xref: /openbsd/gnu/usr.bin/binutils/gdb/parse.c (revision 63addd46)
1 /* Parse expressions for GDB.
2 
3    Copyright 1986, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4    1997, 1998, 1999, 2000, 2001, 2004 Free Software Foundation, Inc.
5 
6    Modified from expread.y by the Department of Computer Science at the
7    State University of New York at Buffalo, 1991.
8 
9    This file is part of GDB.
10 
11    This program is free software; you can redistribute it and/or modify
12    it under the terms of the GNU General Public License as published by
13    the Free Software Foundation; either version 2 of the License, or
14    (at your option) any later version.
15 
16    This program is distributed in the hope that it will be useful,
17    but WITHOUT ANY WARRANTY; without even the implied warranty of
18    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19    GNU General Public License for more details.
20 
21    You should have received a copy of the GNU General Public License
22    along with this program; if not, write to the Free Software
23    Foundation, Inc., 59 Temple Place - Suite 330,
24    Boston, MA 02111-1307, USA.  */
25 
26 /* Parse an expression from text in a string,
27    and return the result as a  struct expression  pointer.
28    That structure contains arithmetic operations in reverse polish,
29    with constants represented by operations that are followed by special data.
30    See expression.h for the details of the format.
31    What is important here is that it can be built up sequentially
32    during the process of parsing; the lower levels of the tree always
33    come first in the result.  */
34 
35 #include <ctype.h>
36 
37 #include "defs.h"
38 #include "gdb_string.h"
39 #include "symtab.h"
40 #include "gdbtypes.h"
41 #include "frame.h"
42 #include "expression.h"
43 #include "value.h"
44 #include "command.h"
45 #include "language.h"
46 #include "parser-defs.h"
47 #include "gdbcmd.h"
48 #include "symfile.h"		/* for overlay functions */
49 #include "inferior.h"		/* for NUM_PSEUDO_REGS.  NOTE: replace
50 				   with "gdbarch.h" when appropriate.  */
51 #include "doublest.h"
52 #include "gdb_assert.h"
53 #include "block.h"
54 
55 /* Standard set of definitions for printing, dumping, prefixifying,
56  * and evaluating expressions.  */
57 
58 const struct exp_descriptor exp_descriptor_standard =
59   {
60     print_subexp_standard,
61     operator_length_standard,
62     op_name_standard,
63     dump_subexp_body_standard,
64     evaluate_subexp_standard
65   };
66 
67 /* Symbols which architectures can redefine.  */
68 
69 /* Some systems have routines whose names start with `$'.  Giving this
70    macro a non-zero value tells GDB's expression parser to check for
71    such routines when parsing tokens that begin with `$'.
72 
73    On HP-UX, certain system routines (millicode) have names beginning
74    with `$' or `$$'.  For example, `$$dyncall' is a millicode routine
75    that handles inter-space procedure calls on PA-RISC.  */
76 #ifndef SYMBOLS_CAN_START_WITH_DOLLAR
77 #define SYMBOLS_CAN_START_WITH_DOLLAR (0)
78 #endif
79 
80 
81 
82 /* Global variables declared in parser-defs.h (and commented there).  */
83 struct expression *expout;
84 int expout_size;
85 int expout_ptr;
86 struct block *expression_context_block;
87 CORE_ADDR expression_context_pc;
88 struct block *innermost_block;
89 int arglist_len;
90 union type_stack_elt *type_stack;
91 int type_stack_depth, type_stack_size;
92 char *lexptr;
93 char *prev_lexptr;
94 char *namecopy;
95 int paren_depth;
96 int comma_terminates;
97 
98 static int expressiondebug = 0;
99 
100 static void free_funcalls (void *ignore);
101 
102 static void prefixify_expression (struct expression *);
103 
104 static void prefixify_subexp (struct expression *, struct expression *, int,
105 			      int);
106 
107 static struct expression *parse_exp_in_context (char **, struct block *, int,
108 						int);
109 
110 void _initialize_parse (void);
111 
112 /* Data structure for saving values of arglist_len for function calls whose
113    arguments contain other function calls.  */
114 
115 struct funcall
116   {
117     struct funcall *next;
118     int arglist_len;
119   };
120 
121 static struct funcall *funcall_chain;
122 
123 /* Begin counting arguments for a function call,
124    saving the data about any containing call.  */
125 
126 void
start_arglist(void)127 start_arglist (void)
128 {
129   struct funcall *new;
130 
131   new = (struct funcall *) xmalloc (sizeof (struct funcall));
132   new->next = funcall_chain;
133   new->arglist_len = arglist_len;
134   arglist_len = 0;
135   funcall_chain = new;
136 }
137 
138 /* Return the number of arguments in a function call just terminated,
139    and restore the data for the containing function call.  */
140 
141 int
end_arglist(void)142 end_arglist (void)
143 {
144   int val = arglist_len;
145   struct funcall *call = funcall_chain;
146   funcall_chain = call->next;
147   arglist_len = call->arglist_len;
148   xfree (call);
149   return val;
150 }
151 
152 /* Free everything in the funcall chain.
