of pages written - this might legally be 0
1240 * if xbzrle noticed the page was the same.
1241 *
1242 * @rs: current RAM state
1243 * @block: block that contains the page we want to send
1244 * @offset: offset inside the block for the page
1245 */
ram_save_page(RAMState * rs,PageSearchStatus * pss)1246 static int ram_save_page(RAMState *rs, PageSearchStatus *pss)
1247 {
1248 int pages = -1;
1249 uint8_t *p;
1250 bool send_async = true;
1251 RAMBlock *block = pss->block;
1252 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
1253 ram_addr_t current_addr = block->offset + offset;
1254
1255 p = block->host + offset;
1256 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
1257
1258 XBZRLE_cache_lock();
1259 if (rs->xbzrle_started && !migration_in_postcopy()) {
1260 pages = save_xbzrle_page(rs, pss, &p, current_addr,
1261 block, offset);
1262 if (!rs->last_stage) {
1263 /* Can't send this cached data async, since the cache page
1264 * might get updated before it gets to the wire
1265 */
1266 send_async = false;
1267 }
1268 }
1269
1270 /* XBZRLE overflow or normal page */
1271 if (pages == -1) {
1272 pages = save_normal_page(pss, block, offset, p, send_async);
1273 }
1274
1275 XBZRLE_cache_unlock();
1276
1277 return pages;
1278 }
1279
ram_save_multifd_page(RAMBlock * block,ram_addr_t offset)1280 static int ram_save_multifd_page(RAMBlock *block, ram_addr_t offset)
1281 {
1282 if (!multifd_queue_page(block, offset)) {
1283 return -1;
1284 }
1285
1286 return 1;
1287 }
1288
1289
1290 #define PAGE_ALL_CLEAN 0
1291 #define PAGE_TRY_AGAIN 1
1292 #define PAGE_DIRTY_FOUND 2
1293 /**
1294 * find_dirty_block: find the next dirty page and update any state
1295 * associated with the search process.
1296 *
1297 * Returns:
1298 * <0: An error happened
1299 * PAGE_ALL_CLEAN: no dirty page found, give up
1300 * PAGE_TRY_AGAIN: no dirty page found, retry for next block
1301 * PAGE_DIRTY_FOUND: dirty page found
1302 *
1303 * @rs: current RAM state
1304 * @pss: data about the state of the current dirty page scan
1305 * @again: set to false if the search has scanned the whole of RAM
1306 */
find_dirty_block(RAMState * rs,PageSearchStatus * pss)1307 static int find_dirty_block(RAMState *rs, PageSearchStatus *pss)
1308 {
1309 /* Update pss->page for the next dirty bit in ramblock */
1310 pss_find_next_dirty(pss);
1311
1312 if (pss->complete_round && pss->block == rs->last_seen_block &&
1313 pss->page >= rs->last_page) {
1314 /*
1315 * We've been once around the RAM and haven't found anything.
1316 * Give up.
1317 */
1318 return PAGE_ALL_CLEAN;
1319 }
1320 if (!offset_in_ramblock(pss->block,
1321 ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)) {
1322 /* Didn't find anything in this RAM Block */
1323 pss->page = 0;
1324 pss->block = QLIST_NEXT_RCU(pss->block, next);
1325 if (!pss->block) {
1326 if (migrate_multifd() &&
1327 (!migrate_multifd_flush_after_each_section() ||
1328 migrate_mapped_ram())) {
1329 QEMUFile *f = rs->pss[RAM_CHANNEL_PRECOPY].pss_channel;
1330 int ret = multifd_ram_flush_and_sync();
1331 if (ret < 0) {
1332 return ret;
1333 }
1334
1335 if (!migrate_mapped_ram()) {
1336 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
1337 qemu_fflush(f);
1338 }
1339 }
1340
1341 /* Hit the end of the list */
1342 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
1343 /* Flag that we've looped */
1344 pss->complete_round = true;
1345 /* After the first round, enable XBZRLE. */
1346 if (migrate_xbzrle()) {
1347 rs->xbzrle_started = true;
1348 }
1349 }
1350 /* Didn't find anything this time, but try again on the new block */
1351 return PAGE_TRY_AGAIN;
1352 } else {
1353 /* We've found something */
1354 return PAGE_DIRTY_FOUND;
1355 }
1356 }
1357
1358 /**
1359 * unqueue_page: gets a page of the queue
1360 *
1361 * Helper for 'get_queued_page' - gets a page off the queue
1362 *
1363 * Returns the block of the page (or NULL if none available)
1364 *
1365 * @rs: current RAM state
1366 * @offset: used to return the offset within the RAMBlock
1367 */
unqueue_page(RAMState * rs,ram_addr_t * offset)1368 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
1369 {
1370 struct RAMSrcPageRequest *entry;
1371 RAMBlock *block = NULL;
1372
1373 if (!postcopy_has_request(rs)) {
1374 return NULL;
1375 }
1376
1377 QEMU_LOCK_GUARD(&rs->src_page_req_mutex);
1378
1379 /*
1380 * This should _never_ change even after we take the lock, because no one
1381 * should be taking anything off the request list other than us.
1382 */
1383 assert(postcopy_has_request(rs));
1384
1385 entry = QSIMPLEQ_FIRST(&rs->src_page_requests);
1386 block = entry->rb;
1387 *offset = entry->offset;
1388
1389 if (entry->len > TARGET_PAGE_SIZE) {
1390 entry->len -= TARGET_PAGE_SIZE;
1391 entry->offset += TARGET_PAGE_SIZE;
1392 } else {
1393 memory_region_unref(block->mr);
1394 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1395 g_free(entry);
1396 migration_consume_urgent_request();
1397 }
1398
1399 return block;
1400 }
1401
1402 #if defined(__linux__)
1403 /**
1404 * poll_fault_page: try to get next UFFD write fault page and, if pending fault
1405 * is found, return RAM block pointer and page offset
1406 *
1407 * Returns pointer to the RAMBlock containing faulting page,
1408 * NULL if no write faults are pending
1409 *
1410 * @rs: current RAM state
1411 * @offset: page offset from the beginning of the block
1412 */
poll_fault_page(RAMState * rs,ram_addr_t * offset)1413 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1414 {
1415 struct uffd_msg uffd_msg;
1416 void *page_address;
1417 RAMBlock *block;
1418 int res;
1419
1420 if (!migrate_background_snapshot()) {
1421 return NULL;
1422 }
1423
1424 res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1);
1425 if (res <= 0) {
1426 return NULL;
1427 }
1428
1429 page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address;
1430 block = qemu_ram_block_from_host(page_address, false, offset);
1431 assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0);
1432 return block;
1433 }
1434
1435 /**
1436 * ram_save_release_protection: release UFFD write protection after
1437 * a range of pages has been saved
1438 *
1439 * @rs: current RAM state
1440 * @pss: page-search-status structure
1441 * @start_page: index of the first page in the range relative to pss->block
1442 *
1443 * Returns 0 on success, negative value in case of an error
1444 */
ram_save_release_protection(RAMState * rs,PageSearchStatus * pss,unsigned long start_page)1445 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1446 unsigned long start_page)
1447 {
1448 int res = 0;
1449
1450 /* Check if page is from UFFD-managed region. */
1451 if (pss->block->flags & RAM_UF_WRITEPROTECT) {
1452 void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS);
1453 uint64_t run_length = (pss->page - start_page) << TARGET_PAGE_BITS;
1454
1455 /* Flush async buffers before un-protect. */
1456 qemu_fflush(pss->pss_channel);
1457 /* Un-protect memory range. */
1458 res = uffd_change_protection(rs->uffdio_fd, page_address, run_length,
1459 false, false);
1460 }
1461
1462 return res;
1463 }
1464
1465 /* ram_write_tracking_available: check if kernel supports required UFFD features
1466 *
1467 * Returns true if supports, false otherwise
1468 */
ram_write_tracking_available(void)1469 bool ram_write_tracking_available(void)
1470 {
1471 uint64_t uffd_features;
1472 int res;
1473
1474 res = uffd_query_features(&uffd_features);
1475 return (res == 0 &&
1476 (uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0);
1477 }
1478
1479 /* ram_write_tracking_compatible: check if guest configuration is
1480 * compatible with 'write-tracking'
1481 *
1482 * Returns true if compatible, false otherwise
1483 */
ram_write_tracking_compatible(void)1484 bool ram_write_tracking_compatible(void)
1485 {
1486 const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT);
1487 int uffd_fd;
1488 RAMBlock *block;
1489 bool ret = false;
1490
1491 /* Open UFFD file descriptor */
1492 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false);
1493 if (uffd_fd < 0) {
1494 return false;
1495 }
1496
1497 RCU_READ_LOCK_GUARD();
1498
1499 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1500 uint64_t uffd_ioctls;
1501
1502 /* Nothing to do with read-only and MMIO-writable regions */
1503 if (block->mr->readonly || block->mr->rom_device) {
1504 continue;
1505 }
1506 /* Try to register block memory via UFFD-IO to track writes */
1507 if (uffd_register_memory(uffd_fd, block->host, block->max_length,
1508 UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) {
1509 goto out;
1510 }
1511 if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) {
1512 goto out;
1513 }
1514 }
1515 ret = true;
1516
1517 out:
1518 uffd_close_fd(uffd_fd);
1519 return ret;
1520 }
1521
populate_read_range(RAMBlock * block,ram_addr_t offset,ram_addr_t size)1522 static inline void populate_read_range(RAMBlock *block, ram_addr_t offset,
1523 ram_addr_t size)
1524 {
1525 const ram_addr_t end = offset + size;
1526
1527 /*
1528 * We read one byte of each page; this will preallocate page tables if
1529 * required and populate the shared zeropage on MAP_PRIVATE anonymous memory
1530 * where no page was populated yet. This might require adaption when
1531 * supporting other mappings, like shmem.
1532 */
1533 for (; offset < end; offset += block->page_size) {
1534 char tmp = *((char *)block->host + offset);
1535
1536 /* Don't optimize the read out */
1537 asm volatile("" : "+r" (tmp));
1538 }
1539 }
1540
populate_read_section(MemoryRegionSection * section,void * opaque)1541 static inline int populate_read_section(MemoryRegionSection *section,
1542 void *opaque)
1543 {
1544 const hwaddr size = int128_get64(section->size);
1545 hwaddr offset = section->offset_within_region;
1546 RAMBlock *block = section->mr->ram_block;
1547
1548 populate_read_range(block, offset, size);
1549 return 0;
1550 }
1551
1552 /*
1553 * ram_block_populate_read: preallocate page tables and populate pages in the
1554 * RAM block by reading a byte of each page.
1555 *
1556 * Since it's solely used for userfault_fd WP feature, here we just
1557 * hardcode page size to qemu_real_host_page_size.
1558 *
1559 * @block: RAM block to populate
1560 */
ram_block_populate_read(RAMBlock * rb)1561 static void ram_block_populate_read(RAMBlock *rb)
1562 {
1563 /*
1564 * Skip populating all pages that fall into a discarded range as managed by
1565 * a RamDiscardManager responsible for the mapped memory region of the
1566 * RAMBlock. Such discarded ("logically unplugged") parts of a RAMBlock
1567 * must not get populated automatically. We don't have to track
1568 * modifications via userfaultfd WP reliably, because these pages will
1569 * not be part of the migration stream either way -- see
1570 * ramblock_dirty_bitmap_exclude_discarded_pages().
1571 *
1572 * Note: The result is only stable while migrating (precopy/postcopy).
1573 */
1574 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1575 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1576 MemoryRegionSection section = {
1577 .mr = rb->mr,
1578 .offset_within_region = 0,
1579 .size = rb->mr->size,
1580 };
1581
1582 ram_discard_manager_replay_populated(rdm, §ion,
1583 populate_read_section, NULL);
1584 } else {
1585 populate_read_range(rb, 0, rb->used_length);
1586 }
1587 }
1588
1589 /*
1590 * ram_write_tracking_prepare: prepare for UFFD-WP memory tracking
1591 */
ram_write_tracking_prepare(void)1592 void ram_write_tracking_prepare(void)
1593 {
1594 RAMBlock *block;
1595
1596 RCU_READ_LOCK_GUARD();
1597
1598 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1599 /* Nothing to do with read-only and MMIO-writable regions */
1600 if (block->mr->readonly || block->mr->rom_device) {
1601 continue;
1602 }
1603
1604 /*
1605 * Populate pages of the RAM block before enabling userfault_fd
1606 * write protection.
1607 *
1608 * This stage is required since ioctl(UFFDIO_WRITEPROTECT) with
1609 * UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip
1610 * pages with pte_none() entries in page table.
