1 /* $OpenBSD: uipc_socket.c,v 1.344 2024/10/31 12:51:55 claudio Exp $ */
2 /* $NetBSD: uipc_socket.c,v 1.21 1996/02/04 02:17:52 christos Exp $ */
3
4 /*
5 * Copyright (c) 1982, 1986, 1988, 1990, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94
33 */
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/proc.h>
38 #include <sys/file.h>
39 #include <sys/filedesc.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/domain.h>
43 #include <sys/event.h>
44 #include <sys/protosw.h>
45 #include <sys/socket.h>
46 #include <sys/unpcb.h>
47 #include <sys/socketvar.h>
48 #include <sys/signalvar.h>
49 #include <sys/pool.h>
50 #include <sys/atomic.h>
51 #include <sys/rwlock.h>
52 #include <sys/time.h>
53 #include <sys/refcnt.h>
54
55 #ifdef DDB
56 #include <machine/db_machdep.h>
57 #endif
58
59 void sbsync(struct sockbuf *, struct mbuf *);
60
61 int sosplice(struct socket *, int, off_t, struct timeval *);
62 void sounsplice(struct socket *, struct socket *, int);
63 void soidle(void *);
64 void sotask(void *);
65 void soreaper(void *);
66 void soput(void *);
67 int somove(struct socket *, int);
68 void sorflush(struct socket *);
69
70 void filt_sordetach(struct knote *kn);
71 int filt_soread(struct knote *kn, long hint);
72 void filt_sowdetach(struct knote *kn);
73 int filt_sowrite(struct knote *kn, long hint);
74 int filt_soexcept(struct knote *kn, long hint);
75
76 int filt_sowmodify(struct kevent *kev, struct knote *kn);
77 int filt_sowprocess(struct knote *kn, struct kevent *kev);
78
79 int filt_sormodify(struct kevent *kev, struct knote *kn);
80 int filt_sorprocess(struct knote *kn, struct kevent *kev);
81
82 const struct filterops soread_filtops = {
83 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
84 .f_attach = NULL,
85 .f_detach = filt_sordetach,
86 .f_event = filt_soread,
87 .f_modify = filt_sormodify,
88 .f_process = filt_sorprocess,
89 };
90
91 const struct filterops sowrite_filtops = {
92 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
93 .f_attach = NULL,
94 .f_detach = filt_sowdetach,
95 .f_event = filt_sowrite,
96 .f_modify = filt_sowmodify,
97 .f_process = filt_sowprocess,
98 };
99
100 const struct filterops soexcept_filtops = {
101 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
102 .f_attach = NULL,
103 .f_detach = filt_sordetach,
104 .f_event = filt_soexcept,
105 .f_modify = filt_sormodify,
106 .f_process = filt_sorprocess,
107 };
108
109 #ifndef SOMINCONN
110 #define SOMINCONN 80
111 #endif /* SOMINCONN */
112
113 int somaxconn = SOMAXCONN;
114 int sominconn = SOMINCONN;
115
116 struct pool socket_pool;
117 #ifdef SOCKET_SPLICE
118 struct pool sosplice_pool;
119 struct taskq *sosplice_taskq;
120 struct rwlock sosplice_lock = RWLOCK_INITIALIZER("sosplicelk");
121 #endif
122
123 void
soinit(void)124 soinit(void)
125 {
126 pool_init(&socket_pool, sizeof(struct socket), 0, IPL_SOFTNET, 0,
127 "sockpl", NULL);
128 #ifdef SOCKET_SPLICE
129 pool_init(&sosplice_pool, sizeof(struct sosplice), 0, IPL_SOFTNET, 0,
130 "sosppl", NULL);
131 #endif
132 }
133
134 struct socket *
soalloc(const struct protosw * prp,int wait)135 soalloc(const struct protosw *prp, int wait)
136 {
137 const struct domain *dp = prp->pr_domain;
138 struct socket *so;
139
140 so = pool_get(&socket_pool, (wait == M_WAIT ? PR_WAITOK : PR_NOWAIT) |
141 PR_ZERO);
142 if (so == NULL)
143 return (NULL);
144 rw_init_flags(&so->so_lock, dp->dom_name, RWL_DUPOK);
145 refcnt_init(&so->so_refcnt);
146 rw_init(&so->so_rcv.sb_lock, "sbufrcv");
147 rw_init(&so->so_snd.sb_lock, "sbufsnd");
148 mtx_init_flags(&so->so_rcv.sb_mtx, IPL_MPFLOOR, "sbrcv", 0);
149 mtx_init_flags(&so->so_snd.sb_mtx, IPL_MPFLOOR, "sbsnd", 0);
150 klist_init_mutex(&so->so_rcv.sb_klist, &so->so_rcv.sb_mtx);
151 klist_init_mutex(&so->so_snd.sb_klist, &so->so_snd.sb_mtx);
152 sigio_init(&so->so_sigio);
153 TAILQ_INIT(&so->so_q0);
154 TAILQ_INIT(&so->so_q);
155
156 switch (dp->dom_family) {
157 case AF_INET:
158 case AF_INET6:
159 switch (prp->pr_type) {
160 case SOCK_RAW:
161 case SOCK_DGRAM:
162 so->so_snd.sb_flags |= SB_MTXLOCK;
163 so->so_rcv.sb_flags |= SB_MTXLOCK;
164 break;
165 }
166 break;
167 case AF_KEY:
168 case AF_ROUTE:
169 case AF_UNIX:
170 so->so_snd.sb_flags |= SB_MTXLOCK;
171 so->so_rcv.sb_flags |= SB_MTXLOCK;
172 break;
173 }
174
175 return (so);
176 }
177
178 /*
179 * Socket operation routines.
180 * These routines are called by the routines in
181 * sys_socket.c or from a system process, and
182 * implement the semantics of socket operations by
183 * switching out to the protocol specific routines.
184 */
185 int
socreate(int dom,struct socket ** aso,int type,int proto)186 socreate(int dom, struct socket **aso, int type, int proto)
187 {
188 struct proc *p = curproc; /* XXX */
189 const struct protosw *prp;
190 struct socket *so;
191 int error;
192
193 if (proto)
194 prp = pffindproto(dom, proto, type);
195 else
196 prp = pffindtype(dom, type);
197 if (prp == NULL || prp->pr_usrreqs == NULL)
198 return (EPROTONOSUPPORT);
199 if (prp->pr_type != type)
200 return (EPROTOTYPE);
201 so = soalloc(prp, M_WAIT);
202 so->so_type = type;
203 if (suser(p) == 0)
204 so->so_state = SS_PRIV;
205 so->so_ruid = p->p_ucred->cr_ruid;
206 so->so_euid = p->p_ucred->cr_uid;
207 so->so_rgid = p->p_ucred->cr_rgid;
208 so->so_egid = p->p_ucred->cr_gid;
209 so->so_cpid = p->p_p->ps_pid;
210 so->so_proto = prp;
211 so->so_snd.sb_timeo_nsecs = INFSLP;
212 so->so_rcv.sb_timeo_nsecs = INFSLP;
213
214 solock(so);
215 error = pru_attach(so, proto, M_WAIT);
216 if (error) {
217 so->so_state |= SS_NOFDREF;
218 /* sofree() calls sounlock(). */
219 sofree(so, 0);
220 return (error);
221 }
222 sounlock(so);
223 *aso = so;
224 return (0);
225 }
226
227 int
sobind(struct socket * so,struct mbuf * nam,struct proc * p)228 sobind(struct socket *so, struct mbuf *nam, struct proc *p)
229 {
230 soassertlocked(so);
231 return pru_bind(so, nam, p);
232 }
233
234 int
solisten(struct socket * so,int backlog)235 solisten(struct socket *so, int backlog)
236 {
237 int somaxconn_local = atomic_load_int(&somaxconn);
238 int sominconn_local = atomic_load_int(&sominconn);
239 int error;
240
241 switch (so->so_type) {
242 case SOCK_STREAM:
243 case SOCK_SEQPACKET:
244 break;
245 default:
246 return (EOPNOTSUPP);
247 }
248
249 soassertlocked(so);
250
251 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING|SS_ISDISCONNECTING))
252 return (EINVAL);
253 #ifdef SOCKET_SPLICE
254 if (isspliced(so) || issplicedback(so))
255 return (EOPNOTSUPP);
256 #endif /* SOCKET_SPLICE */
257 error = pru_listen(so);
258 if (error)
259 return (error);
260 if (TAILQ_FIRST(&so->so_q) == NULL)
261 so->so_options |= SO_ACCEPTCONN;
262 if (backlog < 0 || backlog > somaxconn_local)
263 backlog = somaxconn_local;
264 if (backlog < sominconn_local)
265 backlog = sominconn_local;
266 so->so_qlimit = backlog;
267 return (0);
268 }
269
270 #define SOSP_FREEING_READ 1
271 #define SOSP_FREEING_WRITE 2
272 void
sofree(struct socket * so,int keep_lock)273 sofree(struct socket *so, int keep_lock)
274 {
275 int persocket = solock_persocket(so);
276
277 soassertlocked(so);
278
279 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
280 if (!keep_lock)
281 sounlock(so);
282 return;
283 }
284 if (so->so_head) {
285 struct socket *head = so->so_head;
286
287 /*
288 * We must not decommission a socket that's on the accept(2)
289 * queue. If we do, then accept(2) may hang after select(2)
290 * indicated that the listening socket was ready.
291 */
292 if (so->so_onq == &head->so_q) {
293 if (!keep_lock)
294 sounlock(so);
295 return;
296 }
297
298 if (persocket) {
299 /*
300 * Concurrent close of `head' could
301 * abort `so' due to re-lock.
302 */
303 soref(so);
304 soref(head);
305 sounlock(so);
306 solock(head);
307 solock(so);
308
309 if (so->so_onq != &head->so_q0) {
310 sounlock(head);
311 sounlock(so);
312 sorele(head);
313 sorele(so);
314 return;
315 }
316
317 sorele(head);
318 sorele(so);
319 }
320
321 soqremque(so, 0);
322
323 if (persocket)
324 sounlock(head);
325 }
326
327 switch (so->so_proto->pr_domain->dom_family) {
328 case AF_INET:
329 case AF_INET6:
330 if (so->so_proto->pr_type == SOCK_STREAM)
331 break;
332 /* FALLTHROUGH */
333 default:
334 sounlock(so);
335 refcnt_finalize(&so->so_refcnt, "sofinal");
336 solock(so);
337 break;
338 }
339
340 sigio_free(&so->so_sigio);
341 klist_free(&so->so_rcv.sb_klist);
342 klist_free(&so->so_snd.sb_klist);
343
344 mtx_enter(&so->so_snd.sb_mtx);
345 sbrelease(so, &so->so_snd);
346 mtx_leave(&so->so_snd.sb_mtx);
347
348 /*
349 * Unlocked dispose and cleanup is safe. Socket is unlinked
350 * from everywhere. Even concurrent sotask() thread will not
351 * call somove().
352 */
353 if (so->so_proto->pr_flags & PR_RIGHTS &&
354 so->so_proto->pr_domain->dom_dispose)
355 (*so->so_proto->pr_domain->dom_dispose)(so->so_rcv.sb_mb);
356 m_purge(so->so_rcv.sb_mb);
357
358 if (!keep_lock)
359 sounlock(so);
360
361 #ifdef SOCKET_SPLICE
362 if (so->so_sp) {
363 /* Reuse splice idle, sounsplice() has been called before. */
364 timeout_set_flags(&so->so_sp->ssp_idleto, soreaper, so,
365 KCLOCK_NONE, TIMEOUT_PROC | TIMEOUT_MPSAFE);
366 timeout_add(&so->so_sp->ssp_idleto, 0);
367 } else
368 #endif /* SOCKET_SPLICE */
369 {
370 pool_put(&socket_pool, so);
371 }
372 }
373
374 static inline uint64_t
solinger_nsec(struct socket * so)375 solinger_nsec(struct socket *so)
376 {
377 if (so->so_linger == 0)
378 return INFSLP;
379
380 return SEC_TO_NSEC(so->so_linger);
381 }
382
383 /*
384 * Close a socket on last file table reference removal.
385 * Initiate disconnect if connected.
386 * Free socket when disconnect complete.
