1 //===- ConstantHoisting.cpp - Prepare code for expensive constants --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass identifies expensive constants to hoist and coalesces them to
10 // better prepare it for SelectionDAG-based code generation. This works around
11 // the limitations of the basic-block-at-a-time approach.
12 //
13 // First it scans all instructions for integer constants and calculates its
14 // cost. If the constant can be folded into the instruction (the cost is
15 // TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't
16 // consider it expensive and leave it alone. This is the default behavior and
17 // the default implementation of getIntImmCostInst will always return TCC_Free.
18 //
19 // If the cost is more than TCC_BASIC, then the integer constant can't be folded
20 // into the instruction and it might be beneficial to hoist the constant.
21 // Similar constants are coalesced to reduce register pressure and
22 // materialization code.
23 //
24 // When a constant is hoisted, it is also hidden behind a bitcast to force it to
25 // be live-out of the basic block. Otherwise the constant would be just
26 // duplicated and each basic block would have its own copy in the SelectionDAG.
27 // The SelectionDAG recognizes such constants as opaque and doesn't perform
28 // certain transformations on them, which would create a new expensive constant.
29 //
30 // This optimization is only applied to integer constants in instructions and
31 // simple (this means not nested) constant cast expressions. For example:
32 // %0 = load i64* inttoptr (i64 big_constant to i64*)
33 //===----------------------------------------------------------------------===//
34
35 #include "llvm/Transforms/Scalar/ConstantHoisting.h"
36 #include "llvm/ADT/APInt.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/SmallPtrSet.h"
39 #include "llvm/ADT/SmallVector.h"
40 #include "llvm/ADT/Statistic.h"
41 #include "llvm/Analysis/BlockFrequencyInfo.h"
42 #include "llvm/Analysis/ProfileSummaryInfo.h"
43 #include "llvm/Analysis/TargetTransformInfo.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/Constants.h"
46 #include "llvm/IR/DebugInfoMetadata.h"
47 #include "llvm/IR/Dominators.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/Operator.h"
54 #include "llvm/IR/Value.h"
55 #include "llvm/InitializePasses.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/BlockFrequency.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include "llvm/Transforms/Scalar.h"
63 #include "llvm/Transforms/Utils/Local.h"
64 #include "llvm/Transforms/Utils/SizeOpts.h"
65 #include <algorithm>
66 #include <cassert>
67 #include <cstdint>
68 #include <iterator>
69 #include <tuple>
70 #include <utility>
71
72 using namespace llvm;
73 using namespace consthoist;
74
75 #define DEBUG_TYPE "consthoist"
76
77 STATISTIC(NumConstantsHoisted, "Number of constants hoisted");
78 STATISTIC(NumConstantsRebased, "Number of constants rebased");
79
80 static cl::opt<bool> ConstHoistWithBlockFrequency(
81 "consthoist-with-block-frequency", cl::init(true), cl::Hidden,
82 cl::desc("Enable the use of the block frequency analysis to reduce the "
83 "chance to execute const materialization more frequently than "
84 "without hoisting."));
85
86 static cl::opt<bool> ConstHoistGEP(
87 "consthoist-gep", cl::init(false), cl::Hidden,
88 cl::desc("Try hoisting constant gep expressions"));
89
90 static cl::opt<unsigned>
91 MinNumOfDependentToRebase("consthoist-min-num-to-rebase",
92 cl::desc("Do not rebase if number of dependent constants of a Base is less "
93 "than this number."),
94 cl::init(0), cl::Hidden);
95
96 namespace {
97
98 /// The constant hoisting pass.
99 class ConstantHoistingLegacyPass : public FunctionPass {
100 public:
101 static char ID; // Pass identification, replacement for typeid
102
ConstantHoistingLegacyPass()103 ConstantHoistingLegacyPass() : FunctionPass(ID) {
104 initializeConstantHoistingLegacyPassPass(*PassRegistry::getPassRegistry());
105 }
106
107 bool runOnFunction(Function &Fn) override;
108
getPassName() const109 StringRef getPassName() const override { return "Constant Hoisting"; }
110
getAnalysisUsage(AnalysisUsage & AU) const111 void getAnalysisUsage(AnalysisUsage &AU) const override {
112 AU.setPreservesCFG();
113 if (ConstHoistWithBlockFrequency)
114 AU.addRequired<BlockFrequencyInfoWrapperPass>();
115 AU.addRequired<DominatorTreeWrapperPass>();
116 AU.addRequired<ProfileSummaryInfoWrapperPass>();
117 AU.addRequired<TargetTransformInfoWrapperPass>();
118 }
119
120 private:
121 ConstantHoistingPass Impl;
122 };
123
124 } // end anonymous namespace
125
126 char ConstantHoistingLegacyPass::ID = 0;
127
128 INITIALIZE_PASS_BEGIN(ConstantHoistingLegacyPass, "consthoist",
129 "Constant Hoisting", false, false)
INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)130 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
131 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
132 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
133 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
134 INITIALIZE_PASS_END(ConstantHoistingLegacyPass, "consthoist",
135 "Constant Hoisting", false, false)
136
137 FunctionPass *llvm::createConstantHoistingPass() {
138 return new ConstantHoistingLegacyPass();
139 }
140
141 /// Perform the constant hoisting optimization for the given function.
