1 /* Parse expressions for GDB.
2
3 Copyright 1986, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2004 Free Software Foundation, Inc.
5
6 Modified from expread.y by the Department of Computer Science at the
7 State University of New York at Buffalo, 1991.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
25
26 /* Parse an expression from text in a string,
27 and return the result as a struct expression pointer.
28 That structure contains arithmetic operations in reverse polish,
29 with constants represented by operations that are followed by special data.
30 See expression.h for the details of the format.
31 What is important here is that it can be built up sequentially
32 during the process of parsing; the lower levels of the tree always
33 come first in the result. */
34
35 #include <ctype.h>
36
37 #include "defs.h"
38 #include "gdb_string.h"
39 #include "symtab.h"
40 #include "gdbtypes.h"
41 #include "frame.h"
42 #include "expression.h"
43 #include "value.h"
44 #include "command.h"
45 #include "language.h"
46 #include "parser-defs.h"
47 #include "gdbcmd.h"
48 #include "symfile.h" /* for overlay functions */
49 #include "inferior.h" /* for NUM_PSEUDO_REGS. NOTE: replace
50 with "gdbarch.h" when appropriate. */
51 #include "doublest.h"
52 #include "gdb_assert.h"
53 #include "block.h"
54
55 /* Standard set of definitions for printing, dumping, prefixifying,
56 * and evaluating expressions. */
57
58 const struct exp_descriptor exp_descriptor_standard =
59 {
60 print_subexp_standard,
61 operator_length_standard,
62 op_name_standard,
63 dump_subexp_body_standard,
64 evaluate_subexp_standard
65 };
66
67 /* Symbols which architectures can redefine. */
68
69 /* Some systems have routines whose names start with `$'. Giving this
70 macro a non-zero value tells GDB's expression parser to check for
71 such routines when parsing tokens that begin with `$'.
72
73 On HP-UX, certain system routines (millicode) have names beginning
74 with `$' or `$$'. For example, `$$dyncall' is a millicode routine
75 that handles inter-space procedure calls on PA-RISC. */
76 #ifndef SYMBOLS_CAN_START_WITH_DOLLAR
77 #define SYMBOLS_CAN_START_WITH_DOLLAR (0)
78 #endif
79
80
81
82 /* Global variables declared in parser-defs.h (and commented there). */
83 struct expression *expout;
84 int expout_size;
85 int expout_ptr;
86 struct block *expression_context_block;
87 CORE_ADDR expression_context_pc;
88 struct block *innermost_block;
89 int arglist_len;
90 union type_stack_elt *type_stack;
91 int type_stack_depth, type_stack_size;
92 char *lexptr;
93 char *prev_lexptr;
94 char *namecopy;
95 int paren_depth;
96 int comma_terminates;
97
98 static int expressiondebug = 0;
99
100 static void free_funcalls (void *ignore);
101
102 static void prefixify_expression (struct expression *);
103
104 static void prefixify_subexp (struct expression *, struct expression *, int,
105 int);
106
107 static struct expression *parse_exp_in_context (char **, struct block *, int,
108 int);
109
110 void _initialize_parse (void);
111
112 /* Data structure for saving values of arglist_len for function calls whose
113 arguments contain other function calls. */
114
115 struct funcall
116 {
117 struct funcall *next;
118 int arglist_len;
119 };
120
121 static struct funcall *funcall_chain;
122
123 /* Begin counting arguments for a function call,
124 saving the data about any containing call. */
125
126 void
start_arglist(void)127 start_arglist (void)
128 {
129 struct funcall *new;
130
131 new = (struct funcall *) xmalloc (sizeof (struct funcall));
132 new->next = funcall_chain;
133 new->arglist_len = arglist_len;
134 arglist_len = 0;
135 funcall_chain = new;
136 }
137
138 /* Return the number of arguments in a function call just terminated,
139 and restore the data for the containing function call. */
140
141 int
end_arglist(void)142 end_arglist (void)
143 {
144 int val = arglist_len;
145 struct funcall *call = funcall_chain;
146 funcall_chain = call->next;
147 arglist_len = call->arglist_len;
148 xfree (call);
149 return val;
150 }
151
152 /* Free everything in the funcall chain.