387 */
388 int
soclose(struct socket * so,int flags)389 soclose(struct socket *so, int flags)
390 {
391 struct socket *so2;
392 int error = 0;
393
394 solock(so);
395 /* Revoke async IO early. There is a final revocation in sofree(). */
396 sigio_free(&so->so_sigio);
397 if (so->so_state & SS_ISCONNECTED) {
398 if (so->so_pcb == NULL)
399 goto discard;
400 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
401 error = sodisconnect(so);
402 if (error)
403 goto drop;
404 }
405 if (so->so_options & SO_LINGER) {
406 if ((so->so_state & SS_ISDISCONNECTING) &&
407 (flags & MSG_DONTWAIT))
408 goto drop;
409 while (so->so_state & SS_ISCONNECTED) {
410 error = sosleep_nsec(so, &so->so_timeo,
411 PSOCK | PCATCH, "netcls",
412 solinger_nsec(so));
413 if (error)
414 break;
415 }
416 }
417 }
418 drop:
419 if (so->so_pcb) {
420 int error2;
421 error2 = pru_detach(so);
422 if (error == 0)
423 error = error2;
424 }
425 if (so->so_options & SO_ACCEPTCONN) {
426 int persocket = solock_persocket(so);
427
428 while ((so2 = TAILQ_FIRST(&so->so_q0)) != NULL) {
429 if (persocket)
430 solock(so2);
431 (void) soqremque(so2, 0);
432 if (persocket)
433 sounlock(so);
434 soabort(so2);
435 if (persocket)
436 solock(so);
437 }
438 while ((so2 = TAILQ_FIRST(&so->so_q)) != NULL) {
439 if (persocket)
440 solock(so2);
441 (void) soqremque(so2, 1);
442 if (persocket)
443 sounlock(so);
444 soabort(so2);
445 if (persocket)
446 solock(so);
447 }
448 }
449 discard:
450 if (so->so_state & SS_NOFDREF)
451 panic("soclose NOFDREF: so %p, so_type %d", so, so->so_type);
452 so->so_state |= SS_NOFDREF;
453
454 #ifdef SOCKET_SPLICE
455 if (so->so_sp) {
456 struct socket *soback;
457
458 if (so->so_proto->pr_flags & PR_WANTRCVD) {
459 /*
460 * Copy - Paste, but can't relock and sleep in
461 * sofree() in tcp(4) case. That's why tcp(4)
462 * still rely on solock() for splicing and
463 * unsplicing.
464 */
465
466 if (issplicedback(so)) {
467 int freeing = SOSP_FREEING_WRITE;
468
469 if (so->so_sp->ssp_soback == so)
470 freeing |= SOSP_FREEING_READ;
471 sounsplice(so->so_sp->ssp_soback, so, freeing);
472 }
473 if (isspliced(so)) {
474 int freeing = SOSP_FREEING_READ;
475
476 if (so == so->so_sp->ssp_socket)
477 freeing |= SOSP_FREEING_WRITE;
478 sounsplice(so, so->so_sp->ssp_socket, freeing);
479 }
480 goto free;
481 }
482
483 sounlock(so);
484 mtx_enter(&so->so_snd.sb_mtx);
485 /*
486 * Concurrent sounsplice() locks `sb_mtx' mutexes on
487 * both `so_snd' and `so_rcv' before unsplice sockets.
488 */
489 if ((soback = so->so_sp->ssp_soback) == NULL) {
490 mtx_leave(&so->so_snd.sb_mtx);
491 goto notsplicedback;
492 }
493 soref(soback);
494 mtx_leave(&so->so_snd.sb_mtx);
495
496 /*
497 * `so' can be only unspliced, and never spliced again.
498 * Thus if issplicedback(so) check is positive, socket is
499 * still spliced and `ssp_soback' points to the same
500 * socket that `soback'.
501 */
502 sblock(&soback->so_rcv, SBL_WAIT | SBL_NOINTR);
503 if (issplicedback(so)) {
504 int freeing = SOSP_FREEING_WRITE;
505
506 if (so->so_sp->ssp_soback == so)
507 freeing |= SOSP_FREEING_READ;
508 solock(soback);
509 sounsplice(so->so_sp->ssp_soback, so, freeing);
510 sounlock(soback);
511 }
512 sbunlock(&soback->so_rcv);
513 sorele(soback);
514
515 notsplicedback:
516 sblock(&so->so_rcv, SBL_WAIT | SBL_NOINTR);
517 if (isspliced(so)) {
518 int freeing = SOSP_FREEING_READ;
519
520 if (so == so->so_sp->ssp_socket)
521 freeing |= SOSP_FREEING_WRITE;
522 solock(so);
523 sounsplice(so, so->so_sp->ssp_socket, freeing);
524 sounlock(so);
525 }
526 sbunlock(&so->so_rcv);
527
528 solock(so);
529 }
530 free:
531 #endif /* SOCKET_SPLICE */
532 /* sofree() calls sounlock(). */
533 sofree(so, 0);
534 return (error);
535 }
536
537 void
soabort(struct socket * so)538 soabort(struct socket *so)
539 {
540 soassertlocked(so);
541 pru_abort(so);
542 }
543
544 int
soaccept(struct socket * so,struct mbuf * nam)545 soaccept(struct socket *so, struct mbuf *nam)
546 {
547 int error = 0;
548
549 soassertlocked(so);
550
551 if ((so->so_state & SS_NOFDREF) == 0)
552 panic("soaccept !NOFDREF: so %p, so_type %d", so, so->so_type);
553 so->so_state &= ~SS_NOFDREF;
554 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
555 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
556 error = pru_accept(so, nam);
557 else
558 error = ECONNABORTED;
559 return (error);
560 }
561
562 int
soconnect(struct socket * so,struct mbuf * nam)563 soconnect(struct socket *so, struct mbuf *nam)
564 {
565 int error;
566
567 soassertlocked(so);
568
569 if (so->so_options & SO_ACCEPTCONN)
570 return (EOPNOTSUPP);
571 /*
572 * If protocol is connection-based, can only connect once.
573 * Otherwise, if connected, try to disconnect first.
574 * This allows user to disconnect by connecting to, e.g.,
575 * a null address.
576 */
577 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
578 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
579 (error = sodisconnect(so))))
580 error = EISCONN;
581 else
582 error = pru_connect(so, nam);
583 return (error);
584 }
585
586 int
soconnect2(struct socket * so1,struct socket * so2)587 soconnect2(struct socket *so1, struct socket *so2)
588 {
589 int persocket, error;
590
591 if ((persocket = solock_persocket(so1)))
592 solock_pair(so1, so2);
593 else
594 solock(so1);
595
596 error = pru_connect2(so1, so2);
597
598 if (persocket)
599 sounlock(so2);
600 sounlock(so1);
601 return (error);
602 }
603
604 int
sodisconnect(struct socket * so)605 sodisconnect(struct socket *so)
606 {
607 int error;
608
609 soassertlocked(so);
610
611 if ((so->so_state & SS_ISCONNECTED) == 0)
612 return (ENOTCONN);
613 if (so->so_state & SS_ISDISCONNECTING)
614 return (EALREADY);
615 error = pru_disconnect(so);
616 return (error);
617 }
618
619 int m_getuio(struct mbuf **, int, long, struct uio *);
620
621 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT)
622 /*
623 * Send on a socket.
624 * If send must go all at once and message is larger than
625 * send buffering, then hard error.
626 * Lock against other senders.
627 * If must go all at once and not enough room now, then
628 * inform user that this would block and do nothing.
629 * Otherwise, if nonblocking, send as much as possible.
630 * The data to be sent is described by "uio" if nonzero,
631 * otherwise by the mbuf chain "top" (which must be null
632 * if uio is not). Data provided in mbuf chain must be small
633 * enough to send all at once.
634 *
635 * Returns nonzero on error, timeout or signal; callers
636 * must check for short counts if EINTR/ERESTART are returned.
637 * Data and control buffers are freed on return.
638 */
639 int
sosend(struct socket * so,struct mbuf * addr,struct uio * uio,struct mbuf * top,struct mbuf * control,int flags)640 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
641 struct mbuf *control, int flags)
642 {
643 long space, clen = 0;
644 size_t resid;
645 int error;
646 int atomic = sosendallatonce(so) || top;
647 int dosolock = ((so->so_snd.sb_flags & SB_MTXLOCK) == 0);
648
649 if (uio)
650 resid = uio->uio_resid;
651 else
652 resid = top->m_pkthdr.len;
653 /* MSG_EOR on a SOCK_STREAM socket is invalid. */
654 if (so->so_type == SOCK_STREAM && (flags & MSG_EOR)) {
655 m_freem(top);
656 m_freem(control);
657 return (EINVAL);
658 }
659 if (uio && uio->uio_procp)
660 uio->uio_procp->p_ru.ru_msgsnd++;
661 if (control) {
662 /*
663 * In theory clen should be unsigned (since control->m_len is).
664 * However, space must be signed, as it might be less than 0
665 * if we over-committed, and we must use a signed comparison
666 * of space and clen.
667 */
668 clen = control->m_len;
669 /* reserve extra space for AF_UNIX's internalize */
670 if (so->so_proto->pr_domain->dom_family == AF_UNIX &&
671 clen >= CMSG_ALIGN(sizeof(struct cmsghdr)) &&
672 mtod(control, struct cmsghdr *)->cmsg_type == SCM_RIGHTS)
673 clen = CMSG_SPACE(
674 (clen - CMSG_ALIGN(sizeof(struct cmsghdr))) *
675 (sizeof(struct fdpass) / sizeof(int)));
676 }
677
678 #define snderr(errno) { error = errno; goto release; }
679
680 restart:
681 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
682 goto out;
683 if (dosolock)
684 solock_shared(so);
685 sb_mtx_lock(&so->so_snd);
686 so->so_snd.sb_state |= SS_ISSENDING;
687 do {
688 if (so->so_snd.sb_state & SS_CANTSENDMORE)
689 snderr(EPIPE);
690 if ((error = READ_ONCE(so->so_error))) {
691 so->so_error = 0;
692 snderr(error);
693 }
694 if ((so->so_state & SS_ISCONNECTED) == 0) {
695 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
696 if (!(resid == 0 && clen != 0))
697 snderr(ENOTCONN);
698 } else if (addr == NULL)
699 snderr(EDESTADDRREQ);
700 }
701 space = sbspace_locked(so, &so->so_snd);
702 if (flags & MSG_OOB)
703 space += 1024;
704 if (so->so_proto->pr_domain->dom_family == AF_UNIX) {
705 if (atomic && resid > so->so_snd.sb_hiwat)
706 snderr(EMSGSIZE);
707 } else {
708 if (clen > so->so_snd.sb_hiwat ||
709 (atomic && resid > so->so_snd.sb_hiwat - clen))
710 snderr(EMSGSIZE);
711 }
712 if (space < clen ||
713 (space - clen < resid &&
714 (atomic || space < so->so_snd.sb_lowat))) {
715 if (flags & MSG_DONTWAIT)
716 snderr(EWOULDBLOCK);
717 sbunlock(&so->so_snd);
718 error = sbwait(so, &so->so_snd);
719 so->so_snd.sb_state &= ~SS_ISSENDING;
720 sb_mtx_unlock(&so->so_snd);
721 if (dosolock)
722 sounlock_shared(so);
723 if (error)
724 goto out;
725 goto restart;
726 }
727 space -= clen;
728 do {
729 if (uio == NULL) {
730 /*
731 * Data is prepackaged in "top".
