xref: /minix/external/bsd/flex/dist/dfa.c (revision 0a6a1f1d)
1 /* dfa - DFA construction routines */
2 
3 /*  Copyright (c) 1990 The Regents of the University of California. */
4 /*  All rights reserved. */
5 
6 /*  This code is derived from software contributed to Berkeley by */
7 /*  Vern Paxson. */
8 
9 /*  The United States Government has rights in this work pursuant */
10 /*  to contract no. DE-AC03-76SF00098 between the United States */
11 /*  Department of Energy and the University of California. */
12 
13 /*  Redistribution and use in source and binary forms, with or without */
14 /*  modification, are permitted provided that the following conditions */
15 /*  are met: */
16 
17 /*  1. Redistributions of source code must retain the above copyright */
18 /*     notice, this list of conditions and the following disclaimer. */
19 /*  2. Redistributions in binary form must reproduce the above copyright */
20 /*     notice, this list of conditions and the following disclaimer in the */
21 /*     documentation and/or other materials provided with the distribution. */
22 
23 /*  Neither the name of the University nor the names of its contributors */
24 /*  may be used to endorse or promote products derived from this software */
25 /*  without specific prior written permission. */
26 
27 /*  THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR */
28 /*  IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED */
29 /*  WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR */
30 /*  PURPOSE. */
31 #include "flexdef.h"
32 __RCSID("$NetBSD: dfa.c,v 1.3 2014/10/30 18:44:05 christos Exp $");
33 
34 #include "tables.h"
35 
36 /* declare functions that have forward references */
37 
38 void dump_associated_rules PROTO ((FILE *, int));
39 void dump_transitions PROTO ((FILE *, int[]));
40 void sympartition PROTO ((int[], int, int[], int[]));
41 int symfollowset PROTO ((int[], int, int, int[]));
42 
43 
44 /* check_for_backing_up - check a DFA state for backing up
45  *
46  * synopsis
47  *     void check_for_backing_up( int ds, int state[numecs] );
48  *
49  * ds is the number of the state to check and state[] is its out-transitions,
50  * indexed by equivalence class.
51  */
52 
check_for_backing_up(ds,state)53 void check_for_backing_up (ds, state)
54      int ds;
55      int state[];
56 {
57 	if ((reject && !dfaacc[ds].dfaacc_set) || (!reject && !dfaacc[ds].dfaacc_state)) {	/* state is non-accepting */
58 		++num_backing_up;
59 
60 		if (backing_up_report) {
61 			fprintf (backing_up_file,
62 				 _("State #%d is non-accepting -\n"), ds);
63 
64 			/* identify the state */
65 			dump_associated_rules (backing_up_file, ds);
66 
67 			/* Now identify it further using the out- and
68 			 * jam-transitions.
69 			 */
70 			dump_transitions (backing_up_file, state);
71 
72 			putc ('\n', backing_up_file);
73 		}
74 	}
75 }
76 
77 
78 /* check_trailing_context - check to see if NFA state set constitutes
79  *                          "dangerous" trailing context
80  *
81  * synopsis
82  *    void check_trailing_context( int nfa_states[num_states+1], int num_states,
83  *				int accset[nacc+1], int nacc );
84  *
85  * NOTES
86  *  Trailing context is "dangerous" if both the head and the trailing
87  *  part are of variable size \and/ there's a DFA state which contains
88  *  both an accepting state for the head part of the rule and NFA states
89  *  which occur after the beginning of the trailing context.
90  *
91  *  When such a rule is matched, it's impossible to tell if having been
92  *  in the DFA state indicates the beginning of the trailing context or
93  *  further-along scanning of the pattern.  In these cases, a warning
94  *  message is issued.
95  *
96  *    nfa_states[1 .. num_states] is the list of NFA states in the DFA.
97  *    accset[1 .. nacc] is the list of accepting numbers for the DFA state.
98  */
99 
check_trailing_context(nfa_states,num_states,accset,nacc)100 void check_trailing_context (nfa_states, num_states, accset, nacc)
101      int    *nfa_states, num_states;
102      int    *accset;
103      int nacc;
104 {
105 	register int i, j;
106 
107 	for (i = 1; i <= num_states; ++i) {
108 		int     ns = nfa_states[i];
109 		register int type = state_type[ns];
110 		register int ar = assoc_rule[ns];
111 
112 		if (type == STATE_NORMAL || rule_type[ar] != RULE_VARIABLE) {	/* do nothing */
113 		}
114 
115 		else if (type == STATE_TRAILING_CONTEXT) {
116 			/* Potential trouble.  Scan set of accepting numbers
117 			 * for the one marking the end of the "head".  We
118 			 * assume that this looping will be fairly cheap
119 			 * since it's rare that an accepting number set
120 			 * is large.
