1 /* Definitions of target machine for GNU compiler, for Sun SPARC. 2 Copyright (C) 1987, 1988, 1989, 1992, 1994, 1995, 1996, 1997, 1998, 1999 3 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc. 4 Contributed by Michael Tiemann (tiemann@cygnus.com). 5 64-bit SPARC-V9 support by Michael Tiemann, Jim Wilson, and Doug Evans, 6 at Cygnus Support. 7 8 This file is part of GCC. 9 10 GCC is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation; either version 2, or (at your option) 13 any later version. 14 15 GCC is distributed in the hope that it will be useful, 16 but WITHOUT ANY WARRANTY; without even the implied warranty of 17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 GNU General Public License for more details. 19 20 You should have received a copy of the GNU General Public License 21 along with GCC; see the file COPYING. If not, write to 22 the Free Software Foundation, 51 Franklin Street, Fifth Floor, 23 Boston, MA 02110-1301, USA. */ 24 25 /* Note that some other tm.h files include this one and then override 26 whatever definitions are necessary. */ 27 28 /* Define the specific costs for a given cpu */ 29 30 struct processor_costs { 31 /* Integer load */ 32 const int int_load; 33 34 /* Integer signed load */ 35 const int int_sload; 36 37 /* Integer zeroed load */ 38 const int int_zload; 39 40 /* Float load */ 41 const int float_load; 42 43 /* fmov, fneg, fabs */ 44 const int float_move; 45 46 /* fadd, fsub */ 47 const int float_plusminus; 48 49 /* fcmp */ 50 const int float_cmp; 51 52 /* fmov, fmovr */ 53 const int float_cmove; 54 55 /* fmul */ 56 const int float_mul; 57 58 /* fdivs */ 59 const int float_div_sf; 60 61 /* fdivd */ 62 const int float_div_df; 63 64 /* fsqrts */ 65 const int float_sqrt_sf; 66 67 /* fsqrtd */ 68 const int float_sqrt_df; 69 70 /* umul/smul */ 71 const int int_mul; 72 73 /* mulX */ 74 const int int_mulX; 75 76 /* integer multiply cost for each bit set past the most 77 significant 3, so the formula for multiply cost becomes: 78 79 if (rs1 < 0) 80 highest_bit = highest_clear_bit(rs1); 81 else 82 highest_bit = highest_set_bit(rs1); 83 if (highest_bit < 3) 84 highest_bit = 3; 85 cost = int_mul{,X} + ((highest_bit - 3) / int_mul_bit_factor); 86 87 A value of zero indicates that the multiply costs is fixed, 88 and not variable. */ 89 const int int_mul_bit_factor; 90 91 /* udiv/sdiv */ 92 const int int_div; 93 94 /* divX */ 95 const int int_divX; 96 97 /* movcc, movr */ 98 const int int_cmove; 99 100 /* penalty for shifts, due to scheduling rules etc. */ 101 const int shift_penalty; 102 }; 103 104 extern const struct processor_costs *sparc_costs; 105 106 /* Target CPU builtins. FIXME: Defining sparc is for the benefit of 107 Solaris only; otherwise just define __sparc__. Sadly the headers 108 are such a mess there is no Solaris-specific header. */ 109 #define TARGET_CPU_CPP_BUILTINS() \ 110 do \ 111 { \ 112 builtin_define_std ("sparc"); \ 113 if (TARGET_64BIT) \ 114 { \ 115 builtin_assert ("cpu=sparc64"); \ 116 builtin_assert ("machine=sparc64"); \ 117 } \ 118 else \ 119 { \ 120 builtin_assert ("cpu=sparc"); \ 121 builtin_assert ("machine=sparc"); \ 122 } \ 123 } \ 124 while (0) 125 126 /* Specify this in a cover file to provide bi-architecture (32/64) support. */ 127 /* #define SPARC_BI_ARCH */ 128 129 /* Macro used later in this file to determine default architecture. */ 130 #define DEFAULT_ARCH32_P ((TARGET_DEFAULT & MASK_64BIT) == 0) 131 132 /* TARGET_ARCH{32,64} are the main macros to decide which of the two 133 architectures to compile for. We allow targets to choose compile time or 134 runtime selection. */ 135 #ifdef IN_LIBGCC2 136 #if defined(__sparcv9) || defined(__arch64__) 137 #define TARGET_ARCH32 0 138 #else 139 #define TARGET_ARCH32 1 140 #endif /* sparc64 */ 141 #else 142 #ifdef SPARC_BI_ARCH 143 #define TARGET_ARCH32 (! TARGET_64BIT) 144 #else 145 #define TARGET_ARCH32 (DEFAULT_ARCH32_P) 146 #endif /* SPARC_BI_ARCH */ 147 #endif /* IN_LIBGCC2 */ 148 #define TARGET_ARCH64 (! TARGET_ARCH32) 149 150 /* Code model selection in 64-bit environment. 151 152 The machine mode used for addresses is 32-bit wide: 153 154 TARGET_CM_32: 32-bit address space. 155 It is the code model used when generating 32-bit code. 156 157 The machine mode used for addresses is 64-bit wide: 158 159 TARGET_CM_MEDLOW: 32-bit address space. 160 The executable must be in the low 32 bits of memory. 161 This avoids generating %uhi and %ulo terms. Programs 162 can be statically or dynamically linked. 163 164 TARGET_CM_MEDMID: 44-bit address space. 165 The executable must be in the low 44 bits of memory, 166 and the %[hml]44 terms are used. The text and data 167 segments have a maximum size of 2GB (31-bit span). 168 The maximum offset from any instruction to the label 169 _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span). 170 171 TARGET_CM_MEDANY: 64-bit address space. 172 The text and data segments have a maximum size of 2GB 173 (31-bit span) and may be located anywhere in memory. 174 The maximum offset from any instruction to the label 175 _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span). 176 177 TARGET_CM_EMBMEDANY: 64-bit address space. 178 The text and data segments have a maximum size of 2GB 179 (31-bit span) and may be located anywhere in memory. 180 The global register %g4 contains the start address of 181 the data segment. Programs are statically linked and 182 PIC is not supported. 183 184 Different code models are not supported in 32-bit environment. */ 185 186 enum cmodel { 187 CM_32, 188 CM_MEDLOW, 189 CM_MEDMID, 190 CM_MEDANY, 191 CM_EMBMEDANY 192 }; 193 194 /* One of CM_FOO. */ 195 extern enum cmodel sparc_cmodel; 196 197 /* V9 code model selection. */ 198 #define TARGET_CM_MEDLOW (sparc_cmodel == CM_MEDLOW) 199 #define TARGET_CM_MEDMID (sparc_cmodel == CM_MEDMID) 200 #define TARGET_CM_MEDANY (sparc_cmodel == CM_MEDANY) 201 #define TARGET_CM_EMBMEDANY (sparc_cmodel == CM_EMBMEDANY) 202 203 #define SPARC_DEFAULT_CMODEL CM_32 204 205 /* The SPARC-V9 architecture defines a relaxed memory ordering model (RMO) 206 which requires the following macro to be true if enabled. Prior to V9, 207 there are no instructions to even talk about memory synchronization. 