1 /* $OpenBSD: kern_event.c,v 1.200 2024/08/06 08:44:54 claudio Exp $ */
2
3 /*-
4 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * $FreeBSD: src/sys/kern/kern_event.c,v 1.22 2001/02/23 20:32:42 jlemon Exp $
29 */
30
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/proc.h>
34 #include <sys/pledge.h>
35 #include <sys/malloc.h>
36 #include <sys/file.h>
37 #include <sys/filedesc.h>
38 #include <sys/fcntl.h>
39 #include <sys/queue.h>
40 #include <sys/event.h>
41 #include <sys/eventvar.h>
42 #include <sys/ktrace.h>
43 #include <sys/pool.h>
44 #include <sys/stat.h>
45 #include <sys/mount.h>
46 #include <sys/syscallargs.h>
47 #include <sys/time.h>
48 #include <sys/timeout.h>
49 #include <sys/vnode.h>
50 #include <sys/wait.h>
51
52 #ifdef DIAGNOSTIC
53 #define KLIST_ASSERT_LOCKED(kl) do { \
54 if ((kl)->kl_ops != NULL) \
55 (kl)->kl_ops->klo_assertlk((kl)->kl_arg); \
56 else \
57 KERNEL_ASSERT_LOCKED(); \
58 } while (0)
59 #else
60 #define KLIST_ASSERT_LOCKED(kl) ((void)(kl))
61 #endif
62
63 int dokqueue(struct proc *, int, register_t *);
64 struct kqueue *kqueue_alloc(struct filedesc *);
65 void kqueue_terminate(struct proc *p, struct kqueue *);
66 void KQREF(struct kqueue *);
67 void KQRELE(struct kqueue *);
68
69 void kqueue_purge(struct proc *, struct kqueue *);
70 int kqueue_sleep(struct kqueue *, struct timespec *);
71
72 int kqueue_read(struct file *, struct uio *, int);
73 int kqueue_write(struct file *, struct uio *, int);
74 int kqueue_ioctl(struct file *fp, u_long com, caddr_t data,
75 struct proc *p);
76 int kqueue_kqfilter(struct file *fp, struct knote *kn);
77 int kqueue_stat(struct file *fp, struct stat *st, struct proc *p);
78 int kqueue_close(struct file *fp, struct proc *p);
79 void kqueue_wakeup(struct kqueue *kq);
80
81 #ifdef KQUEUE_DEBUG
82 void kqueue_do_check(struct kqueue *kq, const char *func, int line);
83 #define kqueue_check(kq) kqueue_do_check((kq), __func__, __LINE__)
84 #else
85 #define kqueue_check(kq) do {} while (0)
86 #endif
87
88 static int filter_attach(struct knote *kn);
89 static void filter_detach(struct knote *kn);
90 static int filter_event(struct knote *kn, long hint);
91 static int filter_modify(struct kevent *kev, struct knote *kn);
92 static int filter_process(struct knote *kn, struct kevent *kev);
93 static void kqueue_expand_hash(struct kqueue *kq);
94 static void kqueue_expand_list(struct kqueue *kq, int fd);
95 static void kqueue_task(void *);
96 static int klist_lock(struct klist *);
97 static void klist_unlock(struct klist *, int);
98
99 const struct fileops kqueueops = {
100 .fo_read = kqueue_read,
101 .fo_write = kqueue_write,
102 .fo_ioctl = kqueue_ioctl,
103 .fo_kqfilter = kqueue_kqfilter,
104 .fo_stat = kqueue_stat,
105 .fo_close = kqueue_close
106 };
107
108 void knote_attach(struct knote *kn);
109 void knote_detach(struct knote *kn);
110 void knote_drop(struct knote *kn, struct proc *p);
111 void knote_enqueue(struct knote *kn);
112 void knote_dequeue(struct knote *kn);
113 int knote_acquire(struct knote *kn, struct klist *, int);
114 void knote_release(struct knote *kn);
115 void knote_activate(struct knote *kn);
116 void knote_remove(struct proc *p, struct kqueue *kq, struct knlist **plist,
117 int idx, int purge);
118
119 void filt_kqdetach(struct knote *kn);
120 int filt_kqueue(struct knote *kn, long hint);
121 int filt_kqueuemodify(struct kevent *kev, struct knote *kn);
122 int filt_kqueueprocess(struct knote *kn, struct kevent *kev);
123 int filt_kqueue_common(struct knote *kn, struct kqueue *kq);
124 int filt_procattach(struct knote *kn);
125 void filt_procdetach(struct knote *kn);
126 int filt_proc(struct knote *kn, long hint);
127 int filt_procmodify(struct kevent *kev, struct knote *kn);
128 int filt_procprocess(struct knote *kn, struct kevent *kev);
129 int filt_sigattach(struct knote *kn);
130 void filt_sigdetach(struct knote *kn);
131 int filt_signal(struct knote *kn, long hint);
132 int filt_fileattach(struct knote *kn);
133 void filt_timerexpire(void *knx);
134 int filt_timerattach(struct knote *kn);
135 void filt_timerdetach(struct knote *kn);
136 int filt_timermodify(struct kevent *kev, struct knote *kn);
137 int filt_timerprocess(struct knote *kn, struct kevent *kev);
138 void filt_seltruedetach(struct knote *kn);
139
140 const struct filterops kqread_filtops = {
141 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
142 .f_attach = NULL,
143 .f_detach = filt_kqdetach,
144 .f_event = filt_kqueue,
145 .f_modify = filt_kqueuemodify,
146 .f_process = filt_kqueueprocess,
147 };
148
149 const struct filterops proc_filtops = {
150 .f_flags = FILTEROP_MPSAFE,
151 .f_attach = filt_procattach,
152 .f_detach = filt_procdetach,
153 .f_event = filt_proc,
154 .f_modify = filt_procmodify,
155 .f_process = filt_procprocess,
156 };
157
158 const struct filterops sig_filtops = {
159 .f_flags = FILTEROP_MPSAFE,
160 .f_attach = filt_sigattach,
161 .f_detach = filt_sigdetach,
162 .f_event = filt_signal,
163 .f_modify = filt_procmodify,
164 .f_process = filt_procprocess,
165 };
166
167 const struct filterops file_filtops = {
168 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
169 .f_attach = filt_fileattach,
170 .f_detach = NULL,
171 .f_event = NULL,
172 };
173
174 const struct filterops timer_filtops = {
175 .f_flags = 0,
176 .f_attach = filt_timerattach,
177 .f_detach = filt_timerdetach,
178 .f_event = NULL,
179 .f_modify = filt_timermodify,
180 .f_process = filt_timerprocess,
181 };
182
183 struct pool knote_pool;
184 struct pool kqueue_pool;
185 struct mutex kqueue_klist_lock = MUTEX_INITIALIZER(IPL_MPFLOOR);
186 struct rwlock kqueue_ps_list_lock = RWLOCK_INITIALIZER("kqpsl");
187 int kq_ntimeouts = 0;
188 int kq_timeoutmax = (4 * 1024);
189
190 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
191
192 /*
193 * Table for all system-defined filters.
194 */
195 const struct filterops *const sysfilt_ops[] = {
196 &file_filtops, /* EVFILT_READ */
197 &file_filtops, /* EVFILT_WRITE */
198 NULL, /*&aio_filtops,*/ /* EVFILT_AIO */
199 &file_filtops, /* EVFILT_VNODE */
200 &proc_filtops, /* EVFILT_PROC */
201 &sig_filtops, /* EVFILT_SIGNAL */
202 &timer_filtops, /* EVFILT_TIMER */
203 &file_filtops, /* EVFILT_DEVICE */
204 &file_filtops, /* EVFILT_EXCEPT */
205 };
206
207 void
KQREF(struct kqueue * kq)208 KQREF(struct kqueue *kq)
209 {
210 refcnt_take(&kq->kq_refcnt);
211 }
212
213 void
KQRELE(struct kqueue * kq)214 KQRELE(struct kqueue *kq)
215 {
216 struct filedesc *fdp;
217
218 if (refcnt_rele(&kq->kq_refcnt) == 0)
219 return;
220
221 fdp = kq->kq_fdp;
222 if (rw_status(&fdp->fd_lock) == RW_WRITE) {
223 LIST_REMOVE(kq, kq_next);
224 } else {
225 fdplock(fdp);
226 LIST_REMOVE(kq, kq_next);
227 fdpunlock(fdp);
228 }
229
230 KASSERT(TAILQ_EMPTY(&kq->kq_head));
231 KASSERT(kq->kq_nknotes == 0);
232
233 free(kq->kq_knlist, M_KEVENT, kq->kq_knlistsize *
234 sizeof(struct knlist));
235 hashfree(kq->kq_knhash, KN_HASHSIZE, M_KEVENT);
236 klist_free(&kq->kq_klist);
237 pool_put(&kqueue_pool, kq);
238 }
239
240 void
kqueue_init(void)241 kqueue_init(void)
242 {
243 pool_init(&kqueue_pool, sizeof(struct kqueue), 0, IPL_MPFLOOR,
244 PR_WAITOK, "kqueuepl", NULL);
245 pool_init(&knote_pool, sizeof(struct knote), 0, IPL_MPFLOOR,
246 PR_WAITOK, "knotepl", NULL);
247 }
248
249 void
kqueue_init_percpu(void)250 kqueue_init_percpu(void)
251 {
252 pool_cache_init(&knote_pool);
253 }
254
255 int
filt_fileattach(struct knote * kn)256 filt_fileattach(struct knote *kn)
257 {
258 struct file *fp = kn->kn_fp;
259
260 return fp->f_ops->fo_kqfilter(fp, kn);
261 }
262
263 int
kqueue_kqfilter(struct file * fp,struct knote * kn)264 kqueue_kqfilter(struct file *fp, struct knote *kn)
265 {
266 struct kqueue *kq = kn->kn_fp->f_data;
267
268 if (kn->kn_filter != EVFILT_READ)
269 return (EINVAL);
270
271 kn->kn_fop = &kqread_filtops;
272 klist_insert(&kq->kq_klist, kn);
273 return (0);
274 }
275
276 void
filt_kqdetach(struct knote * kn)277 filt_kqdetach(struct knote *kn)
278 {
279 struct kqueue *kq = kn->kn_fp->f_data;
280
281 klist_remove(&kq->kq_klist, kn);
282 }
283
284 int
filt_kqueue_common(struct knote * kn,struct kqueue * kq)285 filt_kqueue_common(struct knote *kn, struct kqueue *kq)
286 {
287 MUTEX_ASSERT_LOCKED(&kq->kq_lock);
288
289 kn->kn_data = kq->kq_count;
290
291 return (kn->kn_data > 0);
292 }
293
294 int
filt_kqueue(struct knote * kn,long hint)295 filt_kqueue(struct knote *kn, long hint)
296 {
297 struct kqueue *kq = kn->kn_fp->f_data;
298 int active;
299
300 mtx_enter(&kq->kq_lock);
301 active = filt_kqueue_common(kn, kq);
302 mtx_leave(&kq->kq_lock);
303
304 return (active);
305 }
306
307 int
