1 /*
2 * Fixed point type.
3 * Based on Allegro library by Shawn Hargreaves.
4 */
5
6 #ifdef HAVE_CONFIG_H
7 #include "config.h"
8 #endif
9
10 #include "fixmath/fixmath.h"
11
12 #include <cmath>
13
14 namespace fixmath {
15
16 // Ratios for converting between radians and fixed point angles.
17 const fixed fixtorad_r = (fixed)1608; // 2pi/256
18 const fixed radtofix_r = (fixed)2670177; // 256/2pi
19
20 fixed _cos_tbl[512] =
21 {
22 /* precalculated fixed point (16.16) cosines for a full circle (0-255) */
23
24 65536L, 65531L, 65516L, 65492L, 65457L, 65413L, 65358L, 65294L,
25 65220L, 65137L, 65043L, 64940L, 64827L, 64704L, 64571L, 64429L,
26 64277L, 64115L, 63944L, 63763L, 63572L, 63372L, 63162L, 62943L,
27 62714L, 62476L, 62228L, 61971L, 61705L, 61429L, 61145L, 60851L,
28 60547L, 60235L, 59914L, 59583L, 59244L, 58896L, 58538L, 58172L,
29 57798L, 57414L, 57022L, 56621L, 56212L, 55794L, 55368L, 54934L,
30 54491L, 54040L, 53581L, 53114L, 52639L, 52156L, 51665L, 51166L,
31 50660L, 50146L, 49624L, 49095L, 48559L, 48015L, 47464L, 46906L,
32 46341L, 45769L, 45190L, 44604L, 44011L, 43412L, 42806L, 42194L,
33 41576L, 40951L, 40320L, 39683L, 39040L, 38391L, 37736L, 37076L,
34 36410L, 35738L, 35062L, 34380L, 33692L, 33000L, 32303L, 31600L,
35 30893L, 30182L, 29466L, 28745L, 28020L, 27291L, 26558L, 25821L,
36 25080L, 24335L, 23586L, 22834L, 22078L, 21320L, 20557L, 19792L,
37 19024L, 18253L, 17479L, 16703L, 15924L, 15143L, 14359L, 13573L,
38 12785L, 11996L, 11204L, 10411L, 9616L, 8820L, 8022L, 7224L,
39 6424L, 5623L, 4821L, 4019L, 3216L, 2412L, 1608L, 804L,
40 0L, -804L, -1608L, -2412L, -3216L, -4019L, -4821L, -5623L,
41 -6424L, -7224L, -8022L, -8820L, -9616L, -10411L, -11204L, -11996L,
42 -12785L, -13573L, -14359L, -15143L, -15924L, -16703L, -17479L, -18253L,
43 -19024L, -19792L, -20557L, -21320L, -22078L, -22834L, -23586L, -24335L,
44 -25080L, -25821L, -26558L, -27291L, -28020L, -28745L, -29466L, -30182L,
45 -30893L, -31600L, -32303L, -33000L, -33692L, -34380L, -35062L, -35738L,
46 -36410L, -37076L, -37736L, -38391L, -39040L, -39683L, -40320L, -40951L,
47 -41576L, -42194L, -42806L, -43412L, -44011L, -44604L, -45190L, -45769L,
48 -46341L, -46906L, -47464L, -48015L, -48559L, -49095L, -49624L, -50146L,
49 -50660L, -51166L, -51665L, -52156L, -52639L, -53114L, -53581L, -54040L,
50 -54491L, -54934L, -55368L, -55794L, -56212L, -56621L, -57022L, -57414L,
51 -57798L, -58172L, -58538L, -58896L, -59244L, -59583L, -59914L, -60235L,
52 -60547L, -60851L, -61145L, -61429L, -61705L, -61971L, -62228L, -62476L,
