xref: /qemu/target/i386/hvf/hvf.c (revision 2c760670)
1 /* Copyright 2008 IBM Corporation
2  *           2008 Red Hat, Inc.
3  * Copyright 2011 Intel Corporation
4  * Copyright 2016 Veertu, Inc.
5  * Copyright 2017 The Android Open Source Project
6  *
7  * QEMU Hypervisor.framework support
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of version 2 of the GNU General Public
11  * License as published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, see <http://www.gnu.org/licenses/>.
20  *
21  * This file contain code under public domain from the hvdos project:
22  * https://github.com/mist64/hvdos
23  *
24  * Parts Copyright (c) 2011 NetApp, Inc.
25  * All rights reserved.
26  *
27  * Redistribution and use in source and binary forms, with or without
28  * modification, are permitted provided that the following conditions
29  * are met:
30  * 1. Redistributions of source code must retain the above copyright
31  *    notice, this list of conditions and the following disclaimer.
32  * 2. Redistributions in binary form must reproduce the above copyright
33  *    notice, this list of conditions and the following disclaimer in the
34  *    documentation and/or other materials provided with the distribution.
35  *
36  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
37  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
39  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
40  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
41  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
42  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
44  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
45  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
46  * SUCH DAMAGE.
47  */
48 
49 #include "qemu/osdep.h"
50 #include "qemu/error-report.h"
51 #include "qemu/memalign.h"
52 #include "qapi/error.h"
53 #include "migration/blocker.h"
54 
55 #include "sysemu/hvf.h"
56 #include "sysemu/hvf_int.h"
57 #include "sysemu/runstate.h"
58 #include "sysemu/cpus.h"
59 #include "hvf-i386.h"
60 #include "vmcs.h"
61 #include "vmx.h"
62 #include "x86.h"
63 #include "x86_descr.h"
64 #include "x86_mmu.h"
65 #include "x86_decode.h"
66 #include "x86_emu.h"
67 #include "x86_task.h"
68 #include "x86hvf.h"
69 
70 #include <Hypervisor/hv.h>
71 #include <Hypervisor/hv_vmx.h>
72 #include <sys/sysctl.h>
73 
74 #include "hw/i386/apic_internal.h"
75 #include "qemu/main-loop.h"
76 #include "qemu/accel.h"
77 #include "target/i386/cpu.h"
78 
79 static Error *invtsc_mig_blocker;
80 
vmx_update_tpr(CPUState * cpu)81 void vmx_update_tpr(CPUState *cpu)
82 {
83     /* TODO: need integrate APIC handling */
84     X86CPU *x86_cpu = X86_CPU(cpu);
85     int tpr = cpu_get_apic_tpr(x86_cpu->apic_state) << 4;
86     int irr = apic_get_highest_priority_irr(x86_cpu->apic_state);
87 
88     wreg(cpu->accel->fd, HV_X86_TPR, tpr);
89     if (irr == -1) {
90         wvmcs(cpu->accel->fd, VMCS_TPR_THRESHOLD, 0);
91     } else {
92         wvmcs(cpu->accel->fd, VMCS_TPR_THRESHOLD, (irr > tpr) ? tpr >> 4 :
93               irr >> 4);
94     }
95 }
96 
update_apic_tpr(CPUState * cpu)97 static void update_apic_tpr(CPUState *cpu)
98 {
99     X86CPU *x86_cpu = X86_CPU(cpu);
100     int tpr = rreg(cpu->accel->fd, HV_X86_TPR) >> 4;
101     cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
102 }
103 
104 #define VECTORING_INFO_VECTOR_MASK     0xff
105 
hvf_handle_io(CPUArchState * env,uint16_t port,void * buffer,int direction,int size,int count)106 void hvf_handle_io(CPUArchState *env, uint16_t port, void *buffer,
107                   int direction, int size, int count)
108 {
109     int i;
110     uint8_t *ptr = buffer;
111 
112     for (i = 0; i < count; i++) {
113         address_space_rw(&address_space_io, port, MEMTXATTRS_UNSPECIFIED,
114                          ptr, size,
115                          direction);
116         ptr += size;
117     }
118 }
119 
ept_emulation_fault(hvf_slot * slot,uint64_t gpa,uint64_t ept_qual)120 static bool ept_emulation_fault(hvf_slot *slot, uint64_t gpa, uint64_t ept_qual)
121 {
122     int read, write;
123 
124     /* EPT fault on an instruction fetch doesn't make sense here */
125     if (ept_qual & EPT_VIOLATION_INST_FETCH) {
126         return false;
127     }
128 
129     /* EPT fault must be a read fault or a write fault */
130     read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
131     write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
132     if ((read | write) == 0) {
133         return false;
134     }
135 
136     if (write && slot) {
137         if (slot->flags & HVF_SLOT_LOG) {
138             uint64_t dirty_page_start = gpa & ~(TARGET_PAGE_SIZE - 1u);
139             memory_region_set_dirty(slot->region, gpa - slot->start, 1);
140             hv_vm_protect(dirty_page_start, TARGET_PAGE_SIZE,
141                           HV_MEMORY_READ | HV_MEMORY_WRITE | HV_MEMORY_EXEC);
142         }
143     }
144 
145     /*
146      * The EPT violation must have been caused by accessing a
147      * guest-physical address that is a translation of a guest-linear
148      * address.