runOnFunction(Function & Fn)142 bool ConstantHoistingLegacyPass::runOnFunction(Function &Fn) {
143 if (skipFunction(Fn))
144 return false;
145
146 LLVM_DEBUG(dbgs() << "********** Begin Constant Hoisting **********\n");
147 LLVM_DEBUG(dbgs() << "********** Function: " << Fn.getName() << '\n');
148
149 bool MadeChange =
150 Impl.runImpl(Fn, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(Fn),
151 getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
152 ConstHoistWithBlockFrequency
153 ? &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI()
154 : nullptr,
155 Fn.getEntryBlock(),
156 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI());
157
158 if (MadeChange) {
159 LLVM_DEBUG(dbgs() << "********** Function after Constant Hoisting: "
160 << Fn.getName() << '\n');
161 LLVM_DEBUG(dbgs() << Fn);
162 }
163 LLVM_DEBUG(dbgs() << "********** End Constant Hoisting **********\n");
164
165 return MadeChange;
166 }
167
168 /// Find the constant materialization insertion point.
findMatInsertPt(Instruction * Inst,unsigned Idx) const169 Instruction *ConstantHoistingPass::findMatInsertPt(Instruction *Inst,
170 unsigned Idx) const {
171 // If the operand is a cast instruction, then we have to materialize the
172 // constant before the cast instruction.
173 if (Idx != ~0U) {
174 Value *Opnd = Inst->getOperand(Idx);
175 if (auto CastInst = dyn_cast<Instruction>(Opnd))
176 if (CastInst->isCast())
177 return CastInst;
178 }
179
180 // The simple and common case. This also includes constant expressions.
181 if (!isa<PHINode>(Inst) && !Inst->isEHPad())
182 return Inst;
183
184 // We can't insert directly before a phi node or an eh pad. Insert before
185 // the terminator of the incoming or dominating block.
186 assert(Entry != Inst->getParent() && "PHI or landing pad in entry block!");
187 BasicBlock *InsertionBlock = nullptr;
188 if (Idx != ~0U && isa<PHINode>(Inst)) {
189 InsertionBlock = cast<PHINode>(Inst)->getIncomingBlock(Idx);
190 if (!InsertionBlock->isEHPad()) {
191 return InsertionBlock->getTerminator();
192 }
193 } else {
194 InsertionBlock = Inst->getParent();
195 }
196
197 // This must be an EH pad. Iterate over immediate dominators until we find a
198 // non-EH pad. We need to skip over catchswitch blocks, which are both EH pads
199 // and terminators.
200 auto *IDom = DT->getNode(InsertionBlock)->getIDom();
201 while (IDom->getBlock()->isEHPad()) {
202 assert(Entry != IDom->getBlock() && "eh pad in entry block");
203 IDom = IDom->getIDom();
204 }
205
206 return IDom->getBlock()->getTerminator();
207 }
208
209 /// Given \p BBs as input, find another set of BBs which collectively
210 /// dominates \p BBs and have the minimal sum of frequencies. Return the BB
211 /// set found in \p BBs.
findBestInsertionSet(DominatorTree & DT,BlockFrequencyInfo & BFI,BasicBlock * Entry,SetVector<BasicBlock * > & BBs)212 static void findBestInsertionSet(DominatorTree &DT, BlockFrequencyInfo &BFI,
213 BasicBlock *Entry,
214 SetVector<BasicBlock *> &BBs) {
215 assert(!BBs.count(Entry) && "Assume Entry is not in BBs");
216 // Nodes on the current path to the root.
217 SmallPtrSet<BasicBlock *, 8> Path;
218 // Candidates includes any block 'BB' in set 'BBs' that is not strictly
219 // dominated by any other blocks in set 'BBs', and all nodes in the path
220 // in the dominator tree from Entry to 'BB'.
221 SmallPtrSet<BasicBlock *, 16> Candidates;
222 for (auto *BB : BBs) {
223 // Ignore unreachable basic blocks.
224 if (!DT.isReachableFromEntry(BB))
225 continue;
226 Path.clear();
227 // Walk up the dominator tree until Entry or another BB in BBs
228 // is reached. Insert the nodes on the way to the Path.
229 BasicBlock *Node = BB;
230 // The "Path" is a candidate path to be added into Candidates set.
231 bool isCandidate = false;
232 do {
233 Path.insert(Node);
234 if (Node == Entry || Candidates.count(Node)) {
235 isCandidate = true;
236 break;
237 }
238 assert(DT.getNode(Node)->getIDom() &&
239 "Entry doens't dominate current Node");
240 Node = DT.getNode(Node)->getIDom()->getBlock();
241 } while (!BBs.count(Node));
242
243 // If isCandidate is false, Node is another Block in BBs dominating
244 // current 'BB'. Drop the nodes on the Path.
245 if (!isCandidate)
246 continue;
247
248 // Add nodes on the Path into Candidates.
249 Candidates.insert(Path.begin(), Path.end());
250 }
251
252 // Sort the nodes in Candidates in top-down order and save the nodes
253 // in Orders.
254 unsigned Idx = 0;
255 SmallVector<BasicBlock *, 16> Orders;
256 Orders.push_back(Entry);
257 while (Idx != Orders.size()) {
258 BasicBlock *Node = Orders[Idx++];
259 for (auto *ChildDomNode : DT.getNode(Node)->children()) {
260 if (Candidates.count(ChildDomNode->getBlock()))
261 Orders.push_back(ChildDomNode->getBlock());
262 }
263 }
264
265 // Visit Orders in bottom-up order.
266 using InsertPtsCostPair =
267 std::pair<SetVector<BasicBlock *>, BlockFrequency>;
268
269 // InsertPtsMap is a map from a BB to the best insertion points for the
270 // subtree of BB (subtree not including the BB itself).
271 DenseMap<BasicBlock *, InsertPtsCostPair> InsertPtsMap;
272 InsertPtsMap.reserve(Orders.size() + 1);
273 for (BasicBlock *Node : llvm::reverse(Orders)) {
274 bool NodeInBBs = BBs.count(Node);
275 auto &InsertPts = InsertPtsMap[Node].first;
276 BlockFrequency &InsertPtsFreq = InsertPtsMap[Node].second;
277
278 // Return the optimal insert points in BBs.
