1 /* $OpenBSD: ffs_alloc.c,v 1.115 2024/02/03 18:51:58 beck Exp $ */
2 /* $NetBSD: ffs_alloc.c,v 1.11 1996/05/11 18:27:09 mycroft Exp $ */
3
4 /*
5 * Copyright (c) 2002 Networks Associates Technology, Inc.
6 * All rights reserved.
7 *
8 * This software was developed for the FreeBSD Project by Marshall
9 * Kirk McKusick and Network Associates Laboratories, the Security
10 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
11 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
12 * research program.
13 *
14 * Copyright (c) 1982, 1986, 1989, 1993
15 * The Regents of the University of California. All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions
19 * are met:
20 * 1. Redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution.
25 * 3. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)ffs_alloc.c 8.11 (Berkeley) 10/27/94
42 */
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/buf.h>
47 #include <sys/vnode.h>
48 #include <sys/mount.h>
49 #include <sys/syslog.h>
50 #include <sys/stdint.h>
51 #include <sys/time.h>
52
53 #include <ufs/ufs/quota.h>
54 #include <ufs/ufs/inode.h>
55 #include <ufs/ufs/ufsmount.h>
56 #include <ufs/ufs/ufs_extern.h>
57
58 #include <ufs/ffs/fs.h>
59 #include <ufs/ffs/ffs_extern.h>
60
61 #define ffs_fserr(fs, uid, cp) do { \
62 log(LOG_ERR, "uid %u on %s: %s\n", (uid), \
63 (fs)->fs_fsmnt, (cp)); \
64 } while (0)
65
66 daddr_t ffs_alloccg(struct inode *, u_int, daddr_t, int);
67 struct buf * ffs_cgread(struct fs *, struct inode *, u_int);
68 daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t);
69 ufsino_t ffs_dirpref(struct inode *);
70 daddr_t ffs_fragextend(struct inode *, u_int, daddr_t, int, int);
71 daddr_t ffs_hashalloc(struct inode *, u_int, daddr_t, int,
72 daddr_t (*)(struct inode *, u_int, daddr_t, int));
73 daddr_t ffs_nodealloccg(struct inode *, u_int, daddr_t, int);
74 daddr_t ffs_mapsearch(struct fs *, struct cg *, daddr_t, int);
75
76 static const struct timeval fserr_interval = { 2, 0 };
77
78
79 /*
80 * Allocate a block in the file system.
81 *
82 * The size of the requested block is given, which must be some
83 * multiple of fs_fsize and <= fs_bsize.
84 * A preference may be optionally specified. If a preference is given
85 * the following hierarchy is used to allocate a block:
86 * 1) allocate the requested block.
87 * 2) allocate a rotationally optimal block in the same cylinder.
88 * 3) allocate a block in the same cylinder group.
89 * 4) quadratically rehash into other cylinder groups, until an
90 * available block is located.
91 * If no block preference is given the following hierarchy is used
92 * to allocate a block:
93 * 1) allocate a block in the cylinder group that contains the
94 * inode for the file.
95 * 2) quadratically rehash into other cylinder groups, until an
96 * available block is located.
97 */
98 int
ffs_alloc(struct inode * ip,daddr_t lbn,daddr_t bpref,int size,struct ucred * cred,daddr_t * bnp)99 ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size,
100 struct ucred *cred, daddr_t *bnp)
101 {
102 static struct timeval fsfull_last;
103 struct fs *fs;
104 daddr_t bno;
105 u_int cg;
106 int error;
107
108 *bnp = 0;
109 fs = ip->i_fs;
110 #ifdef DIAGNOSTIC
111 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
112 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
113 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
114 panic("ffs_alloc: bad size");
115 }
116 if (cred == NOCRED)
117 panic("ffs_alloc: missing credential");
118 #endif /* DIAGNOSTIC */
119 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
120 goto nospace;
121 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
122 goto nospace;
123
124 if ((error = ufs_quota_alloc_blocks(ip, btodb(size), cred)) != 0)
125 return (error);
126
127 /*
128 * Start allocation in the preferred block's cylinder group or
129 * the file's inode's cylinder group if no preferred block was
130 * specified.
131 */
132 if (bpref >= fs->fs_size)
133 bpref = 0;
134 if (bpref == 0)
135 cg = ino_to_cg(fs, ip->i_number);
136 else
137 cg = dtog(fs, bpref);
138
139 /* Try allocating a block. */
140 bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg);
141 if (bno > 0) {
142 /* allocation successful, update inode data */
143 DIP_ADD(ip, blocks, btodb(size));
144 ip->i_flag |= IN_CHANGE | IN_UPDATE;
145 *bnp = bno;
146 return (0);
147 }
148
149 /* Restore user's disk quota because allocation failed. */
150 (void) ufs_quota_free_blocks(ip, btodb(size), cred);
151
152 nospace:
153 if (ratecheck(&fsfull_last, &fserr_interval)) {
154 ffs_fserr(fs, cred->cr_uid, "file system full");
155 uprintf("\n%s: write failed, file system is full\n",
156 fs->fs_fsmnt);
157 }
158 return (ENOSPC);
159 }
160
161 /*
162 * Reallocate a fragment to a bigger size
163 *
164 * The number and size of the old block is given, and a preference
165 * and new size is also specified. The allocator attempts to extend
166 * the original block. Failing that, the regular block allocator is
167 * invoked to get an appropriate block.
168 */
169 int
ffs_realloccg(struct inode * ip,daddr_t lbprev,daddr_t bpref,int osize,int nsize,struct ucred * cred,struct buf ** bpp,daddr_t * blknop)170 ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
171 int nsize, struct ucred *cred, struct buf **bpp, daddr_t *blknop)
172 {
173 static struct timeval fsfull_last;
174 struct fs *fs;
175 struct buf *bp = NULL;
176 daddr_t quota_updated = 0;
177 int request, error;
178 u_int cg;
179 daddr_t bprev, bno;
180
181 if (bpp != NULL)
182 *bpp = NULL;
183 fs = ip->i_fs;
184 #ifdef DIAGNOSTIC
185 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
186 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
187 printf(
188 "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
189 ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
190 panic("ffs_realloccg: bad size");
191 }
192 if (cred == NOCRED)
193 panic("ffs_realloccg: missing credential");
194 #endif /* DIAGNOSTIC */
195 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
196 goto nospace;
197
198 bprev = DIP(ip, db[lbprev]);
199
200 if (bprev == 0) {
201 printf("dev = 0x%x, bsize = %d, bprev = %lld, fs = %s\n",
202 ip->i_dev, fs->fs_bsize, (long long)bprev, fs->fs_fsmnt);
203 panic("ffs_realloccg: bad bprev");
204 }
205
206 /*
207 * Allocate the extra space in the buffer.
208 */
209 if (bpp != NULL) {
210 if ((error = bread(ITOV(ip), lbprev, fs->fs_bsize, &bp)) != 0)
211 goto error;
212 buf_adjcnt(bp, osize);
213 }
214
215 if ((error = ufs_quota_alloc_blocks(ip, btodb(nsize - osize), cred))
216 != 0)
217 goto error;
218
219 quota_updated = btodb(nsize - osize);
220
221 /*
222 * Check for extension in the existing location.
