1 //===-- llvm/Constants.h - Constant class subclass definitions --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// @file
10 /// This file contains the declarations for the subclasses of Constant,
11 /// which represent the different flavors of constant values that live in LLVM.
12 /// Note that Constants are immutable (once created they never change) and are
13 /// fully shared by structural equivalence.  This means that two structurally
14 /// equivalent constants will always have the same address.  Constants are
15 /// created on demand as needed and never deleted: thus clients don't have to
16 /// worry about the lifetime of the objects.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #ifndef LLVM_IR_CONSTANTS_H
21 #define LLVM_IR_CONSTANTS_H
22 
23 #include "llvm/ADT/APFloat.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/ArrayRef.h"
26 #include "llvm/ADT/None.h"
27 #include "llvm/ADT/Optional.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/IR/Constant.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/OperandTraits.h"
33 #include "llvm/IR/User.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/Compiler.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include <cassert>
39 #include <cstddef>
40 #include <cstdint>
41 
42 namespace llvm {
43 
44 template <class ConstantClass> struct ConstantAggrKeyType;
45 
46 /// Base class for constants with no operands.
47 ///
48 /// These constants have no operands; they represent their data directly.
49 /// Since they can be in use by unrelated modules (and are never based on
50 /// GlobalValues), it never makes sense to RAUW them.
51 class ConstantData : public Constant {
52   friend class Constant;
53 
handleOperandChangeImpl(Value * From,Value * To)54   Value *handleOperandChangeImpl(Value *From, Value *To) {
55     llvm_unreachable("Constant data does not have operands!");
56   }
57 
58 protected:
ConstantData(Type * Ty,ValueTy VT)59   explicit ConstantData(Type *Ty, ValueTy VT) : Constant(Ty, VT, nullptr, 0) {}
60 
new(size_t s)61   void *operator new(size_t s) { return User::operator new(s, 0); }
62 
63 public:
64   ConstantData(const ConstantData &) = delete;
65 
66   /// Methods to support type inquiry through isa, cast, and dyn_cast.
classof(const Value * V)67   static bool classof(const Value *V) {
68     return V->getValueID() >= ConstantDataFirstVal &&
69            V->getValueID() <= ConstantDataLastVal;
70   }
71 };
72 
73 //===----------------------------------------------------------------------===//
74 /// This is the shared class of boolean and integer constants. This class
75 /// represents both boolean and integral constants.
76 /// Class for constant integers.
77 class ConstantInt final : public ConstantData {
78   friend class Constant;
79 
80   APInt Val;
81 
82   ConstantInt(IntegerType *Ty, const APInt &V);
83 
84   void destroyConstantImpl();
85 
86 public:
87   ConstantInt(const ConstantInt &) = delete;
88 
89   static ConstantInt *getTrue(LLVMContext &Context);
90   static ConstantInt *getFalse(LLVMContext &Context);
91   static ConstantInt *getBool(LLVMContext &Context, bool V);
92   static Constant *getTrue(Type *Ty);
93   static Constant *getFalse(Type *Ty);
94   static Constant *getBool(Type *Ty, bool V);
95 
96   /// If Ty is a vector type, return a Constant with a splat of the given
97   /// value. Otherwise return a ConstantInt for the given value.
98   static Constant *get(Type *Ty, uint64_t V, bool IsSigned = false);
99 
100   /// Return a ConstantInt with the specified integer value for the specified
101   /// type. If the type is wider than 64 bits, the value will be zero-extended
102   /// to fit the type, unless IsSigned is true, in which case the value will
103   /// be interpreted as a 64-bit signed integer and sign-extended to fit
104   /// the type.
105   /// Get a ConstantInt for a specific value.
106   static ConstantInt *get(IntegerType *Ty, uint64_t V, bool IsSigned = false);
107 
108   /// Return a ConstantInt with the specified value for the specified type. The
109   /// value V will be canonicalized to a an unsigned APInt. Accessing it with
110   /// either getSExtValue() or getZExtValue() will yield a correctly sized and
111   /// signed value for the type Ty.
112   /// Get a ConstantInt for a specific signed value.
113   static ConstantInt *getSigned(IntegerType *Ty, int64_t V);
114   static Constant *getSigned(Type *Ty, int64_t V);
115 
116   /// Return a ConstantInt with the specified value and an implied Type. The
117   /// type is the integer type that corresponds to the bit width of the value.
118   static ConstantInt *get(LLVMContext &Context, const APInt &V);
119 
120   /// Return a ConstantInt constructed from the string strStart with the given
121   /// radix.
122   static ConstantInt *get(IntegerType *Ty, StringRef Str, uint8_t Radix);
123 
124   /// If Ty is a vector type, return a Constant with a splat of the given
125   /// value. Otherwise return a ConstantInt for the given value.
126   static Constant *get(Type *Ty, const APInt &V);
127 
128   /// Return the constant as an APInt value reference. This allows clients to
129   /// obtain a full-precision copy of the value.
130   /// Return the constant's value.
getValue()131   inline const APInt &getValue() const { return Val; }
132 
133   /// getBitWidth - Return the bitwidth of this constant.
getBitWidth()134   unsigned getBitWidth() const { return Val.getBitWidth(); }
135 
136   /// Return the constant as a 64-bit unsigned integer value after it
137   /// has been zero extended as appropriate for the type of this constant. Note
138   /// that this method can assert if the value does not fit in 64 bits.
139   /// Return the zero extended value.
getZExtValue()140   inline uint64_t getZExtValue() const { return Val.getZExtValue(); }
141 
142   /// Return the constant as a 64-bit integer value after it has been sign
143   /// extended as appropriate for the type of this constant. Note that
144   /// this method can assert if the value does not fit in 64 bits.
145   /// Return the sign extended value.
getSExtValue()146   inline int64_t getSExtValue() const { return Val.getSExtValue(); }
147 
148   /// Return the constant as an llvm::MaybeAlign.
149   /// Note that this method can assert if the value does not fit in 64 bits or
150   /// is not a power of two.
getMaybeAlignValue()151   inline MaybeAlign getMaybeAlignValue() const {
152     return MaybeAlign(getZExtValue());
153   }
154 
155   /// Return the constant as an llvm::Align, interpreting `0` as `Align(1)`.
156   /// Note that this method can assert if the value does not fit in 64 bits or
157   /// is not a power of two.
getAlignValue()158   inline Align getAlignValue() const {
159     return getMaybeAlignValue().valueOrOne();
160   }
161 
162   /// A helper method that can be used to determine if the constant contained
163   /// within is equal to a constant.  This only works for very small values,
164   /// because this is all that can be represented with all types.
165   /// Determine if this constant's value is same as an unsigned char.
equalsInt(uint64_t V)166   bool equalsInt(uint64_t V) const { return Val == V; }
167 
168   /// getType - Specialize the getType() method to always return an IntegerType,
169   /// which reduces the amount of casting needed in parts of the compiler.
170   ///
getType()171   inline IntegerType *getType() const {
172     return cast<IntegerType>(Value::getType());
173   }
174 
175   /// This static method returns true if the type Ty is big enough to
176   /// represent the value V. This can be used to avoid having the get method
177   /// assert when V is larger than Ty can represent. Note that there are two
178   /// versions of this method, one for unsigned and one for signed integers.
179   /// Although ConstantInt canonicalizes everything to an unsigned integer,
180   /// the signed version avoids callers having to convert a signed quantity
181   /// to the appropriate unsigned type before calling the method.
182   /// @returns true if V is a valid value for type Ty
183   /// Determine if the value is in range for the given type.