filt_kqueuemodify(struct kevent * kev,struct knote * kn)308 filt_kqueuemodify(struct kevent *kev, struct knote *kn)
309 {
310 struct kqueue *kq = kn->kn_fp->f_data;
311 int active;
312
313 mtx_enter(&kq->kq_lock);
314 knote_assign(kev, kn);
315 active = filt_kqueue_common(kn, kq);
316 mtx_leave(&kq->kq_lock);
317
318 return (active);
319 }
320
321 int
filt_kqueueprocess(struct knote * kn,struct kevent * kev)322 filt_kqueueprocess(struct knote *kn, struct kevent *kev)
323 {
324 struct kqueue *kq = kn->kn_fp->f_data;
325 int active;
326
327 mtx_enter(&kq->kq_lock);
328 if (kev != NULL && (kn->kn_flags & EV_ONESHOT))
329 active = 1;
330 else
331 active = filt_kqueue_common(kn, kq);
332 if (active)
333 knote_submit(kn, kev);
334 mtx_leave(&kq->kq_lock);
335
336 return (active);
337 }
338
339 int
filt_procattach(struct knote * kn)340 filt_procattach(struct knote *kn)
341 {
342 struct process *pr;
343 int nolock;
344
345 if ((curproc->p_p->ps_flags & PS_PLEDGE) &&
346 (curproc->p_p->ps_pledge & PLEDGE_PROC) == 0)
347 return pledge_fail(curproc, EPERM, PLEDGE_PROC);
348
349 if (kn->kn_id > PID_MAX)
350 return ESRCH;
351
352 KERNEL_LOCK();
353 pr = prfind(kn->kn_id);
354 if (pr == NULL)
355 goto fail;
356
357 /* exiting processes can't be specified */
358 if (pr->ps_flags & PS_EXITING)
359 goto fail;
360
361 kn->kn_ptr.p_process = pr;
362 kn->kn_flags |= EV_CLEAR; /* automatically set */
363
364 /*
365 * internal flag indicating registration done by kernel
366 */
367 if (kn->kn_flags & EV_FLAG1) {
368 kn->kn_data = kn->kn_sdata; /* ppid */
369 kn->kn_fflags = NOTE_CHILD;
370 kn->kn_flags &= ~EV_FLAG1;
371 rw_assert_wrlock(&kqueue_ps_list_lock);
372 }
373
374 /* this needs both the ps_mtx and exclusive kqueue_ps_list_lock. */
375 nolock = (rw_status(&kqueue_ps_list_lock) == RW_WRITE);
376 if (!nolock)
377 rw_enter_write(&kqueue_ps_list_lock);
378 mtx_enter(&pr->ps_mtx);
379 klist_insert_locked(&pr->ps_klist, kn);
380 mtx_leave(&pr->ps_mtx);
381 if (!nolock)
382 rw_exit_write(&kqueue_ps_list_lock);
383
384 KERNEL_UNLOCK();
385
386 return (0);
387
388 fail:
389 KERNEL_UNLOCK();
390 return (ESRCH);
391 }
392
393 /*
394 * The knote may be attached to a different process, which may exit,
395 * leaving nothing for the knote to be attached to. So when the process
396 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
397 * it will be deleted when read out. However, as part of the knote deletion,
398 * this routine is called, so a check is needed to avoid actually performing
399 * a detach, because the original process does not exist any more.
400 */
401 void
filt_procdetach(struct knote * kn)402 filt_procdetach(struct knote *kn)
403 {
404 struct process *pr = kn->kn_ptr.p_process;
405 int status;
406
407 /* this needs both the ps_mtx and exclusive kqueue_ps_list_lock. */
408 rw_enter_write(&kqueue_ps_list_lock);
409 mtx_enter(&pr->ps_mtx);
410 status = kn->kn_status;
411
412 if ((status & KN_DETACHED) == 0)
413 klist_remove_locked(&pr->ps_klist, kn);
414
415 mtx_leave(&pr->ps_mtx);
416 rw_exit_write(&kqueue_ps_list_lock);
417 }
418
419 int
filt_proc(struct knote * kn,long hint)420 filt_proc(struct knote *kn, long hint)
421 {
422 struct process *pr = kn->kn_ptr.p_process;
423 struct kqueue *kq = kn->kn_kq;
424 u_int event;
425
426 /*
427 * mask off extra data
428 */
429 event = (u_int)hint & NOTE_PCTRLMASK;
430
431 /*
432 * if the user is interested in this event, record it.
433 */
434 if (kn->kn_sfflags & event)
435 kn->kn_fflags |= event;
436
437 /*
438 * process is gone, so flag the event as finished and remove it
439 * from the process's klist
440 */
441 if (event == NOTE_EXIT) {
442 struct process *pr = kn->kn_ptr.p_process;
443
444 mtx_enter(&kq->kq_lock);
445 kn->kn_status |= KN_DETACHED;
446 mtx_leave(&kq->kq_lock);
447
448 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
449 kn->kn_data = W_EXITCODE(pr->ps_xexit, pr->ps_xsig);
450 klist_remove_locked(&pr->ps_klist, kn);
451 return (1);
452 }
453
454 /*
455 * process forked, and user wants to track the new process,
456 * so attach a new knote to it, and immediately report an
457 * event with the parent's pid.
458 */
459 if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
460 struct kevent kev;
461 int error;
462
463 /*
464 * register knote with new process.
465 */
466 memset(&kev, 0, sizeof(kev));
467 kev.ident = hint & NOTE_PDATAMASK; /* pid */
468 kev.filter = kn->kn_filter;
469 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
470 kev.fflags = kn->kn_sfflags;
471 kev.data = kn->kn_id; /* parent */
472 kev.udata = kn->kn_udata; /* preserve udata */
473
474 rw_assert_wrlock(&kqueue_ps_list_lock);
475 mtx_leave(&pr->ps_mtx);
476 error = kqueue_register(kq, &kev, 0, NULL);
477 mtx_enter(&pr->ps_mtx);
478
479 if (error)
480 kn->kn_fflags |= NOTE_TRACKERR;
481 }
482
483 return (kn->kn_fflags != 0);
484 }
485
486 int
filt_procmodify(struct kevent * kev,struct knote * kn)487 filt_procmodify(struct kevent *kev, struct knote *kn)
488 {
489 struct process *pr = kn->kn_ptr.p_process;
490 int active;
491
492 mtx_enter(&pr->ps_mtx);
493 active = knote_modify(kev, kn);
494 mtx_leave(&pr->ps_mtx);
495
496 return (active);
497 }
498
499 /*
500 * By default only grab the mutex here. If the event requires extra protection
501 * because it alters the klist (NOTE_EXIT, NOTE_FORK the caller of the knote
502 * needs to grab the rwlock first.
503 */
504 int
filt_procprocess(struct knote * kn,struct kevent * kev)505 filt_procprocess(struct knote *kn, struct kevent *kev)
506 {
507 struct process *pr = kn->kn_ptr.p_process;
508 int active;
509
510 mtx_enter(&pr->ps_mtx);
511 active = knote_process(kn, kev);
512 mtx_leave(&pr->ps_mtx);
513
514 return (active);
515 }
516
517 /*
518 * signal knotes are shared with proc knotes, so we apply a mask to
519 * the hint in order to differentiate them from process hints. This
520 * could be avoided by using a signal-specific knote list, but probably
521 * isn't worth the trouble.
522 */
523 int
filt_sigattach(struct knote * kn)524 filt_sigattach(struct knote *kn)
525 {
526 struct process *pr = curproc->p_p;
527
528 if (kn->kn_id >= NSIG)
529 return EINVAL;
530
531 kn->kn_ptr.p_process = pr;
532 kn->kn_flags |= EV_CLEAR; /* automatically set */
533
534 /* this needs both the ps_mtx and exclusive kqueue_ps_list_lock. */
535 rw_enter_write(&kqueue_ps_list_lock);
536 mtx_enter(&pr->ps_mtx);
537 klist_insert_locked(&pr->ps_klist, kn);
538 mtx_leave(&pr->ps_mtx);
539 rw_exit_write(&kqueue_ps_list_lock);
540
541 return (0);
542 }
543
544 void
filt_sigdetach(struct knote * kn)545 filt_sigdetach(struct knote *kn)
546 {
547 struct process *pr = kn->kn_ptr.p_process;
548
549 rw_enter_write(&kqueue_ps_list_lock);
550 mtx_enter(&pr->ps_mtx);
551 klist_remove_locked(&pr->ps_klist, kn);
552 mtx_leave(&pr->ps_mtx);
553 rw_exit_write(&kqueue_ps_list_lock);
554 }
555
556 int
filt_signal(struct knote * kn,long hint)557 filt_signal(struct knote *kn, long hint)
558 {
559 if (hint & NOTE_SIGNAL) {
560 hint &= ~NOTE_SIGNAL;
561
562 if (kn->kn_id == hint)
563 kn->kn_data++;
564 }
565 return (kn->kn_data != 0);
566 }
567
568 #define NOTE_TIMER_UNITMASK \
569 (NOTE_SECONDS|NOTE_MSECONDS|NOTE_USECONDS|NOTE_NSECONDS)
570
571 static int
filt_timervalidate(int sfflags,int64_t sdata,struct timespec * ts)572 filt_timervalidate(int sfflags, int64_t sdata, struct timespec *ts)
573 {
574 if (sfflags & ~(NOTE_TIMER_UNITMASK | NOTE_ABSTIME))
575 return (EINVAL);
576
577 switch (sfflags & NOTE_TIMER_UNITMASK) {
578 case NOTE_SECONDS:
579 ts->tv_sec = sdata;
580 ts->tv_nsec = 0;
581 break;
582 case NOTE_MSECONDS:
583 ts->tv_sec = sdata / 1000;
584 ts->tv_nsec = (sdata % 1000) * 1000000;
585 break;
586 case NOTE_USECONDS:
587 ts->tv_sec = sdata / 1000000;
588 ts->tv_nsec = (sdata % 1000000) * 1000;
589 break;
590 case NOTE_NSECONDS:
591 ts->tv_sec = sdata / 1000000000;
592 ts->tv_nsec = sdata % 1000000000;
593 break;
594 default:
595 return (EINVAL);
596 }
597
598 return (0);
599 }
600
601 static void
filt_timeradd(struct knote * kn,struct timespec * ts)602 filt_timeradd(struct knote *kn, struct timespec *ts)
603 {
604 struct timespec expiry, now;
605 struct timeout *to = kn->kn_hook;
606 int tticks;
607
608 if (kn->kn_sfflags & NOTE_ABSTIME) {
609 nanotime(&now);
610 if (timespeccmp(ts, &now, >)) {
611 timespecsub(ts, &now, &expiry);
612 /* XXX timeout_abs_ts with CLOCK_REALTIME */
613 timeout_add(to, tstohz(&expiry));
614 } else {
615 /* Expire immediately. */
616 filt_timerexpire(kn);
617 }
618 return;
619 }
620
621 tticks = tstohz(ts);
622 /* Remove extra tick from tstohz() if timeout has fired before. */
623 if (timeout_triggered(to))