1611 */
1612 ram_block_populate_read(block);
1613 }
1614 }
1615
uffd_protect_section(MemoryRegionSection * section,void * opaque)1616 static inline int uffd_protect_section(MemoryRegionSection *section,
1617 void *opaque)
1618 {
1619 const hwaddr size = int128_get64(section->size);
1620 const hwaddr offset = section->offset_within_region;
1621 RAMBlock *rb = section->mr->ram_block;
1622 int uffd_fd = (uintptr_t)opaque;
1623
1624 return uffd_change_protection(uffd_fd, rb->host + offset, size, true,
1625 false);
1626 }
1627
ram_block_uffd_protect(RAMBlock * rb,int uffd_fd)1628 static int ram_block_uffd_protect(RAMBlock *rb, int uffd_fd)
1629 {
1630 assert(rb->flags & RAM_UF_WRITEPROTECT);
1631
1632 /* See ram_block_populate_read() */
1633 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1634 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1635 MemoryRegionSection section = {
1636 .mr = rb->mr,
1637 .offset_within_region = 0,
1638 .size = rb->mr->size,
1639 };
1640
1641 return ram_discard_manager_replay_populated(rdm, §ion,
1642 uffd_protect_section,
1643 (void *)(uintptr_t)uffd_fd);
1644 }
1645 return uffd_change_protection(uffd_fd, rb->host,
1646 rb->used_length, true, false);
1647 }
1648
1649 /*
1650 * ram_write_tracking_start: start UFFD-WP memory tracking
1651 *
1652 * Returns 0 for success or negative value in case of error
1653 */
ram_write_tracking_start(void)1654 int ram_write_tracking_start(void)
1655 {
1656 int uffd_fd;
1657 RAMState *rs = ram_state;
1658 RAMBlock *block;
1659
1660 /* Open UFFD file descriptor */
1661 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true);
1662 if (uffd_fd < 0) {
1663 return uffd_fd;
1664 }
1665 rs->uffdio_fd = uffd_fd;
1666
1667 RCU_READ_LOCK_GUARD();
1668
1669 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1670 /* Nothing to do with read-only and MMIO-writable regions */
1671 if (block->mr->readonly || block->mr->rom_device) {
1672 continue;
1673 }
1674
1675 /* Register block memory with UFFD to track writes */
1676 if (uffd_register_memory(rs->uffdio_fd, block->host,
1677 block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) {
1678 goto fail;
1679 }
1680 block->flags |= RAM_UF_WRITEPROTECT;
1681 memory_region_ref(block->mr);
1682
1683 /* Apply UFFD write protection to the block memory range */
1684 if (ram_block_uffd_protect(block, uffd_fd)) {
1685 goto fail;
1686 }
1687
1688 trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size,
1689 block->host, block->max_length);
1690 }
1691
1692 return 0;
1693
1694 fail:
1695 error_report("ram_write_tracking_start() failed: restoring initial memory state");
1696
1697 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1698 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1699 continue;
1700 }
1701 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1702 /* Cleanup flags and remove reference */
1703 block->flags &= ~RAM_UF_WRITEPROTECT;
1704 memory_region_unref(block->mr);
1705 }
1706
1707 uffd_close_fd(uffd_fd);
1708 rs->uffdio_fd = -1;
1709 return -1;
1710 }
1711
1712 /**
1713 * ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection
1714 */
ram_write_tracking_stop(void)1715 void ram_write_tracking_stop(void)
1716 {
1717 RAMState *rs = ram_state;
1718 RAMBlock *block;
1719
1720 RCU_READ_LOCK_GUARD();
1721
1722 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1723 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1724 continue;
1725 }
1726 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1727
1728 trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size,
1729 block->host, block->max_length);
1730
1731 /* Cleanup flags and remove reference */
1732 block->flags &= ~RAM_UF_WRITEPROTECT;
1733 memory_region_unref(block->mr);
1734 }
1735
1736 /* Finally close UFFD file descriptor */
1737 uffd_close_fd(rs->uffdio_fd);
1738 rs->uffdio_fd = -1;
1739 }
1740
1741 #else
1742 /* No target OS support, stubs just fail or ignore */
1743
poll_fault_page(RAMState * rs,ram_addr_t * offset)1744 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1745 {
1746 (void) rs;
1747 (void) offset;
1748
1749 return NULL;
1750 }
1751
ram_save_release_protection(RAMState * rs,PageSearchStatus * pss,unsigned long start_page)1752 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1753 unsigned long start_page)
1754 {
1755 (void) rs;
1756 (void) pss;
1757 (void) start_page;
1758
1759 return 0;
1760 }
1761
ram_write_tracking_available(void)1762 bool ram_write_tracking_available(void)
1763 {
1764 return false;
1765 }
1766
ram_write_tracking_compatible(void)1767 bool ram_write_tracking_compatible(void)
1768 {
1769 g_assert_not_reached();
1770 }
1771
ram_write_tracking_start(void)1772 int ram_write_tracking_start(void)
1773 {
1774 g_assert_not_reached();
1775 }
1776
ram_write_tracking_stop(void)1777 void ram_write_tracking_stop(void)
1778 {
1779 g_assert_not_reached();
1780 }
1781 #endif /* defined(__linux__) */
1782
1783 /**
1784 * get_queued_page: unqueue a page from the postcopy requests
1785 *
1786 * Skips pages that are already sent (!dirty)
1787 *
1788 * Returns true if a queued page is found
1789 *
1790 * @rs: current RAM state
1791 * @pss: data about the state of the current dirty page scan
1792 */
get_queued_page(RAMState * rs,PageSearchStatus * pss)1793 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
1794 {
1795 RAMBlock *block;
1796 ram_addr_t offset;
1797 bool dirty = false;
1798
1799 do {
1800 block = unqueue_page(rs, &offset);
1801 /*
1802 * We're sending this page, and since it's postcopy nothing else
1803 * will dirty it, and we must make sure it doesn't get sent again
1804 * even if this queue request was received after the background
1805 * search already sent it.
1806 */
1807 if (block) {
1808 unsigned long page;
1809
1810 page = offset >> TARGET_PAGE_BITS;
1811 dirty = test_bit(page, block->bmap);
1812 if (!dirty) {
1813 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
1814 page);
1815 } else {
1816 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
1817 }
1818 }
1819
1820 } while (block && !dirty);
1821
1822 if (!block) {
1823 /*
1824 * Poll write faults too if background snapshot is enabled; that's
1825 * when we have vcpus got blocked by the write protected pages.
1826 */
1827 block = poll_fault_page(rs, &offset);
1828 }
1829
1830 if (block) {
1831 /*
1832 * We want the background search to continue from the queued page
1833 * since the guest is likely to want other pages near to the page
1834 * it just requested.
1835 */
1836 pss->block = block;
1837 pss->page = offset >> TARGET_PAGE_BITS;
1838
1839 /*
1840 * This unqueued page would break the "one round" check, even is
1841 * really rare.
1842 */
1843 pss->complete_round = false;
1844 }
1845
1846 return !!block;
1847 }
1848
1849 /**
1850 * migration_page_queue_free: drop any remaining pages in the ram
1851 * request queue
1852 *
1853 * It should be empty at the end anyway, but in error cases there may
1854 * be some left. in case that there is any page left, we drop it.
1855 *
1856 */
migration_page_queue_free(RAMState * rs)1857 static void migration_page_queue_free(RAMState *rs)
1858 {
1859 struct RAMSrcPageRequest *mspr, *next_mspr;
1860 /* This queue generally should be empty - but in the case of a failed
1861 * migration might have some droppings in.
1862 */
1863 RCU_READ_LOCK_GUARD();
1864 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
1865 memory_region_unref(mspr->rb->mr);
1866 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1867 g_free(mspr);
1868 }
1869 }
1870
1871 /**
1872 * ram_save_queue_pages: queue the page for transmission
1873 *
1874 * A request from postcopy destination for example.
1875 *
1876 * Returns zero on success or negative on error
1877 *
1878 * @rbname: Name of the RAMBLock of the request. NULL means the
1879 * same that last one.
1880 * @start: starting address from the start of the RAMBlock
1881 * @len: length (in bytes) to send
1882 */
ram_save_queue_pages(const char * rbname,ram_addr_t start,ram_addr_t len,Error ** errp)1883 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len,
1884 Error **errp)
1885 {
1886 RAMBlock *ramblock;
1887 RAMState *rs = ram_state;
1888
1889 stat64_add(&mig_stats.postcopy_requests, 1);
1890 RCU_READ_LOCK_GUARD();
1891
1892 if (!rbname) {
1893 /* Reuse last RAMBlock */
1894 ramblock = rs->last_req_rb;
1895
1896 if (!ramblock) {
1897 /*
1898 * Shouldn't happen, we can't reuse the last RAMBlock if
1899 * it's the 1st request.
1900 */
1901 error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no previous block");
1902 return -1;
1903 }
1904 } else {
1905 ramblock = qemu_ram_block_by_name(rbname);
1906
1907 if (!ramblock) {
1908 /* We shouldn't be asked for a non-existent RAMBlock */
1909 error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no block '%s'", rbname);
1910 return -1;
1911 }
1912 rs->last_req_rb = ramblock;
1913 }
1914 trace_ram_save_queue_pages(ramblock->idstr, start, len);
1915 if (!offset_in_ramblock(ramblock, start + len - 1)) {
1916 error_setg(errp, "MIG_RP_MSG_REQ_PAGES request overrun, "
1917 "start=" RAM_ADDR_FMT " len="
1918 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
1919 start, len, ramblock->used_length);
1920 return -1;
1921 }
1922
1923 /*
1924 * When with postcopy preempt, we send back the page directly in the
1925 * rp-return thread.
1926 */
1927 if (postcopy_preempt_active()) {
1928 ram_addr_t page_start = start >> TARGET_PAGE_BITS;
1929 size_t page_size = qemu_ram_pagesize(ramblock);
1930 PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_POSTCOPY];
1931 int ret = 0;
1932
1933 qemu_mutex_lock(&rs->bitmap_mutex);
1934
1935 pss_init(pss, ramblock, page_start);
1936 /*
1937 * Always use the preempt channel, and make sure it's there. It's
1938 * safe to access without lock, because when rp-thread is running
1939 * we should be the only one who operates on the qemufile
1940 */
1941 pss->pss_channel = migrate_get_current()->postcopy_qemufile_src;
1942 assert(pss->pss_channel);
1943
1944 /*
1945 * It must be either one or multiple of host page size. Just
1946 * assert; if something wrong we're mostly split brain anyway.
1947 */
1948 assert(len % page_size == 0);
1949 while (len) {
1950 if (ram_save_host_page_urgent(pss)) {
1951 error_setg(errp, "ram_save_host_page_urgent() failed: "
1952 "ramblock=%s, start_addr=0x"RAM_ADDR_FMT,
1953 ramblock->idstr, start);
1954 ret = -1;
1955 break;
1956 }
1957 /*
1958 * NOTE: after ram_save_host_page_urgent() succeeded, pss->page
1959 * will automatically be moved and point to the next host page
1960 * we're going to send, so no need to update here.
1961 *
1962 * Normally QEMU never sends >1 host page in requests, so
1963 * logically we don't even need that as the loop should only
1964 * run once, but just to be consistent.
1965 */
1966 len -= page_size;
1967 };
1968 qemu_mutex_unlock(&rs->bitmap_mutex);
1969
1970 return ret;
1971 }
1972
1973 struct RAMSrcPageRequest *new_entry =
1974 g_new0(struct RAMSrcPageRequest, 1);
1975 new_entry->rb = ramblock;
1976 new_entry->offset = start;
1977 new_entry->len = len;
1978
1979 memory_region_ref(ramblock->mr);
1980 qemu_mutex_lock(&rs->src_page_req_mutex);
1981 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
1982 migration_make_urgent_request();
1983 qemu_mutex_unlock(&rs->src_page_req_mutex);
1984
1985 return 0;
1986 }
1987
1988 /**
1989 * ram_save_target_page_legacy: save one target page
1990 *
1991 * Returns the number of pages written
1992 *
1993 * @rs: current RAM state
1994 * @pss: data about the page we want to send
1995 */
ram_save_target_page_legacy(RAMState * rs,PageSearchStatus * pss)1996 static int ram_save_target_page_legacy(RAMState *rs, PageSearchStatus *pss)
1997 {
1998 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
1999 int res;
2000
2001 if (control_save_page(pss, offset, &res)) {
2002 return res;
2003 }
2004
2005 if (save_zero_page(rs, pss, offset)) {
2006 return 1;
2007 }
2008
2009 return ram_save_page(rs, pss);
2010 }
2011
2012 /**
2013 * ram_save_target_page_multifd: send one target page to multifd workers
2014 *
2015 * Returns 1 if the page was queued, -1 otherwise.
2016 *
2017 * @rs: current RAM state
2018 * @pss: data about the page we want to send
2019 */
ram_save_target_page_multifd(RAMState * rs,PageSearchStatus * pss)2020 static int ram_save_target_page_multifd(RAMState *rs, PageSearchStatus *pss)
2021 {
2022 RAMBlock *block = pss->block;
2023 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2024
2025 /*
2026 * While using multifd live migration, we still need to handle zero
2027 * page checking on the migration main thread.
2028 */
2029 if (migrate_zero_page_detection() == ZERO_PAGE_DETECTION_LEGACY) {
2030 if (save_zero_page(rs, pss, offset)) {
2031 return 1;
2032 }
2033 }
2034
2035 return ram_save_multifd_page(block, offset);
2036 }
2037
2038 /* Should be called before sending a host page */
pss_host_page_prepare(PageSearchStatus * pss)2039 static void pss_host_page_prepare(PageSearchStatus *pss)
2040 {
2041 /* How many guest pages are there in one host page? */
2042 size_t guest_pfns = qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2043
2044 pss->host_page_sending = true;
2045 if (guest_pfns <= 1) {
2046 /*
2047 * This covers both when guest psize == host psize, or when guest
2048 * has larger psize than the host (guest_pfns==0).
2049 *
2050 * For the latter, we always send one whole guest page per
2051 * iteration of the host page (example: an Alpha VM on x86 host
2052 * will have guest psize 8K while host psize 4K).
2053 */
2054 pss->host_page_start = pss->page;
2055 pss->host_page_end = pss->page + 1;
2056 } else {
2057 /*
2058 * The host page spans over multiple guest pages, we send them
2059 * within the same host page iteration.
2060 */
2061 pss->host_page_start = ROUND_DOWN(pss->page, guest_pfns);
2062 pss->host_page_end = ROUND_UP(pss->page + 1, guest_pfns);
2063 }
2064 }
2065
2066 /*
2067 * Whether the page pointed by PSS is within the host page being sent.
2068 * Must be called after a previous pss_host_page_prepare().
2069 */
pss_within_range(PageSearchStatus * pss)2070 static bool pss_within_range(PageSearchStatus *pss)
2071 {
2072 ram_addr_t ram_addr;
2073
2074 assert(pss->host_page_sending);
2075
2076 /* Over host-page boundary? */
2077 if (pss->page >= pss->host_page_end) {
2078 return false;
2079 }
2080
2081 ram_addr = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2082
2083 return offset_in_ramblock(pss->block, ram_addr);
2084 }
2085
pss_host_page_finish(PageSearchStatus * pss)2086 static void pss_host_page_finish(PageSearchStatus *pss)
2087 {
2088 pss->host_page_sending = false;
2089 /* This is not needed, but just to reset it */
2090 pss->host_page_start = pss->host_page_end = 0;
2091 }
2092
2093 /*
2094 * Send an urgent host page specified by `pss'. Need to be called with
2095 * bitmap_mutex held.
2096 *
2097 * Returns 0 if save host page succeeded, false otherwise.