279 if (Node == Entry) {
280 BBs.clear();
281 if (InsertPtsFreq > BFI.getBlockFreq(Node) ||
282 (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1))
283 BBs.insert(Entry);
284 else
285 BBs.insert(InsertPts.begin(), InsertPts.end());
286 break;
287 }
288
289 BasicBlock *Parent = DT.getNode(Node)->getIDom()->getBlock();
290 // Initially, ParentInsertPts is empty and ParentPtsFreq is 0. Every child
291 // will update its parent's ParentInsertPts and ParentPtsFreq.
292 auto &ParentInsertPts = InsertPtsMap[Parent].first;
293 BlockFrequency &ParentPtsFreq = InsertPtsMap[Parent].second;
294 // Choose to insert in Node or in subtree of Node.
295 // Don't hoist to EHPad because we may not find a proper place to insert
296 // in EHPad.
297 // If the total frequency of InsertPts is the same as the frequency of the
298 // target Node, and InsertPts contains more than one nodes, choose hoisting
299 // to reduce code size.
300 if (NodeInBBs ||
301 (!Node->isEHPad() &&
302 (InsertPtsFreq > BFI.getBlockFreq(Node) ||
303 (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1)))) {
304 ParentInsertPts.insert(Node);
305 ParentPtsFreq += BFI.getBlockFreq(Node);
306 } else {
307 ParentInsertPts.insert(InsertPts.begin(), InsertPts.end());
308 ParentPtsFreq += InsertPtsFreq;
309 }
310 }
311 }
312
313 /// Find an insertion point that dominates all uses.
findConstantInsertionPoint(const ConstantInfo & ConstInfo) const314 SetVector<Instruction *> ConstantHoistingPass::findConstantInsertionPoint(
315 const ConstantInfo &ConstInfo) const {
316 assert(!ConstInfo.RebasedConstants.empty() && "Invalid constant info entry.");
317 // Collect all basic blocks.
318 SetVector<BasicBlock *> BBs;
319 SetVector<Instruction *> InsertPts;
320 for (auto const &RCI : ConstInfo.RebasedConstants)
321 for (auto const &U : RCI.Uses)
322 BBs.insert(findMatInsertPt(U.Inst, U.OpndIdx)->getParent());
323
324 if (BBs.count(Entry)) {
325 InsertPts.insert(&Entry->front());
326 return InsertPts;
327 }
328
329 if (BFI) {
330 findBestInsertionSet(*DT, *BFI, Entry, BBs);
331 for (auto *BB : BBs) {
332 BasicBlock::iterator InsertPt = BB->begin();
333 for (; isa<PHINode>(InsertPt) || InsertPt->isEHPad(); ++InsertPt)
334 ;
335 InsertPts.insert(&*InsertPt);
336 }
337 return InsertPts;
338 }
339
340 while (BBs.size() >= 2) {
341 BasicBlock *BB, *BB1, *BB2;
342 BB1 = BBs.pop_back_val();
343 BB2 = BBs.pop_back_val();
344 BB = DT->findNearestCommonDominator(BB1, BB2);
345 if (BB == Entry) {
346 InsertPts.insert(&Entry->front());
347 return InsertPts;
348 }
349 BBs.insert(BB);
350 }
351 assert((BBs.size() == 1) && "Expected only one element.");
352 Instruction &FirstInst = (*BBs.begin())->front();
353 InsertPts.insert(findMatInsertPt(&FirstInst));
354 return InsertPts;
355 }
356
357 /// Record constant integer ConstInt for instruction Inst at operand
358 /// index Idx.
359 ///
360 /// The operand at index Idx is not necessarily the constant integer itself. It
361 /// could also be a cast instruction or a constant expression that uses the
362 /// constant integer.
collectConstantCandidates(ConstCandMapType & ConstCandMap,Instruction * Inst,unsigned Idx,ConstantInt * ConstInt)363 void ConstantHoistingPass::collectConstantCandidates(
364 ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx,
365 ConstantInt *ConstInt) {
366 InstructionCost Cost;
367 // Ask the target about the cost of materializing the constant for the given
368 // instruction and operand index.
369 if (auto IntrInst = dyn_cast<IntrinsicInst>(Inst))
370 Cost = TTI->getIntImmCostIntrin(IntrInst->getIntrinsicID(), Idx,
371 ConstInt->getValue(), ConstInt->getType(),
372 TargetTransformInfo::TCK_SizeAndLatency);
373 else
374 Cost = TTI->getIntImmCostInst(
375 Inst->getOpcode(), Idx, ConstInt->getValue(), ConstInt->getType(),
376 TargetTransformInfo::TCK_SizeAndLatency, Inst);
377
378 // Ignore cheap integer constants.
379 if (Cost > TargetTransformInfo::TCC_Basic) {
380 ConstCandMapType::iterator Itr;
381 bool Inserted;
382 ConstPtrUnionType Cand = ConstInt;
383 std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0));
384 if (Inserted) {
385 ConstIntCandVec.push_back(ConstantCandidate(ConstInt));
386 Itr->second = ConstIntCandVec.size() - 1;
387 }
388 ConstIntCandVec[Itr->second].addUser(Inst, Idx, *Cost.getValue());
389 LLVM_DEBUG(if (isa<ConstantInt>(Inst->getOperand(Idx))) dbgs()
390 << "Collect constant " << *ConstInt << " from " << *Inst
391 << " with cost " << Cost << '\n';
392 else dbgs() << "Collect constant " << *ConstInt
393 << " indirectly from " << *Inst << " via "
394 << *Inst->getOperand(Idx) << " with cost " << Cost
395 << '\n';);
396 }
397 }
398
399 /// Record constant GEP expression for instruction Inst at operand index Idx.
collectConstantCandidates(ConstCandMapType & ConstCandMap,Instruction * Inst,unsigned Idx,ConstantExpr * ConstExpr)400 void ConstantHoistingPass::collectConstantCandidates(
401 ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx,
402 ConstantExpr *ConstExpr) {
403 // TODO: Handle vector GEPs
404 if (ConstExpr->getType()->isVectorTy())
405 return;
406
407 GlobalVariable *BaseGV = dyn_cast<GlobalVariable>(ConstExpr->getOperand(0));
408 if (!BaseGV)
409 return;
410
411 // Get offset from the base GV.