624 tticks--;
625 timeout_add(to, (tticks > 0) ? tticks : 1);
626 }
627
628 void
filt_timerexpire(void * knx)629 filt_timerexpire(void *knx)
630 {
631 struct timespec ts;
632 struct knote *kn = knx;
633 struct kqueue *kq = kn->kn_kq;
634
635 kn->kn_data++;
636 mtx_enter(&kq->kq_lock);
637 knote_activate(kn);
638 mtx_leave(&kq->kq_lock);
639
640 if ((kn->kn_flags & EV_ONESHOT) == 0 &&
641 (kn->kn_sfflags & NOTE_ABSTIME) == 0) {
642 (void)filt_timervalidate(kn->kn_sfflags, kn->kn_sdata, &ts);
643 filt_timeradd(kn, &ts);
644 }
645 }
646
647 /*
648 * data contains amount of time to sleep
649 */
650 int
filt_timerattach(struct knote * kn)651 filt_timerattach(struct knote *kn)
652 {
653 struct timespec ts;
654 struct timeout *to;
655 int error;
656
657 error = filt_timervalidate(kn->kn_sfflags, kn->kn_sdata, &ts);
658 if (error != 0)
659 return (error);
660
661 if (kq_ntimeouts > kq_timeoutmax)
662 return (ENOMEM);
663 kq_ntimeouts++;
664
665 if ((kn->kn_sfflags & NOTE_ABSTIME) == 0)
666 kn->kn_flags |= EV_CLEAR; /* automatically set */
667 to = malloc(sizeof(*to), M_KEVENT, M_WAITOK);
668 timeout_set(to, filt_timerexpire, kn);
669 kn->kn_hook = to;
670 filt_timeradd(kn, &ts);
671
672 return (0);
673 }
674
675 void
filt_timerdetach(struct knote * kn)676 filt_timerdetach(struct knote *kn)
677 {
678 struct timeout *to;
679
680 to = (struct timeout *)kn->kn_hook;
681 timeout_del_barrier(to);
682 free(to, M_KEVENT, sizeof(*to));
683 kq_ntimeouts--;
684 }
685
686 int
filt_timermodify(struct kevent * kev,struct knote * kn)687 filt_timermodify(struct kevent *kev, struct knote *kn)
688 {
689 struct timespec ts;
690 struct kqueue *kq = kn->kn_kq;
691 struct timeout *to = kn->kn_hook;
692 int error;
693
694 error = filt_timervalidate(kev->fflags, kev->data, &ts);
695 if (error != 0) {
696 kev->flags |= EV_ERROR;
697 kev->data = error;
698 return (0);
699 }
700
701 /* Reset the timer. Any pending events are discarded. */
702
703 timeout_del_barrier(to);
704
705 mtx_enter(&kq->kq_lock);
706 if (kn->kn_status & KN_QUEUED)
707 knote_dequeue(kn);
708 kn->kn_status &= ~KN_ACTIVE;
709 mtx_leave(&kq->kq_lock);
710
711 kn->kn_data = 0;
712 knote_assign(kev, kn);
713 /* Reinit timeout to invoke tick adjustment again. */
714 timeout_set(to, filt_timerexpire, kn);
715 filt_timeradd(kn, &ts);
716
717 return (0);
718 }
719
720 int
filt_timerprocess(struct knote * kn,struct kevent * kev)721 filt_timerprocess(struct knote *kn, struct kevent *kev)
722 {
723 int active, s;
724
725 s = splsoftclock();
726 active = (kn->kn_data != 0);
727 if (active)
728 knote_submit(kn, kev);
729 splx(s);
730
731 return (active);
732 }
733
734
735 /*
736 * filt_seltrue:
737 *
738 * This filter "event" routine simulates seltrue().
739 */
740 int
filt_seltrue(struct knote * kn,long hint)741 filt_seltrue(struct knote *kn, long hint)
742 {
743
744 /*
745 * We don't know how much data can be read/written,
746 * but we know that it *can* be. This is about as
747 * good as select/poll does as well.
748 */
749 kn->kn_data = 0;
750 return (1);
751 }
752
753 int
filt_seltruemodify(struct kevent * kev,struct knote * kn)754 filt_seltruemodify(struct kevent *kev, struct knote *kn)
755 {
756 knote_assign(kev, kn);
757 return (kn->kn_fop->f_event(kn, 0));
758 }
759
760 int
filt_seltrueprocess(struct knote * kn,struct kevent * kev)761 filt_seltrueprocess(struct knote *kn, struct kevent *kev)
762 {
763 int active;
764
765 active = kn->kn_fop->f_event(kn, 0);
766 if (active)
767 knote_submit(kn, kev);
768 return (active);
769 }
770
771 /*
772 * This provides full kqfilter entry for device switch tables, which
773 * has same effect as filter using filt_seltrue() as filter method.
774 */
775 void
filt_seltruedetach(struct knote * kn)776 filt_seltruedetach(struct knote *kn)
777 {
778 /* Nothing to do */
779 }
780
781 const struct filterops seltrue_filtops = {
782 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
783 .f_attach = NULL,
784 .f_detach = filt_seltruedetach,
785 .f_event = filt_seltrue,
786 .f_modify = filt_seltruemodify,
787 .f_process = filt_seltrueprocess,
788 };
789
790 int
seltrue_kqfilter(dev_t dev,struct knote * kn)791 seltrue_kqfilter(dev_t dev, struct knote *kn)
792 {
793 switch (kn->kn_filter) {
794 case EVFILT_READ:
795 case EVFILT_WRITE:
796 kn->kn_fop = &seltrue_filtops;
797 break;
798 default:
799 return (EINVAL);
800 }
801
802 /* Nothing more to do */
803 return (0);
804 }
805
806 static int
filt_dead(struct knote * kn,long hint)807 filt_dead(struct knote *kn, long hint)
808 {
809 if (kn->kn_filter == EVFILT_EXCEPT) {
810 /*
811 * Do not deliver event because there is no out-of-band data.
812 * However, let HUP condition pass for poll(2).
813 */
814 if ((kn->kn_flags & __EV_POLL) == 0) {
815 kn->kn_flags |= EV_DISABLE;
816 return (0);
817 }
818 }
819
820 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
821 if (kn->kn_flags & __EV_POLL)
822 kn->kn_flags |= __EV_HUP;
823 kn->kn_data = 0;
824 return (1);
825 }
826
827 static void
filt_deaddetach(struct knote * kn)828 filt_deaddetach(struct knote *kn)
829 {
830 /* Nothing to do */
831 }
832
833 const struct filterops dead_filtops = {
834 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
835 .f_attach = NULL,
836 .f_detach = filt_deaddetach,
837 .f_event = filt_dead,
838 .f_modify = filt_seltruemodify,
839 .f_process = filt_seltrueprocess,
840 };
841
842 static int
filt_badfd(struct knote * kn,long hint)843 filt_badfd(struct knote *kn, long hint)
844 {
845 kn->kn_flags |= (EV_ERROR | EV_ONESHOT);
846 kn->kn_data = EBADF;
847 return (1);
848 }
849
850 /* For use with kqpoll. */
851 const struct filterops badfd_filtops = {
852 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
853 .f_attach = NULL,
854 .f_detach = filt_deaddetach,
855 .f_event = filt_badfd,
856 .f_modify = filt_seltruemodify,
857 .f_process = filt_seltrueprocess,
858 };
859
860 static int
filter_attach(struct knote * kn)861 filter_attach(struct knote *kn)
862 {
863 int error;
864
865 if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
866 error = kn->kn_fop->f_attach(kn);
867 } else {
868 KERNEL_LOCK();
869 error = kn->kn_fop->f_attach(kn);
870 KERNEL_UNLOCK();
871 }
872 return (error);
873 }
874
875 static void
filter_detach(struct knote * kn)876 filter_detach(struct knote *kn)
877 {
878 if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
879 kn->kn_fop->f_detach(kn);
880 } else {
881 KERNEL_LOCK();
882 kn->kn_fop->f_detach(kn);
883 KERNEL_UNLOCK();
884 }
885 }
886
887 static int
filter_event(struct knote * kn,long hint)888 filter_event(struct knote *kn, long hint)
889 {
890 if ((kn->kn_fop->f_flags & FILTEROP_MPSAFE) == 0)
891 KERNEL_ASSERT_LOCKED();
892
893 return (kn->kn_fop->f_event(kn, hint));
894 }
895
896 static int
filter_modify(struct kevent * kev,struct knote * kn)897 filter_modify(struct kevent *kev, struct knote *kn)
898 {
899 int active, s;
900
901 if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
902 active = kn->kn_fop->f_modify(kev, kn);
903 } else {
904 KERNEL_LOCK();
905 if (kn->kn_fop->f_modify != NULL) {
906 active = kn->kn_fop->f_modify(kev, kn);
907 } else {
908 s = splhigh();
909 active = knote_modify(kev, kn);
910 splx(s);
911 }
912 KERNEL_UNLOCK();
913 }
914 return (active);
915 }
916
917 static int
filter_process(struct knote * kn,struct kevent * kev)918 filter_process(struct knote *kn, struct kevent *kev)
919 {
920 int active, s;
921
922 if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
923 active = kn->kn_fop->f_process(kn, kev);
924 } else {
925 KERNEL_LOCK();
926 if (kn->kn_fop->f_process != NULL) {
927 active = kn->kn_fop->f_process(kn, kev);
928 } else {
929 s = splhigh();
930 active = knote_process(kn, kev);
931 splx(s);
932 }
933 KERNEL_UNLOCK();
934 }
935 return (active);
936 }
937
938 /*
939 * Initialize the current thread for poll/select system call.
940 * num indicates the number of serials that the system call may utilize.
941 * After this function, the valid range of serials is
942 * p_kq_serial <= x < p_kq_serial + num.
943 */
944 void
kqpoll_init(unsigned int num)945 kqpoll_init(unsigned int num)
946 {
947 struct proc *p = curproc;
948 struct filedesc *fdp;
949
950 if (p->p_kq == NULL) {
951 p->p_kq = kqueue_alloc(p->p_fd);
952 p->p_kq_serial = arc4random();
953 fdp = p->p_fd;
954 fdplock(fdp);
955 LIST_INSERT_HEAD(&fdp->fd_kqlist, p->p_kq, kq_next);
956 fdpunlock(fdp);
957 }
958
959 if (p->p_kq_serial + num < p->p_kq_serial) {
960 /* Serial is about to wrap. Clear all attached knotes. */
961 kqueue_purge(p, p->p_kq);
962 p->p_kq_serial = 0;
963 }
964 }
965
966 /*
967 * Finish poll/select system call.
