1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
4 * dump with assistance from firmware. This approach does not use kexec,
5 * instead firmware assists in booting the kdump kernel while preserving
6 * memory contents. The most of the code implementation has been adapted
7 * from phyp assisted dump implementation written by Linas Vepstas and
8 * Manish Ahuja
9 *
10 * Copyright 2011 IBM Corporation
11 * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
12 */
13
14 #undef DEBUG
15 #define pr_fmt(fmt) "fadump: " fmt
16
17 #include <linux/string.h>
18 #include <linux/memblock.h>
19 #include <linux/delay.h>
20 #include <linux/seq_file.h>
21 #include <linux/crash_dump.h>
22 #include <linux/kobject.h>
23 #include <linux/sysfs.h>
24 #include <linux/slab.h>
25 #include <linux/cma.h>
26 #include <linux/hugetlb.h>
27 #include <linux/debugfs.h>
28 #include <linux/of.h>
29 #include <linux/of_fdt.h>
30
31 #include <asm/page.h>
32 #include <asm/fadump.h>
33 #include <asm/fadump-internal.h>
34 #include <asm/setup.h>
35 #include <asm/interrupt.h>
36
37 /*
38 * The CPU who acquired the lock to trigger the fadump crash should
39 * wait for other CPUs to enter.
40 *
41 * The timeout is in milliseconds.
42 */
43 #define CRASH_TIMEOUT 500
44
45 static struct fw_dump fw_dump;
46
47 static void __init fadump_reserve_crash_area(u64 base);
48
49 #ifndef CONFIG_PRESERVE_FA_DUMP
50
51 static struct kobject *fadump_kobj;
52
53 static atomic_t cpus_in_fadump;
54 static DEFINE_MUTEX(fadump_mutex);
55
56 #define RESERVED_RNGS_SZ 16384 /* 16K - 128 entries */
57 #define RESERVED_RNGS_CNT (RESERVED_RNGS_SZ / \
58 sizeof(struct fadump_memory_range))
59 static struct fadump_memory_range rngs[RESERVED_RNGS_CNT];
60 static struct fadump_mrange_info
61 reserved_mrange_info = { "reserved", rngs, RESERVED_RNGS_SZ, 0, RESERVED_RNGS_CNT, true };
62
63 static void __init early_init_dt_scan_reserved_ranges(unsigned long node);
64
65 #ifdef CONFIG_CMA
66 static struct cma *fadump_cma;
67
68 /*
69 * fadump_cma_init() - Initialize CMA area from a fadump reserved memory
70 *
71 * This function initializes CMA area from fadump reserved memory.
72 * The total size of fadump reserved memory covers for boot memory size
73 * + cpu data size + hpte size and metadata.
74 * Initialize only the area equivalent to boot memory size for CMA use.
75 * The remaining portion of fadump reserved memory will be not given
76 * to CMA and pages for those will stay reserved. boot memory size is
77 * aligned per CMA requirement to satisy cma_init_reserved_mem() call.
78 * But for some reason even if it fails we still have the memory reservation
79 * with us and we can still continue doing fadump.
80 */
fadump_cma_init(void)81 static int __init fadump_cma_init(void)
82 {
83 unsigned long long base, size;
84 int rc;
85
86 if (!fw_dump.fadump_enabled)
87 return 0;
88
89 /*
90 * Do not use CMA if user has provided fadump=nocma kernel parameter.
91 * Return 1 to continue with fadump old behaviour.
92 */
93 if (fw_dump.nocma)
94 return 1;
95
96 base = fw_dump.reserve_dump_area_start;
97 size = fw_dump.boot_memory_size;
98
99 if (!size)
100 return 0;
101
102 rc = cma_init_reserved_mem(base, size, 0, "fadump_cma", &fadump_cma);
103 if (rc) {
104 pr_err("Failed to init cma area for firmware-assisted dump,%d\n", rc);
105 /*
106 * Though the CMA init has failed we still have memory
107 * reservation with us. The reserved memory will be
108 * blocked from production system usage. Hence return 1,
109 * so that we can continue with fadump.
110 */
111 return 1;
112 }
113
114 /*
115 * If CMA activation fails, keep the pages reserved, instead of
116 * exposing them to buddy allocator. Same as 'fadump=nocma' case.
117 */
118 cma_reserve_pages_on_error(fadump_cma);
119
120 /*
121 * So we now have successfully initialized cma area for fadump.
122 */
123 pr_info("Initialized 0x%lx bytes cma area at %ldMB from 0x%lx "
124 "bytes of memory reserved for firmware-assisted dump\n",
125 cma_get_size(fadump_cma),
126 (unsigned long)cma_get_base(fadump_cma) >> 20,
127 fw_dump.reserve_dump_area_size);
128 return 1;
129 }
130 #else
fadump_cma_init(void)131 static int __init fadump_cma_init(void) { return 1; }
132 #endif /* CONFIG_CMA */
133
134 /*
135 * Additional parameters meant for capture kernel are placed in a dedicated area.
136 * If this is capture kernel boot, append these parameters to bootargs.
137 */
fadump_append_bootargs(void)138 void __init fadump_append_bootargs(void)
139 {
140 char *append_args;
141 size_t len;
142
143 if (!fw_dump.dump_active || !fw_dump.param_area_supported || !fw_dump.param_area)
144 return;
145
146 if (fw_dump.param_area >= fw_dump.boot_mem_top) {
147 if (memblock_reserve(fw_dump.param_area, COMMAND_LINE_SIZE)) {
148 pr_warn("WARNING: Can't use additional parameters area!\n");
149 fw_dump.param_area = 0;
150 return;
151 }
152 }
153
154 append_args = (char *)fw_dump.param_area;
155 len = strlen(boot_command_line);
156
157 /*
158 * Too late to fail even if cmdline size exceeds. Truncate additional parameters
159 * to cmdline size and proceed anyway.
160 */
161 if (len + strlen(append_args) >= COMMAND_LINE_SIZE - 1)
162 pr_warn("WARNING: Appending parameters exceeds cmdline size. Truncating!\n");
163
164 pr_debug("Cmdline: %s\n", boot_command_line);
165 snprintf(boot_command_line + len, COMMAND_LINE_SIZE - len, " %s", append_args);
166 pr_info("Updated cmdline: %s\n", boot_command_line);
167 }
168
169 /* Scan the Firmware Assisted dump configuration details. */
early_init_dt_scan_fw_dump(unsigned long node,const char * uname,int depth,void * data)170 int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
171 int depth, void *data)
172 {
173 if (depth == 0) {
174 early_init_dt_scan_reserved_ranges(node);
175 return 0;
176 }
177
178 if (depth != 1)
179 return 0;
180
181 if (strcmp(uname, "rtas") == 0) {
182 rtas_fadump_dt_scan(&fw_dump, node);
183 return 1;
184 }
185
186 if (strcmp(uname, "ibm,opal") == 0) {
187 opal_fadump_dt_scan(&fw_dump, node);
188 return 1;
189 }
190
191 return 0;
192 }
193
194 /*
195 * If fadump is registered, check if the memory provided
196 * falls within boot memory area and reserved memory area.
197 */
is_fadump_memory_area(u64 addr,unsigned long size)198 int is_fadump_memory_area(u64 addr, unsigned long size)
199 {
200 u64 d_start, d_end;
201
202 if (!fw_dump.dump_registered)
203 return 0;
204
205 if (!size)
206 return 0;
207
208 d_start = fw_dump.reserve_dump_area_start;
209 d_end = d_start + fw_dump.reserve_dump_area_size;
210 if (((addr + size) > d_start) && (addr <= d_end))
211 return 1;
212
213 return (addr <= fw_dump.boot_mem_top);
214 }
215
should_fadump_crash(void)216 int should_fadump_crash(void)
217 {
218 if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
219 return 0;
220 return 1;
221 }
222
is_fadump_active(void)223 int is_fadump_active(void)
224 {
225 return fw_dump.dump_active;
226 }
227
228 /*
229 * Returns true, if there are no holes in memory area between d_start to d_end,
230 * false otherwise.
231 */
is_fadump_mem_area_contiguous(u64 d_start,u64 d_end)232 static bool is_fadump_mem_area_contiguous(u64 d_start, u64 d_end)
233 {
234 phys_addr_t reg_start, reg_end;
235 bool ret = false;
236 u64 i, start, end;
237
238 for_each_mem_range(i, ®_start, ®_end) {
239 start = max_t(u64, d_start, reg_start);
240 end = min_t(u64, d_end, reg_end);
241 if (d_start < end) {
242 /* Memory hole from d_start to start */
243 if (start > d_start)
244 break;
245
246 if (end == d_end) {
247 ret = true;
248 break;
249 }
250
251 d_start = end + 1;
252 }
253 }
254
255 return ret;
256 }
257
258 /*
259 * Returns true, if there are no holes in reserved memory area,
260 * false otherwise.