2098 */
ram_save_host_page_urgent(PageSearchStatus * pss)2099 static int ram_save_host_page_urgent(PageSearchStatus *pss)
2100 {
2101 bool page_dirty, sent = false;
2102 RAMState *rs = ram_state;
2103 int ret = 0;
2104
2105 trace_postcopy_preempt_send_host_page(pss->block->idstr, pss->page);
2106 pss_host_page_prepare(pss);
2107
2108 /*
2109 * If precopy is sending the same page, let it be done in precopy, or
2110 * we could send the same page in two channels and none of them will
2111 * receive the whole page.
2112 */
2113 if (pss_overlap(pss, &ram_state->pss[RAM_CHANNEL_PRECOPY])) {
2114 trace_postcopy_preempt_hit(pss->block->idstr,
2115 pss->page << TARGET_PAGE_BITS);
2116 return 0;
2117 }
2118
2119 do {
2120 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
2121
2122 if (page_dirty) {
2123 /* Be strict to return code; it must be 1, or what else? */
2124 if (migration_ops->ram_save_target_page(rs, pss) != 1) {
2125 error_report_once("%s: ram_save_target_page failed", __func__);
2126 ret = -1;
2127 goto out;
2128 }
2129 sent = true;
2130 }
2131 pss_find_next_dirty(pss);
2132 } while (pss_within_range(pss));
2133 out:
2134 pss_host_page_finish(pss);
2135 /* For urgent requests, flush immediately if sent */
2136 if (sent) {
2137 qemu_fflush(pss->pss_channel);
2138 }
2139 return ret;
2140 }
2141
2142 /**
2143 * ram_save_host_page: save a whole host page
2144 *
2145 * Starting at *offset send pages up to the end of the current host
2146 * page. It's valid for the initial offset to point into the middle of
2147 * a host page in which case the remainder of the hostpage is sent.
2148 * Only dirty target pages are sent. Note that the host page size may
2149 * be a huge page for this block.
2150 *
2151 * The saving stops at the boundary of the used_length of the block
2152 * if the RAMBlock isn't a multiple of the host page size.
2153 *
2154 * The caller must be with ram_state.bitmap_mutex held to call this
2155 * function. Note that this function can temporarily release the lock, but
2156 * when the function is returned it'll make sure the lock is still held.
2157 *
2158 * Returns the number of pages written or negative on error
2159 *
2160 * @rs: current RAM state
2161 * @pss: data about the page we want to send
2162 */
ram_save_host_page(RAMState * rs,PageSearchStatus * pss)2163 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss)
2164 {
2165 bool page_dirty, preempt_active = postcopy_preempt_active();
2166 int tmppages, pages = 0;
2167 size_t pagesize_bits =
2168 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2169 unsigned long start_page = pss->page;
2170 int res;
2171
2172 if (migrate_ram_is_ignored(pss->block)) {
2173 error_report("block %s should not be migrated !", pss->block->idstr);
2174 return 0;
2175 }
2176
2177 /* Update host page boundary information */
2178 pss_host_page_prepare(pss);
2179
2180 do {
2181 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
2182
2183 /* Check the pages is dirty and if it is send it */
2184 if (page_dirty) {
2185 /*
2186 * Properly yield the lock only in postcopy preempt mode
2187 * because both migration thread and rp-return thread can
2188 * operate on the bitmaps.
2189 */
2190 if (preempt_active) {
2191 qemu_mutex_unlock(&rs->bitmap_mutex);
2192 }
2193 tmppages = migration_ops->ram_save_target_page(rs, pss);
2194 if (tmppages >= 0) {
2195 pages += tmppages;
2196 /*
2197 * Allow rate limiting to happen in the middle of huge pages if
2198 * something is sent in the current iteration.
2199 */
2200 if (pagesize_bits > 1 && tmppages > 0) {
2201 migration_rate_limit();
2202 }
2203 }
2204 if (preempt_active) {
2205 qemu_mutex_lock(&rs->bitmap_mutex);
2206 }
2207 } else {
2208 tmppages = 0;
2209 }
2210
2211 if (tmppages < 0) {
2212 pss_host_page_finish(pss);
2213 return tmppages;
2214 }
2215
2216 pss_find_next_dirty(pss);
2217 } while (pss_within_range(pss));
2218
2219 pss_host_page_finish(pss);
2220
2221 res = ram_save_release_protection(rs, pss, start_page);
2222 return (res < 0 ? res : pages);
2223 }
2224
2225 /**
2226 * ram_find_and_save_block: finds a dirty page and sends it to f
2227 *
2228 * Called within an RCU critical section.
2229 *
2230 * Returns the number of pages written where zero means no dirty pages,
2231 * or negative on error
2232 *
2233 * @rs: current RAM state
2234 *
2235 * On systems where host-page-size > target-page-size it will send all the
2236 * pages in a host page that are dirty.
2237 */
ram_find_and_save_block(RAMState * rs)2238 static int ram_find_and_save_block(RAMState *rs)
2239 {
2240 PageSearchStatus *pss = &rs->pss[RAM_CHANNEL_PRECOPY];
2241 int pages = 0;
2242
2243 /* No dirty page as there is zero RAM */
2244 if (!rs->ram_bytes_total) {
2245 return pages;
2246 }
2247
2248 /*
2249 * Always keep last_seen_block/last_page valid during this procedure,
2250 * because find_dirty_block() relies on these values (e.g., we compare
2251 * last_seen_block with pss.block to see whether we searched all the
2252 * ramblocks) to detect the completion of migration. Having NULL value
2253 * of last_seen_block can conditionally cause below loop to run forever.
2254 */
2255 if (!rs->last_seen_block) {
2256 rs->last_seen_block = QLIST_FIRST_RCU(&ram_list.blocks);
2257 rs->last_page = 0;
2258 }
2259
2260 pss_init(pss, rs->last_seen_block, rs->last_page);
2261
2262 while (true){
2263 if (!get_queued_page(rs, pss)) {
2264 /* priority queue empty, so just search for something dirty */
2265 int res = find_dirty_block(rs, pss);
2266 if (res != PAGE_DIRTY_FOUND) {
2267 if (res == PAGE_ALL_CLEAN) {
2268 break;
2269 } else if (res == PAGE_TRY_AGAIN) {
2270 continue;
2271 } else if (res < 0) {
2272 pages = res;
2273 break;
2274 }
2275 }
2276 }
2277 pages = ram_save_host_page(rs, pss);
2278 if (pages) {
2279 break;
2280 }
2281 }
2282
2283 rs->last_seen_block = pss->block;
2284 rs->last_page = pss->page;
2285
2286 return pages;
2287 }
2288
ram_bytes_total_with_ignored(void)2289 static uint64_t ram_bytes_total_with_ignored(void)
2290 {
2291 RAMBlock *block;
2292 uint64_t total = 0;
2293
2294 RCU_READ_LOCK_GUARD();
2295
2296 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2297 total += block->used_length;
2298 }
2299 return total;
2300 }
2301
ram_bytes_total(void)2302 uint64_t ram_bytes_total(void)
2303 {
2304 RAMBlock *block;
2305 uint64_t total = 0;
2306
2307 RCU_READ_LOCK_GUARD();
2308
2309 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2310 total += block->used_length;
2311 }
2312 return total;
2313 }
2314
xbzrle_load_setup(void)2315 static void xbzrle_load_setup(void)
2316 {
2317 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2318 }
2319
xbzrle_load_cleanup(void)2320 static void xbzrle_load_cleanup(void)
2321 {
2322 g_free(XBZRLE.decoded_buf);
2323 XBZRLE.decoded_buf = NULL;
2324 }
2325
ram_state_cleanup(RAMState ** rsp)2326 static void ram_state_cleanup(RAMState **rsp)
2327 {
2328 if (*rsp) {
2329 migration_page_queue_free(*rsp);
2330 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2331 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2332 g_free(*rsp);
2333 *rsp = NULL;
2334 }
2335 }
2336
xbzrle_cleanup(void)2337 static void xbzrle_cleanup(void)
2338 {
2339 XBZRLE_cache_lock();
2340 if (XBZRLE.cache) {
2341 cache_fini(XBZRLE.cache);
2342 g_free(XBZRLE.encoded_buf);
2343 g_free(XBZRLE.current_buf);
2344 g_free(XBZRLE.zero_target_page);
2345 XBZRLE.cache = NULL;
2346 XBZRLE.encoded_buf = NULL;
2347 XBZRLE.current_buf = NULL;
2348 XBZRLE.zero_target_page = NULL;
2349 }
2350 XBZRLE_cache_unlock();
2351 }
2352
ram_bitmaps_destroy(void)2353 static void ram_bitmaps_destroy(void)
2354 {
2355 RAMBlock *block;
2356
2357 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2358 g_free(block->clear_bmap);
2359 block->clear_bmap = NULL;
2360 g_free(block->bmap);
2361 block->bmap = NULL;
2362 g_free(block->file_bmap);
2363 block->file_bmap = NULL;
2364 }
2365 }
2366
ram_save_cleanup(void * opaque)2367 static void ram_save_cleanup(void *opaque)
2368 {
2369 RAMState **rsp = opaque;
2370
2371 /* We don't use dirty log with background snapshots */
2372 if (!migrate_background_snapshot()) {
2373 /* caller have hold BQL or is in a bh, so there is
2374 * no writing race against the migration bitmap
2375 */
2376 if (global_dirty_tracking & GLOBAL_DIRTY_MIGRATION) {
2377 /*
2378 * do not stop dirty log without starting it, since
2379 * memory_global_dirty_log_stop will assert that
2380 * memory_global_dirty_log_start/stop used in pairs
2381 */
2382 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
2383 }
2384 }
2385
2386 ram_bitmaps_destroy();
2387
2388 xbzrle_cleanup();
2389 multifd_ram_save_cleanup();
2390 ram_state_cleanup(rsp);
2391 g_free(migration_ops);
2392 migration_ops = NULL;
2393 }
2394
ram_state_reset(RAMState * rs)2395 static void ram_state_reset(RAMState *rs)
2396 {
2397 int i;
2398
2399 for (i = 0; i < RAM_CHANNEL_MAX; i++) {
2400 rs->pss[i].last_sent_block = NULL;
2401 }
2402
2403 rs->last_seen_block = NULL;
2404 rs->last_page = 0;
2405 rs->last_version = ram_list.version;
2406 rs->xbzrle_started = false;
2407 }
2408
2409 #define MAX_WAIT 50 /* ms, half buffered_file limit */
2410
2411 /* **** functions for postcopy ***** */
2412
ram_postcopy_migrated_memory_release(MigrationState * ms)2413 void ram_postcopy_migrated_memory_release(MigrationState *ms)
2414 {
2415 struct RAMBlock *block;
2416
2417 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2418 unsigned long *bitmap = block->bmap;
2419 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2420 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
2421
2422 while (run_start < range) {
2423 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
2424 ram_discard_range(block->idstr,
2425 ((ram_addr_t)run_start) << TARGET_PAGE_BITS,
2426 ((ram_addr_t)(run_end - run_start))
2427 << TARGET_PAGE_BITS);
2428 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2429 }
2430 }
2431 }
2432
2433 /**
2434 * postcopy_send_discard_bm_ram: discard a RAMBlock
2435 *
2436 * Callback from postcopy_each_ram_send_discard for each RAMBlock
2437 *
2438 * @ms: current migration state
2439 * @block: RAMBlock to discard
2440 */
postcopy_send_discard_bm_ram(MigrationState * ms,RAMBlock * block)2441 static void postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block)
2442 {
2443 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
2444 unsigned long current;
2445 unsigned long *bitmap = block->bmap;
2446
2447 for (current = 0; current < end; ) {
2448 unsigned long one = find_next_bit(bitmap, end, current);
2449 unsigned long zero, discard_length;
2450
2451 if (one >= end) {
2452 break;
2453 }
2454
2455 zero = find_next_zero_bit(bitmap, end, one + 1);
2456
2457 if (zero >= end) {
2458 discard_length = end - one;
2459 } else {
2460 discard_length = zero - one;
2461 }
2462 postcopy_discard_send_range(ms, one, discard_length);
2463 current = one + discard_length;
2464 }
2465 }
2466
2467 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block);
2468
2469 /**
2470 * postcopy_each_ram_send_discard: discard all RAMBlocks
2471 *
2472 * Utility for the outgoing postcopy code.
2473 * Calls postcopy_send_discard_bm_ram for each RAMBlock
2474 * passing it bitmap indexes and name.
2475 * (qemu_ram_foreach_block ends up passing unscaled lengths
2476 * which would mean postcopy code would have to deal with target page)
2477 *
2478 * @ms: current migration state
2479 */
postcopy_each_ram_send_discard(MigrationState * ms)2480 static void postcopy_each_ram_send_discard(MigrationState *ms)
2481 {
2482 struct RAMBlock *block;
2483
2484 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2485 postcopy_discard_send_init(ms, block->idstr);
2486
2487 /*
2488 * Deal with TPS != HPS and huge pages. It discard any partially sent
2489 * host-page size chunks, mark any partially dirty host-page size
2490 * chunks as all dirty. In this case the host-page is the host-page
2491 * for the particular RAMBlock, i.e. it might be a huge page.
2492 */
2493 postcopy_chunk_hostpages_pass(ms, block);
2494
2495 /*
2496 * Postcopy sends chunks of bitmap over the wire, but it
2497 * just needs indexes at this point, avoids it having
2498 * target page specific code.
2499 */
2500 postcopy_send_discard_bm_ram(ms, block);
2501 postcopy_discard_send_finish(ms);
2502 }
2503 }
2504
2505 /**
2506 * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages
2507 *
2508 * Helper for postcopy_chunk_hostpages; it's called twice to
2509 * canonicalize the two bitmaps, that are similar, but one is
2510 * inverted.
2511 *
2512 * Postcopy requires that all target pages in a hostpage are dirty or
2513 * clean, not a mix. This function canonicalizes the bitmaps.
2514 *
2515 * @ms: current migration state
2516 * @block: block that contains the page we want to canonicalize
2517 */
postcopy_chunk_hostpages_pass(MigrationState * ms,RAMBlock * block)2518 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block)
2519 {
2520 RAMState *rs = ram_state;
2521 unsigned long *bitmap = block->bmap;
2522 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
2523 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2524 unsigned long run_start;
2525
2526 if (block->page_size == TARGET_PAGE_SIZE) {
2527 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2528 return;
2529 }
2530
2531 /* Find a dirty page */
2532 run_start = find_next_bit(bitmap, pages, 0);
2533
2534 while (run_start < pages) {
2535
2536 /*
2537 * If the start of this run of pages is in the middle of a host
2538 * page, then we need to fixup this host page.