149      */
150     if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
151         (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
152         return false;
153     }
154 
155     if (!slot) {
156         return true;
157     }
158     if (!memory_region_is_ram(slot->region) &&
159         !(read && memory_region_is_romd(slot->region))) {
160         return true;
161     }
162     return false;
163 }
164 
hvf_arch_vcpu_destroy(CPUState * cpu)165 void hvf_arch_vcpu_destroy(CPUState *cpu)
166 {
167     X86CPU *x86_cpu = X86_CPU(cpu);
168     CPUX86State *env = &x86_cpu->env;
169 
170     g_free(env->hvf_mmio_buf);
171 }
172 
init_tsc_freq(CPUX86State * env)173 static void init_tsc_freq(CPUX86State *env)
174 {
175     size_t length;
176     uint64_t tsc_freq;
177 
178     if (env->tsc_khz != 0) {
179         return;
180     }
181 
182     length = sizeof(uint64_t);
183     if (sysctlbyname("machdep.tsc.frequency", &tsc_freq, &length, NULL, 0)) {
184         return;
185     }
186     env->tsc_khz = tsc_freq / 1000;  /* Hz to KHz */
187 }
188 
init_apic_bus_freq(CPUX86State * env)189 static void init_apic_bus_freq(CPUX86State *env)
190 {
191     size_t length;
192     uint64_t bus_freq;
193 
194     if (env->apic_bus_freq != 0) {
195         return;
196     }
197 
198     length = sizeof(uint64_t);
199     if (sysctlbyname("hw.busfrequency", &bus_freq, &length, NULL, 0)) {
200         return;
201     }
202     env->apic_bus_freq = bus_freq;
203 }
204 
tsc_is_known(CPUX86State * env)205 static inline bool tsc_is_known(CPUX86State *env)
206 {
207     return env->tsc_khz != 0;
208 }
209 
apic_bus_freq_is_known(CPUX86State * env)210 static inline bool apic_bus_freq_is_known(CPUX86State *env)
211 {
212     return env->apic_bus_freq != 0;
213 }
214 
hvf_kick_vcpu_thread(CPUState * cpu)215 void hvf_kick_vcpu_thread(CPUState *cpu)
216 {
217     cpus_kick_thread(cpu);
218     hv_vcpu_interrupt(&cpu->accel->fd, 1);
219 }
220 
hvf_arch_init(void)221 int hvf_arch_init(void)
222 {
223     return 0;
224 }
225 
hvf_arch_vm_create(MachineState * ms,uint32_t pa_range)226 hv_return_t hvf_arch_vm_create(MachineState *ms, uint32_t pa_range)
227 {
228     return hv_vm_create(HV_VM_DEFAULT);
229 }
230 
hvf_arch_init_vcpu(CPUState * cpu)231 int hvf_arch_init_vcpu(CPUState *cpu)
232 {
233     X86CPU *x86cpu = X86_CPU(cpu);
234     CPUX86State *env = &x86cpu->env;
235     Error *local_err = NULL;
236     int r;
237     uint64_t reqCap;
238 
239     init_emu();
240     init_decoder();
241 
242     hvf_state->hvf_caps = g_new0(struct hvf_vcpu_caps, 1);
243     env->hvf_mmio_buf = g_new(char, 4096);
244 
245     if (x86cpu->vmware_cpuid_freq) {
246         init_tsc_freq(env);
247         init_apic_bus_freq(env);
248 
249         if (!tsc_is_known(env) || !apic_bus_freq_is_known(env)) {