121 			 */
122 			for (j = 1; j <= nacc; ++j)
123 				if (accset[j] & YY_TRAILING_HEAD_MASK) {
124 					line_warning (_
125 						      ("dangerous trailing context"),
126 						      rule_linenum[ar]);
127 					return;
128 				}
129 		}
130 	}
131 }
132 
133 
134 /* dump_associated_rules - list the rules associated with a DFA state
135  *
136  * Goes through the set of NFA states associated with the DFA and
137  * extracts the first MAX_ASSOC_RULES unique rules, sorts them,
138  * and writes a report to the given file.
139  */
140 
dump_associated_rules(file,ds)141 void dump_associated_rules (file, ds)
142      FILE   *file;
143      int ds;
144 {
145 	register int i, j;
146 	register int num_associated_rules = 0;
147 	int     rule_set[MAX_ASSOC_RULES + 1];
148 	int    *dset = dss[ds];
149 	int     size = dfasiz[ds];
150 
151 	for (i = 1; i <= size; ++i) {
152 		register int rule_num = rule_linenum[assoc_rule[dset[i]]];
153 
154 		for (j = 1; j <= num_associated_rules; ++j)
155 			if (rule_num == rule_set[j])
156 				break;
157 
158 		if (j > num_associated_rules) {	/* new rule */
159 			if (num_associated_rules < MAX_ASSOC_RULES)
160 				rule_set[++num_associated_rules] =
161 					rule_num;
162 		}
163 	}
164 
165 	qsort (&rule_set [1], num_associated_rules, sizeof (rule_set [1]), intcmp);
166 
167 	fprintf (file, _(" associated rule line numbers:"));
168 
169 	for (i = 1; i <= num_associated_rules; ++i) {
170 		if (i % 8 == 1)
171 			putc ('\n', file);
172 
173 		fprintf (file, "\t%d", rule_set[i]);
174 	}
175 
176 	putc ('\n', file);
177 }
178 
179 
180 /* dump_transitions - list the transitions associated with a DFA state
181  *
182  * synopsis
183  *     dump_transitions( FILE *file, int state[numecs] );
184  *
185  * Goes through the set of out-transitions and lists them in human-readable
186  * form (i.e., not as equivalence classes); also lists jam transitions
187  * (i.e., all those which are not out-transitions, plus EOF).  The dump
188  * is done to the given file.
189  */
190 
dump_transitions(file,state)191 void dump_transitions (file, state)
192      FILE   *file;
193      int state[];
194 {
195 	register int i, ec;
196 	int     out_char_set[CSIZE];
197 
198 	for (i = 0; i < csize; ++i) {
199 		ec = ABS (ecgroup[i]);
200 		out_char_set[i] = state[ec];
201 	}
202 
203 	fprintf (file, _(" out-transitions: "));
204 
205 	list_character_set (file, out_char_set);
206 
207 	/* now invert the members of the set to get the jam transitions */
208 	for (i = 0; i < csize; ++i)
209 		out_char_set[i] = !out_char_set[i];
210 
211 	fprintf (file, _("\n jam-transitions: EOF "));
212 
213 	list_character_set (file, out_char_set);
214 
215 	putc ('\n', file);
216 }
217 
218 
219 /* epsclosure - construct the epsilon closure of a set of ndfa states
220  *
221  * synopsis
222  *    int *epsclosure( int t[num_states], int *numstates_addr,
223  *			int accset[num_rules+1], int *nacc_addr,
224  *			int *hashval_addr );
225  *
226  * NOTES
227  *  The epsilon closure is the set of all states reachable by an arbitrary
228  *  number of epsilon transitions, which themselves do not have epsilon
229  *  transitions going out, unioned with the set of states which have non-null
230  *  accepting numbers.  t is an array of size numstates of nfa state numbers.
231  *  Upon return, t holds the epsilon closure and *numstates_addr is updated.
232  *  accset holds a list of the accepting numbers, and the size of accset is
233  *  given by *nacc_addr.  t may be subjected to reallocation if it is not
234  *  large enough to hold the epsilon closure.
235  *
236  *  hashval is the hash value for the dfa corresponding to the state set.