2539 */
2540 if (QEMU_IS_ALIGNED(run_start, host_ratio)) {
2541 /* Find the end of this run */
2542 run_start = find_next_zero_bit(bitmap, pages, run_start + 1);
2543 /*
2544 * If the end isn't at the start of a host page, then the
2545 * run doesn't finish at the end of a host page
2546 * and we need to discard.
2547 */
2548 }
2549
2550 if (!QEMU_IS_ALIGNED(run_start, host_ratio)) {
2551 unsigned long page;
2552 unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start,
2553 host_ratio);
2554 run_start = QEMU_ALIGN_UP(run_start, host_ratio);
2555
2556 /* Clean up the bitmap */
2557 for (page = fixup_start_addr;
2558 page < fixup_start_addr + host_ratio; page++) {
2559 /*
2560 * Remark them as dirty, updating the count for any pages
2561 * that weren't previously dirty.
2562 */
2563 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
2564 }
2565 }
2566
2567 /* Find the next dirty page for the next iteration */
2568 run_start = find_next_bit(bitmap, pages, run_start);
2569 }
2570 }
2571
2572 /**
2573 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
2574 *
2575 * Transmit the set of pages to be discarded after precopy to the target
2576 * these are pages that:
2577 * a) Have been previously transmitted but are now dirty again
2578 * b) Pages that have never been transmitted, this ensures that
2579 * any pages on the destination that have been mapped by background
2580 * tasks get discarded (transparent huge pages is the specific concern)
2581 * Hopefully this is pretty sparse
2582 *
2583 * @ms: current migration state
2584 */
ram_postcopy_send_discard_bitmap(MigrationState * ms)2585 void ram_postcopy_send_discard_bitmap(MigrationState *ms)
2586 {
2587 RAMState *rs = ram_state;
2588
2589 RCU_READ_LOCK_GUARD();
2590
2591 /* This should be our last sync, the src is now paused */
2592 migration_bitmap_sync(rs, false);
2593
2594 /* Easiest way to make sure we don't resume in the middle of a host-page */
2595 rs->pss[RAM_CHANNEL_PRECOPY].last_sent_block = NULL;
2596 rs->last_seen_block = NULL;
2597 rs->last_page = 0;
2598
2599 postcopy_each_ram_send_discard(ms);
2600
2601 trace_ram_postcopy_send_discard_bitmap();
2602 }
2603
2604 /**
2605 * ram_discard_range: discard dirtied pages at the beginning of postcopy
2606 *
2607 * Returns zero on success
2608 *
2609 * @rbname: name of the RAMBlock of the request. NULL means the
2610 * same that last one.
2611 * @start: RAMBlock starting page
2612 * @length: RAMBlock size
2613 */
ram_discard_range(const char * rbname,uint64_t start,size_t length)2614 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
2615 {
2616 trace_ram_discard_range(rbname, start, length);
2617
2618 RCU_READ_LOCK_GUARD();
2619 RAMBlock *rb = qemu_ram_block_by_name(rbname);
2620
2621 if (!rb) {
2622 error_report("ram_discard_range: Failed to find block '%s'", rbname);
2623 return -1;
2624 }
2625
2626 /*
2627 * On source VM, we don't need to update the received bitmap since
2628 * we don't even have one.
2629 */
2630 if (rb->receivedmap) {
2631 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
2632 length >> qemu_target_page_bits());
2633 }
2634
2635 return ram_block_discard_range(rb, start, length);
2636 }
2637
2638 /*
2639 * For every allocation, we will try not to crash the VM if the
2640 * allocation failed.
2641 */
xbzrle_init(Error ** errp)2642 static bool xbzrle_init(Error **errp)
2643 {
2644 if (!migrate_xbzrle()) {
2645 return true;
2646 }
2647
2648 XBZRLE_cache_lock();
2649
2650 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
2651 if (!XBZRLE.zero_target_page) {
2652 error_setg(errp, "%s: Error allocating zero page", __func__);
2653 goto err_out;
2654 }
2655
2656 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
2657 TARGET_PAGE_SIZE, errp);
2658 if (!XBZRLE.cache) {
2659 goto free_zero_page;
2660 }
2661
2662 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
2663 if (!XBZRLE.encoded_buf) {
2664 error_setg(errp, "%s: Error allocating encoded_buf", __func__);
2665 goto free_cache;
2666 }
2667
2668 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
2669 if (!XBZRLE.current_buf) {
2670 error_setg(errp, "%s: Error allocating current_buf", __func__);
2671 goto free_encoded_buf;
2672 }
2673
2674 /* We are all good */
2675 XBZRLE_cache_unlock();
2676 return true;
2677
2678 free_encoded_buf:
2679 g_free(XBZRLE.encoded_buf);
2680 XBZRLE.encoded_buf = NULL;
2681 free_cache:
2682 cache_fini(XBZRLE.cache);
2683 XBZRLE.cache = NULL;
2684 free_zero_page:
2685 g_free(XBZRLE.zero_target_page);
2686 XBZRLE.zero_target_page = NULL;
2687 err_out:
2688 XBZRLE_cache_unlock();
2689 return false;
2690 }
2691
ram_state_init(RAMState ** rsp,Error ** errp)2692 static bool ram_state_init(RAMState **rsp, Error **errp)
2693 {
2694 *rsp = g_try_new0(RAMState, 1);
2695
2696 if (!*rsp) {
2697 error_setg(errp, "%s: Init ramstate fail", __func__);
2698 return false;
2699 }
2700
2701 qemu_mutex_init(&(*rsp)->bitmap_mutex);
2702 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
2703 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
2704 (*rsp)->ram_bytes_total = ram_bytes_total();
2705
2706 /*
2707 * Count the total number of pages used by ram blocks not including any
2708 * gaps due to alignment or unplugs.
2709 * This must match with the initial values of dirty bitmap.
2710 */
2711 (*rsp)->migration_dirty_pages = (*rsp)->ram_bytes_total >> TARGET_PAGE_BITS;
2712 ram_state_reset(*rsp);
2713
2714 return true;
2715 }
2716
ram_list_init_bitmaps(void)2717 static void ram_list_init_bitmaps(void)
2718 {
2719 MigrationState *ms = migrate_get_current();
2720 RAMBlock *block;
2721 unsigned long pages;
2722 uint8_t shift;
2723
2724 /* Skip setting bitmap if there is no RAM */
2725 if (ram_bytes_total()) {
2726 shift = ms->clear_bitmap_shift;
2727 if (shift > CLEAR_BITMAP_SHIFT_MAX) {
2728 error_report("clear_bitmap_shift (%u) too big, using "
2729 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
2730 shift = CLEAR_BITMAP_SHIFT_MAX;
2731 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
2732 error_report("clear_bitmap_shift (%u) too small, using "
2733 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
2734 shift = CLEAR_BITMAP_SHIFT_MIN;
2735 }
2736
2737 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2738 pages = block->max_length >> TARGET_PAGE_BITS;
2739 /*
2740 * The initial dirty bitmap for migration must be set with all
2741 * ones to make sure we'll migrate every guest RAM page to
2742 * destination.
2743 * Here we set RAMBlock.bmap all to 1 because when rebegin a
2744 * new migration after a failed migration, ram_list.
2745 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
2746 * guest memory.
2747 */
2748 block->bmap = bitmap_new(pages);
2749 bitmap_set(block->bmap, 0, pages);
2750 if (migrate_mapped_ram()) {
2751 block->file_bmap = bitmap_new(pages);
2752 }
2753 block->clear_bmap_shift = shift;
2754 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
2755 }
2756 }
2757 }
2758
migration_bitmap_clear_discarded_pages(RAMState * rs)2759 static void migration_bitmap_clear_discarded_pages(RAMState *rs)
2760 {
2761 unsigned long pages;
2762 RAMBlock *rb;
2763
2764 RCU_READ_LOCK_GUARD();
2765
2766 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
2767 pages = ramblock_dirty_bitmap_clear_discarded_pages(rb);
2768 rs->migration_dirty_pages -= pages;
2769 }
2770 }
2771
ram_init_bitmaps(RAMState * rs,Error ** errp)2772 static bool ram_init_bitmaps(RAMState *rs, Error **errp)
2773 {
2774 bool ret = true;
2775
2776 qemu_mutex_lock_ramlist();
2777
2778 WITH_RCU_READ_LOCK_GUARD() {
2779 ram_list_init_bitmaps();
2780 /* We don't use dirty log with background snapshots */
2781 if (!migrate_background_snapshot()) {
2782 ret = memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION, errp);
2783 if (!ret) {
2784 goto out_unlock;
2785 }
2786 migration_bitmap_sync_precopy(false);
2787 }
2788 }
2789 out_unlock:
2790 qemu_mutex_unlock_ramlist();
2791
2792 if (!ret) {
2793 ram_bitmaps_destroy();
2794 return false;
2795 }
2796
2797 /*
2798 * After an eventual first bitmap sync, fixup the initial bitmap
2799 * containing all 1s to exclude any discarded pages from migration.
2800 */
2801 migration_bitmap_clear_discarded_pages(rs);
2802 return true;
2803 }
2804
ram_init_all(RAMState ** rsp,Error ** errp)2805 static int ram_init_all(RAMState **rsp, Error **errp)
2806 {
2807 if (!ram_state_init(rsp, errp)) {
2808 return -1;
2809 }
2810
2811 if (!xbzrle_init(errp)) {
2812 ram_state_cleanup(rsp);
2813 return -1;
2814 }
2815
2816 if (!ram_init_bitmaps(*rsp, errp)) {
2817 return -1;
2818 }
2819
2820 return 0;
2821 }
2822
ram_state_resume_prepare(RAMState * rs,QEMUFile * out)2823 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
2824 {
2825 RAMBlock *block;
2826 uint64_t pages = 0;
2827
2828 /*
2829 * Postcopy is not using xbzrle/compression, so no need for that.
2830 * Also, since source are already halted, we don't need to care
2831 * about dirty page logging as well.
2832 */
2833
2834 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2835 pages += bitmap_count_one(block->bmap,
2836 block->used_length >> TARGET_PAGE_BITS);
2837 }
2838
2839 /* This may not be aligned with current bitmaps. Recalculate. */
2840 rs->migration_dirty_pages = pages;
2841
2842 ram_state_reset(rs);
2843
2844 /* Update RAMState cache of output QEMUFile */
2845 rs->pss[RAM_CHANNEL_PRECOPY].pss_channel = out;
2846
2847 trace_ram_state_resume_prepare(pages);
2848 }
2849
2850 /*
2851 * This function clears bits of the free pages reported by the caller from the
2852 * migration dirty bitmap. @addr is the host address corresponding to the
2853 * start of the continuous guest free pages, and @len is the total bytes of
2854 * those pages.
2855 */
qemu_guest_free_page_hint(void * addr,size_t len)2856 void qemu_guest_free_page_hint(void *addr, size_t len)
2857 {
2858 RAMBlock *block;
2859 ram_addr_t offset;
2860 size_t used_len, start, npages;
2861
2862 /* This function is currently expected to be used during live migration */
2863 if (!migration_is_running()) {
2864 return;
2865 }
2866
2867 for (; len > 0; len -= used_len, addr += used_len) {
2868 block = qemu_ram_block_from_host(addr, false, &offset);
2869 if (unlikely(!block || offset >= block->used_length)) {
2870 /*
2871 * The implementation might not support RAMBlock resize during
2872 * live migration, but it could happen in theory with future
2873 * updates. So we add a check here to capture that case.
2874 */
2875 error_report_once("%s unexpected error", __func__);
2876 return;
2877 }
2878
2879 if (len <= block->used_length - offset) {
2880 used_len = len;
2881 } else {
2882 used_len = block->used_length - offset;
2883 }
2884
2885 start = offset >> TARGET_PAGE_BITS;
2886 npages = used_len >> TARGET_PAGE_BITS;
2887
2888 qemu_mutex_lock(&ram_state->bitmap_mutex);
2889 /*
2890 * The skipped free pages are equavalent to be sent from clear_bmap's
2891 * perspective, so clear the bits from the memory region bitmap which
2892 * are initially set. Otherwise those skipped pages will be sent in
2893 * the next round after syncing from the memory region bitmap.
2894 */
2895 migration_clear_memory_region_dirty_bitmap_range(block, start, npages);
2896 ram_state->migration_dirty_pages -=
2897 bitmap_count_one_with_offset(block->bmap, start, npages);
2898 bitmap_clear(block->bmap, start, npages);
2899 qemu_mutex_unlock(&ram_state->bitmap_mutex);
2900 }
2901 }
2902
2903 #define MAPPED_RAM_HDR_VERSION 1
2904 struct MappedRamHeader {
2905 uint32_t version;
2906 /*
2907 * The target's page size, so we know how many pages are in the
2908 * bitmap.
2909 */
2910 uint64_t page_size;
2911 /*
2912 * The offset in the migration file where the pages bitmap is
2913 * stored.
2914 */
2915 uint64_t bitmap_offset;
2916 /*
2917 * The offset in the migration file where the actual pages (data)
2918 * are stored.
2919 */
2920 uint64_t pages_offset;
2921 } QEMU_PACKED;
2922 typedef struct MappedRamHeader MappedRamHeader;
2923
mapped_ram_setup_ramblock(QEMUFile * file,RAMBlock * block)2924 static void mapped_ram_setup_ramblock(QEMUFile *file, RAMBlock *block)
2925 {
2926 g_autofree MappedRamHeader *header = NULL;
2927 size_t header_size, bitmap_size;
2928 long num_pages;
2929
2930 header = g_new0(MappedRamHeader, 1);
2931 header_size = sizeof(MappedRamHeader);
2932
2933 num_pages = block->used_length >> TARGET_PAGE_BITS;
2934 bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long);
2935
2936 /*
2937 * Save the file offsets of where the bitmap and the pages should
2938 * go as they are written at the end of migration and during the
2939 * iterative phase, respectively.