968 * num must have the same value that was used with kqpoll_init().
969 */
970 void
kqpoll_done(unsigned int num)971 kqpoll_done(unsigned int num)
972 {
973 struct proc *p = curproc;
974 struct kqueue *kq = p->p_kq;
975
976 KASSERT(p->p_kq != NULL);
977 KASSERT(p->p_kq_serial + num >= p->p_kq_serial);
978
979 p->p_kq_serial += num;
980
981 /*
982 * Because of kn_pollid key, a thread can in principle allocate
983 * up to O(maxfiles^2) knotes by calling poll(2) repeatedly
984 * with suitably varying pollfd arrays.
985 * Prevent such a large allocation by clearing knotes eagerly
986 * if there are too many of them.
987 *
988 * A small multiple of kq_knlistsize should give enough margin
989 * that eager clearing is infrequent, or does not happen at all,
990 * with normal programs.
991 * A single pollfd entry can use up to three knotes.
992 * Typically there is no significant overlap of fd and events
993 * between different entries in the pollfd array.
994 */
995 if (kq->kq_nknotes > 4 * kq->kq_knlistsize)
996 kqueue_purge(p, kq);
997 }
998
999 void
kqpoll_exit(void)1000 kqpoll_exit(void)
1001 {
1002 struct proc *p = curproc;
1003
1004 if (p->p_kq == NULL)
1005 return;
1006
1007 kqueue_purge(p, p->p_kq);
1008 kqueue_terminate(p, p->p_kq);
1009 KASSERT(p->p_kq->kq_refcnt.r_refs == 1);
1010 KQRELE(p->p_kq);
1011 p->p_kq = NULL;
1012 }
1013
1014 struct kqueue *
kqueue_alloc(struct filedesc * fdp)1015 kqueue_alloc(struct filedesc *fdp)
1016 {
1017 struct kqueue *kq;
1018
1019 kq = pool_get(&kqueue_pool, PR_WAITOK | PR_ZERO);
1020 refcnt_init(&kq->kq_refcnt);
1021 kq->kq_fdp = fdp;
1022 TAILQ_INIT(&kq->kq_head);
1023 mtx_init(&kq->kq_lock, IPL_HIGH);
1024 task_set(&kq->kq_task, kqueue_task, kq);
1025 klist_init_mutex(&kq->kq_klist, &kqueue_klist_lock);
1026
1027 return (kq);
1028 }
1029
1030 int
dokqueue(struct proc * p,int flags,register_t * retval)1031 dokqueue(struct proc *p, int flags, register_t *retval)
1032 {
1033 struct filedesc *fdp = p->p_fd;
1034 struct kqueue *kq;
1035 struct file *fp;
1036 int cloexec, error, fd;
1037
1038 cloexec = (flags & O_CLOEXEC) ? UF_EXCLOSE : 0;
1039
1040 kq = kqueue_alloc(fdp);
1041
1042 fdplock(fdp);
1043 error = falloc(p, &fp, &fd);
1044 if (error)
1045 goto out;
1046 fp->f_flag = FREAD | FWRITE | (flags & FNONBLOCK);
1047 fp->f_type = DTYPE_KQUEUE;
1048 fp->f_ops = &kqueueops;
1049 fp->f_data = kq;
1050 *retval = fd;
1051 LIST_INSERT_HEAD(&fdp->fd_kqlist, kq, kq_next);
1052 kq = NULL;
1053 fdinsert(fdp, fd, cloexec, fp);
1054 FRELE(fp, p);
1055 out:
1056 fdpunlock(fdp);
1057 if (kq != NULL)
1058 pool_put(&kqueue_pool, kq);
1059 return (error);
1060 }
1061
1062 int
sys_kqueue(struct proc * p,void * v,register_t * retval)1063 sys_kqueue(struct proc *p, void *v, register_t *retval)
1064 {
1065 return (dokqueue(p, 0, retval));
1066 }
1067
1068 int
sys_kqueue1(struct proc * p,void * v,register_t * retval)1069 sys_kqueue1(struct proc *p, void *v, register_t *retval)
1070 {
1071 struct sys_kqueue1_args /* {
1072 syscallarg(int) flags;
1073 } */ *uap = v;
1074
1075 if (SCARG(uap, flags) & ~(O_CLOEXEC | FNONBLOCK))
1076 return (EINVAL);
1077 return (dokqueue(p, SCARG(uap, flags), retval));
1078 }
1079
1080 int
sys_kevent(struct proc * p,void * v,register_t * retval)1081 sys_kevent(struct proc *p, void *v, register_t *retval)
1082 {
1083 struct kqueue_scan_state scan;
1084 struct filedesc* fdp = p->p_fd;
1085 struct sys_kevent_args /* {
1086 syscallarg(int) fd;
1087 syscallarg(const struct kevent *) changelist;
1088 syscallarg(int) nchanges;
1089 syscallarg(struct kevent *) eventlist;
1090 syscallarg(int) nevents;
1091 syscallarg(const struct timespec *) timeout;
1092 } */ *uap = v;
1093 struct kevent *kevp;
1094 struct kqueue *kq;
1095 struct file *fp;
1096 struct timespec ts;
1097 struct timespec *tsp = NULL;
1098 int i, n, nerrors, error;
1099 int ready, total;
1100 struct kevent kev[KQ_NEVENTS];
1101
1102 if ((fp = fd_getfile(fdp, SCARG(uap, fd))) == NULL)
1103 return (EBADF);
1104
1105 if (fp->f_type != DTYPE_KQUEUE) {
1106 error = EBADF;
1107 goto done;
1108 }
1109
1110 if (SCARG(uap, timeout) != NULL) {
1111 error = copyin(SCARG(uap, timeout), &ts, sizeof(ts));
1112 if (error)
1113 goto done;
1114 #ifdef KTRACE
1115 if (KTRPOINT(p, KTR_STRUCT))
1116 ktrreltimespec(p, &ts);
1117 #endif
1118 if (ts.tv_sec < 0 || !timespecisvalid(&ts)) {
1119 error = EINVAL;
1120 goto done;
1121 }
1122 tsp = &ts;
1123 }
1124
1125 kq = fp->f_data;
1126 nerrors = 0;
1127
1128 while ((n = SCARG(uap, nchanges)) > 0) {
1129 if (n > nitems(kev))
1130 n = nitems(kev);
1131 error = copyin(SCARG(uap, changelist), kev,
1132 n * sizeof(struct kevent));
1133 if (error)
1134 goto done;
1135 #ifdef KTRACE
1136 if (KTRPOINT(p, KTR_STRUCT))
1137 ktrevent(p, kev, n);
1138 #endif
1139 for (i = 0; i < n; i++) {
1140 kevp = &kev[i];
1141 kevp->flags &= ~EV_SYSFLAGS;
1142 error = kqueue_register(kq, kevp, 0, p);
1143 if (error || (kevp->flags & EV_RECEIPT)) {
1144 if (SCARG(uap, nevents) != 0) {
1145 kevp->flags = EV_ERROR;
1146 kevp->data = error;
1147 copyout(kevp, SCARG(uap, eventlist),
1148 sizeof(*kevp));
1149 SCARG(uap, eventlist)++;
1150 SCARG(uap, nevents)--;
1151 nerrors++;
1152 } else {
1153 goto done;
1154 }
1155 }
1156 }
1157 SCARG(uap, nchanges) -= n;
1158 SCARG(uap, changelist) += n;
1159 }
1160 if (nerrors) {
1161 *retval = nerrors;
1162 error = 0;
1163 goto done;
1164 }
1165
1166 kqueue_scan_setup(&scan, kq);
1167 FRELE(fp, p);
1168 /*
1169 * Collect as many events as we can. The timeout on successive
1170 * loops is disabled (kqueue_scan() becomes non-blocking).
1171 */
1172 total = 0;
1173 error = 0;
1174 while ((n = SCARG(uap, nevents) - total) > 0) {
1175 if (n > nitems(kev))
1176 n = nitems(kev);
1177 ready = kqueue_scan(&scan, n, kev, tsp, p, &error);
1178 if (ready == 0)
1179 break;
1180 error = copyout(kev, SCARG(uap, eventlist) + total,
1181 sizeof(struct kevent) * ready);
1182 #ifdef KTRACE
1183 if (KTRPOINT(p, KTR_STRUCT))
1184 ktrevent(p, kev, ready);
1185 #endif
1186 total += ready;
1187 if (error || ready < n)
1188 break;
1189 }
1190 kqueue_scan_finish(&scan);
1191 *retval = total;
1192 return (error);
1193
1194 done:
1195 FRELE(fp, p);
1196 return (error);
1197 }
1198
1199 #ifdef KQUEUE_DEBUG
1200 void
kqueue_do_check(struct kqueue * kq,const char * func,int line)1201 kqueue_do_check(struct kqueue *kq, const char *func, int line)
1202 {
1203 struct knote *kn;
1204 int count = 0, nmarker = 0;
1205
1206 MUTEX_ASSERT_LOCKED(&kq->kq_lock);
1207
1208 TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
1209 if (kn->kn_filter == EVFILT_MARKER) {
1210 if ((kn->kn_status & KN_QUEUED) != 0)
1211 panic("%s:%d: kq=%p kn=%p marker QUEUED",
1212 func, line, kq, kn);
1213 nmarker++;
1214 } else {
1215 if ((kn->kn_status & KN_ACTIVE) == 0)
1216 panic("%s:%d: kq=%p kn=%p knote !ACTIVE",
1217 func, line, kq, kn);
1218 if ((kn->kn_status & KN_QUEUED) == 0)
1219 panic("%s:%d: kq=%p kn=%p knote !QUEUED",
1220 func, line, kq, kn);
1221 if (kn->kn_kq != kq)
1222 panic("%s:%d: kq=%p kn=%p kn_kq=%p != kq",
1223 func, line, kq, kn, kn->kn_kq);
1224 count++;
1225 if (count > kq->kq_count)
1226 goto bad;
1227 }
1228 }
1229 if (count != kq->kq_count) {
1230 bad:
1231 panic("%s:%d: kq=%p kq_count=%d count=%d nmarker=%d",
1232 func, line, kq, kq->kq_count, count, nmarker);
1233 }
1234 }
1235 #endif
1236
1237 int
kqueue_register(struct kqueue * kq,struct kevent * kev,unsigned int pollid,struct proc * p)1238 kqueue_register(struct kqueue *kq, struct kevent *kev, unsigned int pollid,
1239 struct proc *p)
1240 {
1241 struct filedesc *fdp = kq->kq_fdp;
1242 const struct filterops *fops = NULL;
1243 struct file *fp = NULL;
1244 struct knote *kn = NULL, *newkn = NULL;
1245 struct knlist *list = NULL;
1246 int active, error = 0;
1247
1248 KASSERT(pollid == 0 || (p != NULL && p->p_kq == kq));
1249
1250 if (kev->filter < 0) {
1251 if (kev->filter + EVFILT_SYSCOUNT < 0)
1252 return (EINVAL);
1253 fops = sysfilt_ops[~kev->filter]; /* to 0-base index */
1254 }
1255
1256 if (fops == NULL) {
1257 /*
1258 * XXX
1259 * filter attach routine is responsible for ensuring that
1260 * the identifier can be attached to it.