237  */
238 
epsclosure(t,ns_addr,accset,nacc_addr,hv_addr)239 int    *epsclosure (t, ns_addr, accset, nacc_addr, hv_addr)
240      int    *t, *ns_addr, accset[], *nacc_addr, *hv_addr;
241 {
242 	register int stkpos, ns, tsp;
243 	int     numstates = *ns_addr, nacc, hashval, transsym, nfaccnum;
244 	int     stkend, nstate;
245 	static int did_stk_init = false, *stk;
246 
247 #define MARK_STATE(state) \
248 do{ trans1[state] = trans1[state] - MARKER_DIFFERENCE;} while(0)
249 
250 #define IS_MARKED(state) (trans1[state] < 0)
251 
252 #define UNMARK_STATE(state) \
253 do{ trans1[state] = trans1[state] + MARKER_DIFFERENCE;} while(0)
254 
255 #define CHECK_ACCEPT(state) \
256 do{ \
257 nfaccnum = accptnum[state]; \
258 if ( nfaccnum != NIL ) \
259 accset[++nacc] = nfaccnum; \
260 }while(0)
261 
262 #define DO_REALLOCATION() \
263 do { \
264 current_max_dfa_size += MAX_DFA_SIZE_INCREMENT; \
265 ++num_reallocs; \
266 t = reallocate_integer_array( t, current_max_dfa_size ); \
267 stk = reallocate_integer_array( stk, current_max_dfa_size ); \
268 }while(0) \
269 
270 #define PUT_ON_STACK(state) \
271 do { \
272 if ( ++stkend >= current_max_dfa_size ) \
273 DO_REALLOCATION(); \
274 stk[stkend] = state; \
275 MARK_STATE(state); \
276 }while(0)
277 
278 #define ADD_STATE(state) \
279 do { \
280 if ( ++numstates >= current_max_dfa_size ) \
281 DO_REALLOCATION(); \
282 t[numstates] = state; \
283 hashval += state; \
284 }while(0)
285 
286 #define STACK_STATE(state) \
287 do { \
288 PUT_ON_STACK(state); \
289 CHECK_ACCEPT(state); \
290 if ( nfaccnum != NIL || transchar[state] != SYM_EPSILON ) \
291 ADD_STATE(state); \
292 }while(0)
293 
294 
295 	if (!did_stk_init) {
296 		stk = allocate_integer_array (current_max_dfa_size);
297 		did_stk_init = true;
298 	}
299 
300 	nacc = stkend = hashval = 0;
301 
302 	for (nstate = 1; nstate <= numstates; ++nstate) {
303 		ns = t[nstate];
304 
305 		/* The state could be marked if we've already pushed it onto
306 		 * the stack.
307 		 */
308 		if (!IS_MARKED (ns)) {
309 			PUT_ON_STACK (ns);
310 			CHECK_ACCEPT (ns);
311 			hashval += ns;
312 		}
313 	}
314 
315 	for (stkpos = 1; stkpos <= stkend; ++stkpos) {
316 		ns = stk[stkpos];
317 		transsym = transchar[ns];
318 
319 		if (transsym == SYM_EPSILON) {
320 			tsp = trans1[ns] + MARKER_DIFFERENCE;
321 
322 			if (tsp != NO_TRANSITION) {
323 				if (!IS_MARKED (tsp))
324 					STACK_STATE (tsp);
325 
326 				tsp = trans2[ns];
327 
328 				if (tsp != NO_TRANSITION
329 				    && !IS_MARKED (tsp))
330 					STACK_STATE (tsp);
331 			}
332 		}
333 	}
334 
335 	/* Clear out "visit" markers. */
336 
337 	for (stkpos = 1; stkpos <= stkend; ++stkpos) {
338 		if (IS_MARKED (stk[stkpos]))
339 			UNMARK_STATE (stk[stkpos]);
340 		else
341 			flexfatal (_
342 				   ("consistency check failed in epsclosure()"));
343 	}
344 
345 	*ns_addr = numstates;
346 	*hv_addr = hashval;
347 	*nacc_addr = nacc;
348 
349 	return t;
350 }
351 
352 
353 /* increase_max_dfas - increase the maximum number of DFAs */
354 
increase_max_dfas()355 void increase_max_dfas ()
356 {
357 	current_max_dfas += MAX_DFAS_INCREMENT;
358 
359 	++num_reallocs;
360 
361 	base = reallocate_integer_array (base, current_max_dfas);
362 	def = reallocate_integer_array (def, current_max_dfas);
363 	dfasiz = reallocate_integer_array (dfasiz, current_max_dfas);
364 	accsiz = reallocate_integer_array (accsiz, current_max_dfas);
365 	dhash = reallocate_integer_array (dhash, current_max_dfas);
366 	dss = reallocate_int_ptr_array (dss, current_max_dfas);
367 	dfaacc = reallocate_dfaacc_union (dfaacc, current_max_dfas);
368 
369 	if (nultrans)
370 		nultrans =
371 			reallocate_integer_array (nultrans,
372 						  current_max_dfas);
373 }
374 
375 
376 /* ntod - convert an ndfa to a dfa
377  *
378  * Creates the dfa corresponding to the ndfa we've constructed.  The
379  * dfa starts out in state #1.