732 */
733 resid = 0;
734 if (flags & MSG_EOR)
735 top->m_flags |= M_EOR;
736 } else {
737 sb_mtx_unlock(&so->so_snd);
738 if (dosolock)
739 sounlock_shared(so);
740 error = m_getuio(&top, atomic, space, uio);
741 if (dosolock)
742 solock_shared(so);
743 sb_mtx_lock(&so->so_snd);
744 if (error)
745 goto release;
746 space -= top->m_pkthdr.len;
747 resid = uio->uio_resid;
748 if (flags & MSG_EOR)
749 top->m_flags |= M_EOR;
750 }
751 if (resid == 0)
752 so->so_snd.sb_state &= ~SS_ISSENDING;
753 if (top && so->so_options & SO_ZEROIZE)
754 top->m_flags |= M_ZEROIZE;
755 sb_mtx_unlock(&so->so_snd);
756 if (!dosolock)
757 solock_shared(so);
758 if (flags & MSG_OOB)
759 error = pru_sendoob(so, top, addr, control);
760 else
761 error = pru_send(so, top, addr, control);
762 if (!dosolock)
763 sounlock_shared(so);
764 sb_mtx_lock(&so->so_snd);
765 clen = 0;
766 control = NULL;
767 top = NULL;
768 if (error)
769 goto release;
770 } while (resid && space > 0);
771 } while (resid);
772
773 release:
774 so->so_snd.sb_state &= ~SS_ISSENDING;
775 sb_mtx_unlock(&so->so_snd);
776 if (dosolock)
777 sounlock_shared(so);
778 sbunlock(&so->so_snd);
779 out:
780 m_freem(top);
781 m_freem(control);
782 return (error);
783 }
784
785 int
m_getuio(struct mbuf ** mp,int atomic,long space,struct uio * uio)786 m_getuio(struct mbuf **mp, int atomic, long space, struct uio *uio)
787 {
788 struct mbuf *m, *top = NULL;
789 struct mbuf **nextp = ⊤
790 u_long len, mlen;
791 size_t resid = uio->uio_resid;
792 int error;
793
794 do {
795 if (top == NULL) {
796 MGETHDR(m, M_WAIT, MT_DATA);
797 mlen = MHLEN;
798 } else {
799 MGET(m, M_WAIT, MT_DATA);
800 mlen = MLEN;
801 }
802 /* chain mbuf together */
803 *nextp = m;
804 nextp = &m->m_next;
805
806 resid = ulmin(resid, space);
807 if (resid >= MINCLSIZE) {
808 MCLGETL(m, M_NOWAIT, ulmin(resid, MAXMCLBYTES));
809 if ((m->m_flags & M_EXT) == 0)
810 MCLGETL(m, M_NOWAIT, MCLBYTES);
811 if ((m->m_flags & M_EXT) == 0)
812 goto nopages;
813 mlen = m->m_ext.ext_size;
814 len = ulmin(mlen, resid);
815 /*
816 * For datagram protocols, leave room
817 * for protocol headers in first mbuf.
818 */
819 if (atomic && m == top && len < mlen - max_hdr)
820 m->m_data += max_hdr;
821 } else {
822 nopages:
823 len = ulmin(mlen, resid);
824 /*
825 * For datagram protocols, leave room
826 * for protocol headers in first mbuf.
827 */
828 if (atomic && m == top && len < mlen - max_hdr)
829 m_align(m, len);
830 }
831
832 error = uiomove(mtod(m, caddr_t), len, uio);
833 if (error) {
834 m_freem(top);
835 return (error);
836 }
837
838 /* adjust counters */
839 resid = uio->uio_resid;
840 space -= len;
841 m->m_len = len;
842 top->m_pkthdr.len += len;
843
844 /* Is there more space and more data? */
845 } while (space > 0 && resid > 0);
846
847 *mp = top;
848 return 0;
849 }
850
851 /*
852 * Following replacement or removal of the first mbuf on the first
853 * mbuf chain of a socket buffer, push necessary state changes back
854 * into the socket buffer so that other consumers see the values
855 * consistently. 'nextrecord' is the callers locally stored value of
856 * the original value of sb->sb_mb->m_nextpkt which must be restored
857 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
858 */
859 void
sbsync(struct sockbuf * sb,struct mbuf * nextrecord)860 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
861 {
862
863 /*
864 * First, update for the new value of nextrecord. If necessary,
865 * make it the first record.
866 */
867 if (sb->sb_mb != NULL)
868 sb->sb_mb->m_nextpkt = nextrecord;
869 else
870 sb->sb_mb = nextrecord;
871
872 /*
873 * Now update any dependent socket buffer fields to reflect
874 * the new state. This is an inline of SB_EMPTY_FIXUP, with
875 * the addition of a second clause that takes care of the
876 * case where sb_mb has been updated, but remains the last
877 * record.
878 */
879 if (sb->sb_mb == NULL) {
880 sb->sb_mbtail = NULL;
881 sb->sb_lastrecord = NULL;
882 } else if (sb->sb_mb->m_nextpkt == NULL)
883 sb->sb_lastrecord = sb->sb_mb;
884 }
885
886 /*
887 * Implement receive operations on a socket.
888 * We depend on the way that records are added to the sockbuf
889 * by sbappend*. In particular, each record (mbufs linked through m_next)
890 * must begin with an address if the protocol so specifies,
891 * followed by an optional mbuf or mbufs containing ancillary data,
892 * and then zero or more mbufs of data.
893 * In order to avoid blocking network for the entire time here, we release
894 * the solock() while doing the actual copy to user space.
895 * Although the sockbuf is locked, new data may still be appended,
896 * and thus we must maintain consistency of the sockbuf during that time.
897 *
898 * The caller may receive the data as a single mbuf chain by supplying
899 * an mbuf **mp0 for use in returning the chain. The uio is then used
900 * only for the count in uio_resid.
901 */
902 int
soreceive(struct socket * so,struct mbuf ** paddr,struct uio * uio,struct mbuf ** mp0,struct mbuf ** controlp,int * flagsp,socklen_t controllen)903 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
904 struct mbuf **mp0, struct mbuf **controlp, int *flagsp,
905 socklen_t controllen)
906 {
907 struct mbuf *m, **mp;
908 struct mbuf *cm;
909 u_long len, offset, moff;
910 int flags, error, error2, type, uio_error = 0;
911 const struct protosw *pr = so->so_proto;
912 struct mbuf *nextrecord;
913 size_t resid, orig_resid = uio->uio_resid;
914 int dosolock = ((so->so_rcv.sb_flags & SB_MTXLOCK) == 0);
915
916 mp = mp0;
917 if (paddr)
918 *paddr = NULL;
919 if (controlp)
920 *controlp = NULL;
921 if (flagsp)
922 flags = *flagsp &~ MSG_EOR;
923 else
924 flags = 0;
925 if (flags & MSG_OOB) {
926 m = m_get(M_WAIT, MT_DATA);
927 solock(so);
928 error = pru_rcvoob(so, m, flags & MSG_PEEK);
929 sounlock(so);
930 if (error)
931 goto bad;
932 do {
933 error = uiomove(mtod(m, caddr_t),
934 ulmin(uio->uio_resid, m->m_len), uio);
935 m = m_free(m);
936 } while (uio->uio_resid && error == 0 && m);
937 bad:
938 m_freem(m);
939 return (error);
940 }
941 if (mp)
942 *mp = NULL;
943
944 restart:
945 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0)
946 return (error);
947 if (dosolock)
948 solock_shared(so);
949 sb_mtx_lock(&so->so_rcv);
950
951 m = so->so_rcv.sb_mb;
952 #ifdef SOCKET_SPLICE
953 if (isspliced(so))
954 m = NULL;
955 #endif /* SOCKET_SPLICE */
956 /*
957 * If we have less data than requested, block awaiting more
958 * (subject to any timeout) if:
959 * 1. the current count is less than the low water mark,
960 * 2. MSG_WAITALL is set, and it is possible to do the entire
961 * receive operation at once if we block (resid <= hiwat), or
962 * 3. MSG_DONTWAIT is not set.
963 * If MSG_WAITALL is set but resid is larger than the receive buffer,
964 * we have to do the receive in sections, and thus risk returning
965 * a short count if a timeout or signal occurs after we start.
966 */
967 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
968 so->so_rcv.sb_cc < uio->uio_resid) &&
969 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
970 ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
971 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
972 #ifdef DIAGNOSTIC
973 if (m == NULL && so->so_rcv.sb_cc)
974 #ifdef SOCKET_SPLICE
975 if (!isspliced(so))
976 #endif /* SOCKET_SPLICE */
977 panic("receive 1: so %p, so_type %d, sb_cc %lu",
978 so, so->so_type, so->so_rcv.sb_cc);
979 #endif
980 if ((error2 = READ_ONCE(so->so_error))) {
981 if (m)
982 goto dontblock;
983 error = error2;
984 if ((flags & MSG_PEEK) == 0)
985 so->so_error = 0;
986 goto release;
987 }
988 if (so->so_rcv.sb_state & SS_CANTRCVMORE) {
989 if (m)
990 goto dontblock;
991 else if (so->so_rcv.sb_cc == 0)
992 goto release;
993 }
994 for (; m; m = m->m_next)
995 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
996 m = so->so_rcv.sb_mb;
997 goto dontblock;
998 }
999 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1000 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1001 error = ENOTCONN;
1002 goto release;
1003 }
1004 if (uio->uio_resid == 0 && controlp == NULL)
1005 goto release;
1006 if (flags & MSG_DONTWAIT) {
1007 error = EWOULDBLOCK;
1008 goto release;
1009 }
1010 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1011 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1012
1013 sbunlock(&so->so_rcv);
1014 error = sbwait(so, &so->so_rcv);
1015 sb_mtx_unlock(&so->so_rcv);
1016 if (dosolock)
1017 sounlock_shared(so);
1018 if (error)
1019 return (error);
1020 goto restart;
1021 }
1022 dontblock:
1023 /*
1024 * On entry here, m points to the first record of the socket buffer.
1025 * From this point onward, we maintain 'nextrecord' as a cache of the
1026 * pointer to the next record in the socket buffer. We must keep the
1027 * various socket buffer pointers and local stack versions of the
1028 * pointers in sync, pushing out modifications before operations that
1029 * may sleep, and re-reading them afterwards.
1030 *
1031 * Otherwise, we will race with the network stack appending new data
1032 * or records onto the socket buffer by using inconsistent/stale
1033 * versions of the field, possibly resulting in socket buffer
1034 * corruption.
1035 */
1036 if (uio->uio_procp)
1037 uio->uio_procp->p_ru.ru_msgrcv++;
1038 KASSERT(m == so->so_rcv.sb_mb);
1039 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1040 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1041 nextrecord = m->m_nextpkt;
1042 if (pr->pr_flags & PR_ADDR) {
1043 #ifdef DIAGNOSTIC
1044 if (m->m_type != MT_SONAME)
1045 panic("receive 1a: so %p, so_type %d, m %p, m_type %d",
1046 so, so->so_type, m, m->m_type);
1047 #endif
1048 orig_resid = 0;
1049 if (flags & MSG_PEEK) {
1050 if (paddr)
1051 *paddr = m_copym(m, 0, m->m_len, M_NOWAIT);
1052 m = m->m_next;
1053 } else {
1054 sbfree(so, &so->so_rcv, m);
1055 if (paddr) {
1056 *paddr = m;
1057 so->so_rcv.sb_mb = m->m_next;
1058 m->m_next = NULL;
1059 m = so->so_rcv.sb_mb;
1060 } else {
1061 so->so_rcv.sb_mb = m_free(m);
1062 m = so->so_rcv.sb_mb;
1063 }
1064 sbsync(&so->so_rcv, nextrecord);
1065 }
1066 }
1067 while (m && m->m_type == MT_CONTROL && error == 0) {
1068 int skip = 0;
1069 if (flags & MSG_PEEK) {
1070 if (mtod(m, struct cmsghdr *)->cmsg_type ==
1071 SCM_RIGHTS) {
1072 /* don't leak internalized SCM_RIGHTS msgs */
1073 skip = 1;
1074 } else if (controlp)
1075 *controlp = m_copym(m, 0, m->m_len, M_NOWAIT);
1076 m = m->m_next;
1077 } else {
1078 sbfree(so, &so->so_rcv, m);
1079 so->so_rcv.sb_mb = m->m_next;
1080 m->m_nextpkt = m->m_next = NULL;
1081 cm = m;
1082 m = so->so_rcv.sb_mb;
1083 sbsync(&so->so_rcv, nextrecord);
1084 if (controlp) {
1085 if (pr->pr_domain->dom_externalize) {
1086 sb_mtx_unlock(&so->so_rcv);
1087 if (dosolock)
1088 sounlock_shared(so);
1089 error =
1090 (*pr->pr_domain->dom_externalize)
1091 (cm, controllen, flags);
1092 if (dosolock)
1093 solock_shared(so);
1094 sb_mtx_lock(&so->so_rcv);
1095 }
1096 *controlp = cm;
1097 } else {
1098 /*
1099 * Dispose of any SCM_RIGHTS message that went
1100 * through the read path rather than recv.