53 -62714L, -62943L, -63162L, -63372L, -63572L, -63763L, -63944L, -64115L,
54 -64277L, -64429L, -64571L, -64704L, -64827L, -64940L, -65043L, -65137L,
55 -65220L, -65294L, -65358L, -65413L, -65457L, -65492L, -65516L, -65531L,
56 -65536L, -65531L, -65516L, -65492L, -65457L, -65413L, -65358L, -65294L,
57 -65220L, -65137L, -65043L, -64940L, -64827L, -64704L, -64571L, -64429L,
58 -64277L, -64115L, -63944L, -63763L, -63572L, -63372L, -63162L, -62943L,
59 -62714L, -62476L, -62228L, -61971L, -61705L, -61429L, -61145L, -60851L,
60 -60547L, -60235L, -59914L, -59583L, -59244L, -58896L, -58538L, -58172L,
61 -57798L, -57414L, -57022L, -56621L, -56212L, -55794L, -55368L, -54934L,
62 -54491L, -54040L, -53581L, -53114L, -52639L, -52156L, -51665L, -51166L,
63 -50660L, -50146L, -49624L, -49095L, -48559L, -48015L, -47464L, -46906L,
64 -46341L, -45769L, -45190L, -44604L, -44011L, -43412L, -42806L, -42194L,
65 -41576L, -40951L, -40320L, -39683L, -39040L, -38391L, -37736L, -37076L,
66 -36410L, -35738L, -35062L, -34380L, -33692L, -33000L, -32303L, -31600L,
67 -30893L, -30182L, -29466L, -28745L, -28020L, -27291L, -26558L, -25821L,
68 -25080L, -24335L, -23586L, -22834L, -22078L, -21320L, -20557L, -19792L,
69 -19024L, -18253L, -17479L, -16703L, -15924L, -15143L, -14359L, -13573L,
70 -12785L, -11996L, -11204L, -10411L, -9616L, -8820L, -8022L, -7224L,
71 -6424L, -5623L, -4821L, -4019L, -3216L, -2412L, -1608L, -804L,
72 0L, 804L, 1608L, 2412L, 3216L, 4019L, 4821L, 5623L,
73 6424L, 7224L, 8022L, 8820L, 9616L, 10411L, 11204L, 11996L,
74 12785L, 13573L, 14359L, 15143L, 15924L, 16703L, 17479L, 18253L,
75 19024L, 19792L, 20557L, 21320L, 22078L, 22834L, 23586L, 24335L,
76 25080L, 25821L, 26558L, 27291L, 28020L, 28745L, 29466L, 30182L,
77 30893L, 31600L, 32303L, 33000L, 33692L, 34380L, 35062L, 35738L,
78 36410L, 37076L, 37736L, 38391L, 39040L, 39683L, 40320L, 40951L,
79 41576L, 42194L, 42806L, 43412L, 44011L, 44604L, 45190L, 45769L,
80 46341L, 46906L, 47464L, 48015L, 48559L, 49095L, 49624L, 50146L,
81 50660L, 51166L, 51665L, 52156L, 52639L, 53114L, 53581L, 54040L,
82 54491L, 54934L, 55368L, 55794L, 56212L, 56621L, 57022L, 57414L,
83 57798L, 58172L, 58538L, 58896L, 59244L, 59583L, 59914L, 60235L,
84 60547L, 60851L, 61145L, 61429L, 61705L, 61971L, 62228L, 62476L,
85 62714L, 62943L, 63162L, 63372L, 63572L, 63763L, 63944L, 64115L,
86 64277L, 64429L, 64571L, 64704L, 64827L, 64940L, 65043L, 65137L,
87 65220L, 65294L, 65358L, 65413L, 65457L, 65492L, 65516L, 65531L
88 };
89
90 fixed _tan_tbl[256] =
91 {