250             error_report("vmware-cpuid-freq: feature couldn't be enabled");
251         }
252     }
253 
254     if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
255         invtsc_mig_blocker == NULL) {
256         error_setg(&invtsc_mig_blocker,
257                    "State blocked by non-migratable CPU device (invtsc flag)");
258         r = migrate_add_blocker(&invtsc_mig_blocker, &local_err);
259         if (r < 0) {
260             error_report_err(local_err);
261             return r;
262         }
263     }
264 
265 
266     if (hv_vmx_read_capability(HV_VMX_CAP_PINBASED,
267         &hvf_state->hvf_caps->vmx_cap_pinbased)) {
268         abort();
269     }
270     if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED,
271         &hvf_state->hvf_caps->vmx_cap_procbased)) {
272         abort();
273     }
274     if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED2,
275         &hvf_state->hvf_caps->vmx_cap_procbased2)) {
276         abort();
277     }
278     if (hv_vmx_read_capability(HV_VMX_CAP_ENTRY,
279         &hvf_state->hvf_caps->vmx_cap_entry)) {
280         abort();
281     }
282 
283     /* set VMCS control fields */
284     wvmcs(cpu->accel->fd, VMCS_PIN_BASED_CTLS,
285           cap2ctrl(hvf_state->hvf_caps->vmx_cap_pinbased,
286                    VMCS_PIN_BASED_CTLS_EXTINT |
287                    VMCS_PIN_BASED_CTLS_NMI |
288                    VMCS_PIN_BASED_CTLS_VNMI));
289     wvmcs(cpu->accel->fd, VMCS_PRI_PROC_BASED_CTLS,
290           cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased,
291                    VMCS_PRI_PROC_BASED_CTLS_HLT |
292                    VMCS_PRI_PROC_BASED_CTLS_MWAIT |
293                    VMCS_PRI_PROC_BASED_CTLS_TSC_OFFSET |
294                    VMCS_PRI_PROC_BASED_CTLS_TPR_SHADOW) |
295           VMCS_PRI_PROC_BASED_CTLS_SEC_CONTROL);
296 
297     reqCap = VMCS_PRI_PROC_BASED2_CTLS_APIC_ACCESSES;
298 
299     /* Is RDTSCP support in CPUID?  If so, enable it in the VMCS. */
300     if (hvf_get_supported_cpuid(0x80000001, 0, R_EDX) & CPUID_EXT2_RDTSCP) {
301         reqCap |= VMCS_PRI_PROC_BASED2_CTLS_RDTSCP;
302     }
303 
304     wvmcs(cpu->accel->fd, VMCS_SEC_PROC_BASED_CTLS,
305           cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased2, reqCap));
306 
307     wvmcs(cpu->accel->fd, VMCS_ENTRY_CTLS,
308           cap2ctrl(hvf_state->hvf_caps->vmx_cap_entry, 0));
309     wvmcs(cpu->accel->fd, VMCS_EXCEPTION_BITMAP, 0); /* Double fault */
310 
311     wvmcs(cpu->accel->fd, VMCS_TPR_THRESHOLD, 0);
312 
313     x86cpu = X86_CPU(cpu);
314     x86cpu->env.xsave_buf_len = 4096;
315     x86cpu->env.xsave_buf = qemu_memalign(4096, x86cpu->env.xsave_buf_len);
316 
317     /*
318      * The allocated storage must be large enough for all of the
319      * possible XSAVE state components.