1101 */
1102 if (pr->pr_domain->dom_dispose) {
1103 sb_mtx_unlock(&so->so_rcv);
1104 pr->pr_domain->dom_dispose(cm);
1105 sb_mtx_lock(&so->so_rcv);
1106 }
1107 m_free(cm);
1108 }
1109 }
1110 if (m != NULL)
1111 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1112 else
1113 nextrecord = so->so_rcv.sb_mb;
1114 if (controlp && !skip)
1115 controlp = &(*controlp)->m_next;
1116 orig_resid = 0;
1117 }
1118
1119 /* If m is non-NULL, we have some data to read. */
1120 if (m) {
1121 type = m->m_type;
1122 if (type == MT_OOBDATA)
1123 flags |= MSG_OOB;
1124 if (m->m_flags & M_BCAST)
1125 flags |= MSG_BCAST;
1126 if (m->m_flags & M_MCAST)
1127 flags |= MSG_MCAST;
1128 }
1129 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1130 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1131
1132 moff = 0;
1133 offset = 0;
1134 while (m && uio->uio_resid > 0 && error == 0) {
1135 if (m->m_type == MT_OOBDATA) {
1136 if (type != MT_OOBDATA)
1137 break;
1138 } else if (type == MT_OOBDATA) {
1139 break;
1140 } else if (m->m_type == MT_CONTROL) {
1141 /*
1142 * If there is more than one control message in the
1143 * stream, we do a short read. Next can be received
1144 * or disposed by another system call.
1145 */
1146 break;
1147 #ifdef DIAGNOSTIC
1148 } else if (m->m_type != MT_DATA && m->m_type != MT_HEADER) {
1149 panic("receive 3: so %p, so_type %d, m %p, m_type %d",
1150 so, so->so_type, m, m->m_type);
1151 #endif
1152 }
1153 so->so_rcv.sb_state &= ~SS_RCVATMARK;
1154 len = uio->uio_resid;
1155 if (so->so_oobmark && len > so->so_oobmark - offset)
1156 len = so->so_oobmark - offset;
1157 if (len > m->m_len - moff)
1158 len = m->m_len - moff;
1159 /*
1160 * If mp is set, just pass back the mbufs.
1161 * Otherwise copy them out via the uio, then free.
1162 * Sockbuf must be consistent here (points to current mbuf,
1163 * it points to next record) when we drop priority;
1164 * we must note any additions to the sockbuf when we
1165 * block interrupts again.
1166 */
1167 if (mp == NULL && uio_error == 0) {
1168 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1169 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1170 resid = uio->uio_resid;
1171 sb_mtx_unlock(&so->so_rcv);
1172 if (dosolock)
1173 sounlock_shared(so);
1174 uio_error = uiomove(mtod(m, caddr_t) + moff, len, uio);
1175 if (dosolock)
1176 solock_shared(so);
1177 sb_mtx_lock(&so->so_rcv);
1178 if (uio_error)
1179 uio->uio_resid = resid - len;
1180 } else
1181 uio->uio_resid -= len;
1182 if (len == m->m_len - moff) {
1183 if (m->m_flags & M_EOR)
1184 flags |= MSG_EOR;
1185 if (flags & MSG_PEEK) {
1186 m = m->m_next;
1187 moff = 0;
1188 orig_resid = 0;
1189 } else {
1190 nextrecord = m->m_nextpkt;
1191 sbfree(so, &so->so_rcv, m);
1192 if (mp) {
1193 *mp = m;
1194 mp = &m->m_next;
1195 so->so_rcv.sb_mb = m = m->m_next;
1196 *mp = NULL;
1197 } else {
1198 so->so_rcv.sb_mb = m_free(m);
1199 m = so->so_rcv.sb_mb;
1200 }
1201 /*
1202 * If m != NULL, we also know that
1203 * so->so_rcv.sb_mb != NULL.
1204 */
1205 KASSERT(so->so_rcv.sb_mb == m);
1206 if (m) {
1207 m->m_nextpkt = nextrecord;
1208 if (nextrecord == NULL)
1209 so->so_rcv.sb_lastrecord = m;
1210 } else {
1211 so->so_rcv.sb_mb = nextrecord;
1212 SB_EMPTY_FIXUP(&so->so_rcv);
1213 }
1214 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1215 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1216 }
1217 } else {
1218 if (flags & MSG_PEEK) {
1219 moff += len;
1220 orig_resid = 0;
1221 } else {
1222 if (mp)
1223 *mp = m_copym(m, 0, len, M_WAIT);
1224 m->m_data += len;
1225 m->m_len -= len;
1226 so->so_rcv.sb_cc -= len;
1227 so->so_rcv.sb_datacc -= len;
1228 }
1229 }
1230 if (so->so_oobmark) {
1231 if ((flags & MSG_PEEK) == 0) {
1232 so->so_oobmark -= len;
1233 if (so->so_oobmark == 0) {
1234 so->so_rcv.sb_state |= SS_RCVATMARK;
1235 break;
1236 }
1237 } else {
1238 offset += len;
1239 if (offset == so->so_oobmark)
1240 break;
1241 }
1242 }
1243 if (flags & MSG_EOR)
1244 break;
1245 /*
1246 * If the MSG_WAITALL flag is set (for non-atomic socket),
1247 * we must not quit until "uio->uio_resid == 0" or an error
1248 * termination. If a signal/timeout occurs, return
1249 * with a short count but without error.
1250 * Keep sockbuf locked against other readers.
1251 */
1252 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1253 !sosendallatonce(so) && !nextrecord) {
1254 if (so->so_rcv.sb_state & SS_CANTRCVMORE ||
1255 so->so_error)
1256 break;
1257 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1258 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1259 if (sbwait(so, &so->so_rcv)) {
1260 sb_mtx_unlock(&so->so_rcv);
1261 if (dosolock)
1262 sounlock_shared(so);
1263 sbunlock(&so->so_rcv);
1264 return (0);
1265 }
1266 if ((m = so->so_rcv.sb_mb) != NULL)
1267 nextrecord = m->m_nextpkt;
1268 }
1269 }
1270
1271 if (m && pr->pr_flags & PR_ATOMIC) {
1272 flags |= MSG_TRUNC;
1273 if ((flags & MSG_PEEK) == 0)
1274 (void) sbdroprecord(so, &so->so_rcv);
1275 }
1276 if ((flags & MSG_PEEK) == 0) {
1277 if (m == NULL) {
1278 /*
1279 * First part is an inline SB_EMPTY_FIXUP(). Second
1280 * part makes sure sb_lastrecord is up-to-date if
1281 * there is still data in the socket buffer.
1282 */
1283 so->so_rcv.sb_mb = nextrecord;
1284 if (so->so_rcv.sb_mb == NULL) {
1285 so->so_rcv.sb_mbtail = NULL;
1286 so->so_rcv.sb_lastrecord = NULL;
1287 } else if (nextrecord->m_nextpkt == NULL)
1288 so->so_rcv.sb_lastrecord = nextrecord;
1289 }
1290 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1291 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1292 if (pr->pr_flags & PR_WANTRCVD) {
1293 sb_mtx_unlock(&so->so_rcv);
1294 if (!dosolock)
1295 solock_shared(so);
1296 pru_rcvd(so);
1297 if (!dosolock)
1298 sounlock_shared(so);
1299 sb_mtx_lock(&so->so_rcv);
1300 }
1301 }
1302 if (orig_resid == uio->uio_resid && orig_resid &&
1303 (flags & MSG_EOR) == 0 &&
1304 (so->so_rcv.sb_state & SS_CANTRCVMORE) == 0) {
1305 sb_mtx_unlock(&so->so_rcv);
1306 sbunlock(&so->so_rcv);
1307 goto restart;
1308 }
1309
1310 if (uio_error)
1311 error = uio_error;
1312
1313 if (flagsp)
1314 *flagsp |= flags;
1315 release:
1316 sb_mtx_unlock(&so->so_rcv);
1317 if (dosolock)
1318 sounlock_shared(so);
1319 sbunlock(&so->so_rcv);
1320 return (error);
1321 }
1322
1323 int
soshutdown(struct socket * so,int how)1324 soshutdown(struct socket *so, int how)
1325 {
1326 int error = 0;
1327
1328 switch (how) {
1329 case SHUT_RD:
1330 sorflush(so);
1331 break;
1332 case SHUT_RDWR:
1333 sorflush(so);
1334 /* FALLTHROUGH */
1335 case SHUT_WR:
1336 solock(so);
1337 error = pru_shutdown(so);
1338 sounlock(so);
1339 break;
1340 default:
1341 error = EINVAL;
1342 break;
1343 }
1344
1345 return (error);
1346 }
1347
1348 void
sorflush(struct socket * so)1349 sorflush(struct socket *so)
1350 {
1351 struct sockbuf *sb = &so->so_rcv;
1352 struct mbuf *m;
1353 const struct protosw *pr = so->so_proto;
1354 int error;
1355
1356 error = sblock(sb, SBL_WAIT | SBL_NOINTR);
1357 /* with SBL_WAIT and SLB_NOINTR sblock() must not fail */
1358 KASSERT(error == 0);
1359
1360 solock_shared(so);
1361 socantrcvmore(so);
1362 mtx_enter(&sb->sb_mtx);
1363 m = sb->sb_mb;
1364 memset(&sb->sb_startzero, 0,
1365 (caddr_t)&sb->sb_endzero - (caddr_t)&sb->sb_startzero);
1366 sb->sb_timeo_nsecs = INFSLP;
1367 mtx_leave(&sb->sb_mtx);
1368 sounlock_shared(so);
1369 sbunlock(sb);
1370
1371 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
1372 (*pr->pr_domain->dom_dispose)(m);
1373 m_purge(m);
1374 }
1375
1376 #ifdef SOCKET_SPLICE
1377
1378 #define so_splicelen so_sp->ssp_len
1379 #define so_splicemax so_sp->ssp_max
1380 #define so_idletv so_sp->ssp_idletv
1381 #define so_idleto so_sp->ssp_idleto
1382 #define so_splicetask so_sp->ssp_task
1383
1384 int
sosplice(struct socket * so,int fd,off_t max,struct timeval * tv)1385 sosplice(struct socket *so, int fd, off_t max, struct timeval *tv)
1386 {
1387 struct file *fp;
1388 struct socket *sosp;
1389 struct taskq *tq;
1390 int error = 0;
1391
1392 if ((so->so_proto->pr_flags & PR_SPLICE) == 0)
1393 return (EPROTONOSUPPORT);
1394 if (max && max < 0)
1395 return (EINVAL);
1396 if (tv && (tv->tv_sec < 0 || !timerisvalid(tv)))
1397 return (EINVAL);
1398
1399 /* If no fd is given, unsplice by removing existing link. */
1400 if (fd < 0) {
1401 if ((error = sblock(&so->so_rcv, SBL_WAIT)) != 0)
1402 return (error);
1403 solock(so);
1404 if (so->so_options & SO_ACCEPTCONN) {
1405 error = EOPNOTSUPP;
1406 goto out;
1407 }
1408 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1409 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1410 error = ENOTCONN;
1411 goto out;
1412 }
1413
1414 if (so->so_sp && so->so_sp->ssp_socket)
1415 sounsplice(so, so->so_sp->ssp_socket, 0);
1416 out:
1417 sounlock(so);
1418 sbunlock(&so->so_rcv);
1419 return (error);
1420 }
1421
1422 if (sosplice_taskq == NULL) {
1423 rw_enter_write(&sosplice_lock);
1424 if (sosplice_taskq == NULL) {
1425 tq = taskq_create("sosplice", 1, IPL_SOFTNET,
1426 TASKQ_MPSAFE);
1427 if (tq == NULL) {
1428 rw_exit_write(&sosplice_lock);
1429 return (ENOMEM);
1430 }
1431 /* Ensure the taskq is fully visible to other CPUs. */
1432 membar_producer();
1433 sosplice_taskq = tq;
1434 }
1435 rw_exit_write(&sosplice_lock);
1436 } else {
1437 /* Ensure the taskq is fully visible on this CPU. */
1438 membar_consumer();
1439 }
1440
1441 /* Find sosp, the drain socket where data will be spliced into. */
1442 if ((error = getsock(curproc, fd, &fp)) != 0)
1443 return (error);
1444 sosp = fp->f_data;
1445
1446 if (sosp->so_proto->pr_usrreqs->pru_send !=
1447 so->so_proto->pr_usrreqs->pru_send) {
1448 error = EPROTONOSUPPORT;
1449 goto frele;
1450 }
1451
1452 if ((error = sblock(&so->so_rcv, SBL_WAIT)) != 0)
1453 goto frele;
1454 if ((error = sblock(&sosp->so_snd, SBL_WAIT)) != 0) {
1455 sbunlock(&so->so_rcv);
1456 goto frele;
1457 }
1458 solock(so);
1459
1460 if ((so->so_options & SO_ACCEPTCONN) ||
1461 (sosp->so_options & SO_ACCEPTCONN)) {
1462 error = EOPNOTSUPP;
1463 goto release;
1464 }
1465 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1466 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1467 error = ENOTCONN;
1468 goto release;
1469 }
1470 if ((sosp->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0) {
1471 error = ENOTCONN;
1472 goto release;
1473 }
1474 if (so->so_sp == NULL)
1475 so->so_sp = pool_get(&sosplice_pool, PR_WAITOK | PR_ZERO);
1476 if (sosp->so_sp == NULL)
1477 sosp->so_sp = pool_get(&sosplice_pool, PR_WAITOK | PR_ZERO);
1478 if (so->so_sp->ssp_socket || sosp->so_sp->ssp_soback) {
1479 error = EBUSY;
1480 goto release;
1481 }
1482
1483 so->so_splicelen = 0;
1484 so->so_splicemax = max;
1485 if (tv)
1486 so->so_idletv = *tv;
1487 else
1488 timerclear(&so->so_idletv);
1489 timeout_set_flags(&so->so_idleto, soidle, so,
1490 KCLOCK_NONE, TIMEOUT_PROC | TIMEOUT_MPSAFE);
1491 task_set(&so->so_splicetask, sotask, so);
1492
1493 /*
1494 * To prevent sorwakeup() calling somove() before this somove()
1495 * has finished, the socket buffers are not marked as spliced yet.