208 Note that the UltraSPARC III processors don't implement RMO, unlike the 209 UltraSPARC II processors. Niagara does not implement RMO either. 210 211 Default to false; for example, Solaris never enables RMO, only ever uses 212 total memory ordering (TMO). */ 213 #define SPARC_RELAXED_ORDERING false 214 215 /* Do not use the .note.GNU-stack convention by default. */ 216 #define NEED_INDICATE_EXEC_STACK 0 217 218 /* This is call-clobbered in the normal ABI, but is reserved in the 219 home grown (aka upward compatible) embedded ABI. */ 220 #define EMBMEDANY_BASE_REG "%g4" 221 222 /* Values of TARGET_CPU_DEFAULT, set via -D in the Makefile, 223 and specified by the user via --with-cpu=foo. 224 This specifies the cpu implementation, not the architecture size. */ 225 /* Note that TARGET_CPU_v9 is assumed to start the list of 64-bit 226 capable cpu's. */ 227 #define TARGET_CPU_sparc 0 228 #define TARGET_CPU_v7 0 /* alias for previous */ 229 #define TARGET_CPU_sparclet 1 230 #define TARGET_CPU_sparclite 2 231 #define TARGET_CPU_v8 3 /* generic v8 implementation */ 232 #define TARGET_CPU_supersparc 4 233 #define TARGET_CPU_hypersparc 5 234 #define TARGET_CPU_sparc86x 6 235 #define TARGET_CPU_sparclite86x 6 236 #define TARGET_CPU_v9 7 /* generic v9 implementation */ 237 #define TARGET_CPU_sparcv9 7 /* alias */ 238 #define TARGET_CPU_sparc64 7 /* alias */ 239 #define TARGET_CPU_ultrasparc 8 240 #define TARGET_CPU_ultrasparc3 9 241 #define TARGET_CPU_niagara 10 242 243 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9 \ 244 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc \ 245 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3 \ 246 || TARGET_CPU_DEFAULT == TARGET_CPU_niagara 247 248 #define CPP_CPU32_DEFAULT_SPEC "" 249 #define ASM_CPU32_DEFAULT_SPEC "" 250 251 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9 252 /* ??? What does Sun's CC pass? */ 253 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__" 254 /* ??? It's not clear how other assemblers will handle this, so by default 255 use GAS. Sun's Solaris assembler recognizes -xarch=v8plus, but this case 256 is handled in sol2.h. */ 257 #define ASM_CPU64_DEFAULT_SPEC "-Av9" 258 #endif 259 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc 260 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__" 261 #define ASM_CPU64_DEFAULT_SPEC "-Av9a" 262 #endif 263 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3 264 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__" 265 #define ASM_CPU64_DEFAULT_SPEC "-Av9b" 266 #endif 267 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara 268 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__" 269 #define ASM_CPU64_DEFAULT_SPEC "-Av9b" 270 #endif 271 272 #else 273 274 #define CPP_CPU64_DEFAULT_SPEC "" 275 #define ASM_CPU64_DEFAULT_SPEC "" 276 277 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparc \ 278 || TARGET_CPU_DEFAULT == TARGET_CPU_v8 279 #define CPP_CPU32_DEFAULT_SPEC "" 280 #define ASM_CPU32_DEFAULT_SPEC "" 281 #endif 282 283 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclet 284 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclet__" 285 #define ASM_CPU32_DEFAULT_SPEC "-Asparclet" 286 #endif 287 288 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite 289 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite__" 290 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite" 291 #endif 292 293 #if TARGET_CPU_DEFAULT == TARGET_CPU_supersparc 294 #define CPP_CPU32_DEFAULT_SPEC "-D__supersparc__ -D__sparc_v8__" 295 #define ASM_CPU32_DEFAULT_SPEC "" 296 #endif 297 298 #if TARGET_CPU_DEFAULT == TARGET_CPU_hypersparc 299 #define CPP_CPU32_DEFAULT_SPEC "-D__hypersparc__ -D__sparc_v8__" 300 #define ASM_CPU32_DEFAULT_SPEC "" 301 #endif 302 303 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite86x 304 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite86x__" 305 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite" 306 #endif 307 308 #endif 309 310 #if !defined(CPP_CPU32_DEFAULT_SPEC) || !defined(CPP_CPU64_DEFAULT_SPEC) 311 #error Unrecognized value in TARGET_CPU_DEFAULT. 312 #endif 313 314 #ifdef SPARC_BI_ARCH 315 316 #define CPP_CPU_DEFAULT_SPEC \ 317 (DEFAULT_ARCH32_P ? "\ 318 %{m64:" CPP_CPU64_DEFAULT_SPEC "} \ 319 %{!m64:" CPP_CPU32_DEFAULT_SPEC "} \ 320 " : "\ 321 %{m32:" CPP_CPU32_DEFAULT_SPEC "} \ 322 %{!m32:" CPP_CPU64_DEFAULT_SPEC "} \ 323 ") 324 #define ASM_CPU_DEFAULT_SPEC \ 325 (DEFAULT_ARCH32_P ? "\ 326 %{m64:" ASM_CPU64_DEFAULT_SPEC "} \ 327 %{!m64:" ASM_CPU32_DEFAULT_SPEC "} \ 328 " : "\ 329 %{m32:" ASM_CPU32_DEFAULT_SPEC "} \ 330 %{!m32:" ASM_CPU64_DEFAULT_SPEC "} \ 331 ") 332 333 #else /* !SPARC_BI_ARCH */ 334 335 #define CPP_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? CPP_CPU32_DEFAULT_SPEC : CPP_CPU64_DEFAULT_SPEC) 336 #define ASM_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? ASM_CPU32_DEFAULT_SPEC : ASM_CPU64_DEFAULT_SPEC) 337 338 #endif /* !SPARC_BI_ARCH */ 339 340 /* Define macros to distinguish architectures. */ 341 342 /* Common CPP definitions used by CPP_SPEC amongst the various targets 343 for handling -mcpu=xxx switches. */ 344 #define CPP_CPU_SPEC "\ 345 %{msoft-float:-D_SOFT_FLOAT} \ 346 %{mcypress:} \ 347 %{msparclite:-D__sparclite__} \ 348 %{mf930:-D__sparclite__} %{mf934:-D__sparclite__} \ 349 %{mv8:-D__sparc_v8__} \ 350 %{msupersparc:-D__supersparc__ -D__sparc_v8__} \ 351 %{mcpu=sparclet:-D__sparclet__} %{mcpu=tsc701:-D__sparclet__} \ 352 %{mcpu=sparclite:-D__sparclite__} \ 353 %{mcpu=f930:-D__sparclite__} %{mcpu=f934:-D__sparclite__} \ 354 %{mcpu=v8:-D__sparc_v8__} \ 355 %{mcpu=supersparc:-D__supersparc__ -D__sparc_v8__} \ 356 %{mcpu=hypersparc:-D__hypersparc__ -D__sparc_v8__} \ 357 %{mcpu=sparclite86x:-D__sparclite86x__} \ 358 %{mcpu=v9:-D__sparc_v9__} \ 359 %{mcpu=ultrasparc:-D__sparc_v9__} \ 360 %{mcpu=ultrasparc3:-D__sparc_v9__} \ 361 %{mcpu=niagara:-D__sparc_v9__} \ 362 %{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(cpp_cpu_default)}}}}}}} \ 363 " 364 #define CPP_ARCH32_SPEC "" 365 #define CPP_ARCH64_SPEC "-D__arch64__" 366 367 #define CPP_ARCH_DEFAULT_SPEC \ 368 (DEFAULT_ARCH32_P ? CPP_ARCH32_SPEC : CPP_ARCH64_SPEC) 369 370 #define CPP_ARCH_SPEC "\ 371 %{m32:%(cpp_arch32)} \ 372 %{m64:%(cpp_arch64)} \ 373 %{!m32:%{!m64:%(cpp_arch_default)}} \ 374 " 375 376 /* Macros to distinguish endianness. */ 377 #define CPP_ENDIAN_SPEC "\ 378 %{mlittle-endian:-D__LITTLE_ENDIAN__} \ 379 %{mlittle-endian-data:-D__LITTLE_ENDIAN_DATA__}" 380 381 /* Macros to distinguish the particular subtarget. */ 382 #define CPP_SUBTARGET_SPEC "" 383 384 #define CPP_SPEC "%(cpp_cpu) %(cpp_arch) %(cpp_endian) %(cpp_subtarget)" 385 386 /* Prevent error on `-sun4' and `-target sun4' options. */ 387 /* This used to translate -dalign to -malign, but that is no good 388 because it can't turn off the usual meaning of making debugging dumps. */ 389 /* Translate old style -m<cpu> into new style -mcpu=<cpu>. 390 ??? Delete support for -m<cpu> for 2.9. */ 391 392 #define CC1_SPEC "\ 393 %{sun4:} %{target:} \ 394 %{mcypress:-mcpu=cypress} \ 395 %{msparclite:-mcpu=sparclite} %{mf930:-mcpu=f930} %{mf934:-mcpu=f934} \ 396 %{mv8:-mcpu=v8} %{msupersparc:-mcpu=supersparc} \ 397 " 398 399 /* Override in target specific files. */ 400 #define ASM_CPU_SPEC "\ 401 %{mcpu=sparclet:-Asparclet} %{mcpu=tsc701:-Asparclet} \ 402 %{msparclite:-Asparclite} \ 403 %{mf930:-Asparclite} %{mf934:-Asparclite} \ 404 %{mcpu=sparclite:-Asparclite} \ 405 %{mcpu=sparclite86x:-Asparclite} \ 406 %{mcpu=f930:-Asparclite} %{mcpu=f934:-Asparclite} \ 407 %{mv8plus:-Av8plus} \ 408 %{mcpu=v9:-Av9} \ 409 %{mcpu=ultrasparc:%{!mv8plus:-Av9a}} \ 410 %{mcpu=ultrasparc3:%{!mv8plus:-Av9b}} \ 411 %{mcpu=niagara:%{!mv8plus:-Av9b}} \ 412 %{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(asm_cpu_default)}}}}}}} \ 413 " 414 415 /* Word size selection, among other things. 416 This is what GAS uses. Add %(asm_arch) to ASM_SPEC to enable. */ 417 418 #define ASM_ARCH32_SPEC "-32" 419 #ifdef HAVE_AS_REGISTER_PSEUDO_OP 420 #define ASM_ARCH64_SPEC "-64 -no-undeclared-regs" 421 #else 422 #define ASM_ARCH64_SPEC "-64" 423 #endif 424 #define ASM_ARCH_DEFAULT_SPEC \ 425 (DEFAULT_ARCH32_P ? ASM_ARCH32_SPEC : ASM_ARCH64_SPEC) 426 427 #define ASM_ARCH_SPEC "\ 428 %{m32:%(asm_arch32)} \ 429 %{m64:%(asm_arch64)} \ 430 %{!m32:%{!m64:%(asm_arch_default)}} \ 431 " 432 433 #ifdef HAVE_AS_RELAX_OPTION 434 #define ASM_RELAX_SPEC "%{!mno-relax:-relax}" 435 #else 436 #define ASM_RELAX_SPEC "" 437 #endif 438 439 /* Special flags to the Sun-4 assembler when using pipe for input. */ 440 441 #define ASM_SPEC "\ 442 %{R} %{!pg:%{!p:%{fpic|fPIC|fpie|fPIE:-k}}} %{keep-local-as-symbols:-L} \ 443 %(asm_cpu) %(asm_relax)" 444 445 #define AS_NEEDS_DASH_FOR_PIPED_INPUT 446 447 /* This macro defines names of additional specifications to put in the specs 448 that can be used in various specifications like CC1_SPEC. Its definition 449 is an initializer with a subgrouping for each command option. 450 451 Each subgrouping contains a string constant, that defines the 452 specification name, and a string constant that used by the GCC driver 453 program. 454 455 Do not define this macro if it does not need to do anything. */ 456 457 #define EXTRA_SPECS \ 458 { "cpp_cpu", CPP_CPU_SPEC }, \ 459 { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \ 460 { "cpp_arch32", CPP_ARCH32_SPEC }, \ 461 { "cpp_arch64", CPP_ARCH64_SPEC }, \ 462 { "cpp_arch_default", CPP_ARCH_DEFAULT_SPEC },\ 463 { "cpp_arch", CPP_ARCH_SPEC }, \ 464 { "cpp_endian", CPP_ENDIAN_SPEC }, \ 465 { "cpp_subtarget", CPP_SUBTARGET_SPEC }, \ 466 { "asm_cpu", ASM_CPU_SPEC }, \ 467 { "asm_cpu_default", ASM_CPU_DEFAULT_SPEC }, \ 468 { "asm_arch32", ASM_ARCH32_SPEC }, \ 469 { "asm_arch64", ASM_ARCH64_SPEC }, \ 470 { "asm_relax", ASM_RELAX_SPEC }, \ 471 { "asm_arch_default", ASM_ARCH_DEFAULT_SPEC },\ 472 { "asm_arch", ASM_ARCH_SPEC }, \ 473 SUBTARGET_EXTRA_SPECS 474 475 #define SUBTARGET_EXTRA_SPECS 476 477 /* Because libgcc can generate references back to libc (via .umul etc.) we have 478 to list libc again after the second libgcc. */ 479 #define LINK_GCC_C_SEQUENCE_SPEC "%G %L %G %L" 480 481 482 #define PTRDIFF_TYPE (TARGET_ARCH64 ? "long int" : "int") 483 #define SIZE_TYPE (TARGET_ARCH64 ? "long unsigned int" : "unsigned int") 484 485 /* ??? This should be 32 bits for v9 but what can we do? */ 486 #define WCHAR_TYPE "short unsigned int" 487 #define WCHAR_TYPE_SIZE 16 488 489 /* Show we can debug even without a frame pointer. */ 490 #define CAN_DEBUG_WITHOUT_FP 491 492 /* Option handling. */ 493 494 #define OVERRIDE_OPTIONS sparc_override_options () 495 496 /* Mask of all CPU selection flags. */ 497 #define MASK_ISA \ 498 (MASK_V8 + MASK_SPARCLITE + MASK_SPARCLET + MASK_V9 + MASK_DEPRECATED_V8_INSNS) 499 500 /* TARGET_HARD_MUL: Use hardware multiply instructions but not %y. 501 TARGET_HARD_MUL32: Use hardware multiply instructions with rd %y 502 to get high 32 bits. False in V8+ or V9 because multiply stores 503 a 64 bit result in a register. */ 504 505 #define TARGET_HARD_MUL32 \ 506 ((TARGET_V8 || TARGET_SPARCLITE \ 507 || TARGET_SPARCLET || TARGET_DEPRECATED_V8_INSNS) \ 508 && ! TARGET_V8PLUS && TARGET_ARCH32) 509 510 #define TARGET_HARD_MUL \ 511 (TARGET_V8 || TARGET_SPARCLITE || TARGET_SPARCLET \ 512 || TARGET_DEPRECATED_V8_INSNS || TARGET_V8PLUS) 513 514 /* MASK_APP_REGS must always be the default because that's what 515 FIXED_REGISTERS is set to and -ffixed- is processed before 516 CONDITIONAL_REGISTER_USAGE is called (where we process -mno-app-regs). */ 517 #define TARGET_DEFAULT (MASK_APP_REGS + MASK_FPU) 518 519 /* Processor type. 520 These must match the values for the cpu attribute in sparc.md. */ 521 enum processor_type { 522 PROCESSOR_V7, 523 PROCESSOR_CYPRESS, 524 PROCESSOR_V8, 525 PROCESSOR_SUPERSPARC, 526 PROCESSOR_SPARCLITE, 527 PROCESSOR_F930, 528 PROCESSOR_F934, 529 PROCESSOR_HYPERSPARC, 530 PROCESSOR_SPARCLITE86X, 531 PROCESSOR_SPARCLET, 532 PROCESSOR_TSC701, 533 PROCESSOR_V9, 534 PROCESSOR_ULTRASPARC, 535 PROCESSOR_ULTRASPARC3, 536 PROCESSOR_NIAGARA 537 }; 538 539 /* This is set from -m{cpu,tune}=xxx. */ 540 extern enum processor_type sparc_cpu; 541 542 /* Recast the cpu class to be the cpu attribute. 