320      */
321     assert(hvf_get_supported_cpuid(0xd, 0, R_ECX) <= x86cpu->env.xsave_buf_len);
322 
323     hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_STAR, 1);
324     hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_LSTAR, 1);
325     hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_CSTAR, 1);
326     hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_FMASK, 1);
327     hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_FSBASE, 1);
328     hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_GSBASE, 1);
329     hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_KERNELGSBASE, 1);
330     hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_TSC_AUX, 1);
331     hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_IA32_TSC, 1);
332     hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_IA32_SYSENTER_CS, 1);
333     hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_IA32_SYSENTER_EIP, 1);
334     hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_IA32_SYSENTER_ESP, 1);
335 
336     return 0;
337 }
338 
hvf_store_events(CPUState * cpu,uint32_t ins_len,uint64_t idtvec_info)339 static void hvf_store_events(CPUState *cpu, uint32_t ins_len, uint64_t idtvec_info)
340 {
341     X86CPU *x86_cpu = X86_CPU(cpu);
342     CPUX86State *env = &x86_cpu->env;
343 
344     env->exception_nr = -1;
345     env->exception_pending = 0;
346     env->exception_injected = 0;
347     env->interrupt_injected = -1;
348     env->nmi_injected = false;
349     env->ins_len = 0;
350     env->has_error_code = false;
351     if (idtvec_info & VMCS_IDT_VEC_VALID) {
352         switch (idtvec_info & VMCS_IDT_VEC_TYPE) {
353         case VMCS_IDT_VEC_HWINTR:
354         case VMCS_IDT_VEC_SWINTR:
355             env->interrupt_injected = idtvec_info & VMCS_IDT_VEC_VECNUM;
356             break;
357         case VMCS_IDT_VEC_NMI:
358             env->nmi_injected = true;
359             break;
360         case VMCS_IDT_VEC_HWEXCEPTION:
361         case VMCS_IDT_VEC_SWEXCEPTION:
362             env->exception_nr = idtvec_info & VMCS_IDT_VEC_VECNUM;
363             env->exception_injected = 1;
364             break;
365         case VMCS_IDT_VEC_PRIV_SWEXCEPTION:
366         default:
367             abort();
368         }
369         if ((idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWEXCEPTION ||
370             (idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWINTR) {
371             env->ins_len = ins_len;
372         }
373         if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
374             env->has_error_code = true;
375             env->error_code = rvmcs(cpu->accel->fd, VMCS_IDT_VECTORING_ERROR);
376         }
377     }
378     if ((rvmcs(cpu->accel->fd, VMCS_GUEST_INTERRUPTIBILITY) &
379         VMCS_INTERRUPTIBILITY_NMI_BLOCKING)) {
380         env->hflags2 |= HF2_NMI_MASK;
381     } else {
382         env->hflags2 &= ~HF2_NMI_MASK;
383     }
384     if (rvmcs(cpu->accel->fd, VMCS_GUEST_INTERRUPTIBILITY) &
385          (VMCS_INTERRUPTIBILITY_STI_BLOCKING |
386          VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)) {
387         env->hflags |= HF_INHIBIT_IRQ_MASK;
388     } else {
389         env->hflags &= ~HF_INHIBIT_IRQ_MASK;
390     }
391 }
392 
hvf_cpu_x86_cpuid(CPUX86State * env,uint32_t index,uint32_t count,uint32_t * eax,uint32_t * ebx,uint32_t * ecx,uint32_t * edx)393 static void hvf_cpu_x86_cpuid(CPUX86State *env, uint32_t index, uint32_t count,
394                               uint32_t *eax, uint32_t *ebx,
395                               uint32_t *ecx, uint32_t *edx)
396 {
397     /*
398      * A wrapper extends cpu_x86_cpuid with 0x40000000 and 0x40000010 leafs,
399      * leafs 0x40000001-0x4000000F are filled with zeros
400      * Provides vmware-cpuid-freq support to hvf
401      *
402      * Note: leaf 0x40000000 not exposes HVF,
403      * leaving hypervisor signature empty
404      */
405 