153 Used when there is an error inside parsing. */
154
155 static void
free_funcalls(void * ignore)156 free_funcalls (void *ignore)
157 {
158 struct funcall *call, *next;
159
160 for (call = funcall_chain; call; call = next)
161 {
162 next = call->next;
163 xfree (call);
164 }
165 }
166
167 /* This page contains the functions for adding data to the struct expression
168 being constructed. */
169
170 /* Add one element to the end of the expression. */
171
172 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
173 a register through here */
174
175 void
write_exp_elt(union exp_element expelt)176 write_exp_elt (union exp_element expelt)
177 {
178 if (expout_ptr >= expout_size)
179 {
180 expout_size *= 2;
181 expout = (struct expression *)
182 xrealloc ((char *) expout, sizeof (struct expression)
183 + EXP_ELEM_TO_BYTES (expout_size));
184 }
185 expout->elts[expout_ptr++] = expelt;
186 }
187
188 void
write_exp_elt_opcode(enum exp_opcode expelt)189 write_exp_elt_opcode (enum exp_opcode expelt)
190 {
191 union exp_element tmp;
192
193 tmp.opcode = expelt;
194
195 write_exp_elt (tmp);
196 }
197
198 void
write_exp_elt_sym(struct symbol * expelt)199 write_exp_elt_sym (struct symbol *expelt)
200 {
201 union exp_element tmp;
202
203 tmp.symbol = expelt;
204
205 write_exp_elt (tmp);
206 }
207
208 void
write_exp_elt_block(struct block * b)209 write_exp_elt_block (struct block *b)
210 {
211 union exp_element tmp;
212 tmp.block = b;
213 write_exp_elt (tmp);
214 }
215
216 void
write_exp_elt_longcst(LONGEST expelt)217 write_exp_elt_longcst (LONGEST expelt)
218 {
219 union exp_element tmp;
220
221 tmp.longconst = expelt;
222
223 write_exp_elt (tmp);
224 }
225
226 void
write_exp_elt_dblcst(DOUBLEST expelt)227 write_exp_elt_dblcst (DOUBLEST expelt)
228 {
229 union exp_element tmp;
230
231 tmp.doubleconst = expelt;
232
233 write_exp_elt (tmp);
234 }
235
236 void
write_exp_elt_type(struct type * expelt)237 write_exp_elt_type (struct type *expelt)
238 {
239 union exp_element tmp;
240
241 tmp.type = expelt;
242
243 write_exp_elt (tmp);
244 }
245
246 void
write_exp_elt_intern(struct internalvar * expelt)247 write_exp_elt_intern (struct internalvar *expelt)
248 {
249 union exp_element tmp;
250
251 tmp.internalvar = expelt;
252
253 write_exp_elt (tmp);
254 }
255
256 /* Add a string constant to the end of the expression.
257
258 String constants are stored by first writing an expression element
259 that contains the length of the string, then stuffing the string
260 constant itself into however many expression elements are needed
261 to hold it, and then writing another expression element that contains
262 the length of the string. I.E. an expression element at each end of
263 the string records the string length, so you can skip over the
264 expression elements containing the actual string bytes from either
265 end of the string. Note that this also allows gdb to handle
266 strings with embedded null bytes, as is required for some languages.
267
268 Don't be fooled by the fact that the string is null byte terminated,
269 this is strictly for the convenience of debugging gdb itself. Gdb
270 Gdb does not depend up the string being null terminated, since the
271 actual length is recorded in expression elements at each end of the
272 string. The null byte is taken into consideration when computing how
273 many expression elements are required to hold the string constant, of
274 course. */
275
276
277 void
write_exp_string(struct stoken str)278 write_exp_string (struct stoken str)
279 {
280 int len = str.length;
281 int lenelt;
282 char *strdata;
283
284 /* Compute the number of expression elements required to hold the string
285 (including a null byte terminator), along with one expression element
286 at each end to record the actual string length (not including the
287 null byte terminator). */
288
289 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
290
291 /* Ensure that we have enough available expression elements to store
292 everything. */
293
294 if ((expout_ptr + lenelt) >= expout_size)
295 {
296 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
297 expout = (struct expression *)
298 xrealloc ((char *) expout, (sizeof (struct expression)
299 + EXP_ELEM_TO_BYTES (expout_size)));
300 }
301
302 /* Write the leading length expression element (which advances the current
303 expression element index), then write the string constant followed by a
304 terminating null byte, and then write the trailing length expression
305 element. */
306
307 write_exp_elt_longcst ((LONGEST) len);
308 strdata = (char *) &expout->elts[expout_ptr];
309 memcpy (strdata, str.ptr, len);
310 *(strdata + len) = '\0';
311 expout_ptr += lenelt - 2;
312 write_exp_elt_longcst ((LONGEST) len);
313 }
314
315 /* Add a bitstring constant to the end of the expression.
316
317 Bitstring constants are stored by first writing an expression element
318 that contains the length of the bitstring (in bits), then stuffing the
319 bitstring constant itself into however many expression elements are
320 needed to hold it, and then writing another expression element that
321 contains the length of the bitstring. I.E. an expression element at
322 each end of the bitstring records the bitstring length, so you can skip
323 over the expression elements containing the actual bitstring bytes from
324 either end of the bitstring. */
325
326 void
write_exp_bitstring(struct stoken str)327 write_exp_bitstring (struct stoken str)
328 {
329 int bits = str.length; /* length in bits */
330 int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
331 int lenelt;
332 char *strdata;
333
334 /* Compute the number of expression elements required to hold the bitstring,
335 along with one expression element at each end to record the actual
336 bitstring length in bits. */
337
338 lenelt = 2 + BYTES_TO_EXP_ELEM (len);
339
340 /* Ensure that we have enough available expression elements to store
341 everything. */
342
343 if ((expout_ptr + lenelt) >= expout_size)
344 {
345 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
346 expout = (struct expression *)