543 Every file includes us, but not every file includes insn-attr.h. */ 544 #define sparc_cpu_attr ((enum attr_cpu) sparc_cpu) 545 546 /* Support for a compile-time default CPU, et cetera. The rules are: 547 --with-cpu is ignored if -mcpu is specified. 548 --with-tune is ignored if -mtune is specified. 549 --with-float is ignored if -mhard-float, -msoft-float, -mfpu, or -mno-fpu 550 are specified. */ 551 #define OPTION_DEFAULT_SPECS \ 552 {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \ 553 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \ 554 {"float", "%{!msoft-float:%{!mhard-float:%{!fpu:%{!no-fpu:-m%(VALUE)-float}}}}" } 555 556 /* sparc_select[0] is reserved for the default cpu. */ 557 struct sparc_cpu_select 558 { 559 const char *string; 560 const char *const name; 561 const int set_tune_p; 562 const int set_arch_p; 563 }; 564 565 extern struct sparc_cpu_select sparc_select[]; 566 567 /* target machine storage layout */ 568 569 /* Define this if most significant bit is lowest numbered 570 in instructions that operate on numbered bit-fields. */ 571 #define BITS_BIG_ENDIAN 1 572 573 /* Define this if most significant byte of a word is the lowest numbered. */ 574 #define BYTES_BIG_ENDIAN 1 575 576 /* Define this if most significant word of a multiword number is the lowest 577 numbered. */ 578 #define WORDS_BIG_ENDIAN 1 579 580 /* Define this to set the endianness to use in libgcc2.c, which can 581 not depend on target_flags. */ 582 #if defined (__LITTLE_ENDIAN__) || defined(__LITTLE_ENDIAN_DATA__) 583 #define LIBGCC2_WORDS_BIG_ENDIAN 0 584 #else 585 #define LIBGCC2_WORDS_BIG_ENDIAN 1 586 #endif 587 588 #define MAX_BITS_PER_WORD 64 589 590 /* Width of a word, in units (bytes). */ 591 #define UNITS_PER_WORD (TARGET_ARCH64 ? 8 : 4) 592 #ifdef IN_LIBGCC2 593 #define MIN_UNITS_PER_WORD UNITS_PER_WORD 594 #else 595 #define MIN_UNITS_PER_WORD 4 596 #endif 597 598 #define UNITS_PER_SIMD_WORD (TARGET_VIS ? 8 : UNITS_PER_WORD) 599 600 /* Now define the sizes of the C data types. */ 601 602 #define SHORT_TYPE_SIZE 16 603 #define INT_TYPE_SIZE 32 604 #define LONG_TYPE_SIZE (TARGET_ARCH64 ? 64 : 32) 605 #define LONG_LONG_TYPE_SIZE 64 606 #define FLOAT_TYPE_SIZE 32 607 #define DOUBLE_TYPE_SIZE 64 608 /* LONG_DOUBLE_TYPE_SIZE is defined per OS even though the 609 SPARC ABI says that it is 128-bit wide. */ 610 /* #define LONG_DOUBLE_TYPE_SIZE 128 */ 611 612 /* Width in bits of a pointer. 613 See also the macro `Pmode' defined below. */ 614 #define POINTER_SIZE (TARGET_PTR64 ? 64 : 32) 615 616 /* If we have to extend pointers (only when TARGET_ARCH64 and not 617 TARGET_PTR64), we want to do it unsigned. This macro does nothing 618 if ptr_mode and Pmode are the same. */ 619 #define POINTERS_EXTEND_UNSIGNED 1 620 621 /* For TARGET_ARCH64 we need this, as we don't have instructions 622 for arithmetic operations which do zero/sign extension at the same time, 623 so without this we end up with a srl/sra after every assignment to an 624 user variable, which means very very bad code. */ 625 #define PROMOTE_FUNCTION_MODE(MODE, UNSIGNEDP, TYPE) \ 626 if (TARGET_ARCH64 \ 627 && GET_MODE_CLASS (MODE) == MODE_INT \ 628 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \ 629 (MODE) = word_mode; 630 631 /* Allocation boundary (in *bits*) for storing arguments in argument list. */ 632 #define PARM_BOUNDARY (TARGET_ARCH64 ? 64 : 32) 633 634 /* Boundary (in *bits*) on which stack pointer should be aligned. */ 635 /* FIXME, this is wrong when TARGET_ARCH64 and TARGET_STACK_BIAS, because 636 then %sp+2047 is 128-bit aligned so %sp is really only byte-aligned. */ 637 #define STACK_BOUNDARY (TARGET_ARCH64 ? 128 : 64) 638 /* Temporary hack until the FIXME above is fixed. */ 639 #define SPARC_STACK_BOUNDARY_HACK (TARGET_ARCH64 && TARGET_STACK_BIAS) 640 641 /* ALIGN FRAMES on double word boundaries */ 642 643 #define SPARC_STACK_ALIGN(LOC) \ 644 (TARGET_ARCH64 ? (((LOC)+15) & ~15) : (((LOC)+7) & ~7)) 645 646 /* Allocation boundary (in *bits*) for the code of a function. */ 647 #define FUNCTION_BOUNDARY 32 648 649 /* Alignment of field after `int : 0' in a structure. */ 650 #define EMPTY_FIELD_BOUNDARY (TARGET_ARCH64 ? 64 : 32) 651 652 /* Every structure's size must be a multiple of this. */ 653 #define STRUCTURE_SIZE_BOUNDARY 8 654 655 /* A bit-field declared as `int' forces `int' alignment for the struct. */ 656 #define PCC_BITFIELD_TYPE_MATTERS 1 657 658 /* No data type wants to be aligned rounder than this. */ 659 #define BIGGEST_ALIGNMENT (TARGET_ARCH64 ? 128 : 64) 660 661 /* The best alignment to use in cases where we have a choice. */ 662 #define FASTEST_ALIGNMENT 64 663 664 /* Define this macro as an expression for the alignment of a structure 665 (given by STRUCT as a tree node) if the alignment computed in the 666 usual way is COMPUTED and the alignment explicitly specified was 667 SPECIFIED. 