412 PointerType *GVPtrTy = cast<PointerType>(BaseGV->getType());
413 IntegerType *PtrIntTy = DL->getIntPtrType(*Ctx, GVPtrTy->getAddressSpace());
414 APInt Offset(DL->getTypeSizeInBits(PtrIntTy), /*val*/0, /*isSigned*/true);
415 auto *GEPO = cast<GEPOperator>(ConstExpr);
416
417 // TODO: If we have a mix of inbounds and non-inbounds GEPs, then basing a
418 // non-inbounds GEP on an inbounds GEP is potentially incorrect. Restrict to
419 // inbounds GEP for now -- alternatively, we could drop inbounds from the
420 // constant expression,
421 if (!GEPO->isInBounds())
422 return;
423
424 if (!GEPO->accumulateConstantOffset(*DL, Offset))
425 return;
426
427 if (!Offset.isIntN(32))
428 return;
429
430 // A constant GEP expression that has a GlobalVariable as base pointer is
431 // usually lowered to a load from constant pool. Such operation is unlikely
432 // to be cheaper than compute it by <Base + Offset>, which can be lowered to
433 // an ADD instruction or folded into Load/Store instruction.
434 InstructionCost Cost =
435 TTI->getIntImmCostInst(Instruction::Add, 1, Offset, PtrIntTy,
436 TargetTransformInfo::TCK_SizeAndLatency, Inst);
437 ConstCandVecType &ExprCandVec = ConstGEPCandMap[BaseGV];
438 ConstCandMapType::iterator Itr;
439 bool Inserted;
440 ConstPtrUnionType Cand = ConstExpr;
441 std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0));
442 if (Inserted) {
443 ExprCandVec.push_back(ConstantCandidate(
444 ConstantInt::get(Type::getInt32Ty(*Ctx), Offset.getLimitedValue()),
445 ConstExpr));
446 Itr->second = ExprCandVec.size() - 1;
447 }
448 ExprCandVec[Itr->second].addUser(Inst, Idx, *Cost.getValue());
449 }
450
451 /// Check the operand for instruction Inst at index Idx.
collectConstantCandidates(ConstCandMapType & ConstCandMap,Instruction * Inst,unsigned Idx)452 void ConstantHoistingPass::collectConstantCandidates(
453 ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx) {
454 Value *Opnd = Inst->getOperand(Idx);
455
456 // Visit constant integers.
457 if (auto ConstInt = dyn_cast<ConstantInt>(Opnd)) {
458 collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
459 return;
460 }
461
462 // Visit cast instructions that have constant integers.
463 if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
464 // Only visit cast instructions, which have been skipped. All other
465 // instructions should have already been visited.
466 if (!CastInst->isCast())
467 return;
468
469 if (auto *ConstInt = dyn_cast<ConstantInt>(CastInst->getOperand(0))) {
470 // Pretend the constant is directly used by the instruction and ignore
471 // the cast instruction.
472 collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
473 return;
474 }
475 }
476
477 // Visit constant expressions that have constant integers.
478 if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
479 // Handle constant gep expressions.
480 if (ConstHoistGEP && isa<GEPOperator>(ConstExpr))
481 collectConstantCandidates(ConstCandMap, Inst, Idx, ConstExpr);
482
483 // Only visit constant cast expressions.
484 if (!ConstExpr->isCast())
485 return;
486
487 if (auto ConstInt = dyn_cast<ConstantInt>(ConstExpr->getOperand(0))) {
488 // Pretend the constant is directly used by the instruction and ignore
489 // the constant expression.
490 collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
491 return;
492 }
493 }
494 }
495
496 /// Scan the instruction for expensive integer constants and record them
497 /// in the constant candidate vector.
collectConstantCandidates(ConstCandMapType & ConstCandMap,Instruction * Inst)498 void ConstantHoistingPass::collectConstantCandidates(
499 ConstCandMapType &ConstCandMap, Instruction *Inst) {
500 // Skip all cast instructions. They are visited indirectly later on.
501 if (Inst->isCast())
502 return;
503
504 // Scan all operands.
505 for (unsigned Idx = 0, E = Inst->getNumOperands(); Idx != E; ++Idx) {
506 // The cost of materializing the constants (defined in
507 // `TargetTransformInfo::getIntImmCostInst`) for instructions which only
508 // take constant variables is lower than `TargetTransformInfo::TCC_Basic`.
509 // So it's safe for us to collect constant candidates from all
510 // IntrinsicInsts.
511 if (canReplaceOperandWithVariable(Inst, Idx)) {
512 collectConstantCandidates(ConstCandMap, Inst, Idx);
513 }
514 } // end of for all operands
515 }
516
517 /// Collect all integer constants in the function that cannot be folded
518 /// into an instruction itself.
collectConstantCandidates(Function & Fn)519 void ConstantHoistingPass::collectConstantCandidates(Function &Fn) {
520 ConstCandMapType ConstCandMap;
521 for (BasicBlock &BB : Fn) {
522 // Ignore unreachable basic blocks.