347 xrealloc ((char *) expout, (sizeof (struct expression)
348 + EXP_ELEM_TO_BYTES (expout_size)));
349 }
350
351 /* Write the leading length expression element (which advances the current
352 expression element index), then write the bitstring constant, and then
353 write the trailing length expression element. */
354
355 write_exp_elt_longcst ((LONGEST) bits);
356 strdata = (char *) &expout->elts[expout_ptr];
357 memcpy (strdata, str.ptr, len);
358 expout_ptr += lenelt - 2;
359 write_exp_elt_longcst ((LONGEST) bits);
360 }
361
362 /* Add the appropriate elements for a minimal symbol to the end of
363 the expression. The rationale behind passing in text_symbol_type and
364 data_symbol_type was so that Modula-2 could pass in WORD for
365 data_symbol_type. Perhaps it still is useful to have those types vary
366 based on the language, but they no longer have names like "int", so
367 the initial rationale is gone. */
368
369 static struct type *msym_text_symbol_type;
370 static struct type *msym_data_symbol_type;
371 static struct type *msym_unknown_symbol_type;
372
373 void
write_exp_msymbol(struct minimal_symbol * msymbol,struct type * text_symbol_type,struct type * data_symbol_type)374 write_exp_msymbol (struct minimal_symbol *msymbol,
375 struct type *text_symbol_type,
376 struct type *data_symbol_type)
377 {
378 CORE_ADDR addr;
379
380 write_exp_elt_opcode (OP_LONG);
381 /* Let's make the type big enough to hold a 64-bit address. */
382 write_exp_elt_type (builtin_type_CORE_ADDR);
383
384 addr = SYMBOL_VALUE_ADDRESS (msymbol);
385 if (overlay_debugging)
386 addr = symbol_overlayed_address (addr, SYMBOL_BFD_SECTION (msymbol));
387 write_exp_elt_longcst ((LONGEST) addr);
388
389 write_exp_elt_opcode (OP_LONG);
390
391 write_exp_elt_opcode (UNOP_MEMVAL);
392 switch (msymbol->type)
393 {
394 case mst_text:
395 case mst_file_text:
396 case mst_solib_trampoline:
397 write_exp_elt_type (msym_text_symbol_type);
398 break;
399
400 case mst_data:
401 case mst_file_data:
402 case mst_bss:
403 case mst_file_bss:
404 write_exp_elt_type (msym_data_symbol_type);
405 break;
406
407 default:
408 write_exp_elt_type (msym_unknown_symbol_type);
409 break;
410 }
411 write_exp_elt_opcode (UNOP_MEMVAL);
412 }
413
414 /* Recognize tokens that start with '$'. These include:
415
416 $regname A native register name or a "standard
417 register name".
418
419 $variable A convenience variable with a name chosen
420 by the user.
421
422 $digits Value history with index <digits>, starting
423 from the first value which has index 1.
424
425 $$digits Value history with index <digits> relative
426 to the last value. I.E. $$0 is the last
427 value, $$1 is the one previous to that, $$2
428 is the one previous to $$1, etc.
429
430 $ | $0 | $$0 The last value in the value history.
431
432 $$ An abbreviation for the second to the last
433 value in the value history, I.E. $$1
434
435 */
436
437 void
write_dollar_variable(struct stoken str)438 write_dollar_variable (struct stoken str)
439 {
440 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
441 and $$digits (equivalent to $<-digits> if you could type that). */
442
443 int negate = 0;
444 int i = 1;
445 /* Double dollar means negate the number and add -1 as well.
446 Thus $$ alone means -1. */
447 if (str.length >= 2 && str.ptr[1] == '$')
448 {
449 negate = 1;
450 i = 2;
451 }
452 if (i == str.length)
453 {
454 /* Just dollars (one or two) */
455 i = -negate;
456 goto handle_last;
457 }
458 /* Is the rest of the token digits? */
459 for (; i < str.length; i++)
460 if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
461 break;
462 if (i == str.length)
463 {
464 i = atoi (str.ptr + 1 + negate);
465 if (negate)
466 i = -i;
467 goto handle_last;
468 }
469
470 /* Handle tokens that refer to machine registers:
471 $ followed by a register name. */
472 i = frame_map_name_to_regnum (deprecated_selected_frame,
473 str.ptr + 1, str.length - 1);
474 if (i >= 0)
475 goto handle_register;
476
477 if (SYMBOLS_CAN_START_WITH_DOLLAR)
478 {
479 struct symbol *sym = NULL;
480 struct minimal_symbol *msym = NULL;
481
482 /* On HP-UX, certain system routines (millicode) have names beginning
483 with $ or $$, e.g. $$dyncall, which handles inter-space procedure
484 calls on PA-RISC. Check for those, first. */
485
486 /* This code is not enabled on non HP-UX systems, since worst case
487 symbol table lookup performance is awful, to put it mildly. */
488
489 sym = lookup_symbol (copy_name (str), (struct block *) NULL,
490 VAR_DOMAIN, (int *) NULL, (struct symtab **) NULL);
491 if (sym)
492 {
493 write_exp_elt_opcode (OP_VAR_VALUE);
494 write_exp_elt_block (block_found); /* set by lookup_symbol */
495 write_exp_elt_sym (sym);
496 write_exp_elt_opcode (OP_VAR_VALUE);
497 return;
498 }
499 msym = lookup_minimal_symbol (copy_name (str), NULL, NULL);
500 if (msym)
501 {
502 write_exp_msymbol (msym,
503 lookup_function_type (builtin_type_int),
504 builtin_type_int);
505 return;
506 }
507 }
508
509 /* Any other names starting in $ are debugger internal variables. */
510
511 write_exp_elt_opcode (OP_INTERNALVAR);
512 write_exp_elt_intern (lookup_internalvar (copy_name (str) + 1));
513 write_exp_elt_opcode (OP_INTERNALVAR);
514 return;
515 handle_last:
516 write_exp_elt_opcode (OP_LAST);
517 write_exp_elt_longcst ((LONGEST) i);
518 write_exp_elt_opcode (OP_LAST);
519 return;
520 handle_register:
521 write_exp_elt_opcode (OP_REGISTER);
522 write_exp_elt_longcst (i);
523 write_exp_elt_opcode (OP_REGISTER);
524 return;
525 }
526
527
528 /* Parse a string that is possibly a namespace / nested class
529 specification, i.e., something of the form A::B::C::x. Input
530 (NAME) is the entire string; LEN is the current valid length; the
531 output is a string, TOKEN, which points to the largest recognized
532 prefix which is a series of namespaces or classes. CLASS_PREFIX is
533 another output, which records whether a nested class spec was
534 recognized (= 1) or a fully qualified variable name was found (=
535 0). ARGPTR is side-effected (if non-NULL) to point to beyond the
536 string recognized and consumed by this routine.