223 */
224 cg = dtog(fs, bprev);
225 if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
226 DIP_ADD(ip, blocks, btodb(nsize - osize));
227 ip->i_flag |= IN_CHANGE | IN_UPDATE;
228 if (bpp != NULL) {
229 if (bp->b_blkno != fsbtodb(fs, bno))
230 panic("ffs_realloccg: bad blockno");
231 #ifdef DIAGNOSTIC
232 if (nsize > bp->b_bufsize)
233 panic("ffs_realloccg: small buf");
234 #endif
235 buf_adjcnt(bp, nsize);
236 bp->b_flags |= B_DONE;
237 memset(bp->b_data + osize, 0, nsize - osize);
238 *bpp = bp;
239 }
240 if (blknop != NULL) {
241 *blknop = bno;
242 }
243 return (0);
244 }
245 /*
246 * Allocate a new disk location.
247 */
248 if (bpref >= fs->fs_size)
249 bpref = 0;
250 switch (fs->fs_optim) {
251 case FS_OPTSPACE:
252 /*
253 * Allocate an exact sized fragment. Although this makes
254 * best use of space, we will waste time relocating it if
255 * the file continues to grow. If the fragmentation is
256 * less than half of the minimum free reserve, we choose
257 * to begin optimizing for time.
258 */
259 request = nsize;
260 if (fs->fs_minfree < 5 ||
261 fs->fs_cstotal.cs_nffree >
262 fs->fs_dsize * fs->fs_minfree / (2 * 100))
263 break;
264 fs->fs_optim = FS_OPTTIME;
265 break;
266 case FS_OPTTIME:
267 /*
268 * At this point we have discovered a file that is trying to
269 * grow a small fragment to a larger fragment. To save time,
270 * we allocate a full sized block, then free the unused portion.
271 * If the file continues to grow, the `ffs_fragextend' call
272 * above will be able to grow it in place without further
273 * copying. If aberrant programs cause disk fragmentation to
274 * grow within 2% of the free reserve, we choose to begin
275 * optimizing for space.
276 */
277 request = fs->fs_bsize;
278 if (fs->fs_cstotal.cs_nffree <
279 fs->fs_dsize * (fs->fs_minfree - 2) / 100)
280 break;
281 fs->fs_optim = FS_OPTSPACE;
282 break;
283 default:
284 printf("dev = 0x%x, optim = %d, fs = %s\n",
285 ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
286 panic("ffs_realloccg: bad optim");
287 /* NOTREACHED */
288 }
289 bno = ffs_hashalloc(ip, cg, bpref, request, ffs_alloccg);
290 if (bno <= 0)
291 goto nospace;
292
293 (void) uvm_vnp_uncache(ITOV(ip));
294 ffs_blkfree(ip, bprev, (long)osize);
295 if (nsize < request)
296 ffs_blkfree(ip, bno + numfrags(fs, nsize),
297 (long)(request - nsize));
298 DIP_ADD(ip, blocks, btodb(nsize - osize));
299 ip->i_flag |= IN_CHANGE | IN_UPDATE;
300 if (bpp != NULL) {
301 bp->b_blkno = fsbtodb(fs, bno);
302 #ifdef DIAGNOSTIC
303 if (nsize > bp->b_bufsize)
304 panic("ffs_realloccg: small buf 2");
305 #endif
306 buf_adjcnt(bp, nsize);
307 bp->b_flags |= B_DONE;
308 memset(bp->b_data + osize, 0, nsize - osize);
309 *bpp = bp;
310 }
311 if (blknop != NULL) {
312 *blknop = bno;
313 }
314 return (0);
315
316 nospace:
317 if (ratecheck(&fsfull_last, &fserr_interval)) {
318 ffs_fserr(fs, cred->cr_uid, "file system full");
319 uprintf("\n%s: write failed, file system is full\n",
320 fs->fs_fsmnt);
321 }
322 error = ENOSPC;
323
324 error:
325 if (bp != NULL) {
326 brelse(bp);
327 bp = NULL;
328 }
329
330 /*
331 * Restore user's disk quota because allocation failed.
332 */
333 if (quota_updated != 0)
334 (void)ufs_quota_free_blocks(ip, quota_updated, cred);
335
336 return error;
337 }
338
339 /*
340 * Allocate an inode in the file system.
341 *
342 * If allocating a directory, use ffs_dirpref to select the inode.
343 * If allocating in a directory, the following hierarchy is followed:
344 * 1) allocate the preferred inode.
345 * 2) allocate an inode in the same cylinder group.
346 * 3) quadratically rehash into other cylinder groups, until an
347 * available inode is located.
348 * If no inode preference is given the following hierarchy is used
349 * to allocate an inode:
350 * 1) allocate an inode in cylinder group 0.
351 * 2) quadratically rehash into other cylinder groups, until an
352 * available inode is located.
353 */
354 int
ffs_inode_alloc(struct inode * pip,mode_t mode,struct ucred * cred,struct vnode ** vpp)355 ffs_inode_alloc(struct inode *pip, mode_t mode, struct ucred *cred,
356 struct vnode **vpp)
357 {
358 static struct timeval fsnoinodes_last;
359 struct vnode *pvp = ITOV(pip);
360 struct fs *fs;
361 struct inode *ip;
362 ufsino_t ino, ipref;
363 u_int cg;
364 int error;
365
366 *vpp = NULL;
367 fs = pip->i_fs;
368 if (fs->fs_cstotal.cs_nifree == 0)
369 goto noinodes;
370
371 if ((mode & IFMT) == IFDIR)
372 ipref = ffs_dirpref(pip);
373 else
374 ipref = pip->i_number;
375 if (ipref >= fs->fs_ncg * fs->fs_ipg)
376 ipref = 0;
377 cg = ino_to_cg(fs, ipref);
378
379 /*
380 * Track number of dirs created one after another
381 * in a same cg without intervening by files.
382 */
383 if ((mode & IFMT) == IFDIR) {
384 if (fs->fs_contigdirs[cg] < 255)
385 fs->fs_contigdirs[cg]++;
386 } else {
387 if (fs->fs_contigdirs[cg] > 0)
388 fs->fs_contigdirs[cg]--;
389 }
390 ino = (ufsino_t)ffs_hashalloc(pip, cg, ipref, mode, ffs_nodealloccg);
391 if (ino == 0)
392 goto noinodes;
393 error = VFS_VGET(pvp->v_mount, ino, vpp);
394 if (error) {
395 ffs_inode_free(pip, ino, mode);
396 return (error);
397 }
398
399 ip = VTOI(*vpp);
400
401 if (DIP(ip, mode)) {
402 printf("mode = 0%o, inum = %u, fs = %s\n",
403 DIP(ip, mode), ip->i_number, fs->fs_fsmnt);
404 panic("ffs_valloc: dup alloc");
405 }
406
407 if (DIP(ip, blocks)) {
408 printf("free inode %s/%d had %lld blocks\n",
409 fs->fs_fsmnt, ino, (long long)DIP(ip, blocks));
410 DIP_ASSIGN(ip, blocks, 0);
411 }
412
413 DIP_ASSIGN(ip, flags, 0);
414
415 /*
416 * Set up a new generation number for this inode.