523 if (!DT->isReachableFromEntry(&BB))
524 continue;
525 for (Instruction &Inst : BB)
526 collectConstantCandidates(ConstCandMap, &Inst);
527 }
528 }
529
530 // This helper function is necessary to deal with values that have different
531 // bit widths (APInt Operator- does not like that). If the value cannot be
532 // represented in uint64 we return an "empty" APInt. This is then interpreted
533 // as the value is not in range.
calculateOffsetDiff(const APInt & V1,const APInt & V2)534 static std::optional<APInt> calculateOffsetDiff(const APInt &V1,
535 const APInt &V2) {
536 std::optional<APInt> Res;
537 unsigned BW = V1.getBitWidth() > V2.getBitWidth() ?
538 V1.getBitWidth() : V2.getBitWidth();
539 uint64_t LimVal1 = V1.getLimitedValue();
540 uint64_t LimVal2 = V2.getLimitedValue();
541
542 if (LimVal1 == ~0ULL || LimVal2 == ~0ULL)
543 return Res;
544
545 uint64_t Diff = LimVal1 - LimVal2;
546 return APInt(BW, Diff, true);
547 }
548
549 // From a list of constants, one needs to picked as the base and the other
550 // constants will be transformed into an offset from that base constant. The
551 // question is which we can pick best? For example, consider these constants
552 // and their number of uses:
553 //
554 // Constants| 2 | 4 | 12 | 42 |
555 // NumUses | 3 | 2 | 8 | 7 |
556 //
557 // Selecting constant 12 because it has the most uses will generate negative
558 // offsets for constants 2 and 4 (i.e. -10 and -8 respectively). If negative
559 // offsets lead to less optimal code generation, then there might be better
560 // solutions. Suppose immediates in the range of 0..35 are most optimally
561 // supported by the architecture, then selecting constant 2 is most optimal
562 // because this will generate offsets: 0, 2, 10, 40. Offsets 0, 2 and 10 are in
563 // range 0..35, and thus 3 + 2 + 8 = 13 uses are in range. Selecting 12 would
564 // have only 8 uses in range, so choosing 2 as a base is more optimal. Thus, in
565 // selecting the base constant the range of the offsets is a very important
566 // factor too that we take into account here. This algorithm calculates a total
567 // costs for selecting a constant as the base and substract the costs if
568 // immediates are out of range. It has quadratic complexity, so we call this
569 // function only when we're optimising for size and there are less than 100
570 // constants, we fall back to the straightforward algorithm otherwise
571 // which does not do all the offset calculations.
572 unsigned
maximizeConstantsInRange(ConstCandVecType::iterator S,ConstCandVecType::iterator E,ConstCandVecType::iterator & MaxCostItr)573 ConstantHoistingPass::maximizeConstantsInRange(ConstCandVecType::iterator S,
574 ConstCandVecType::iterator E,
575 ConstCandVecType::iterator &MaxCostItr) {
576 unsigned NumUses = 0;
577
578 bool OptForSize = Entry->getParent()->hasOptSize() ||
579 llvm::shouldOptimizeForSize(Entry->getParent(), PSI, BFI,
580 PGSOQueryType::IRPass);
581 if (!OptForSize || std::distance(S,E) > 100) {
582 for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
583 NumUses += ConstCand->Uses.size();
584 if (ConstCand->CumulativeCost > MaxCostItr->CumulativeCost)
585 MaxCostItr = ConstCand;
586 }
587 return NumUses;
588 }
589
590 LLVM_DEBUG(dbgs() << "== Maximize constants in range ==\n");
591 InstructionCost MaxCost = -1;
592 for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
593 auto Value = ConstCand->ConstInt->getValue();
594 Type *Ty = ConstCand->ConstInt->getType();
595 InstructionCost Cost = 0;
596 NumUses += ConstCand->Uses.size();
597 LLVM_DEBUG(dbgs() << "= Constant: " << ConstCand->ConstInt->getValue()
598 << "\n");
599
600 for (auto User : ConstCand->Uses) {
601 unsigned Opcode = User.Inst->getOpcode();
602 unsigned OpndIdx = User.OpndIdx;
603 Cost += TTI->getIntImmCostInst(Opcode, OpndIdx, Value, Ty,
604 TargetTransformInfo::TCK_SizeAndLatency);
605 LLVM_DEBUG(dbgs() << "Cost: " << Cost << "\n");
606
607 for (auto C2 = S; C2 != E; ++C2) {
608 std::optional<APInt> Diff = calculateOffsetDiff(
609 C2->ConstInt->getValue(), ConstCand->ConstInt->getValue());
610 if (Diff) {
611 const InstructionCost ImmCosts =
612 TTI->getIntImmCodeSizeCost(Opcode, OpndIdx, *Diff, Ty);
613 Cost -= ImmCosts;
614 LLVM_DEBUG(dbgs() << "Offset " << *Diff << " "
615 << "has penalty: " << ImmCosts << "\n"
616 << "Adjusted cost: " << Cost << "\n");
617 }
618 }
619 }
620 LLVM_DEBUG(dbgs() << "Cumulative cost: " << Cost << "\n");
621 if (Cost > MaxCost) {
622 MaxCost = Cost;
623 MaxCostItr = ConstCand;
624 LLVM_DEBUG(dbgs() << "New candidate: " << MaxCostItr->ConstInt->getValue()
625 << "\n");
626 }
627 }
628 return NumUses;
629 }
630
631 /// Find the base constant within the given range and rebase all other
632 /// constants with respect to the base constant.
findAndMakeBaseConstant(ConstCandVecType::iterator S,ConstCandVecType::iterator E,SmallVectorImpl<consthoist::ConstantInfo> & ConstInfoVec)633 void ConstantHoistingPass::findAndMakeBaseConstant(
634 ConstCandVecType::iterator S, ConstCandVecType::iterator E,
635 SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec) {
636 auto MaxCostItr = S;
637 unsigned NumUses = maximizeConstantsInRange(S, E, MaxCostItr);
638
639 // Don't hoist constants that have only one use.