184   static bool isValueValidForType(Type *Ty, uint64_t V);
185   static bool isValueValidForType(Type *Ty, int64_t V);
186 
isNegative()187   bool isNegative() const { return Val.isNegative(); }
188 
189   /// This is just a convenience method to make client code smaller for a
190   /// common code. It also correctly performs the comparison without the
191   /// potential for an assertion from getZExtValue().
isZero()192   bool isZero() const { return Val.isNullValue(); }
193 
194   /// This is just a convenience method to make client code smaller for a
195   /// common case. It also correctly performs the comparison without the
196   /// potential for an assertion from getZExtValue().
197   /// Determine if the value is one.
isOne()198   bool isOne() const { return Val.isOneValue(); }
199 
200   /// This function will return true iff every bit in this constant is set
201   /// to true.
202   /// @returns true iff this constant's bits are all set to true.
203   /// Determine if the value is all ones.
isMinusOne()204   bool isMinusOne() const { return Val.isAllOnesValue(); }
205 
206   /// This function will return true iff this constant represents the largest
207   /// value that may be represented by the constant's type.
208   /// @returns true iff this is the largest value that may be represented
209   /// by this type.
210   /// Determine if the value is maximal.
isMaxValue(bool IsSigned)211   bool isMaxValue(bool IsSigned) const {
212     if (IsSigned)
213       return Val.isMaxSignedValue();
214     else
215       return Val.isMaxValue();
216   }
217 
218   /// This function will return true iff this constant represents the smallest
219   /// value that may be represented by this constant's type.
220   /// @returns true if this is the smallest value that may be represented by
221   /// this type.
222   /// Determine if the value is minimal.
isMinValue(bool IsSigned)223   bool isMinValue(bool IsSigned) const {
224     if (IsSigned)
225       return Val.isMinSignedValue();
226     else
227       return Val.isMinValue();
228   }
229 
230   /// This function will return true iff this constant represents a value with
231   /// active bits bigger than 64 bits or a value greater than the given uint64_t
232   /// value.
233   /// @returns true iff this constant is greater or equal to the given number.
234   /// Determine if the value is greater or equal to the given number.
uge(uint64_t Num)235   bool uge(uint64_t Num) const { return Val.uge(Num); }
236 
237   /// getLimitedValue - If the value is smaller than the specified limit,
238   /// return it, otherwise return the limit value.  This causes the value
239   /// to saturate to the limit.
240   /// @returns the min of the value of the constant and the specified value
241   /// Get the constant's value with a saturation limit
242   uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
243     return Val.getLimitedValue(Limit);
244   }
245 
246   /// Methods to support type inquiry through isa, cast, and dyn_cast.
classof(const Value * V)247   static bool classof(const Value *V) {
248     return V->getValueID() == ConstantIntVal;
249   }
250 };
251 
252 //===----------------------------------------------------------------------===//
253 /// ConstantFP - Floating Point Values [float, double]
254 ///
255 class ConstantFP final : public ConstantData {
256   friend class Constant;
257 
258   APFloat Val;
259 
260   ConstantFP(Type *Ty, const APFloat &V);
261 
262   void destroyConstantImpl();
263 
264 public:
265   ConstantFP(const ConstantFP &) = delete;
266 
267   /// Floating point negation must be implemented with f(x) = -0.0 - x. This
268   /// method returns the negative zero constant for floating point or vector
269   /// floating point types; for all other types, it returns the null value.
270   static Constant *getZeroValueForNegation(Type *Ty);
271 
272   /// This returns a ConstantFP, or a vector containing a splat of a ConstantFP,
273   /// for the specified value in the specified type. This should only be used
274   /// for simple constant values like 2.0/1.0 etc, that are known-valid both as
275   /// host double and as the target format.
276   static Constant *get(Type *Ty, double V);
277 
278   /// If Ty is a vector type, return a Constant with a splat of the given
279   /// value. Otherwise return a ConstantFP for the given value.
280   static Constant *get(Type *Ty, const APFloat &V);
281 
282   static Constant *get(Type *Ty, StringRef Str);
283   static ConstantFP *get(LLVMContext &Context, const APFloat &V);
284   static Constant *getNaN(Type *Ty, bool Negative = false,
285                           uint64_t Payload = 0);
286   static Constant *getQNaN(Type *Ty, bool Negative = false,
287                            APInt *Payload = nullptr);
288   static Constant *getSNaN(Type *Ty, bool Negative = false,
289                            APInt *Payload = nullptr);
290   static Constant *getNegativeZero(Type *Ty);
291   static Constant *getInfinity(Type *Ty, bool Negative = false);
292 
293   /// Return true if Ty is big enough to represent V.
294   static bool isValueValidForType(Type *Ty, const APFloat &V);
getValueAPF()295   inline const APFloat &getValueAPF() const { return Val; }
getValue()296   inline const APFloat &getValue() const { return Val; }
297 
298   /// Return true if the value is positive or negative zero.
isZero()299   bool isZero() const { return Val.isZero(); }
300 
301   /// Return true if the sign bit is set.
isNegative()302   bool isNegative() const { return Val.isNegative(); }
303 
304   /// Return true if the value is infinity
isInfinity()305   bool isInfinity() const { return Val.isInfinity(); }
306 
307   /// Return true if the value is a NaN.
isNaN()308   bool isNaN() const { return Val.isNaN(); }
309 
310   /// We don't rely on operator== working on double values, as it returns true
311   /// for things that are clearly not equal, like -0.0 and 0.0.
312   /// As such, this method can be used to do an exact bit-for-bit comparison of
313   /// two floating point values.  The version with a double operand is retained
314   /// because it's so convenient to write isExactlyValue(2.0), but please use
315   /// it only for simple constants.
316   bool isExactlyValue(const APFloat &V) const;
317 
isExactlyValue(double V)318   bool isExactlyValue(double V) const {
319     bool ignored;
320     APFloat FV(V);
321     FV.convert(Val.getSemantics(), APFloat::rmNearestTiesToEven, &ignored);
322     return isExactlyValue(FV);
323   }
324 
325   /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const Value * V)326   static bool classof(const Value *V) {
327     return V->getValueID() == ConstantFPVal;
328   }
329 };
330 
331 //===----------------------------------------------------------------------===//
332 /// All zero aggregate value
333 ///
334 class ConstantAggregateZero final : public ConstantData {
335   friend class Constant;
336 
ConstantAggregateZero(Type * Ty)337   explicit ConstantAggregateZero(Type *Ty)
338       : ConstantData(Ty, ConstantAggregateZeroVal) {}
339 
340   void destroyConstantImpl();
341 
342 public:
343   ConstantAggregateZero(const ConstantAggregateZero &) = delete;
344 
345   static ConstantAggregateZero *get(Type *Ty);
346 
347   /// If this CAZ has array or vector type, return a zero with the right element
348   /// type.
349   Constant *getSequentialElement() const;
350 
351   /// If this CAZ has struct type, return a zero with the right element type for
352   /// the specified element.
353   Constant *getStructElement(unsigned Elt) const;
354 
355   /// Return a zero of the right value for the specified GEP index if we can,
356   /// otherwise return null (e.g. if C is a ConstantExpr).
357   Constant *getElementValue(Constant *C) const;
358 
359   /// Return a zero of the right value for the specified GEP index.
360   Constant *getElementValue(unsigned Idx) const;
361 
362   /// Return the number of elements in the array, vector, or struct.
363   ElementCount getElementCount() const;
364 
365   /// Methods for support type inquiry through isa, cast, and dyn_cast:
366   ///
classof(const Value * V)367   static bool classof(const Value *V) {
368     return V->getValueID() == ConstantAggregateZeroVal;
369   }
370 };
371 
372 /// Base class for aggregate constants (with operands).