537
538 The return value is a pointer to the symbol for the base class or
539 variable if found, or NULL if not found. Callers must check this
540 first -- if NULL, the outputs may not be correct.
541
542 This function is used c-exp.y. This is used specifically to get
543 around HP aCC (and possibly other compilers), which insists on
544 generating names with embedded colons for namespace or nested class
545 members.
546
547 (Argument LEN is currently unused. 1997-08-27)
548
549 Callers must free memory allocated for the output string TOKEN. */
550
551 static const char coloncolon[2] =
552 {':', ':'};
553
554 struct symbol *
parse_nested_classes_for_hpacc(char * name,int len,char ** token,int * class_prefix,char ** argptr)555 parse_nested_classes_for_hpacc (char *name, int len, char **token,
556 int *class_prefix, char **argptr)
557 {
558 /* Comment below comes from decode_line_1 which has very similar
559 code, which is called for "break" command parsing. */
560
561 /* We have what looks like a class or namespace
562 scope specification (A::B), possibly with many
563 levels of namespaces or classes (A::B::C::D).
564
565 Some versions of the HP ANSI C++ compiler (as also possibly
566 other compilers) generate class/function/member names with
567 embedded double-colons if they are inside namespaces. To
568 handle this, we loop a few times, considering larger and
569 larger prefixes of the string as though they were single
570 symbols. So, if the initially supplied string is
571 A::B::C::D::foo, we have to look up "A", then "A::B",
572 then "A::B::C", then "A::B::C::D", and finally
573 "A::B::C::D::foo" as single, monolithic symbols, because
574 A, B, C or D may be namespaces.
575
576 Note that namespaces can nest only inside other
577 namespaces, and not inside classes. So we need only
578 consider *prefixes* of the string; there is no need to look up
579 "B::C" separately as a symbol in the previous example. */
580
581 char *p;
582 char *start, *end;
583 char *prefix = NULL;
584 char *tmp;
585 struct symbol *sym_class = NULL;
586 struct symbol *sym_var = NULL;
587 struct type *t;
588 int prefix_len = 0;
589 int done = 0;
590 char *q;
591
592 /* Check for HP-compiled executable -- in other cases
593 return NULL, and caller must default to standard GDB
594 behaviour. */
595
596 if (!deprecated_hp_som_som_object_present)
597 return (struct symbol *) NULL;
598
599 p = name;
600
601 /* Skip over whitespace and possible global "::" */
602 while (*p && (*p == ' ' || *p == '\t'))
603 p++;
604 if (p[0] == ':' && p[1] == ':')
605 p += 2;
606 while (*p && (*p == ' ' || *p == '\t'))
607 p++;
608
609 while (1)
610 {
611 /* Get to the end of the next namespace or class spec. */
612 /* If we're looking at some non-token, fail immediately */
613 start = p;
614 if (!(isalpha (*p) || *p == '$' || *p == '_'))
615 return (struct symbol *) NULL;
616 p++;
617 while (*p && (isalnum (*p) || *p == '$' || *p == '_'))
618 p++;
619
620 if (*p == '<')
621 {
622 /* If we have the start of a template specification,
623 scan right ahead to its end */
624 q = find_template_name_end (p);
625 if (q)
626 p = q;
627 }
628
629 end = p;
630
631 /* Skip over "::" and whitespace for next time around */
632 while (*p && (*p == ' ' || *p == '\t'))
633 p++;
634 if (p[0] == ':' && p[1] == ':')
635 p += 2;
636 while (*p && (*p == ' ' || *p == '\t'))
637 p++;
638
639 /* Done with tokens? */
640 if (!*p || !(isalpha (*p) || *p == '$' || *p == '_'))
641 done = 1;
642
643 tmp = (char *) alloca (prefix_len + end - start + 3);
644 if (prefix)
645 {
646 memcpy (tmp, prefix, prefix_len);
647 memcpy (tmp + prefix_len, coloncolon, 2);
648 memcpy (tmp + prefix_len + 2, start, end - start);
649 tmp[prefix_len + 2 + end - start] = '\000';
650 }
651 else
652 {
653 memcpy (tmp, start, end - start);
654 tmp[end - start] = '\000';
655 }
656
657 prefix = tmp;
658 prefix_len = strlen (prefix);
659
660 /* See if the prefix we have now is something we know about */
661
662 if (!done)
663 {
664 /* More tokens to process, so this must be a class/namespace */
665 sym_class = lookup_symbol (prefix, 0, STRUCT_DOMAIN,
666 0, (struct symtab **) NULL);
667 }
668 else
669 {
670 /* No more tokens, so try as a variable first */
671 sym_var = lookup_symbol (prefix, 0, VAR_DOMAIN,
672 0, (struct symtab **) NULL);
673 /* If failed, try as class/namespace */
674 if (!sym_var)
675 sym_class = lookup_symbol (prefix, 0, STRUCT_DOMAIN,
676 0, (struct symtab **) NULL);
677 }
678
679 if (sym_var ||
680 (sym_class &&
681 (t = check_typedef (SYMBOL_TYPE (sym_class)),