1261 */
1262 return (EINVAL);
1263 }
1264
1265 if (fops->f_flags & FILTEROP_ISFD) {
1266 /* validate descriptor */
1267 if (kev->ident > INT_MAX)
1268 return (EBADF);
1269 }
1270
1271 if (kev->flags & EV_ADD)
1272 newkn = pool_get(&knote_pool, PR_WAITOK | PR_ZERO);
1273
1274 again:
1275 if (fops->f_flags & FILTEROP_ISFD) {
1276 if ((fp = fd_getfile(fdp, kev->ident)) == NULL) {
1277 error = EBADF;
1278 goto done;
1279 }
1280 mtx_enter(&kq->kq_lock);
1281 if (kev->flags & EV_ADD)
1282 kqueue_expand_list(kq, kev->ident);
1283 if (kev->ident < kq->kq_knlistsize)
1284 list = &kq->kq_knlist[kev->ident];
1285 } else {
1286 mtx_enter(&kq->kq_lock);
1287 if (kev->flags & EV_ADD)
1288 kqueue_expand_hash(kq);
1289 if (kq->kq_knhashmask != 0) {
1290 list = &kq->kq_knhash[
1291 KN_HASH((u_long)kev->ident, kq->kq_knhashmask)];
1292 }
1293 }
1294 if (list != NULL) {
1295 SLIST_FOREACH(kn, list, kn_link) {
1296 if (kev->filter == kn->kn_filter &&
1297 kev->ident == kn->kn_id &&
1298 pollid == kn->kn_pollid) {
1299 if (!knote_acquire(kn, NULL, 0)) {
1300 /* knote_acquire() has released
1301 * kq_lock. */
1302 if (fp != NULL) {
1303 FRELE(fp, p);
1304 fp = NULL;
1305 }
1306 goto again;
1307 }
1308 break;
1309 }
1310 }
1311 }
1312 KASSERT(kn == NULL || (kn->kn_status & KN_PROCESSING) != 0);
1313
1314 if (kn == NULL && ((kev->flags & EV_ADD) == 0)) {
1315 mtx_leave(&kq->kq_lock);
1316 error = ENOENT;
1317 goto done;
1318 }
1319
1320 /*
1321 * kn now contains the matching knote, or NULL if no match.
1322 */
1323 if (kev->flags & EV_ADD) {
1324 if (kn == NULL) {
1325 kn = newkn;
1326 newkn = NULL;
1327 kn->kn_status = KN_PROCESSING;
1328 kn->kn_fp = fp;
1329 kn->kn_kq = kq;
1330 kn->kn_fop = fops;
1331
1332 /*
1333 * apply reference count to knote structure, and
1334 * do not release it at the end of this routine.
1335 */
1336 fp = NULL;
1337
1338 kn->kn_sfflags = kev->fflags;
1339 kn->kn_sdata = kev->data;
1340 kev->fflags = 0;
1341 kev->data = 0;
1342 kn->kn_kevent = *kev;
1343 kn->kn_pollid = pollid;
1344
1345 knote_attach(kn);
1346 mtx_leave(&kq->kq_lock);
1347
1348 error = filter_attach(kn);
1349 if (error != 0) {
1350 knote_drop(kn, p);
1351 goto done;
1352 }
1353
1354 /*
1355 * If this is a file descriptor filter, check if
1356 * fd was closed while the knote was being added.
1357 * knote_fdclose() has missed kn if the function
1358 * ran before kn appeared in kq_knlist.
1359 */
1360 if ((fops->f_flags & FILTEROP_ISFD) &&
1361 fd_checkclosed(fdp, kev->ident, kn->kn_fp)) {
1362 /*
1363 * Drop the knote silently without error
1364 * because another thread might already have
1365 * seen it. This corresponds to the insert
1366 * happening in full before the close.
1367 */
1368 filter_detach(kn);
1369 knote_drop(kn, p);
1370 goto done;
1371 }
1372
1373 /* Check if there is a pending event. */
1374 active = filter_process(kn, NULL);
1375 mtx_enter(&kq->kq_lock);
1376 if (active)
1377 knote_activate(kn);
1378 } else if (kn->kn_fop == &badfd_filtops) {
1379 /*
1380 * Nothing expects this badfd knote any longer.
1381 * Drop it to make room for the new knote and retry.
1382 */
1383 KASSERT(kq == p->p_kq);
1384 mtx_leave(&kq->kq_lock);
1385 filter_detach(kn);
1386 knote_drop(kn, p);
1387
1388 KASSERT(fp != NULL);
1389 FRELE(fp, p);
1390 fp = NULL;
1391
1392 goto again;
1393 } else {
1394 /*
1395 * The user may change some filter values after the
1396 * initial EV_ADD, but doing so will not reset any
1397 * filters which have already been triggered.
1398 */
1399 mtx_leave(&kq->kq_lock);
1400 active = filter_modify(kev, kn);
1401 mtx_enter(&kq->kq_lock);
1402 if (active)
1403 knote_activate(kn);
1404 if (kev->flags & EV_ERROR) {
1405 error = kev->data;
1406 goto release;
1407 }
1408 }
1409 } else if (kev->flags & EV_DELETE) {
1410 mtx_leave(&kq->kq_lock);
1411 filter_detach(kn);
1412 knote_drop(kn, p);
1413 goto done;
1414 }
1415
1416 if ((kev->flags & EV_DISABLE) && ((kn->kn_status & KN_DISABLED) == 0))
1417 kn->kn_status |= KN_DISABLED;
1418
1419 if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
1420 kn->kn_status &= ~KN_DISABLED;
1421 mtx_leave(&kq->kq_lock);
1422 /* Check if there is a pending event. */
1423 active = filter_process(kn, NULL);
1424 mtx_enter(&kq->kq_lock);
1425 if (active)
1426 knote_activate(kn);
1427 }
1428
1429 release:
1430 knote_release(kn);
1431 mtx_leave(&kq->kq_lock);
1432 done:
1433 if (fp != NULL)
1434 FRELE(fp, p);
1435 if (newkn != NULL)
1436 pool_put(&knote_pool, newkn);
1437 return (error);
1438 }
1439
1440 int
kqueue_sleep(struct kqueue * kq,struct timespec * tsp)1441 kqueue_sleep(struct kqueue *kq, struct timespec *tsp)
1442 {
1443 struct timespec elapsed, start, stop;
1444 uint64_t nsecs;
1445 int error;
1446
1447 MUTEX_ASSERT_LOCKED(&kq->kq_lock);
1448
1449 if (tsp != NULL) {
1450 getnanouptime(&start);
1451 nsecs = MIN(TIMESPEC_TO_NSEC(tsp), MAXTSLP);
1452 } else
1453 nsecs = INFSLP;
1454 error = msleep_nsec(kq, &kq->kq_lock, PSOCK | PCATCH | PNORELOCK,
1455 "kqread", nsecs);
1456 if (tsp != NULL) {
1457 getnanouptime(&stop);
1458 timespecsub(&stop, &start, &elapsed);
1459 timespecsub(tsp, &elapsed, tsp);
1460 if (tsp->tv_sec < 0)
1461 timespecclear(tsp);
1462 }
1463
1464 return (error);
1465 }
1466
1467 /*
1468 * Scan the kqueue, blocking if necessary until the target time is reached.
1469 * If tsp is NULL we block indefinitely. If tsp->ts_secs/nsecs are both
1470 * 0 we do not block at all.
1471 */
1472 int
kqueue_scan(struct kqueue_scan_state * scan,int maxevents,struct kevent * kevp,struct timespec * tsp,struct proc * p,int * errorp)1473 kqueue_scan(struct kqueue_scan_state *scan, int maxevents,
1474 struct kevent *kevp, struct timespec *tsp, struct proc *p, int *errorp)
1475 {
1476 struct kqueue *kq = scan->kqs_kq;
1477 struct knote *kn;
1478 int error = 0, nkev = 0;
1479 int reinserted;
1480
1481 if (maxevents == 0)
1482 goto done;
1483 retry:
1484 KASSERT(nkev == 0);
1485
1486 error = 0;
1487 reinserted = 0;
1488
1489 mtx_enter(&kq->kq_lock);
1490
1491 if (kq->kq_state & KQ_DYING) {
1492 mtx_leave(&kq->kq_lock);
1493 error = EBADF;
1494 goto done;
1495 }
1496
1497 if (kq->kq_count == 0) {
1498 /*
1499 * Successive loops are only necessary if there are more
1500 * ready events to gather, so they don't need to block.
1501 */
1502 if ((tsp != NULL && !timespecisset(tsp)) ||
1503 scan->kqs_nevent != 0) {
1504 mtx_leave(&kq->kq_lock);
1505 error = 0;
1506 goto done;
1507 }
1508 kq->kq_state |= KQ_SLEEP;
1509 error = kqueue_sleep(kq, tsp);
1510 /* kqueue_sleep() has released kq_lock. */
1511 if (error == 0 || error == EWOULDBLOCK)
1512 goto retry;
1513 /* don't restart after signals... */
1514 if (error == ERESTART)
1515 error = EINTR;
1516 goto done;
1517 }
1518
1519 /*
1520 * Put the end marker in the queue to limit the scan to the events
1521 * that are currently active. This prevents events from being
1522 * recollected if they reactivate during scan.
1523 *
1524 * If a partial scan has been performed already but no events have
1525 * been collected, reposition the end marker to make any new events
1526 * reachable.
1527 */
1528 if (!scan->kqs_queued) {
1529 TAILQ_INSERT_TAIL(&kq->kq_head, &scan->kqs_end, kn_tqe);
1530 scan->kqs_queued = 1;
1531 } else if (scan->kqs_nevent == 0) {
1532 TAILQ_REMOVE(&kq->kq_head, &scan->kqs_end, kn_tqe);
1533 TAILQ_INSERT_TAIL(&kq->kq_head, &scan->kqs_end, kn_tqe);
1534 }
1535
1536 TAILQ_INSERT_HEAD(&kq->kq_head, &scan->kqs_start, kn_tqe);
1537 while (nkev < maxevents) {
1538 kn = TAILQ_NEXT(&scan->kqs_start, kn_tqe);
1539 if (kn->kn_filter == EVFILT_MARKER) {
1540 if (kn == &scan->kqs_end)
1541 break;
1542
1543 /* Move start marker past another thread's marker. */
1544 TAILQ_REMOVE(&kq->kq_head, &scan->kqs_start, kn_tqe);
1545 TAILQ_INSERT_AFTER(&kq->kq_head, kn, &scan->kqs_start,
1546 kn_tqe);
1547 continue;
1548 }
1549
1550 if (!knote_acquire(kn, NULL, 0)) {
1551 /* knote_acquire() has released kq_lock. */
1552 mtx_enter(&kq->kq_lock);
1553 continue;
1554 }
1555
1556 kqueue_check(kq);
1557 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1558 kn->kn_status &= ~KN_QUEUED;
1559 kq->kq_count--;
1560 kqueue_check(kq);
1561
1562 if (kn->kn_status & KN_DISABLED) {
1563 knote_release(kn);
1564 continue;
1565 }
1566
1567 mtx_leave(&kq->kq_lock);
1568
1569 /* Drop expired kqpoll knotes. */
1570 if (p->p_kq == kq &&
1571 p->p_kq_serial > (unsigned long)kn->kn_udata) {
1572 filter_detach(kn);
1573 knote_drop(kn, p);
1574 mtx_enter(&kq->kq_lock);
1575 continue;
1576 }
1577
1578 /*
1579 * Invalidate knotes whose vnodes have been revoked.