640 if (NumUses <= 1)
641 return;
642
643 ConstantInt *ConstInt = MaxCostItr->ConstInt;
644 ConstantExpr *ConstExpr = MaxCostItr->ConstExpr;
645 ConstantInfo ConstInfo;
646 ConstInfo.BaseInt = ConstInt;
647 ConstInfo.BaseExpr = ConstExpr;
648 Type *Ty = ConstInt->getType();
649
650 // Rebase the constants with respect to the base constant.
651 for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
652 APInt Diff = ConstCand->ConstInt->getValue() - ConstInt->getValue();
653 Constant *Offset = Diff == 0 ? nullptr : ConstantInt::get(Ty, Diff);
654 Type *ConstTy =
655 ConstCand->ConstExpr ? ConstCand->ConstExpr->getType() : nullptr;
656 ConstInfo.RebasedConstants.push_back(
657 RebasedConstantInfo(std::move(ConstCand->Uses), Offset, ConstTy));
658 }
659 ConstInfoVec.push_back(std::move(ConstInfo));
660 }
661
662 /// Finds and combines constant candidates that can be easily
663 /// rematerialized with an add from a common base constant.
findBaseConstants(GlobalVariable * BaseGV)664 void ConstantHoistingPass::findBaseConstants(GlobalVariable *BaseGV) {
665 // If BaseGV is nullptr, find base among candidate constant integers;
666 // Otherwise find base among constant GEPs that share the same BaseGV.
667 ConstCandVecType &ConstCandVec = BaseGV ?
668 ConstGEPCandMap[BaseGV] : ConstIntCandVec;
669 ConstInfoVecType &ConstInfoVec = BaseGV ?
670 ConstGEPInfoMap[BaseGV] : ConstIntInfoVec;
671
672 // Sort the constants by value and type. This invalidates the mapping!
673 llvm::stable_sort(ConstCandVec, [](const ConstantCandidate &LHS,
674 const ConstantCandidate &RHS) {
675 if (LHS.ConstInt->getType() != RHS.ConstInt->getType())
676 return LHS.ConstInt->getType()->getBitWidth() <
677 RHS.ConstInt->getType()->getBitWidth();
678 return LHS.ConstInt->getValue().ult(RHS.ConstInt->getValue());
679 });
680
681 // Simple linear scan through the sorted constant candidate vector for viable
682 // merge candidates.
683 auto MinValItr = ConstCandVec.begin();
684 for (auto CC = std::next(ConstCandVec.begin()), E = ConstCandVec.end();
685 CC != E; ++CC) {
686 if (MinValItr->ConstInt->getType() == CC->ConstInt->getType()) {
687 Type *MemUseValTy = nullptr;
688 for (auto &U : CC->Uses) {
689 auto *UI = U.Inst;
690 if (LoadInst *LI = dyn_cast<LoadInst>(UI)) {
691 MemUseValTy = LI->getType();
692 break;
693 } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
694 // Make sure the constant is used as pointer operand of the StoreInst.
695 if (SI->getPointerOperand() == SI->getOperand(U.OpndIdx)) {
696 MemUseValTy = SI->getValueOperand()->getType();
697 break;
698 }
699 }
700 }
701
702 // Check if the constant is in range of an add with immediate.
703 APInt Diff = CC->ConstInt->getValue() - MinValItr->ConstInt->getValue();
704 if ((Diff.getBitWidth() <= 64) &&
705 TTI->isLegalAddImmediate(Diff.getSExtValue()) &&
706 // Check if Diff can be used as offset in addressing mode of the user
707 // memory instruction.
708 (!MemUseValTy || TTI->isLegalAddressingMode(MemUseValTy,
709 /*BaseGV*/nullptr, /*BaseOffset*/Diff.getSExtValue(),
710 /*HasBaseReg*/true, /*Scale*/0)))
711 continue;
712 }
713 // We either have now a different constant type or the constant is not in
714 // range of an add with immediate anymore.
715 findAndMakeBaseConstant(MinValItr, CC, ConstInfoVec);
716 // Start a new base constant search.
717 MinValItr = CC;
718 }
719 // Finalize the last base constant search.
720 findAndMakeBaseConstant(MinValItr, ConstCandVec.end(), ConstInfoVec);
721 }
722
723 /// Updates the operand at Idx in instruction Inst with the result of
724 /// instruction Mat. If the instruction is a PHI node then special
725 /// handling for duplicate values from the same incoming basic block is
726 /// required.
727 /// \return The update will always succeed, but the return value indicated if
728 /// Mat was used for the update or not.
updateOperand(Instruction * Inst,unsigned Idx,Instruction * Mat)729 static bool updateOperand(Instruction *Inst, unsigned Idx, Instruction *Mat) {
730 if (auto PHI = dyn_cast<PHINode>(Inst)) {
731 // Check if any previous operand of the PHI node has the same incoming basic
732 // block. This is a very odd case that happens when the incoming basic block
733 // has a switch statement. In this case use the same value as the previous
734 // operand(s), otherwise we will fail verification due to different values.
735 // The values are actually the same, but the variable names are different
736 // and the verifier doesn't like that.