682 (TYPE_CODE (t) == TYPE_CODE_STRUCT
683 || TYPE_CODE (t) == TYPE_CODE_UNION))))
684 {
685 /* We found a valid token */
686 *token = (char *) xmalloc (prefix_len + 1);
687 memcpy (*token, prefix, prefix_len);
688 (*token)[prefix_len] = '\000';
689 break;
690 }
691
692 /* No variable or class/namespace found, no more tokens */
693 if (done)
694 return (struct symbol *) NULL;
695 }
696
697 /* Out of loop, so we must have found a valid token */
698 if (sym_var)
699 *class_prefix = 0;
700 else
701 *class_prefix = 1;
702
703 if (argptr)
704 *argptr = done ? p : end;
705
706 return sym_var ? sym_var : sym_class; /* found */
707 }
708
709 char *
find_template_name_end(char * p)710 find_template_name_end (char *p)
711 {
712 int depth = 1;
713 int just_seen_right = 0;
714 int just_seen_colon = 0;
715 int just_seen_space = 0;
716
717 if (!p || (*p != '<'))
718 return 0;
719
720 while (*++p)
721 {
722 switch (*p)
723 {
724 case '\'':
725 case '\"':
726 case '{':
727 case '}':
728 /* In future, may want to allow these?? */
729 return 0;
730 case '<':
731 depth++; /* start nested template */
732 if (just_seen_colon || just_seen_right || just_seen_space)
733 return 0; /* but not after : or :: or > or space */
734 break;
735 case '>':
736 if (just_seen_colon || just_seen_right)
737 return 0; /* end a (nested?) template */
738 just_seen_right = 1; /* but not after : or :: */
739 if (--depth == 0) /* also disallow >>, insist on > > */
740 return ++p; /* if outermost ended, return */
741 break;
742 case ':':
743 if (just_seen_space || (just_seen_colon > 1))
744 return 0; /* nested class spec coming up */
745 just_seen_colon++; /* we allow :: but not :::: */
746 break;
747 case ' ':
748 break;
749 default:
750 if (!((*p >= 'a' && *p <= 'z') || /* allow token chars */
751 (*p >= 'A' && *p <= 'Z') ||
752 (*p >= '0' && *p <= '9') ||
753 (*p == '_') || (*p == ',') || /* commas for template args */
754 (*p == '&') || (*p == '*') || /* pointer and ref types */
755 (*p == '(') || (*p == ')') || /* function types */
756 (*p == '[') || (*p == ']'))) /* array types */
757 return 0;
758 }
759 if (*p != ' ')
760 just_seen_space = 0;
761 if (*p != ':')
762 just_seen_colon = 0;
763 if (*p != '>')
764 just_seen_right = 0;
765 }
766 return 0;
767 }
768
769
770
771 /* Return a null-terminated temporary copy of the name
772 of a string token. */
773
774 char *
copy_name(struct stoken token)775 copy_name (struct stoken token)
776 {
777 memcpy (namecopy, token.ptr, token.length);
778 namecopy[token.length] = 0;
779 return namecopy;
780 }
781
782 /* Reverse an expression from suffix form (in which it is constructed)
783 to prefix form (in which we can conveniently print or execute it). */
784
785 static void
prefixify_expression(struct expression * expr)786 prefixify_expression (struct expression *expr)
787 {
788 int len =
789 sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
790 struct expression *temp;
791 int inpos = expr->nelts, outpos = 0;
792
793 temp = (struct expression *) alloca (len);
794
795 /* Copy the original expression into temp. */
796 memcpy (temp, expr, len);
797
798 prefixify_subexp (temp, expr, inpos, outpos);
799 }
800
801 /* Return the number of exp_elements in the postfix subexpression
802 of EXPR whose operator is at index ENDPOS - 1 in EXPR. */
803
804 int
length_of_subexp(struct expression * expr,int endpos)805 length_of_subexp (struct expression *expr, int endpos)
806 {
807 int oplen, args, i;
808
809 operator_length (expr, endpos, &oplen, &args);
810
811 while (args > 0)
812 {
813 oplen += length_of_subexp (expr, endpos - oplen);
814 args--;
815 }
816
817 return oplen;
818 }
819
820 /* Sets *OPLENP to the length of the operator whose (last) index is
821 ENDPOS - 1 in EXPR, and sets *ARGSP to the number of arguments that
822 operator takes. */
823
824 void
operator_length(struct expression * expr,int endpos,int * oplenp,int * argsp)825 operator_length (struct expression *expr, int endpos, int *oplenp, int *argsp)
826 {
827 expr->language_defn->la_exp_desc->operator_length (expr, endpos,
828 oplenp, argsp);
829 }
830
831 /* Default value for operator_length in exp_descriptor vectors. */
832
833 void
operator_length_standard(struct expression * expr,int endpos,int * oplenp,int * argsp)834 operator_length_standard (struct expression *expr, int endpos,
835 int *oplenp, int *argsp)
836 {
837 int oplen = 1;
838 int args = 0;
839 int i;
840
841 if (endpos < 1)
842 error ("?error in operator_length_standard");
843
844 i = (int) expr->elts[endpos - 1].opcode;