668 669 The default is to use SPECIFIED if it is larger; otherwise, use 670 the smaller of COMPUTED and `BIGGEST_ALIGNMENT' */ 671 #define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED) \ 672 (TARGET_FASTER_STRUCTS ? \ 673 ((TREE_CODE (STRUCT) == RECORD_TYPE \ 674 || TREE_CODE (STRUCT) == UNION_TYPE \ 675 || TREE_CODE (STRUCT) == QUAL_UNION_TYPE) \ 676 && TYPE_FIELDS (STRUCT) != 0 \ 677 ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \ 678 : MAX ((COMPUTED), (SPECIFIED))) \ 679 : MAX ((COMPUTED), (SPECIFIED))) 680 681 /* Make strings word-aligned so strcpy from constants will be faster. */ 682 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \ 683 ((TREE_CODE (EXP) == STRING_CST \ 684 && (ALIGN) < FASTEST_ALIGNMENT) \ 685 ? FASTEST_ALIGNMENT : (ALIGN)) 686 687 /* Make arrays of chars word-aligned for the same reasons. */ 688 #define DATA_ALIGNMENT(TYPE, ALIGN) \ 689 (TREE_CODE (TYPE) == ARRAY_TYPE \ 690 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \ 691 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN)) 692 693 /* Make local arrays of chars word-aligned for the same reasons. */ 694 #define LOCAL_ALIGNMENT(TYPE, ALIGN) DATA_ALIGNMENT (TYPE, ALIGN) 695 696 /* Set this nonzero if move instructions will actually fail to work 697 when given unaligned data. */ 698 #define STRICT_ALIGNMENT 1 699 700 /* Things that must be doubleword aligned cannot go in the text section, 701 because the linker fails to align the text section enough! 702 Put them in the data section. This macro is only used in this file. */ 703 #define MAX_TEXT_ALIGN 32 704 705 /* Standard register usage. */ 706 707 /* Number of actual hardware registers. 708 The hardware registers are assigned numbers for the compiler 709 from 0 to just below FIRST_PSEUDO_REGISTER. 710 All registers that the compiler knows about must be given numbers, 711 even those that are not normally considered general registers. 712 713 SPARC has 32 integer registers and 32 floating point registers. 714 64 bit SPARC has 32 additional fp regs, but the odd numbered ones are not 715 accessible. We still account for them to simplify register computations 716 (e.g.: in CLASS_MAX_NREGS). There are also 4 fp condition code registers, so 717 32+32+32+4 == 100. 718 Register 100 is used as the integer condition code register. 719 Register 101 is used as the soft frame pointer register. */ 720 721 #define FIRST_PSEUDO_REGISTER 102 722 723 #define SPARC_FIRST_FP_REG 32 724 /* Additional V9 fp regs. */ 725 #define SPARC_FIRST_V9_FP_REG 64 726 #define SPARC_LAST_V9_FP_REG 95 727 /* V9 %fcc[0123]. V8 uses (figuratively) %fcc0. */ 728 #define SPARC_FIRST_V9_FCC_REG 96 729 #define SPARC_LAST_V9_FCC_REG 99 730 /* V8 fcc reg. */ 731 #define SPARC_FCC_REG 96 732 /* Integer CC reg. We don't distinguish %icc from %xcc. */ 733 #define SPARC_ICC_REG 100 734 735 /* Nonzero if REGNO is an fp reg. */ 736 #define SPARC_FP_REG_P(REGNO) \ 737 ((REGNO) >= SPARC_FIRST_FP_REG && (REGNO) <= SPARC_LAST_V9_FP_REG) 738 739 /* Argument passing regs. */ 740 #define SPARC_OUTGOING_INT_ARG_FIRST 8 741 #define SPARC_INCOMING_INT_ARG_FIRST 24 742 #define SPARC_FP_ARG_FIRST 32 743 744 /* 1 for registers that have pervasive standard uses 745 and are not available for the register allocator. 746 747 On non-v9 systems: 748 g1 is free to use as temporary. 749 g2-g4 are reserved for applications. Gcc normally uses them as 750 temporaries, but this can be disabled via the -mno-app-regs option. 751 g5 through g7 are reserved for the operating system. 752 753 On v9 systems: 754 g1,g5 are free to use as temporaries, and are free to use between calls 755 if the call is to an external function via the PLT. 756 g4 is free to use as a temporary in the non-embedded case. 757 g4 is reserved in the embedded case. 758 g2-g3 are reserved for applications. Gcc normally uses them as 759 temporaries, but this can be disabled via the -mno-app-regs option. 760 g6-g7 are reserved for the operating system (or application in 761 embedded case). 762 ??? Register 1 is used as a temporary by the 64 bit sethi pattern, so must 763 currently be a fixed register until this pattern is rewritten. 764 Register 1 is also used when restoring call-preserved registers in large 765 stack frames. 766 767 Registers fixed in arch32 and not arch64 (or vice-versa) are marked in 768 CONDITIONAL_REGISTER_USAGE in order to properly handle -ffixed-. 769 */ 770 771 #define FIXED_REGISTERS \ 772 {1, 0, 2, 2, 2, 2, 1, 1, \ 773 0, 0, 0, 0, 0, 0, 1, 0, \ 774 0, 0, 0, 0, 0, 0, 0, 0, \ 775 0, 0, 0, 0, 0, 0, 1, 1, \ 776 \ 777 0, 0, 0, 0, 0, 0, 0, 0, \ 778 0, 0, 0, 0, 0, 0, 0, 0, \ 779 0, 0, 0, 0, 0, 0, 0, 0, \ 780 0, 0, 0, 0, 0, 0, 0, 0, \ 781 \ 782 0, 0, 0, 0, 0, 0, 0, 0, \ 783 0, 0, 0, 0, 0, 0, 0, 0, \ 784 0, 0, 0, 0, 0, 0, 0, 0, \ 785 0, 0, 0, 0, 0, 0, 0, 0, \ 786 \ 787 0, 0, 0, 0, 0, 1} 788 789 /* 1 for registers not available across function calls. 790 These must include the FIXED_REGISTERS and also any 791 registers that can be used without being saved. 792 The latter must include the registers where values are returned 793 and the register where structure-value addresses are passed. 794 Aside from that, you can include as many other registers as you like. */ 795 796 #define CALL_USED_REGISTERS \ 797 {1, 1, 1, 1, 1, 1, 1, 1, \ 798 1, 1, 1, 1, 1, 1, 1, 1, \ 799 0, 0, 0, 0, 0, 0, 0, 0, \ 800 0, 0, 0, 0, 0, 0, 1, 1, \ 801 \ 802 1, 1, 1, 1, 1, 1, 1, 1, \ 803 1, 1, 1, 1, 1, 1, 1, 1, \ 804 1, 1, 1, 1, 1, 1, 1, 1, \ 805 1, 1, 1, 1, 1, 1, 1, 1, \ 806 \ 807 1, 1, 1, 1, 1, 1, 1, 1, \ 808 1, 1, 1, 1, 1, 1, 1, 1, \ 809 1, 1, 1, 1, 1, 1, 1, 1, \ 810 1, 1, 1, 1, 1, 1, 1, 1, \ 811 \ 812 1, 1, 1, 1, 1, 1} 813 814 /* If !TARGET_FPU, then make the fp registers and fp cc regs fixed so that 815 they won't be allocated. */ 816 817 #define CONDITIONAL_REGISTER_USAGE \ 818 do \ 819 { \ 820 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \ 821 { \ 822 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \ 823 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \ 824 } \ 825 /* If the user has passed -f{fixed,call-{used,saved}}-g5 */ \ 826 /* then honor it. */ \ 827 if (TARGET_ARCH32 && fixed_regs[5]) \ 828 fixed_regs[5] = 1; \ 829 else if (TARGET_ARCH64 && fixed_regs[5] == 2) \ 830 fixed_regs[5] = 0; \ 831 if (! TARGET_V9) \ 832 { \ 833 int regno; \ 834 for (regno = SPARC_FIRST_V9_FP_REG; \ 835 regno <= SPARC_LAST_V9_FP_REG; \ 836 regno++) \ 837 fixed_regs[regno] = 1; \ 838 /* %fcc0 is used by v8 and v9. */ \ 839 for (regno = SPARC_FIRST_V9_FCC_REG + 1; \ 840 regno <= SPARC_LAST_V9_FCC_REG; \ 841 regno++) \ 842 fixed_regs[regno] = 1; \ 843 } \ 844 if (! TARGET_FPU) \ 845 { \ 846 int regno; \ 847 for (regno = 32; regno < SPARC_LAST_V9_FCC_REG; regno++) \ 848 fixed_regs[regno] = 1; \ 849 } \ 850 /* If the user has passed -f{fixed,call-{used,saved}}-g2 */ \ 851 /* then honor it. Likewise with g3 and g4. */ \ 852 if (fixed_regs[2] == 2) \ 853 fixed_regs[2] = ! TARGET_APP_REGS; \ 854 if (fixed_regs[3] == 2) \ 855 fixed_regs[3] = ! TARGET_APP_REGS; \ 856 if (TARGET_ARCH32 && fixed_regs[4] == 2) \ 857 fixed_regs[4] = ! TARGET_APP_REGS; \ 858 else if (TARGET_CM_EMBMEDANY) \ 859 fixed_regs[4] = 1; \ 860 else if (fixed_regs[4] == 2) \ 861 fixed_regs[4] = 0; \ 862 } \ 863 while (0) 864 865 /* Return number of consecutive hard regs needed starting at reg REGNO 866 to hold something of mode MODE. 867 This is ordinarily the length in words of a value of mode MODE 868 but can be less for certain modes in special long registers. 869 870 On SPARC, ordinary registers hold 32 bits worth; 871 this means both integer and floating point registers. 872 On v9, integer regs hold 64 bits worth; floating point regs hold 873 32 bits worth (this includes the new fp regs as even the odd ones are 874 included in the hard register count). */ 875 876 #define HARD_REGNO_NREGS(REGNO, MODE) \ 877 (TARGET_ARCH64 \ 878 ? ((REGNO) < 32 || (REGNO) == FRAME_POINTER_REGNUM \ 879 ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD \ 880 : (GET_MODE_SIZE (MODE) + 3) / 4) \ 881 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) 882 883 /* Due to the ARCH64 discrepancy above we must override this next 884 macro too. */ 885 #define REGMODE_NATURAL_SIZE(MODE) \ 886 ((TARGET_ARCH64 && FLOAT_MODE_P (MODE)) ? 4 : UNITS_PER_WORD) 887 888 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. 889 See sparc.c for how we initialize this. */ 890 extern const int *hard_regno_mode_classes; 891 extern int sparc_mode_class[]; 892 893 /* ??? Because of the funny way we pass parameters we should allow certain 894 ??? types of float/complex values to be in integer registers during 895 ??? RTL generation. This only matters on arch32. */ 896 #define HARD_REGNO_MODE_OK(REGNO, MODE) \ 897 ((hard_regno_mode_classes[REGNO] & sparc_mode_class[MODE]) != 0) 898 899 /* Value is 1 if it is OK to rename a hard register FROM to another hard 900 register TO. We cannot rename %g1 as it may be used before the save 901 register window instruction in the prologue. */ 902 #define HARD_REGNO_RENAME_OK(FROM, TO) ((FROM) != 1) 903 904 /* Value is 1 if it is a good idea to tie two pseudo registers 905 when one has mode MODE1 and one has mode MODE2. 906 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2, 907 for any hard reg, then this must be 0 for correct output. 908 909 For V9: SFmode can't be combined with other float modes, because they can't 910 be allocated to the %d registers. Also, DFmode won't fit in odd %f 911 registers, but SFmode will. */ 912 #define MODES_TIEABLE_P(MODE1, MODE2) \ 913 ((MODE1) == (MODE2) \ 914 || (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \ 915 && (! TARGET_V9 \ 916 || (GET_MODE_CLASS (MODE1) != MODE_FLOAT \ 917 || (MODE1 != SFmode && MODE2 != SFmode))))) 918 919 /* Specify the registers used for certain standard purposes. 920 The values of these macros are register numbers. */ 921 922 /* Register to use for pushing function arguments. */ 923 #define STACK_POINTER_REGNUM 14 924 925 /* The stack bias (amount by which the hardware register is offset by). */ 926 #define SPARC_STACK_BIAS ((TARGET_ARCH64 && TARGET_STACK_BIAS) ? 2047 : 0) 927 928 /* Actual top-of-stack address is 92/176 greater than the contents of the 929 stack pointer register for !v9/v9. That is: 930 - !v9: 64 bytes for the in and local registers, 4 bytes for structure return 931 address, and 6*4 bytes for the 6 register parameters. 932 - v9: 128 bytes for the in and local registers + 6*8 bytes for the integer 933 parameter regs. */ 934 #define STACK_POINTER_OFFSET (FIRST_PARM_OFFSET(0) + SPARC_STACK_BIAS) 935 936 /* Base register for access to local variables of the function. */ 937 #define HARD_FRAME_POINTER_REGNUM 30 938 939 /* The soft frame pointer does not have the stack bias applied. */ 940 #define FRAME_POINTER_REGNUM 101 941 942 /* Given the stack bias, the stack pointer isn't actually aligned. */ 943 #define INIT_EXPANDERS \ 944 do { \ 945 if (cfun && cfun->emit->regno_pointer_align && SPARC_STACK_BIAS) \ 946 { \ 947 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = BITS_PER_UNIT; \ 948 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT; \ 949 } \ 950 } while (0) 951 952 /* Value should be nonzero if functions must have frame pointers. 953 Zero means the frame pointer need not be set up (and parms 954 may be accessed via the stack pointer) in functions that seem suitable. 955 Used in flow.c, global.c, ra.c and reload1.c. */ 956 #define FRAME_POINTER_REQUIRED \ 957 (! (leaf_function_p () && only_leaf_regs_used ())) 958 959 /* Base register for access to arguments of the function. */ 960 #define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM 961 962 /* Register in which static-chain is passed to a function. This must 963 not be a register used by the prologue. */ 964 #define STATIC_CHAIN_REGNUM (TARGET_ARCH64 ? 5 : 2) 965 966 /* Register which holds offset table for position-independent 967 data references. */ 968 969 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 23 : INVALID_REGNUM) 970 971 /* Pick a default value we can notice from override_options: 972 !v9: Default is on. 973 v9: Default is off. */ 974 975 #define DEFAULT_PCC_STRUCT_RETURN -1 976 977 /* Functions which return large structures get the address 978 to place the wanted value at offset 64 from the frame. 979 Must reserve 64 bytes for the in and local registers. 