417 * On wrap, we make sure to assign a number != 0 and != UINT_MAX
418 * (the original value).
419 */
420 if (DIP(ip, gen) != 0)
421 DIP_ADD(ip, gen, 1);
422 while (DIP(ip, gen) == 0)
423 DIP_ASSIGN(ip, gen, arc4random_uniform(UINT_MAX));
424
425 return (0);
426
427 noinodes:
428 if (ratecheck(&fsnoinodes_last, &fserr_interval)) {
429 ffs_fserr(fs, cred->cr_uid, "out of inodes");
430 uprintf("\n%s: create/symlink failed, no inodes free\n",
431 fs->fs_fsmnt);
432 }
433 return (ENOSPC);
434 }
435
436 /*
437 * Find a cylinder group to place a directory.
438 *
439 * The policy implemented by this algorithm is to allocate a
440 * directory inode in the same cylinder group as its parent
441 * directory, but also to reserve space for its files inodes
442 * and data. Restrict the number of directories which may be
443 * allocated one after another in the same cylinder group
444 * without intervening allocation of files.
445 *
446 * If we allocate a first level directory then force allocation
447 * in another cylinder group.
448 */
449 ufsino_t
ffs_dirpref(struct inode * pip)450 ffs_dirpref(struct inode *pip)
451 {
452 struct fs *fs;
453 u_int cg, prefcg;
454 u_int dirsize, cgsize;
455 u_int avgifree, avgbfree, avgndir, curdirsize;
456 u_int minifree, minbfree, maxndir;
457 u_int mincg, minndir;
458 u_int maxcontigdirs;
459
460 fs = pip->i_fs;
461
462 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
463 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
464 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
465
466 /*
467 * Force allocation in another cg if creating a first level dir.
468 */
469 if (ITOV(pip)->v_flag & VROOT) {
470 prefcg = arc4random_uniform(fs->fs_ncg);
471 mincg = prefcg;
472 minndir = fs->fs_ipg;
473 for (cg = prefcg; cg < fs->fs_ncg; cg++)
474 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
475 fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
476 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
477 mincg = cg;
478 minndir = fs->fs_cs(fs, cg).cs_ndir;
479 }
480 for (cg = 0; cg < prefcg; cg++)
481 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
482 fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
483 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
484 mincg = cg;
485 minndir = fs->fs_cs(fs, cg).cs_ndir;
486 }
487 cg = mincg;
488 goto end;
489 } else
490 prefcg = ino_to_cg(fs, pip->i_number);
491
492 /*
493 * Count various limits which used for
494 * optimal allocation of a directory inode.
495 */
496 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
497 minifree = avgifree - (avgifree / 4);
498 if (minifree < 1)
499 minifree = 1;
500 minbfree = avgbfree - (avgbfree / 4);
501 if (minbfree < 1)
502 minbfree = 1;
503
504 cgsize = fs->fs_fsize * fs->fs_fpg;
505 dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
506 curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
507 if (dirsize < curdirsize)
508 dirsize = curdirsize;
509 if (dirsize <= 0)
510 maxcontigdirs = 0; /* dirsize overflowed */
511 else
512 maxcontigdirs = min(avgbfree * fs->fs_bsize / dirsize, 255);
513 if (fs->fs_avgfpdir > 0)
514 maxcontigdirs = min(maxcontigdirs,
515 fs->fs_ipg / fs->fs_avgfpdir);
516 if (maxcontigdirs == 0)
517 maxcontigdirs = 1;
518
519 /*
520 * Limit number of dirs in one cg and reserve space for
521 * regular files, but only if we have no deficit in
522 * inodes or space.
523 *
524 * We are trying to find a suitable cylinder group nearby
525 * our preferred cylinder group to place a new directory.
526 * We scan from our preferred cylinder group forward looking
527 * for a cylinder group that meets our criterion. If we get
528 * to the final cylinder group and do not find anything,
529 * we start scanning forwards from the beginning of the
530 * filesystem. While it might seem sensible to start scanning
531 * backwards or even to alternate looking forward and backward,
532 * this approach fails badly when the filesystem is nearly full.
533 * Specifically, we first search all the areas that have no space
534 * and finally try the one preceding that. We repeat this on
535 * every request and in the case of the final block end up
536 * searching the entire filesystem. By jumping to the front
537 * of the filesystem, our future forward searches always look
538 * in new cylinder groups so finds every possible block after
539 * one pass over the filesystem.
540 */
541 for (cg = prefcg; cg < fs->fs_ncg; cg++)
542 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
543 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
544 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
545 if (fs->fs_contigdirs[cg] < maxcontigdirs)
546 goto end;
547 }
548 for (cg = 0; cg < prefcg; cg++)
549 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
550 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
551 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
552 if (fs->fs_contigdirs[cg] < maxcontigdirs)
553 goto end;
554 }
555 /*
556 * This is a backstop when we have deficit in space.
557 */
558 for (cg = prefcg; cg < fs->fs_ncg; cg++)
559 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
560 goto end;
561 for (cg = 0; cg < prefcg; cg++)
562 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
563 goto end;
564 end:
565 return ((ufsino_t)(fs->fs_ipg * cg));
566 }
567
568 /*
569 * Select the desired position for the next block in a file. The file is
570 * logically divided into sections. The first section is composed of the
571 * direct blocks. Each additional section contains fs_maxbpg blocks.
572 *
573 * If no blocks have been allocated in the first section, the policy is to
574 * request a block in the same cylinder group as the inode that describes
575 * the file. The first indirect is allocated immediately following the last
576 * direct block and the data blocks for the first indirect immediately
577 * follow it.
578 *
579 * If no blocks have been allocated in any other section, the indirect
580 * block(s) are allocated in the same cylinder group as its inode in an
581 * area reserved immediately following the inode blocks. The policy for
582 * the data blocks is to place them in a cylinder group with a greater than
583 * average number of free blocks. An appropriate cylinder group is found
584 * by using a rotor that sweeps the cylinder groups. When a new group of
585 * blocks is needed, the sweep begins in the cylinder group following the
586 * cylinder group from which the previous allocation was made. The sweep
587 * continues until a cylinder group with greater than the average number
588 * of free blocks is found. If the allocation is for the first block in an
589 * indirect block, the information on the previous allocation is unavailable;
590 * here a best guess is made based upon the logical block number being
591 * allocated.