1496 */
1497
1498 /* Splice so and sosp together. */
1499 mtx_enter(&so->so_rcv.sb_mtx);
1500 mtx_enter(&sosp->so_snd.sb_mtx);
1501 so->so_sp->ssp_socket = sosp;
1502 sosp->so_sp->ssp_soback = so;
1503 mtx_leave(&sosp->so_snd.sb_mtx);
1504 mtx_leave(&so->so_rcv.sb_mtx);
1505
1506 if ((so->so_proto->pr_flags & PR_WANTRCVD) == 0)
1507 sounlock(so);
1508 if (somove(so, M_WAIT)) {
1509 mtx_enter(&so->so_rcv.sb_mtx);
1510 mtx_enter(&sosp->so_snd.sb_mtx);
1511 so->so_rcv.sb_flags |= SB_SPLICE;
1512 sosp->so_snd.sb_flags |= SB_SPLICE;
1513 mtx_leave(&sosp->so_snd.sb_mtx);
1514 mtx_leave(&so->so_rcv.sb_mtx);
1515 }
1516 if ((so->so_proto->pr_flags & PR_WANTRCVD) == 0)
1517 solock(so);
1518
1519 release:
1520 sounlock(so);
1521 sbunlock(&sosp->so_snd);
1522 sbunlock(&so->so_rcv);
1523 frele:
1524 FRELE(fp, curproc);
1525
1526 return (error);
1527 }
1528
1529 void
sounsplice(struct socket * so,struct socket * sosp,int freeing)1530 sounsplice(struct socket *so, struct socket *sosp, int freeing)
1531 {
1532 if ((so->so_proto->pr_flags & PR_WANTRCVD) == 0)
1533 sbassertlocked(&so->so_rcv);
1534 soassertlocked(so);
1535
1536 task_del(sosplice_taskq, &so->so_splicetask);
1537 timeout_del(&so->so_idleto);
1538
1539 mtx_enter(&so->so_rcv.sb_mtx);
1540 mtx_enter(&sosp->so_snd.sb_mtx);
1541 so->so_rcv.sb_flags &= ~SB_SPLICE;
1542 sosp->so_snd.sb_flags &= ~SB_SPLICE;
1543 so->so_sp->ssp_socket = sosp->so_sp->ssp_soback = NULL;
1544 mtx_leave(&sosp->so_snd.sb_mtx);
1545 mtx_leave(&so->so_rcv.sb_mtx);
1546
1547 /* Do not wakeup a socket that is about to be freed. */
1548 if ((freeing & SOSP_FREEING_READ) == 0 && soreadable(so))
1549 sorwakeup(so);
1550 if ((freeing & SOSP_FREEING_WRITE) == 0 && sowriteable(sosp))
1551 sowwakeup(sosp);
1552 }
1553
1554 void
soidle(void * arg)1555 soidle(void *arg)
1556 {
1557 struct socket *so = arg;
1558
1559 sblock(&so->so_rcv, SBL_WAIT | SBL_NOINTR);
1560 solock(so);
1561 /*
1562 * Depending on socket type, sblock(&so->so_rcv) or solock()
1563 * is always held while modifying SB_SPLICE and
1564 * so->so_sp->ssp_socket.
1565 */
1566 if (so->so_rcv.sb_flags & SB_SPLICE) {
1567 so->so_error = ETIMEDOUT;
1568 sounsplice(so, so->so_sp->ssp_socket, 0);
1569 }
1570 sounlock(so);
1571 sbunlock(&so->so_rcv);
1572 }
1573
1574 void
sotask(void * arg)1575 sotask(void *arg)
1576 {
1577 struct socket *so = arg;
1578 int doyield = 0;
1579 int sockstream = (so->so_proto->pr_flags & PR_WANTRCVD);
1580
1581 /*
1582 * sblock() on `so_rcv' protects sockets from being unspliced
1583 * for UDP case. TCP sockets still rely on solock().
1584 */
1585
1586 sblock(&so->so_rcv, SBL_WAIT | SBL_NOINTR);
1587 if (sockstream)
1588 solock(so);
1589
1590 if (so->so_rcv.sb_flags & SB_SPLICE) {
1591 if (sockstream)
1592 doyield = 1;
1593 somove(so, M_DONTWAIT);
1594 }
1595
1596 if (sockstream)
1597 sounlock(so);
1598 sbunlock(&so->so_rcv);
1599
1600 if (doyield) {
1601 /* Avoid user land starvation. */
1602 yield();
1603 }
1604 }
1605
1606 /*
1607 * The socket splicing task or idle timeout may sleep while grabbing the net
1608 * lock. As sofree() can be called anytime, sotask() or soidle() could access
1609 * the socket memory of a freed socket after wakeup. So delay the pool_put()
1610 * after all pending socket splicing tasks or timeouts have finished. Do this
1611 * by scheduling it on the same threads.
1612 */
1613 void
soreaper(void * arg)1614 soreaper(void *arg)
1615 {
1616 struct socket *so = arg;
1617
1618 /* Reuse splice task, sounsplice() has been called before. */
1619 task_set(&so->so_sp->ssp_task, soput, so);
1620 task_add(sosplice_taskq, &so->so_sp->ssp_task);
1621 }
1622
1623 void
soput(void * arg)1624 soput(void *arg)
1625 {
1626 struct socket *so = arg;
1627
1628 pool_put(&sosplice_pool, so->so_sp);
1629 pool_put(&socket_pool, so);
1630 }
1631
1632 /*
1633 * Move data from receive buffer of spliced source socket to send
1634 * buffer of drain socket. Try to move as much as possible in one
1635 * big chunk. It is a TCP only implementation.
1636 * Return value 0 means splicing has been finished, 1 continue.
1637 */
1638 int
somove(struct socket * so,int wait)1639 somove(struct socket *so, int wait)
1640 {
1641 struct socket *sosp = so->so_sp->ssp_socket;
1642 struct mbuf *m, **mp, *nextrecord;
1643 u_long len, off, oobmark;
1644 long space;
1645 int error = 0, maxreached = 0, unsplice = 0;
1646 unsigned int rcvstate;
1647 int sockdgram = ((so->so_proto->pr_flags &
1648 PR_WANTRCVD) == 0);
1649
1650 if (sockdgram)
1651 sbassertlocked(&so->so_rcv);
1652 else
1653 soassertlocked(so);
1654
1655 mtx_enter(&so->so_rcv.sb_mtx);
1656 mtx_enter(&sosp->so_snd.sb_mtx);
1657
1658 nextpkt:
1659 if ((error = READ_ONCE(so->so_error)))
1660 goto release;
1661 if (sosp->so_snd.sb_state & SS_CANTSENDMORE) {
1662 error = EPIPE;
1663 goto release;
1664 }
1665
1666 error = READ_ONCE(sosp->so_error);
1667 if (error) {
1668 if (error != ETIMEDOUT && error != EFBIG && error != ELOOP)
1669 goto release;
1670 error = 0;
1671 }
1672 if ((sosp->so_state & SS_ISCONNECTED) == 0)
1673 goto release;
1674
1675 /* Calculate how many bytes can be copied now. */
1676 len = so->so_rcv.sb_datacc;
1677 if (so->so_splicemax) {
1678 KASSERT(so->so_splicelen < so->so_splicemax);
1679 if (so->so_splicemax <= so->so_splicelen + len) {
1680 len = so->so_splicemax - so->so_splicelen;
1681 maxreached = 1;
1682 }
1683 }
1684 space = sbspace_locked(sosp, &sosp->so_snd);
1685 if (so->so_oobmark && so->so_oobmark < len &&
1686 so->so_oobmark < space + 1024)
1687 space += 1024;
1688 if (space <= 0) {
1689 maxreached = 0;
1690 goto release;
1691 }
1692 if (space < len) {
1693 maxreached = 0;
1694 if (space < sosp->so_snd.sb_lowat)
1695 goto release;
1696 len = space;
1697 }
1698 sosp->so_snd.sb_state |= SS_ISSENDING;
1699
1700 SBLASTRECORDCHK(&so->so_rcv, "somove 1");
1701 SBLASTMBUFCHK(&so->so_rcv, "somove 1");
1702 m = so->so_rcv.sb_mb;
1703 if (m == NULL)
1704 goto release;
1705 nextrecord = m->m_nextpkt;
1706
1707 /* Drop address and control information not used with splicing. */
1708 if (so->so_proto->pr_flags & PR_ADDR) {
1709 #ifdef DIAGNOSTIC
1710 if (m->m_type != MT_SONAME)
1711 panic("somove soname: so %p, so_type %d, m %p, "
1712 "m_type %d", so, so->so_type, m, m->m_type);
1713 #endif
1714 m = m->m_next;
1715 }
1716 while (m && m->m_type == MT_CONTROL)
1717 m = m->m_next;
1718 if (m == NULL) {
1719 sbdroprecord(so, &so->so_rcv);
1720 if (so->so_proto->pr_flags & PR_WANTRCVD) {
1721 mtx_leave(&sosp->so_snd.sb_mtx);
1722 mtx_leave(&so->so_rcv.sb_mtx);
1723 pru_rcvd(so);
1724 mtx_enter(&so->so_rcv.sb_mtx);
1725 mtx_enter(&sosp->so_snd.sb_mtx);
1726 }
1727 goto nextpkt;
1728 }
1729
1730 /*
1731 * By splicing sockets connected to localhost, userland might create a
1732 * loop. Dissolve splicing with error if loop is detected by counter.
1733 *
1734 * If we deal with looped broadcast/multicast packet we bail out with
1735 * no error to suppress splice termination.