980 v9: Functions which return large structures get the address to place the 981 wanted value from an invisible first argument. */ 982 #define STRUCT_VALUE_OFFSET 64 983 984 /* Define the classes of registers for register constraints in the 985 machine description. Also define ranges of constants. 986 987 One of the classes must always be named ALL_REGS and include all hard regs. 988 If there is more than one class, another class must be named NO_REGS 989 and contain no registers. 990 991 The name GENERAL_REGS must be the name of a class (or an alias for 992 another name such as ALL_REGS). This is the class of registers 993 that is allowed by "g" or "r" in a register constraint. 994 Also, registers outside this class are allocated only when 995 instructions express preferences for them. 996 997 The classes must be numbered in nondecreasing order; that is, 998 a larger-numbered class must never be contained completely 999 in a smaller-numbered class. 1000 1001 For any two classes, it is very desirable that there be another 1002 class that represents their union. */ 1003 1004 /* The SPARC has various kinds of registers: general, floating point, 1005 and condition codes [well, it has others as well, but none that we 1006 care directly about]. 1007 1008 For v9 we must distinguish between the upper and lower floating point 1009 registers because the upper ones can't hold SFmode values. 1010 HARD_REGNO_MODE_OK won't help here because reload assumes that register(s) 1011 satisfying a group need for a class will also satisfy a single need for 1012 that class. EXTRA_FP_REGS is a bit of a misnomer as it covers all 64 fp 1013 regs. 1014 1015 It is important that one class contains all the general and all the standard 1016 fp regs. Otherwise find_reg() won't properly allocate int regs for moves, 1017 because reg_class_record() will bias the selection in favor of fp regs, 1018 because reg_class_subunion[GENERAL_REGS][FP_REGS] will yield FP_REGS, 1019 because FP_REGS > GENERAL_REGS. 1020 1021 It is also important that one class contain all the general and all 1022 the fp regs. Otherwise when spilling a DFmode reg, it may be from 1023 EXTRA_FP_REGS but find_reloads() may use class 1024 GENERAL_OR_FP_REGS. This will cause allocate_reload_reg() to die 1025 because the compiler thinks it doesn't have a spill reg when in 1026 fact it does. 1027 1028 v9 also has 4 floating point condition code registers. Since we don't 1029 have a class that is the union of FPCC_REGS with either of the others, 1030 it is important that it appear first. Otherwise the compiler will die 1031 trying to compile _fixunsdfsi because fix_truncdfsi2 won't match its 1032 constraints. 1033 1034 It is important that SPARC_ICC_REG have class NO_REGS. Otherwise combine 1035 may try to use it to hold an SImode value. See register_operand. 1036 ??? Should %fcc[0123] be handled similarly? 1037 */ 1038 1039 enum reg_class { NO_REGS, FPCC_REGS, I64_REGS, GENERAL_REGS, FP_REGS, 1040 EXTRA_FP_REGS, GENERAL_OR_FP_REGS, GENERAL_OR_EXTRA_FP_REGS, 1041 ALL_REGS, LIM_REG_CLASSES }; 1042 1043 #define N_REG_CLASSES (int) LIM_REG_CLASSES 1044 1045 /* Give names of register classes as strings for dump file. */ 1046 1047 #define REG_CLASS_NAMES \ 1048 { "NO_REGS", "FPCC_REGS", "I64_REGS", "GENERAL_REGS", "FP_REGS", \ 1049 "EXTRA_FP_REGS", "GENERAL_OR_FP_REGS", "GENERAL_OR_EXTRA_FP_REGS", \ 1050 "ALL_REGS" } 1051 1052 /* Define which registers fit in which classes. 1053 This is an initializer for a vector of HARD_REG_SET 1054 of length N_REG_CLASSES. */ 1055 1056 #define REG_CLASS_CONTENTS \ 1057 {{0, 0, 0, 0}, /* NO_REGS */ \ 1058 {0, 0, 0, 0xf}, /* FPCC_REGS */ \ 1059 {0xffff, 0, 0, 0}, /* I64_REGS */ \ 1060 {-1, 0, 0, 0x20}, /* GENERAL_REGS */ \ 1061 {0, -1, 0, 0}, /* FP_REGS */ \ 1062 {0, -1, -1, 0}, /* EXTRA_FP_REGS */ \ 1063 {-1, -1, 0, 0x20}, /* GENERAL_OR_FP_REGS */ \ 1064 {-1, -1, -1, 0x20}, /* GENERAL_OR_EXTRA_FP_REGS */ \ 1065 {-1, -1, -1, 0x3f}} /* ALL_REGS */ 1066 1067 /* Defines invalid mode changes. Borrowed from pa64-regs.h. 1068 1069 SImode loads to floating-point registers are not zero-extended. 1070 The definition for LOAD_EXTEND_OP specifies that integer loads 1071 narrower than BITS_PER_WORD will be zero-extended. As a result, 1072 we inhibit changes from SImode unless they are to a mode that is 1073 identical in size. */ 1074 1075 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \ 1076 (TARGET_ARCH64 \ 1077 && (FROM) == SImode \ 1078 && GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \ 1079 ? reg_classes_intersect_p (CLASS, FP_REGS) : 0) 1080 1081 /* The same information, inverted: 1082 Return the class number of the smallest class containing 1083 reg number REGNO. This could be a conditional expression 1084 or could index an array. */ 1085 1086 extern enum reg_class sparc_regno_reg_class[FIRST_PSEUDO_REGISTER]; 1087 1088 #define REGNO_REG_CLASS(REGNO) sparc_regno_reg_class[(REGNO)] 1089 1090 /* This is the order in which to allocate registers normally. 1091 1092 We put %f0-%f7 last among the float registers, so as to make it more 1093 likely that a pseudo-register which dies in the float return register 1094 area will get allocated to the float return register, thus saving a move 1095 instruction at the end of the function. 1096 1097 Similarly for integer return value registers. 1098 1099 We know in this case that we will not end up with a leaf function. 1100 1101 The register allocator is given the global and out registers first 1102 because these registers are call clobbered and thus less useful to 1103 global register allocation. 