261 */
is_fadump_reserved_mem_contiguous(void)262 bool is_fadump_reserved_mem_contiguous(void)
263 {
264 u64 d_start, d_end;
265
266 d_start = fw_dump.reserve_dump_area_start;
267 d_end = d_start + fw_dump.reserve_dump_area_size;
268 return is_fadump_mem_area_contiguous(d_start, d_end);
269 }
270
271 /* Print firmware assisted dump configurations for debugging purpose. */
fadump_show_config(void)272 static void __init fadump_show_config(void)
273 {
274 int i;
275
276 pr_debug("Support for firmware-assisted dump (fadump): %s\n",
277 (fw_dump.fadump_supported ? "present" : "no support"));
278
279 if (!fw_dump.fadump_supported)
280 return;
281
282 pr_debug("Fadump enabled : %s\n",
283 (fw_dump.fadump_enabled ? "yes" : "no"));
284 pr_debug("Dump Active : %s\n",
285 (fw_dump.dump_active ? "yes" : "no"));
286 pr_debug("Dump section sizes:\n");
287 pr_debug(" CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
288 pr_debug(" HPTE region size : %lx\n", fw_dump.hpte_region_size);
289 pr_debug(" Boot memory size : %lx\n", fw_dump.boot_memory_size);
290 pr_debug(" Boot memory top : %llx\n", fw_dump.boot_mem_top);
291 pr_debug("Boot memory regions cnt: %llx\n", fw_dump.boot_mem_regs_cnt);
292 for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
293 pr_debug("[%03d] base = %llx, size = %llx\n", i,
294 fw_dump.boot_mem_addr[i], fw_dump.boot_mem_sz[i]);
295 }
296 }
297
298 /**
299 * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
300 *
301 * Function to find the largest memory size we need to reserve during early
302 * boot process. This will be the size of the memory that is required for a
303 * kernel to boot successfully.
304 *
305 * This function has been taken from phyp-assisted dump feature implementation.
306 *
307 * returns larger of 256MB or 5% rounded down to multiples of 256MB.
308 *
309 * TODO: Come up with better approach to find out more accurate memory size
310 * that is required for a kernel to boot successfully.
311 *
312 */
fadump_calculate_reserve_size(void)313 static __init u64 fadump_calculate_reserve_size(void)
314 {
315 u64 base, size, bootmem_min;
316 int ret;
317
318 if (fw_dump.reserve_bootvar)
319 pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n");
320
321 /*
322 * Check if the size is specified through crashkernel= cmdline
323 * option. If yes, then use that but ignore base as fadump reserves
324 * memory at a predefined offset.
325 */
326 ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
327 &size, &base, NULL, NULL);
328 if (ret == 0 && size > 0) {
329 unsigned long max_size;
330
331 if (fw_dump.reserve_bootvar)
332 pr_info("Using 'crashkernel=' parameter for memory reservation.\n");
333
334 fw_dump.reserve_bootvar = (unsigned long)size;
335
336 /*
337 * Adjust if the boot memory size specified is above
338 * the upper limit.
339 */
340 max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO;
341 if (fw_dump.reserve_bootvar > max_size) {
342 fw_dump.reserve_bootvar = max_size;
343 pr_info("Adjusted boot memory size to %luMB\n",
344 (fw_dump.reserve_bootvar >> 20));
345 }
346
347 return fw_dump.reserve_bootvar;
348 } else if (fw_dump.reserve_bootvar) {
349 /*
350 * 'fadump_reserve_mem=' is being used to reserve memory
351 * for firmware-assisted dump.
352 */
353 return fw_dump.reserve_bootvar;
354 }
355
356 /* divide by 20 to get 5% of value */
357 size = memblock_phys_mem_size() / 20;
358
359 /* round it down in multiples of 256 */
360 size = size & ~0x0FFFFFFFUL;
361
362 /* Truncate to memory_limit. We don't want to over reserve the memory.*/
363 if (memory_limit && size > memory_limit)
364 size = memory_limit;
365
366 bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
367 return (size > bootmem_min ? size : bootmem_min);
368 }
369
370 /*
371 * Calculate the total memory size required to be reserved for
372 * firmware-assisted dump registration.
373 */
get_fadump_area_size(void)374 static unsigned long __init get_fadump_area_size(void)
375 {
376 unsigned long size = 0;
377
378 size += fw_dump.cpu_state_data_size;
379 size += fw_dump.hpte_region_size;
380 /*
381 * Account for pagesize alignment of boot memory area destination address.
382 * This faciliates in mmap reading of first kernel's memory.
383 */
384 size = PAGE_ALIGN(size);
385 size += fw_dump.boot_memory_size;
386 size += sizeof(struct fadump_crash_info_header);
387
388 /* This is to hold kernel metadata on platforms that support it */
389 size += (fw_dump.ops->fadump_get_metadata_size ?
390 fw_dump.ops->fadump_get_metadata_size() : 0);
391 return size;
392 }
393
add_boot_mem_region(unsigned long rstart,unsigned long rsize)394 static int __init add_boot_mem_region(unsigned long rstart,
395 unsigned long rsize)
396 {
397 int max_boot_mem_rgns = fw_dump.ops->fadump_max_boot_mem_rgns();
398 int i = fw_dump.boot_mem_regs_cnt++;
399
400 if (fw_dump.boot_mem_regs_cnt > max_boot_mem_rgns) {
401 fw_dump.boot_mem_regs_cnt = max_boot_mem_rgns;
402 return 0;
403 }
404
405 pr_debug("Added boot memory range[%d] [%#016lx-%#016lx)\n",
406 i, rstart, (rstart + rsize));
407 fw_dump.boot_mem_addr[i] = rstart;
408 fw_dump.boot_mem_sz[i] = rsize;
409 return 1;
410 }
411
412 /*
413 * Firmware usually has a hard limit on the data it can copy per region.
414 * Honour that by splitting a memory range into multiple regions.
415 */
add_boot_mem_regions(unsigned long mstart,unsigned long msize)416 static int __init add_boot_mem_regions(unsigned long mstart,
417 unsigned long msize)
418 {
419 unsigned long rstart, rsize, max_size;
420 int ret = 1;
421
422 rstart = mstart;
423 max_size = fw_dump.max_copy_size ? fw_dump.max_copy_size : msize;
424 while (msize) {
425 if (msize > max_size)
426 rsize = max_size;
427 else
428 rsize = msize;
429
430 ret = add_boot_mem_region(rstart, rsize);
431 if (!ret)
432 break;
433
434 msize -= rsize;
435 rstart += rsize;
436 }
437
438 return ret;
439 }
440
fadump_get_boot_mem_regions(void)441 static int __init fadump_get_boot_mem_regions(void)
442 {
443 unsigned long size, cur_size, hole_size, last_end;
444 unsigned long mem_size = fw_dump.boot_memory_size;
445 phys_addr_t reg_start, reg_end;
446 int ret = 1;
447 u64 i;
448
449 fw_dump.boot_mem_regs_cnt = 0;
450
451 last_end = 0;
452 hole_size = 0;
453 cur_size = 0;
454 for_each_mem_range(i, ®_start, ®_end) {
455 size = reg_end - reg_start;
456 hole_size += (reg_start - last_end);
457
458 if ((cur_size + size) >= mem_size) {
459 size = (mem_size - cur_size);
460 ret = add_boot_mem_regions(reg_start, size);
461 break;
462 }
463
464 mem_size -= size;
465 cur_size += size;
466 ret = add_boot_mem_regions(reg_start, size);
467 if (!ret)
468 break;
469
470 last_end = reg_end;
471 }
472 fw_dump.boot_mem_top = PAGE_ALIGN(fw_dump.boot_memory_size + hole_size);
473
474 return ret;
475 }
476
477 /*
478 * Returns true, if the given range overlaps with reserved memory ranges
479 * starting at idx. Also, updates idx to index of overlapping memory range
480 * with the given memory range.
481 * False, otherwise.
482 */
overlaps_reserved_ranges(u64 base,u64 end,int * idx)483 static bool __init overlaps_reserved_ranges(u64 base, u64 end, int *idx)
484 {
485 bool ret = false;
486 int i;
487
488 for (i = *idx; i < reserved_mrange_info.mem_range_cnt; i++) {
489 u64 rbase = reserved_mrange_info.mem_ranges[i].base;
490 u64 rend = rbase + reserved_mrange_info.mem_ranges[i].size;
491
492 if (end <= rbase)
493 break;
494
495 if ((end > rbase) && (base < rend)) {
496 *idx = i;
497 ret = true;
498 break;
499 }
500 }
501
502 return ret;
503 }
504
505 /*
506 * Locate a suitable memory area to reserve memory for FADump. While at it,
507 * lookup reserved-ranges & avoid overlap with them, as they are used by F/W.