380  */
381 
ntod()382 void ntod ()
383 {
384 	int    *accset, ds, nacc, newds;
385 	int     sym, hashval, numstates, dsize;
386 	int     num_full_table_rows=0;	/* used only for -f */
387 	int    *nset, *dset;
388 	int     targptr, totaltrans, i, comstate, comfreq, targ;
389 	int     symlist[CSIZE + 1];
390 	int     num_start_states;
391 	int     todo_head, todo_next;
392 
393 	struct yytbl_data *yynxt_tbl = 0;
394 	flex_int32_t *yynxt_data = 0, yynxt_curr = 0;
395 
396 	/* Note that the following are indexed by *equivalence classes*
397 	 * and not by characters.  Since equivalence classes are indexed
398 	 * beginning with 1, even if the scanner accepts NUL's, this
399 	 * means that (since every character is potentially in its own
400 	 * equivalence class) these arrays must have room for indices
401 	 * from 1 to CSIZE, so their size must be CSIZE + 1.
402 	 */
403 	int     duplist[CSIZE + 1], state[CSIZE + 1];
404 	int     targfreq[CSIZE + 1], targstate[CSIZE + 1];
405 
406 	/* accset needs to be large enough to hold all of the rules present
407 	 * in the input, *plus* their YY_TRAILING_HEAD_MASK variants.
408 	 */
409 	accset = allocate_integer_array ((num_rules + 1) * 2);
410 	nset = allocate_integer_array (current_max_dfa_size);
411 
412 	/* The "todo" queue is represented by the head, which is the DFA
413 	 * state currently being processed, and the "next", which is the
414 	 * next DFA state number available (not in use).  We depend on the
415 	 * fact that snstods() returns DFA's \in increasing order/, and thus
416 	 * need only know the bounds of the dfas to be processed.
417 	 */
418 	todo_head = todo_next = 0;
419 
420 	for (i = 0; i <= csize; ++i) {
421 		duplist[i] = NIL;
422 		symlist[i] = false;
423 	}
424 
425 	for (i = 0; i <= num_rules; ++i)
426 		accset[i] = NIL;
427 
428 	if (trace) {
429 		dumpnfa (scset[1]);
430 		fputs (_("\n\nDFA Dump:\n\n"), stderr);
431 	}
432 
433 	inittbl ();
434 
435 	/* Check to see whether we should build a separate table for
436 	 * transitions on NUL characters.  We don't do this for full-speed
437 	 * (-F) scanners, since for them we don't have a simple state
438 	 * number lying around with which to index the table.  We also
439 	 * don't bother doing it for scanners unless (1) NUL is in its own
440 	 * equivalence class (indicated by a positive value of
441 	 * ecgroup[NUL]), (2) NUL's equivalence class is the last
442 	 * equivalence class, and (3) the number of equivalence classes is
443 	 * the same as the number of characters.  This latter case comes
444 	 * about when useecs is false or when it's true but every character
445 	 * still manages to land in its own class (unlikely, but it's
446 	 * cheap to check for).  If all these things are true then the
447 	 * character code needed to represent NUL's equivalence class for
448 	 * indexing the tables is going to take one more bit than the
449 	 * number of characters, and therefore we won't be assured of
450 	 * being able to fit it into a YY_CHAR variable.  This rules out
451 	 * storing the transitions in a compressed table, since the code
452 	 * for interpreting them uses a YY_CHAR variable (perhaps it
453 	 * should just use an integer, though; this is worth pondering ...
454 	 * ###).
455 	 *
456 	 * Finally, for full tables, we want the number of entries in the
457 	 * table to be a power of two so the array references go fast (it
458 	 * will just take a shift to compute the major index).  If
459 	 * encoding NUL's transitions in the table will spoil this, we
460 	 * give it its own table (note that this will be the case if we're
461 	 * not using equivalence classes).
462 	 */
463 
464 	/* Note that the test for ecgroup[0] == numecs below accomplishes
465 	 * both (1) and (2) above
466 	 */
467 	if (!fullspd && ecgroup[0] == numecs) {
468 		/* NUL is alone in its equivalence class, which is the
469 		 * last one.
470 		 */
471 		int     use_NUL_table = (numecs == csize);
472 
473 		if (fulltbl && !use_NUL_table) {
474 			/* We still may want to use the table if numecs
475 			 * is a power of 2.
476 			 */
477 			int     power_of_two;
478 
479 			for (power_of_two = 1; power_of_two <= csize;
480 			     power_of_two *= 2)
481 				if (numecs == power_of_two) {
482 					use_NUL_table = true;
483 					break;
484 				}
485 		}
486 
487 		if (use_NUL_table)
488 			nultrans =
489 				allocate_integer_array (current_max_dfas);
490 
491 		/* From now on, nultrans != nil indicates that we're
492 		 * saving null transitions for later, separate encoding.