153    Used when there is an error inside parsing.  */
154 
155 static void
free_funcalls(void * ignore)156 free_funcalls (void *ignore)
157 {
158   struct funcall *call, *next;
159 
160   for (call = funcall_chain; call; call = next)
161     {
162       next = call->next;
163       xfree (call);
164     }
165 }
166 
167 /* This page contains the functions for adding data to the  struct expression
168    being constructed.  */
169 
170 /* Add one element to the end of the expression.  */
171 
172 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
173    a register through here */
174 
175 void
write_exp_elt(union exp_element expelt)176 write_exp_elt (union exp_element expelt)
177 {
178   if (expout_ptr >= expout_size)
179     {
180       expout_size *= 2;
181       expout = (struct expression *)
182 	xrealloc ((char *) expout, sizeof (struct expression)
183 		  + EXP_ELEM_TO_BYTES (expout_size));
184     }
185   expout->elts[expout_ptr++] = expelt;
186 }
187 
188 void
write_exp_elt_opcode(enum exp_opcode expelt)189 write_exp_elt_opcode (enum exp_opcode expelt)
190 {
191   union exp_element tmp;
192 
193   tmp.opcode = expelt;
194 
195   write_exp_elt (tmp);
196 }
197 
198 void
write_exp_elt_sym(struct symbol * expelt)199 write_exp_elt_sym (struct symbol *expelt)
200 {
201   union exp_element tmp;
202 
203   tmp.symbol = expelt;
204 
205   write_exp_elt (tmp);
206 }
207 
208 void
write_exp_elt_block(struct block * b)209 write_exp_elt_block (struct block *b)
210 {
211   union exp_element tmp;
212   tmp.block = b;
213   write_exp_elt (tmp);
214 }
215 
216 void
write_exp_elt_longcst(LONGEST expelt)217 write_exp_elt_longcst (LONGEST expelt)
218 {
219   union exp_element tmp;
220 
221   tmp.longconst = expelt;
222 
223   write_exp_elt (tmp);
224 }
225 
226 void
write_exp_elt_dblcst(DOUBLEST expelt)227 write_exp_elt_dblcst (DOUBLEST expelt)
228 {
229   union exp_element tmp;
230 
231   tmp.doubleconst = expelt;
232 
233   write_exp_elt (tmp);
234 }
235 
236 void
write_exp_elt_type(struct type * expelt)237 write_exp_elt_type (struct type *expelt)
238 {
239   union exp_element tmp;
240 
241   tmp.type = expelt;
242 
243   write_exp_elt (tmp);
244 }
245 
246 void
write_exp_elt_intern(struct internalvar * expelt)247 write_exp_elt_intern (struct internalvar *expelt)
248 {
249   union exp_element tmp;
250 
251   tmp.internalvar = expelt;
252 
253   write_exp_elt (tmp);
254 }
255 
256 /* Add a string constant to the end of the expression.
257 
258    String constants are stored by first writing an expression element
259    that contains the length of the string, then stuffing the string
260    constant itself into however many expression elements are needed
261    to hold it, and then writing another expression element that contains
262    the length of the string.  I.E. an expression element at each end of
263    the string records the string length, so you can skip over the
264    expression elements containing the actual string bytes from either
265    end of the string.  Note that this also allows gdb to handle
266    strings with embedded null bytes, as is required for some languages.
267 
268    Don't be fooled by the fact that the string is null byte terminated,
269    this is strictly for the convenience of debugging gdb itself.  Gdb
270    Gdb does not depend up the string being null terminated, since the
271    actual length is recorded in expression elements at each end of the
272    string.  The null byte is taken into consideration when computing how
273    many expression elements are required to hold the string constant, of
274    course. */
275 
276 
277 void
write_exp_string(struct stoken str)278 write_exp_string (struct stoken str)
279 {
280   int len = str.length;
281   int lenelt;
282   char *strdata;
283 
284   /* Compute the number of expression elements required to hold the string
285      (including a null byte terminator), along with one expression element
286      at each end to record the actual string length (not including the
287      null byte terminator). */
288 
289   lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
290 
291   /* Ensure that we have enough available expression elements to store
292      everything. */
293 
294   if ((expout_ptr + lenelt) >= expout_size)
295     {
296       expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
297       expout = (struct expression *)
298 	xrealloc ((char *) expout, (sizeof (struct expression)
299 				    + EXP_ELEM_TO_BYTES (expout_size)));
300     }
301 
302   /* Write the leading length expression element (which advances the current
303      expression element index), then write the string constant followed by a
304      terminating null byte, and then write the trailing length expression
305      element. */
306 
307   write_exp_elt_longcst ((LONGEST) len);
308   strdata = (char *) &expout->elts[expout_ptr];
309   memcpy (strdata, str.ptr, len);
310   *(strdata + len) = '\0';
311   expout_ptr += lenelt - 2;
312   write_exp_elt_longcst ((LONGEST) len);
313 }
314 
315 /* Add a bitstring constant to the end of the expression.