592 */
593 int32_t
ffs1_blkpref(struct inode * ip,daddr_t lbn,int indx,int32_t * bap)594 ffs1_blkpref(struct inode *ip, daddr_t lbn, int indx, int32_t *bap)
595 {
596 struct fs *fs;
597 u_int cg, inocg;
598 u_int avgbfree, startcg;
599 uint32_t pref;
600
601 KASSERT(indx <= 0 || bap != NULL);
602 fs = ip->i_fs;
603 /*
604 * Allocation of indirect blocks is indicated by passing negative
605 * values in indx: -1 for single indirect, -2 for double indirect,
606 * -3 for triple indirect. As noted below, we attempt to allocate
607 * the first indirect inline with the file data. For all later
608 * indirect blocks, the data is often allocated in other cylinder
609 * groups. However to speed random file access and to speed up
610 * fsck, the filesystem reserves the first fs_metaspace blocks
611 * (typically half of fs_minfree) of the data area of each cylinder
612 * group to hold these later indirect blocks.
613 */
614 inocg = ino_to_cg(fs, ip->i_number);
615 if (indx < 0) {
616 /*
617 * Our preference for indirect blocks is the zone at the
618 * beginning of the inode's cylinder group data area that
619 * we try to reserve for indirect blocks.
620 */
621 pref = cgmeta(fs, inocg);
622 /*
623 * If we are allocating the first indirect block, try to
624 * place it immediately following the last direct block.
625 */
626 if (indx == -1 && lbn < NDADDR + NINDIR(fs) &&
627 ip->i_din1->di_db[NDADDR - 1] != 0)
628 pref = ip->i_din1->di_db[NDADDR - 1] + fs->fs_frag;
629 return (pref);
630 }
631 /*
632 * If we are allocating the first data block in the first indirect
633 * block and the indirect has been allocated in the data block area,
634 * try to place it immediately following the indirect block.
635 */
636 if (lbn == NDADDR) {
637 pref = ip->i_din1->di_ib[0];
638 if (pref != 0 && pref >= cgdata(fs, inocg) &&
639 pref < cgbase(fs, inocg + 1))
640 return (pref + fs->fs_frag);
641 }
642 /*
643 * If we are the beginning of a file, or we have already allocated
644 * the maximum number of blocks per cylinder group, or we do not
645 * have a block allocated immediately preceding us, then we need
646 * to decide where to start allocating new blocks.
647 */
648 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
649 /*
650 * If we are allocating a directory data block, we want
651 * to place it in the metadata area.
652 */
653 if ((DIP(ip, mode) & IFMT) == IFDIR)
654 return (cgmeta(fs, inocg));
655 /*
656 * Until we fill all the direct and all the first indirect's
657 * blocks, we try to allocate in the data area of the inode's
658 * cylinder group.
659 */
660 if (lbn < NDADDR + NINDIR(fs))
661 return (cgdata(fs, inocg));
662 /*
663 * Find a cylinder with greater than average number of
664 * unused data blocks.
665 */
666 if (indx == 0 || bap[indx - 1] == 0)
667 startcg = inocg + lbn / fs->fs_maxbpg;
668 else
669 startcg = dtog(fs, bap[indx - 1]) + 1;
670 startcg %= fs->fs_ncg;
671 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
672 for (cg = startcg; cg < fs->fs_ncg; cg++)
673 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
674 fs->fs_cgrotor = cg;
675 return (cgdata(fs, cg));
676 }
677 for (cg = 0; cg <= startcg; cg++)
678 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
679 fs->fs_cgrotor = cg;
680 return (cgdata(fs, cg));
681 }
682 return (0);
683 }
684 /*
685 * Otherwise, we just always try to lay things out contiguously.
686 */
687 return (bap[indx - 1] + fs->fs_frag);
688 }
689
690 /*
691 * Same as above, for UFS2.
692 */
693 #ifdef FFS2
694 int64_t
ffs2_blkpref(struct inode * ip,daddr_t lbn,int indx,int64_t * bap)695 ffs2_blkpref(struct inode *ip, daddr_t lbn, int indx, int64_t *bap)
696 {
697 struct fs *fs;
698 u_int cg, inocg;
699 u_int avgbfree, startcg;
700 uint64_t pref;
701
702 KASSERT(indx <= 0 || bap != NULL);
703 fs = ip->i_fs;
704 /*
705 * Allocation of indirect blocks is indicated by passing negative
706 * values in indx: -1 for single indirect, -2 for double indirect,
707 * -3 for triple indirect. As noted below, we attempt to allocate
708 * the first indirect inline with the file data. For all later
709 * indirect blocks, the data is often allocated in other cylinder
710 * groups. However to speed random file access and to speed up
711 * fsck, the filesystem reserves the first fs_metaspace blocks
712 * (typically half of fs_minfree) of the data area of each cylinder
713 * group to hold these later indirect blocks.
714 */
715 inocg = ino_to_cg(fs, ip->i_number);
716 if (indx < 0) {
717 /*
718 * Our preference for indirect blocks is the zone at the
719 * beginning of the inode's cylinder group data area that
720 * we try to reserve for indirect blocks.
721 */
722 pref = cgmeta(fs, inocg);
723 /*
724 * If we are allocating the first indirect block, try to
725 * place it immediately following the last direct block.
726 */
727 if (indx == -1 && lbn < NDADDR + NINDIR(fs) &&
728 ip->i_din2->di_db[NDADDR - 1] != 0)
729 pref = ip->i_din2->di_db[NDADDR - 1] + fs->fs_frag;
730 return (pref);
731 }
732 /*
733 * If we are allocating the first data block in the first indirect
734 * block and the indirect has been allocated in the data block area,
735 * try to place it immediately following the indirect block.
736 */
737 if (lbn == NDADDR) {
738 pref = ip->i_din2->di_ib[0];
739 if (pref != 0 && pref >= cgdata(fs, inocg) &&
740 pref < cgbase(fs, inocg + 1))
741 return (pref + fs->fs_frag);
742 }
743 /*
744 * If we are the beginning of a file, or we have already allocated
745 * the maximum number of blocks per cylinder group, or we do not
746 * have a block allocated immediately preceding us, then we need
747 * to decide where to start allocating new blocks.
748 */
749
750 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
751 /*
752 * If we are allocating a directory data block, we want
753 * to place it in the metadata area.
754 */
755 if ((DIP(ip, mode) & IFMT) == IFDIR)
756 return (cgmeta(fs, inocg));
757 /*
758 * Until we fill all the direct and all the first indirect's
759 * blocks, we try to allocate in the data area of the inode's
760 * cylinder group.
761 */
762 if (lbn < NDADDR + NINDIR(fs))
763 return (cgdata(fs, inocg));
764 /*
765 * Find a cylinder with greater than average number of
766 * unused data blocks.
767 */
768 if (indx == 0 || bap[indx - 1] == 0)
769 startcg = inocg + lbn / fs->fs_maxbpg;
770 else
771 startcg = dtog(fs, bap[indx - 1] + 1);
772
773 startcg %= fs->fs_ncg;
774 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
775
776 for (cg = startcg; cg < fs->fs_ncg; cg++)
777 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree)
778 return (cgbase(fs, cg) + fs->fs_frag);
779
780 for (cg = 0; cg < startcg; cg++)
781 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree)
782 return (cgbase(fs, cg) + fs->fs_frag);
783
784 return (0);
785 }
786
787 /*
788 * Otherwise, we just always try to lay things out contiguously.