1580 * This is a workaround; it is tricky to clear existing
1581 * knotes and prevent new ones from being registered
1582 * with the current revocation mechanism.
1583 */
1584 if ((kn->kn_fop->f_flags & FILTEROP_ISFD) &&
1585 kn->kn_fp != NULL &&
1586 kn->kn_fp->f_type == DTYPE_VNODE) {
1587 struct vnode *vp = kn->kn_fp->f_data;
1588
1589 if (__predict_false(vp->v_op == &dead_vops &&
1590 kn->kn_fop != &dead_filtops)) {
1591 filter_detach(kn);
1592 kn->kn_fop = &dead_filtops;
1593
1594 /*
1595 * Check if the event should be delivered.
1596 * Use f_event directly because this is
1597 * a special situation.
1598 */
1599 if (kn->kn_fop->f_event(kn, 0) == 0) {
1600 filter_detach(kn);
1601 knote_drop(kn, p);
1602 mtx_enter(&kq->kq_lock);
1603 continue;
1604 }
1605 }
1606 }
1607
1608 memset(kevp, 0, sizeof(*kevp));
1609 if (filter_process(kn, kevp) == 0) {
1610 mtx_enter(&kq->kq_lock);
1611 if ((kn->kn_status & KN_QUEUED) == 0)
1612 kn->kn_status &= ~KN_ACTIVE;
1613 knote_release(kn);
1614 kqueue_check(kq);
1615 continue;
1616 }
1617
1618 /*
1619 * Post-event action on the note
1620 */
1621 if (kevp->flags & EV_ONESHOT) {
1622 filter_detach(kn);
1623 knote_drop(kn, p);
1624 mtx_enter(&kq->kq_lock);
1625 } else if (kevp->flags & (EV_CLEAR | EV_DISPATCH)) {
1626 mtx_enter(&kq->kq_lock);
1627 if (kevp->flags & EV_DISPATCH)
1628 kn->kn_status |= KN_DISABLED;
1629 if ((kn->kn_status & KN_QUEUED) == 0)
1630 kn->kn_status &= ~KN_ACTIVE;
1631 knote_release(kn);
1632 } else {
1633 mtx_enter(&kq->kq_lock);
1634 if ((kn->kn_status & KN_QUEUED) == 0) {
1635 kqueue_check(kq);
1636 kq->kq_count++;
1637 kn->kn_status |= KN_QUEUED;
1638 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1639 /* Wakeup is done after loop. */
1640 reinserted = 1;
1641 }
1642 knote_release(kn);
1643 }
1644 kqueue_check(kq);
1645
1646 kevp++;
1647 nkev++;
1648 scan->kqs_nevent++;
1649 }
1650 TAILQ_REMOVE(&kq->kq_head, &scan->kqs_start, kn_tqe);
1651 if (reinserted && kq->kq_count != 0)
1652 kqueue_wakeup(kq);
1653 mtx_leave(&kq->kq_lock);
1654 if (scan->kqs_nevent == 0)
1655 goto retry;
1656 done:
1657 *errorp = error;
1658 return (nkev);
1659 }
1660
1661 void
kqueue_scan_setup(struct kqueue_scan_state * scan,struct kqueue * kq)1662 kqueue_scan_setup(struct kqueue_scan_state *scan, struct kqueue *kq)
1663 {
1664 memset(scan, 0, sizeof(*scan));
1665
1666 KQREF(kq);
1667 scan->kqs_kq = kq;
1668 scan->kqs_start.kn_filter = EVFILT_MARKER;
1669 scan->kqs_start.kn_status = KN_PROCESSING;
1670 scan->kqs_end.kn_filter = EVFILT_MARKER;
1671 scan->kqs_end.kn_status = KN_PROCESSING;
1672 }
1673
1674 void
kqueue_scan_finish(struct kqueue_scan_state * scan)1675 kqueue_scan_finish(struct kqueue_scan_state *scan)
1676 {
1677 struct kqueue *kq = scan->kqs_kq;
1678
1679 KASSERT(scan->kqs_start.kn_filter == EVFILT_MARKER);
1680 KASSERT(scan->kqs_start.kn_status == KN_PROCESSING);
1681 KASSERT(scan->kqs_end.kn_filter == EVFILT_MARKER);
1682 KASSERT(scan->kqs_end.kn_status == KN_PROCESSING);
1683
1684 if (scan->kqs_queued) {
1685 scan->kqs_queued = 0;
1686 mtx_enter(&kq->kq_lock);
1687 TAILQ_REMOVE(&kq->kq_head, &scan->kqs_end, kn_tqe);
1688 mtx_leave(&kq->kq_lock);
1689 }
1690 KQRELE(kq);
1691 }
1692
1693 /*
1694 * XXX
1695 * This could be expanded to call kqueue_scan, if desired.
1696 */
1697 int
kqueue_read(struct file * fp,struct uio * uio,int fflags)1698 kqueue_read(struct file *fp, struct uio *uio, int fflags)
1699 {
1700 return (ENXIO);
1701 }
1702
1703 int
kqueue_write(struct file * fp,struct uio * uio,int fflags)1704 kqueue_write(struct file *fp, struct uio *uio, int fflags)
1705 {
1706 return (ENXIO);
1707 }
1708
1709 int
kqueue_ioctl(struct file * fp,u_long com,caddr_t data,struct proc * p)1710 kqueue_ioctl(struct file *fp, u_long com, caddr_t data, struct proc *p)
1711 {
1712 return (ENOTTY);
1713 }
1714
1715 int
kqueue_stat(struct file * fp,struct stat * st,struct proc * p)1716 kqueue_stat(struct file *fp, struct stat *st, struct proc *p)
1717 {
1718 struct kqueue *kq = fp->f_data;
1719
1720 memset(st, 0, sizeof(*st));
1721 st->st_size = kq->kq_count; /* unlocked read */
1722 st->st_blksize = sizeof(struct kevent);
1723 st->st_mode = S_IFIFO;
1724 return (0);
1725 }
1726
1727 void
kqueue_purge(struct proc * p,struct kqueue * kq)1728 kqueue_purge(struct proc *p, struct kqueue *kq)
1729 {
1730 int i;
1731
1732 mtx_enter(&kq->kq_lock);
1733 for (i = 0; i < kq->kq_knlistsize; i++)
1734 knote_remove(p, kq, &kq->kq_knlist, i, 1);
1735 if (kq->kq_knhashmask != 0) {
1736 for (i = 0; i < kq->kq_knhashmask + 1; i++)
1737 knote_remove(p, kq, &kq->kq_knhash, i, 1);
1738 }
1739 mtx_leave(&kq->kq_lock);
1740 }
1741
1742 void
kqueue_terminate(struct proc * p,struct kqueue * kq)1743 kqueue_terminate(struct proc *p, struct kqueue *kq)
1744 {
1745 struct knote *kn;
1746 int state;
1747
1748 mtx_enter(&kq->kq_lock);
1749
1750 /*
1751 * Any remaining entries should be scan markers.
1752 * They are removed when the ongoing scans finish.
1753 */
1754 KASSERT(kq->kq_count == 0);
1755 TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe)
1756 KASSERT(kn->kn_filter == EVFILT_MARKER);
1757
1758 kq->kq_state |= KQ_DYING;
1759 state = kq->kq_state;
1760 kqueue_wakeup(kq);
1761 mtx_leave(&kq->kq_lock);
1762
1763 /*
1764 * Any knotes that were attached to this kqueue were deleted
1765 * by knote_fdclose() when this kqueue's file descriptor was closed.
1766 */
1767 KASSERT(klist_empty(&kq->kq_klist));
1768 if (state & KQ_TASK)
1769 taskq_del_barrier(systqmp, &kq->kq_task);
1770 }
1771
1772 int
kqueue_close(struct file * fp,struct proc * p)1773 kqueue_close(struct file *fp, struct proc *p)
1774 {
1775 struct kqueue *kq = fp->f_data;
1776
1777 fp->f_data = NULL;
1778
1779 kqueue_purge(p, kq);
1780 kqueue_terminate(p, kq);
1781
1782 KQRELE(kq);
1783
1784 return (0);
1785 }
1786
1787 static void
kqueue_task(void * arg)1788 kqueue_task(void *arg)
1789 {
1790 struct kqueue *kq = arg;
1791
1792 knote(&kq->kq_klist, 0);
1793 }
1794
1795 void
kqueue_wakeup(struct kqueue * kq)1796 kqueue_wakeup(struct kqueue *kq)
1797 {
1798 MUTEX_ASSERT_LOCKED(&kq->kq_lock);
1799
1800 if (kq->kq_state & KQ_SLEEP) {
1801 kq->kq_state &= ~KQ_SLEEP;
1802 wakeup(kq);
1803 }
1804 if (!klist_empty(&kq->kq_klist)) {
1805 /* Defer activation to avoid recursion. */
1806 kq->kq_state |= KQ_TASK;
1807 task_add(systqmp, &kq->kq_task);
1808 }
1809 }
1810
1811 static void
kqueue_expand_hash(struct kqueue * kq)1812 kqueue_expand_hash(struct kqueue *kq)
1813 {
1814 struct knlist *hash;
1815 u_long hashmask;
1816
1817 MUTEX_ASSERT_LOCKED(&kq->kq_lock);
1818
1819 if (kq->kq_knhashmask == 0) {
1820 mtx_leave(&kq->kq_lock);
1821 hash = hashinit(KN_HASHSIZE, M_KEVENT, M_WAITOK, &hashmask);
1822 mtx_enter(&kq->kq_lock);
1823 if (kq->kq_knhashmask == 0) {
1824 kq->kq_knhash = hash;
1825 kq->kq_knhashmask = hashmask;
1826 } else {
1827 /* Another thread has allocated the hash. */
1828 mtx_leave(&kq->kq_lock);
1829 hashfree(hash, KN_HASHSIZE, M_KEVENT);
1830 mtx_enter(&kq->kq_lock);
1831 }
1832 }
1833 }
1834
1835 static void
kqueue_expand_list(struct kqueue * kq,int fd)1836 kqueue_expand_list(struct kqueue *kq, int fd)
1837 {
1838 struct knlist *list, *olist;
1839 int size, osize;
1840
1841 MUTEX_ASSERT_LOCKED(&kq->kq_lock);
1842
1843 if (kq->kq_knlistsize <= fd) {
1844 size = kq->kq_knlistsize;
1845 mtx_leave(&kq->kq_lock);
1846 while (size <= fd)
1847 size += KQEXTENT;
1848 list = mallocarray(size, sizeof(*list), M_KEVENT, M_WAITOK);
1849 mtx_enter(&kq->kq_lock);
1850 if (kq->kq_knlistsize <= fd) {
1851 memcpy(list, kq->kq_knlist,
1852 kq->kq_knlistsize * sizeof(*list));
1853 memset(&list[kq->kq_knlistsize], 0,
1854 (size - kq->kq_knlistsize) * sizeof(*list));
1855 olist = kq->kq_knlist;
1856 osize = kq->kq_knlistsize;
1857 kq->kq_knlist = list;
1858 kq->kq_knlistsize = size;
1859 mtx_leave(&kq->kq_lock);
1860 free(olist, M_KEVENT, osize * sizeof(*list));
1861 mtx_enter(&kq->kq_lock);
1862 } else {
1863 /* Another thread has expanded the list. */
1864 mtx_leave(&kq->kq_lock);
1865 free(list, M_KEVENT, size * sizeof(*list));
1866 mtx_enter(&kq->kq_lock);
1867 }
1868 }
1869 }
1870
1871 /*
1872 * Acquire a knote, return non-zero on success, 0 on failure.