92 /* precalculated fixed point (16.16) tangents for a half circle (0-127) */
93
94 0L, 804L, 1609L, 2414L, 3220L, 4026L, 4834L, 5644L,
95 6455L, 7268L, 8083L, 8901L, 9721L, 10545L, 11372L, 12202L,
96 13036L, 13874L, 14717L, 15564L, 16416L, 17273L, 18136L, 19005L,
97 19880L, 20762L, 21650L, 22546L, 23449L, 24360L, 25280L, 26208L,
98 27146L, 28093L, 29050L, 30018L, 30996L, 31986L, 32988L, 34002L,
99 35030L, 36071L, 37126L, 38196L, 39281L, 40382L, 41500L, 42636L,
100 43790L, 44963L, 46156L, 47369L, 48605L, 49863L, 51145L, 52451L,
101 53784L, 55144L, 56532L, 57950L, 59398L, 60880L, 62395L, 63947L,
102 65536L, 67165L, 68835L, 70548L, 72308L, 74116L, 75974L, 77887L,
103 79856L, 81885L, 83977L, 86135L, 88365L, 90670L, 93054L, 95523L,
104 98082L, 100736L, 103493L, 106358L, 109340L, 112447L, 115687L, 119071L,
105 122609L, 126314L, 130198L, 134276L, 138564L, 143081L, 147847L, 152884L,
106 158218L, 163878L, 169896L, 176309L, 183161L, 190499L, 198380L, 206870L,
107 216043L, 225990L, 236817L, 248648L, 261634L, 275959L, 291845L, 309568L,
108 329472L, 351993L, 377693L, 407305L, 441808L, 482534L, 531352L, 590958L,
109 665398L, 761030L, 888450L, 1066730L,1334016L,1779314L,2669641L,5340086L,
110 -2147483647L,-5340086L,-2669641L,-1779314L,-1334016L,-1066730L,-888450L,-761030L,
111 -665398L,-590958L,-531352L,-482534L,-441808L,-407305L,-377693L,-351993L,
112 -329472L,-309568L,-291845L,-275959L,-261634L,-248648L,-236817L,-225990L,
113 -216043L,-206870L,-198380L,-190499L,-183161L,-176309L,-169896L,-163878L,
114 -158218L,-152884L,-147847L,-143081L,-138564L,-134276L,-130198L,-126314L,
115 -122609L,-119071L,-115687L,-112447L,-109340L,-106358L,-103493L,-100736L,
116 -98082L, -95523L, -93054L, -90670L, -88365L, -86135L, -83977L, -81885L,
117 -79856L, -77887L, -75974L, -74116L, -72308L, -70548L, -68835L, -67165L,
118 -65536L, -63947L, -62395L, -60880L, -59398L, -57950L, -56532L, -55144L,
119 -53784L, -52451L, -51145L, -49863L, -48605L, -47369L, -46156L, -44963L,
120 -43790L, -42636L, -41500L, -40382L, -39281L, -38196L, -37126L, -36071L,
121 -35030L, -34002L, -32988L, -31986L, -30996L, -30018L, -29050L, -28093L,
122 -27146L, -26208L, -25280L, -24360L, -23449L, -22546L, -21650L, -20762L,
123 -19880L, -19005L, -18136L, -17273L, -16416L, -15564L, -14717L, -13874L,
124 -13036L, -12202L, -11372L, -10545L, -9721L, -8901L, -8083L, -7268L,
125 -6455L, -5644L, -4834L, -4026L, -3220L, -2414L, -1609L, -804L
126 };
127
128 fixed _acos_tbl[513] =
129 {
130 /* precalculated fixed point (16.16) inverse cosines (-1 to 1) */