493 		 */
494 	}
495 
496 
497 	if (fullspd) {
498 		for (i = 0; i <= numecs; ++i)
499 			state[i] = 0;
500 
501 		place_state (state, 0, 0);
502 		dfaacc[0].dfaacc_state = 0;
503 	}
504 
505 	else if (fulltbl) {
506 		if (nultrans)
507 			/* We won't be including NUL's transitions in the
508 			 * table, so build it for entries from 0 .. numecs - 1.
509 			 */
510 			num_full_table_rows = numecs;
511 
512 		else
513 			/* Take into account the fact that we'll be including
514 			 * the NUL entries in the transition table.  Build it
515 			 * from 0 .. numecs.
516 			 */
517 			num_full_table_rows = numecs + 1;
518 
519 		/* Begin generating yy_nxt[][]
520 		 * This spans the entire LONG function.
521 		 * This table is tricky because we don't know how big it will be.
522 		 * So we'll have to realloc() on the way...
523 		 * we'll wait until we can calculate yynxt_tbl->td_hilen.
524 		 */
525 		yynxt_tbl =
526 			(struct yytbl_data *) calloc (1,
527 						      sizeof (struct
528 							      yytbl_data));
529 		yytbl_data_init (yynxt_tbl, YYTD_ID_NXT);
530 		yynxt_tbl->td_hilen = 1;
531 		yynxt_tbl->td_lolen = num_full_table_rows;
532 		yynxt_tbl->td_data = yynxt_data =
533 			(flex_int32_t *) calloc (yynxt_tbl->td_lolen *
534 					    yynxt_tbl->td_hilen,
535 					    sizeof (flex_int32_t));
536 		yynxt_curr = 0;
537 
538 		buf_prints (&yydmap_buf,
539 			    "\t{YYTD_ID_NXT, (void**)&yy_nxt, sizeof(%s)},\n",
540 			    long_align ? "flex_int32_t" : "flex_int16_t");
541 
542 		/* Unless -Ca, declare it "short" because it's a real
543 		 * long-shot that that won't be large enough.
544 		 */
545 		if (gentables)
546 			out_str_dec
547 				("static yyconst %s yy_nxt[][%d] =\n    {\n",
548 				 long_align ? "flex_int32_t" : "flex_int16_t",
549 				 num_full_table_rows);
550 		else {
551 			out_dec ("#undef YY_NXT_LOLEN\n#define YY_NXT_LOLEN (%d)\n", num_full_table_rows);
552 			out_str ("static yyconst %s *yy_nxt =0;\n",
553 				 long_align ? "flex_int32_t" : "flex_int16_t");
554 		}
555 
556 
557 		if (gentables)
558 			outn ("    {");
559 
560 		/* Generate 0 entries for state #0. */
561 		for (i = 0; i < num_full_table_rows; ++i) {
562 			mk2data (0);
563 			yynxt_data[yynxt_curr++] = 0;
564 		}
565 
566 		dataflush ();
567 		if (gentables)
568 			outn ("    },\n");
569 	}
570 
571 	/* Create the first states. */
572 
573 	num_start_states = lastsc * 2;
574 
575 	for (i = 1; i <= num_start_states; ++i) {
576 		numstates = 1;
577 
578 		/* For each start condition, make one state for the case when
579 		 * we're at the beginning of the line (the '^' operator) and
580 		 * one for the case when we're not.
581 		 */
582 		if (i % 2 == 1)
583 			nset[numstates] = scset[(i / 2) + 1];
584 		else
585 			nset[numstates] =
586 				mkbranch (scbol[i / 2], scset[i / 2]);
587 
588 		nset = epsclosure (nset, &numstates, accset, &nacc,
589 				   &hashval);
590 
591 		if (snstods (nset, numstates, accset, nacc, hashval, &ds)) {
592 			numas += nacc;
593 			totnst += numstates;
594 			++todo_next;
595 
596 			if (variable_trailing_context_rules && nacc > 0)
597 				check_trailing_context (nset, numstates,
598 							accset, nacc);
599 		}
600 	}
601 
602 	if (!fullspd) {
603 		if (!snstods (nset, 0, accset, 0, 0, &end_of_buffer_state))
604 			flexfatal (_
605 				   ("could not create unique end-of-buffer state"));
606 
607 		++numas;
608 		++num_start_states;
609 		++todo_next;
610 	}
611 
612 
613 	while (todo_head < todo_next) {
614 		targptr = 0;
615 		totaltrans = 0;
616 
617 		for (i = 1; i <= numecs; ++i)
618 			state[i] = 0;
619 
620 		ds = ++todo_head;
621 
622 		dset = dss[ds];
623 		dsize = dfasiz[ds];
624 
625 		if (trace)
626 			fprintf (stderr, _("state # %d:\n"), ds);
627 
628 		sympartition (dset, dsize, symlist, duplist);
629 
630 		for (sym = 1; sym <= numecs; ++sym) {
631 			if (symlist[sym]) {
632 				symlist[sym] = 0;
633 
634 				if (duplist[sym] == NIL) {
635 					/* Symbol has unique out-transitions. */
636 					numstates =
637 						symfollowset (dset, dsize,
638 							      sym, nset);
639 					nset = epsclosure (nset,
640 							   &numstates,
641 							   accset, &nacc,
642 							   &hashval);
643 
644 					if (snstods
645 					    (nset, numstates, accset, nacc,
646 					     hashval, &newds)) {
647 						totnst = totnst +
648 							numstates;
649 						++todo_next;
650 						numas += nacc;
651 
652 						if (variable_trailing_context_rules && nacc > 0)
653 							check_trailing_context
654 								(nset,
655 								 numstates,
656 								 accset,
657 								 nacc);
658 					}
659 
660 					state[sym] = newds;
661 
662 					if (trace)
663 						fprintf (stderr,
664 							 "\t%d\t%d\n", sym,
665 							 newds);
666 
667 					targfreq[++targptr] = 1;
668 					targstate[targptr] = newds;
669 					++numuniq;
670 				}
671 
672 				else {
673 					/* sym's equivalence class has the same
674 					 * transitions as duplist(sym)'s
675 					 * equivalence class.