2940 */
2941 block->bitmap_offset = qemu_get_offset(file) + header_size;
2942 block->pages_offset = ROUND_UP(block->bitmap_offset +
2943 bitmap_size,
2944 MAPPED_RAM_FILE_OFFSET_ALIGNMENT);
2945
2946 header->version = cpu_to_be32(MAPPED_RAM_HDR_VERSION);
2947 header->page_size = cpu_to_be64(TARGET_PAGE_SIZE);
2948 header->bitmap_offset = cpu_to_be64(block->bitmap_offset);
2949 header->pages_offset = cpu_to_be64(block->pages_offset);
2950
2951 qemu_put_buffer(file, (uint8_t *) header, header_size);
2952
2953 /* prepare offset for next ramblock */
2954 qemu_set_offset(file, block->pages_offset + block->used_length, SEEK_SET);
2955 }
2956
mapped_ram_read_header(QEMUFile * file,MappedRamHeader * header,Error ** errp)2957 static bool mapped_ram_read_header(QEMUFile *file, MappedRamHeader *header,
2958 Error **errp)
2959 {
2960 size_t ret, header_size = sizeof(MappedRamHeader);
2961
2962 ret = qemu_get_buffer(file, (uint8_t *)header, header_size);
2963 if (ret != header_size) {
2964 error_setg(errp, "Could not read whole mapped-ram migration header "
2965 "(expected %zd, got %zd bytes)", header_size, ret);
2966 return false;
2967 }
2968
2969 /* migration stream is big-endian */
2970 header->version = be32_to_cpu(header->version);
2971
2972 if (header->version > MAPPED_RAM_HDR_VERSION) {
2973 error_setg(errp, "Migration mapped-ram capability version not "
2974 "supported (expected <= %d, got %d)", MAPPED_RAM_HDR_VERSION,
2975 header->version);
2976 return false;
2977 }
2978
2979 header->page_size = be64_to_cpu(header->page_size);
2980 header->bitmap_offset = be64_to_cpu(header->bitmap_offset);
2981 header->pages_offset = be64_to_cpu(header->pages_offset);
2982
2983 return true;
2984 }
2985
2986 /*
2987 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
2988 * long-running RCU critical section. When rcu-reclaims in the code
2989 * start to become numerous it will be necessary to reduce the
2990 * granularity of these critical sections.
2991 */
2992
2993 /**
2994 * ram_save_setup: Setup RAM for migration
2995 *
2996 * Returns zero to indicate success and negative for error
2997 *
2998 * @f: QEMUFile where to send the data
2999 * @opaque: RAMState pointer
3000 * @errp: pointer to Error*, to store an error if it happens.
3001 */
ram_save_setup(QEMUFile * f,void * opaque,Error ** errp)3002 static int ram_save_setup(QEMUFile *f, void *opaque, Error **errp)
3003 {
3004 RAMState **rsp = opaque;
3005 RAMBlock *block;
3006 int ret, max_hg_page_size;
3007
3008 /* migration has already setup the bitmap, reuse it. */
3009 if (!migration_in_colo_state()) {
3010 if (ram_init_all(rsp, errp) != 0) {
3011 return -1;
3012 }
3013 }
3014 (*rsp)->pss[RAM_CHANNEL_PRECOPY].pss_channel = f;
3015
3016 /*
3017 * ??? Mirrors the previous value of qemu_host_page_size,
3018 * but is this really what was intended for the migration?
3019 */
3020 max_hg_page_size = MAX(qemu_real_host_page_size(), TARGET_PAGE_SIZE);
3021
3022 WITH_RCU_READ_LOCK_GUARD() {
3023 qemu_put_be64(f, ram_bytes_total_with_ignored()
3024 | RAM_SAVE_FLAG_MEM_SIZE);
3025
3026 RAMBLOCK_FOREACH_MIGRATABLE(block) {
3027 qemu_put_byte(f, strlen(block->idstr));
3028 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3029 qemu_put_be64(f, block->used_length);
3030 if (migrate_postcopy_ram() &&
3031 block->page_size != max_hg_page_size) {
3032 qemu_put_be64(f, block->page_size);
3033 }
3034 if (migrate_ignore_shared()) {
3035 qemu_put_be64(f, block->mr->addr);
3036 }
3037
3038 if (migrate_mapped_ram()) {
3039 mapped_ram_setup_ramblock(f, block);
3040 }
3041 }
3042 }
3043
3044 ret = rdma_registration_start(f, RAM_CONTROL_SETUP);
3045 if (ret < 0) {
3046 error_setg(errp, "%s: failed to start RDMA registration", __func__);
3047 qemu_file_set_error(f, ret);
3048 return ret;
3049 }
3050
3051 ret = rdma_registration_stop(f, RAM_CONTROL_SETUP);
3052 if (ret < 0) {
3053 error_setg(errp, "%s: failed to stop RDMA registration", __func__);
3054 qemu_file_set_error(f, ret);
3055 return ret;
3056 }
3057
3058 migration_ops = g_malloc0(sizeof(MigrationOps));
3059
3060 if (migrate_multifd()) {
3061 multifd_ram_save_setup();
3062 migration_ops->ram_save_target_page = ram_save_target_page_multifd;
3063 } else {
3064 migration_ops->ram_save_target_page = ram_save_target_page_legacy;
3065 }
3066
3067 bql_unlock();
3068 ret = multifd_ram_flush_and_sync();
3069 bql_lock();
3070 if (ret < 0) {
3071 error_setg(errp, "%s: multifd synchronization failed", __func__);
3072 return ret;
3073 }
3074
3075 if (migrate_multifd() && !migrate_multifd_flush_after_each_section()
3076 && !migrate_mapped_ram()) {
3077 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
3078 }
3079
3080 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3081 ret = qemu_fflush(f);
3082 if (ret < 0) {
3083 error_setg_errno(errp, -ret, "%s failed", __func__);
3084 }
3085 return ret;
3086 }
3087
ram_save_file_bmap(QEMUFile * f)3088 static void ram_save_file_bmap(QEMUFile *f)
3089 {
3090 RAMBlock *block;
3091
3092 RAMBLOCK_FOREACH_MIGRATABLE(block) {
3093 long num_pages = block->used_length >> TARGET_PAGE_BITS;
3094 long bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long);
3095
3096 qemu_put_buffer_at(f, (uint8_t *)block->file_bmap, bitmap_size,
3097 block->bitmap_offset);
3098 ram_transferred_add(bitmap_size);
3099
3100 /*
3101 * Free the bitmap here to catch any synchronization issues
3102 * with multifd channels. No channels should be sending pages
3103 * after we've written the bitmap to file.
3104 */
3105 g_free(block->file_bmap);
3106 block->file_bmap = NULL;
3107 }
3108 }
3109
ramblock_set_file_bmap_atomic(RAMBlock * block,ram_addr_t offset,bool set)3110 void ramblock_set_file_bmap_atomic(RAMBlock *block, ram_addr_t offset, bool set)
3111 {
3112 if (set) {
3113 set_bit_atomic(offset >> TARGET_PAGE_BITS, block->file_bmap);
3114 } else {
3115 clear_bit_atomic(offset >> TARGET_PAGE_BITS, block->file_bmap);
3116 }
3117 }
3118
3119 /**
3120 * ram_save_iterate: iterative stage for migration
3121 *
3122 * Returns zero to indicate success and negative for error
3123 *
3124 * @f: QEMUFile where to send the data
3125 * @opaque: RAMState pointer
3126 */
ram_save_iterate(QEMUFile * f,void * opaque)3127 static int ram_save_iterate(QEMUFile *f, void *opaque)
3128 {
3129 RAMState **temp = opaque;
3130 RAMState *rs = *temp;
3131 int ret = 0;
3132 int i;
3133 int64_t t0;
3134 int done = 0;
3135
3136 /*
3137 * We'll take this lock a little bit long, but it's okay for two reasons.
3138 * Firstly, the only possible other thread to take it is who calls
3139 * qemu_guest_free_page_hint(), which should be rare; secondly, see
3140 * MAX_WAIT (if curious, further see commit 4508bd9ed8053ce) below, which
3141 * guarantees that we'll at least released it in a regular basis.
3142 */
3143 WITH_QEMU_LOCK_GUARD(&rs->bitmap_mutex) {
3144 WITH_RCU_READ_LOCK_GUARD() {
3145 if (ram_list.version != rs->last_version) {
3146 ram_state_reset(rs);
3147 }
3148
3149 /* Read version before ram_list.blocks */
3150 smp_rmb();
3151
3152 ret = rdma_registration_start(f, RAM_CONTROL_ROUND);
3153 if (ret < 0) {
3154 qemu_file_set_error(f, ret);
3155 goto out;
3156 }
3157
3158 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3159 i = 0;
3160 while ((ret = migration_rate_exceeded(f)) == 0 ||
3161 postcopy_has_request(rs)) {
3162 int pages;
3163
3164 if (qemu_file_get_error(f)) {
3165 break;
3166 }
3167
3168 pages = ram_find_and_save_block(rs);
3169 /* no more pages to sent */
3170 if (pages == 0) {
3171 done = 1;
3172 break;
3173 }
3174
3175 if (pages < 0) {
3176 qemu_file_set_error(f, pages);
3177 break;
3178 }
3179
3180 rs->target_page_count += pages;
3181
3182 /*
3183 * we want to check in the 1st loop, just in case it was the 1st
3184 * time and we had to sync the dirty bitmap.
3185 * qemu_clock_get_ns() is a bit expensive, so we only check each
3186 * some iterations
3187 */
3188 if ((i & 63) == 0) {
3189 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) /
3190 1000000;
3191 if (t1 > MAX_WAIT) {
3192 trace_ram_save_iterate_big_wait(t1, i);
3193 break;
3194 }
3195 }
3196 i++;
3197 }
3198 }
3199 }
3200
3201 /*
3202 * Must occur before EOS (or any QEMUFile operation)
3203 * because of RDMA protocol.
3204 */
3205 ret = rdma_registration_stop(f, RAM_CONTROL_ROUND);
3206 if (ret < 0) {
3207 qemu_file_set_error(f, ret);
3208 }
3209
3210 out:
3211 if (ret >= 0 && migration_is_running()) {
3212 if (migrate_multifd() && migrate_multifd_flush_after_each_section() &&
3213 !migrate_mapped_ram()) {
3214 ret = multifd_ram_flush_and_sync();
3215 if (ret < 0) {
3216 return ret;
3217 }
3218 }
3219
3220 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3221 ram_transferred_add(8);
3222 ret = qemu_fflush(f);
3223 }
3224 if (ret < 0) {
3225 return ret;
3226 }
3227
3228 return done;
3229 }
3230
3231 /**
3232 * ram_save_complete: function called to send the remaining amount of ram
3233 *
3234 * Returns zero to indicate success or negative on error
3235 *
3236 * Called with the BQL
3237 *
3238 * @f: QEMUFile where to send the data
3239 * @opaque: RAMState pointer
3240 */
ram_save_complete(QEMUFile * f,void * opaque)3241 static int ram_save_complete(QEMUFile *f, void *opaque)
3242 {
3243 RAMState **temp = opaque;
3244 RAMState *rs = *temp;
3245 int ret = 0;
3246
3247 rs->last_stage = !migration_in_colo_state();
3248
3249 WITH_RCU_READ_LOCK_GUARD() {
3250 if (!migration_in_postcopy()) {
3251 migration_bitmap_sync_precopy(true);
3252 }
3253
3254 ret = rdma_registration_start(f, RAM_CONTROL_FINISH);
3255 if (ret < 0) {
3256 qemu_file_set_error(f, ret);
3257 return ret;
3258 }
3259
3260 /* try transferring iterative blocks of memory */
3261
3262 /* flush all remaining blocks regardless of rate limiting */
3263 qemu_mutex_lock(&rs->bitmap_mutex);
3264 while (true) {
3265 int pages;
3266
3267 pages = ram_find_and_save_block(rs);
3268 /* no more blocks to sent */
3269 if (pages == 0) {
3270 break;
3271 }
3272 if (pages < 0) {
3273 qemu_mutex_unlock(&rs->bitmap_mutex);
3274 return pages;
3275 }
3276 }
3277 qemu_mutex_unlock(&rs->bitmap_mutex);
3278
3279 ret = rdma_registration_stop(f, RAM_CONTROL_FINISH);
3280 if (ret < 0) {
3281 qemu_file_set_error(f, ret);
3282 return ret;
3283 }
3284 }
3285
3286 ret = multifd_ram_flush_and_sync();
3287 if (ret < 0) {
3288 return ret;
3289 }
3290
3291 if (migrate_mapped_ram()) {
3292 ram_save_file_bmap(f);
3293
3294 if (qemu_file_get_error(f)) {
3295 Error *local_err = NULL;
3296 int err = qemu_file_get_error_obj(f, &local_err);
3297
3298 error_reportf_err(local_err, "Failed to write bitmap to file: ");
3299 return -err;
3300 }
3301 }
3302
3303 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3304 return qemu_fflush(f);
3305 }
3306
ram_state_pending_estimate(void * opaque,uint64_t * must_precopy,uint64_t * can_postcopy)3307 static void ram_state_pending_estimate(void *opaque, uint64_t *must_precopy,
3308 uint64_t *can_postcopy)
3309 {
3310 RAMState **temp = opaque;
3311 RAMState *rs = *temp;
3312
3313 uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3314
3315 if (migrate_postcopy_ram()) {
3316 /* We can do postcopy, and all the data is postcopiable */
3317 *can_postcopy += remaining_size;
3318 } else {
3319 *must_precopy += remaining_size;
3320 }
3321 }
3322
ram_state_pending_exact(void * opaque,uint64_t * must_precopy,uint64_t * can_postcopy)3323 static void ram_state_pending_exact(void *opaque, uint64_t *must_precopy,
3324 uint64_t *can_postcopy)
3325 {
3326 RAMState **temp = opaque;
3327 RAMState *rs = *temp;
3328 uint64_t remaining_size;
3329
3330 if (!migration_in_postcopy()) {
3331 bql_lock();
3332 WITH_RCU_READ_LOCK_GUARD() {
3333 migration_bitmap_sync_precopy(false);
3334 }
3335 bql_unlock();
3336 }
3337
3338 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3339
3340 if (migrate_postcopy_ram()) {
3341 /* We can do postcopy, and all the data is postcopiable */
3342 *can_postcopy += remaining_size;
3343 } else {
3344 *must_precopy += remaining_size;
3345 }
3346 }
3347
load_xbzrle(QEMUFile * f,ram_addr_t addr,void * host)3348 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3349 {
3350 unsigned int xh_len;
3351 int xh_flags;
3352 uint8_t *loaded_data;
3353
3354 /* extract RLE header */
3355 xh_flags = qemu_get_byte(f);
3356 xh_len = qemu_get_be16(f);
3357
3358 if (xh_flags != ENCODING_FLAG_XBZRLE) {
3359 error_report("Failed to load XBZRLE page - wrong compression!");
3360 return -1;
3361 }
3362
3363 if (xh_len > TARGET_PAGE_SIZE) {
3364 error_report("Failed to load XBZRLE page - len overflow!");
3365 return -1;
3366 }
3367 loaded_data = XBZRLE.decoded_buf;
3368 /* load data and decode */
3369 /* it can change loaded_data to point to an internal buffer */
3370 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
3371
3372 /* decode RLE */
3373 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
3374 TARGET_PAGE_SIZE) == -1) {
3375 error_report("Failed to load XBZRLE page - decode error!");
3376 return -1;
3377 }
3378
3379 return 0;
3380 }
3381
3382 /**
3383 * ram_block_from_stream: read a RAMBlock id from the migration stream
3384 *
3385 * Must be called from within a rcu critical section.