737 BasicBlock *IncomingBB = PHI->getIncomingBlock(Idx);
738 for (unsigned i = 0; i < Idx; ++i) {
739 if (PHI->getIncomingBlock(i) == IncomingBB) {
740 Value *IncomingVal = PHI->getIncomingValue(i);
741 Inst->setOperand(Idx, IncomingVal);
742 return false;
743 }
744 }
745 }
746
747 Inst->setOperand(Idx, Mat);
748 return true;
749 }
750
751 /// Emit materialization code for all rebased constants and update their
752 /// users.
emitBaseConstants(Instruction * Base,Constant * Offset,Type * Ty,const ConstantUser & ConstUser)753 void ConstantHoistingPass::emitBaseConstants(Instruction *Base,
754 Constant *Offset,
755 Type *Ty,
756 const ConstantUser &ConstUser) {
757 Instruction *Mat = Base;
758
759 // The same offset can be dereferenced to different types in nested struct.
760 if (!Offset && Ty && Ty != Base->getType())
761 Offset = ConstantInt::get(Type::getInt32Ty(*Ctx), 0);
762
763 if (Offset) {
764 Instruction *InsertionPt = findMatInsertPt(ConstUser.Inst,
765 ConstUser.OpndIdx);
766 if (Ty) {
767 // Constant being rebased is a ConstantExpr.
768 PointerType *Int8PtrTy = Type::getInt8PtrTy(*Ctx,
769 cast<PointerType>(Ty)->getAddressSpace());
770 Base = new BitCastInst(Base, Int8PtrTy, "base_bitcast", InsertionPt);
771 Mat = GetElementPtrInst::Create(Type::getInt8Ty(*Ctx), Base,
772 Offset, "mat_gep", InsertionPt);
773 Mat = new BitCastInst(Mat, Ty, "mat_bitcast", InsertionPt);
774 } else
775 // Constant being rebased is a ConstantInt.
776 Mat = BinaryOperator::Create(Instruction::Add, Base, Offset,
777 "const_mat", InsertionPt);
778
779 LLVM_DEBUG(dbgs() << "Materialize constant (" << *Base->getOperand(0)
780 << " + " << *Offset << ") in BB "
781 << Mat->getParent()->getName() << '\n'
782 << *Mat << '\n');
783 Mat->setDebugLoc(ConstUser.Inst->getDebugLoc());
784 }
785 Value *Opnd = ConstUser.Inst->getOperand(ConstUser.OpndIdx);
786
787 // Visit constant integer.
788 if (isa<ConstantInt>(Opnd)) {
789 LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
790 if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat) && Offset)
791 Mat->eraseFromParent();
792 LLVM_DEBUG(dbgs() << "To : " << *ConstUser.Inst << '\n');
793 return;
794 }
795
796 // Visit cast instruction.
797 if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
798 assert(CastInst->isCast() && "Expected an cast instruction!");
799 // Check if we already have visited this cast instruction before to avoid
800 // unnecessary cloning.
801 Instruction *&ClonedCastInst = ClonedCastMap[CastInst];
802 if (!ClonedCastInst) {
803 ClonedCastInst = CastInst->clone();
804 ClonedCastInst->setOperand(0, Mat);
805 ClonedCastInst->insertAfter(CastInst);
806 // Use the same debug location as the original cast instruction.
807 ClonedCastInst->setDebugLoc(CastInst->getDebugLoc());
808 LLVM_DEBUG(dbgs() << "Clone instruction: " << *CastInst << '\n'
809 << "To : " << *ClonedCastInst << '\n');
810 }
811
812 LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
813 updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ClonedCastInst);
814 LLVM_DEBUG(dbgs() << "To : " << *ConstUser.Inst << '\n');
815 return;
816 }
817
818 // Visit constant expression.
819 if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
820 if (isa<GEPOperator>(ConstExpr)) {
821 // Operand is a ConstantGEP, replace it.
822 updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat);
823 return;
824 }
825
826 // Aside from constant GEPs, only constant cast expressions are collected.
827 assert(ConstExpr->isCast() && "ConstExpr should be a cast");
828 Instruction *ConstExprInst = ConstExpr->getAsInstruction(
829 findMatInsertPt(ConstUser.Inst, ConstUser.OpndIdx));
830 ConstExprInst->setOperand(0, Mat);
831
832 // Use the same debug location as the instruction we are about to update.
833 ConstExprInst->setDebugLoc(ConstUser.Inst->getDebugLoc());
834
835 LLVM_DEBUG(dbgs() << "Create instruction: " << *ConstExprInst << '\n'
836 << "From : " << *ConstExpr << '\n');
837 LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
838 if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ConstExprInst)) {
839 ConstExprInst->eraseFromParent();
840 if (Offset)
841 Mat->eraseFromParent();
842 }
843 LLVM_DEBUG(dbgs() << "To : " << *ConstUser.Inst << '\n');
844 return;
845 }
846 }
847
848 /// Hoist and hide the base constant behind a bitcast and emit
849 /// materialization code for derived constants.
emitBaseConstants(GlobalVariable * BaseGV)850 bool ConstantHoistingPass::emitBaseConstants(GlobalVariable *BaseGV) {
851 bool MadeChange = false;
852 SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec =
853 BaseGV ? ConstGEPInfoMap[BaseGV] : ConstIntInfoVec;
854 for (auto const &ConstInfo : ConstInfoVec) {
855 SetVector<Instruction *> IPSet = findConstantInsertionPoint(ConstInfo);
856 // We can have an empty set if the function contains unreachable blocks.
857 if (IPSet.empty())
858 continue;
859
860 unsigned UsesNum = 0;
861 unsigned ReBasesNum = 0;
862 unsigned NotRebasedNum = 0;
863 for (Instruction *IP : IPSet) {
864 // First, collect constants depending on this IP of the base.
865 unsigned Uses = 0;
866 using RebasedUse = std::tuple<Constant *, Type *, ConstantUser>;
867 SmallVector<RebasedUse, 4> ToBeRebased;
868 for (auto const &RCI : ConstInfo.RebasedConstants) {
869 for (auto const &U : RCI.Uses) {
870 Uses++;
871 BasicBlock *OrigMatInsertBB =
872 findMatInsertPt(U.Inst, U.OpndIdx)->getParent();
873 // If Base constant is to be inserted in multiple places,
874 // generate rebase for U using the Base dominating U.