845
846 switch (i)
847 {
848 /* C++ */
849 case OP_SCOPE:
850 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
851 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
852 break;
853
854 case OP_LONG:
855 case OP_DOUBLE:
856 case OP_VAR_VALUE:
857 oplen = 4;
858 break;
859
860 case OP_TYPE:
861 case OP_BOOL:
862 case OP_LAST:
863 case OP_REGISTER:
864 case OP_INTERNALVAR:
865 oplen = 3;
866 break;
867
868 case OP_COMPLEX:
869 oplen = 1;
870 args = 2;
871 break;
872
873 case OP_FUNCALL:
874 case OP_F77_UNDETERMINED_ARGLIST:
875 oplen = 3;
876 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
877 break;
878
879 case OP_OBJC_MSGCALL: /* Objective C message (method) call */
880 oplen = 4;
881 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
882 break;
883
884 case UNOP_MAX:
885 case UNOP_MIN:
886 oplen = 3;
887 break;
888
889 case BINOP_VAL:
890 case UNOP_CAST:
891 case UNOP_MEMVAL:
892 oplen = 3;
893 args = 1;
894 break;
895
896 case UNOP_ABS:
897 case UNOP_CAP:
898 case UNOP_CHR:
899 case UNOP_FLOAT:
900 case UNOP_HIGH:
901 case UNOP_ODD:
902 case UNOP_ORD:
903 case UNOP_TRUNC:
904 oplen = 1;
905 args = 1;
906 break;
907
908 case OP_LABELED:
909 case STRUCTOP_STRUCT:
910 case STRUCTOP_PTR:
911 args = 1;
912 /* fall through */
913 case OP_M2_STRING:
914 case OP_STRING:
915 case OP_OBJC_NSSTRING: /* Objective C Foundation Class NSString constant */
916 case OP_OBJC_SELECTOR: /* Objective C "@selector" pseudo-op */
917 case OP_NAME:
918 case OP_EXPRSTRING:
919 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
920 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
921 break;
922
923 case OP_BITSTRING:
924 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
925 oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
926 oplen = 4 + BYTES_TO_EXP_ELEM (oplen);
927 break;
928
929 case OP_ARRAY:
930 oplen = 4;
931 args = longest_to_int (expr->elts[endpos - 2].longconst);
932 args -= longest_to_int (expr->elts[endpos - 3].longconst);
933 args += 1;
934 break;
935
936 case TERNOP_COND:
937 case TERNOP_SLICE:
938 case TERNOP_SLICE_COUNT:
939 args = 3;
940 break;
941
942 /* Modula-2 */
943 case MULTI_SUBSCRIPT:
944 oplen = 3;
945 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
946 break;
947
948 case BINOP_ASSIGN_MODIFY:
949 oplen = 3;
950 args = 2;
951 break;
952
953 /* C++ */
954 case OP_THIS:
955 case OP_OBJC_SELF:
956 oplen = 2;
957 break;
958
959 default:
960 args = 1 + (i < (int) BINOP_END);
961 }
962
963 *oplenp = oplen;
964 *argsp = args;
965 }
966
967 /* Copy the subexpression ending just before index INEND in INEXPR
968 into OUTEXPR, starting at index OUTBEG.
969 In the process, convert it from suffix to prefix form. */
970
971 static void
prefixify_subexp(struct expression * inexpr,struct expression * outexpr,int inend,int outbeg)972 prefixify_subexp (struct expression *inexpr,
973 struct expression *outexpr, int inend, int outbeg)
974 {
975 int oplen;
976 int args;
977 int i;
978 int *arglens;
979 enum exp_opcode opcode;
980
981 operator_length (inexpr, inend, &oplen, &args);
982
983 /* Copy the final operator itself, from the end of the input
984 to the beginning of the output. */
985 inend -= oplen;
986 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
987 EXP_ELEM_TO_BYTES (oplen));
988 outbeg += oplen;
989
990 /* Find the lengths of the arg subexpressions. */
991 arglens = (int *) alloca (args * sizeof (int));
992 for (i = args - 1; i >= 0; i--)
993 {
994 oplen = length_of_subexp (inexpr, inend);
995 arglens[i] = oplen;
996 inend -= oplen;
997 }
998
999 /* Now copy each subexpression, preserving the order of
1000 the subexpressions, but prefixifying each one.
1001 In this loop, inend starts at the beginning of
1002 the expression this level is working on
1003 and marches forward over the arguments.
1004 outbeg does similarly in the output. */
1005 for (i = 0; i < args; i++)
1006 {
1007 oplen = arglens[i];
1008 inend += oplen;
1009 prefixify_subexp (inexpr, outexpr, inend, outbeg);
1010 outbeg += oplen;
1011 }
1012 }
1013
1014 /* This page contains the two entry points to this file. */
1015
1016 /* Read an expression from the string *STRINGPTR points to,
1017 parse it, and return a pointer to a struct expression that we malloc.
1018 Use block BLOCK as the lexical context for variable names;
1019 if BLOCK is zero, use the block of the selected stack frame.
1020 Meanwhile, advance *STRINGPTR to point after the expression,
1021 at the first nonwhite character that is not part of the expression
1022 (possibly a null character).