789 */
790 return (bap[indx - 1] + fs->fs_frag);
791 }
792 #endif /* FFS2 */
793
794 /*
795 * Implement the cylinder overflow algorithm.
796 *
797 * The policy implemented by this algorithm is:
798 * 1) allocate the block in its requested cylinder group.
799 * 2) quadratically rehash on the cylinder group number.
800 * 3) brute force search for a free block.
801 */
802 daddr_t
ffs_hashalloc(struct inode * ip,u_int cg,daddr_t pref,int size,daddr_t (* allocator)(struct inode *,u_int,daddr_t,int))803 ffs_hashalloc(struct inode *ip, u_int cg, daddr_t pref, int size,
804 daddr_t (*allocator)(struct inode *, u_int, daddr_t, int))
805 {
806 struct fs *fs;
807 daddr_t result;
808 u_int i, icg = cg;
809
810 fs = ip->i_fs;
811 /*
812 * 1: preferred cylinder group
813 */
814 result = (*allocator)(ip, cg, pref, size);
815 if (result)
816 return (result);
817 /*
818 * 2: quadratic rehash
819 */
820 for (i = 1; i < fs->fs_ncg; i *= 2) {
821 cg += i;
822 if (cg >= fs->fs_ncg)
823 cg -= fs->fs_ncg;
824 result = (*allocator)(ip, cg, 0, size);
825 if (result)
826 return (result);
827 }
828 /*
829 * 3: brute force search
830 * Note that we start at i == 2, since 0 was checked initially,
831 * and 1 is always checked in the quadratic rehash.
832 */
833 cg = (icg + 2) % fs->fs_ncg;
834 for (i = 2; i < fs->fs_ncg; i++) {
835 result = (*allocator)(ip, cg, 0, size);
836 if (result)
837 return (result);
838 cg++;
839 if (cg == fs->fs_ncg)
840 cg = 0;
841 }
842 return (0);
843 }
844
845 struct buf *
ffs_cgread(struct fs * fs,struct inode * ip,u_int cg)846 ffs_cgread(struct fs *fs, struct inode *ip, u_int cg)
847 {
848 struct buf *bp;
849
850 if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
851 (int)fs->fs_cgsize, &bp)) {
852 brelse(bp);
853 return (NULL);
854 }
855
856 if (!cg_chkmagic((struct cg *)bp->b_data)) {
857 brelse(bp);
858 return (NULL);
859 }
860
861 return bp;
862 }
863
864 /*
865 * Determine whether a fragment can be extended.
866 *
867 * Check to see if the necessary fragments are available, and
868 * if they are, allocate them.
869 */
870 daddr_t
ffs_fragextend(struct inode * ip,u_int cg,daddr_t bprev,int osize,int nsize)871 ffs_fragextend(struct inode *ip, u_int cg, daddr_t bprev, int osize, int nsize)
872 {
873 struct fs *fs;
874 struct cg *cgp;
875 struct buf *bp;
876 struct timespec now;
877 daddr_t bno;
878 int i, frags, bbase;
879
880 fs = ip->i_fs;
881 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
882 return (0);
883 frags = numfrags(fs, nsize);
884 bbase = fragnum(fs, bprev);
885 if (bbase > fragnum(fs, (bprev + frags - 1))) {
886 /* cannot extend across a block boundary */
887 return (0);
888 }
889
890 if (!(bp = ffs_cgread(fs, ip, cg)))
891 return (0);
892
893 cgp = (struct cg *)bp->b_data;
894 nanotime(&now);
895 cgp->cg_ffs2_time = now.tv_sec;
896 cgp->cg_time = now.tv_sec;
897
898 bno = dtogd(fs, bprev);
899 for (i = numfrags(fs, osize); i < frags; i++)
900 if (isclr(cg_blksfree(cgp), bno + i)) {
901 brelse(bp);
902 return (0);
903 }
904 /*
905 * the current fragment can be extended
906 * deduct the count on fragment being extended into
907 * increase the count on the remaining fragment (if any)
908 * allocate the extended piece
909 */
910 for (i = frags; i < fs->fs_frag - bbase; i++)
911 if (isclr(cg_blksfree(cgp), bno + i))
912 break;
913 cgp->cg_frsum[i - numfrags(fs, osize)]--;
914 if (i != frags)
915 cgp->cg_frsum[i - frags]++;
916 for (i = numfrags(fs, osize); i < frags; i++) {
917 clrbit(cg_blksfree(cgp), bno + i);
918 cgp->cg_cs.cs_nffree--;
919 fs->fs_cstotal.cs_nffree--;
920 fs->fs_cs(fs, cg).cs_nffree--;
921 }
922 fs->fs_fmod = 1;
923
924 bdwrite(bp);
925 return (bprev);
926 }
927
928 /*
929 * Determine whether a block can be allocated.
930 *
931 * Check to see if a block of the appropriate size is available,
932 * and if it is, allocate it.
933 */
934 daddr_t
ffs_alloccg(struct inode * ip,u_int cg,daddr_t bpref,int size)935 ffs_alloccg(struct inode *ip, u_int cg, daddr_t bpref, int size)
936 {
937 struct fs *fs;
938 struct cg *cgp;
939 struct buf *bp;
940 struct timespec now;
941 daddr_t bno, blkno;
942 int i, frags, allocsiz;
943
944 fs = ip->i_fs;
945 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
946 return (0);
947
948 if (!(bp = ffs_cgread(fs, ip, cg)))
949 return (0);
950
951 cgp = (struct cg *)bp->b_data;
952 if (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize) {
953 brelse(bp);
954 return (0);
955 }
956
957 nanotime(&now);
958 cgp->cg_ffs2_time = now.tv_sec;
959 cgp->cg_time = now.tv_sec;
960
961 if (size == fs->fs_bsize) {
962 /* allocate and return a complete data block */
963 bno = ffs_alloccgblk(ip, bp, bpref);
964 bdwrite(bp);
965 return (bno);
966 }
967 /*
968 * check to see if any fragments are already available
969 * allocsiz is the size which will be allocated, hacking
970 * it down to a smaller size if necessary
971 */
972 frags = numfrags(fs, size);
973 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
974 if (cgp->cg_frsum[allocsiz] != 0)
975 break;
976 if (allocsiz == fs->fs_frag) {
977 /*
978 * no fragments were available, so a block will be
979 * allocated, and hacked up
980 */
981 if (cgp->cg_cs.cs_nbfree == 0) {
982 brelse(bp);
983 return (0);
984 }
985 bno = ffs_alloccgblk(ip, bp, bpref);
986 bpref = dtogd(fs, bno);
987 for (i = frags; i < fs->fs_frag; i++)
988 setbit(cg_blksfree(cgp), bpref + i);
989 i = fs->fs_frag - frags;
990 cgp->cg_cs.cs_nffree += i;
991 fs->fs_cstotal.cs_nffree += i;
992 fs->fs_cs(fs, cg).cs_nffree += i;
993 fs->fs_fmod = 1;
994 cgp->cg_frsum[i]++;
995 bdwrite(bp);
996 return (bno);
997 }
998 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
999 if (bno < 0) {
1000 brelse(bp);
1001 return (0);
1002 }
1003
1004 for (i = 0; i < frags; i++)
1005 clrbit(cg_blksfree(cgp), bno + i);
1006 cgp->cg_cs.cs_nffree -= frags;
1007 fs->fs_cstotal.cs_nffree -= frags;
1008 fs->fs_cs(fs, cg).cs_nffree -= frags;
1009 fs->fs_fmod = 1;
1010 cgp->cg_frsum[allocsiz]--;
1011 if (frags != allocsiz)
1012 cgp->cg_frsum[allocsiz - frags]++;
1013
1014 blkno = cgbase(fs, cg) + bno;
1015 bdwrite(bp);
1016 return (blkno);
1017 }
1018
1019 /*
1020 * Allocate a block in a cylinder group.