676 					 */
677 					targ = state[duplist[sym]];
678 					state[sym] = targ;
679 
680 					if (trace)
681 						fprintf (stderr,
682 							 "\t%d\t%d\n", sym,
683 							 targ);
684 
685 					/* Update frequency count for
686 					 * destination state.
687 					 */
688 
689 					i = 0;
690 					while (targstate[++i] != targ) ;
691 
692 					++targfreq[i];
693 					++numdup;
694 				}
695 
696 				++totaltrans;
697 				duplist[sym] = NIL;
698 			}
699 		}
700 
701 
702 		numsnpairs += totaltrans;
703 
704 		if (ds > num_start_states)
705 			check_for_backing_up (ds, state);
706 
707 		if (nultrans) {
708 			nultrans[ds] = state[NUL_ec];
709 			state[NUL_ec] = 0;	/* remove transition */
710 		}
711 
712 		if (fulltbl) {
713 
714 			/* Each time we hit here, it's another td_hilen, so we realloc. */
715 			yynxt_tbl->td_hilen++;
716 			yynxt_tbl->td_data = yynxt_data =
717 				(flex_int32_t *) realloc (yynxt_data,
718 						     yynxt_tbl->td_hilen *
719 						     yynxt_tbl->td_lolen *
720 						     sizeof (flex_int32_t));
721 
722 
723 			if (gentables)
724 				outn ("    {");
725 
726 			/* Supply array's 0-element. */
727 			if (ds == end_of_buffer_state) {
728 				mk2data (-end_of_buffer_state);
729 				yynxt_data[yynxt_curr++] =
730 					-end_of_buffer_state;
731 			}
732 			else {
733 				mk2data (end_of_buffer_state);
734 				yynxt_data[yynxt_curr++] =
735 					end_of_buffer_state;
736 			}
737 
738 			for (i = 1; i < num_full_table_rows; ++i) {
739 				/* Jams are marked by negative of state
740 				 * number.
741 				 */
742 				mk2data (state[i] ? state[i] : -ds);
743 				yynxt_data[yynxt_curr++] =
744 					state[i] ? state[i] : -ds;
745 			}
746 
747 			dataflush ();
748 			if (gentables)
749 				outn ("    },\n");
750 		}
751 
752 		else if (fullspd)
753 			place_state (state, ds, totaltrans);
754 
755 		else if (ds == end_of_buffer_state)
756 			/* Special case this state to make sure it does what
757 			 * it's supposed to, i.e., jam on end-of-buffer.
758 			 */
759 			stack1 (ds, 0, 0, JAMSTATE);
760 
761 		else {		/* normal, compressed state */
762 
763 			/* Determine which destination state is the most
764 			 * common, and how many transitions to it there are.
765 			 */
766 
767 			comfreq = 0;
768 			comstate = 0;
769 
770 			for (i = 1; i <= targptr; ++i)
771 				if (targfreq[i] > comfreq) {
772 					comfreq = targfreq[i];
773 					comstate = targstate[i];
774 				}
775 
776 			bldtbl (state, ds, totaltrans, comstate, comfreq);
777 		}
778 	}
779 
780 	if (fulltbl) {
781 		dataend ();
782 		if (tablesext) {
783 			yytbl_data_compress (yynxt_tbl);
784 			if (yytbl_data_fwrite (&tableswr, yynxt_tbl) < 0)
785 				flexerror (_
786 					   ("Could not write yynxt_tbl[][]"));
787 		}
788 		if (yynxt_tbl) {
789 			yytbl_data_destroy (yynxt_tbl);
790 			yynxt_tbl = 0;
791 		}
792 	}
793 
794 	else if (!fullspd) {
795 		cmptmps ();	/* create compressed template entries */
796 
797 		/* Create tables for all the states with only one
798 		 * out-transition.