508 */
fadump_locate_reserve_mem(u64 base,u64 size)509 static u64 __init fadump_locate_reserve_mem(u64 base, u64 size)
510 {
511 struct fadump_memory_range *mrngs;
512 phys_addr_t mstart, mend;
513 int idx = 0;
514 u64 i, ret = 0;
515
516 mrngs = reserved_mrange_info.mem_ranges;
517 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
518 &mstart, &mend, NULL) {
519 pr_debug("%llu) mstart: %llx, mend: %llx, base: %llx\n",
520 i, mstart, mend, base);
521
522 if (mstart > base)
523 base = PAGE_ALIGN(mstart);
524
525 while ((mend > base) && ((mend - base) >= size)) {
526 if (!overlaps_reserved_ranges(base, base+size, &idx)) {
527 ret = base;
528 goto out;
529 }
530
531 base = mrngs[idx].base + mrngs[idx].size;
532 base = PAGE_ALIGN(base);
533 }
534 }
535
536 out:
537 return ret;
538 }
539
fadump_reserve_mem(void)540 int __init fadump_reserve_mem(void)
541 {
542 u64 base, size, mem_boundary, bootmem_min;
543 int ret = 1;
544
545 if (!fw_dump.fadump_enabled)
546 return 0;
547
548 if (!fw_dump.fadump_supported) {
549 pr_info("Firmware-Assisted Dump is not supported on this hardware\n");
550 goto error_out;
551 }
552
553 /*
554 * Initialize boot memory size
555 * If dump is active then we have already calculated the size during
556 * first kernel.
557 */
558 if (!fw_dump.dump_active) {
559 fw_dump.boot_memory_size =
560 PAGE_ALIGN(fadump_calculate_reserve_size());
561 #ifdef CONFIG_CMA
562 if (!fw_dump.nocma) {
563 fw_dump.boot_memory_size =
564 ALIGN(fw_dump.boot_memory_size,
565 CMA_MIN_ALIGNMENT_BYTES);
566 }
567 #endif
568
569 bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
570 if (fw_dump.boot_memory_size < bootmem_min) {
571 pr_err("Can't enable fadump with boot memory size (0x%lx) less than 0x%llx\n",
572 fw_dump.boot_memory_size, bootmem_min);
573 goto error_out;
574 }
575
576 if (!fadump_get_boot_mem_regions()) {
577 pr_err("Too many holes in boot memory area to enable fadump\n");
578 goto error_out;
579 }
580 }
581
582 if (memory_limit)
583 mem_boundary = memory_limit;
584 else
585 mem_boundary = memblock_end_of_DRAM();
586
587 base = fw_dump.boot_mem_top;
588 size = get_fadump_area_size();
589 fw_dump.reserve_dump_area_size = size;
590 if (fw_dump.dump_active) {
591 pr_info("Firmware-assisted dump is active.\n");
592
593 #ifdef CONFIG_HUGETLB_PAGE
594 /*
595 * FADump capture kernel doesn't care much about hugepages.
596 * In fact, handling hugepages in capture kernel is asking for
597 * trouble. So, disable HugeTLB support when fadump is active.
598 */
599 hugetlb_disabled = true;
600 #endif
601 /*
602 * If last boot has crashed then reserve all the memory
603 * above boot memory size so that we don't touch it until
604 * dump is written to disk by userspace tool. This memory
605 * can be released for general use by invalidating fadump.
606 */
607 fadump_reserve_crash_area(base);
608
609 pr_debug("fadumphdr_addr = %#016lx\n", fw_dump.fadumphdr_addr);
610 pr_debug("Reserve dump area start address: 0x%lx\n",
611 fw_dump.reserve_dump_area_start);
612 } else {
613 /*
614 * Reserve memory at an offset closer to bottom of the RAM to
615 * minimize the impact of memory hot-remove operation.
616 */
617 base = fadump_locate_reserve_mem(base, size);
618
619 if (!base || (base + size > mem_boundary)) {
620 pr_err("Failed to find memory chunk for reservation!\n");
621 goto error_out;
622 }
623 fw_dump.reserve_dump_area_start = base;
624
625 /*
626 * Calculate the kernel metadata address and register it with
627 * f/w if the platform supports.
628 */
629 if (fw_dump.ops->fadump_setup_metadata &&
630 (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
631 goto error_out;
632
633 if (memblock_reserve(base, size)) {
634 pr_err("Failed to reserve memory!\n");
635 goto error_out;
636 }
637
638 pr_info("Reserved %lldMB of memory at %#016llx (System RAM: %lldMB)\n",
639 (size >> 20), base, (memblock_phys_mem_size() >> 20));
640
641 ret = fadump_cma_init();
642 }
643
644 return ret;
645 error_out:
646 fw_dump.fadump_enabled = 0;
647 fw_dump.reserve_dump_area_size = 0;
648 return 0;
649 }
650
651 /* Look for fadump= cmdline option. */
early_fadump_param(char * p)652 static int __init early_fadump_param(char *p)
653 {
654 if (!p)
655 return 1;
656
657 if (strncmp(p, "on", 2) == 0)
658 fw_dump.fadump_enabled = 1;
659 else if (strncmp(p, "off", 3) == 0)
660 fw_dump.fadump_enabled = 0;
661 else if (strncmp(p, "nocma", 5) == 0) {
662 fw_dump.fadump_enabled = 1;
663 fw_dump.nocma = 1;
664 }
665
666 return 0;
667 }
668 early_param("fadump", early_fadump_param);
669
670 /*
671 * Look for fadump_reserve_mem= cmdline option
672 * TODO: Remove references to 'fadump_reserve_mem=' parameter,
673 * the sooner 'crashkernel=' parameter is accustomed to.
674 */
early_fadump_reserve_mem(char * p)675 static int __init early_fadump_reserve_mem(char *p)
676 {
677 if (p)
678 fw_dump.reserve_bootvar = memparse(p, &p);
679 return 0;
680 }
681 early_param("fadump_reserve_mem", early_fadump_reserve_mem);
682
crash_fadump(struct pt_regs * regs,const char * str)683 void crash_fadump(struct pt_regs *regs, const char *str)
684 {
685 unsigned int msecs;
686 struct fadump_crash_info_header *fdh = NULL;
687 int old_cpu, this_cpu;
688 /* Do not include first CPU */
689 unsigned int ncpus = num_online_cpus() - 1;
690
691 if (!should_fadump_crash())
692 return;
693
694 /*
695 * old_cpu == -1 means this is the first CPU which has come here,
696 * go ahead and trigger fadump.
697 *
698 * old_cpu != -1 means some other CPU has already on its way
699 * to trigger fadump, just keep looping here.
700 */
701 this_cpu = smp_processor_id();
702 old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu);
703
704 if (old_cpu != -1) {
705 atomic_inc(&cpus_in_fadump);
706
707 /*
708 * We can't loop here indefinitely. Wait as long as fadump
709 * is in force. If we race with fadump un-registration this
710 * loop will break and then we go down to normal panic path
711 * and reboot. If fadump is in force the first crashing
712 * cpu will definitely trigger fadump.
713 */
714 while (fw_dump.dump_registered)
715 cpu_relax();
716 return;
717 }
718
719 fdh = __va(fw_dump.fadumphdr_addr);
720 fdh->crashing_cpu = crashing_cpu;
721 crash_save_vmcoreinfo();
722
723 if (regs)
724 fdh->regs = *regs;
725 else
726 ppc_save_regs(&fdh->regs);
727
728 fdh->cpu_mask = *cpu_online_mask;
729
730 /*
731 * If we came in via system reset, wait a while for the secondary
732 * CPUs to enter.
733 */
734 if (TRAP(&(fdh->regs)) == INTERRUPT_SYSTEM_RESET) {
735 msecs = CRASH_TIMEOUT;
736 while ((atomic_read(&cpus_in_fadump) < ncpus) && (--msecs > 0))
737 mdelay(1);
738 }
739
740 fw_dump.ops->fadump_trigger(fdh, str);
741 }
742
fadump_regs_to_elf_notes(u32 * buf,struct pt_regs * regs)743 u32 *__init fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
744 {
745 struct elf_prstatus prstatus;
746
747 memset(&prstatus, 0, sizeof(prstatus));
748 /*
749 * FIXME: How do i get PID? Do I really need it?
750 * prstatus.pr_pid = ????