406     if (index < 0x40000000 || index > 0x40000010 ||
407         !tsc_is_known(env) || !apic_bus_freq_is_known(env)) {
408 
409         cpu_x86_cpuid(env, index, count, eax, ebx, ecx, edx);
410         return;
411     }
412 
413     switch (index) {
414     case 0x40000000:
415         *eax = 0x40000010;    /* Max available cpuid leaf */
416         *ebx = 0;             /* Leave signature empty */
417         *ecx = 0;
418         *edx = 0;
419         break;
420     case 0x40000010:
421         *eax = env->tsc_khz;
422         *ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
423         *ecx = 0;
424         *edx = 0;
425         break;
426     default:
427         *eax = 0;
428         *ebx = 0;
429         *ecx = 0;
430         *edx = 0;
431         break;
432     }
433 }
434 
hvf_vcpu_exec(CPUState * cpu)435 int hvf_vcpu_exec(CPUState *cpu)
436 {
437     X86CPU *x86_cpu = X86_CPU(cpu);
438     CPUX86State *env = &x86_cpu->env;
439     int ret = 0;
440     uint64_t rip = 0;
441 
442     if (hvf_process_events(cpu)) {
443         return EXCP_HLT;
444     }
445 
446     do {
447         if (cpu->accel->dirty) {
448             hvf_put_registers(cpu);
449             cpu->accel->dirty = false;
450         }
451 
452         if (hvf_inject_interrupts(cpu)) {
453             return EXCP_INTERRUPT;
454         }
455         vmx_update_tpr(cpu);
456 
457         bql_unlock();
458         if (!cpu_is_bsp(X86_CPU(cpu)) && cpu->halted) {
459             bql_lock();
460             return EXCP_HLT;
461         }
462 
463         hv_return_t r = hv_vcpu_run_until(cpu->accel->fd, HV_DEADLINE_FOREVER);
464         assert_hvf_ok(r);
465 
466         /* handle VMEXIT */
467         uint64_t exit_reason = rvmcs(cpu->accel->fd, VMCS_EXIT_REASON);
468         uint64_t exit_qual = rvmcs(cpu->accel->fd, VMCS_EXIT_QUALIFICATION);
469         uint32_t ins_len = (uint32_t)rvmcs(cpu->accel->fd,
470                                            VMCS_EXIT_INSTRUCTION_LENGTH);
471 
472         uint64_t idtvec_info = rvmcs(cpu->accel->fd, VMCS_IDT_VECTORING_INFO);
473 
474         hvf_store_events(cpu, ins_len, idtvec_info);
475         rip = rreg(cpu->accel->fd, HV_X86_RIP);
476         env->eflags = rreg(cpu->accel->fd, HV_X86_RFLAGS);
477 
478         bql_lock();
479 
480         update_apic_tpr(cpu);
481         current_cpu = cpu;
482 
483         ret = 0;
484         switch (exit_reason) {
485         case EXIT_REASON_HLT: {
486             macvm_set_rip(cpu, rip + ins_len);
487             if (!((cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
488                 (env->eflags & IF_MASK))
489                 && !(cpu->interrupt_request & CPU_INTERRUPT_NMI) &&
490                 !(idtvec_info & VMCS_IDT_VEC_VALID)) {
491                 cpu->halted = 1;
492                 ret = EXCP_HLT;
493                 break;
494             }
495             ret = EXCP_INTERRUPT;
496             break;
497         }
498         case EXIT_REASON_MWAIT: {
499             ret = EXCP_INTERRUPT;
500             break;
501         }
502         /* Need to check if MMIO or unmapped fault */
503         case EXIT_REASON_EPT_FAULT:
504         {
505             hvf_slot *slot;
506             uint64_t gpa = rvmcs(cpu->accel->fd, VMCS_GUEST_PHYSICAL_ADDRESS);
507 
508             if (((idtvec_info & VMCS_IDT_VEC_VALID) == 0) &&
509                 ((exit_qual & EXIT_QUAL_NMIUDTI) != 0)) {
510                 vmx_set_nmi_blocking(cpu);
511             }
512 
513             slot = hvf_find_overlap_slot(gpa, 1);
514             /* mmio */
515             if (ept_emulation_fault(slot, gpa, exit_qual)) {
516                 struct x86_decode decode;
517 
518                 load_regs(cpu);
519                 decode_instruction(env, &decode);
520                 exec_instruction(env, &decode);
521                 store_regs(cpu);
522                 break;
523             }
524             break;
525         }
526         case EXIT_REASON_INOUT:
527         {
528             uint32_t in = (exit_qual & 8) != 0;
529             uint32_t size =  (exit_qual & 7) + 1;
530             uint32_t string =  (exit_qual & 16) != 0;
531             uint32_t port =  exit_qual >> 16;
532             /*uint32_t rep = (exit_qual & 0x20) != 0;*/
533 
534             if (!string && in) {
535                 uint64_t val = 0;
536                 load_regs(cpu);
537                 hvf_handle_io(env, port, &val, 0, size, 1);
538                 if (size == 1) {
539                     AL(env) = val;
540                 } else if (size == 2) {
541                     AX(env) = val;
542                 } else if (size == 4) {
543                     RAX(env) = (uint32_t)val;
544                 } else {
545                     RAX(env) = (uint64_t)val;
546                 }
547                 env->eip += ins_len;
548                 store_regs(cpu);
549                 break;
550             } else if (!string && !in) {
551                 RAX(env) = rreg(cpu->accel->fd, HV_X86_RAX);
552                 hvf_handle_io(env, port, &RAX(env), 1, size, 1);
553                 macvm_set_rip(cpu, rip + ins_len);
554                 break;
555             }
556             struct x86_decode decode;
557 
558             load_regs(cpu);
559             decode_instruction(env, &decode);
560             assert(ins_len == decode.len);
561             exec_instruction(env, &decode);
562             store_regs(cpu);
563 
564             break;
565         }
566         case EXIT_REASON_CPUID: {
567             uint32_t rax = (uint32_t)rreg(cpu->accel->fd, HV_X86_RAX);
568             uint32_t rbx = (uint32_t)rreg(cpu->accel->fd, HV_X86_RBX);
569             uint32_t rcx = (uint32_t)rreg(cpu->accel->fd, HV_X86_RCX);
570             uint32_t rdx = (uint32_t)rreg(cpu->accel->fd, HV_X86_RDX);
571 
572             if (rax == 1) {
573                 /* CPUID1.ecx.OSXSAVE needs to know CR4 */
574                 env->cr[4] = rvmcs(cpu->accel->fd, VMCS_GUEST_CR4);
575             }
576             hvf_cpu_x86_cpuid(env, rax, rcx, &rax, &rbx, &rcx, &rdx);
577 
578             wreg(cpu->accel->fd, HV_X86_RAX, rax);
579             wreg(cpu->accel->fd, HV_X86_RBX, rbx);
580             wreg(cpu->accel->fd, HV_X86_RCX, rcx);
581             wreg(cpu->accel->fd, HV_X86_RDX, rdx);
582 
583             macvm_set_rip(cpu, rip + ins_len);
584             break;
585         }
586         case EXIT_REASON_XSETBV: {
587             X86CPU *x86_cpu = X86_CPU(cpu);
588             CPUX86State *env = &x86_cpu->env;
589             uint32_t eax = (uint32_t)rreg(cpu->accel->fd, HV_X86_RAX);
590             uint32_t ecx = (uint32_t)rreg(cpu->accel->fd, HV_X86_RCX);
591             uint32_t edx = (uint32_t)rreg(cpu->accel->fd, HV_X86_RDX);
592 
593             if (ecx) {
594                 macvm_set_rip(cpu, rip + ins_len);
595                 break;
596             }
597             env->xcr0 = ((uint64_t)edx << 32) | eax;
598             wreg(cpu->accel->fd, HV_X86_XCR0, env->xcr0 | 1);
599             macvm_set_rip(cpu, rip + ins_len);
600             break;
601         }
602         case EXIT_REASON_INTR_WINDOW:
603             vmx_clear_int_window_exiting(cpu);
604             ret = EXCP_INTERRUPT;
605             break;
606         case EXIT_REASON_NMI_WINDOW:
607             vmx_clear_nmi_window_exiting(cpu);
608             ret = EXCP_INTERRUPT;
609             break;
610         case EXIT_REASON_EXT_INTR:
611             /* force exit and allow io handling */
612             ret = EXCP_INTERRUPT;
613             break;
614         case EXIT_REASON_RDMSR:
615         case EXIT_REASON_WRMSR:
616         {
617             load_regs(cpu);
618             if (exit_reason == EXIT_REASON_RDMSR) {
619                 simulate_rdmsr(env);
620             } else {
621                 simulate_wrmsr(env);
622             }
623             env->eip += ins_len;
624             store_regs(cpu);
625             break;