799 		 */
800 		while (onesp > 0) {
801 			mk1tbl (onestate[onesp], onesym[onesp],
802 				onenext[onesp], onedef[onesp]);
803 			--onesp;
804 		}
805 
806 		mkdeftbl ();
807 	}
808 
809 	flex_free ((void *) accset);
810 	flex_free ((void *) nset);
811 }
812 
813 
814 /* snstods - converts a set of ndfa states into a dfa state
815  *
816  * synopsis
817  *    is_new_state = snstods( int sns[numstates], int numstates,
818  *				int accset[num_rules+1], int nacc,
819  *				int hashval, int *newds_addr );
820  *
821  * On return, the dfa state number is in newds.
822  */
823 
snstods(sns,numstates,accset,nacc,hashval,newds_addr)824 int snstods (sns, numstates, accset, nacc, hashval, newds_addr)
825      int sns[], numstates, accset[], nacc, hashval, *newds_addr;
826 {
827 	int     didsort = 0;
828 	register int i, j;
829 	int     newds, *oldsns;
830 
831 	for (i = 1; i <= lastdfa; ++i)
832 		if (hashval == dhash[i]) {
833 			if (numstates == dfasiz[i]) {
834 				oldsns = dss[i];
835 
836 				if (!didsort) {
837 					/* We sort the states in sns so we
838 					 * can compare it to oldsns quickly.
839 					 */
840 					qsort (&sns [1], numstates, sizeof (sns [1]), intcmp);
841 					didsort = 1;
842 				}
843 
844 				for (j = 1; j <= numstates; ++j)
845 					if (sns[j] != oldsns[j])
846 						break;
847 
848 				if (j > numstates) {
849 					++dfaeql;
850 					*newds_addr = i;
851 					return 0;
852 				}
853 
854 				++hshcol;
855 			}
856 
857 			else
858 				++hshsave;
859 		}
860 
861 	/* Make a new dfa. */
862 
863 	if (++lastdfa >= current_max_dfas)
864 		increase_max_dfas ();
865 
866 	newds = lastdfa;
867 
868 	dss[newds] = allocate_integer_array (numstates + 1);
869 
870 	/* If we haven't already sorted the states in sns, we do so now,
871 	 * so that future comparisons with it can be made quickly.
872 	 */
873 
874 	if (!didsort)
875 		qsort (&sns [1], numstates, sizeof (sns [1]), intcmp);
876 
877 	for (i = 1; i <= numstates; ++i)
878 		dss[newds][i] = sns[i];
879 
880 	dfasiz[newds] = numstates;
881 	dhash[newds] = hashval;
882 
883 	if (nacc == 0) {
884 		if (reject)
885 			dfaacc[newds].dfaacc_set = (int *) 0;
886 		else
887 			dfaacc[newds].dfaacc_state = 0;
888 
889 		accsiz[newds] = 0;
890 	}
891 
892 	else if (reject) {
893 		/* We sort the accepting set in increasing order so the
894 		 * disambiguating rule that the first rule listed is considered
895 		 * match in the event of ties will work.
896 		 */
897 
898 		qsort (&accset [1], nacc, sizeof (accset [1]), intcmp);
899 
900 		dfaacc[newds].dfaacc_set =
901 			allocate_integer_array (nacc + 1);
902 
903 		/* Save the accepting set for later */
904 		for (i = 1; i <= nacc; ++i) {
905 			dfaacc[newds].dfaacc_set[i] = accset[i];
906 
907 			if (accset[i] <= num_rules)
908 				/* Who knows, perhaps a REJECT can yield
909 				 * this rule.
910 				 */
911 				rule_useful[accset[i]] = true;
912 		}
913 
914 		accsiz[newds] = nacc;
915 	}
916 
917 	else {
918 		/* Find lowest numbered rule so the disambiguating rule
919 		 * will work.
920 		 */
921 		j = num_rules + 1;
922 
923 		for (i = 1; i <= nacc; ++i)
924 			if (accset[i] < j)
925 				j = accset[i];
926 
927 		dfaacc[newds].dfaacc_state = j;
928 
929 		if (j <= num_rules)
930 			rule_useful[j] = true;
931 	}
932 
933 	*newds_addr = newds;
934 
935 	return 1;
936 }
937 
938 
939 /* symfollowset - follow the symbol transitions one step
940  *
941  * synopsis
942  *    numstates = symfollowset( int ds[current_max_dfa_size], int dsize,
943  *				int transsym, int nset[current_max_dfa_size] );
944  */
945 
symfollowset(ds,dsize,transsym,nset)946 int symfollowset (ds, dsize, transsym, nset)
947      int ds[], dsize, transsym, nset[];
948 {
949 	int     ns, tsp, sym, i, j, lenccl, ch, numstates, ccllist;
950 
951 	numstates = 0;
952 
953 	for (i = 1; i <= dsize; ++i) {	/* for each nfa state ns in the state set of ds */
954 		ns = ds[i];
955 		sym = transchar[ns];
956 		tsp = trans1[ns];
957 
958 		if (sym < 0) {	/* it's a character class */
959 			sym = -sym;
960 			ccllist = cclmap[sym];
961 			lenccl = ccllen[sym];
962 
963 			if (cclng[sym]) {
964 				for (j = 0; j < lenccl; ++j) {
965 					/* Loop through negated character
966 					 * class.