1023
1024 If COMMA is nonzero, stop if a comma is reached. */
1025
1026 struct expression *
parse_exp_1(char ** stringptr,struct block * block,int comma)1027 parse_exp_1 (char **stringptr, struct block *block, int comma)
1028 {
1029 return parse_exp_in_context (stringptr, block, comma, 0);
1030 }
1031
1032 /* As for parse_exp_1, except that if VOID_CONTEXT_P, then
1033 no value is expected from the expression. */
1034
1035 static struct expression *
parse_exp_in_context(char ** stringptr,struct block * block,int comma,int void_context_p)1036 parse_exp_in_context (char **stringptr, struct block *block, int comma,
1037 int void_context_p)
1038 {
1039 struct cleanup *old_chain;
1040
1041 lexptr = *stringptr;
1042 prev_lexptr = NULL;
1043
1044 paren_depth = 0;
1045 type_stack_depth = 0;
1046
1047 comma_terminates = comma;
1048
1049 if (lexptr == 0 || *lexptr == 0)
1050 error_no_arg ("expression to compute");
1051
1052 old_chain = make_cleanup (free_funcalls, 0 /*ignore*/);
1053 funcall_chain = 0;
1054
1055 if (block)
1056 {
1057 expression_context_block = block;
1058 expression_context_pc = BLOCK_START (block);
1059 }
1060 else
1061 expression_context_block = get_selected_block (&expression_context_pc);
1062
1063 namecopy = (char *) alloca (strlen (lexptr) + 1);
1064 expout_size = 10;
1065 expout_ptr = 0;
1066 expout = (struct expression *)
1067 xmalloc (sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_size));
1068 expout->language_defn = current_language;
1069 make_cleanup (free_current_contents, &expout);
1070
1071 if (current_language->la_parser ())
1072 current_language->la_error (NULL);
1073
1074 discard_cleanups (old_chain);
1075
1076 /* Record the actual number of expression elements, and then
1077 reallocate the expression memory so that we free up any
1078 excess elements. */
1079
1080 expout->nelts = expout_ptr;
1081 expout = (struct expression *)
1082 xrealloc ((char *) expout,
1083 sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_ptr));;
1084
1085 /* Convert expression from postfix form as generated by yacc
1086 parser, to a prefix form. */
1087
1088 if (expressiondebug)
1089 dump_raw_expression (expout, gdb_stdlog,
1090 "before conversion to prefix form");
1091
1092 prefixify_expression (expout);
1093
1094 current_language->la_post_parser (&expout, void_context_p);
1095
1096 if (expressiondebug)
1097 dump_prefix_expression (expout, gdb_stdlog);
1098
1099 *stringptr = lexptr;
1100 return expout;
1101 }
1102
1103 /* Parse STRING as an expression, and complain if this fails
1104 to use up all of the contents of STRING. */
1105
1106 struct expression *
parse_expression(char * string)1107 parse_expression (char *string)
1108 {
1109 struct expression *exp;
1110 exp = parse_exp_1 (&string, 0, 0);
1111 if (*string)
1112 error ("Junk after end of expression.");
1113 return exp;
1114 }
1115
1116
1117 /* As for parse_expression, except that if VOID_CONTEXT_P, then
1118 no value is expected from the expression. */
1119
1120 struct expression *
parse_expression_in_context(char * string,int void_context_p)1121 parse_expression_in_context (char *string, int void_context_p)
1122 {
1123 struct expression *exp;
1124 exp = parse_exp_in_context (&string, 0, 0, void_context_p);
1125 if (*string != '\000')
1126 error ("Junk after end of expression.");
1127 return exp;
1128 }
1129
1130 /* A post-parser that does nothing */
1131
1132 void
null_post_parser(struct expression ** exp,int void_context_p)1133 null_post_parser (struct expression **exp, int void_context_p)
1134 {
1135 }
1136
1137 /* Stuff for maintaining a stack of types. Currently just used by C, but
1138 probably useful for any language which declares its types "backwards". */
1139
1140 static void
check_type_stack_depth(void)1141 check_type_stack_depth (void)
1142 {
1143 if (type_stack_depth == type_stack_size)
1144 {
1145 type_stack_size *= 2;
1146 type_stack = (union type_stack_elt *)
1147 xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack));
1148 }
1149 }
1150
1151 void
push_type(enum type_pieces tp)1152 push_type (enum type_pieces tp)
1153 {
1154 check_type_stack_depth ();
1155 type_stack[type_stack_depth++].piece = tp;
1156 }
1157
1158 void
push_type_int(int n)1159 push_type_int (int n)
1160 {
1161 check_type_stack_depth ();
1162 type_stack[type_stack_depth++].int_val = n;
1163 }
1164
1165 void
push_type_address_space(char * string)1166 push_type_address_space (char *string)
1167 {
1168 push_type_int (address_space_name_to_int (string));
1169 }
1170
1171 enum type_pieces
pop_type(void)1172 pop_type (void)
1173 {
1174 if (type_stack_depth)
1175 return type_stack[--type_stack_depth].piece;
1176 return tp_end;
1177 }
1178
1179 int
pop_type_int(void)1180 pop_type_int (void)
1181 {
1182 if (type_stack_depth)
1183 return type_stack[--type_stack_depth].int_val;
1184 /* "Can't happen". */
1185 return 0;
1186 }
1187