3386 *
3387 * Returns a pointer from within the RCU-protected ram_list.
3388 *
3389 * @mis: the migration incoming state pointer
3390 * @f: QEMUFile where to read the data from
3391 * @flags: Page flags (mostly to see if it's a continuation of previous block)
3392 * @channel: the channel we're using
3393 */
ram_block_from_stream(MigrationIncomingState * mis,QEMUFile * f,int flags,int channel)3394 static inline RAMBlock *ram_block_from_stream(MigrationIncomingState *mis,
3395 QEMUFile *f, int flags,
3396 int channel)
3397 {
3398 RAMBlock *block = mis->last_recv_block[channel];
3399 char id[256];
3400 uint8_t len;
3401
3402 if (flags & RAM_SAVE_FLAG_CONTINUE) {
3403 if (!block) {
3404 error_report("Ack, bad migration stream!");
3405 return NULL;
3406 }
3407 return block;
3408 }
3409
3410 len = qemu_get_byte(f);
3411 qemu_get_buffer(f, (uint8_t *)id, len);
3412 id[len] = 0;
3413
3414 block = qemu_ram_block_by_name(id);
3415 if (!block) {
3416 error_report("Can't find block %s", id);
3417 return NULL;
3418 }
3419
3420 if (migrate_ram_is_ignored(block)) {
3421 error_report("block %s should not be migrated !", id);
3422 return NULL;
3423 }
3424
3425 mis->last_recv_block[channel] = block;
3426
3427 return block;
3428 }
3429
host_from_ram_block_offset(RAMBlock * block,ram_addr_t offset)3430 static inline void *host_from_ram_block_offset(RAMBlock *block,
3431 ram_addr_t offset)
3432 {
3433 if (!offset_in_ramblock(block, offset)) {
3434 return NULL;
3435 }
3436
3437 return block->host + offset;
3438 }
3439
host_page_from_ram_block_offset(RAMBlock * block,ram_addr_t offset)3440 static void *host_page_from_ram_block_offset(RAMBlock *block,
3441 ram_addr_t offset)
3442 {
3443 /* Note: Explicitly no check against offset_in_ramblock(). */
3444 return (void *)QEMU_ALIGN_DOWN((uintptr_t)(block->host + offset),
3445 block->page_size);
3446 }
3447
host_page_offset_from_ram_block_offset(RAMBlock * block,ram_addr_t offset)3448 static ram_addr_t host_page_offset_from_ram_block_offset(RAMBlock *block,
3449 ram_addr_t offset)
3450 {
3451 return ((uintptr_t)block->host + offset) & (block->page_size - 1);
3452 }
3453
colo_record_bitmap(RAMBlock * block,ram_addr_t * normal,uint32_t pages)3454 void colo_record_bitmap(RAMBlock *block, ram_addr_t *normal, uint32_t pages)
3455 {
3456 qemu_mutex_lock(&ram_state->bitmap_mutex);
3457 for (int i = 0; i < pages; i++) {
3458 ram_addr_t offset = normal[i];
3459 ram_state->migration_dirty_pages += !test_and_set_bit(
3460 offset >> TARGET_PAGE_BITS,
3461 block->bmap);
3462 }
3463 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3464 }
3465
colo_cache_from_block_offset(RAMBlock * block,ram_addr_t offset,bool record_bitmap)3466 static inline void *colo_cache_from_block_offset(RAMBlock *block,
3467 ram_addr_t offset, bool record_bitmap)
3468 {
3469 if (!offset_in_ramblock(block, offset)) {
3470 return NULL;
3471 }
3472 if (!block->colo_cache) {
3473 error_report("%s: colo_cache is NULL in block :%s",
3474 __func__, block->idstr);
3475 return NULL;
3476 }
3477
3478 /*
3479 * During colo checkpoint, we need bitmap of these migrated pages.
3480 * It help us to decide which pages in ram cache should be flushed
3481 * into VM's RAM later.
3482 */
3483 if (record_bitmap) {
3484 colo_record_bitmap(block, &offset, 1);
3485 }
3486 return block->colo_cache + offset;
3487 }
3488
3489 /**
3490 * ram_handle_zero: handle the zero page case
3491 *
3492 * If a page (or a whole RDMA chunk) has been
3493 * determined to be zero, then zap it.
3494 *
3495 * @host: host address for the zero page
3496 * @ch: what the page is filled from. We only support zero
3497 * @size: size of the zero page
3498 */
ram_handle_zero(void * host,uint64_t size)3499 void ram_handle_zero(void *host, uint64_t size)
3500 {
3501 if (!buffer_is_zero(host, size)) {
3502 memset(host, 0, size);
3503 }
3504 }
3505
colo_init_ram_state(void)3506 static void colo_init_ram_state(void)
3507 {
3508 Error *local_err = NULL;
3509
3510 if (!ram_state_init(&ram_state, &local_err)) {
3511 error_report_err(local_err);
3512 }
3513 }
3514
3515 /*
3516 * colo cache: this is for secondary VM, we cache the whole
3517 * memory of the secondary VM, it is need to hold the global lock
3518 * to call this helper.
3519 */
colo_init_ram_cache(void)3520 int colo_init_ram_cache(void)
3521 {
3522 RAMBlock *block;
3523
3524 WITH_RCU_READ_LOCK_GUARD() {
3525 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3526 block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3527 NULL, false, false);
3528 if (!block->colo_cache) {
3529 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3530 "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3531 block->used_length);
3532 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3533 if (block->colo_cache) {
3534 qemu_anon_ram_free(block->colo_cache, block->used_length);
3535 block->colo_cache = NULL;
3536 }
3537 }
3538 return -errno;
3539 }
3540 if (!machine_dump_guest_core(current_machine)) {
3541 qemu_madvise(block->colo_cache, block->used_length,
3542 QEMU_MADV_DONTDUMP);
3543 }
3544 }
3545 }
3546
3547 /*
3548 * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3549 * with to decide which page in cache should be flushed into SVM's RAM. Here
3550 * we use the same name 'ram_bitmap' as for migration.
3551 */
3552 if (ram_bytes_total()) {
3553 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3554 unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
3555 block->bmap = bitmap_new(pages);
3556 }
3557 }
3558
3559 colo_init_ram_state();
3560 return 0;
3561 }
3562
3563 /* TODO: duplicated with ram_init_bitmaps */
colo_incoming_start_dirty_log(void)3564 void colo_incoming_start_dirty_log(void)
3565 {
3566 RAMBlock *block = NULL;
3567 Error *local_err = NULL;
3568
3569 /* For memory_global_dirty_log_start below. */
3570 bql_lock();
3571 qemu_mutex_lock_ramlist();
3572
3573 memory_global_dirty_log_sync(false);
3574 WITH_RCU_READ_LOCK_GUARD() {
3575 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3576 ramblock_sync_dirty_bitmap(ram_state, block);
3577 /* Discard this dirty bitmap record */
3578 bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS);
3579 }
3580 if (!memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION,
3581 &local_err)) {
3582 error_report_err(local_err);
3583 }
3584 }
3585 ram_state->migration_dirty_pages = 0;
3586 qemu_mutex_unlock_ramlist();
3587 bql_unlock();
3588 }
3589
3590 /* It is need to hold the global lock to call this helper */
colo_release_ram_cache(void)3591 void colo_release_ram_cache(void)
3592 {
3593 RAMBlock *block;
3594
3595 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
3596 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3597 g_free(block->bmap);
3598 block->bmap = NULL;
3599 }
3600
3601 WITH_RCU_READ_LOCK_GUARD() {
3602 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3603 if (block->colo_cache) {
3604 qemu_anon_ram_free(block->colo_cache, block->used_length);
3605 block->colo_cache = NULL;
3606 }
3607 }
3608 }
3609 ram_state_cleanup(&ram_state);
3610 }
3611
3612 /**
3613 * ram_load_setup: Setup RAM for migration incoming side
3614 *
3615 * Returns zero to indicate success and negative for error
3616 *
3617 * @f: QEMUFile where to receive the data
3618 * @opaque: RAMState pointer
3619 * @errp: pointer to Error*, to store an error if it happens.
3620 */
ram_load_setup(QEMUFile * f,void * opaque,Error ** errp)3621 static int ram_load_setup(QEMUFile *f, void *opaque, Error **errp)
3622 {
3623 xbzrle_load_setup();
3624 ramblock_recv_map_init();
3625
3626 return 0;
3627 }
3628
ram_load_cleanup(void * opaque)3629 static int ram_load_cleanup(void *opaque)
3630 {
3631 RAMBlock *rb;
3632
3633 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3634 qemu_ram_block_writeback(rb);
3635 }
3636
3637 xbzrle_load_cleanup();
3638
3639 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3640 g_free(rb->receivedmap);
3641 rb->receivedmap = NULL;
3642 }
3643
3644 return 0;
3645 }
3646
3647 /**
3648 * ram_postcopy_incoming_init: allocate postcopy data structures
3649 *
3650 * Returns 0 for success and negative if there was one error
3651 *
3652 * @mis: current migration incoming state
3653 *
3654 * Allocate data structures etc needed by incoming migration with
3655 * postcopy-ram. postcopy-ram's similarly names
3656 * postcopy_ram_incoming_init does the work.
3657 */
ram_postcopy_incoming_init(MigrationIncomingState * mis)3658 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
3659 {
3660 return postcopy_ram_incoming_init(mis);
3661 }
3662
3663 /**
3664 * ram_load_postcopy: load a page in postcopy case
3665 *
3666 * Returns 0 for success or -errno in case of error
3667 *
3668 * Called in postcopy mode by ram_load().
3669 * rcu_read_lock is taken prior to this being called.
3670 *
3671 * @f: QEMUFile where to send the data
3672 * @channel: the channel to use for loading
3673 */
ram_load_postcopy(QEMUFile * f,int channel)3674 int ram_load_postcopy(QEMUFile *f, int channel)
3675 {
3676 int flags = 0, ret = 0;
3677 bool place_needed = false;
3678 bool matches_target_page_size = false;
3679 MigrationIncomingState *mis = migration_incoming_get_current();
3680 PostcopyTmpPage *tmp_page = &mis->postcopy_tmp_pages[channel];
3681
3682 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3683 ram_addr_t addr;
3684 void *page_buffer = NULL;
3685 void *place_source = NULL;
3686 RAMBlock *block = NULL;
3687 uint8_t ch;
3688
3689 addr = qemu_get_be64(f);
3690
3691 /*
3692 * If qemu file error, we should stop here, and then "addr"
3693 * may be invalid
3694 */
3695 ret = qemu_file_get_error(f);
3696 if (ret) {
3697 break;
3698 }
3699
3700 flags = addr & ~TARGET_PAGE_MASK;
3701 addr &= TARGET_PAGE_MASK;
3702
3703 trace_ram_load_postcopy_loop(channel, (uint64_t)addr, flags);
3704 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) {
3705 block = ram_block_from_stream(mis, f, flags, channel);
3706 if (!block) {
3707 ret = -EINVAL;
3708 break;
3709 }
3710
3711 /*
3712 * Relying on used_length is racy and can result in false positives.
3713 * We might place pages beyond used_length in case RAM was shrunk
3714 * while in postcopy, which is fine - trying to place via
3715 * UFFDIO_COPY/UFFDIO_ZEROPAGE will never segfault.
3716 */
3717 if (!block->host || addr >= block->postcopy_length) {
3718 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3719 ret = -EINVAL;
3720 break;
3721 }
3722 tmp_page->target_pages++;
3723 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
3724 /*
3725 * Postcopy requires that we place whole host pages atomically;
3726 * these may be huge pages for RAMBlocks that are backed by
3727 * hugetlbfs.
3728 * To make it atomic, the data is read into a temporary page
3729 * that's moved into place later.
3730 * The migration protocol uses, possibly smaller, target-pages
3731 * however the source ensures it always sends all the components
3732 * of a host page in one chunk.
3733 */
3734 page_buffer = tmp_page->tmp_huge_page +
3735 host_page_offset_from_ram_block_offset(block, addr);
3736 /* If all TP are zero then we can optimise the place */
3737 if (tmp_page->target_pages == 1) {
3738 tmp_page->host_addr =
3739 host_page_from_ram_block_offset(block, addr);
3740 } else if (tmp_page->host_addr !=
3741 host_page_from_ram_block_offset(block, addr)) {
3742 /* not the 1st TP within the HP */
3743 error_report("Non-same host page detected on channel %d: "
3744 "Target host page %p, received host page %p "
3745 "(rb %s offset 0x"RAM_ADDR_FMT" target_pages %d)",
3746 channel, tmp_page->host_addr,
3747 host_page_from_ram_block_offset(block, addr),
3748 block->idstr, addr, tmp_page->target_pages);
3749 ret = -EINVAL;
3750 break;
3751 }
3752
3753 /*
3754 * If it's the last part of a host page then we place the host
3755 * page
3756 */
3757 if (tmp_page->target_pages ==
3758 (block->page_size / TARGET_PAGE_SIZE)) {
3759 place_needed = true;
3760 }
3761 place_source = tmp_page->tmp_huge_page;
3762 }
3763
3764 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
3765 case RAM_SAVE_FLAG_ZERO:
3766 ch = qemu_get_byte(f);
3767 if (ch != 0) {
3768 error_report("Found a zero page with value %d", ch);
3769 ret = -EINVAL;
3770 break;
3771 }
3772 /*
3773 * Can skip to set page_buffer when
3774 * this is a zero page and (block->page_size == TARGET_PAGE_SIZE).