751 */
752 elf_core_copy_regs(&prstatus.pr_reg, regs);
753 buf = append_elf_note(buf, CRASH_CORE_NOTE_NAME, NT_PRSTATUS,
754 &prstatus, sizeof(prstatus));
755 return buf;
756 }
757
fadump_update_elfcore_header(char * bufp)758 void __init fadump_update_elfcore_header(char *bufp)
759 {
760 struct elf_phdr *phdr;
761
762 bufp += sizeof(struct elfhdr);
763
764 /* First note is a place holder for cpu notes info. */
765 phdr = (struct elf_phdr *)bufp;
766
767 if (phdr->p_type == PT_NOTE) {
768 phdr->p_paddr = __pa(fw_dump.cpu_notes_buf_vaddr);
769 phdr->p_offset = phdr->p_paddr;
770 phdr->p_filesz = fw_dump.cpu_notes_buf_size;
771 phdr->p_memsz = fw_dump.cpu_notes_buf_size;
772 }
773 return;
774 }
775
fadump_alloc_buffer(unsigned long size)776 static void *__init fadump_alloc_buffer(unsigned long size)
777 {
778 unsigned long count, i;
779 struct page *page;
780 void *vaddr;
781
782 vaddr = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
783 if (!vaddr)
784 return NULL;
785
786 count = PAGE_ALIGN(size) / PAGE_SIZE;
787 page = virt_to_page(vaddr);
788 for (i = 0; i < count; i++)
789 mark_page_reserved(page + i);
790 return vaddr;
791 }
792
fadump_free_buffer(unsigned long vaddr,unsigned long size)793 static void fadump_free_buffer(unsigned long vaddr, unsigned long size)
794 {
795 free_reserved_area((void *)vaddr, (void *)(vaddr + size), -1, NULL);
796 }
797
fadump_setup_cpu_notes_buf(u32 num_cpus)798 s32 __init fadump_setup_cpu_notes_buf(u32 num_cpus)
799 {
800 /* Allocate buffer to hold cpu crash notes. */
801 fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
802 fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
803 fw_dump.cpu_notes_buf_vaddr =
804 (unsigned long)fadump_alloc_buffer(fw_dump.cpu_notes_buf_size);
805 if (!fw_dump.cpu_notes_buf_vaddr) {
806 pr_err("Failed to allocate %ld bytes for CPU notes buffer\n",
807 fw_dump.cpu_notes_buf_size);
808 return -ENOMEM;
809 }
810
811 pr_debug("Allocated buffer for cpu notes of size %ld at 0x%lx\n",
812 fw_dump.cpu_notes_buf_size,
813 fw_dump.cpu_notes_buf_vaddr);
814 return 0;
815 }
816
fadump_free_cpu_notes_buf(void)817 void fadump_free_cpu_notes_buf(void)
818 {
819 if (!fw_dump.cpu_notes_buf_vaddr)
820 return;
821
822 fadump_free_buffer(fw_dump.cpu_notes_buf_vaddr,
823 fw_dump.cpu_notes_buf_size);
824 fw_dump.cpu_notes_buf_vaddr = 0;
825 fw_dump.cpu_notes_buf_size = 0;
826 }
827
fadump_free_mem_ranges(struct fadump_mrange_info * mrange_info)828 static void fadump_free_mem_ranges(struct fadump_mrange_info *mrange_info)
829 {
830 if (mrange_info->is_static) {
831 mrange_info->mem_range_cnt = 0;
832 return;
833 }
834
835 kfree(mrange_info->mem_ranges);
836 memset((void *)((u64)mrange_info + RNG_NAME_SZ), 0,
837 (sizeof(struct fadump_mrange_info) - RNG_NAME_SZ));
838 }
839
840 /*
841 * Allocate or reallocate mem_ranges array in incremental units
842 * of PAGE_SIZE.
843 */
fadump_alloc_mem_ranges(struct fadump_mrange_info * mrange_info)844 static int fadump_alloc_mem_ranges(struct fadump_mrange_info *mrange_info)
845 {
846 struct fadump_memory_range *new_array;
847 u64 new_size;
848
849 new_size = mrange_info->mem_ranges_sz + PAGE_SIZE;
850 pr_debug("Allocating %llu bytes of memory for %s memory ranges\n",
851 new_size, mrange_info->name);
852
853 new_array = krealloc(mrange_info->mem_ranges, new_size, GFP_KERNEL);
854 if (new_array == NULL) {
855 pr_err("Insufficient memory for setting up %s memory ranges\n",
856 mrange_info->name);
857 fadump_free_mem_ranges(mrange_info);
858 return -ENOMEM;
859 }
860
861 mrange_info->mem_ranges = new_array;
862 mrange_info->mem_ranges_sz = new_size;
863 mrange_info->max_mem_ranges = (new_size /
864 sizeof(struct fadump_memory_range));
865 return 0;
866 }
fadump_add_mem_range(struct fadump_mrange_info * mrange_info,u64 base,u64 end)867 static inline int fadump_add_mem_range(struct fadump_mrange_info *mrange_info,
868 u64 base, u64 end)
869 {
870 struct fadump_memory_range *mem_ranges = mrange_info->mem_ranges;
871 bool is_adjacent = false;
872 u64 start, size;
873
874 if (base == end)
875 return 0;
876
877 /*
878 * Fold adjacent memory ranges to bring down the memory ranges/
879 * PT_LOAD segments count.
880 */
881 if (mrange_info->mem_range_cnt) {
882 start = mem_ranges[mrange_info->mem_range_cnt - 1].base;
883 size = mem_ranges[mrange_info->mem_range_cnt - 1].size;
884
885 /*
886 * Boot memory area needs separate PT_LOAD segment(s) as it
887 * is moved to a different location at the time of crash.
888 * So, fold only if the region is not boot memory area.
889 */
890 if ((start + size) == base && start >= fw_dump.boot_mem_top)
891 is_adjacent = true;
892 }
893 if (!is_adjacent) {
894 /* resize the array on reaching the limit */
895 if (mrange_info->mem_range_cnt == mrange_info->max_mem_ranges) {
896 int ret;
897
898 if (mrange_info->is_static) {
899 pr_err("Reached array size limit for %s memory ranges\n",
900 mrange_info->name);
901 return -ENOSPC;
902 }
903
904 ret = fadump_alloc_mem_ranges(mrange_info);
905 if (ret)
906 return ret;
907
908 /* Update to the new resized array */
909 mem_ranges = mrange_info->mem_ranges;
910 }
911
912 start = base;
913 mem_ranges[mrange_info->mem_range_cnt].base = start;
914 mrange_info->mem_range_cnt++;
915 }
916
917 mem_ranges[mrange_info->mem_range_cnt - 1].size = (end - start);
918 pr_debug("%s_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
919 mrange_info->name, (mrange_info->mem_range_cnt - 1),
920 start, end - 1, (end - start));
921 return 0;
922 }
923
fadump_init_elfcore_header(char * bufp)924 static int fadump_init_elfcore_header(char *bufp)
925 {
926 struct elfhdr *elf;
927
928 elf = (struct elfhdr *) bufp;
929 bufp += sizeof(struct elfhdr);
930 memcpy(elf->e_ident, ELFMAG, SELFMAG);
931 elf->e_ident[EI_CLASS] = ELF_CLASS;
932 elf->e_ident[EI_DATA] = ELF_DATA;
933 elf->e_ident[EI_VERSION] = EV_CURRENT;
934 elf->e_ident[EI_OSABI] = ELF_OSABI;
935 memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
936 elf->e_type = ET_CORE;
937 elf->e_machine = ELF_ARCH;
938 elf->e_version = EV_CURRENT;
939 elf->e_entry = 0;
940 elf->e_phoff = sizeof(struct elfhdr);
941 elf->e_shoff = 0;
942
943 if (IS_ENABLED(CONFIG_PPC64_ELF_ABI_V2))
944 elf->e_flags = 2;
945 else if (IS_ENABLED(CONFIG_PPC64_ELF_ABI_V1))
946 elf->e_flags = 1;
947 else
948 elf->e_flags = 0;
949
950 elf->e_ehsize = sizeof(struct elfhdr);
951 elf->e_phentsize = sizeof(struct elf_phdr);
952 elf->e_phnum = 0;
953 elf->e_shentsize = 0;
954 elf->e_shnum = 0;
955 elf->e_shstrndx = 0;
956
957 return 0;
958 }
959
960 /*
961 * If the given physical address falls within the boot memory region then
962 * return the relocated address that points to the dump region reserved
963 * for saving initial boot memory contents.