131
132 0x800000L, 0x7C65C7L, 0x7AE75AL, 0x79C19EL, 0x78C9BEL, 0x77EF25L, 0x772953L, 0x76733AL,
133 0x75C991L, 0x752A10L, 0x74930CL, 0x740345L, 0x7379C1L, 0x72F5BAL, 0x72768FL, 0x71FBBCL,
134 0x7184D3L, 0x711174L, 0x70A152L, 0x703426L, 0x6FC9B5L, 0x6F61C9L, 0x6EFC36L, 0x6E98D1L,
135 0x6E3777L, 0x6DD805L, 0x6D7A5EL, 0x6D1E68L, 0x6CC40BL, 0x6C6B2FL, 0x6C13C1L, 0x6BBDAFL,
136 0x6B68E6L, 0x6B1558L, 0x6AC2F5L, 0x6A71B1L, 0x6A217EL, 0x69D251L, 0x698420L, 0x6936DFL,
137 0x68EA85L, 0x689F0AL, 0x685465L, 0x680A8DL, 0x67C17DL, 0x67792CL, 0x673194L, 0x66EAAFL,
138 0x66A476L, 0x665EE5L, 0x6619F5L, 0x65D5A2L, 0x6591E7L, 0x654EBFL, 0x650C26L, 0x64CA18L,
139 0x648890L, 0x64478CL, 0x640706L, 0x63C6FCL, 0x63876BL, 0x63484FL, 0x6309A5L, 0x62CB6AL,
140 0x628D9CL, 0x625037L, 0x621339L, 0x61D69FL, 0x619A68L, 0x615E90L, 0x612316L, 0x60E7F7L,
141 0x60AD31L, 0x6072C3L, 0x6038A9L, 0x5FFEE3L, 0x5FC56EL, 0x5F8C49L, 0x5F5372L, 0x5F1AE7L,
142 0x5EE2A7L, 0x5EAAB0L, 0x5E7301L, 0x5E3B98L, 0x5E0473L, 0x5DCD92L, 0x5D96F3L, 0x5D6095L,
143 0x5D2A76L, 0x5CF496L, 0x5CBEF2L, 0x5C898BL, 0x5C545EL, 0x5C1F6BL, 0x5BEAB0L, 0x5BB62DL,
144 0x5B81E1L, 0x5B4DCAL, 0x5B19E7L, 0x5AE638L, 0x5AB2BCL, 0x5A7F72L, 0x5A4C59L, 0x5A1970L,
145 0x59E6B6L, 0x59B42AL, 0x5981CCL, 0x594F9BL, 0x591D96L, 0x58EBBDL, 0x58BA0EL, 0x588889L,
146 0x58572DL, 0x5825FAL, 0x57F4EEL, 0x57C40AL, 0x57934DL, 0x5762B5L, 0x573243L, 0x5701F5L,
147 0x56D1CCL, 0x56A1C6L, 0x5671E4L, 0x564224L, 0x561285L, 0x55E309L, 0x55B3ADL, 0x558471L,
148 0x555555L, 0x552659L, 0x54F77BL, 0x54C8BCL, 0x549A1BL, 0x546B98L, 0x543D31L, 0x540EE7L,
149 0x53E0B9L, 0x53B2A7L, 0x5384B0L, 0x5356D4L, 0x532912L, 0x52FB6BL, 0x52CDDDL, 0x52A068L,
150 0x52730CL, 0x5245C9L, 0x52189EL, 0x51EB8BL, 0x51BE8FL, 0x5191AAL, 0x5164DCL, 0x513825L,
151 0x510B83L, 0x50DEF7L, 0x50B280L, 0x50861FL, 0x5059D2L, 0x502D99L, 0x500175L, 0x4FD564L,
152 0x4FA967L, 0x4F7D7DL, 0x4F51A6L, 0x4F25E2L, 0x4EFA30L, 0x4ECE90L, 0x4EA301L, 0x4E7784L,
153 0x4E4C19L, 0x4E20BEL, 0x4DF574L, 0x4DCA3AL, 0x4D9F10L, 0x4D73F6L, 0x4D48ECL, 0x4D1DF1L,
154 0x4CF305L, 0x4CC829L, 0x4C9D5AL, 0x4C729AL, 0x4C47E9L, 0x4C1D45L, 0x4BF2AEL, 0x4BC826L,
155 0x4B9DAAL, 0x4B733BL, 0x4B48D9L, 0x4B1E84L, 0x4AF43BL, 0x4AC9FEL, 0x4A9FCDL, 0x4A75A7L,
156 0x4A4B8DL, 0x4A217EL, 0x49F77AL, 0x49CD81L, 0x49A393L, 0x4979AFL, 0x494FD5L, 0x492605L,
157 0x48FC3FL, 0x48D282L, 0x48A8CFL, 0x487F25L, 0x485584L, 0x482BECL, 0x48025DL, 0x47D8D6L,
158 0x47AF57L, 0x4785E0L, 0x475C72L, 0x47330AL, 0x4709ABL, 0x46E052L, 0x46B701L, 0x468DB7L,