1021 * Note that this routine only allocates fs_bsize blocks; these
1022 * blocks may be fragmented by the routine that allocates them.
1023 */
1024 daddr_t
ffs_alloccgblk(struct inode * ip,struct buf * bp,daddr_t bpref)1025 ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref)
1026 {
1027 struct fs *fs;
1028 struct cg *cgp;
1029 daddr_t bno, blkno;
1030 u_int8_t *blksfree;
1031 int cylno, cgbpref;
1032
1033 fs = ip->i_fs;
1034 cgp = (struct cg *) bp->b_data;
1035 blksfree = cg_blksfree(cgp);
1036
1037 if (bpref == 0) {
1038 bpref = cgp->cg_rotor;
1039 } else if ((cgbpref = dtog(fs, bpref)) != cgp->cg_cgx) {
1040 /* map bpref to correct zone in this cg */
1041 if (bpref < cgdata(fs, cgbpref))
1042 bpref = cgmeta(fs, cgp->cg_cgx);
1043 else
1044 bpref = cgdata(fs, cgp->cg_cgx);
1045 }
1046 /*
1047 * If the requested block is available, use it.
1048 */
1049 bno = dtogd(fs, blknum(fs, bpref));
1050 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
1051 goto gotit;
1052 /*
1053 * Take the next available block in this cylinder group.
1054 */
1055 bno = ffs_mapsearch(fs, cgp, bpref, (int) fs->fs_frag);
1056 if (bno < 0)
1057 return (0);
1058
1059 /* Update cg_rotor only if allocated from the data zone */
1060 if (bno >= dtogd(fs, cgdata(fs, cgp->cg_cgx)))
1061 cgp->cg_rotor = bno;
1062
1063 gotit:
1064 blkno = fragstoblks(fs, bno);
1065 ffs_clrblock(fs, blksfree, blkno);
1066 ffs_clusteracct(fs, cgp, blkno, -1);
1067 cgp->cg_cs.cs_nbfree--;
1068 fs->fs_cstotal.cs_nbfree--;
1069 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
1070
1071 if (fs->fs_magic != FS_UFS2_MAGIC) {
1072 cylno = cbtocylno(fs, bno);
1073 cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
1074 cg_blktot(cgp)[cylno]--;
1075 }
1076
1077 fs->fs_fmod = 1;
1078 blkno = cgbase(fs, cgp->cg_cgx) + bno;
1079
1080 return (blkno);
1081 }
1082
1083 /* inode allocation routine */
1084 daddr_t
ffs_nodealloccg(struct inode * ip,u_int cg,daddr_t ipref,int mode)1085 ffs_nodealloccg(struct inode *ip, u_int cg, daddr_t ipref, int mode)
1086 {
1087 struct fs *fs;
1088 struct cg *cgp;
1089 struct buf *bp;
1090 struct timespec now;
1091 int start, len, loc, map, i;
1092 #ifdef FFS2
1093 struct buf *ibp = NULL;
1094 struct ufs2_dinode *dp2;
1095 #endif
1096
1097 /*
1098 * For efficiency, before looking at the bitmaps for free inodes,
1099 * check the counters kept in the superblock cylinder group summaries,
1100 * and in the cylinder group itself.
1101 */
1102 fs = ip->i_fs;
1103 if (fs->fs_cs(fs, cg).cs_nifree == 0)
1104 return (0);
1105
1106 if (!(bp = ffs_cgread(fs, ip, cg)))
1107 return (0);
1108
1109 cgp = (struct cg *)bp->b_data;
1110 if (cgp->cg_cs.cs_nifree == 0) {
1111 brelse(bp);
1112 return (0);
1113 }
1114
1115 /*
1116 * We are committed to the allocation from now on, so update the time
1117 * on the cylinder group.
1118 */
1119 nanotime(&now);
1120 cgp->cg_ffs2_time = now.tv_sec;
1121 cgp->cg_time = now.tv_sec;
1122
1123 /*
1124 * If there was a preferred location for the new inode, try to find it.
1125 */
1126 if (ipref) {
1127 ipref %= fs->fs_ipg;
1128 if (isclr(cg_inosused(cgp), ipref))
1129 goto gotit; /* inode is free, grab it. */
1130 }
1131
1132 /*
1133 * Otherwise, look for the next available inode, starting at cg_irotor
1134 * (the position in the bitmap of the last used inode).
1135 */
1136 start = cgp->cg_irotor / NBBY;
1137 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
1138 loc = skpc(0xff, len, &cg_inosused(cgp)[start]);
1139 if (loc == 0) {
1140 /*
1141 * If we didn't find a free inode in the upper part of the
1142 * bitmap (from cg_irotor to the end), then look at the bottom
1143 * part (from 0 to cg_irotor).
1144 */
1145 len = start + 1;
1146 start = 0;
1147 loc = skpc(0xff, len, &cg_inosused(cgp)[0]);
1148 if (loc == 0) {
1149 /*
1150 * If we failed again, then either the bitmap or the
1151 * counters kept for the cylinder group are wrong.
1152 */
1153 printf("cg = %d, irotor = %d, fs = %s\n",
1154 cg, cgp->cg_irotor, fs->fs_fsmnt);
1155 panic("ffs_nodealloccg: map corrupted");
1156 /* NOTREACHED */
1157 }
1158 }
1159
1160 /* skpc() returns the position relative to the end */
1161 i = start + len - loc;
1162
1163 /*
1164 * Okay, so now in 'i' we have the location in the bitmap of a byte
1165 * holding a free inode. Find the corresponding bit and set it,
1166 * updating cg_irotor as well, accordingly.
1167 */
1168 map = cg_inosused(cgp)[i];
1169 ipref = i * NBBY;
1170 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1171 if ((map & i) == 0) {
1172 cgp->cg_irotor = ipref;
1173 goto gotit;
1174 }
1175 }
1176
1177 printf("fs = %s\n", fs->fs_fsmnt);
1178 panic("ffs_nodealloccg: block not in map");
1179 /* NOTREACHED */
1180
1181 gotit:
1182
1183 #ifdef FFS2
1184 /*
1185 * For FFS2, check if all inodes in this cylinder group have been used
1186 * at least once. If they haven't, and we are allocating an inode past
1187 * the last allocated block of inodes, read in a block and initialize
1188 * all inodes in it.