1873 *
1874 * If we cannot acquire the knote we sleep and return 0. The knote
1875 * may be stale on return in this case and the caller must restart
1876 * whatever loop they are in.
1877 *
1878 * If we are about to sleep and klist is non-NULL, the list is unlocked
1879 * before sleep and remains unlocked on return.
1880 */
1881 int
knote_acquire(struct knote * kn,struct klist * klist,int ls)1882 knote_acquire(struct knote *kn, struct klist *klist, int ls)
1883 {
1884 struct kqueue *kq = kn->kn_kq;
1885
1886 MUTEX_ASSERT_LOCKED(&kq->kq_lock);
1887 KASSERT(kn->kn_filter != EVFILT_MARKER);
1888
1889 if (kn->kn_status & KN_PROCESSING) {
1890 kn->kn_status |= KN_WAITING;
1891 if (klist != NULL) {
1892 mtx_leave(&kq->kq_lock);
1893 klist_unlock(klist, ls);
1894 /* XXX Timeout resolves potential loss of wakeup. */
1895 tsleep_nsec(kn, 0, "kqepts", SEC_TO_NSEC(1));
1896 } else {
1897 msleep_nsec(kn, &kq->kq_lock, PNORELOCK, "kqepts",
1898 SEC_TO_NSEC(1));
1899 }
1900 /* knote may be stale now */
1901 return (0);
1902 }
1903 kn->kn_status |= KN_PROCESSING;
1904 return (1);
1905 }
1906
1907 /*
1908 * Release an acquired knote, clearing KN_PROCESSING.
1909 */
1910 void
knote_release(struct knote * kn)1911 knote_release(struct knote *kn)
1912 {
1913 MUTEX_ASSERT_LOCKED(&kn->kn_kq->kq_lock);
1914 KASSERT(kn->kn_filter != EVFILT_MARKER);
1915 KASSERT(kn->kn_status & KN_PROCESSING);
1916
1917 if (kn->kn_status & KN_WAITING) {
1918 kn->kn_status &= ~KN_WAITING;
1919 wakeup(kn);
1920 }
1921 kn->kn_status &= ~KN_PROCESSING;
1922 /* kn should not be accessed anymore */
1923 }
1924
1925 /*
1926 * activate one knote.
1927 */
1928 void
knote_activate(struct knote * kn)1929 knote_activate(struct knote *kn)
1930 {
1931 MUTEX_ASSERT_LOCKED(&kn->kn_kq->kq_lock);
1932
1933 kn->kn_status |= KN_ACTIVE;
1934 if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0)
1935 knote_enqueue(kn);
1936 }
1937
1938 /*
1939 * walk down a list of knotes, activating them if their event has triggered.
1940 */
1941 void
knote(struct klist * list,long hint)1942 knote(struct klist *list, long hint)
1943 {
1944 int ls;
1945
1946 ls = klist_lock(list);
1947 knote_locked(list, hint);
1948 klist_unlock(list, ls);
1949 }
1950
1951 void
knote_locked(struct klist * list,long hint)1952 knote_locked(struct klist *list, long hint)
1953 {
1954 struct knote *kn, *kn0;
1955 struct kqueue *kq;
1956
1957 KLIST_ASSERT_LOCKED(list);
1958
1959 SLIST_FOREACH_SAFE(kn, &list->kl_list, kn_selnext, kn0) {
1960 if (filter_event(kn, hint)) {
1961 kq = kn->kn_kq;
1962 mtx_enter(&kq->kq_lock);
1963 knote_activate(kn);
1964 mtx_leave(&kq->kq_lock);
1965 }
1966 }
1967 }
1968
1969 /*
1970 * remove all knotes from a specified knlist
1971 */
1972 void
knote_remove(struct proc * p,struct kqueue * kq,struct knlist ** plist,int idx,int purge)1973 knote_remove(struct proc *p, struct kqueue *kq, struct knlist **plist, int idx,
1974 int purge)
1975 {
1976 struct knote *kn;
1977
1978 MUTEX_ASSERT_LOCKED(&kq->kq_lock);
1979
1980 /* Always fetch array pointer as another thread can resize kq_knlist. */
1981 while ((kn = SLIST_FIRST(*plist + idx)) != NULL) {
1982 KASSERT(kn->kn_kq == kq);
1983
1984 if (!purge) {
1985 /* Skip pending badfd knotes. */
1986 while (kn->kn_fop == &badfd_filtops) {
1987 kn = SLIST_NEXT(kn, kn_link);
1988 if (kn == NULL)
1989 return;
1990 KASSERT(kn->kn_kq == kq);
1991 }
1992 }
1993
1994 if (!knote_acquire(kn, NULL, 0)) {
1995 /* knote_acquire() has released kq_lock. */
1996 mtx_enter(&kq->kq_lock);
1997 continue;
1998 }
1999 mtx_leave(&kq->kq_lock);
2000 filter_detach(kn);
2001
2002 /*
2003 * Notify poll(2) and select(2) when a monitored
2004 * file descriptor is closed.
2005 *
2006 * This reuses the original knote for delivering the
2007 * notification so as to avoid allocating memory.
2008 */
2009 if (!purge && (kn->kn_flags & (__EV_POLL | __EV_SELECT)) &&
2010 !(p->p_kq == kq &&
2011 p->p_kq_serial > (unsigned long)kn->kn_udata) &&
2012 kn->kn_fop != &badfd_filtops) {
2013 KASSERT(kn->kn_fop->f_flags & FILTEROP_ISFD);
2014 FRELE(kn->kn_fp, p);
2015 kn->kn_fp = NULL;
2016
2017 kn->kn_fop = &badfd_filtops;
2018 filter_event(kn, 0);
2019 mtx_enter(&kq->kq_lock);
2020 knote_activate(kn);
2021 knote_release(kn);
2022 continue;
2023 }
2024
2025 knote_drop(kn, p);
2026 mtx_enter(&kq->kq_lock);
2027 }
2028 }
2029
2030 /*
2031 * remove all knotes referencing a specified fd
2032 */
2033 void
knote_fdclose(struct proc * p,int fd)2034 knote_fdclose(struct proc *p, int fd)
2035 {
2036 struct filedesc *fdp = p->p_p->ps_fd;
2037 struct kqueue *kq;
2038
2039 /*
2040 * fdplock can be ignored if the file descriptor table is being freed
2041 * because no other thread can access the fdp.
2042 */
2043 if (fdp->fd_refcnt != 0)
2044 fdpassertlocked(fdp);
2045
2046 LIST_FOREACH(kq, &fdp->fd_kqlist, kq_next) {
2047 mtx_enter(&kq->kq_lock);
2048 if (fd < kq->kq_knlistsize)
2049 knote_remove(p, kq, &kq->kq_knlist, fd, 0);
2050 mtx_leave(&kq->kq_lock);
2051 }
2052 }
2053
2054 /*
2055 * handle a process exiting, including the triggering of NOTE_EXIT notes
2056 * XXX this could be more efficient, doing a single pass down the klist
2057 */
2058 void
knote_processexit(struct process * pr)2059 knote_processexit(struct process *pr)
2060 {
2061 /* this needs both the ps_mtx and exclusive kqueue_ps_list_lock. */
2062 rw_enter_write(&kqueue_ps_list_lock);
2063 mtx_enter(&pr->ps_mtx);
2064 knote_locked(&pr->ps_klist, NOTE_EXIT);
2065 mtx_leave(&pr->ps_mtx);
2066 rw_exit_write(&kqueue_ps_list_lock);
2067
2068 /* remove other knotes hanging off the process */
2069 klist_invalidate(&pr->ps_klist);
2070 }
2071
2072 void
knote_processfork(struct process * pr,pid_t pid)2073 knote_processfork(struct process *pr, pid_t pid)
2074 {
2075 /* this needs both the ps_mtx and exclusive kqueue_ps_list_lock. */
2076 rw_enter_write(&kqueue_ps_list_lock);
2077 mtx_enter(&pr->ps_mtx);
2078 knote_locked(&pr->ps_klist, NOTE_FORK | pid);
2079 mtx_leave(&pr->ps_mtx);
2080 rw_exit_write(&kqueue_ps_list_lock);
2081 }
2082
2083 void
knote_attach(struct knote * kn)2084 knote_attach(struct knote *kn)
2085 {
2086 struct kqueue *kq = kn->kn_kq;
2087 struct knlist *list;
2088
2089 MUTEX_ASSERT_LOCKED(&kq->kq_lock);
2090 KASSERT(kn->kn_status & KN_PROCESSING);
2091
2092 if (kn->kn_fop->f_flags & FILTEROP_ISFD) {
2093 KASSERT(kq->kq_knlistsize > kn->kn_id);
2094 list = &kq->kq_knlist[kn->kn_id];
2095 } else {
2096 KASSERT(kq->kq_knhashmask != 0);
2097 list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
2098 }
2099 SLIST_INSERT_HEAD(list, kn, kn_link);
2100 kq->kq_nknotes++;
2101 }
2102
2103 void
knote_detach(struct knote * kn)2104 knote_detach(struct knote *kn)
2105 {
2106 struct kqueue *kq = kn->kn_kq;
2107 struct knlist *list;
2108
2109 MUTEX_ASSERT_LOCKED(&kq->kq_lock);
2110 KASSERT(kn->kn_status & KN_PROCESSING);
2111
2112 kq->kq_nknotes--;
2113 if (kn->kn_fop->f_flags & FILTEROP_ISFD)
2114 list = &kq->kq_knlist[kn->kn_id];
2115 else
2116 list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
2117 SLIST_REMOVE(list, kn, knote, kn_link);
2118 }
2119
2120 /*
2121 * should be called at spl == 0, since we don't want to hold spl
2122 * while calling FRELE and pool_put.