316 
317    Bitstring constants are stored by first writing an expression element
318    that contains the length of the bitstring (in bits), then stuffing the
319    bitstring constant itself into however many expression elements are
320    needed to hold it, and then writing another expression element that
321    contains the length of the bitstring.  I.E. an expression element at
322    each end of the bitstring records the bitstring length, so you can skip
323    over the expression elements containing the actual bitstring bytes from
324    either end of the bitstring. */
325 
326 void
write_exp_bitstring(struct stoken str)327 write_exp_bitstring (struct stoken str)
328 {
329   int bits = str.length;	/* length in bits */
330   int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
331   int lenelt;
332   char *strdata;
333 
334   /* Compute the number of expression elements required to hold the bitstring,
335      along with one expression element at each end to record the actual
336      bitstring length in bits. */
337 
338   lenelt = 2 + BYTES_TO_EXP_ELEM (len);
339 
340   /* Ensure that we have enough available expression elements to store
341      everything. */
342 
343   if ((expout_ptr + lenelt) >= expout_size)
344     {
345       expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
346       expout = (struct expression *)
347 	xrealloc ((char *) expout, (sizeof (struct expression)
348 				    + EXP_ELEM_TO_BYTES (expout_size)));
349     }
350 
351   /* Write the leading length expression element (which advances the current
352      expression element index), then write the bitstring constant, and then
353      write the trailing length expression element. */
354 
355   write_exp_elt_longcst ((LONGEST) bits);
356   strdata = (char *) &expout->elts[expout_ptr];
357   memcpy (strdata, str.ptr, len);
358   expout_ptr += lenelt - 2;
359   write_exp_elt_longcst ((LONGEST) bits);
360 }
361 
362 /* Add the appropriate elements for a minimal symbol to the end of
363    the expression.  The rationale behind passing in text_symbol_type and
364    data_symbol_type was so that Modula-2 could pass in WORD for
365    data_symbol_type.  Perhaps it still is useful to have those types vary
366    based on the language, but they no longer have names like "int", so
367    the initial rationale is gone.  */
368 
369 static struct type *msym_text_symbol_type;
370 static struct type *msym_data_symbol_type;
371 static struct type *msym_unknown_symbol_type;
372 
373 void
write_exp_msymbol(struct minimal_symbol * msymbol,struct type * text_symbol_type,struct type * data_symbol_type)374 write_exp_msymbol (struct minimal_symbol *msymbol,
375 		   struct type *text_symbol_type,
376 		   struct type *data_symbol_type)
377 {
378   CORE_ADDR addr;
379 
380   write_exp_elt_opcode (OP_LONG);
381   /* Let's make the type big enough to hold a 64-bit address.  */
382   write_exp_elt_type (builtin_type_CORE_ADDR);
383 
384   addr = SYMBOL_VALUE_ADDRESS (msymbol);
385   if (overlay_debugging)
386     addr = symbol_overlayed_address (addr, SYMBOL_BFD_SECTION (msymbol));
387   write_exp_elt_longcst ((LONGEST) addr);
388 
389   write_exp_elt_opcode (OP_LONG);
390 
391   write_exp_elt_opcode (UNOP_MEMVAL);
392   switch (msymbol->type)
393     {
394     case mst_text:
395     case mst_file_text:
396     case mst_solib_trampoline:
397       write_exp_elt_type (msym_text_symbol_type);
398       break;
399 
400     case mst_data:
401     case mst_file_data:
402     case mst_bss:
403     case mst_file_bss:
404       write_exp_elt_type (msym_data_symbol_type);
405       break;
406 
407     default:
408       write_exp_elt_type (msym_unknown_symbol_type);
409       break;
410     }
411   write_exp_elt_opcode (UNOP_MEMVAL);
412 }
413 
414 /* Recognize tokens that start with '$'.  These include:
415 
416    $regname     A native register name or a "standard
417    register name".
418 
419    $variable    A convenience variable with a name chosen
420    by the user.
421 
422    $digits              Value history with index <digits>, starting
423    from the first value which has index 1.
424 
425    $$digits     Value history with index <digits> relative
426    to the last value.  I.E. $$0 is the last
427    value, $$1 is the one previous to that, $$2
428    is the one previous to $$1, etc.
429 
430    $ | $0 | $$0 The last value in the value history.
431 
432    $$           An abbreviation for the second to the last
433    value in the value history, I.E. $$1
434 
435  */
436 
437 void
write_dollar_variable(struct stoken str)438 write_dollar_variable (struct stoken str)
439 {
440   /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
441      and $$digits (equivalent to $<-digits> if you could type that). */
442 
443   int negate = 0;
444   int i = 1;
445   /* Double dollar means negate the number and add -1 as well.
446      Thus $$ alone means -1.  */
447   if (str.length >= 2 && str.ptr[1] == '$')
448     {
449       negate = 1;
450       i = 2;
451     }
452   if (i == str.length)
453     {
454       /* Just dollars (one or two) */
455       i = -negate;
456       goto handle_last;
457     }
458   /* Is the rest of the token digits?  */
459   for (; i < str.length; i++)
460     if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
461       break;
462   if (i == str.length)
463     {
464       i = atoi (str.ptr + 1 + negate);
465       if (negate)
466 	i = -i;
467       goto handle_last;
468     }
469 
470   /* Handle tokens that refer to machine registers:
471      $ followed by a register name.  */
472   i = frame_map_name_to_regnum (deprecated_selected_frame,
473 				str.ptr + 1, str.length - 1);
474   if (i >= 0)
475     goto handle_register;
476 
477   if (SYMBOLS_CAN_START_WITH_DOLLAR)
478     {
479       struct symbol *sym = NULL;
480       struct minimal_symbol *msym = NULL;
481 
482       /* On HP-UX, certain system routines (millicode) have names beginning
483 	 with $ or $$, e.g. $$dyncall, which handles inter-space procedure
484 	 calls on PA-RISC. Check for those, first. */
485 
486       /* This code is not enabled on non HP-UX systems, since worst case
487 	 symbol table lookup performance is awful, to put it mildly. */
488 
489       sym = lookup_symbol (copy_name (str), (struct block *) NULL,
490 			   VAR_DOMAIN, (int *) NULL, (struct symtab **) NULL);
491       if (sym)
492 	{
493 	  write_exp_elt_opcode (OP_VAR_VALUE);
494 	  write_exp_elt_block (block_found);	/* set by lookup_symbol */
495 	  write_exp_elt_sym (sym);
496 	  write_exp_elt_opcode (OP_VAR_VALUE);
497 	  return;
498 	}
499       msym = lookup_minimal_symbol (copy_name (str), NULL, NULL);
500       if (msym)
501 	{
502 	  write_exp_msymbol (msym,
503 			     lookup_function_type (builtin_type_int),
504 			     builtin_type_int);
505 	  return;
506 	}
507     }
508 
509   /* Any other names starting in $ are debugger internal variables.  */
510 
511   write_exp_elt_opcode (OP_INTERNALVAR);
512   write_exp_elt_intern (lookup_internalvar (copy_name (str) + 1));
513   write_exp_elt_opcode (OP_INTERNALVAR);
514   return;
515 handle_last:
516   write_exp_elt_opcode (OP_LAST);
517   write_exp_elt_longcst ((LONGEST) i);
518   write_exp_elt_opcode (OP_LAST);
519   return;
520 handle_register:
521   write_exp_elt_opcode (OP_REGISTER);
522   write_exp_elt_longcst (i);
523   write_exp_elt_opcode (OP_REGISTER);
524   return;
525 }
526 
527 
528 /* Parse a string that is possibly a namespace / nested class
529    specification, i.e., something of the form A::B::C::x.  Input
530    (NAME) is the entire string; LEN is the current valid length; the
531    output is a string, TOKEN, which points to the largest recognized
532    prefix which is a series of namespaces or classes.  CLASS_PREFIX is
533    another output, which records whether a nested class spec was
534    recognized (= 1) or a fully qualified variable name was found (=
535    0).  ARGPTR is side-effected (if non-NULL) to point to beyond the
536    string recognized and consumed by this routine.