1736 */
1737 if ((m->m_flags & M_PKTHDR) &&
1738 ((m->m_pkthdr.ph_loopcnt++ >= M_MAXLOOP) ||
1739 ((m->m_flags & M_LOOP) && (m->m_flags & (M_BCAST|M_MCAST))))) {
1740 error = ELOOP;
1741 goto release;
1742 }
1743
1744 if (so->so_proto->pr_flags & PR_ATOMIC) {
1745 if ((m->m_flags & M_PKTHDR) == 0)
1746 panic("somove !PKTHDR: so %p, so_type %d, m %p, "
1747 "m_type %d", so, so->so_type, m, m->m_type);
1748 if (sosp->so_snd.sb_hiwat < m->m_pkthdr.len) {
1749 error = EMSGSIZE;
1750 goto release;
1751 }
1752 if (len < m->m_pkthdr.len)
1753 goto release;
1754 if (m->m_pkthdr.len < len) {
1755 maxreached = 0;
1756 len = m->m_pkthdr.len;
1757 }
1758 /*
1759 * Throw away the name mbuf after it has been assured
1760 * that the whole first record can be processed.
1761 */
1762 m = so->so_rcv.sb_mb;
1763 sbfree(so, &so->so_rcv, m);
1764 so->so_rcv.sb_mb = m_free(m);
1765 sbsync(&so->so_rcv, nextrecord);
1766 }
1767 /*
1768 * Throw away the control mbufs after it has been assured
1769 * that the whole first record can be processed.
1770 */
1771 m = so->so_rcv.sb_mb;
1772 while (m && m->m_type == MT_CONTROL) {
1773 sbfree(so, &so->so_rcv, m);
1774 so->so_rcv.sb_mb = m_free(m);
1775 m = so->so_rcv.sb_mb;
1776 sbsync(&so->so_rcv, nextrecord);
1777 }
1778
1779 SBLASTRECORDCHK(&so->so_rcv, "somove 2");
1780 SBLASTMBUFCHK(&so->so_rcv, "somove 2");
1781
1782 /* Take at most len mbufs out of receive buffer. */
1783 for (off = 0, mp = &m; off <= len && *mp;
1784 off += (*mp)->m_len, mp = &(*mp)->m_next) {
1785 u_long size = len - off;
1786
1787 #ifdef DIAGNOSTIC
1788 if ((*mp)->m_type != MT_DATA && (*mp)->m_type != MT_HEADER)
1789 panic("somove type: so %p, so_type %d, m %p, "
1790 "m_type %d", so, so->so_type, *mp, (*mp)->m_type);
1791 #endif
1792 if ((*mp)->m_len > size) {
1793 /*
1794 * Move only a partial mbuf at maximum splice length or
1795 * if the drain buffer is too small for this large mbuf.
1796 */
1797 if (!maxreached && sosp->so_snd.sb_datacc > 0) {
1798 len -= size;
1799 break;
1800 }
1801 *mp = m_copym(so->so_rcv.sb_mb, 0, size, wait);
1802 if (*mp == NULL) {
1803 len -= size;
1804 break;
1805 }
1806 so->so_rcv.sb_mb->m_data += size;
1807 so->so_rcv.sb_mb->m_len -= size;
1808 so->so_rcv.sb_cc -= size;
1809 so->so_rcv.sb_datacc -= size;
1810 } else {
1811 *mp = so->so_rcv.sb_mb;
1812 sbfree(so, &so->so_rcv, *mp);
1813 so->so_rcv.sb_mb = (*mp)->m_next;
1814 sbsync(&so->so_rcv, nextrecord);
1815 }
1816 }
1817 *mp = NULL;
1818
1819 SBLASTRECORDCHK(&so->so_rcv, "somove 3");
1820 SBLASTMBUFCHK(&so->so_rcv, "somove 3");
1821 SBCHECK(so, &so->so_rcv);
1822 if (m == NULL)
1823 goto release;
1824 m->m_nextpkt = NULL;
1825 if (m->m_flags & M_PKTHDR) {
1826 m_resethdr(m);
1827 m->m_pkthdr.len = len;
1828 }
1829
1830 /* Send window update to source peer as receive buffer has changed. */
1831 if (so->so_proto->pr_flags & PR_WANTRCVD) {
1832 mtx_leave(&sosp->so_snd.sb_mtx);
1833 mtx_leave(&so->so_rcv.sb_mtx);
1834 pru_rcvd(so);
1835 mtx_enter(&so->so_rcv.sb_mtx);
1836 mtx_enter(&sosp->so_snd.sb_mtx);
1837 }
1838
1839 /* Receive buffer did shrink by len bytes, adjust oob. */
1840 rcvstate = so->so_rcv.sb_state;
1841 so->so_rcv.sb_state &= ~SS_RCVATMARK;
1842 oobmark = so->so_oobmark;
1843 so->so_oobmark = oobmark > len ? oobmark - len : 0;
1844 if (oobmark) {
1845 if (oobmark == len)
1846 so->so_rcv.sb_state |= SS_RCVATMARK;
1847 if (oobmark >= len)
1848 oobmark = 0;
1849 }
1850
1851 /*
1852 * Handle oob data. If any malloc fails, ignore error.
1853 * TCP urgent data is not very reliable anyway.
1854 */
1855 while (((rcvstate & SS_RCVATMARK) || oobmark) &&
1856 (so->so_options & SO_OOBINLINE)) {
1857 struct mbuf *o = NULL;
1858
1859 if (rcvstate & SS_RCVATMARK) {
1860 o = m_get(wait, MT_DATA);
1861 rcvstate &= ~SS_RCVATMARK;
1862 } else if (oobmark) {
1863 o = m_split(m, oobmark, wait);
1864 if (o) {
1865 mtx_leave(&sosp->so_snd.sb_mtx);
1866 mtx_leave(&so->so_rcv.sb_mtx);
1867 error = pru_send(sosp, m, NULL, NULL);
1868 mtx_enter(&so->so_rcv.sb_mtx);
1869 mtx_enter(&sosp->so_snd.sb_mtx);
1870
1871 if (error) {
1872 if (sosp->so_snd.sb_state &
1873 SS_CANTSENDMORE)
1874 error = EPIPE;
1875 m_freem(o);
1876 goto release;
1877 }
1878 len -= oobmark;
1879 so->so_splicelen += oobmark;
1880 m = o;
1881 o = m_get(wait, MT_DATA);
1882 }
1883 oobmark = 0;
1884 }
1885 if (o) {
1886 o->m_len = 1;
1887 *mtod(o, caddr_t) = *mtod(m, caddr_t);
1888
1889 mtx_leave(&sosp->so_snd.sb_mtx);
1890 mtx_leave(&so->so_rcv.sb_mtx);
1891 error = pru_sendoob(sosp, o, NULL, NULL);
1892 mtx_enter(&so->so_rcv.sb_mtx);
1893 mtx_enter(&sosp->so_snd.sb_mtx);
1894
1895 if (error) {
1896 if (sosp->so_snd.sb_state & SS_CANTSENDMORE)
1897 error = EPIPE;
1898 m_freem(m);
1899 goto release;
1900 }
1901 len -= 1;
1902 so->so_splicelen += 1;
1903 if (oobmark) {
1904 oobmark -= 1;
1905 if (oobmark == 0)
1906 rcvstate |= SS_RCVATMARK;
1907 }
1908 m_adj(m, 1);
1909 }
1910 }
1911
1912 /* Append all remaining data to drain socket. */
1913 if (so->so_rcv.sb_cc == 0 || maxreached)
1914 sosp->so_snd.sb_state &= ~SS_ISSENDING;
1915
1916 mtx_leave(&sosp->so_snd.sb_mtx);
1917 mtx_leave(&so->so_rcv.sb_mtx);
1918
1919 if (sockdgram)
1920 solock_shared(sosp);
1921 error = pru_send(sosp, m, NULL, NULL);
1922 if (sockdgram)
1923 sounlock_shared(sosp);
1924
1925 mtx_enter(&so->so_rcv.sb_mtx);
1926 mtx_enter(&sosp->so_snd.sb_mtx);
1927
1928 if (error) {
1929 if (sosp->so_snd.sb_state & SS_CANTSENDMORE ||
1930 sosp->so_pcb == NULL)
1931 error = EPIPE;
1932 goto release;
1933 }
1934 so->so_splicelen += len;
1935
1936 /* Move several packets if possible. */
1937 if (!maxreached && nextrecord)
1938 goto nextpkt;
1939
1940 release:
1941 sosp->so_snd.sb_state &= ~SS_ISSENDING;
1942
1943 if (!error && maxreached && so->so_splicemax == so->so_splicelen)
1944 error = EFBIG;
1945 if (error)
1946 WRITE_ONCE(so->so_error, error);
1947
1948 if (((so->so_rcv.sb_state & SS_CANTRCVMORE) &&
1949 so->so_rcv.sb_cc == 0) ||
1950 (sosp->so_snd.sb_state & SS_CANTSENDMORE) ||
1951 maxreached || error)
1952 unsplice = 1;
1953
1954 mtx_leave(&sosp->so_snd.sb_mtx);
1955 mtx_leave(&so->so_rcv.sb_mtx);
1956
1957 if (unsplice) {
1958 if (sockdgram)
1959 solock(so);
1960 sounsplice(so, sosp, 0);
1961 if (sockdgram)
1962 sounlock(so);
1963
1964 return (0);
1965 }
1966 if (timerisset(&so->so_idletv))
1967 timeout_add_tv(&so->so_idleto, &so->so_idletv);
1968 return (1);
1969 }
1970 #endif /* SOCKET_SPLICE */
1971
1972 void
sorwakeup(struct socket * so)1973 sorwakeup(struct socket *so)
1974 {
1975 if ((so->so_rcv.sb_flags & SB_MTXLOCK) == 0)
1976 soassertlocked_readonly(so);
1977
1978 #ifdef SOCKET_SPLICE
1979 if (so->so_proto->pr_flags & PR_SPLICE) {
1980 sb_mtx_lock(&so->so_rcv);
1981 if (so->so_rcv.sb_flags & SB_SPLICE)
1982 task_add(sosplice_taskq, &so->so_splicetask);
1983 if (isspliced(so)) {
1984 sb_mtx_unlock(&so->so_rcv);
1985 return;
1986 }
1987 sb_mtx_unlock(&so->so_rcv);
1988 }
1989 #endif
1990 sowakeup(so, &so->so_rcv);
1991 if (so->so_upcall)
1992 (*(so->so_upcall))(so, so->so_upcallarg, M_DONTWAIT);
1993 }
1994
1995 void
sowwakeup(struct socket * so)1996 sowwakeup(struct socket *so)
1997 {
1998 if ((so->so_snd.sb_flags & SB_MTXLOCK) == 0)
1999 soassertlocked_readonly(so);
2000
2001 #ifdef SOCKET_SPLICE
2002 if (so->so_proto->pr_flags & PR_SPLICE) {
2003 sb_mtx_lock(&so->so_snd);
2004 if (so->so_snd.sb_flags & SB_SPLICE)
2005 task_add(sosplice_taskq,
2006 &so->so_sp->ssp_soback->so_splicetask);
2007 if (issplicedback(so)) {
2008 sb_mtx_unlock(&so->so_snd);
2009 return;
2010 }
2011 sb_mtx_unlock(&so->so_snd);
2012 }
2013 #endif
2014 sowakeup(so, &so->so_snd);
2015 }
2016
2017 int
sosetopt(struct socket * so,int level,int optname,struct mbuf * m)2018 sosetopt(struct socket *so, int level, int optname, struct mbuf *m)
2019 {
2020 int error = 0;
2021
2022 if (level != SOL_SOCKET) {
2023 if (so->so_proto->pr_ctloutput) {
2024 solock(so);
2025 error = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so,
2026 level, optname, m);
2027 sounlock(so);
2028 return (error);
2029 }
2030 error = ENOPROTOOPT;
2031 } else {
2032 switch (optname) {
2033
2034 case SO_LINGER:
2035 if (m == NULL || m->m_len != sizeof (struct linger) ||
2036 mtod(m, struct linger *)->l_linger < 0 ||
2037 mtod(m, struct linger *)->l_linger > SHRT_MAX)
2038 return (EINVAL);
2039
2040 solock(so);
2041 so->so_linger = mtod(m, struct linger *)->l_linger;
2042 if (*mtod(m, int *))
2043 so->so_options |= optname;
2044 else
2045 so->so_options &= ~optname;
2046 sounlock(so);
2047
2048 break;
2049 case SO_BINDANY:
2050 if ((error = suser(curproc)) != 0) /* XXX */
2051 return (error);
2052 /* FALLTHROUGH */
2053
2054 case SO_DEBUG:
2055 case SO_KEEPALIVE:
2056 case SO_USELOOPBACK:
2057 case SO_BROADCAST:
2058 case SO_REUSEADDR:
2059 case SO_REUSEPORT:
2060 case SO_OOBINLINE:
2061 case SO_TIMESTAMP:
2062 case SO_ZEROIZE:
2063 if (m == NULL || m->m_len < sizeof (int))
2064 return (EINVAL);
2065
2066 solock(so);
2067 if (*mtod(m, int *))
2068 so->so_options |= optname;
2069 else
2070 so->so_options &= ~optname;
2071 sounlock(so);
2072
2073 break;
2074 case SO_DONTROUTE:
2075 if (m == NULL || m->m_len < sizeof (int))
2076 return (EINVAL);
2077 if (*mtod(m, int *))
2078 error = EOPNOTSUPP;
2079 break;
2080
2081 case SO_SNDBUF:
2082 case SO_RCVBUF:
2083 case SO_SNDLOWAT:
2084 case SO_RCVLOWAT:
2085 {
2086 struct sockbuf *sb = (optname == SO_SNDBUF ||
2087 optname == SO_SNDLOWAT ?