964 */
fadump_relocate(unsigned long paddr)965 static inline unsigned long fadump_relocate(unsigned long paddr)
966 {
967 unsigned long raddr, rstart, rend, rlast, hole_size;
968 int i;
969
970 hole_size = 0;
971 rlast = 0;
972 raddr = paddr;
973 for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
974 rstart = fw_dump.boot_mem_addr[i];
975 rend = rstart + fw_dump.boot_mem_sz[i];
976 hole_size += (rstart - rlast);
977
978 if (paddr >= rstart && paddr < rend) {
979 raddr += fw_dump.boot_mem_dest_addr - hole_size;
980 break;
981 }
982
983 rlast = rend;
984 }
985
986 pr_debug("vmcoreinfo: paddr = 0x%lx, raddr = 0x%lx\n", paddr, raddr);
987 return raddr;
988 }
989
populate_elf_pt_load(struct elf_phdr * phdr,u64 start,u64 size,unsigned long long offset)990 static void __init populate_elf_pt_load(struct elf_phdr *phdr, u64 start,
991 u64 size, unsigned long long offset)
992 {
993 phdr->p_align = 0;
994 phdr->p_memsz = size;
995 phdr->p_filesz = size;
996 phdr->p_paddr = start;
997 phdr->p_offset = offset;
998 phdr->p_type = PT_LOAD;
999 phdr->p_flags = PF_R|PF_W|PF_X;
1000 phdr->p_vaddr = (unsigned long)__va(start);
1001 }
1002
fadump_populate_elfcorehdr(struct fadump_crash_info_header * fdh)1003 static void __init fadump_populate_elfcorehdr(struct fadump_crash_info_header *fdh)
1004 {
1005 char *bufp;
1006 struct elfhdr *elf;
1007 struct elf_phdr *phdr;
1008 u64 boot_mem_dest_offset;
1009 unsigned long long i, ra_start, ra_end, ra_size, mstart, mend;
1010
1011 bufp = (char *) fw_dump.elfcorehdr_addr;
1012 fadump_init_elfcore_header(bufp);
1013 elf = (struct elfhdr *)bufp;
1014 bufp += sizeof(struct elfhdr);
1015
1016 /*
1017 * Set up ELF PT_NOTE, a placeholder for CPU notes information.
1018 * The notes info will be populated later by platform-specific code.
1019 * Hence, this PT_NOTE will always be the first ELF note.
1020 *
1021 * NOTE: Any new ELF note addition should be placed after this note.
1022 */
1023 phdr = (struct elf_phdr *)bufp;
1024 bufp += sizeof(struct elf_phdr);
1025 phdr->p_type = PT_NOTE;
1026 phdr->p_flags = 0;
1027 phdr->p_vaddr = 0;
1028 phdr->p_align = 0;
1029 phdr->p_offset = 0;
1030 phdr->p_paddr = 0;
1031 phdr->p_filesz = 0;
1032 phdr->p_memsz = 0;
1033 /* Increment number of program headers. */
1034 (elf->e_phnum)++;
1035
1036 /* setup ELF PT_NOTE for vmcoreinfo */
1037 phdr = (struct elf_phdr *)bufp;
1038 bufp += sizeof(struct elf_phdr);
1039 phdr->p_type = PT_NOTE;
1040 phdr->p_flags = 0;
1041 phdr->p_vaddr = 0;
1042 phdr->p_align = 0;
1043 phdr->p_paddr = phdr->p_offset = fdh->vmcoreinfo_raddr;
1044 phdr->p_memsz = phdr->p_filesz = fdh->vmcoreinfo_size;
1045 /* Increment number of program headers. */
1046 (elf->e_phnum)++;
1047
1048 /*
1049 * Setup PT_LOAD sections. first include boot memory regions
1050 * and then add rest of the memory regions.
1051 */
1052 boot_mem_dest_offset = fw_dump.boot_mem_dest_addr;
1053 for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
1054 phdr = (struct elf_phdr *)bufp;
1055 bufp += sizeof(struct elf_phdr);
1056 populate_elf_pt_load(phdr, fw_dump.boot_mem_addr[i],
1057 fw_dump.boot_mem_sz[i],
1058 boot_mem_dest_offset);
1059 /* Increment number of program headers. */
1060 (elf->e_phnum)++;
1061 boot_mem_dest_offset += fw_dump.boot_mem_sz[i];
1062 }
1063
1064 /* Memory reserved for fadump in first kernel */
1065 ra_start = fw_dump.reserve_dump_area_start;
1066 ra_size = get_fadump_area_size();
1067 ra_end = ra_start + ra_size;
1068
1069 phdr = (struct elf_phdr *)bufp;
1070 for_each_mem_range(i, &mstart, &mend) {
1071 /* Boot memory regions already added, skip them now */
1072 if (mstart < fw_dump.boot_mem_top) {
1073 if (mend > fw_dump.boot_mem_top)
1074 mstart = fw_dump.boot_mem_top;
1075 else
1076 continue;
1077 }
1078
1079 /* Handle memblock regions overlaps with fadump reserved area */
1080 if ((ra_start < mend) && (ra_end > mstart)) {
1081 if ((mstart < ra_start) && (mend > ra_end)) {
1082 populate_elf_pt_load(phdr, mstart, ra_start - mstart, mstart);
1083 /* Increment number of program headers. */
1084 (elf->e_phnum)++;
1085 bufp += sizeof(struct elf_phdr);
1086 phdr = (struct elf_phdr *)bufp;
1087 populate_elf_pt_load(phdr, ra_end, mend - ra_end, ra_end);
1088 } else if (mstart < ra_start) {
1089 populate_elf_pt_load(phdr, mstart, ra_start - mstart, mstart);
1090 } else if (ra_end < mend) {
1091 populate_elf_pt_load(phdr, ra_end, mend - ra_end, ra_end);
1092 }
1093 } else {
1094 /* No overlap with fadump reserved memory region */
1095 populate_elf_pt_load(phdr, mstart, mend - mstart, mstart);
1096 }
1097
1098 /* Increment number of program headers. */
1099 (elf->e_phnum)++;
1100 bufp += sizeof(struct elf_phdr);
1101 phdr = (struct elf_phdr *) bufp;
1102 }
1103 }
1104
init_fadump_header(unsigned long addr)1105 static unsigned long init_fadump_header(unsigned long addr)
1106 {
1107 struct fadump_crash_info_header *fdh;
1108
1109 if (!addr)
1110 return 0;
1111
1112 fdh = __va(addr);
1113 addr += sizeof(struct fadump_crash_info_header);
1114
1115 memset(fdh, 0, sizeof(struct fadump_crash_info_header));
1116 fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
1117 fdh->version = FADUMP_HEADER_VERSION;
1118 /* We will set the crashing cpu id in crash_fadump() during crash. */
1119 fdh->crashing_cpu = FADUMP_CPU_UNKNOWN;
1120
1121 /*
1122 * The physical address and size of vmcoreinfo are required in the
1123 * second kernel to prepare elfcorehdr.
1124 */
1125 fdh->vmcoreinfo_raddr = fadump_relocate(paddr_vmcoreinfo_note());
1126 fdh->vmcoreinfo_size = VMCOREINFO_NOTE_SIZE;
1127
1128
1129 fdh->pt_regs_sz = sizeof(struct pt_regs);
1130 /*
1131 * When LPAR is terminated by PYHP, ensure all possible CPUs'
1132 * register data is processed while exporting the vmcore.
1133 */
1134 fdh->cpu_mask = *cpu_possible_mask;
1135 fdh->cpu_mask_sz = sizeof(struct cpumask);
1136
1137 return addr;
1138 }
1139
register_fadump(void)1140 static int register_fadump(void)
1141 {
1142 unsigned long addr;
1143
1144 /*
1145 * If no memory is reserved then we can not register for firmware-
1146 * assisted dump.
1147 */
1148 if (!fw_dump.reserve_dump_area_size)
1149 return -ENODEV;
1150
1151 addr = fw_dump.fadumphdr_addr;
1152
1153 /* Initialize fadump crash info header. */
1154 addr = init_fadump_header(addr);
1155
1156 /* register the future kernel dump with firmware. */
1157 pr_debug("Registering for firmware-assisted kernel dump...\n");
1158 return fw_dump.ops->fadump_register(&fw_dump);
1159 }
1160
fadump_cleanup(void)1161 void fadump_cleanup(void)
1162 {
1163 if (!fw_dump.fadump_supported)
1164 return;
1165
1166 /* Invalidate the registration only if dump is active. */
1167 if (fw_dump.dump_active) {
1168 pr_debug("Invalidating firmware-assisted dump registration\n");
1169 fw_dump.ops->fadump_invalidate(&fw_dump);
1170 } else if (fw_dump.dump_registered) {
1171 /* Un-register Firmware-assisted dump if it was registered. */
1172 fw_dump.ops->fadump_unregister(&fw_dump);
1173 }
1174
1175 if (fw_dump.ops->fadump_cleanup)
1176 fw_dump.ops->fadump_cleanup(&fw_dump);
1177 }
1178
fadump_free_reserved_memory(unsigned long start_pfn,unsigned long end_pfn)1179 static void fadump_free_reserved_memory(unsigned long start_pfn,
1180 unsigned long end_pfn)
1181 {
1182 unsigned long pfn;
1183 unsigned long time_limit = jiffies + HZ;
1184
1185 pr_info("freeing reserved memory (0x%llx - 0x%llx)\n",
1186 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
1187
1188 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1189 free_reserved_page(pfn_to_page(pfn));
1190
1191 if (time_after(jiffies, time_limit)) {
1192 cond_resched();
1193 time_limit = jiffies + HZ;
1194 }
1195 }
1196 }
1197
1198 /*
1199 * Skip memory holes and free memory that was actually reserved.