2123 */
2124 void
knote_drop(struct knote * kn,struct proc * p)2125 knote_drop(struct knote *kn, struct proc *p)
2126 {
2127 struct kqueue *kq = kn->kn_kq;
2128
2129 KASSERT(kn->kn_filter != EVFILT_MARKER);
2130
2131 mtx_enter(&kq->kq_lock);
2132 knote_detach(kn);
2133 if (kn->kn_status & KN_QUEUED)
2134 knote_dequeue(kn);
2135 if (kn->kn_status & KN_WAITING) {
2136 kn->kn_status &= ~KN_WAITING;
2137 wakeup(kn);
2138 }
2139 mtx_leave(&kq->kq_lock);
2140
2141 if ((kn->kn_fop->f_flags & FILTEROP_ISFD) && kn->kn_fp != NULL)
2142 FRELE(kn->kn_fp, p);
2143 pool_put(&knote_pool, kn);
2144 }
2145
2146
2147 void
knote_enqueue(struct knote * kn)2148 knote_enqueue(struct knote *kn)
2149 {
2150 struct kqueue *kq = kn->kn_kq;
2151
2152 MUTEX_ASSERT_LOCKED(&kq->kq_lock);
2153 KASSERT(kn->kn_filter != EVFILT_MARKER);
2154 KASSERT((kn->kn_status & KN_QUEUED) == 0);
2155
2156 kqueue_check(kq);
2157 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
2158 kn->kn_status |= KN_QUEUED;
2159 kq->kq_count++;
2160 kqueue_check(kq);
2161 kqueue_wakeup(kq);
2162 }
2163
2164 void
knote_dequeue(struct knote * kn)2165 knote_dequeue(struct knote *kn)
2166 {
2167 struct kqueue *kq = kn->kn_kq;
2168
2169 MUTEX_ASSERT_LOCKED(&kq->kq_lock);
2170 KASSERT(kn->kn_filter != EVFILT_MARKER);
2171 KASSERT(kn->kn_status & KN_QUEUED);
2172
2173 kqueue_check(kq);
2174 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
2175 kn->kn_status &= ~KN_QUEUED;
2176 kq->kq_count--;
2177 kqueue_check(kq);
2178 }
2179
2180 /*
2181 * Assign parameters to the knote.
2182 *
2183 * The knote's object lock must be held.
2184 */
2185 void
knote_assign(const struct kevent * kev,struct knote * kn)2186 knote_assign(const struct kevent *kev, struct knote *kn)
2187 {
2188 if ((kn->kn_fop->f_flags & FILTEROP_MPSAFE) == 0)
2189 KERNEL_ASSERT_LOCKED();
2190
2191 kn->kn_sfflags = kev->fflags;
2192 kn->kn_sdata = kev->data;
2193 kn->kn_udata = kev->udata;
2194 }
2195
2196 /*
2197 * Submit the knote's event for delivery.
2198 *
2199 * The knote's object lock must be held.
2200 */
2201 void
knote_submit(struct knote * kn,struct kevent * kev)2202 knote_submit(struct knote *kn, struct kevent *kev)
2203 {
2204 if ((kn->kn_fop->f_flags & FILTEROP_MPSAFE) == 0)
2205 KERNEL_ASSERT_LOCKED();
2206
2207 if (kev != NULL) {
2208 *kev = kn->kn_kevent;
2209 if (kn->kn_flags & EV_CLEAR) {
2210 kn->kn_fflags = 0;
2211 kn->kn_data = 0;
2212 }
2213 }
2214 }
2215
2216 void
klist_init(struct klist * klist,const struct klistops * ops,void * arg)2217 klist_init(struct klist *klist, const struct klistops *ops, void *arg)
2218 {
2219 SLIST_INIT(&klist->kl_list);
2220 klist->kl_ops = ops;
2221 klist->kl_arg = arg;
2222 }
2223
2224 void
klist_free(struct klist * klist)2225 klist_free(struct klist *klist)
2226 {
2227 KASSERT(SLIST_EMPTY(&klist->kl_list));
2228 }
2229
2230 void
klist_insert(struct klist * klist,struct knote * kn)2231 klist_insert(struct klist *klist, struct knote *kn)
2232 {
2233 int ls;
2234
2235 ls = klist_lock(klist);
2236 SLIST_INSERT_HEAD(&klist->kl_list, kn, kn_selnext);
2237 klist_unlock(klist, ls);
2238 }
2239
2240 void
klist_insert_locked(struct klist * klist,struct knote * kn)2241 klist_insert_locked(struct klist *klist, struct knote *kn)
2242 {
2243 KLIST_ASSERT_LOCKED(klist);
2244
2245 SLIST_INSERT_HEAD(&klist->kl_list, kn, kn_selnext);
2246 }
2247
2248 void
klist_remove(struct klist * klist,struct knote * kn)2249 klist_remove(struct klist *klist, struct knote *kn)
2250 {
2251 int ls;
2252
2253 ls = klist_lock(klist);
2254 SLIST_REMOVE(&klist->kl_list, kn, knote, kn_selnext);
2255 klist_unlock(klist, ls);
2256 }
2257
2258 void
klist_remove_locked(struct klist * klist,struct knote * kn)2259 klist_remove_locked(struct klist *klist, struct knote *kn)
2260 {
2261 KLIST_ASSERT_LOCKED(klist);
2262
2263 SLIST_REMOVE(&klist->kl_list, kn, knote, kn_selnext);
2264 }
2265
2266 /*
2267 * Detach all knotes from klist. The knotes are rewired to indicate EOF.
2268 *
2269 * The caller of this function must not hold any locks that can block
2270 * filterops callbacks that run with KN_PROCESSING.
2271 * Otherwise this function might deadlock.
2272 */
2273 void
klist_invalidate(struct klist * list)2274 klist_invalidate(struct klist *list)
2275 {
2276 struct knote *kn;
2277 struct kqueue *kq;
2278 struct proc *p = curproc;
2279 int ls;
2280
2281 NET_ASSERT_UNLOCKED();
2282
2283 ls = klist_lock(list);
2284 while ((kn = SLIST_FIRST(&list->kl_list)) != NULL) {
2285 kq = kn->kn_kq;
2286 mtx_enter(&kq->kq_lock);
2287 if (!knote_acquire(kn, list, ls)) {
2288 /* knote_acquire() has released kq_lock
2289 * and klist lock. */
2290 ls = klist_lock(list);
2291 continue;
2292 }
2293 mtx_leave(&kq->kq_lock);
2294 klist_unlock(list, ls);
2295 filter_detach(kn);
2296 if (kn->kn_fop->f_flags & FILTEROP_ISFD) {
2297 kn->kn_fop = &dead_filtops;
2298 filter_event(kn, 0);
2299 mtx_enter(&kq->kq_lock);
2300 knote_activate(kn);
2301 knote_release(kn);
2302 mtx_leave(&kq->kq_lock);
2303 } else {
2304 knote_drop(kn, p);
2305 }
2306 ls = klist_lock(list);
2307 }
2308 klist_unlock(list, ls);
2309 }
2310
2311 static int
klist_lock(struct klist * list)2312 klist_lock(struct klist *list)
2313 {
2314 int ls = 0;
2315
2316 if (list->kl_ops != NULL) {
2317 ls = list->kl_ops->klo_lock(list->kl_arg);
2318 } else {
2319 KERNEL_LOCK();
2320 ls = splhigh();
2321 }
2322 return ls;
2323 }
2324
2325 static void
klist_unlock(struct klist * list,int ls)2326 klist_unlock(struct klist *list, int ls)
2327 {
2328 if (list->kl_ops != NULL) {
2329 list->kl_ops->klo_unlock(list->kl_arg, ls);
2330 } else {
2331 splx(ls);
2332 KERNEL_UNLOCK();
2333 }
2334 }
2335
2336 static void
klist_mutex_assertlk(void * arg)2337 klist_mutex_assertlk(void *arg)
2338 {
2339 struct mutex *mtx = arg;
2340
2341 (void)mtx;
2342
2343 MUTEX_ASSERT_LOCKED(mtx);
2344 }
2345
2346 static int
klist_mutex_lock(void * arg)2347 klist_mutex_lock(void *arg)
2348 {
2349 struct mutex *mtx = arg;
2350
2351 mtx_enter(mtx);
2352 return 0;
2353 }
2354
2355 static void
klist_mutex_unlock(void * arg,int s)2356 klist_mutex_unlock(void *arg, int s)
2357 {
2358 struct mutex *mtx = arg;
2359
2360 mtx_leave(mtx);
2361 }
2362
2363 static const struct klistops mutex_klistops = {
2364 .klo_assertlk = klist_mutex_assertlk,
2365 .klo_lock = klist_mutex_lock,
2366 .klo_unlock = klist_mutex_unlock,
2367 };
2368
2369 void
klist_init_mutex(struct klist * klist,struct mutex * mtx)2370 klist_init_mutex(struct klist *klist, struct mutex *mtx)
2371 {
2372 klist_init(klist, &mutex_klistops, mtx);
2373 }
2374
2375 static void
klist_rwlock_assertlk(void * arg)2376 klist_rwlock_assertlk(void *arg)
2377 {
2378 struct rwlock *rwl = arg;
2379
2380 (void)rwl;
2381
2382 rw_assert_wrlock(rwl);
2383 }
2384
2385 static int
klist_rwlock_lock(void * arg)2386 klist_rwlock_lock(void *arg)
2387 {
2388 struct rwlock *rwl = arg;
2389
2390 rw_enter_write(rwl);
2391 return 0;
2392 }
2393
2394 static void
klist_rwlock_unlock(void * arg,int s)2395 klist_rwlock_unlock(void *arg, int s)
2396 {
2397 struct rwlock *rwl = arg;
2398
2399 rw_exit_write(rwl);
2400 }
2401
2402 static const struct klistops rwlock_klistops = {
2403 .klo_assertlk = klist_rwlock_assertlk,
2404 .klo_lock = klist_rwlock_lock,
2405 .klo_unlock = klist_rwlock_unlock,
2406 };
2407
2408 void
klist_init_rwlock(struct klist * klist,struct rwlock * rwl)2409 klist_init_rwlock(struct klist *klist, struct rwlock *rwl)
2410 {
2411 klist_init(klist, &rwlock_klistops, rwl);
2412 }
2413