3775 */
3776 if (!matches_target_page_size) {
3777 memset(page_buffer, ch, TARGET_PAGE_SIZE);
3778 }
3779 break;
3780
3781 case RAM_SAVE_FLAG_PAGE:
3782 tmp_page->all_zero = false;
3783 if (!matches_target_page_size) {
3784 /* For huge pages, we always use temporary buffer */
3785 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
3786 } else {
3787 /*
3788 * For small pages that matches target page size, we
3789 * avoid the qemu_file copy. Instead we directly use
3790 * the buffer of QEMUFile to place the page. Note: we
3791 * cannot do any QEMUFile operation before using that
3792 * buffer to make sure the buffer is valid when
3793 * placing the page.
3794 */
3795 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
3796 TARGET_PAGE_SIZE);
3797 }
3798 break;
3799 case RAM_SAVE_FLAG_MULTIFD_FLUSH:
3800 multifd_recv_sync_main();
3801 break;
3802 case RAM_SAVE_FLAG_EOS:
3803 /* normal exit */
3804 if (migrate_multifd() &&
3805 migrate_multifd_flush_after_each_section()) {
3806 multifd_recv_sync_main();
3807 }
3808 break;
3809 default:
3810 error_report("Unknown combination of migration flags: 0x%x"
3811 " (postcopy mode)", flags);
3812 ret = -EINVAL;
3813 break;
3814 }
3815
3816 /* Detect for any possible file errors */
3817 if (!ret && qemu_file_get_error(f)) {
3818 ret = qemu_file_get_error(f);
3819 }
3820
3821 if (!ret && place_needed) {
3822 if (tmp_page->all_zero) {
3823 ret = postcopy_place_page_zero(mis, tmp_page->host_addr, block);
3824 } else {
3825 ret = postcopy_place_page(mis, tmp_page->host_addr,
3826 place_source, block);
3827 }
3828 place_needed = false;
3829 postcopy_temp_page_reset(tmp_page);
3830 }
3831 }
3832
3833 return ret;
3834 }
3835
postcopy_is_running(void)3836 static bool postcopy_is_running(void)
3837 {
3838 PostcopyState ps = postcopy_state_get();
3839 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
3840 }
3841
3842 /*
3843 * Flush content of RAM cache into SVM's memory.
3844 * Only flush the pages that be dirtied by PVM or SVM or both.
3845 */
colo_flush_ram_cache(void)3846 void colo_flush_ram_cache(void)
3847 {
3848 RAMBlock *block = NULL;
3849 void *dst_host;
3850 void *src_host;
3851 unsigned long offset = 0;
3852
3853 memory_global_dirty_log_sync(false);
3854 qemu_mutex_lock(&ram_state->bitmap_mutex);
3855 WITH_RCU_READ_LOCK_GUARD() {
3856 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3857 ramblock_sync_dirty_bitmap(ram_state, block);
3858 }
3859 }
3860
3861 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
3862 WITH_RCU_READ_LOCK_GUARD() {
3863 block = QLIST_FIRST_RCU(&ram_list.blocks);
3864
3865 while (block) {
3866 unsigned long num = 0;
3867
3868 offset = colo_bitmap_find_dirty(ram_state, block, offset, &num);
3869 if (!offset_in_ramblock(block,
3870 ((ram_addr_t)offset) << TARGET_PAGE_BITS)) {
3871 offset = 0;
3872 num = 0;
3873 block = QLIST_NEXT_RCU(block, next);
3874 } else {
3875 unsigned long i = 0;
3876
3877 for (i = 0; i < num; i++) {
3878 migration_bitmap_clear_dirty(ram_state, block, offset + i);
3879 }
3880 dst_host = block->host
3881 + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3882 src_host = block->colo_cache
3883 + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3884 memcpy(dst_host, src_host, TARGET_PAGE_SIZE * num);
3885 offset += num;
3886 }
3887 }
3888 }
3889 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3890 trace_colo_flush_ram_cache_end();
3891 }
3892
ram_load_multifd_pages(void * host_addr,size_t size,uint64_t offset)3893 static size_t ram_load_multifd_pages(void *host_addr, size_t size,
3894 uint64_t offset)
3895 {
3896 MultiFDRecvData *data = multifd_get_recv_data();
3897
3898 data->opaque = host_addr;
3899 data->file_offset = offset;
3900 data->size = size;
3901
3902 if (!multifd_recv()) {
3903 return 0;
3904 }
3905
3906 return size;
3907 }
3908
read_ramblock_mapped_ram(QEMUFile * f,RAMBlock * block,long num_pages,unsigned long * bitmap,Error ** errp)3909 static bool read_ramblock_mapped_ram(QEMUFile *f, RAMBlock *block,
3910 long num_pages, unsigned long *bitmap,
3911 Error **errp)
3912 {
3913 ERRP_GUARD();
3914 unsigned long set_bit_idx, clear_bit_idx;
3915 ram_addr_t offset;
3916 void *host;
3917 size_t read, unread, size;
3918
3919 for (set_bit_idx = find_first_bit(bitmap, num_pages);
3920 set_bit_idx < num_pages;
3921 set_bit_idx = find_next_bit(bitmap, num_pages, clear_bit_idx + 1)) {
3922
3923 clear_bit_idx = find_next_zero_bit(bitmap, num_pages, set_bit_idx + 1);
3924
3925 unread = TARGET_PAGE_SIZE * (clear_bit_idx - set_bit_idx);
3926 offset = set_bit_idx << TARGET_PAGE_BITS;
3927
3928 while (unread > 0) {
3929 host = host_from_ram_block_offset(block, offset);
3930 if (!host) {
3931 error_setg(errp, "page outside of ramblock %s range",
3932 block->idstr);
3933 return false;
3934 }
3935
3936 size = MIN(unread, MAPPED_RAM_LOAD_BUF_SIZE);
3937
3938 if (migrate_multifd()) {
3939 read = ram_load_multifd_pages(host, size,
3940 block->pages_offset + offset);
3941 } else {
3942 read = qemu_get_buffer_at(f, host, size,
3943 block->pages_offset + offset);
3944 }
3945
3946 if (!read) {
3947 goto err;
3948 }
3949 offset += read;
3950 unread -= read;
3951 }
3952 }
3953
3954 return true;
3955
3956 err:
3957 qemu_file_get_error_obj(f, errp);
3958 error_prepend(errp, "(%s) failed to read page " RAM_ADDR_FMT
3959 "from file offset %" PRIx64 ": ", block->idstr, offset,
3960 block->pages_offset + offset);
3961 return false;
3962 }
3963
parse_ramblock_mapped_ram(QEMUFile * f,RAMBlock * block,ram_addr_t length,Error ** errp)3964 static void parse_ramblock_mapped_ram(QEMUFile *f, RAMBlock *block,
3965 ram_addr_t length, Error **errp)
3966 {
3967 g_autofree unsigned long *bitmap = NULL;
3968 MappedRamHeader header;
3969 size_t bitmap_size;
3970 long num_pages;
3971
3972 if (!mapped_ram_read_header(f, &header, errp)) {
3973 return;
3974 }
3975
3976 block->pages_offset = header.pages_offset;
3977
3978 /*
3979 * Check the alignment of the file region that contains pages. We
3980 * don't enforce MAPPED_RAM_FILE_OFFSET_ALIGNMENT to allow that
3981 * value to change in the future. Do only a sanity check with page
3982 * size alignment.
3983 */
3984 if (!QEMU_IS_ALIGNED(block->pages_offset, TARGET_PAGE_SIZE)) {
3985 error_setg(errp,
3986 "Error reading ramblock %s pages, region has bad alignment",
3987 block->idstr);
3988 return;
3989 }
3990
3991 num_pages = length / header.page_size;
3992 bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long);
3993
3994 bitmap = g_malloc0(bitmap_size);
3995 if (qemu_get_buffer_at(f, (uint8_t *)bitmap, bitmap_size,
3996 header.bitmap_offset) != bitmap_size) {
3997 error_setg(errp, "Error reading dirty bitmap");
3998 return;
3999 }
4000
4001 if (!read_ramblock_mapped_ram(f, block, num_pages, bitmap, errp)) {
4002 return;
4003 }
4004
4005 /* Skip pages array */
4006 qemu_set_offset(f, block->pages_offset + length, SEEK_SET);
4007
4008 return;
4009 }
4010
parse_ramblock(QEMUFile * f,RAMBlock * block,ram_addr_t length)4011 static int parse_ramblock(QEMUFile *f, RAMBlock *block, ram_addr_t length)
4012 {
4013 int ret = 0;
4014 /* ADVISE is earlier, it shows the source has the postcopy capability on */
4015 bool postcopy_advised = migration_incoming_postcopy_advised();
4016 int max_hg_page_size;
4017 Error *local_err = NULL;
4018
4019 assert(block);
4020
4021 if (migrate_mapped_ram()) {
4022 parse_ramblock_mapped_ram(f, block, length, &local_err);
4023 if (local_err) {
4024 error_report_err(local_err);
4025 return -EINVAL;
4026 }
4027 return 0;
4028 }
4029
4030 if (!qemu_ram_is_migratable(block)) {
4031 error_report("block %s should not be migrated !", block->idstr);
4032 return -EINVAL;
4033 }
4034
4035 if (length != block->used_length) {
4036 ret = qemu_ram_resize(block, length, &local_err);
4037 if (local_err) {
4038 error_report_err(local_err);
4039 return ret;
4040 }
4041 }
4042
4043 /*
4044 * ??? Mirrors the previous value of qemu_host_page_size,
4045 * but is this really what was intended for the migration?
4046 */
4047 max_hg_page_size = MAX(qemu_real_host_page_size(), TARGET_PAGE_SIZE);
4048
4049 /* For postcopy we need to check hugepage sizes match */
4050 if (postcopy_advised && migrate_postcopy_ram() &&
4051 block->page_size != max_hg_page_size) {
4052 uint64_t remote_page_size = qemu_get_be64(f);
4053 if (remote_page_size != block->page_size) {
4054 error_report("Mismatched RAM page size %s "
4055 "(local) %zd != %" PRId64, block->idstr,
4056 block->page_size, remote_page_size);
4057 return -EINVAL;
4058 }
4059 }
4060 if (migrate_ignore_shared()) {
4061 hwaddr addr = qemu_get_be64(f);
4062 if (migrate_ram_is_ignored(block) &&
4063 block->mr->addr != addr) {
4064 error_report("Mismatched GPAs for block %s "
4065 "%" PRId64 "!= %" PRId64, block->idstr,
4066 (uint64_t)addr, (uint64_t)block->mr->addr);
4067 return -EINVAL;
4068 }
4069 }
4070 ret = rdma_block_notification_handle(f, block->idstr);
4071 if (ret < 0) {
4072 qemu_file_set_error(f, ret);
4073 }
4074
4075 return ret;
4076 }
4077
parse_ramblocks(QEMUFile * f,ram_addr_t total_ram_bytes)4078 static int parse_ramblocks(QEMUFile *f, ram_addr_t total_ram_bytes)
4079 {
4080 int ret = 0;
4081
4082 /* Synchronize RAM block list */
4083 while (!ret && total_ram_bytes) {
4084 RAMBlock *block;
4085 char id[256];
4086 ram_addr_t length;
4087 int len = qemu_get_byte(f);
4088
4089 qemu_get_buffer(f, (uint8_t *)id, len);
4090 id[len] = 0;
4091 length = qemu_get_be64(f);
4092
4093 block = qemu_ram_block_by_name(id);
4094 if (block) {
4095 ret = parse_ramblock(f, block, length);
4096 } else {
4097 error_report("Unknown ramblock \"%s\", cannot accept "
4098 "migration", id);
4099 ret = -EINVAL;
4100 }
4101 total_ram_bytes -= length;
4102 }
4103
4104 return ret;
4105 }
4106
4107 /**
4108 * ram_load_precopy: load pages in precopy case
4109 *
4110 * Returns 0 for success or -errno in case of error
4111 *
4112 * Called in precopy mode by ram_load().
4113 * rcu_read_lock is taken prior to this being called.
4114 *
4115 * @f: QEMUFile where to send the data
4116 */
ram_load_precopy(QEMUFile * f)4117 static int ram_load_precopy(QEMUFile *f)
4118 {
4119 MigrationIncomingState *mis = migration_incoming_get_current();
4120 int flags = 0, ret = 0, invalid_flags = 0, i = 0;
4121
4122 if (migrate_mapped_ram()) {
4123 invalid_flags |= (RAM_SAVE_FLAG_HOOK | RAM_SAVE_FLAG_MULTIFD_FLUSH |
4124 RAM_SAVE_FLAG_PAGE | RAM_SAVE_FLAG_XBZRLE |
4125 RAM_SAVE_FLAG_ZERO);
4126 }
4127
4128 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4129 ram_addr_t addr;
4130 void *host = NULL, *host_bak = NULL;
4131 uint8_t ch;
4132
4133 /*
4134 * Yield periodically to let main loop run, but an iteration of
4135 * the main loop is expensive, so do it each some iterations
4136 */
4137 if ((i & 32767) == 0 && qemu_in_coroutine()) {
4138 aio_co_schedule(qemu_get_current_aio_context(),
4139 qemu_coroutine_self());
4140 qemu_coroutine_yield();
4141 }
4142 i++;
4143
4144 addr = qemu_get_be64(f);
4145 ret = qemu_file_get_error(f);
4146 if (ret) {
4147 error_report("Getting RAM address failed");
4148 break;
4149 }
4150
4151 flags = addr & ~TARGET_PAGE_MASK;
4152 addr &= TARGET_PAGE_MASK;
4153
4154 if (flags & invalid_flags) {
4155 error_report("Unexpected RAM flags: %d", flags & invalid_flags);
4156
4157 ret = -EINVAL;
4158 break;
4159 }
4160
4161 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
4162 RAM_SAVE_FLAG_XBZRLE)) {
4163 RAMBlock *block = ram_block_from_stream(mis, f, flags,
4164 RAM_CHANNEL_PRECOPY);
4165
4166 host = host_from_ram_block_offset(block, addr);
4167 /*
4168 * After going into COLO stage, we should not load the page
4169 * into SVM's memory directly, we put them into colo_cache firstly.