1200 */
fadump_release_reserved_area(u64 start,u64 end)1201 static void fadump_release_reserved_area(u64 start, u64 end)
1202 {
1203 unsigned long reg_spfn, reg_epfn;
1204 u64 tstart, tend, spfn, epfn;
1205 int i;
1206
1207 spfn = PHYS_PFN(start);
1208 epfn = PHYS_PFN(end);
1209
1210 for_each_mem_pfn_range(i, MAX_NUMNODES, ®_spfn, ®_epfn, NULL) {
1211 tstart = max_t(u64, spfn, reg_spfn);
1212 tend = min_t(u64, epfn, reg_epfn);
1213
1214 if (tstart < tend) {
1215 fadump_free_reserved_memory(tstart, tend);
1216
1217 if (tend == epfn)
1218 break;
1219
1220 spfn = tend;
1221 }
1222 }
1223 }
1224
1225 /*
1226 * Sort the mem ranges in-place and merge adjacent ranges
1227 * to minimize the memory ranges count.
1228 */
sort_and_merge_mem_ranges(struct fadump_mrange_info * mrange_info)1229 static void sort_and_merge_mem_ranges(struct fadump_mrange_info *mrange_info)
1230 {
1231 struct fadump_memory_range *mem_ranges;
1232 u64 base, size;
1233 int i, j, idx;
1234
1235 if (!reserved_mrange_info.mem_range_cnt)
1236 return;
1237
1238 /* Sort the memory ranges */
1239 mem_ranges = mrange_info->mem_ranges;
1240 for (i = 0; i < mrange_info->mem_range_cnt; i++) {
1241 idx = i;
1242 for (j = (i + 1); j < mrange_info->mem_range_cnt; j++) {
1243 if (mem_ranges[idx].base > mem_ranges[j].base)
1244 idx = j;
1245 }
1246 if (idx != i)
1247 swap(mem_ranges[idx], mem_ranges[i]);
1248 }
1249
1250 /* Merge adjacent reserved ranges */
1251 idx = 0;
1252 for (i = 1; i < mrange_info->mem_range_cnt; i++) {
1253 base = mem_ranges[i-1].base;
1254 size = mem_ranges[i-1].size;
1255 if (mem_ranges[i].base == (base + size))
1256 mem_ranges[idx].size += mem_ranges[i].size;
1257 else {
1258 idx++;
1259 if (i == idx)
1260 continue;
1261
1262 mem_ranges[idx] = mem_ranges[i];
1263 }
1264 }
1265 mrange_info->mem_range_cnt = idx + 1;
1266 }
1267
1268 /*
1269 * Scan reserved-ranges to consider them while reserving/releasing
1270 * memory for FADump.
1271 */
early_init_dt_scan_reserved_ranges(unsigned long node)1272 static void __init early_init_dt_scan_reserved_ranges(unsigned long node)
1273 {
1274 const __be32 *prop;
1275 int len, ret = -1;
1276 unsigned long i;
1277
1278 /* reserved-ranges already scanned */
1279 if (reserved_mrange_info.mem_range_cnt != 0)
1280 return;
1281
1282 prop = of_get_flat_dt_prop(node, "reserved-ranges", &len);
1283 if (!prop)
1284 return;
1285
1286 /*
1287 * Each reserved range is an (address,size) pair, 2 cells each,
1288 * totalling 4 cells per range.
1289 */
1290 for (i = 0; i < len / (sizeof(*prop) * 4); i++) {
1291 u64 base, size;
1292
1293 base = of_read_number(prop + (i * 4) + 0, 2);
1294 size = of_read_number(prop + (i * 4) + 2, 2);
1295
1296 if (size) {
1297 ret = fadump_add_mem_range(&reserved_mrange_info,
1298 base, base + size);
1299 if (ret < 0) {
1300 pr_warn("some reserved ranges are ignored!\n");
1301 break;
1302 }
1303 }
1304 }
1305
1306 /* Compact reserved ranges */
1307 sort_and_merge_mem_ranges(&reserved_mrange_info);
1308 }
1309
1310 /*
1311 * Release the memory that was reserved during early boot to preserve the
1312 * crash'ed kernel's memory contents except reserved dump area (permanent
1313 * reservation) and reserved ranges used by F/W. The released memory will
1314 * be available for general use.
1315 */
fadump_release_memory(u64 begin,u64 end)1316 static void fadump_release_memory(u64 begin, u64 end)
1317 {
1318 u64 ra_start, ra_end, tstart;
1319 int i, ret;
1320
1321 ra_start = fw_dump.reserve_dump_area_start;
1322 ra_end = ra_start + fw_dump.reserve_dump_area_size;
1323
1324 /*
1325 * If reserved ranges array limit is hit, overwrite the last reserved
1326 * memory range with reserved dump area to ensure it is excluded from
1327 * the memory being released (reused for next FADump registration).
1328 */
1329 if (reserved_mrange_info.mem_range_cnt ==
1330 reserved_mrange_info.max_mem_ranges)
1331 reserved_mrange_info.mem_range_cnt--;
1332
1333 ret = fadump_add_mem_range(&reserved_mrange_info, ra_start, ra_end);
1334 if (ret != 0)
1335 return;
1336
1337 /* Get the reserved ranges list in order first. */
1338 sort_and_merge_mem_ranges(&reserved_mrange_info);
1339
1340 /* Exclude reserved ranges and release remaining memory */
1341 tstart = begin;
1342 for (i = 0; i < reserved_mrange_info.mem_range_cnt; i++) {
1343 ra_start = reserved_mrange_info.mem_ranges[i].base;
1344 ra_end = ra_start + reserved_mrange_info.mem_ranges[i].size;
1345
1346 if (tstart >= ra_end)
1347 continue;
1348
1349 if (tstart < ra_start)
1350 fadump_release_reserved_area(tstart, ra_start);
1351 tstart = ra_end;
1352 }
1353
1354 if (tstart < end)
1355 fadump_release_reserved_area(tstart, end);
1356 }
1357
fadump_free_elfcorehdr_buf(void)1358 static void fadump_free_elfcorehdr_buf(void)
1359 {
1360 if (fw_dump.elfcorehdr_addr == 0 || fw_dump.elfcorehdr_size == 0)
1361 return;
1362
1363 /*
1364 * Before freeing the memory of `elfcorehdr`, reset the global
1365 * `elfcorehdr_addr` to prevent modules like `vmcore` from accessing
1366 * invalid memory.
1367 */
1368 elfcorehdr_addr = ELFCORE_ADDR_ERR;
1369 fadump_free_buffer(fw_dump.elfcorehdr_addr, fw_dump.elfcorehdr_size);
1370 fw_dump.elfcorehdr_addr = 0;
1371 fw_dump.elfcorehdr_size = 0;
1372 }
1373
fadump_invalidate_release_mem(void)1374 static void fadump_invalidate_release_mem(void)
1375 {
1376 mutex_lock(&fadump_mutex);
1377 if (!fw_dump.dump_active) {
1378 mutex_unlock(&fadump_mutex);
1379 return;
1380 }
1381
1382 fadump_cleanup();
1383 mutex_unlock(&fadump_mutex);
1384
1385 fadump_free_elfcorehdr_buf();
1386 fadump_release_memory(fw_dump.boot_mem_top, memblock_end_of_DRAM());
1387 fadump_free_cpu_notes_buf();
1388
1389 /*
1390 * Setup kernel metadata and initialize the kernel dump
1391 * memory structure for FADump re-registration.
1392 */
1393 if (fw_dump.ops->fadump_setup_metadata &&
1394 (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
1395 pr_warn("Failed to setup kernel metadata!\n");
1396 fw_dump.ops->fadump_init_mem_struct(&fw_dump);
1397 }
1398
release_mem_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1399 static ssize_t release_mem_store(struct kobject *kobj,
1400 struct kobj_attribute *attr,
1401 const char *buf, size_t count)
1402 {
1403 int input = -1;
1404
1405 if (!fw_dump.dump_active)
1406 return -EPERM;
1407
1408 if (kstrtoint(buf, 0, &input))
1409 return -EINVAL;
1410
1411 if (input == 1) {
1412 /*
1413 * Take away the '/proc/vmcore'. We are releasing the dump
1414 * memory, hence it will not be valid anymore.