373 ///
374 /// These constants are aggregates of other constants, which are stored as
375 /// operands.
376 ///
377 /// Subclasses are \a ConstantStruct, \a ConstantArray, and \a
378 /// ConstantVector.
379 ///
380 /// \note Some subclasses of \a ConstantData are semantically aggregates --
381 /// such as \a ConstantDataArray -- but are not subclasses of this because they
382 /// use operands.
383 class ConstantAggregate : public Constant {
384 protected:
385   ConstantAggregate(Type *T, ValueTy VT, ArrayRef<Constant *> V);
386 
387 public:
388   /// Transparently provide more efficient getOperand methods.
389   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
390 
391   /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const Value * V)392   static bool classof(const Value *V) {
393     return V->getValueID() >= ConstantAggregateFirstVal &&
394            V->getValueID() <= ConstantAggregateLastVal;
395   }
396 };
397 
398 template <>
399 struct OperandTraits<ConstantAggregate>
400     : public VariadicOperandTraits<ConstantAggregate> {};
401 
402 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantAggregate, Constant)
403 
404 //===----------------------------------------------------------------------===//
405 /// ConstantArray - Constant Array Declarations
406 ///
407 class ConstantArray final : public ConstantAggregate {
408   friend struct ConstantAggrKeyType<ConstantArray>;
409   friend class Constant;
410 
411   ConstantArray(ArrayType *T, ArrayRef<Constant *> Val);
412 
413   void destroyConstantImpl();
414   Value *handleOperandChangeImpl(Value *From, Value *To);
415 
416 public:
417   // ConstantArray accessors
418   static Constant *get(ArrayType *T, ArrayRef<Constant *> V);
419 
420 private:
421   static Constant *getImpl(ArrayType *T, ArrayRef<Constant *> V);
422 
423 public:
424   /// Specialize the getType() method to always return an ArrayType,
425   /// which reduces the amount of casting needed in parts of the compiler.
426   inline ArrayType *getType() const {
427     return cast<ArrayType>(Value::getType());
428   }
429 
430   /// Methods for support type inquiry through isa, cast, and dyn_cast:
431   static bool classof(const Value *V) {
432     return V->getValueID() == ConstantArrayVal;
433   }
434 };
435 
436 //===----------------------------------------------------------------------===//
437 // Constant Struct Declarations
438 //
439 class ConstantStruct final : public ConstantAggregate {
440   friend struct ConstantAggrKeyType<ConstantStruct>;
441   friend class Constant;
442 
443   ConstantStruct(StructType *T, ArrayRef<Constant *> Val);
444 
445   void destroyConstantImpl();
446   Value *handleOperandChangeImpl(Value *From, Value *To);
447 
448 public:
449   // ConstantStruct accessors
450   static Constant *get(StructType *T, ArrayRef<Constant *> V);
451 
452   template <typename... Csts>
453   static std::enable_if_t<are_base_of<Constant, Csts...>::value, Constant *>
454   get(StructType *T, Csts *...Vs) {
455     SmallVector<Constant *, 8> Values({Vs...});
456     return get(T, Values);
457   }
458 
459   /// Return an anonymous struct that has the specified elements.
460   /// If the struct is possibly empty, then you must specify a context.
461   static Constant *getAnon(ArrayRef<Constant *> V, bool Packed = false) {
462     return get(getTypeForElements(V, Packed), V);
463   }
464   static Constant *getAnon(LLVMContext &Ctx, ArrayRef<Constant *> V,
465                            bool Packed = false) {
466     return get(getTypeForElements(Ctx, V, Packed), V);
467   }
468 
469   /// Return an anonymous struct type to use for a constant with the specified
470   /// set of elements. The list must not be empty.
471   static StructType *getTypeForElements(ArrayRef<Constant *> V,
472                                         bool Packed = false);
473   /// This version of the method allows an empty list.
474   static StructType *getTypeForElements(LLVMContext &Ctx,
475                                         ArrayRef<Constant *> V,
476                                         bool Packed = false);
477 
478   /// Specialization - reduce amount of casting.
479   inline StructType *getType() const {
480     return cast<StructType>(Value::getType());
481   }
482 
483   /// Methods for support type inquiry through isa, cast, and dyn_cast:
484   static bool classof(const Value *V) {
485     return V->getValueID() == ConstantStructVal;
486   }
487 };
488 
489 //===----------------------------------------------------------------------===//
490 /// Constant Vector Declarations
491 ///
492 class ConstantVector final : public ConstantAggregate {
493   friend struct ConstantAggrKeyType<ConstantVector>;
494   friend class Constant;
495 
496   ConstantVector(VectorType *T, ArrayRef<Constant *> Val);
497 
498   void destroyConstantImpl();
499   Value *handleOperandChangeImpl(Value *From, Value *To);
500 
501 public:
502   // ConstantVector accessors
503   static Constant *get(ArrayRef<Constant *> V);
504 
505 private:
506   static Constant *getImpl(ArrayRef<Constant *> V);
507 
508 public:
509   /// Return a ConstantVector with the specified constant in each element.
510   /// Note that this might not return an instance of ConstantVector
511   static Constant *getSplat(ElementCount EC, Constant *Elt);
512 
513   /// Specialize the getType() method to always return a FixedVectorType,
514   /// which reduces the amount of casting needed in parts of the compiler.
515   inline FixedVectorType *getType() const {
516     return cast<FixedVectorType>(Value::getType());
517   }
518 
519   /// If all elements of the vector constant have the same value, return that
520   /// value. Otherwise, return nullptr. Ignore undefined elements by setting
521   /// AllowUndefs to true.
522   Constant *getSplatValue(bool AllowUndefs = false) const;
523 
524   /// Methods for support type inquiry through isa, cast, and dyn_cast:
525   static bool classof(const Value *V) {
526     return V->getValueID() == ConstantVectorVal;
527   }
528 };
529 
530 //===----------------------------------------------------------------------===//
531 /// A constant pointer value that points to null
532 ///
533 class ConstantPointerNull final : public ConstantData {
534   friend class Constant;
535 
536   explicit ConstantPointerNull(PointerType *T)
537       : ConstantData(T, Value::ConstantPointerNullVal) {}
538 
539   void destroyConstantImpl();
540 
541 public:
542   ConstantPointerNull(const ConstantPointerNull &) = delete;
543 
544   /// Static factory methods - Return objects of the specified value
545   static ConstantPointerNull *get(PointerType *T);
546 
547   /// Specialize the getType() method to always return an PointerType,
548   /// which reduces the amount of casting needed in parts of the compiler.
549   inline PointerType *getType() const {
550     return cast<PointerType>(Value::getType());
551   }
552 
553   /// Methods for support type inquiry through isa, cast, and dyn_cast:
554   static bool classof(const Value *V) {
555     return V->getValueID() == ConstantPointerNullVal;
556   }
557 };
558 
559 //===----------------------------------------------------------------------===//
560 /// ConstantDataSequential - A vector or array constant whose element type is a
561 /// simple 1/2/4/8-byte integer or half/bfloat/float/double, and whose elements
562 /// are just simple data values (i.e. ConstantInt/ConstantFP).  This Constant
563 /// node has no operands because it stores all of the elements of the constant
564 /// as densely packed data, instead of as Value*'s.
565 ///
566 /// This is the common base class of ConstantDataArray and ConstantDataVector.
567 ///
568 class ConstantDataSequential : public ConstantData {
569   friend class LLVMContextImpl;
570   friend class Constant;
571 
572   /// A pointer to the bytes underlying this constant (which is owned by the
573   /// uniquing StringMap).