537 
538    The return value is a pointer to the symbol for the base class or
539    variable if found, or NULL if not found.  Callers must check this
540    first -- if NULL, the outputs may not be correct.
541 
542    This function is used c-exp.y.  This is used specifically to get
543    around HP aCC (and possibly other compilers), which insists on
544    generating names with embedded colons for namespace or nested class
545    members.
546 
547    (Argument LEN is currently unused. 1997-08-27)
548 
549    Callers must free memory allocated for the output string TOKEN.  */
550 
551 static const char coloncolon[2] =
552 {':', ':'};
553 
554 struct symbol *
parse_nested_classes_for_hpacc(char * name,int len,char ** token,int * class_prefix,char ** argptr)555 parse_nested_classes_for_hpacc (char *name, int len, char **token,
556 				int *class_prefix, char **argptr)
557 {
558   /* Comment below comes from decode_line_1 which has very similar
559      code, which is called for "break" command parsing. */
560 
561   /* We have what looks like a class or namespace
562      scope specification (A::B), possibly with many
563      levels of namespaces or classes (A::B::C::D).
564 
565      Some versions of the HP ANSI C++ compiler (as also possibly
566      other compilers) generate class/function/member names with
567      embedded double-colons if they are inside namespaces. To
568      handle this, we loop a few times, considering larger and
569      larger prefixes of the string as though they were single
570      symbols.  So, if the initially supplied string is
571      A::B::C::D::foo, we have to look up "A", then "A::B",
572      then "A::B::C", then "A::B::C::D", and finally
573      "A::B::C::D::foo" as single, monolithic symbols, because
574      A, B, C or D may be namespaces.
575 
576      Note that namespaces can nest only inside other
577      namespaces, and not inside classes.  So we need only
578      consider *prefixes* of the string; there is no need to look up
579      "B::C" separately as a symbol in the previous example. */
580 
581   char *p;
582   char *start, *end;
583   char *prefix = NULL;
584   char *tmp;
585   struct symbol *sym_class = NULL;
586   struct symbol *sym_var = NULL;
587   struct type *t;
588   int prefix_len = 0;
589   int done = 0;
590   char *q;
591 
592   /* Check for HP-compiled executable -- in other cases
593      return NULL, and caller must default to standard GDB
594      behaviour. */
595 
596   if (!deprecated_hp_som_som_object_present)
597     return (struct symbol *) NULL;
598 
599   p = name;
600 
601   /* Skip over whitespace and possible global "::" */
602   while (*p && (*p == ' ' || *p == '\t'))
603     p++;
604   if (p[0] == ':' && p[1] == ':')
605     p += 2;
606   while (*p && (*p == ' ' || *p == '\t'))
607     p++;
608 
609   while (1)
610     {
611       /* Get to the end of the next namespace or class spec. */
612       /* If we're looking at some non-token, fail immediately */
613       start = p;
614       if (!(isalpha (*p) || *p == '$' || *p == '_'))
615 	return (struct symbol *) NULL;
616       p++;
617       while (*p && (isalnum (*p) || *p == '$' || *p == '_'))
618 	p++;
619 
620       if (*p == '<')
621 	{
622 	  /* If we have the start of a template specification,
623 	     scan right ahead to its end */
624 	  q = find_template_name_end (p);
625 	  if (q)
626 	    p = q;
627 	}
628 
629       end = p;
630 
631       /* Skip over "::" and whitespace for next time around */
632       while (*p && (*p == ' ' || *p == '\t'))
633 	p++;
634       if (p[0] == ':' && p[1] == ':')
635 	p += 2;
636       while (*p && (*p == ' ' || *p == '\t'))
637 	p++;
638 
639       /* Done with tokens? */
640       if (!*p || !(isalpha (*p) || *p == '$' || *p == '_'))
641 	done = 1;
642 
643       tmp = (char *) alloca (prefix_len + end - start + 3);
644       if (prefix)
645 	{
646 	  memcpy (tmp, prefix, prefix_len);
647 	  memcpy (tmp + prefix_len, coloncolon, 2);
648 	  memcpy (tmp + prefix_len + 2, start, end - start);
649 	  tmp[prefix_len + 2 + end - start] = '\000';
650 	}
651       else
652 	{
653 	  memcpy (tmp, start, end - start);
654 	  tmp[end - start] = '\000';
655 	}
656 
657       prefix = tmp;
658       prefix_len = strlen (prefix);
659 
660       /* See if the prefix we have now is something we know about */
661 
662       if (!done)
663 	{
664 	  /* More tokens to process, so this must be a class/namespace */
665 	  sym_class = lookup_symbol (prefix, 0, STRUCT_DOMAIN,
666 				     0, (struct symtab **) NULL);
667 	}
668       else
669 	{
670 	  /* No more tokens, so try as a variable first */
671 	  sym_var = lookup_symbol (prefix, 0, VAR_DOMAIN,
672 				   0, (struct symtab **) NULL);
673 	  /* If failed, try as class/namespace */
674 	  if (!sym_var)
675 	    sym_class = lookup_symbol (prefix, 0, STRUCT_DOMAIN,
676 				       0, (struct symtab **) NULL);
677 	}
678 
679       if (sym_var ||
680 	  (sym_class &&
681 	   (t = check_typedef (SYMBOL_TYPE (sym_class)),
682 	    (TYPE_CODE (t) == TYPE_CODE_STRUCT