967 					 */
968 					ch = ccltbl[ccllist + j];
969 
970 					if (ch == 0)
971 						ch = NUL_ec;
972 
973 					if (ch > transsym)
974 						/* Transsym isn't in negated
975 						 * ccl.
976 						 */
977 						break;
978 
979 					else if (ch == transsym)
980 						/* next 2 */
981 						goto bottom;
982 				}
983 
984 				/* Didn't find transsym in ccl. */
985 				nset[++numstates] = tsp;
986 			}
987 
988 			else
989 				for (j = 0; j < lenccl; ++j) {
990 					ch = ccltbl[ccllist + j];
991 
992 					if (ch == 0)
993 						ch = NUL_ec;
994 
995 					if (ch > transsym)
996 						break;
997 					else if (ch == transsym) {
998 						nset[++numstates] = tsp;
999 						break;
1000 					}
1001 				}
1002 		}
1003 
1004 		else if (sym == SYM_EPSILON) {	/* do nothing */
1005 		}
1006 
1007 		else if (ABS (ecgroup[sym]) == transsym)
1008 			nset[++numstates] = tsp;
1009 
1010 	      bottom:;
1011 	}
1012 
1013 	return numstates;
1014 }
1015 
1016 
1017 /* sympartition - partition characters with same out-transitions
1018  *
1019  * synopsis
1020  *    sympartition( int ds[current_max_dfa_size], int numstates,
1021  *			int symlist[numecs], int duplist[numecs] );
1022  */
1023 
sympartition(ds,numstates,symlist,duplist)1024 void sympartition (ds, numstates, symlist, duplist)
1025      int ds[], numstates;
1026      int symlist[], duplist[];
1027 {
1028 	int     tch, i, j, k, ns, dupfwd[CSIZE + 1], lenccl, cclp, ich;
1029 
1030 	/* Partitioning is done by creating equivalence classes for those
1031 	 * characters which have out-transitions from the given state.  Thus
1032 	 * we are really creating equivalence classes of equivalence classes.
1033 	 */
1034 
1035 	for (i = 1; i <= numecs; ++i) {	/* initialize equivalence class list */
1036 		duplist[i] = i - 1;
1037 		dupfwd[i] = i + 1;
1038 	}
1039 
1040 	duplist[1] = NIL;
1041 	dupfwd[numecs] = NIL;
1042 
1043 	for (i = 1; i <= numstates; ++i) {
1044 		ns = ds[i];
1045 		tch = transchar[ns];
1046 
1047 		if (tch != SYM_EPSILON) {
1048 			if (tch < -lastccl || tch >= csize) {
1049 				flexfatal (_
1050 					   ("bad transition character detected in sympartition()"));
1051 			}
1052 
1053 			if (tch >= 0) {	/* character transition */
1054 				int     ec = ecgroup[tch];
1055 
1056 				mkechar (ec, dupfwd, duplist);
1057 				symlist[ec] = 1;
1058 			}
1059 
1060 			else {	/* character class */
1061 				tch = -tch;
1062 
1063 				lenccl = ccllen[tch];
1064 				cclp = cclmap[tch];
1065 				mkeccl (ccltbl + cclp, lenccl, dupfwd,
1066 					duplist, numecs, NUL_ec);
1067 
1068 				if (cclng[tch]) {
1069 					j = 0;
1070 
1071 					for (k = 0; k < lenccl; ++k) {
1072 						ich = ccltbl[cclp + k];
1073 
1074 						if (ich == 0)
1075 							ich = NUL_ec;
1076 
1077 						for (++j; j < ich; ++j)
1078 							symlist[j] = 1;
1079 					}
1080 
1081 					for (++j; j <= numecs; ++j)
1082 						symlist[j] = 1;
1083 				}
1084 
1085 				else
1086 					for (k = 0; k < lenccl; ++k) {
1087 						ich = ccltbl[cclp + k];
1088 
1089 						if (ich == 0)
1090 							ich = NUL_ec;
1091 
1092 						symlist[ich] = 1;
1093 					}
1094 			}
1095 		}
1096 	}
1097 }
1098