574   const char *DataElements;
575 
576   /// This forms a link list of ConstantDataSequential nodes that have
577   /// the same value but different type.  For example, 0,0,0,1 could be a 4
578   /// element array of i8, or a 1-element array of i32.  They'll both end up in
579   /// the same StringMap bucket, linked up.
580   std::unique_ptr<ConstantDataSequential> Next;
581 
582   void destroyConstantImpl();
583 
584 protected:
585   explicit ConstantDataSequential(Type *ty, ValueTy VT, const char *Data)
586       : ConstantData(ty, VT), DataElements(Data) {}
587 
588   static Constant *getImpl(StringRef Bytes, Type *Ty);
589 
590 public:
591   ConstantDataSequential(const ConstantDataSequential &) = delete;
592 
593   /// Return true if a ConstantDataSequential can be formed with a vector or
594   /// array of the specified element type.
595   /// ConstantDataArray only works with normal float and int types that are
596   /// stored densely in memory, not with things like i42 or x86_f80.
597   static bool isElementTypeCompatible(Type *Ty);
598 
599   /// If this is a sequential container of integers (of any size), return the
600   /// specified element in the low bits of a uint64_t.
601   uint64_t getElementAsInteger(unsigned i) const;
602 
603   /// If this is a sequential container of integers (of any size), return the
604   /// specified element as an APInt.
605   APInt getElementAsAPInt(unsigned i) const;
606 
607   /// If this is a sequential container of floating point type, return the
608   /// specified element as an APFloat.
609   APFloat getElementAsAPFloat(unsigned i) const;
610 
611   /// If this is an sequential container of floats, return the specified element
612   /// as a float.
613   float getElementAsFloat(unsigned i) const;
614 
615   /// If this is an sequential container of doubles, return the specified
616   /// element as a double.
617   double getElementAsDouble(unsigned i) const;
618 
619   /// Return a Constant for a specified index's element.
620   /// Note that this has to compute a new constant to return, so it isn't as
621   /// efficient as getElementAsInteger/Float/Double.
622   Constant *getElementAsConstant(unsigned i) const;
623 
624   /// Return the element type of the array/vector.
625   Type *getElementType() const;
626 
627   /// Return the number of elements in the array or vector.
628   unsigned getNumElements() const;
629 
630   /// Return the size (in bytes) of each element in the array/vector.
631   /// The size of the elements is known to be a multiple of one byte.
632   uint64_t getElementByteSize() const;
633 
634   /// This method returns true if this is an array of \p CharSize integers.
635   bool isString(unsigned CharSize = 8) const;
636 
637   /// This method returns true if the array "isString", ends with a null byte,
638   /// and does not contains any other null bytes.
639   bool isCString() const;
640 
641   /// If this array is isString(), then this method returns the array as a
642   /// StringRef. Otherwise, it asserts out.
643   StringRef getAsString() const {
644     assert(isString() && "Not a string");
645     return getRawDataValues();
646   }
647 
648   /// If this array is isCString(), then this method returns the array (without
649   /// the trailing null byte) as a StringRef. Otherwise, it asserts out.
650   StringRef getAsCString() const {
651     assert(isCString() && "Isn't a C string");
652     StringRef Str = getAsString();
653     return Str.substr(0, Str.size() - 1);
654   }
655 
656   /// Return the raw, underlying, bytes of this data. Note that this is an
657   /// extremely tricky thing to work with, as it exposes the host endianness of
658   /// the data elements.
659   StringRef getRawDataValues() const;
660 
661   /// Methods for support type inquiry through isa, cast, and dyn_cast:
662   static bool classof(const Value *V) {
663     return V->getValueID() == ConstantDataArrayVal ||
664            V->getValueID() == ConstantDataVectorVal;
665   }
666 
667 private:
668   const char *getElementPointer(unsigned Elt) const;
669 };
670 
671 //===----------------------------------------------------------------------===//
672 /// An array constant whose element type is a simple 1/2/4/8-byte integer or
673 /// float/double, and whose elements are just simple data values
674 /// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it
675 /// stores all of the elements of the constant as densely packed data, instead
676 /// of as Value*'s.
677 class ConstantDataArray final : public ConstantDataSequential {
678   friend class ConstantDataSequential;
679 
680   explicit ConstantDataArray(Type *ty, const char *Data)
681       : ConstantDataSequential(ty, ConstantDataArrayVal, Data) {}
682 
683 public:
684   ConstantDataArray(const ConstantDataArray &) = delete;
685 
686   /// get() constructor - Return a constant with array type with an element
687   /// count and element type matching the ArrayRef passed in.  Note that this
688   /// can return a ConstantAggregateZero object.
689   template <typename ElementTy>
690   static Constant *get(LLVMContext &Context, ArrayRef<ElementTy> Elts) {
691     const char *Data = reinterpret_cast<const char *>(Elts.data());
692     return getRaw(StringRef(Data, Elts.size() * sizeof(ElementTy)), Elts.size(),
693                   Type::getScalarTy<ElementTy>(Context));
694   }
695 
696   /// get() constructor - ArrayTy needs to be compatible with
697   /// ArrayRef<ElementTy>. Calls get(LLVMContext, ArrayRef<ElementTy>).
698   template <typename ArrayTy>
699   static Constant *get(LLVMContext &Context, ArrayTy &Elts) {
700     return ConstantDataArray::get(Context, makeArrayRef(Elts));
701   }
702 
703   /// getRaw() constructor - Return a constant with array type with an element
704   /// count and element type matching the NumElements and ElementTy parameters
705   /// passed in. Note that this can return a ConstantAggregateZero object.
706   /// ElementTy must be one of i8/i16/i32/i64/half/bfloat/float/double. Data is
707   /// the buffer containing the elements. Be careful to make sure Data uses the
708   /// right endianness, the buffer will be used as-is.
709   static Constant *getRaw(StringRef Data, uint64_t NumElements,
710                           Type *ElementTy) {
711     Type *Ty = ArrayType::get(ElementTy, NumElements);
712     return getImpl(Data, Ty);
713   }
714 
715   /// getFP() constructors - Return a constant of array type with a float
716   /// element type taken from argument `ElementType', and count taken from
717   /// argument `Elts'.  The amount of bits of the contained type must match the
718   /// number of bits of the type contained in the passed in ArrayRef.
719   /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note
720   /// that this can return a ConstantAggregateZero object.
721   static Constant *getFP(Type *ElementType, ArrayRef<uint16_t> Elts);
722   static Constant *getFP(Type *ElementType, ArrayRef<uint32_t> Elts);
723   static Constant *getFP(Type *ElementType, ArrayRef<uint64_t> Elts);
724 
725   /// This method constructs a CDS and initializes it with a text string.
726   /// The default behavior (AddNull==true) causes a null terminator to
727   /// be placed at the end of the array (increasing the length of the string by
728   /// one more than the StringRef would normally indicate.  Pass AddNull=false
729   /// to disable this behavior.
730   static Constant *getString(LLVMContext &Context, StringRef Initializer,
731                              bool AddNull = true);
732 
733   /// Specialize the getType() method to always return an ArrayType,
734   /// which reduces the amount of casting needed in parts of the compiler.
735   inline ArrayType *getType() const {
736     return cast<ArrayType>(Value::getType());
737   }
738 
739   /// Methods for support type inquiry through isa, cast, and dyn_cast:
740   static bool classof(const Value *V) {
741     return V->getValueID() == ConstantDataArrayVal;
742   }
743 };
744 
745 //===----------------------------------------------------------------------===//
746 /// A vector constant whose element type is a simple 1/2/4/8-byte integer or
747 /// float/double, and whose elements are just simple data values
748 /// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it
749 /// stores all of the elements of the constant as densely packed data, instead
750 /// of as Value*'s.