683 	     || TYPE_CODE (t) == TYPE_CODE_UNION))))
684 	{
685 	  /* We found a valid token */
686 	  *token = (char *) xmalloc (prefix_len + 1);
687 	  memcpy (*token, prefix, prefix_len);
688 	  (*token)[prefix_len] = '\000';
689 	  break;
690 	}
691 
692       /* No variable or class/namespace found, no more tokens */
693       if (done)
694 	return (struct symbol *) NULL;
695     }
696 
697   /* Out of loop, so we must have found a valid token */
698   if (sym_var)
699     *class_prefix = 0;
700   else
701     *class_prefix = 1;
702 
703   if (argptr)
704     *argptr = done ? p : end;
705 
706   return sym_var ? sym_var : sym_class;		/* found */
707 }
708 
709 char *
find_template_name_end(char * p)710 find_template_name_end (char *p)
711 {
712   int depth = 1;
713   int just_seen_right = 0;
714   int just_seen_colon = 0;
715   int just_seen_space = 0;
716 
717   if (!p || (*p != '<'))
718     return 0;
719 
720   while (*++p)
721     {
722       switch (*p)
723 	{
724 	case '\'':
725 	case '\"':
726 	case '{':
727 	case '}':
728 	  /* In future, may want to allow these?? */
729 	  return 0;
730 	case '<':
731 	  depth++;		/* start nested template */
732 	  if (just_seen_colon || just_seen_right || just_seen_space)
733 	    return 0;		/* but not after : or :: or > or space */
734 	  break;
735 	case '>':
736 	  if (just_seen_colon || just_seen_right)
737 	    return 0;		/* end a (nested?) template */
738 	  just_seen_right = 1;	/* but not after : or :: */
739 	  if (--depth == 0)	/* also disallow >>, insist on > > */
740 	    return ++p;		/* if outermost ended, return */
741 	  break;
742 	case ':':
743 	  if (just_seen_space || (just_seen_colon > 1))
744 	    return 0;		/* nested class spec coming up */
745 	  just_seen_colon++;	/* we allow :: but not :::: */
746 	  break;
747 	case ' ':
748 	  break;
749 	default:
750 	  if (!((*p >= 'a' && *p <= 'z') ||	/* allow token chars */
751 		(*p >= 'A' && *p <= 'Z') ||
752 		(*p >= '0' && *p <= '9') ||
753 		(*p == '_') || (*p == ',') ||	/* commas for template args */
754 		(*p == '&') || (*p == '*') ||	/* pointer and ref types */
755 		(*p == '(') || (*p == ')') ||	/* function types */
756 		(*p == '[') || (*p == ']')))	/* array types */
757 	    return 0;
758 	}
759       if (*p != ' ')
760 	just_seen_space = 0;
761       if (*p != ':')
762 	just_seen_colon = 0;
763       if (*p != '>')
764 	just_seen_right = 0;
765     }
766   return 0;
767 }
768 
769 
770 
771 /* Return a null-terminated temporary copy of the name
772    of a string token.  */
773 
774 char *
copy_name(struct stoken token)775 copy_name (struct stoken token)
776 {
777   memcpy (namecopy, token.ptr, token.length);
778   namecopy[token.length] = 0;
779   return namecopy;
780 }
781 
782 /* Reverse an expression from suffix form (in which it is constructed)
783    to prefix form (in which we can conveniently print or execute it).  */
784 
785 static void
prefixify_expression(struct expression * expr)786 prefixify_expression (struct expression *expr)
787 {
788   int len =
789   sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
790   struct expression *temp;
791   int inpos = expr->nelts, outpos = 0;
792 
793   temp = (struct expression *) alloca (len);
794 
795   /* Copy the original expression into temp.  */
796   memcpy (temp, expr, len);
797 
798   prefixify_subexp (temp, expr, inpos, outpos);
799 }
800 
801 /* Return the number of exp_elements in the postfix subexpression
802    of EXPR whose operator is at index ENDPOS - 1 in EXPR.  */
803 
804 int
length_of_subexp(struct expression * expr,int endpos)805 length_of_subexp (struct expression *expr, int endpos)
806 {
807   int oplen, args, i;
808 
809   operator_length (expr, endpos, &oplen, &args);
810 
811   while (args > 0)
812     {
813       oplen += length_of_subexp (expr, endpos - oplen);
814       args--;
815     }
816 
817   return oplen;
818 }
819 
820 /* Sets *OPLENP to the length of the operator whose (last) index is
821    ENDPOS - 1 in EXPR, and sets *ARGSP to the number of arguments that
822    operator takes.  */
823 
824 void
operator_length(struct expression * expr,int endpos,int * oplenp,int * argsp)825 operator_length (struct expression *expr, int endpos, int *oplenp, int *argsp)
826 {
827   expr->language_defn->la_exp_desc->operator_length (expr, endpos,
828 						     oplenp, argsp);
829 }
830 
831 /* Default value for operator_length in exp_descriptor vectors.  */
832 
833 void
operator_length_standard(struct expression * expr,int endpos,int * oplenp,int * argsp)834 operator_length_standard (struct expression *expr, int endpos,
835 			  int *oplenp, int *argsp)
836 {
837   int oplen = 1;
838   int args = 0;
839   int i;
840 
841   if (endpos < 1)
842     error ("?error in operator_length_standard");
843 
844   i = (int) expr->elts[endpos - 1].opcode;
845 
846   switch (i)
847     {
848       /* C++  */
849     case OP_SCOPE:
850       oplen = longest_to_int (expr->elts[endpos - 2].longconst);
851       oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