1415 */
1416 #ifdef CONFIG_PROC_VMCORE
1417 vmcore_cleanup();
1418 #endif
1419 fadump_invalidate_release_mem();
1420
1421 } else
1422 return -EINVAL;
1423 return count;
1424 }
1425
1426 /* Release the reserved memory and disable the FADump */
unregister_fadump(void)1427 static void __init unregister_fadump(void)
1428 {
1429 fadump_cleanup();
1430 fadump_release_memory(fw_dump.reserve_dump_area_start,
1431 fw_dump.reserve_dump_area_size);
1432 fw_dump.fadump_enabled = 0;
1433 kobject_put(fadump_kobj);
1434 }
1435
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1436 static ssize_t enabled_show(struct kobject *kobj,
1437 struct kobj_attribute *attr,
1438 char *buf)
1439 {
1440 return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1441 }
1442
1443 /*
1444 * /sys/kernel/fadump/hotplug_ready sysfs node returns 1, which inidcates
1445 * to usersapce that fadump re-registration is not required on memory
1446 * hotplug events.
1447 */
hotplug_ready_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1448 static ssize_t hotplug_ready_show(struct kobject *kobj,
1449 struct kobj_attribute *attr,
1450 char *buf)
1451 {
1452 return sprintf(buf, "%d\n", 1);
1453 }
1454
mem_reserved_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1455 static ssize_t mem_reserved_show(struct kobject *kobj,
1456 struct kobj_attribute *attr,
1457 char *buf)
1458 {
1459 return sprintf(buf, "%ld\n", fw_dump.reserve_dump_area_size);
1460 }
1461
registered_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1462 static ssize_t registered_show(struct kobject *kobj,
1463 struct kobj_attribute *attr,
1464 char *buf)
1465 {
1466 return sprintf(buf, "%d\n", fw_dump.dump_registered);
1467 }
1468
bootargs_append_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1469 static ssize_t bootargs_append_show(struct kobject *kobj,
1470 struct kobj_attribute *attr,
1471 char *buf)
1472 {
1473 return sprintf(buf, "%s\n", (char *)__va(fw_dump.param_area));
1474 }
1475
bootargs_append_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1476 static ssize_t bootargs_append_store(struct kobject *kobj,
1477 struct kobj_attribute *attr,
1478 const char *buf, size_t count)
1479 {
1480 char *params;
1481
1482 if (!fw_dump.fadump_enabled || fw_dump.dump_active)
1483 return -EPERM;
1484
1485 if (count >= COMMAND_LINE_SIZE)
1486 return -EINVAL;
1487
1488 /*
1489 * Fail here instead of handling this scenario with
1490 * some silly workaround in capture kernel.
1491 */
1492 if (saved_command_line_len + count >= COMMAND_LINE_SIZE) {
1493 pr_err("Appending parameters exceeds cmdline size!\n");
1494 return -ENOSPC;
1495 }
1496
1497 params = __va(fw_dump.param_area);
1498 strscpy_pad(params, buf, COMMAND_LINE_SIZE);
1499 /* Remove newline character at the end. */
1500 if (params[count-1] == '\n')
1501 params[count-1] = '\0';
1502
1503 return count;
1504 }
1505
registered_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1506 static ssize_t registered_store(struct kobject *kobj,
1507 struct kobj_attribute *attr,
1508 const char *buf, size_t count)
1509 {
1510 int ret = 0;
1511 int input = -1;
1512
1513 if (!fw_dump.fadump_enabled || fw_dump.dump_active)
1514 return -EPERM;
1515
1516 if (kstrtoint(buf, 0, &input))
1517 return -EINVAL;
1518
1519 mutex_lock(&fadump_mutex);
1520
1521 switch (input) {
1522 case 0:
1523 if (fw_dump.dump_registered == 0) {
1524 goto unlock_out;
1525 }
1526
1527 /* Un-register Firmware-assisted dump */
1528 pr_debug("Un-register firmware-assisted dump\n");
1529 fw_dump.ops->fadump_unregister(&fw_dump);
1530 break;
1531 case 1:
1532 if (fw_dump.dump_registered == 1) {
1533 /* Un-register Firmware-assisted dump */
1534 fw_dump.ops->fadump_unregister(&fw_dump);
1535 }
1536 /* Register Firmware-assisted dump */
1537 ret = register_fadump();
1538 break;
1539 default:
1540 ret = -EINVAL;
1541 break;
1542 }
1543
1544 unlock_out:
1545 mutex_unlock(&fadump_mutex);
1546 return ret < 0 ? ret : count;
1547 }
1548
fadump_region_show(struct seq_file * m,void * private)1549 static int fadump_region_show(struct seq_file *m, void *private)
1550 {
1551 if (!fw_dump.fadump_enabled)
1552 return 0;
1553
1554 mutex_lock(&fadump_mutex);
1555 fw_dump.ops->fadump_region_show(&fw_dump, m);
1556 mutex_unlock(&fadump_mutex);
1557 return 0;
1558 }
1559
1560 static struct kobj_attribute release_attr = __ATTR_WO(release_mem);
1561 static struct kobj_attribute enable_attr = __ATTR_RO(enabled);
1562 static struct kobj_attribute register_attr = __ATTR_RW(registered);
1563 static struct kobj_attribute mem_reserved_attr = __ATTR_RO(mem_reserved);
1564 static struct kobj_attribute hotplug_ready_attr = __ATTR_RO(hotplug_ready);
1565 static struct kobj_attribute bootargs_append_attr = __ATTR_RW(bootargs_append);
1566
1567 static struct attribute *fadump_attrs[] = {
1568 &enable_attr.attr,
1569 ®ister_attr.attr,
1570 &mem_reserved_attr.attr,
1571 &hotplug_ready_attr.attr,
1572 NULL,
1573 };
1574
1575 ATTRIBUTE_GROUPS(fadump);
1576
1577 DEFINE_SHOW_ATTRIBUTE(fadump_region);
1578
fadump_init_files(void)1579 static void __init fadump_init_files(void)
1580 {
1581 int rc = 0;
1582
1583 fadump_kobj = kobject_create_and_add("fadump", kernel_kobj);
1584 if (!fadump_kobj) {
1585 pr_err("failed to create fadump kobject\n");
1586 return;
1587 }
1588
1589 debugfs_create_file("fadump_region", 0444, arch_debugfs_dir, NULL,
1590 &fadump_region_fops);
1591
1592 if (fw_dump.dump_active) {
1593 rc = sysfs_create_file(fadump_kobj, &release_attr.attr);
1594 if (rc)
1595 pr_err("unable to create release_mem sysfs file (%d)\n",
1596 rc);
1597 }
1598
1599 rc = sysfs_create_groups(fadump_kobj, fadump_groups);
1600 if (rc) {
1601 pr_err("sysfs group creation failed (%d), unregistering FADump",
1602 rc);
1603 unregister_fadump();
1604 return;
1605 }
1606
1607 /*
1608 * The FADump sysfs are moved from kernel_kobj to fadump_kobj need to
1609 * create symlink at old location to maintain backward compatibility.
1610 *
1611 * - fadump_enabled -> fadump/enabled
1612 * - fadump_registered -> fadump/registered
1613 * - fadump_release_mem -> fadump/release_mem
1614 */
1615 rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj,
1616 "enabled", "fadump_enabled");
1617 if (rc) {
1618 pr_err("unable to create fadump_enabled symlink (%d)", rc);
1619 return;
1620 }
1621
1622 rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj,
1623 "registered",
1624 "fadump_registered");
1625 if (rc) {
1626 pr_err("unable to create fadump_registered symlink (%d)", rc);
1627 sysfs_remove_link(kernel_kobj, "fadump_enabled");
1628 return;
1629 }
1630
1631 if (fw_dump.dump_active) {
1632 rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj,
1633 fadump_kobj,
1634 "release_mem",
1635 "fadump_release_mem");
1636 if (rc)
1637 pr_err("unable to create fadump_release_mem symlink (%d)",
1638 rc);
1639 }
1640 return;
1641 }
1642
fadump_setup_elfcorehdr_buf(void)1643 static int __init fadump_setup_elfcorehdr_buf(void)
1644 {
1645 int elf_phdr_cnt;
1646 unsigned long elfcorehdr_size;
1647
1648 /*
1649 * Program header for CPU notes comes first, followed by one for
1650 * vmcoreinfo, and the remaining program headers correspond to
1651 * memory regions.