751 class ConstantDataVector final : public ConstantDataSequential {
752   friend class ConstantDataSequential;
753 
754   explicit ConstantDataVector(Type *ty, const char *Data)
755       : ConstantDataSequential(ty, ConstantDataVectorVal, Data),
756         IsSplatSet(false) {}
757   // Cache whether or not the constant is a splat.
758   mutable bool IsSplatSet : 1;
759   mutable bool IsSplat : 1;
760   bool isSplatData() const;
761 
762 public:
763   ConstantDataVector(const ConstantDataVector &) = delete;
764 
765   /// get() constructors - Return a constant with vector type with an element
766   /// count and element type matching the ArrayRef passed in.  Note that this
767   /// can return a ConstantAggregateZero object.
768   static Constant *get(LLVMContext &Context, ArrayRef<uint8_t> Elts);
769   static Constant *get(LLVMContext &Context, ArrayRef<uint16_t> Elts);
770   static Constant *get(LLVMContext &Context, ArrayRef<uint32_t> Elts);
771   static Constant *get(LLVMContext &Context, ArrayRef<uint64_t> Elts);
772   static Constant *get(LLVMContext &Context, ArrayRef<float> Elts);
773   static Constant *get(LLVMContext &Context, ArrayRef<double> Elts);
774 
775   /// getRaw() constructor - Return a constant with vector type with an element
776   /// count and element type matching the NumElements and ElementTy parameters
777   /// passed in. Note that this can return a ConstantAggregateZero object.
778   /// ElementTy must be one of i8/i16/i32/i64/half/bfloat/float/double. Data is
779   /// the buffer containing the elements. Be careful to make sure Data uses the
780   /// right endianness, the buffer will be used as-is.
781   static Constant *getRaw(StringRef Data, uint64_t NumElements,
782                           Type *ElementTy) {
783     Type *Ty = VectorType::get(ElementTy, ElementCount::getFixed(NumElements));
784     return getImpl(Data, Ty);
785   }
786 
787   /// getFP() constructors - Return a constant of vector type with a float
788   /// element type taken from argument `ElementType', and count taken from
789   /// argument `Elts'.  The amount of bits of the contained type must match the
790   /// number of bits of the type contained in the passed in ArrayRef.
791   /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note
792   /// that this can return a ConstantAggregateZero object.
793   static Constant *getFP(Type *ElementType, ArrayRef<uint16_t> Elts);
794   static Constant *getFP(Type *ElementType, ArrayRef<uint32_t> Elts);
795   static Constant *getFP(Type *ElementType, ArrayRef<uint64_t> Elts);
796 
797   /// Return a ConstantVector with the specified constant in each element.
798   /// The specified constant has to be a of a compatible type (i8/i16/
799   /// i32/i64/half/bfloat/float/double) and must be a ConstantFP or ConstantInt.
800   static Constant *getSplat(unsigned NumElts, Constant *Elt);
801 
802   /// Returns true if this is a splat constant, meaning that all elements have
803   /// the same value.
804   bool isSplat() const;
805 
806   /// If this is a splat constant, meaning that all of the elements have the
807   /// same value, return that value. Otherwise return NULL.
808   Constant *getSplatValue() const;
809 
810   /// Specialize the getType() method to always return a FixedVectorType,
811   /// which reduces the amount of casting needed in parts of the compiler.
812   inline FixedVectorType *getType() const {
813     return cast<FixedVectorType>(Value::getType());
814   }
815 
816   /// Methods for support type inquiry through isa, cast, and dyn_cast:
817   static bool classof(const Value *V) {
818     return V->getValueID() == ConstantDataVectorVal;
819   }
820 };
821 
822 //===----------------------------------------------------------------------===//
823 /// A constant token which is empty
824 ///
825 class ConstantTokenNone final : public ConstantData {
826   friend class Constant;
827 
828   explicit ConstantTokenNone(LLVMContext &Context)
829       : ConstantData(Type::getTokenTy(Context), ConstantTokenNoneVal) {}
830 
831   void destroyConstantImpl();
832 
833 public:
834   ConstantTokenNone(const ConstantTokenNone &) = delete;
835 
836   /// Return the ConstantTokenNone.
837   static ConstantTokenNone *get(LLVMContext &Context);
838 
839   /// Methods to support type inquiry through isa, cast, and dyn_cast.
840   static bool classof(const Value *V) {
841     return V->getValueID() == ConstantTokenNoneVal;
842   }
843 };
844 
845 /// The address of a basic block.
846 ///
847 class BlockAddress final : public Constant {
848   friend class Constant;
849 
850   BlockAddress(Function *F, BasicBlock *BB);
851 
852   void *operator new(size_t s) { return User::operator new(s, 2); }
853 
854   void destroyConstantImpl();
855   Value *handleOperandChangeImpl(Value *From, Value *To);
856 
857 public:
858   /// Return a BlockAddress for the specified function and basic block.
859   static BlockAddress *get(Function *F, BasicBlock *BB);
860 
861   /// Return a BlockAddress for the specified basic block.  The basic
862   /// block must be embedded into a function.
863   static BlockAddress *get(BasicBlock *BB);
864 
865   /// Lookup an existing \c BlockAddress constant for the given BasicBlock.
866   ///
867   /// \returns 0 if \c !BB->hasAddressTaken(), otherwise the \c BlockAddress.
868   static BlockAddress *lookup(const BasicBlock *BB);
869 
870   /// Transparently provide more efficient getOperand methods.
871   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
872 
873   Function *getFunction() const { return (Function *)Op<0>().get(); }
874   BasicBlock *getBasicBlock() const { return (BasicBlock *)Op<1>().get(); }
875 
876   /// Methods for support type inquiry through isa, cast, and dyn_cast:
877   static bool classof(const Value *V) {
878     return V->getValueID() == BlockAddressVal;
879   }
880 };
881 
882 template <>
883 struct OperandTraits<BlockAddress>
884     : public FixedNumOperandTraits<BlockAddress, 2> {};
885 
886 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BlockAddress, Value)
887 
888 /// Wrapper for a function that represents a value that
889 /// functionally represents the original function. This can be a function,
890 /// global alias to a function, or an ifunc.
891 class DSOLocalEquivalent final : public Constant {
892   friend class Constant;
893 
894   DSOLocalEquivalent(GlobalValue *GV);
895 
896   void *operator new(size_t s) { return User::operator new(s, 1); }
897 
898   void destroyConstantImpl();
899   Value *handleOperandChangeImpl(Value *From, Value *To);
900 
901 public:
902   /// Return a DSOLocalEquivalent for the specified global value.
903   static DSOLocalEquivalent *get(GlobalValue *GV);
904 
905   /// Transparently provide more efficient getOperand methods.
906   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
907 
908   GlobalValue *getGlobalValue() const {
909     return cast<GlobalValue>(Op<0>().get());
910   }
911 
912   /// Methods for support type inquiry through isa, cast, and dyn_cast:
913   static bool classof(const Value *V) {
914     return V->getValueID() == DSOLocalEquivalentVal;
915   }
916 };
917 
918 template <>
919 struct OperandTraits<DSOLocalEquivalent>
920     : public FixedNumOperandTraits<DSOLocalEquivalent, 1> {};
921 
922 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(DSOLocalEquivalent, Value)
923 
924 //===----------------------------------------------------------------------===//
925 /// A constant value that is initialized with an expression using
926 /// other constant values.
927 ///
928 /// This class uses the standard Instruction opcodes to define the various
929 /// constant expressions.  The Opcode field for the ConstantExpr class is
930 /// maintained in the Value::SubclassData field.