159 0x466474L, 0x463B37L, 0x461201L, 0x45E8D0L, 0x45BFA6L, 0x459682L, 0x456D64L, 0x45444BL,
160 0x451B37L, 0x44F229L, 0x44C920L, 0x44A01CL, 0x44771CL, 0x444E21L, 0x44252AL, 0x43FC38L,
161 0x43D349L, 0x43AA5FL, 0x438178L, 0x435894L, 0x432FB4L, 0x4306D8L, 0x42DDFEL, 0x42B527L,
162 0x428C53L, 0x426381L, 0x423AB2L, 0x4211E5L, 0x41E91AL, 0x41C051L, 0x41978AL, 0x416EC5L,
163 0x414601L, 0x411D3EL, 0x40F47CL, 0x40CBBBL, 0x40A2FBL, 0x407A3CL, 0x40517DL, 0x4028BEL,
164 0x400000L, 0x3FD742L, 0x3FAE83L, 0x3F85C4L, 0x3F5D05L, 0x3F3445L, 0x3F0B84L, 0x3EE2C2L,
165 0x3EB9FFL, 0x3E913BL, 0x3E6876L, 0x3E3FAFL, 0x3E16E6L, 0x3DEE1BL, 0x3DC54EL, 0x3D9C7FL,
166 0x3D73ADL, 0x3D4AD9L, 0x3D2202L, 0x3CF928L, 0x3CD04CL, 0x3CA76CL, 0x3C7E88L, 0x3C55A1L,
167 0x3C2CB7L, 0x3C03C8L, 0x3BDAD6L, 0x3BB1DFL, 0x3B88E4L, 0x3B5FE4L, 0x3B36E0L, 0x3B0DD7L,
168 0x3AE4C9L, 0x3ABBB5L, 0x3A929CL, 0x3A697EL, 0x3A405AL, 0x3A1730L, 0x39EDFFL, 0x39C4C9L,
169 0x399B8CL, 0x397249L, 0x3948FFL, 0x391FAEL, 0x38F655L, 0x38CCF6L, 0x38A38EL, 0x387A20L,
170 0x3850A9L, 0x38272AL, 0x37FDA3L, 0x37D414L, 0x37AA7CL, 0x3780DBL, 0x375731L, 0x372D7EL,
171 0x3703C1L, 0x36D9FBL, 0x36B02BL, 0x368651L, 0x365C6DL, 0x36327FL, 0x360886L, 0x35DE82L,
172 0x35B473L, 0x358A59L, 0x356033L, 0x353602L, 0x350BC5L, 0x34E17CL, 0x34B727L, 0x348CC5L,
173 0x346256L, 0x3437DAL, 0x340D52L, 0x33E2BBL, 0x33B817L, 0x338D66L, 0x3362A6L, 0x3337D7L,
174 0x330CFBL, 0x32E20FL, 0x32B714L, 0x328C0AL, 0x3260F0L, 0x3235C6L, 0x320A8CL, 0x31DF42L,
175 0x31B3E7L, 0x31887CL, 0x315CFFL, 0x313170L, 0x3105D0L, 0x30DA1EL, 0x30AE5AL, 0x308283L,
176 0x305699L, 0x302A9CL, 0x2FFE8BL, 0x2FD267L, 0x2FA62EL, 0x2F79E1L, 0x2F4D80L, 0x2F2109L,
177 0x2EF47DL, 0x2EC7DBL, 0x2E9B24L, 0x2E6E56L, 0x2E4171L, 0x2E1475L, 0x2DE762L, 0x2DBA37L,
178 0x2D8CF4L, 0x2D5F98L, 0x2D3223L, 0x2D0495L, 0x2CD6EEL, 0x2CA92CL, 0x2C7B50L, 0x2C4D59L,
179 0x2C1F47L, 0x2BF119L, 0x2BC2CFL, 0x2B9468L, 0x2B65E5L, 0x2B3744L, 0x2B0885L, 0x2AD9A7L,
180 0x2AAAABL, 0x2A7B8FL, 0x2A4C53L, 0x2A1CF7L, 0x29ED7BL, 0x29BDDCL, 0x298E1CL, 0x295E3AL,
181 0x292E34L, 0x28FE0BL, 0x28CDBDL, 0x289D4BL, 0x286CB3L, 0x283BF6L, 0x280B12L, 0x27DA06L,
182 0x27A8D3L, 0x277777L, 0x2745F2L, 0x271443L, 0x26E26AL, 0x26B065L, 0x267E34L, 0x264BD6L,
183 0x26194AL, 0x25E690L, 0x25B3A7L, 0x25808EL, 0x254D44L, 0x2519C8L, 0x24E619L, 0x24B236L,
184 0x247E1FL, 0x2449D3L, 0x241550L, 0x23E095L, 0x23ABA2L, 0x237675L, 0x23410EL, 0x230B6AL,
185 0x22D58AL, 0x229F6BL, 0x22690DL, 0x22326EL, 0x21FB8DL, 0x21C468L, 0x218CFFL, 0x215550L,
186 0x211D59L, 0x20E519L, 0x20AC8EL, 0x2073B7L, 0x203A92L, 0x20011DL, 0x1FC757L, 0x1F8D3DL,