1652 */
1653 elf_phdr_cnt = 2 + fw_dump.boot_mem_regs_cnt + memblock_num_regions(memory);
1654 elfcorehdr_size = sizeof(struct elfhdr) + (elf_phdr_cnt * sizeof(struct elf_phdr));
1655 elfcorehdr_size = PAGE_ALIGN(elfcorehdr_size);
1656
1657 fw_dump.elfcorehdr_addr = (u64)fadump_alloc_buffer(elfcorehdr_size);
1658 if (!fw_dump.elfcorehdr_addr) {
1659 pr_err("Failed to allocate %lu bytes for elfcorehdr\n",
1660 elfcorehdr_size);
1661 return -ENOMEM;
1662 }
1663 fw_dump.elfcorehdr_size = elfcorehdr_size;
1664 return 0;
1665 }
1666
1667 /*
1668 * Check if the fadump header of crashed kernel is compatible with fadump kernel.
1669 *
1670 * It checks the magic number, endianness, and size of non-primitive type
1671 * members of fadump header to ensure safe dump collection.
1672 */
is_fadump_header_compatible(struct fadump_crash_info_header * fdh)1673 static bool __init is_fadump_header_compatible(struct fadump_crash_info_header *fdh)
1674 {
1675 if (fdh->magic_number == FADUMP_CRASH_INFO_MAGIC_OLD) {
1676 pr_err("Old magic number, can't process the dump.\n");
1677 return false;
1678 }
1679
1680 if (fdh->magic_number != FADUMP_CRASH_INFO_MAGIC) {
1681 if (fdh->magic_number == swab64(FADUMP_CRASH_INFO_MAGIC))
1682 pr_err("Endianness mismatch between the crashed and fadump kernels.\n");
1683 else
1684 pr_err("Fadump header is corrupted.\n");
1685
1686 return false;
1687 }
1688
1689 /*
1690 * Dump collection is not safe if the size of non-primitive type members
1691 * of the fadump header do not match between crashed and fadump kernel.
1692 */
1693 if (fdh->pt_regs_sz != sizeof(struct pt_regs) ||
1694 fdh->cpu_mask_sz != sizeof(struct cpumask)) {
1695 pr_err("Fadump header size mismatch.\n");
1696 return false;
1697 }
1698
1699 return true;
1700 }
1701
fadump_process(void)1702 static void __init fadump_process(void)
1703 {
1704 struct fadump_crash_info_header *fdh;
1705
1706 fdh = (struct fadump_crash_info_header *) __va(fw_dump.fadumphdr_addr);
1707 if (!fdh) {
1708 pr_err("Crash info header is empty.\n");
1709 goto err_out;
1710 }
1711
1712 /* Avoid processing the dump if fadump header isn't compatible */
1713 if (!is_fadump_header_compatible(fdh))
1714 goto err_out;
1715
1716 /* Allocate buffer for elfcorehdr */
1717 if (fadump_setup_elfcorehdr_buf())
1718 goto err_out;
1719
1720 fadump_populate_elfcorehdr(fdh);
1721
1722 /* Let platform update the CPU notes in elfcorehdr */
1723 if (fw_dump.ops->fadump_process(&fw_dump) < 0)
1724 goto err_out;
1725
1726 /*
1727 * elfcorehdr is now ready to be exported.
1728 *
1729 * set elfcorehdr_addr so that vmcore module will export the
1730 * elfcorehdr through '/proc/vmcore'.
1731 */
1732 elfcorehdr_addr = virt_to_phys((void *)fw_dump.elfcorehdr_addr);
1733 return;
1734
1735 err_out:
1736 fadump_invalidate_release_mem();
1737 }
1738
1739 /*
1740 * Reserve memory to store additional parameters to be passed
1741 * for fadump/capture kernel.
1742 */
fadump_setup_param_area(void)1743 static void __init fadump_setup_param_area(void)
1744 {
1745 phys_addr_t range_start, range_end;
1746
1747 if (!fw_dump.param_area_supported || fw_dump.dump_active)
1748 return;
1749
1750 /* This memory can't be used by PFW or bootloader as it is shared across kernels */
1751 if (radix_enabled()) {
1752 /*
1753 * Anywhere in the upper half should be good enough as all memory
1754 * is accessible in real mode.
1755 */
1756 range_start = memblock_end_of_DRAM() / 2;
1757 range_end = memblock_end_of_DRAM();
1758 } else {
1759 /*
1760 * Passing additional parameters is supported for hash MMU only
1761 * if the first memory block size is 768MB or higher.
1762 */
1763 if (ppc64_rma_size < 0x30000000)
1764 return;
1765
1766 /*
1767 * 640 MB to 768 MB is not used by PFW/bootloader. So, try reserving
1768 * memory for passing additional parameters in this range to avoid
1769 * being stomped on by PFW/bootloader.
1770 */
1771 range_start = 0x2A000000;
1772 range_end = range_start + 0x4000000;
1773 }
1774
1775 fw_dump.param_area = memblock_phys_alloc_range(COMMAND_LINE_SIZE,
1776 COMMAND_LINE_SIZE,
1777 range_start,
1778 range_end);
1779 if (!fw_dump.param_area || sysfs_create_file(fadump_kobj, &bootargs_append_attr.attr)) {
1780 pr_warn("WARNING: Could not setup area to pass additional parameters!\n");
1781 return;
1782 }
1783
1784 memset(phys_to_virt(fw_dump.param_area), 0, COMMAND_LINE_SIZE);
1785 }
1786
1787 /*
1788 * Prepare for firmware-assisted dump.
1789 */
setup_fadump(void)1790 int __init setup_fadump(void)
1791 {
1792 if (!fw_dump.fadump_supported)
1793 return 0;
1794
1795 fadump_init_files();
1796 fadump_show_config();
1797
1798 if (!fw_dump.fadump_enabled)
1799 return 1;
1800
1801 /*
1802 * If dump data is available then see if it is valid and prepare for
1803 * saving it to the disk.
1804 */
1805 if (fw_dump.dump_active) {
1806 fadump_process();
1807 }
1808 /* Initialize the kernel dump memory structure and register with f/w */
1809 else if (fw_dump.reserve_dump_area_size) {
1810 fadump_setup_param_area();
1811 fw_dump.ops->fadump_init_mem_struct(&fw_dump);
1812 register_fadump();
1813 }
1814
1815 /*
1816 * In case of panic, fadump is triggered via ppc_panic_event()
1817 * panic notifier. Setting crash_kexec_post_notifiers to 'true'
1818 * lets panic() function take crash friendly path before panic
1819 * notifiers are invoked.
1820 */
1821 crash_kexec_post_notifiers = true;
1822
1823 return 1;
1824 }
1825 /*
1826 * Use subsys_initcall_sync() here because there is dependency with
1827 * crash_save_vmcoreinfo_init(), which must run first to ensure vmcoreinfo initialization
1828 * is done before registering with f/w.
1829 */
1830 subsys_initcall_sync(setup_fadump);
1831 #else /* !CONFIG_PRESERVE_FA_DUMP */
1832
1833 /* Scan the Firmware Assisted dump configuration details. */
early_init_dt_scan_fw_dump(unsigned long node,const char * uname,int depth,void * data)1834 int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
1835 int depth, void *data)
1836 {
1837 if ((depth != 1) || (strcmp(uname, "ibm,opal") != 0))
1838 return 0;
1839
1840 opal_fadump_dt_scan(&fw_dump, node);
1841 return 1;
1842 }
1843
1844 /*
1845 * When dump is active but PRESERVE_FA_DUMP is enabled on the kernel,
1846 * preserve crash data. The subsequent memory preserving kernel boot
1847 * is likely to process this crash data.
1848 */
fadump_reserve_mem(void)1849 int __init fadump_reserve_mem(void)
1850 {
1851 if (fw_dump.dump_active) {
1852 /*
1853 * If last boot has crashed then reserve all the memory
1854 * above boot memory to preserve crash data.
1855 */
1856 pr_info("Preserving crash data for processing in next boot.\n");
1857 fadump_reserve_crash_area(fw_dump.boot_mem_top);
1858 } else
1859 pr_debug("FADump-aware kernel..\n");
1860
1861 return 1;
1862 }
1863 #endif /* CONFIG_PRESERVE_FA_DUMP */
1864
1865 /* Preserve everything above the base address */
fadump_reserve_crash_area(u64 base)1866 static void __init fadump_reserve_crash_area(u64 base)
1867 {
1868 u64 i, mstart, mend, msize;
1869
1870 for_each_mem_range(i, &mstart, &mend) {
1871 msize = mend - mstart;
1872
1873 if ((mstart + msize) < base)
1874 continue;
1875
1876 if (mstart < base) {
1877 msize -= (base - mstart);
1878 mstart = base;
1879 }
1880
1881 pr_info("Reserving %lluMB of memory at %#016llx for preserving crash data",
1882 (msize >> 20), mstart);
1883 memblock_reserve(mstart, msize);
1884 }
1885 }
1886