852       break;
853 
854     case OP_LONG:
855     case OP_DOUBLE:
856     case OP_VAR_VALUE:
857       oplen = 4;
858       break;
859 
860     case OP_TYPE:
861     case OP_BOOL:
862     case OP_LAST:
863     case OP_REGISTER:
864     case OP_INTERNALVAR:
865       oplen = 3;
866       break;
867 
868     case OP_COMPLEX:
869       oplen = 1;
870       args = 2;
871       break;
872 
873     case OP_FUNCALL:
874     case OP_F77_UNDETERMINED_ARGLIST:
875       oplen = 3;
876       args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
877       break;
878 
879     case OP_OBJC_MSGCALL:	/* Objective C message (method) call */
880       oplen = 4;
881       args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
882       break;
883 
884     case UNOP_MAX:
885     case UNOP_MIN:
886       oplen = 3;
887       break;
888 
889     case BINOP_VAL:
890     case UNOP_CAST:
891     case UNOP_MEMVAL:
892       oplen = 3;
893       args = 1;
894       break;
895 
896     case UNOP_ABS:
897     case UNOP_CAP:
898     case UNOP_CHR:
899     case UNOP_FLOAT:
900     case UNOP_HIGH:
901     case UNOP_ODD:
902     case UNOP_ORD:
903     case UNOP_TRUNC:
904       oplen = 1;
905       args = 1;
906       break;
907 
908     case OP_LABELED:
909     case STRUCTOP_STRUCT:
910     case STRUCTOP_PTR:
911       args = 1;
912       /* fall through */
913     case OP_M2_STRING:
914     case OP_STRING:
915     case OP_OBJC_NSSTRING:	/* Objective C Foundation Class NSString constant */
916     case OP_OBJC_SELECTOR:	/* Objective C "@selector" pseudo-op */
917     case OP_NAME:
918     case OP_EXPRSTRING:
919       oplen = longest_to_int (expr->elts[endpos - 2].longconst);
920       oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
921       break;
922 
923     case OP_BITSTRING:
924       oplen = longest_to_int (expr->elts[endpos - 2].longconst);
925       oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
926       oplen = 4 + BYTES_TO_EXP_ELEM (oplen);
927       break;
928 
929     case OP_ARRAY:
930       oplen = 4;
931       args = longest_to_int (expr->elts[endpos - 2].longconst);
932       args -= longest_to_int (expr->elts[endpos - 3].longconst);
933       args += 1;
934       break;
935 
936     case TERNOP_COND:
937     case TERNOP_SLICE:
938     case TERNOP_SLICE_COUNT:
939       args = 3;
940       break;
941 
942       /* Modula-2 */
943     case MULTI_SUBSCRIPT:
944       oplen = 3;
945       args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
946       break;
947 
948     case BINOP_ASSIGN_MODIFY:
949       oplen = 3;
950       args = 2;
951       break;
952 
953       /* C++ */
954     case OP_THIS:
955     case OP_OBJC_SELF:
956       oplen = 2;
957       break;
958 
959     default:
960       args = 1 + (i < (int) BINOP_END);
961     }
962 
963   *oplenp = oplen;
964   *argsp = args;
965 }
966 
967 /* Copy the subexpression ending just before index INEND in INEXPR
968    into OUTEXPR, starting at index OUTBEG.
969    In the process, convert it from suffix to prefix form.  */
970 
971 static void
prefixify_subexp(struct expression * inexpr,struct expression * outexpr,int inend,int outbeg)972 prefixify_subexp (struct expression *inexpr,
973 		  struct expression *outexpr, int inend, int outbeg)
974 {
975   int oplen;
976   int args;
977   int i;
978   int *arglens;
979   enum exp_opcode opcode;
980 
981   operator_length (inexpr, inend, &oplen, &args);
982 
983   /* Copy the final operator itself, from the end of the input
984      to the beginning of the output.  */
985   inend -= oplen;
986   memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
987 	  EXP_ELEM_TO_BYTES (oplen));
988   outbeg += oplen;
989 
990   /* Find the lengths of the arg subexpressions.  */
991   arglens = (int *) alloca (args * sizeof (int));
992   for (i = args - 1; i >= 0; i--)
993     {
994       oplen = length_of_subexp (inexpr, inend);
995       arglens[i] = oplen;
996       inend -= oplen;
997     }
998 
999   /* Now copy each subexpression, preserving the order of
1000      the subexpressions, but prefixifying each one.
1001      In this loop, inend starts at the beginning of
1002      the expression this level is working on
1003      and marches forward over the arguments.
1004      outbeg does similarly in the output.  */
1005   for (i = 0; i < args; i++)
1006     {
1007       oplen = arglens[i];
1008       inend += oplen;
1009       prefixify_subexp (inexpr, outexpr, inend, outbeg);
1010       outbeg += oplen;
1011     }
1012 }
1013 
1014 /* This page contains the two entry points to this file.  */
1015 
1016 /* Read an expression from the string *STRINGPTR points to,
1017    parse it, and return a pointer to a  struct expression  that we malloc.
1018    Use block BLOCK as the lexical context for variable names;
1019    if BLOCK is zero, use the block of the selected stack frame.
1020    Meanwhile, advance *STRINGPTR to point after the expression,
1021    at the first nonwhite character that is not part of the expression
1022    (possibly a null character).