626         }
627         case EXIT_REASON_CR_ACCESS: {
628             int cr;
629             int reg;
630 
631             load_regs(cpu);
632             cr = exit_qual & 15;
633             reg = (exit_qual >> 8) & 15;
634 
635             switch (cr) {
636             case 0x0: {
637                 macvm_set_cr0(cpu->accel->fd, RRX(env, reg));
638                 break;
639             }
640             case 4: {
641                 macvm_set_cr4(cpu->accel->fd, RRX(env, reg));
642                 break;
643             }
644             case 8: {
645                 X86CPU *x86_cpu = X86_CPU(cpu);
646                 if (exit_qual & 0x10) {
647                     RRX(env, reg) = cpu_get_apic_tpr(x86_cpu->apic_state);
648                 } else {
649                     int tpr = RRX(env, reg);
650                     cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
651                     ret = EXCP_INTERRUPT;
652                 }
653                 break;
654             }
655             default:
656                 error_report("Unrecognized CR %d", cr);
657                 abort();
658             }
659             env->eip += ins_len;
660             store_regs(cpu);
661             break;
662         }
663         case EXIT_REASON_APIC_ACCESS: { /* TODO */
664             struct x86_decode decode;
665 
666             load_regs(cpu);
667             decode_instruction(env, &decode);
668             exec_instruction(env, &decode);
669             store_regs(cpu);
670             break;
671         }
672         case EXIT_REASON_TPR: {
673             ret = 1;
674             break;
675         }
676         case EXIT_REASON_TASK_SWITCH: {
677             uint64_t vinfo = rvmcs(cpu->accel->fd, VMCS_IDT_VECTORING_INFO);
678             x68_segment_selector sel = {.sel = exit_qual & 0xffff};
679             vmx_handle_task_switch(cpu, sel, (exit_qual >> 30) & 0x3,
680              vinfo & VMCS_INTR_VALID, vinfo & VECTORING_INFO_VECTOR_MASK, vinfo
681              & VMCS_INTR_T_MASK);
682             break;
683         }
684         case EXIT_REASON_TRIPLE_FAULT: {
685             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
686             ret = EXCP_INTERRUPT;
687             break;
688         }
689         case EXIT_REASON_RDPMC:
690             wreg(cpu->accel->fd, HV_X86_RAX, 0);
691             wreg(cpu->accel->fd, HV_X86_RDX, 0);
692             macvm_set_rip(cpu, rip + ins_len);
693             break;
694         case VMX_REASON_VMCALL:
695             env->exception_nr = EXCP0D_GPF;
696             env->exception_injected = 1;
697             env->has_error_code = true;
698             env->error_code = 0;
699             break;
700         default:
701             error_report("%llx: unhandled exit %llx", rip, exit_reason);
702         }
703     } while (ret == 0);
704 
705     return ret;
706 }
707 
hvf_arch_insert_sw_breakpoint(CPUState * cpu,struct hvf_sw_breakpoint * bp)708 int hvf_arch_insert_sw_breakpoint(CPUState *cpu, struct hvf_sw_breakpoint *bp)
709 {
710     return -ENOSYS;
711 }
712 
hvf_arch_remove_sw_breakpoint(CPUState * cpu,struct hvf_sw_breakpoint * bp)713 int hvf_arch_remove_sw_breakpoint(CPUState *cpu, struct hvf_sw_breakpoint *bp)
714 {
715     return -ENOSYS;
716 }
717 
hvf_arch_insert_hw_breakpoint(vaddr addr,vaddr len,int type)718 int hvf_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
719 {
720     return -ENOSYS;
721 }
722 
hvf_arch_remove_hw_breakpoint(vaddr addr,vaddr len,int type)723 int hvf_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
724 {
725     return -ENOSYS;
726 }
727 
hvf_arch_remove_all_hw_breakpoints(void)728 void hvf_arch_remove_all_hw_breakpoints(void)
729 {
730 }
731 
hvf_arch_update_guest_debug(CPUState * cpu)732 void hvf_arch_update_guest_debug(CPUState *cpu)
733 {
734 }
735 
hvf_arch_supports_guest_debug(void)736 bool hvf_arch_supports_guest_debug(void)
737 {
738     return false;
739 }
740