1188 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
1189 as modified by all the stuff on the stack. */
1190 struct type *
follow_types(struct type * follow_type)1191 follow_types (struct type *follow_type)
1192 {
1193 int done = 0;
1194 int make_const = 0;
1195 int make_volatile = 0;
1196 int make_addr_space = 0;
1197 int array_size;
1198 struct type *range_type;
1199
1200 while (!done)
1201 switch (pop_type ())
1202 {
1203 case tp_end:
1204 done = 1;
1205 if (make_const)
1206 follow_type = make_cv_type (make_const,
1207 TYPE_VOLATILE (follow_type),
1208 follow_type, 0);
1209 if (make_volatile)
1210 follow_type = make_cv_type (TYPE_CONST (follow_type),
1211 make_volatile,
1212 follow_type, 0);
1213 if (make_addr_space)
1214 follow_type = make_type_with_address_space (follow_type,
1215 make_addr_space);
1216 make_const = make_volatile = 0;
1217 make_addr_space = 0;
1218 break;
1219 case tp_const:
1220 make_const = 1;
1221 break;
1222 case tp_volatile:
1223 make_volatile = 1;
1224 break;
1225 case tp_space_identifier:
1226 make_addr_space = pop_type_int ();
1227 break;
1228 case tp_pointer:
1229 follow_type = lookup_pointer_type (follow_type);
1230 if (make_const)
1231 follow_type = make_cv_type (make_const,
1232 TYPE_VOLATILE (follow_type),
1233 follow_type, 0);
1234 if (make_volatile)
1235 follow_type = make_cv_type (TYPE_CONST (follow_type),
1236 make_volatile,
1237 follow_type, 0);
1238 if (make_addr_space)
1239 follow_type = make_type_with_address_space (follow_type,
1240 make_addr_space);
1241 make_const = make_volatile = 0;
1242 make_addr_space = 0;
1243 break;
1244 case tp_reference:
1245 follow_type = lookup_reference_type (follow_type);
1246 if (make_const)
1247 follow_type = make_cv_type (make_const,
1248 TYPE_VOLATILE (follow_type),
1249 follow_type, 0);
1250 if (make_volatile)
1251 follow_type = make_cv_type (TYPE_CONST (follow_type),
1252 make_volatile,
1253 follow_type, 0);
1254 if (make_addr_space)
1255 follow_type = make_type_with_address_space (follow_type,
1256 make_addr_space);
1257 make_const = make_volatile = 0;
1258 make_addr_space = 0;
1259 break;
1260 case tp_array:
1261 array_size = pop_type_int ();
1262 /* FIXME-type-allocation: need a way to free this type when we are
1263 done with it. */
1264 range_type =
1265 create_range_type ((struct type *) NULL,
1266 builtin_type_int, 0,
1267 array_size >= 0 ? array_size - 1 : 0);
1268 follow_type =
1269 create_array_type ((struct type *) NULL,
1270 follow_type, range_type);
1271 if (array_size < 0)
1272 TYPE_ARRAY_UPPER_BOUND_TYPE (follow_type)
1273 = BOUND_CANNOT_BE_DETERMINED;
1274 break;
1275 case tp_function:
1276 /* FIXME-type-allocation: need a way to free this type when we are
1277 done with it. */
1278 follow_type = lookup_function_type (follow_type);
1279 break;
1280 }
1281 return follow_type;
1282 }
1283
1284 static void build_parse (void);
1285 static void
build_parse(void)1286 build_parse (void)
1287 {
1288 int i;
1289
1290 msym_text_symbol_type =
1291 init_type (TYPE_CODE_FUNC, 1, 0, "<text variable, no debug info>", NULL);
1292 TYPE_TARGET_TYPE (msym_text_symbol_type) = builtin_type_int;
1293 msym_data_symbol_type =
1294 init_type (TYPE_CODE_INT, TARGET_INT_BIT / HOST_CHAR_BIT, 0,
1295 "<data variable, no debug info>", NULL);
1296 msym_unknown_symbol_type =
1297 init_type (TYPE_CODE_INT, 1, 0,
1298 "<variable (not text or data), no debug info>",
1299 NULL);
1300 }
1301
1302 /* This function avoids direct calls to fprintf
1303 in the parser generated debug code. */
1304 void
parser_fprintf(FILE * x,const char * y,...)1305 parser_fprintf (FILE *x, const char *y, ...)
1306 {
1307 va_list args;
1308 va_start (args, y);
1309 if (x == stderr)
1310 vfprintf_unfiltered (gdb_stderr, y, args);
1311 else
1312 {
1313 fprintf_unfiltered (gdb_stderr, " Unknown FILE used.\n");
1314 vfprintf_unfiltered (gdb_stderr, y, args);
1315 }
1316 va_end (args);
1317 }
1318
1319 void
_initialize_parse(void)1320 _initialize_parse (void)
1321 {
1322 type_stack_size = 80;
1323 type_stack_depth = 0;
1324 type_stack = (union type_stack_elt *)
1325 xmalloc (type_stack_size * sizeof (*type_stack));
1326
1327 build_parse ();
1328
1329 /* FIXME - For the moment, handle types by swapping them in and out.
1330 Should be using the per-architecture data-pointer and a large
1331 struct. */
1332 DEPRECATED_REGISTER_GDBARCH_SWAP (msym_text_symbol_type);
1333 DEPRECATED_REGISTER_GDBARCH_SWAP (msym_data_symbol_type);
1334 DEPRECATED_REGISTER_GDBARCH_SWAP (msym_unknown_symbol_type);
1335 deprecated_register_gdbarch_swap (NULL, 0, build_parse);
1336
1337 deprecated_add_show_from_set
1338 (add_set_cmd ("expression", class_maintenance, var_zinteger,
1339 (char *) &expressiondebug,
1340 "Set expression debugging.\n\
1341 When non-zero, the internal representation of expressions will be printed.",
1342 &setdebuglist),
1343 &showdebuglist);
1344 }
1345