1189 */
1190 if (fs->fs_magic == FS_UFS2_MAGIC &&
1191 /* Inode is beyond last initialized block of inodes? */
1192 ipref + INOPB(fs) > cgp->cg_initediblk &&
1193 /* Has any inode not been used at least once? */
1194 cgp->cg_initediblk < cgp->cg_ffs2_niblk) {
1195
1196 ibp = getblk(ip->i_devvp, fsbtodb(fs,
1197 ino_to_fsba(fs, cg * fs->fs_ipg + cgp->cg_initediblk)),
1198 (int)fs->fs_bsize, 0, INFSLP);
1199
1200 memset(ibp->b_data, 0, fs->fs_bsize);
1201 dp2 = (struct ufs2_dinode *)(ibp->b_data);
1202
1203 /* Give each inode a generation number */
1204 for (i = 0; i < INOPB(fs); i++) {
1205 while (dp2->di_gen == 0)
1206 dp2->di_gen = arc4random();
1207 dp2++;
1208 }
1209
1210 /* Update the counter of initialized inodes */
1211 cgp->cg_initediblk += INOPB(fs);
1212 }
1213 #endif /* FFS2 */
1214
1215 setbit(cg_inosused(cgp), ipref);
1216
1217 /* Update the counters we keep on free inodes */
1218 cgp->cg_cs.cs_nifree--;
1219 fs->fs_cstotal.cs_nifree--;
1220 fs->fs_cs(fs, cg).cs_nifree--;
1221 fs->fs_fmod = 1; /* file system was modified */
1222
1223 /* Update the counters we keep on allocated directories */
1224 if ((mode & IFMT) == IFDIR) {
1225 cgp->cg_cs.cs_ndir++;
1226 fs->fs_cstotal.cs_ndir++;
1227 fs->fs_cs(fs, cg).cs_ndir++;
1228 }
1229
1230 bdwrite(bp);
1231
1232 #ifdef FFS2
1233 if (ibp != NULL)
1234 bawrite(ibp);
1235 #endif
1236
1237 /* Return the allocated inode number */
1238 return (cg * fs->fs_ipg + ipref);
1239 }
1240
1241 /*
1242 * Free a block or fragment.
1243 *
1244 * The specified block or fragment is placed back in the
1245 * free map. If a fragment is deallocated, a possible
1246 * block reassembly is checked.
1247 */
1248 void
ffs_blkfree(struct inode * ip,daddr_t bno,long size)1249 ffs_blkfree(struct inode *ip, daddr_t bno, long size)
1250 {
1251 struct fs *fs;
1252 struct cg *cgp;
1253 struct buf *bp;
1254 struct timespec now;
1255 daddr_t blkno;
1256 int i, cg, blk, frags, bbase;
1257
1258 fs = ip->i_fs;
1259 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1260 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1261 printf("dev = 0x%x, bsize = %d, size = %ld, fs = %s\n",
1262 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
1263 panic("ffs_blkfree: bad size");
1264 }
1265 cg = dtog(fs, bno);
1266 if ((u_int)bno >= fs->fs_size) {
1267 printf("bad block %lld, ino %u\n", (long long)bno,
1268 ip->i_number);
1269 ffs_fserr(fs, DIP(ip, uid), "bad block");
1270 return;
1271 }
1272 if (!(bp = ffs_cgread(fs, ip, cg)))
1273 return;
1274
1275 cgp = (struct cg *)bp->b_data;
1276 nanotime(&now);
1277 cgp->cg_ffs2_time = now.tv_sec;
1278 cgp->cg_time = now.tv_sec;
1279
1280 bno = dtogd(fs, bno);
1281 if (size == fs->fs_bsize) {
1282 blkno = fragstoblks(fs, bno);
1283 if (!ffs_isfreeblock(fs, cg_blksfree(cgp), blkno)) {
1284 printf("dev = 0x%x, block = %lld, fs = %s\n",
1285 ip->i_dev, (long long)bno, fs->fs_fsmnt);
1286 panic("ffs_blkfree: freeing free block");
1287 }
1288 ffs_setblock(fs, cg_blksfree(cgp), blkno);
1289 ffs_clusteracct(fs, cgp, blkno, 1);
1290 cgp->cg_cs.cs_nbfree++;
1291 fs->fs_cstotal.cs_nbfree++;
1292 fs->fs_cs(fs, cg).cs_nbfree++;
1293
1294 if (fs->fs_magic != FS_UFS2_MAGIC) {
1295 i = cbtocylno(fs, bno);
1296 cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++;
1297 cg_blktot(cgp)[i]++;
1298 }
1299
1300 } else {
1301 bbase = bno - fragnum(fs, bno);
1302 /*
1303 * decrement the counts associated with the old frags
1304 */
1305 blk = blkmap(fs, cg_blksfree(cgp), bbase);
1306 ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
1307 /*
1308 * deallocate the fragment
1309 */
1310 frags = numfrags(fs, size);
1311 for (i = 0; i < frags; i++) {
1312 if (isset(cg_blksfree(cgp), bno + i)) {
1313 printf("dev = 0x%x, block = %lld, fs = %s\n",
1314 ip->i_dev, (long long)(bno + i),
1315 fs->fs_fsmnt);
1316 panic("ffs_blkfree: freeing free frag");
1317 }
1318 setbit(cg_blksfree(cgp), bno + i);
1319 }
1320 cgp->cg_cs.cs_nffree += i;
1321 fs->fs_cstotal.cs_nffree += i;
1322 fs->fs_cs(fs, cg).cs_nffree += i;
1323 /*
1324 * add back in counts associated with the new frags
1325 */
1326 blk = blkmap(fs, cg_blksfree(cgp), bbase);
1327 ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
1328 /*
1329 * if a complete block has been reassembled, account for it
1330 */
1331 blkno = fragstoblks(fs, bbase);
1332 if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
1333 cgp->cg_cs.cs_nffree -= fs->fs_frag;
1334 fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1335 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1336 ffs_clusteracct(fs, cgp, blkno, 1);
1337 cgp->cg_cs.cs_nbfree++;
1338 fs->fs_cstotal.cs_nbfree++;
1339 fs->fs_cs(fs, cg).cs_nbfree++;
1340
1341 if (fs->fs_magic != FS_UFS2_MAGIC) {
1342 i = cbtocylno(fs, bbase);
1343 cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
1344 cg_blktot(cgp)[i]++;
1345 }
1346 }
1347 }
1348 fs->fs_fmod = 1;
1349 bdwrite(bp);
1350 }
1351
1352 int
ffs_inode_free(struct inode * pip,ufsino_t ino,mode_t mode)1353 ffs_inode_free(struct inode *pip, ufsino_t ino, mode_t mode)
1354 {
1355 return (ffs_freefile(pip, ino, mode));
1356 }
1357
1358 /*
1359 * Do the actual free operation.
1360 * The specified inode is placed back in the free map.