931 class ConstantExpr : public Constant {
932   friend struct ConstantExprKeyType;
933   friend class Constant;
934 
935   void destroyConstantImpl();
936   Value *handleOperandChangeImpl(Value *From, Value *To);
937 
938 protected:
939   ConstantExpr(Type *ty, unsigned Opcode, Use *Ops, unsigned NumOps)
940       : Constant(ty, ConstantExprVal, Ops, NumOps) {
941     // Operation type (an Instruction opcode) is stored as the SubclassData.
942     setValueSubclassData(Opcode);
943   }
944 
945   ~ConstantExpr() = default;
946 
947 public:
948   // Static methods to construct a ConstantExpr of different kinds.  Note that
949   // these methods may return a object that is not an instance of the
950   // ConstantExpr class, because they will attempt to fold the constant
951   // expression into something simpler if possible.
952 
953   /// getAlignOf constant expr - computes the alignment of a type in a target
954   /// independent way (Note: the return type is an i64).
955   static Constant *getAlignOf(Type *Ty);
956 
957   /// getSizeOf constant expr - computes the (alloc) size of a type (in
958   /// address-units, not bits) in a target independent way (Note: the return
959   /// type is an i64).
960   ///
961   static Constant *getSizeOf(Type *Ty);
962 
963   /// getOffsetOf constant expr - computes the offset of a struct field in a
964   /// target independent way (Note: the return type is an i64).
965   ///
966   static Constant *getOffsetOf(StructType *STy, unsigned FieldNo);
967 
968   /// getOffsetOf constant expr - This is a generalized form of getOffsetOf,
969   /// which supports any aggregate type, and any Constant index.
970   ///
971   static Constant *getOffsetOf(Type *Ty, Constant *FieldNo);
972 
973   static Constant *getNeg(Constant *C, bool HasNUW = false,
974                           bool HasNSW = false);
975   static Constant *getFNeg(Constant *C);
976   static Constant *getNot(Constant *C);
977   static Constant *getAdd(Constant *C1, Constant *C2, bool HasNUW = false,
978                           bool HasNSW = false);
979   static Constant *getFAdd(Constant *C1, Constant *C2);
980   static Constant *getSub(Constant *C1, Constant *C2, bool HasNUW = false,
981                           bool HasNSW = false);
982   static Constant *getFSub(Constant *C1, Constant *C2);
983   static Constant *getMul(Constant *C1, Constant *C2, bool HasNUW = false,
984                           bool HasNSW = false);
985   static Constant *getFMul(Constant *C1, Constant *C2);
986   static Constant *getUDiv(Constant *C1, Constant *C2, bool isExact = false);
987   static Constant *getSDiv(Constant *C1, Constant *C2, bool isExact = false);
988   static Constant *getFDiv(Constant *C1, Constant *C2);
989   static Constant *getURem(Constant *C1, Constant *C2);
990   static Constant *getSRem(Constant *C1, Constant *C2);
991   static Constant *getFRem(Constant *C1, Constant *C2);
992   static Constant *getAnd(Constant *C1, Constant *C2);
993   static Constant *getOr(Constant *C1, Constant *C2);
994   static Constant *getXor(Constant *C1, Constant *C2);
995   static Constant *getUMin(Constant *C1, Constant *C2);
996   static Constant *getShl(Constant *C1, Constant *C2, bool HasNUW = false,
997                           bool HasNSW = false);
998   static Constant *getLShr(Constant *C1, Constant *C2, bool isExact = false);
999   static Constant *getAShr(Constant *C1, Constant *C2, bool isExact = false);
1000   static Constant *getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced = false);
1001   static Constant *getSExt(Constant *C, Type *Ty, bool OnlyIfReduced = false);
1002   static Constant *getZExt(Constant *C, Type *Ty, bool OnlyIfReduced = false);
1003   static Constant *getFPTrunc(Constant *C, Type *Ty,
1004                               bool OnlyIfReduced = false);
1005   static Constant *getFPExtend(Constant *C, Type *Ty,
1006                                bool OnlyIfReduced = false);
1007   static Constant *getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced = false);
1008   static Constant *getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced = false);
1009   static Constant *getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced = false);
1010   static Constant *getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced = false);
1011   static Constant *getPtrToInt(Constant *C, Type *Ty,
1012                                bool OnlyIfReduced = false);
1013   static Constant *getIntToPtr(Constant *C, Type *Ty,
1014                                bool OnlyIfReduced = false);
1015   static Constant *getBitCast(Constant *C, Type *Ty,
1016                               bool OnlyIfReduced = false);
1017   static Constant *getAddrSpaceCast(Constant *C, Type *Ty,
1018                                     bool OnlyIfReduced = false);
1019 
1020   static Constant *getNSWNeg(Constant *C) { return getNeg(C, false, true); }
1021   static Constant *getNUWNeg(Constant *C) { return getNeg(C, true, false); }
1022 
1023   static Constant *getNSWAdd(Constant *C1, Constant *C2) {
1024     return getAdd(C1, C2, false, true);
1025   }
1026 
1027   static Constant *getNUWAdd(Constant *C1, Constant *C2) {
1028     return getAdd(C1, C2, true, false);
1029   }
1030 
1031   static Constant *getNSWSub(Constant *C1, Constant *C2) {
1032     return getSub(C1, C2, false, true);
1033   }
1034 
1035   static Constant *getNUWSub(Constant *C1, Constant *C2) {
1036     return getSub(C1, C2, true, false);
1037   }
1038 
1039   static Constant *getNSWMul(Constant *C1, Constant *C2) {
1040     return getMul(C1, C2, false, true);
1041   }
1042 
1043   static Constant *getNUWMul(Constant *C1, Constant *C2) {
1044     return getMul(C1, C2, true, false);
1045   }
1046 
1047   static Constant *getNSWShl(Constant *C1, Constant *C2) {
1048     return getShl(C1, C2, false, true);
1049   }
1050 
1051   static Constant *getNUWShl(Constant *C1, Constant *C2) {
1052     return getShl(C1, C2, true, false);
1053   }
1054 
1055   static Constant *getExactSDiv(Constant *C1, Constant *C2) {
1056     return getSDiv(C1, C2, true);
1057   }
1058 
1059   static Constant *getExactUDiv(Constant *C1, Constant *C2) {
1060     return getUDiv(C1, C2, true);
1061   }
1062 
1063   static Constant *getExactAShr(Constant *C1, Constant *C2) {
1064     return getAShr(C1, C2, true);
1065   }
1066 
1067   static Constant *getExactLShr(Constant *C1, Constant *C2) {
1068     return getLShr(C1, C2, true);
1069   }
1070 
1071   /// If C is a scalar/fixed width vector of known powers of 2, then this
1072   /// function returns a new scalar/fixed width vector obtained from logBase2
1073   /// of C. Undef vector elements are set to zero.
1074   /// Return a null pointer otherwise.
1075   static Constant *getExactLogBase2(Constant *C);
1076 
1077   /// Return the identity constant for a binary opcode.
1078   /// The identity constant C is defined as X op C = X and C op X = X for every
1079   /// X when the binary operation is commutative. If the binop is not
1080   /// commutative, callers can acquire the operand 1 identity constant by
1081   /// setting AllowRHSConstant to true. For example, any shift has a zero
1082   /// identity constant for operand 1: X shift 0 = X.
1083   /// Return nullptr if the operator does not have an identity constant.
1084   static Constant *getBinOpIdentity(unsigned Opcode, Type *Ty,
1085                                     bool AllowRHSConstant = false);
1086 
1087   /// Return the absorbing element for the given binary
1088   /// operation, i.e. a constant C such that X op C = C and C op X = C for
1089   /// every X.  For example, this returns zero for integer multiplication.