875 if (IPSet.size() == 1 ||
876 DT->dominates(IP->getParent(), OrigMatInsertBB))
877 ToBeRebased.push_back(RebasedUse(RCI.Offset, RCI.Ty, U));
878 }
879 }
880 UsesNum = Uses;
881
882 // If only few constants depend on this IP of base, skip rebasing,
883 // assuming the base and the rebased have the same materialization cost.
884 if (ToBeRebased.size() < MinNumOfDependentToRebase) {
885 NotRebasedNum += ToBeRebased.size();
886 continue;
887 }
888
889 // Emit an instance of the base at this IP.
890 Instruction *Base = nullptr;
891 // Hoist and hide the base constant behind a bitcast.
892 if (ConstInfo.BaseExpr) {
893 assert(BaseGV && "A base constant expression must have an base GV");
894 Type *Ty = ConstInfo.BaseExpr->getType();
895 Base = new BitCastInst(ConstInfo.BaseExpr, Ty, "const", IP);
896 } else {
897 IntegerType *Ty = ConstInfo.BaseInt->getType();
898 Base = new BitCastInst(ConstInfo.BaseInt, Ty, "const", IP);
899 }
900
901 Base->setDebugLoc(IP->getDebugLoc());
902
903 LLVM_DEBUG(dbgs() << "Hoist constant (" << *ConstInfo.BaseInt
904 << ") to BB " << IP->getParent()->getName() << '\n'
905 << *Base << '\n');
906
907 // Emit materialization code for rebased constants depending on this IP.
908 for (auto const &R : ToBeRebased) {
909 Constant *Off = std::get<0>(R);
910 Type *Ty = std::get<1>(R);
911 ConstantUser U = std::get<2>(R);
912 emitBaseConstants(Base, Off, Ty, U);
913 ReBasesNum++;
914 // Use the same debug location as the last user of the constant.
915 Base->setDebugLoc(DILocation::getMergedLocation(
916 Base->getDebugLoc(), U.Inst->getDebugLoc()));
917 }
918 assert(!Base->use_empty() && "The use list is empty!?");
919 assert(isa<Instruction>(Base->user_back()) &&
920 "All uses should be instructions.");
921 }
922 (void)UsesNum;
923 (void)ReBasesNum;
924 (void)NotRebasedNum;
925 // Expect all uses are rebased after rebase is done.
926 assert(UsesNum == (ReBasesNum + NotRebasedNum) &&
927 "Not all uses are rebased");
928
929 NumConstantsHoisted++;
930
931 // Base constant is also included in ConstInfo.RebasedConstants, so
932 // deduct 1 from ConstInfo.RebasedConstants.size().
933 NumConstantsRebased += ConstInfo.RebasedConstants.size() - 1;
934
935 MadeChange = true;
936 }
937 return MadeChange;
938 }
939
940 /// Check all cast instructions we made a copy of and remove them if they
941 /// have no more users.
deleteDeadCastInst() const942 void ConstantHoistingPass::deleteDeadCastInst() const {
943 for (auto const &I : ClonedCastMap)
944 if (I.first->use_empty())
945 I.first->eraseFromParent();
946 }
947
948 /// Optimize expensive integer constants in the given function.
runImpl(Function & Fn,TargetTransformInfo & TTI,DominatorTree & DT,BlockFrequencyInfo * BFI,BasicBlock & Entry,ProfileSummaryInfo * PSI)949 bool ConstantHoistingPass::runImpl(Function &Fn, TargetTransformInfo &TTI,
950 DominatorTree &DT, BlockFrequencyInfo *BFI,
951 BasicBlock &Entry, ProfileSummaryInfo *PSI) {
952 this->TTI = &TTI;
953 this->DT = &DT;
954 this->BFI = BFI;
955 this->DL = &Fn.getParent()->getDataLayout();
956 this->Ctx = &Fn.getContext();
957 this->Entry = &Entry;
958 this->PSI = PSI;
959 // Collect all constant candidates.
960 collectConstantCandidates(Fn);
961
962 // Combine constants that can be easily materialized with an add from a common
963 // base constant.
964 if (!ConstIntCandVec.empty())
965 findBaseConstants(nullptr);
966 for (const auto &MapEntry : ConstGEPCandMap)
967 if (!MapEntry.second.empty())
968 findBaseConstants(MapEntry.first);
969
970 // Finally hoist the base constant and emit materialization code for dependent
971 // constants.
972 bool MadeChange = false;
973 if (!ConstIntInfoVec.empty())
974 MadeChange = emitBaseConstants(nullptr);
975 for (const auto &MapEntry : ConstGEPInfoMap)
976 if (!MapEntry.second.empty())
977 MadeChange |= emitBaseConstants(MapEntry.first);
978
979
980 // Cleanup dead instructions.
981 deleteDeadCastInst();
982
983 cleanup();
984
985 return MadeChange;
986 }
987
run(Function & F,FunctionAnalysisManager & AM)988 PreservedAnalyses ConstantHoistingPass::run(Function &F,
989 FunctionAnalysisManager &AM) {
990 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
991 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
992 auto BFI = ConstHoistWithBlockFrequency
993 ? &AM.getResult<BlockFrequencyAnalysis>(F)
994 : nullptr;
995 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
996 auto *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
997 if (!runImpl(F, TTI, DT, BFI, F.getEntryBlock(), PSI))
998 return PreservedAnalyses::all();
999
1000 PreservedAnalyses PA;
1001 PA.preserveSet<CFGAnalyses>();
1002 return PA;
1003 }
1004