2088 &so->so_snd : &so->so_rcv);
2089 u_long cnt;
2090
2091 if (m == NULL || m->m_len < sizeof (int))
2092 return (EINVAL);
2093 cnt = *mtod(m, int *);
2094 if ((long)cnt <= 0)
2095 cnt = 1;
2096
2097 if (((sb->sb_flags & SB_MTXLOCK) == 0))
2098 solock(so);
2099 mtx_enter(&sb->sb_mtx);
2100
2101 switch (optname) {
2102 case SO_SNDBUF:
2103 case SO_RCVBUF:
2104 if (sb->sb_state &
2105 (SS_CANTSENDMORE | SS_CANTRCVMORE)) {
2106 error = EINVAL;
2107 break;
2108 }
2109 if (sbcheckreserve(cnt, sb->sb_wat) ||
2110 sbreserve(so, sb, cnt)) {
2111 error = ENOBUFS;
2112 break;
2113 }
2114 sb->sb_wat = cnt;
2115 break;
2116 case SO_SNDLOWAT:
2117 case SO_RCVLOWAT:
2118 sb->sb_lowat = (cnt > sb->sb_hiwat) ?
2119 sb->sb_hiwat : cnt;
2120 break;
2121 }
2122
2123 mtx_leave(&sb->sb_mtx);
2124 if (((sb->sb_flags & SB_MTXLOCK) == 0))
2125 sounlock(so);
2126
2127 break;
2128 }
2129
2130 case SO_SNDTIMEO:
2131 case SO_RCVTIMEO:
2132 {
2133 struct sockbuf *sb = (optname == SO_SNDTIMEO ?
2134 &so->so_snd : &so->so_rcv);
2135 struct timeval tv;
2136 uint64_t nsecs;
2137
2138 if (m == NULL || m->m_len < sizeof (tv))
2139 return (EINVAL);
2140 memcpy(&tv, mtod(m, struct timeval *), sizeof tv);
2141 if (!timerisvalid(&tv))
2142 return (EINVAL);
2143 nsecs = TIMEVAL_TO_NSEC(&tv);
2144 if (nsecs == UINT64_MAX)
2145 return (EDOM);
2146 if (nsecs == 0)
2147 nsecs = INFSLP;
2148
2149 mtx_enter(&sb->sb_mtx);
2150 sb->sb_timeo_nsecs = nsecs;
2151 mtx_leave(&sb->sb_mtx);
2152 break;
2153 }
2154
2155 case SO_RTABLE:
2156 if (so->so_proto->pr_domain &&
2157 so->so_proto->pr_domain->dom_protosw &&
2158 so->so_proto->pr_ctloutput) {
2159 const struct domain *dom =
2160 so->so_proto->pr_domain;
2161
2162 level = dom->dom_protosw->pr_protocol;
2163 solock(so);
2164 error = (*so->so_proto->pr_ctloutput)
2165 (PRCO_SETOPT, so, level, optname, m);
2166 sounlock(so);
2167 } else
2168 error = ENOPROTOOPT;
2169 break;
2170 #ifdef SOCKET_SPLICE
2171 case SO_SPLICE:
2172 if (m == NULL) {
2173 error = sosplice(so, -1, 0, NULL);
2174 } else if (m->m_len < sizeof(int)) {
2175 error = EINVAL;
2176 } else if (m->m_len < sizeof(struct splice)) {
2177 error = sosplice(so, *mtod(m, int *), 0, NULL);
2178 } else {
2179 error = sosplice(so,
2180 mtod(m, struct splice *)->sp_fd,
2181 mtod(m, struct splice *)->sp_max,
2182 &mtod(m, struct splice *)->sp_idle);
2183 }
2184 break;
2185 #endif /* SOCKET_SPLICE */
2186
2187 default:
2188 error = ENOPROTOOPT;
2189 break;
2190 }
2191 }
2192
2193 return (error);
2194 }
2195
2196 int
sogetopt(struct socket * so,int level,int optname,struct mbuf * m)2197 sogetopt(struct socket *so, int level, int optname, struct mbuf *m)
2198 {
2199 int error = 0;
2200
2201 if (level != SOL_SOCKET) {
2202 if (so->so_proto->pr_ctloutput) {
2203 m->m_len = 0;
2204
2205 solock(so);
2206 error = (*so->so_proto->pr_ctloutput)(PRCO_GETOPT, so,
2207 level, optname, m);
2208 sounlock(so);
2209 return (error);
2210 } else
2211 return (ENOPROTOOPT);
2212 } else {
2213 m->m_len = sizeof (int);
2214
2215 switch (optname) {
2216
2217 case SO_LINGER:
2218 m->m_len = sizeof (struct linger);
2219 solock_shared(so);
2220 mtod(m, struct linger *)->l_onoff =
2221 so->so_options & SO_LINGER;
2222 mtod(m, struct linger *)->l_linger = so->so_linger;
2223 sounlock_shared(so);
2224 break;
2225
2226 case SO_BINDANY:
2227 case SO_USELOOPBACK:
2228 case SO_DEBUG:
2229 case SO_KEEPALIVE:
2230 case SO_REUSEADDR:
2231 case SO_REUSEPORT:
2232 case SO_BROADCAST:
2233 case SO_OOBINLINE:
2234 case SO_ACCEPTCONN:
2235 case SO_TIMESTAMP:
2236 case SO_ZEROIZE:
2237 *mtod(m, int *) = so->so_options & optname;
2238 break;
2239
2240 case SO_DONTROUTE:
2241 *mtod(m, int *) = 0;
2242 break;
2243
2244 case SO_TYPE:
2245 *mtod(m, int *) = so->so_type;
2246 break;
2247
2248 case SO_ERROR:
2249 solock(so);
2250 *mtod(m, int *) = so->so_error;
2251 so->so_error = 0;
2252 sounlock(so);
2253
2254 break;
2255
2256 case SO_DOMAIN:
2257 *mtod(m, int *) = so->so_proto->pr_domain->dom_family;
2258 break;
2259
2260 case SO_PROTOCOL:
2261 *mtod(m, int *) = so->so_proto->pr_protocol;
2262 break;
2263
2264 case SO_SNDBUF:
2265 *mtod(m, int *) = so->so_snd.sb_hiwat;
2266 break;
2267
2268 case SO_RCVBUF:
2269 *mtod(m, int *) = so->so_rcv.sb_hiwat;
2270 break;
2271
2272 case SO_SNDLOWAT:
2273 *mtod(m, int *) = so->so_snd.sb_lowat;
2274 break;
2275
2276 case SO_RCVLOWAT:
2277 *mtod(m, int *) = so->so_rcv.sb_lowat;
2278 break;
2279
2280 case SO_SNDTIMEO:
2281 case SO_RCVTIMEO:
2282 {
2283 struct sockbuf *sb = (optname == SO_SNDTIMEO ?
2284 &so->so_snd : &so->so_rcv);
2285 struct timeval tv;
2286 uint64_t nsecs;
2287
2288 mtx_enter(&sb->sb_mtx);
2289 nsecs = sb->sb_timeo_nsecs;
2290 mtx_leave(&sb->sb_mtx);
2291
2292 m->m_len = sizeof(struct timeval);
2293 memset(&tv, 0, sizeof(tv));
2294 if (nsecs != INFSLP)
2295 NSEC_TO_TIMEVAL(nsecs, &tv);
2296 memcpy(mtod(m, struct timeval *), &tv, sizeof tv);
2297 break;
2298 }
2299
2300 case SO_RTABLE:
2301 if (so->so_proto->pr_domain &&
2302 so->so_proto->pr_domain->dom_protosw &&
2303 so->so_proto->pr_ctloutput) {
2304 const struct domain *dom =
2305 so->so_proto->pr_domain;
2306
2307 level = dom->dom_protosw->pr_protocol;
2308 solock(so);
2309 error = (*so->so_proto->pr_ctloutput)
2310 (PRCO_GETOPT, so, level, optname, m);
2311 sounlock(so);
2312 if (error)
2313 return (error);
2314 break;
2315 }
2316 return (ENOPROTOOPT);
2317
2318 #ifdef SOCKET_SPLICE
2319 case SO_SPLICE:
2320 {
2321 off_t len;
2322
2323 m->m_len = sizeof(off_t);
2324 solock_shared(so);
2325 len = so->so_sp ? so->so_sp->ssp_len : 0;
2326 sounlock_shared(so);
2327 memcpy(mtod(m, off_t *), &len, sizeof(off_t));
2328 break;
2329 }
2330 #endif /* SOCKET_SPLICE */
2331
2332 case SO_PEERCRED:
2333 if (so->so_proto->pr_protocol == AF_UNIX) {
2334 struct unpcb *unp = sotounpcb(so);
2335
2336 solock(so);
2337 if (unp->unp_flags & UNP_FEIDS) {
2338 m->m_len = sizeof(unp->unp_connid);
2339 memcpy(mtod(m, caddr_t),
2340 &(unp->unp_connid), m->m_len);
2341 sounlock(so);
2342 break;
2343 }
2344 sounlock(so);
2345
2346 return (ENOTCONN);
2347 }
2348 return (EOPNOTSUPP);
2349
2350 default:
2351 return (ENOPROTOOPT);
2352 }
2353 return (0);
2354 }
2355 }
2356
2357 void
sohasoutofband(struct socket * so)2358 sohasoutofband(struct socket *so)
2359 {
2360 pgsigio(&so->so_sigio, SIGURG, 0);
2361 knote(&so->so_rcv.sb_klist, 0);
2362 }
2363
2364 void
sofilt_lock(struct socket * so,struct sockbuf * sb)2365 sofilt_lock(struct socket *so, struct sockbuf *sb)
2366 {
2367 switch (so->so_proto->pr_domain->dom_family) {
2368 case PF_INET:
2369 case PF_INET6:
2370 NET_LOCK_SHARED();
2371 break;
2372 default:
2373 rw_enter_write(&so->so_lock);
2374 break;
2375 }
2376
2377 mtx_enter(&sb->sb_mtx);
2378 }
2379
2380 void
sofilt_unlock(struct socket * so,struct sockbuf * sb)2381 sofilt_unlock(struct socket *so, struct sockbuf *sb)
2382 {
2383 mtx_leave(&sb->sb_mtx);
2384
2385 switch (so->so_proto->pr_domain->dom_family) {
2386 case PF_INET:
2387 case PF_INET6:
2388 NET_UNLOCK_SHARED();
2389 break;
2390 default:
2391 rw_exit_write(&so->so_lock);
2392 break;
2393 }
2394 }
2395
2396 int
soo_kqfilter(struct file * fp,struct knote * kn)2397 soo_kqfilter(struct file *fp, struct knote *kn)
2398 {
2399 struct socket *so = kn->kn_fp->f_data;
2400 struct sockbuf *sb;
2401
2402 switch (kn->kn_filter) {
2403 case EVFILT_READ:
2404 kn->kn_fop = &soread_filtops;
2405 sb = &so->so_rcv;
2406 break;
2407 case EVFILT_WRITE:
2408 kn->kn_fop = &sowrite_filtops;
2409 sb = &so->so_snd;
2410 break;
2411 case EVFILT_EXCEPT:
2412 kn->kn_fop = &soexcept_filtops;
2413 sb = &so->so_rcv;
2414 break;
2415 default:
2416 return (EINVAL);
2417 }
2418
2419 klist_insert(&sb->sb_klist, kn);
2420
2421 return (0);
2422 }
2423
2424 void
filt_sordetach(struct knote * kn)2425 filt_sordetach(struct knote *kn)
2426 {