1023 
1024    If COMMA is nonzero, stop if a comma is reached.  */
1025 
1026 struct expression *
parse_exp_1(char ** stringptr,struct block * block,int comma)1027 parse_exp_1 (char **stringptr, struct block *block, int comma)
1028 {
1029   return parse_exp_in_context (stringptr, block, comma, 0);
1030 }
1031 
1032 /* As for parse_exp_1, except that if VOID_CONTEXT_P, then
1033    no value is expected from the expression.  */
1034 
1035 static struct expression *
parse_exp_in_context(char ** stringptr,struct block * block,int comma,int void_context_p)1036 parse_exp_in_context (char **stringptr, struct block *block, int comma,
1037 		      int void_context_p)
1038 {
1039   struct cleanup *old_chain;
1040 
1041   lexptr = *stringptr;
1042   prev_lexptr = NULL;
1043 
1044   paren_depth = 0;
1045   type_stack_depth = 0;
1046 
1047   comma_terminates = comma;
1048 
1049   if (lexptr == 0 || *lexptr == 0)
1050     error_no_arg ("expression to compute");
1051 
1052   old_chain = make_cleanup (free_funcalls, 0 /*ignore*/);
1053   funcall_chain = 0;
1054 
1055   if (block)
1056     {
1057       expression_context_block = block;
1058       expression_context_pc = BLOCK_START (block);
1059     }
1060   else
1061     expression_context_block = get_selected_block (&expression_context_pc);
1062 
1063   namecopy = (char *) alloca (strlen (lexptr) + 1);
1064   expout_size = 10;
1065   expout_ptr = 0;
1066   expout = (struct expression *)
1067     xmalloc (sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_size));
1068   expout->language_defn = current_language;
1069   make_cleanup (free_current_contents, &expout);
1070 
1071   if (current_language->la_parser ())
1072     current_language->la_error (NULL);
1073 
1074   discard_cleanups (old_chain);
1075 
1076   /* Record the actual number of expression elements, and then
1077      reallocate the expression memory so that we free up any
1078      excess elements. */
1079 
1080   expout->nelts = expout_ptr;
1081   expout = (struct expression *)
1082     xrealloc ((char *) expout,
1083 	      sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_ptr));;
1084 
1085   /* Convert expression from postfix form as generated by yacc
1086      parser, to a prefix form. */
1087 
1088   if (expressiondebug)
1089     dump_raw_expression (expout, gdb_stdlog,
1090 			 "before conversion to prefix form");
1091 
1092   prefixify_expression (expout);
1093 
1094   current_language->la_post_parser (&expout, void_context_p);
1095 
1096   if (expressiondebug)
1097     dump_prefix_expression (expout, gdb_stdlog);
1098 
1099   *stringptr = lexptr;
1100   return expout;
1101 }
1102 
1103 /* Parse STRING as an expression, and complain if this fails
1104    to use up all of the contents of STRING.  */
1105 
1106 struct expression *
parse_expression(char * string)1107 parse_expression (char *string)
1108 {
1109   struct expression *exp;
1110   exp = parse_exp_1 (&string, 0, 0);
1111   if (*string)
1112     error ("Junk after end of expression.");
1113   return exp;
1114 }
1115 
1116 
1117 /* As for parse_expression, except that if VOID_CONTEXT_P, then
1118    no value is expected from the expression.  */
1119 
1120 struct expression *
parse_expression_in_context(char * string,int void_context_p)1121 parse_expression_in_context (char *string, int void_context_p)
1122 {
1123   struct expression *exp;
1124   exp = parse_exp_in_context (&string, 0, 0, void_context_p);
1125   if (*string != '\000')
1126     error ("Junk after end of expression.");
1127   return exp;
1128 }
1129 
1130 /* A post-parser that does nothing */
1131 
1132 void
null_post_parser(struct expression ** exp,int void_context_p)1133 null_post_parser (struct expression **exp, int void_context_p)
1134 {
1135 }
1136 
1137 /* Stuff for maintaining a stack of types.  Currently just used by C, but
1138    probably useful for any language which declares its types "backwards".  */
1139 
1140 static void
check_type_stack_depth(void)1141 check_type_stack_depth (void)
1142 {
1143   if (type_stack_depth == type_stack_size)
1144     {
1145       type_stack_size *= 2;
1146       type_stack = (union type_stack_elt *)
1147 	xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack));
1148     }
1149 }
1150 
1151 void
push_type(enum type_pieces tp)1152 push_type (enum type_pieces tp)
1153 {
1154   check_type_stack_depth ();
1155   type_stack[type_stack_depth++].piece = tp;
1156 }
1157 
1158 void
push_type_int(int n)1159 push_type_int (int n)
1160 {
1161   check_type_stack_depth ();
1162   type_stack[type_stack_depth++].int_val = n;
1163 }
1164 
1165 void
push_type_address_space(char * string)1166 push_type_address_space (char *string)
1167 {
1168   push_type_int (address_space_name_to_int (string));
1169 }
1170 
1171 enum type_pieces
pop_type(void)1172 pop_type (void)
1173 {
1174   if (type_stack_depth)
1175     return type_stack[--type_stack_depth].piece;
1176   return tp_end;
1177 }
1178 
1179 int
pop_type_int(void)1180 pop_type_int (void)
1181 {
1182   if (type_stack_depth)
1183     return type_stack[--type_stack_depth].int_val;
1184   /* "Can't happen".  */
1185   return 0;
1186 }
1187 
1188 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
1189    as modified by all the stuff on the stack.  */