1361 */
1362 int
ffs_freefile(struct inode * pip,ufsino_t ino,mode_t mode)1363 ffs_freefile(struct inode *pip, ufsino_t ino, mode_t mode)
1364 {
1365 struct fs *fs;
1366 struct cg *cgp;
1367 struct buf *bp;
1368 struct timespec now;
1369 u_int cg;
1370
1371 fs = pip->i_fs;
1372 if (ino >= fs->fs_ipg * fs->fs_ncg)
1373 panic("ffs_freefile: range: dev = 0x%x, ino = %d, fs = %s",
1374 pip->i_dev, ino, fs->fs_fsmnt);
1375
1376 cg = ino_to_cg(fs, ino);
1377 if (!(bp = ffs_cgread(fs, pip, cg)))
1378 return (0);
1379
1380 cgp = (struct cg *)bp->b_data;
1381 nanotime(&now);
1382 cgp->cg_ffs2_time = now.tv_sec;
1383 cgp->cg_time = now.tv_sec;
1384
1385 ino %= fs->fs_ipg;
1386 if (isclr(cg_inosused(cgp), ino)) {
1387 printf("dev = 0x%x, ino = %u, fs = %s\n",
1388 pip->i_dev, ino, fs->fs_fsmnt);
1389 if (fs->fs_ronly == 0)
1390 panic("ffs_freefile: freeing free inode");
1391 }
1392 clrbit(cg_inosused(cgp), ino);
1393 if (ino < cgp->cg_irotor)
1394 cgp->cg_irotor = ino;
1395 cgp->cg_cs.cs_nifree++;
1396 fs->fs_cstotal.cs_nifree++;
1397 fs->fs_cs(fs, cg).cs_nifree++;
1398 if ((mode & IFMT) == IFDIR) {
1399 cgp->cg_cs.cs_ndir--;
1400 fs->fs_cstotal.cs_ndir--;
1401 fs->fs_cs(fs, cg).cs_ndir--;
1402 }
1403 fs->fs_fmod = 1;
1404 bdwrite(bp);
1405 return (0);
1406 }
1407
1408
1409 /*
1410 * Find a block of the specified size in the specified cylinder group.
1411 *
1412 * It is a panic if a request is made to find a block if none are
1413 * available.
1414 */
1415 daddr_t
ffs_mapsearch(struct fs * fs,struct cg * cgp,daddr_t bpref,int allocsiz)1416 ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
1417 {
1418 daddr_t bno;
1419 int start, len, loc, i;
1420 int blk, field, subfield, pos;
1421
1422 /*
1423 * find the fragment by searching through the free block
1424 * map for an appropriate bit pattern
1425 */
1426 if (bpref)
1427 start = dtogd(fs, bpref) / NBBY;
1428 else
1429 start = cgp->cg_frotor / NBBY;
1430 len = howmany(fs->fs_fpg, NBBY) - start;
1431 loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[start],
1432 (u_char *)fragtbl[fs->fs_frag],
1433 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1434 if (loc == 0) {
1435 len = start + 1;
1436 start = 0;
1437 loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[0],
1438 (u_char *)fragtbl[fs->fs_frag],
1439 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1440 if (loc == 0) {
1441 printf("start = %d, len = %d, fs = %s\n",
1442 start, len, fs->fs_fsmnt);
1443 panic("ffs_alloccg: map corrupted");
1444 /* NOTREACHED */
1445 }
1446 }
1447 bno = (start + len - loc) * NBBY;
1448 cgp->cg_frotor = bno;
1449 /*
1450 * found the byte in the map
1451 * sift through the bits to find the selected frag
1452 */
1453 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1454 blk = blkmap(fs, cg_blksfree(cgp), bno);
1455 blk <<= 1;
1456 field = around[allocsiz];
1457 subfield = inside[allocsiz];
1458 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1459 if ((blk & field) == subfield)
1460 return (bno + pos);
1461 field <<= 1;
1462 subfield <<= 1;
1463 }
1464 }
1465 printf("bno = %lld, fs = %s\n", (long long)bno, fs->fs_fsmnt);
1466 panic("ffs_alloccg: block not in map");
1467 return (-1);
1468 }
1469
1470 /*
1471 * Update the cluster map because of an allocation or free.
1472 *
1473 * Cnt == 1 means free; cnt == -1 means allocating.
1474 */
1475 void
ffs_clusteracct(struct fs * fs,struct cg * cgp,daddr_t blkno,int cnt)1476 ffs_clusteracct(struct fs *fs, struct cg *cgp, daddr_t blkno, int cnt)
1477 {
1478 int32_t *sump;
1479 int32_t *lp;
1480 u_char *freemapp, *mapp;
1481 int i, start, end, forw, back, map, bit;
1482
1483 if (fs->fs_contigsumsize <= 0)
1484 return;
1485 freemapp = cg_clustersfree(cgp);
1486 sump = cg_clustersum(cgp);
1487 /*
1488 * Allocate or clear the actual block.
1489 */
1490 if (cnt > 0)
1491 setbit(freemapp, blkno);
1492 else
1493 clrbit(freemapp, blkno);
1494 /*
1495 * Find the size of the cluster going forward.
1496 */
1497 start = blkno + 1;
1498 end = start + fs->fs_contigsumsize;
1499 if (end >= cgp->cg_nclusterblks)
1500 end = cgp->cg_nclusterblks;
1501 mapp = &freemapp[start / NBBY];
1502 map = *mapp++;
1503 bit = 1 << (start % NBBY);
1504 for (i = start; i < end; i++) {
1505 if ((map & bit) == 0)
1506 break;
1507 if ((i & (NBBY - 1)) != (NBBY - 1)) {
1508 bit <<= 1;
1509 } else {
1510 map = *mapp++;
1511 bit = 1;
1512 }
1513 }
1514 forw = i - start;
1515 /*
1516 * Find the size of the cluster going backward.
1517 */
1518 start = blkno - 1;
1519 end = start - fs->fs_contigsumsize;
1520 if (end < 0)
1521 end = -1;
1522 mapp = &freemapp[start / NBBY];
1523 map = *mapp--;
1524 bit = 1 << (start % NBBY);
1525 for (i = start; i > end; i--) {
1526 if ((map & bit) == 0)
1527 break;
1528 if ((i & (NBBY - 1)) != 0) {
1529 bit >>= 1;
1530 } else {
1531 map = *mapp--;
1532 bit = 1 << (NBBY - 1);
1533 }
1534 }
1535 back = start - i;
1536 /*
1537 * Account for old cluster and the possibly new forward and
1538 * back clusters.
1539 */
1540 i = back + forw + 1;
1541 if (i > fs->fs_contigsumsize)
1542 i = fs->fs_contigsumsize;
1543 sump[i] += cnt;
1544 if (back > 0)
1545 sump[back] -= cnt;
1546 if (forw > 0)
1547 sump[forw] -= cnt;
1548 /*
1549 * Update cluster summary information.
1550 */
1551 lp = &sump[fs->fs_contigsumsize];
1552 for (i = fs->fs_contigsumsize; i > 0; i--)
1553 if (*lp-- > 0)
1554 break;
1555 fs->fs_maxcluster[cgp->cg_cgx] = i;
1556 }
1557