2427 struct socket *so = kn->kn_fp->f_data;
2428
2429 klist_remove(&so->so_rcv.sb_klist, kn);
2430 }
2431
2432 int
filt_soread(struct knote * kn,long hint)2433 filt_soread(struct knote *kn, long hint)
2434 {
2435 struct socket *so = kn->kn_fp->f_data;
2436 int rv = 0;
2437
2438 MUTEX_ASSERT_LOCKED(&so->so_rcv.sb_mtx);
2439 if ((so->so_rcv.sb_flags & SB_MTXLOCK) == 0)
2440 soassertlocked_readonly(so);
2441
2442 if (so->so_options & SO_ACCEPTCONN) {
2443 if (so->so_rcv.sb_flags & SB_MTXLOCK)
2444 soassertlocked_readonly(so);
2445
2446 kn->kn_data = so->so_qlen;
2447 rv = (kn->kn_data != 0);
2448
2449 if (kn->kn_flags & (__EV_POLL | __EV_SELECT)) {
2450 if (so->so_state & SS_ISDISCONNECTED) {
2451 kn->kn_flags |= __EV_HUP;
2452 rv = 1;
2453 } else {
2454 rv = soreadable(so);
2455 }
2456 }
2457
2458 return rv;
2459 }
2460
2461 kn->kn_data = so->so_rcv.sb_cc;
2462 #ifdef SOCKET_SPLICE
2463 if (isspliced(so)) {
2464 rv = 0;
2465 } else
2466 #endif /* SOCKET_SPLICE */
2467 if (so->so_rcv.sb_state & SS_CANTRCVMORE) {
2468 kn->kn_flags |= EV_EOF;
2469 if (kn->kn_flags & __EV_POLL) {
2470 if (so->so_state & SS_ISDISCONNECTED)
2471 kn->kn_flags |= __EV_HUP;
2472 }
2473 kn->kn_fflags = so->so_error;
2474 rv = 1;
2475 } else if (so->so_error) {
2476 rv = 1;
2477 } else if (kn->kn_sfflags & NOTE_LOWAT) {
2478 rv = (kn->kn_data >= kn->kn_sdata);
2479 } else {
2480 rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2481 }
2482
2483 return rv;
2484 }
2485
2486 void
filt_sowdetach(struct knote * kn)2487 filt_sowdetach(struct knote *kn)
2488 {
2489 struct socket *so = kn->kn_fp->f_data;
2490
2491 klist_remove(&so->so_snd.sb_klist, kn);
2492 }
2493
2494 int
filt_sowrite(struct knote * kn,long hint)2495 filt_sowrite(struct knote *kn, long hint)
2496 {
2497 struct socket *so = kn->kn_fp->f_data;
2498 int rv;
2499
2500 MUTEX_ASSERT_LOCKED(&so->so_snd.sb_mtx);
2501 if ((so->so_snd.sb_flags & SB_MTXLOCK) == 0)
2502 soassertlocked_readonly(so);
2503
2504 kn->kn_data = sbspace_locked(so, &so->so_snd);
2505 if (so->so_snd.sb_state & SS_CANTSENDMORE) {
2506 kn->kn_flags |= EV_EOF;
2507 if (kn->kn_flags & __EV_POLL) {
2508 if (so->so_state & SS_ISDISCONNECTED)
2509 kn->kn_flags |= __EV_HUP;
2510 }
2511 kn->kn_fflags = so->so_error;
2512 rv = 1;
2513 } else if (so->so_error) {
2514 rv = 1;
2515 } else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2516 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
2517 rv = 0;
2518 } else if (kn->kn_sfflags & NOTE_LOWAT) {
2519 rv = (kn->kn_data >= kn->kn_sdata);
2520 } else {
2521 rv = (kn->kn_data >= so->so_snd.sb_lowat);
2522 }
2523
2524 return (rv);
2525 }
2526
2527 int
filt_soexcept(struct knote * kn,long hint)2528 filt_soexcept(struct knote *kn, long hint)
2529 {
2530 struct socket *so = kn->kn_fp->f_data;
2531 int rv = 0;
2532
2533 MUTEX_ASSERT_LOCKED(&so->so_rcv.sb_mtx);
2534 if ((so->so_rcv.sb_flags & SB_MTXLOCK) == 0)
2535 soassertlocked_readonly(so);
2536
2537 #ifdef SOCKET_SPLICE
2538 if (isspliced(so)) {
2539 rv = 0;
2540 } else
2541 #endif /* SOCKET_SPLICE */
2542 if (kn->kn_sfflags & NOTE_OOB) {
2543 if (so->so_oobmark || (so->so_rcv.sb_state & SS_RCVATMARK)) {
2544 kn->kn_fflags |= NOTE_OOB;
2545 kn->kn_data -= so->so_oobmark;
2546 rv = 1;
2547 }
2548 }
2549
2550 if (kn->kn_flags & __EV_POLL) {
2551 if (so->so_state & SS_ISDISCONNECTED) {
2552 kn->kn_flags |= __EV_HUP;
2553 rv = 1;
2554 }
2555 }
2556
2557 return rv;
2558 }
2559
2560 int
filt_sowmodify(struct kevent * kev,struct knote * kn)2561 filt_sowmodify(struct kevent *kev, struct knote *kn)
2562 {
2563 struct socket *so = kn->kn_fp->f_data;
2564 int rv;
2565
2566 sofilt_lock(so, &so->so_snd);
2567 rv = knote_modify(kev, kn);
2568 sofilt_unlock(so, &so->so_snd);
2569
2570 return (rv);
2571 }
2572
2573 int
filt_sowprocess(struct knote * kn,struct kevent * kev)2574 filt_sowprocess(struct knote *kn, struct kevent *kev)
2575 {
2576 struct socket *so = kn->kn_fp->f_data;
2577 int rv;
2578
2579 sofilt_lock(so, &so->so_snd);
2580 rv = knote_process(kn, kev);
2581 sofilt_unlock(so, &so->so_snd);
2582
2583 return (rv);
2584 }
2585
2586 int
filt_sormodify(struct kevent * kev,struct knote * kn)2587 filt_sormodify(struct kevent *kev, struct knote *kn)
2588 {
2589 struct socket *so = kn->kn_fp->f_data;
2590 int rv;
2591
2592 sofilt_lock(so, &so->so_rcv);
2593 rv = knote_modify(kev, kn);
2594 sofilt_unlock(so, &so->so_rcv);
2595
2596 return (rv);
2597 }
2598
2599 int
filt_sorprocess(struct knote * kn,struct kevent * kev)2600 filt_sorprocess(struct knote *kn, struct kevent *kev)
2601 {
2602 struct socket *so = kn->kn_fp->f_data;
2603 int rv;
2604
2605 sofilt_lock(so, &so->so_rcv);
2606 rv = knote_process(kn, kev);
2607 sofilt_unlock(so, &so->so_rcv);
2608
2609 return (rv);
2610 }
2611
2612 #ifdef DDB
2613 void
2614 sobuf_print(struct sockbuf *,
2615 int (*)(const char *, ...) __attribute__((__format__(__kprintf__,1,2))));
2616
2617 void
sobuf_print(struct sockbuf * sb,int (* pr)(const char *,...))2618 sobuf_print(struct sockbuf *sb,
2619 int (*pr)(const char *, ...) __attribute__((__format__(__kprintf__,1,2))))
2620 {
2621 (*pr)("\tsb_cc: %lu\n", sb->sb_cc);
2622 (*pr)("\tsb_datacc: %lu\n", sb->sb_datacc);
2623 (*pr)("\tsb_hiwat: %lu\n", sb->sb_hiwat);
2624 (*pr)("\tsb_wat: %lu\n", sb->sb_wat);
2625 (*pr)("\tsb_mbcnt: %lu\n", sb->sb_mbcnt);
2626 (*pr)("\tsb_mbmax: %lu\n", sb->sb_mbmax);
2627 (*pr)("\tsb_lowat: %ld\n", sb->sb_lowat);
2628 (*pr)("\tsb_mb: %p\n", sb->sb_mb);
2629 (*pr)("\tsb_mbtail: %p\n", sb->sb_mbtail);
2630 (*pr)("\tsb_lastrecord: %p\n", sb->sb_lastrecord);
2631 (*pr)("\tsb_flags: %04x\n", sb->sb_flags);
2632 (*pr)("\tsb_state: %04x\n", sb->sb_state);
2633 (*pr)("\tsb_timeo_nsecs: %llu\n", sb->sb_timeo_nsecs);
2634 }
2635
2636 void
so_print(void * v,int (* pr)(const char *,...))2637 so_print(void *v,
2638 int (*pr)(const char *, ...) __attribute__((__format__(__kprintf__,1,2))))
2639 {
2640 struct socket *so = v;
2641
2642 (*pr)("socket %p\n", so);
2643 (*pr)("so_type: %i\n", so->so_type);
2644 (*pr)("so_options: 0x%04x\n", so->so_options); /* %b */
2645 (*pr)("so_linger: %i\n", so->so_linger);
2646 (*pr)("so_state: 0x%04x\n", so->so_state);
2647 (*pr)("so_pcb: %p\n", so->so_pcb);
2648 (*pr)("so_proto: %p\n", so->so_proto);
2649 (*pr)("so_sigio: %p\n", so->so_sigio.sir_sigio);
2650
2651 (*pr)("so_head: %p\n", so->so_head);
2652 (*pr)("so_onq: %p\n", so->so_onq);
2653 (*pr)("so_q0: @%p first: %p\n", &so->so_q0, TAILQ_FIRST(&so->so_q0));
2654 (*pr)("so_q: @%p first: %p\n", &so->so_q, TAILQ_FIRST(&so->so_q));
2655 (*pr)("so_eq: next: %p\n", TAILQ_NEXT(so, so_qe));
2656 (*pr)("so_q0len: %i\n", so->so_q0len);
2657 (*pr)("so_qlen: %i\n", so->so_qlen);
2658 (*pr)("so_qlimit: %i\n", so->so_qlimit);
2659 (*pr)("so_timeo: %i\n", so->so_timeo);
2660 (*pr)("so_obmark: %lu\n", so->so_oobmark);
2661
2662 (*pr)("so_sp: %p\n", so->so_sp);
2663 if (so->so_sp != NULL) {
2664 (*pr)("\tssp_socket: %p\n", so->so_sp->ssp_socket);
2665 (*pr)("\tssp_soback: %p\n", so->so_sp->ssp_soback);
2666 (*pr)("\tssp_len: %lld\n",
2667 (unsigned long long)so->so_sp->ssp_len);
2668 (*pr)("\tssp_max: %lld\n",
2669 (unsigned long long)so->so_sp->ssp_max);
2670 (*pr)("\tssp_idletv: %lld %ld\n", so->so_sp->ssp_idletv.tv_sec,
2671 so->so_sp->ssp_idletv.tv_usec);
2672 (*pr)("\tssp_idleto: %spending (@%i)\n",
2673 timeout_pending(&so->so_sp->ssp_idleto) ? "" : "not ",
2674 so->so_sp->ssp_idleto.to_time);
2675 }
2676
2677 (*pr)("so_rcv:\n");
2678 sobuf_print(&so->so_rcv, pr);
2679 (*pr)("so_snd:\n");
2680 sobuf_print(&so->so_snd, pr);
2681
2682 (*pr)("so_upcall: %p so_upcallarg: %p\n",
2683 so->so_upcall, so->so_upcallarg);
2684
2685 (*pr)("so_euid: %d so_ruid: %d\n", so->so_euid, so->so_ruid);
2686 (*pr)("so_egid: %d so_rgid: %d\n", so->so_egid, so->so_rgid);
2687 (*pr)("so_cpid: %d\n", so->so_cpid);
2688 }
2689 #endif
2690