4170 * NOTE: We need to keep a copy of SVM's ram in colo_cache.
4171 * Previously, we copied all these memory in preparing stage of COLO
4172 * while we need to stop VM, which is a time-consuming process.
4173 * Here we optimize it by a trick, back-up every page while in
4174 * migration process while COLO is enabled, though it affects the
4175 * speed of the migration, but it obviously reduce the downtime of
4176 * back-up all SVM'S memory in COLO preparing stage.
4177 */
4178 if (migration_incoming_colo_enabled()) {
4179 if (migration_incoming_in_colo_state()) {
4180 /* In COLO stage, put all pages into cache temporarily */
4181 host = colo_cache_from_block_offset(block, addr, true);
4182 } else {
4183 /*
4184 * In migration stage but before COLO stage,
4185 * Put all pages into both cache and SVM's memory.
4186 */
4187 host_bak = colo_cache_from_block_offset(block, addr, false);
4188 }
4189 }
4190 if (!host) {
4191 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4192 ret = -EINVAL;
4193 break;
4194 }
4195 if (!migration_incoming_in_colo_state()) {
4196 ramblock_recv_bitmap_set(block, host);
4197 }
4198
4199 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
4200 }
4201
4202 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4203 case RAM_SAVE_FLAG_MEM_SIZE:
4204 ret = parse_ramblocks(f, addr);
4205 /*
4206 * For mapped-ram migration (to a file) using multifd, we sync
4207 * once and for all here to make sure all tasks we queued to
4208 * multifd threads are completed, so that all the ramblocks
4209 * (including all the guest memory pages within) are fully
4210 * loaded after this sync returns.
4211 */
4212 if (migrate_mapped_ram()) {
4213 multifd_recv_sync_main();
4214 }
4215 break;
4216
4217 case RAM_SAVE_FLAG_ZERO:
4218 ch = qemu_get_byte(f);
4219 if (ch != 0) {
4220 error_report("Found a zero page with value %d", ch);
4221 ret = -EINVAL;
4222 break;
4223 }
4224 ram_handle_zero(host, TARGET_PAGE_SIZE);
4225 break;
4226
4227 case RAM_SAVE_FLAG_PAGE:
4228 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
4229 break;
4230
4231 case RAM_SAVE_FLAG_XBZRLE:
4232 if (load_xbzrle(f, addr, host) < 0) {
4233 error_report("Failed to decompress XBZRLE page at "
4234 RAM_ADDR_FMT, addr);
4235 ret = -EINVAL;
4236 break;
4237 }
4238 break;
4239 case RAM_SAVE_FLAG_MULTIFD_FLUSH:
4240 multifd_recv_sync_main();
4241 break;
4242 case RAM_SAVE_FLAG_EOS:
4243 /* normal exit */
4244 if (migrate_multifd() &&
4245 migrate_multifd_flush_after_each_section() &&
4246 /*
4247 * Mapped-ram migration flushes once and for all after
4248 * parsing ramblocks. Always ignore EOS for it.
4249 */
4250 !migrate_mapped_ram()) {
4251 multifd_recv_sync_main();
4252 }
4253 break;
4254 case RAM_SAVE_FLAG_HOOK:
4255 ret = rdma_registration_handle(f);
4256 if (ret < 0) {
4257 qemu_file_set_error(f, ret);
4258 }
4259 break;
4260 default:
4261 error_report("Unknown combination of migration flags: 0x%x", flags);
4262 ret = -EINVAL;
4263 }
4264 if (!ret) {
4265 ret = qemu_file_get_error(f);
4266 }
4267 if (!ret && host_bak) {
4268 memcpy(host_bak, host, TARGET_PAGE_SIZE);
4269 }
4270 }
4271
4272 return ret;
4273 }
4274
ram_load(QEMUFile * f,void * opaque,int version_id)4275 static int ram_load(QEMUFile *f, void *opaque, int version_id)
4276 {
4277 int ret = 0;
4278 static uint64_t seq_iter;
4279 /*
4280 * If system is running in postcopy mode, page inserts to host memory must
4281 * be atomic
4282 */
4283 bool postcopy_running = postcopy_is_running();
4284
4285 seq_iter++;
4286
4287 if (version_id != 4) {
4288 return -EINVAL;
4289 }
4290
4291 /*
4292 * This RCU critical section can be very long running.
4293 * When RCU reclaims in the code start to become numerous,
4294 * it will be necessary to reduce the granularity of this
4295 * critical section.
4296 */
4297 trace_ram_load_start();
4298 WITH_RCU_READ_LOCK_GUARD() {
4299 if (postcopy_running) {
4300 /*
4301 * Note! Here RAM_CHANNEL_PRECOPY is the precopy channel of
4302 * postcopy migration, we have another RAM_CHANNEL_POSTCOPY to
4303 * service fast page faults.
4304 */
4305 ret = ram_load_postcopy(f, RAM_CHANNEL_PRECOPY);
4306 } else {
4307 ret = ram_load_precopy(f);
4308 }
4309 }
4310 trace_ram_load_complete(ret, seq_iter);
4311
4312 return ret;
4313 }
4314
ram_has_postcopy(void * opaque)4315 static bool ram_has_postcopy(void *opaque)
4316 {
4317 RAMBlock *rb;
4318 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4319 if (ramblock_is_pmem(rb)) {
4320 info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4321 "is not supported now!", rb->idstr, rb->host);
4322 return false;
4323 }
4324 }
4325
4326 return migrate_postcopy_ram();
4327 }
4328
4329 /* Sync all the dirty bitmap with destination VM. */
ram_dirty_bitmap_sync_all(MigrationState * s,RAMState * rs)4330 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4331 {
4332 RAMBlock *block;
4333 QEMUFile *file = s->to_dst_file;
4334
4335 trace_ram_dirty_bitmap_sync_start();
4336
4337 qatomic_set(&rs->postcopy_bmap_sync_requested, 0);
4338 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4339 qemu_savevm_send_recv_bitmap(file, block->idstr);
4340 trace_ram_dirty_bitmap_request(block->idstr);
4341 qatomic_inc(&rs->postcopy_bmap_sync_requested);
4342 }
4343
4344 trace_ram_dirty_bitmap_sync_wait();
4345
4346 /* Wait until all the ramblocks' dirty bitmap synced */
4347 while (qatomic_read(&rs->postcopy_bmap_sync_requested)) {
4348 if (migration_rp_wait(s)) {
4349 return -1;
4350 }
4351 }
4352
4353 trace_ram_dirty_bitmap_sync_complete();
4354
4355 return 0;
4356 }
4357
4358 /*
4359 * Read the received bitmap, revert it as the initial dirty bitmap.
4360 * This is only used when the postcopy migration is paused but wants
4361 * to resume from a middle point.
4362 *
4363 * Returns true if succeeded, false for errors.
4364 */
ram_dirty_bitmap_reload(MigrationState * s,RAMBlock * block,Error ** errp)4365 bool ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block, Error **errp)
4366 {
4367 /* from_dst_file is always valid because we're within rp_thread */
4368 QEMUFile *file = s->rp_state.from_dst_file;
4369 g_autofree unsigned long *le_bitmap = NULL;
4370 unsigned long nbits = block->used_length >> TARGET_PAGE_BITS;
4371 uint64_t local_size = DIV_ROUND_UP(nbits, 8);
4372 uint64_t size, end_mark;
4373 RAMState *rs = ram_state;
4374
4375 trace_ram_dirty_bitmap_reload_begin(block->idstr);
4376
4377 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4378 error_setg(errp, "Reload bitmap in incorrect state %s",
4379 MigrationStatus_str(s->state));
4380 return false;
4381 }
4382
4383 /*
4384 * Note: see comments in ramblock_recv_bitmap_send() on why we
4385 * need the endianness conversion, and the paddings.
4386 */
4387 local_size = ROUND_UP(local_size, 8);
4388
4389 /* Add paddings */
4390 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4391
4392 size = qemu_get_be64(file);
4393
4394 /* The size of the bitmap should match with our ramblock */
4395 if (size != local_size) {
4396 error_setg(errp, "ramblock '%s' bitmap size mismatch (0x%"PRIx64
4397 " != 0x%"PRIx64")", block->idstr, size, local_size);
4398 return false;
4399 }
4400
4401 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4402 end_mark = qemu_get_be64(file);
4403
4404 if (qemu_file_get_error(file) || size != local_size) {
4405 error_setg(errp, "read bitmap failed for ramblock '%s': "
4406 "(size 0x%"PRIx64", got: 0x%"PRIx64")",
4407 block->idstr, local_size, size);
4408 return false;
4409 }
4410
4411 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4412 error_setg(errp, "ramblock '%s' end mark incorrect: 0x%"PRIx64,
4413 block->idstr, end_mark);
4414 return false;
4415 }
4416
4417 /*
4418 * Endianness conversion. We are during postcopy (though paused).
4419 * The dirty bitmap won't change. We can directly modify it.
4420 */
4421 bitmap_from_le(block->bmap, le_bitmap, nbits);
4422
4423 /*
4424 * What we received is "received bitmap". Revert it as the initial
4425 * dirty bitmap for this ramblock.
4426 */
4427 bitmap_complement(block->bmap, block->bmap, nbits);
4428
4429 /* Clear dirty bits of discarded ranges that we don't want to migrate. */
4430 ramblock_dirty_bitmap_clear_discarded_pages(block);
4431
4432 /* We'll recalculate migration_dirty_pages in ram_state_resume_prepare(). */
4433 trace_ram_dirty_bitmap_reload_complete(block->idstr);
4434
4435 qatomic_dec(&rs->postcopy_bmap_sync_requested);
4436
4437 /*
4438 * We succeeded to sync bitmap for current ramblock. Always kick the
4439 * migration thread to check whether all requested bitmaps are
4440 * reloaded. NOTE: it's racy to only kick when requested==0, because
4441 * we don't know whether the migration thread may still be increasing
4442 * it.
4443 */
4444 migration_rp_kick(s);
4445
4446 return true;
4447 }
4448
ram_resume_prepare(MigrationState * s,void * opaque)4449 static int ram_resume_prepare(MigrationState *s, void *opaque)
4450 {
4451 RAMState *rs = *(RAMState **)opaque;
4452 int ret;
4453
4454 ret = ram_dirty_bitmap_sync_all(s, rs);
4455 if (ret) {
4456 return ret;
4457 }
4458
4459 ram_state_resume_prepare(rs, s->to_dst_file);
4460
4461 return 0;
4462 }
4463
postcopy_preempt_shutdown_file(MigrationState * s)4464 void postcopy_preempt_shutdown_file(MigrationState *s)
4465 {
4466 qemu_put_be64(s->postcopy_qemufile_src, RAM_SAVE_FLAG_EOS);
4467 qemu_fflush(s->postcopy_qemufile_src);
4468 }
4469
4470 static SaveVMHandlers savevm_ram_handlers = {
4471 .save_setup = ram_save_setup,
4472 .save_live_iterate = ram_save_iterate,
4473 .save_live_complete_postcopy = ram_save_complete,
4474 .save_live_complete_precopy = ram_save_complete,
4475 .has_postcopy = ram_has_postcopy,
4476 .state_pending_exact = ram_state_pending_exact,
4477 .state_pending_estimate = ram_state_pending_estimate,
4478 .load_state = ram_load,
4479 .save_cleanup = ram_save_cleanup,
4480 .load_setup = ram_load_setup,
4481 .load_cleanup = ram_load_cleanup,
4482 .resume_prepare = ram_resume_prepare,
4483 };
4484
ram_mig_ram_block_resized(RAMBlockNotifier * n,void * host,size_t old_size,size_t new_size)4485 static void ram_mig_ram_block_resized(RAMBlockNotifier *n, void *host,
4486 size_t old_size, size_t new_size)
4487 {
4488 PostcopyState ps = postcopy_state_get();
4489 ram_addr_t offset;
4490 RAMBlock *rb = qemu_ram_block_from_host(host, false, &offset);
4491 Error *err = NULL;
4492
4493 if (!rb) {
4494 error_report("RAM block not found");
4495 return;
4496 }
4497
4498 if (migrate_ram_is_ignored(rb)) {
4499 return;
4500 }
4501
4502 if (migration_is_running()) {
4503 /*
4504 * Precopy code on the source cannot deal with the size of RAM blocks
4505 * changing at random points in time - especially after sending the
4506 * RAM block sizes in the migration stream, they must no longer change.
4507 * Abort and indicate a proper reason.
4508 */
4509 error_setg(&err, "RAM block '%s' resized during precopy.", rb->idstr);
4510 migration_cancel(err);
4511 error_free(err);
4512 }
4513
4514 switch (ps) {
4515 case POSTCOPY_INCOMING_ADVISE:
4516 /*
4517 * Update what ram_postcopy_incoming_init()->init_range() does at the
4518 * time postcopy was advised. Syncing RAM blocks with the source will
4519 * result in RAM resizes.
4520 */
4521 if (old_size < new_size) {
4522 if (ram_discard_range(rb->idstr, old_size, new_size - old_size)) {
4523 error_report("RAM block '%s' discard of resized RAM failed",
4524 rb->idstr);
4525 }
4526 }
4527 rb->postcopy_length = new_size;
4528 break;
4529 case POSTCOPY_INCOMING_NONE:
4530 case POSTCOPY_INCOMING_RUNNING:
4531 case POSTCOPY_INCOMING_END:
4532 /*
4533 * Once our guest is running, postcopy does no longer care about
4534 * resizes. When growing, the new memory was not available on the
4535 * source, no handler needed.
4536 */
4537 break;
4538 default:
4539 error_report("RAM block '%s' resized during postcopy state: %d",
4540 rb->idstr, ps);
4541 exit(-1);
4542 }
4543 }
4544
4545 static RAMBlockNotifier ram_mig_ram_notifier = {
4546 .ram_block_resized = ram_mig_ram_block_resized,
4547 };
4548
ram_mig_init(void)4549 void ram_mig_init(void)
4550 {
4551 qemu_mutex_init(&XBZRLE.lock);
4552 register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state);
4553 ram_block_notifier_add(&ram_mig_ram_notifier);
4554 }
4555