1090   /// It returns null if the operator doesn't have an absorbing element.
1091   static Constant *getBinOpAbsorber(unsigned Opcode, Type *Ty);
1092 
1093   /// Transparently provide more efficient getOperand methods.
1094   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
1095 
1096   /// Convenience function for getting a Cast operation.
1097   ///
1098   /// \param ops The opcode for the conversion
1099   /// \param C  The constant to be converted
1100   /// \param Ty The type to which the constant is converted
1101   /// \param OnlyIfReduced see \a getWithOperands() docs.
1102   static Constant *getCast(unsigned ops, Constant *C, Type *Ty,
1103                            bool OnlyIfReduced = false);
1104 
1105   // Create a ZExt or BitCast cast constant expression
1106   static Constant *
1107   getZExtOrBitCast(Constant *C, ///< The constant to zext or bitcast
1108                    Type *Ty     ///< The type to zext or bitcast C to
1109   );
1110 
1111   // Create a SExt or BitCast cast constant expression
1112   static Constant *
1113   getSExtOrBitCast(Constant *C, ///< The constant to sext or bitcast
1114                    Type *Ty     ///< The type to sext or bitcast C to
1115   );
1116 
1117   // Create a Trunc or BitCast cast constant expression
1118   static Constant *
1119   getTruncOrBitCast(Constant *C, ///< The constant to trunc or bitcast
1120                     Type *Ty     ///< The type to trunc or bitcast C to
1121   );
1122 
1123   /// Create a BitCast, AddrSpaceCast, or a PtrToInt cast constant
1124   /// expression.
1125   static Constant *
1126   getPointerCast(Constant *C, ///< The pointer value to be casted (operand 0)
1127                  Type *Ty     ///< The type to which cast should be made
1128   );
1129 
1130   /// Create a BitCast or AddrSpaceCast for a pointer type depending on
1131   /// the address space.
1132   static Constant *getPointerBitCastOrAddrSpaceCast(
1133       Constant *C, ///< The constant to addrspacecast or bitcast
1134       Type *Ty     ///< The type to bitcast or addrspacecast C to
1135   );
1136 
1137   /// Create a ZExt, Bitcast or Trunc for integer -> integer casts
1138   static Constant *
1139   getIntegerCast(Constant *C,  ///< The integer constant to be casted
1140                  Type *Ty,     ///< The integer type to cast to
1141                  bool IsSigned ///< Whether C should be treated as signed or not
1142   );
1143 
1144   /// Create a FPExt, Bitcast or FPTrunc for fp -> fp casts
1145   static Constant *getFPCast(Constant *C, ///< The integer constant to be casted
1146                              Type *Ty     ///< The integer type to cast to
1147   );
1148 
1149   /// Return true if this is a convert constant expression
1150   bool isCast() const;
1151 
1152   /// Return true if this is a compare constant expression
1153   bool isCompare() const;
1154 
1155   /// Return true if this is an insertvalue or extractvalue expression,
1156   /// and the getIndices() method may be used.
1157   bool hasIndices() const;
1158 
1159   /// Return true if this is a getelementptr expression and all
1160   /// the index operands are compile-time known integers within the
1161   /// corresponding notional static array extents. Note that this is
1162   /// not equivalant to, a subset of, or a superset of the "inbounds"
1163   /// property.
1164   bool isGEPWithNoNotionalOverIndexing() const;
1165 
1166   /// Select constant expr
1167   ///
1168   /// \param OnlyIfReducedTy see \a getWithOperands() docs.
1169   static Constant *getSelect(Constant *C, Constant *V1, Constant *V2,
1170                              Type *OnlyIfReducedTy = nullptr);
1171 
1172   /// get - Return a unary operator constant expression,
1173   /// folding if possible.
1174   ///
1175   /// \param OnlyIfReducedTy see \a getWithOperands() docs.
1176   static Constant *get(unsigned Opcode, Constant *C1, unsigned Flags = 0,
1177                        Type *OnlyIfReducedTy = nullptr);
1178 
1179   /// get - Return a binary or shift operator constant expression,
1180   /// folding if possible.
1181   ///
1182   /// \param OnlyIfReducedTy see \a getWithOperands() docs.
1183   static Constant *get(unsigned Opcode, Constant *C1, Constant *C2,
1184                        unsigned Flags = 0, Type *OnlyIfReducedTy = nullptr);
1185 
1186   /// Return an ICmp or FCmp comparison operator constant expression.
1187   ///
1188   /// \param OnlyIfReduced see \a getWithOperands() docs.
1189   static Constant *getCompare(unsigned short pred, Constant *C1, Constant *C2,
1190                               bool OnlyIfReduced = false);
1191 
1192   /// get* - Return some common constants without having to
1193   /// specify the full Instruction::OPCODE identifier.
1194   ///
1195   static Constant *getICmp(unsigned short pred, Constant *LHS, Constant *RHS,
1196                            bool OnlyIfReduced = false);
1197   static Constant *getFCmp(unsigned short pred, Constant *LHS, Constant *RHS,
1198                            bool OnlyIfReduced = false);
1199 
1200   /// Getelementptr form.  Value* is only accepted for convenience;
1201   /// all elements must be Constants.
1202   ///
1203   /// \param InRangeIndex the inrange index if present or None.
1204   /// \param OnlyIfReducedTy see \a getWithOperands() docs.
1205   static Constant *getGetElementPtr(Type *Ty, Constant *C,
1206                                     ArrayRef<Constant *> IdxList,
1207                                     bool InBounds = false,
1208                                     Optional<unsigned> InRangeIndex = None,
1209                                     Type *OnlyIfReducedTy = nullptr) {
1210     return getGetElementPtr(
1211         Ty, C, makeArrayRef((Value *const *)IdxList.data(), IdxList.size()),
1212         InBounds, InRangeIndex, OnlyIfReducedTy);
1213   }
1214   static Constant *getGetElementPtr(Type *Ty, Constant *C, Constant *Idx,
1215                                     bool InBounds = false,
1216                                     Optional<unsigned> InRangeIndex = None,
1217                                     Type *OnlyIfReducedTy = nullptr) {
1218     // This form of the function only exists to avoid ambiguous overload
1219     // warnings about whether to convert Idx to ArrayRef<Constant *> or
1220     // ArrayRef<Value *>.
1221     return getGetElementPtr(Ty, C, cast<Value>(Idx), InBounds, InRangeIndex,
1222                             OnlyIfReducedTy);
1223   }
1224   static Constant *getGetElementPtr(Type *Ty, Constant *C,
1225                                     ArrayRef<Value *> IdxList,
1226                                     bool InBounds = false,
1227                                     Optional<unsigned> InRangeIndex = None,
1228                                     Type *OnlyIfReducedTy = nullptr);
1229 
1230   /// Create an "inbounds" getelementptr. See the documentation for the
1231   /// "inbounds" flag in LangRef.html for details.
1232   static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
1233                                             ArrayRef<Constant *> IdxList) {
1234     return getGetElementPtr(Ty, C, IdxList, true);
1235   }
1236   static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
1237                                             Constant *Idx) {
1238     // This form of the function only exists to avoid ambiguous overload
1239     // warnings about whether to convert Idx to ArrayRef<Constant *> or
1240     // ArrayRef<Value *>.