1190 struct type *
follow_types(struct type * follow_type)1191 follow_types (struct type *follow_type)
1192 {
1193   int done = 0;
1194   int make_const = 0;
1195   int make_volatile = 0;
1196   int make_addr_space = 0;
1197   int array_size;
1198   struct type *range_type;
1199 
1200   while (!done)
1201     switch (pop_type ())
1202       {
1203       case tp_end:
1204 	done = 1;
1205 	if (make_const)
1206 	  follow_type = make_cv_type (make_const,
1207 				      TYPE_VOLATILE (follow_type),
1208 				      follow_type, 0);
1209 	if (make_volatile)
1210 	  follow_type = make_cv_type (TYPE_CONST (follow_type),
1211 				      make_volatile,
1212 				      follow_type, 0);
1213 	if (make_addr_space)
1214 	  follow_type = make_type_with_address_space (follow_type,
1215 						      make_addr_space);
1216 	make_const = make_volatile = 0;
1217 	make_addr_space = 0;
1218 	break;
1219       case tp_const:
1220 	make_const = 1;
1221 	break;
1222       case tp_volatile:
1223 	make_volatile = 1;
1224 	break;
1225       case tp_space_identifier:
1226 	make_addr_space = pop_type_int ();
1227 	break;
1228       case tp_pointer:
1229 	follow_type = lookup_pointer_type (follow_type);
1230 	if (make_const)
1231 	  follow_type = make_cv_type (make_const,
1232 				      TYPE_VOLATILE (follow_type),
1233 				      follow_type, 0);
1234 	if (make_volatile)
1235 	  follow_type = make_cv_type (TYPE_CONST (follow_type),
1236 				      make_volatile,
1237 				      follow_type, 0);
1238 	if (make_addr_space)
1239 	  follow_type = make_type_with_address_space (follow_type,
1240 						      make_addr_space);
1241 	make_const = make_volatile = 0;
1242 	make_addr_space = 0;
1243 	break;
1244       case tp_reference:
1245 	follow_type = lookup_reference_type (follow_type);
1246 	if (make_const)
1247 	  follow_type = make_cv_type (make_const,
1248 				      TYPE_VOLATILE (follow_type),
1249 				      follow_type, 0);
1250 	if (make_volatile)
1251 	  follow_type = make_cv_type (TYPE_CONST (follow_type),
1252 				      make_volatile,
1253 				      follow_type, 0);
1254 	if (make_addr_space)
1255 	  follow_type = make_type_with_address_space (follow_type,
1256 						      make_addr_space);
1257 	make_const = make_volatile = 0;
1258 	make_addr_space = 0;
1259 	break;
1260       case tp_array:
1261 	array_size = pop_type_int ();
1262 	/* FIXME-type-allocation: need a way to free this type when we are
1263 	   done with it.  */
1264 	range_type =
1265 	  create_range_type ((struct type *) NULL,
1266 			     builtin_type_int, 0,
1267 			     array_size >= 0 ? array_size - 1 : 0);
1268 	follow_type =
1269 	  create_array_type ((struct type *) NULL,
1270 			     follow_type, range_type);
1271 	if (array_size < 0)
1272 	  TYPE_ARRAY_UPPER_BOUND_TYPE (follow_type)
1273 	    = BOUND_CANNOT_BE_DETERMINED;
1274 	break;
1275       case tp_function:
1276 	/* FIXME-type-allocation: need a way to free this type when we are
1277 	   done with it.  */
1278 	follow_type = lookup_function_type (follow_type);
1279 	break;
1280       }
1281   return follow_type;
1282 }
1283 
1284 static void build_parse (void);
1285 static void
build_parse(void)1286 build_parse (void)
1287 {
1288   int i;
1289 
1290   msym_text_symbol_type =
1291     init_type (TYPE_CODE_FUNC, 1, 0, "<text variable, no debug info>", NULL);
1292   TYPE_TARGET_TYPE (msym_text_symbol_type) = builtin_type_int;
1293   msym_data_symbol_type =
1294     init_type (TYPE_CODE_INT, TARGET_INT_BIT / HOST_CHAR_BIT, 0,
1295 	       "<data variable, no debug info>", NULL);
1296   msym_unknown_symbol_type =
1297     init_type (TYPE_CODE_INT, 1, 0,
1298 	       "<variable (not text or data), no debug info>",
1299 	       NULL);
1300 }
1301 
1302 /* This function avoids direct calls to fprintf
1303    in the parser generated debug code.  */
1304 void
parser_fprintf(FILE * x,const char * y,...)1305 parser_fprintf (FILE *x, const char *y, ...)
1306 {
1307   va_list args;
1308   va_start (args, y);
1309   if (x == stderr)
1310     vfprintf_unfiltered (gdb_stderr, y, args);
1311   else
1312     {
1313       fprintf_unfiltered (gdb_stderr, " Unknown FILE used.\n");
1314       vfprintf_unfiltered (gdb_stderr, y, args);
1315     }
1316   va_end (args);
1317 }
1318 
1319 void
_initialize_parse(void)1320 _initialize_parse (void)
1321 {
1322   type_stack_size = 80;
1323   type_stack_depth = 0;
1324   type_stack = (union type_stack_elt *)
1325     xmalloc (type_stack_size * sizeof (*type_stack));
1326 
1327   build_parse ();
1328 
1329   /* FIXME - For the moment, handle types by swapping them in and out.
1330      Should be using the per-architecture data-pointer and a large
1331      struct. */
1332   DEPRECATED_REGISTER_GDBARCH_SWAP (msym_text_symbol_type);
1333   DEPRECATED_REGISTER_GDBARCH_SWAP (msym_data_symbol_type);
1334   DEPRECATED_REGISTER_GDBARCH_SWAP (msym_unknown_symbol_type);
1335   deprecated_register_gdbarch_swap (NULL, 0, build_parse);
1336 
1337   deprecated_add_show_from_set
1338     (add_set_cmd ("expression", class_maintenance, var_zinteger,
1339 		  (char *) &expressiondebug,
1340 		  "Set expression debugging.\n\
1341 When non-zero, the internal representation of expressions will be printed.",
1342 		  &setdebuglist),
1343      &showdebuglist);
1344 }
1345