187 0x1F52CFL, 0x1F1809L, 0x1EDCEAL, 0x1EA170L, 0x1E6598L, 0x1E2961L, 0x1DECC7L, 0x1DAFC9L,
188 0x1D7264L, 0x1D3496L, 0x1CF65BL, 0x1CB7B1L, 0x1C7895L, 0x1C3904L, 0x1BF8FAL, 0x1BB874L,
189 0x1B7770L, 0x1B35E8L, 0x1AF3DAL, 0x1AB141L, 0x1A6E19L, 0x1A2A5EL, 0x19E60BL, 0x19A11BL,
190 0x195B8AL, 0x191551L, 0x18CE6CL, 0x1886D4L, 0x183E83L, 0x17F573L, 0x17AB9BL, 0x1760F6L,
191 0x17157BL, 0x16C921L, 0x167BE0L, 0x162DAFL, 0x15DE82L, 0x158E4FL, 0x153D0BL, 0x14EAA8L,
192 0x14971AL, 0x144251L, 0x13EC3FL, 0x1394D1L, 0x133BF5L, 0x12E198L, 0x1285A2L, 0x1227FBL,
193 0x11C889L, 0x11672FL, 0x1103CAL, 0x109E37L, 0x10364BL, 0xFCBDAL, 0xF5EAEL, 0xEEE8CL,
194 0xE7B2DL, 0xE0444L, 0xD8971L, 0xD0A46L, 0xC863FL, 0xBFCBBL, 0xB6CF4L, 0xAD5F0L,
195 0xA366FL, 0x98CC6L, 0x8D6ADL, 0x810DBL, 0x73642L, 0x63E62L, 0x518A6L, 0x39A39L,
196 0x0L
197 };
198
199 // Fixed point square root routine for non-i386.
fixsqrt(fixed x)200 fixed fixsqrt(fixed x)
201 {
202 if (x > 0)
203 return ftofix(std::sqrt(fixtof(x)));
204
205 if (x < 0)
206 errno = EDOM;
207
208 return 0;
209 }
210
211 // Fixed point sqrt (x*x+y*y) for non-i386.
fixhypot(fixed x,fixed y)212 fixed fixhypot(fixed x, fixed y)
213 {
214 return ftofix(hypot(fixtof(x), fixtof(y)));
215 }
216
217 // Fixed point inverse tangent. Does a binary search on the tan table.
fixatan(fixed x)218 fixed fixatan(fixed x)
219 {
220 int a, b, c; /* for binary search */
221 fixed d; /* difference value for search */
222
223 if (x >= 0) { /* search the first part of tan table */
224 a = 0;
225 b = 127;
226 }
227 else { /* search the second half instead */
228 a = 128;
229 b = 255;
230 }
231
232 do {
233 c = (a + b) >> 1;
234 d = x - _tan_tbl[c];
235
236 if (d > 0)
237 a = c + 1;
238 else
239 if (d < 0)
240 b = c - 1;
241
242 } while ((a <= b) && (d));
243
244 if (x >= 0)
245 return ((long)c) << 15;
246
247 return (-0x00800000L + (((long)c) << 15));
248 }
249
250 // Like the libc atan2, but for fixed point numbers.
fixatan2(fixed y,fixed x)251 fixed fixatan2(fixed y, fixed x)
252 {
253 fixed r;
254
255 if (x==0) {
256 if (y==0) {
257 errno = EDOM;
258 return 0L;
259 }
260 else
261 return ((y < 0) ? -0x00400000L : 0x00400000L);
262 }
263
264 errno = 0;
265 r = fixdiv(y, x);
266
267 if (errno) {
268 errno = 0;
269 return ((y < 0) ? -0x00400000L : 0x00400000L);
270 }
271
272 r = fixatan(r);
273
274 if (x >= 0)
275 return r;
276
277 if (y >= 0)
278 return 0x00800000L + r;
279
280 return r - 0x00800000L;
281 }
282
283 } // namespace fixmath
284