1241     return getGetElementPtr(Ty, C, Idx, true);
1242   }
1243   static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
1244                                             ArrayRef<Value *> IdxList) {
1245     return getGetElementPtr(Ty, C, IdxList, true);
1246   }
1247 
1248   static Constant *getExtractElement(Constant *Vec, Constant *Idx,
1249                                      Type *OnlyIfReducedTy = nullptr);
1250   static Constant *getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx,
1251                                     Type *OnlyIfReducedTy = nullptr);
1252   static Constant *getShuffleVector(Constant *V1, Constant *V2,
1253                                     ArrayRef<int> Mask,
1254                                     Type *OnlyIfReducedTy = nullptr);
1255   static Constant *getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs,
1256                                    Type *OnlyIfReducedTy = nullptr);
1257   static Constant *getInsertValue(Constant *Agg, Constant *Val,
1258                                   ArrayRef<unsigned> Idxs,
1259                                   Type *OnlyIfReducedTy = nullptr);
1260 
1261   /// Return the opcode at the root of this constant expression
1262   unsigned getOpcode() const { return getSubclassDataFromValue(); }
1263 
1264   /// Return the ICMP or FCMP predicate value. Assert if this is not an ICMP or
1265   /// FCMP constant expression.
1266   unsigned getPredicate() const;
1267 
1268   /// Assert that this is an insertvalue or exactvalue
1269   /// expression and return the list of indices.
1270   ArrayRef<unsigned> getIndices() const;
1271 
1272   /// Assert that this is a shufflevector and return the mask. See class
1273   /// ShuffleVectorInst for a description of the mask representation.
1274   ArrayRef<int> getShuffleMask() const;
1275 
1276   /// Assert that this is a shufflevector and return the mask.
1277   ///
1278   /// TODO: This is a temporary hack until we update the bitcode format for
1279   /// shufflevector.
1280   Constant *getShuffleMaskForBitcode() const;
1281 
1282   /// Return a string representation for an opcode.
1283   const char *getOpcodeName() const;
1284 
1285   /// Return a constant expression identical to this one, but with the specified
1286   /// operand set to the specified value.
1287   Constant *getWithOperandReplaced(unsigned OpNo, Constant *Op) const;
1288 
1289   /// This returns the current constant expression with the operands replaced
1290   /// with the specified values. The specified array must have the same number
1291   /// of operands as our current one.
1292   Constant *getWithOperands(ArrayRef<Constant *> Ops) const {
1293     return getWithOperands(Ops, getType());
1294   }
1295 
1296   /// Get the current expression with the operands replaced.
1297   ///
1298   /// Return the current constant expression with the operands replaced with \c
1299   /// Ops and the type with \c Ty.  The new operands must have the same number
1300   /// as the current ones.
1301   ///
1302   /// If \c OnlyIfReduced is \c true, nullptr will be returned unless something
1303   /// gets constant-folded, the type changes, or the expression is otherwise
1304   /// canonicalized.  This parameter should almost always be \c false.
1305   Constant *getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
1306                             bool OnlyIfReduced = false,
1307                             Type *SrcTy = nullptr) const;
1308 
1309   /// Returns an Instruction which implements the same operation as this
1310   /// ConstantExpr. The instruction is not linked to any basic block.
1311   ///
1312   /// A better approach to this could be to have a constructor for Instruction
1313   /// which would take a ConstantExpr parameter, but that would have spread
1314   /// implementation details of ConstantExpr outside of Constants.cpp, which
1315   /// would make it harder to remove ConstantExprs altogether.
1316   Instruction *getAsInstruction() const;
1317 
1318   /// Methods for support type inquiry through isa, cast, and dyn_cast:
1319   static bool classof(const Value *V) {
1320     return V->getValueID() == ConstantExprVal;
1321   }
1322 
1323 private:
1324   // Shadow Value::setValueSubclassData with a private forwarding method so that
1325   // subclasses cannot accidentally use it.
1326   void setValueSubclassData(unsigned short D) {
1327     Value::setValueSubclassData(D);
1328   }
1329 };
1330 
1331 template <>
1332 struct OperandTraits<ConstantExpr>
1333     : public VariadicOperandTraits<ConstantExpr, 1> {};
1334 
1335 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantExpr, Constant)
1336 
1337 //===----------------------------------------------------------------------===//
1338 /// 'undef' values are things that do not have specified contents.
1339 /// These are used for a variety of purposes, including global variable
1340 /// initializers and operands to instructions.  'undef' values can occur with
1341 /// any first-class type.
1342 ///
1343 /// Undef values aren't exactly constants; if they have multiple uses, they
1344 /// can appear to have different bit patterns at each use. See
1345 /// LangRef.html#undefvalues for details.
1346 ///
1347 class UndefValue : public ConstantData {
1348   friend class Constant;
1349 
1350   explicit UndefValue(Type *T) : ConstantData(T, UndefValueVal) {}
1351 
1352   void destroyConstantImpl();
1353 
1354 protected:
1355   explicit UndefValue(Type *T, ValueTy vty) : ConstantData(T, vty) {}
1356 
1357 public:
1358   UndefValue(const UndefValue &) = delete;
1359 
1360   /// Static factory methods - Return an 'undef' object of the specified type.
1361   static UndefValue *get(Type *T);
1362 
1363   /// If this Undef has array or vector type, return a undef with the right
1364   /// element type.
1365   UndefValue *getSequentialElement() const;
1366 
1367   /// If this undef has struct type, return a undef with the right element type
1368   /// for the specified element.
1369   UndefValue *getStructElement(unsigned Elt) const;
1370 
1371   /// Return an undef of the right value for the specified GEP index if we can,
1372   /// otherwise return null (e.g. if C is a ConstantExpr).
1373   UndefValue *getElementValue(Constant *C) const;
1374 
1375   /// Return an undef of the right value for the specified GEP index.
1376   UndefValue *getElementValue(unsigned Idx) const;
1377 
1378   /// Return the number of elements in the array, vector, or struct.
1379   unsigned getNumElements() const;
1380 
1381   /// Methods for support type inquiry through isa, cast, and dyn_cast:
1382   static bool classof(const Value *V) {
1383     return V->getValueID() == UndefValueVal ||
1384            V->getValueID() == PoisonValueVal;
1385   }
1386 };
1387 
1388 //===----------------------------------------------------------------------===//
1389 /// In order to facilitate speculative execution, many instructions do not
1390 /// invoke immediate undefined behavior when provided with illegal operands,
1391 /// and return a poison value instead.
1392 ///
1393 /// see LangRef.html#poisonvalues for details.
1394 ///
1395 class PoisonValue final : public UndefValue {
1396   friend class Constant;
1397 
1398   explicit PoisonValue(Type *T) : UndefValue(T, PoisonValueVal) {}
1399 
1400   void destroyConstantImpl();
1401 
1402 public:
1403   PoisonValue(const PoisonValue &) = delete;
1404 
1405   /// Static factory methods - Return an 'poison' object of the specified type.
1406   static PoisonValue *get(Type *T);
1407 
1408   /// If this poison has array or vector type, return a poison with the right
1409   /// element type.
1410   PoisonValue *getSequentialElement() const;
1411 
1412   /// If this poison has struct type, return a poison with the right element
1413   /// type for the specified element.
1414   PoisonValue *getStructElement(unsigned Elt) const;
1415 
1416   /// Return an poison of the right value for the specified GEP index if we can,
1417   /// otherwise return null (e.g. if C is a ConstantExpr).
1418   PoisonValue *getElementValue(Constant *C) const;
1419 
1420   /// Return an poison of the right value for the specified GEP index.
1421   PoisonValue *getElementValue(unsigned Idx) const;
1422 
1423   /// Methods for support type inquiry through isa, cast, and dyn_cast:
1424   static bool classof(const Value *V) {
1425     return V->getValueID() == PoisonValueVal;
1426   }
1427 };
1428 
1429 } // end namespace llvm
1430 
1431 #endif // LLVM_IR_CONSTANTS_H
1432