1104 1105 Next we list the local and in registers. They are not call clobbered 1106 and thus very useful for global register allocation. We list the input 1107 registers before the locals so that it is more likely the incoming 1108 arguments received in those registers can just stay there and not be 1109 reloaded. */ 1110 1111 #define REG_ALLOC_ORDER \ 1112 { 1, 2, 3, 4, 5, 6, 7, /* %g1-%g7 */ \ 1113 13, 12, 11, 10, 9, 8, /* %o5-%o0 */ \ 1114 15, /* %o7 */ \ 1115 16, 17, 18, 19, 20, 21, 22, 23, /* %l0-%l7 */ \ 1116 29, 28, 27, 26, 25, 24, 31, /* %i5-%i0,%i7 */\ 1117 40, 41, 42, 43, 44, 45, 46, 47, /* %f8-%f15 */ \ 1118 48, 49, 50, 51, 52, 53, 54, 55, /* %f16-%f23 */ \ 1119 56, 57, 58, 59, 60, 61, 62, 63, /* %f24-%f31 */ \ 1120 64, 65, 66, 67, 68, 69, 70, 71, /* %f32-%f39 */ \ 1121 72, 73, 74, 75, 76, 77, 78, 79, /* %f40-%f47 */ \ 1122 80, 81, 82, 83, 84, 85, 86, 87, /* %f48-%f55 */ \ 1123 88, 89, 90, 91, 92, 93, 94, 95, /* %f56-%f63 */ \ 1124 39, 38, 37, 36, 35, 34, 33, 32, /* %f7-%f0 */ \ 1125 96, 97, 98, 99, /* %fcc0-3 */ \ 1126 100, 0, 14, 30, 101} /* %icc, %g0, %o6, %i6, %sfp */ 1127 1128 /* This is the order in which to allocate registers for 1129 leaf functions. If all registers can fit in the global and 1130 output registers, then we have the possibility of having a leaf 1131 function. 1132 1133 The macro actually mentioned the input registers first, 1134 because they get renumbered into the output registers once 1135 we know really do have a leaf function. 1136 1137 To be more precise, this register allocation order is used 1138 when %o7 is found to not be clobbered right before register 1139 allocation. Normally, the reason %o7 would be clobbered is 1140 due to a call which could not be transformed into a sibling 1141 call. 1142 1143 As a consequence, it is possible to use the leaf register 1144 allocation order and not end up with a leaf function. We will 1145 not get suboptimal register allocation in that case because by 1146 definition of being potentially leaf, there were no function 1147 calls. Therefore, allocation order within the local register 1148 window is not critical like it is when we do have function calls. */ 1149 1150 #define REG_LEAF_ALLOC_ORDER \ 1151 { 1, 2, 3, 4, 5, 6, 7, /* %g1-%g7 */ \ 1152 29, 28, 27, 26, 25, 24, /* %i5-%i0 */ \ 1153 15, /* %o7 */ \ 1154 13, 12, 11, 10, 9, 8, /* %o5-%o0 */ \ 1155 16, 17, 18, 19, 20, 21, 22, 23, /* %l0-%l7 */ \ 1156 40, 41, 42, 43, 44, 45, 46, 47, /* %f8-%f15 */ \ 1157 48, 49, 50, 51, 52, 53, 54, 55, /* %f16-%f23 */ \ 1158 56, 57, 58, 59, 60, 61, 62, 63, /* %f24-%f31 */ \ 1159 64, 65, 66, 67, 68, 69, 70, 71, /* %f32-%f39 */ \ 1160 72, 73, 74, 75, 76, 77, 78, 79, /* %f40-%f47 */ \ 1161 80, 81, 82, 83, 84, 85, 86, 87, /* %f48-%f55 */ \ 1162 88, 89, 90, 91, 92, 93, 94, 95, /* %f56-%f63 */ \ 1163 39, 38, 37, 36, 35, 34, 33, 32, /* %f7-%f0 */ \ 1164 96, 97, 98, 99, /* %fcc0-3 */ \ 1165 100, 0, 14, 30, 31, 101} /* %icc, %g0, %o6, %i6, %i7, %sfp */ 1166 1167 #define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc () 1168 1169 extern char sparc_leaf_regs[]; 1170 #define LEAF_REGISTERS sparc_leaf_regs 1171 1172 extern char leaf_reg_remap[]; 1173 #define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO]) 1174 1175 /* The class value for index registers, and the one for base regs. */ 1176 #define INDEX_REG_CLASS GENERAL_REGS 1177 #define BASE_REG_CLASS GENERAL_REGS 1178 1179 /* Local macro to handle the two v9 classes of FP regs. */ 1180 #define FP_REG_CLASS_P(CLASS) ((CLASS) == FP_REGS || (CLASS) == EXTRA_FP_REGS) 1181 1182 /* Get reg_class from a letter such as appears in the machine description. 1183 In the not-v9 case, coerce v9's 'e' class to 'f', so we can use 'e' in the 1184 .md file for v8 and v9. 1185 'd' and 'b' are used for single and double precision VIS operations, 1186 if TARGET_VIS. 1187 'h' is used for V8+ 64 bit global and out registers. */ 1188 1189 #define REG_CLASS_FROM_LETTER(C) \ 1190 (TARGET_V9 \ 1191 ? ((C) == 'f' ? FP_REGS \ 1192 : (C) == 'e' ? EXTRA_FP_REGS \ 1193 : (C) == 'c' ? FPCC_REGS \ 1194 : ((C) == 'd' && TARGET_VIS) ? FP_REGS\ 1195 : ((C) == 'b' && TARGET_VIS) ? EXTRA_FP_REGS\ 1196 : ((C) == 'h' && TARGET_V8PLUS) ? I64_REGS\ 1197 : NO_REGS) \ 1198 : ((C) == 'f' ? FP_REGS \ 1199 : (C) == 'e' ? FP_REGS \ 1200 : (C) == 'c' ? FPCC_REGS \ 1201 : NO_REGS)) 1202 1203 /* The letters I, J, K, L, M, N, O, P in a register constraint string 1204 can be used to stand for particular ranges of CONST_INTs. 1205 This macro defines what the ranges are. 1206 C is the letter, and VALUE is a constant value. 1207 Return 1 if VALUE is in the range specified by C. 1208 1209 `I' is used for the range of constants an insn can actually contain. 1210 `J' is used for the range which is just zero (since that is R0). 1211 `K' is used for constants which can be loaded with a single sethi insn. 1212 `L' is used for the range of constants supported by the movcc insns. 1213 `M' is used for the range of constants supported by the movrcc insns. 1214 `N' is like K, but for constants wider than 32 bits. 1215 `O' is used for the range which is just 4096. 1216 `P' is free. */ 1217 1218 /* Predicates for 10-bit, 11-bit and 13-bit signed constants. */ 1219 #define SPARC_SIMM10_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x200 < 0x400) 1220 #define SPARC_SIMM11_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x400 < 0x800) 1221 #define SPARC_SIMM13_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x1000 < 0x2000) 1222 1223 /* 10- and 11-bit immediates are only used for a few specific insns. 1224 SMALL_INT is used throughout the port so we continue to use it. */ 1225 #define SMALL_INT(X) (SPARC_SIMM13_P (INTVAL (X))) 1226 1227 /* Predicate for constants that can be loaded with a sethi instruction. 1228 This is the general, 64-bit aware, bitwise version that ensures that 1229 only constants whose representation fits in the mask 1230 1231 0x00000000fffffc00 1232 1233 are accepted. It will reject, for example, negative SImode constants 1234 on 64-bit hosts, so correct handling is to mask the value beforehand 1235 according to the mode of the instruction. */ 1236 #define SPARC_SETHI_P(X) \ 1237 (((unsigned HOST_WIDE_INT) (X) \ 1238 & ((unsigned HOST_WIDE_INT) 0x3ff - GET_MODE_MASK (SImode) - 1)) == 0) 1239 1240 /* Version of the above predicate for SImode constants and below. */ 1241 #define SPARC_SETHI32_P(X) \ 1242 (SPARC_SETHI_P ((unsigned HOST_WIDE_INT) (X) & GET_MODE_MASK (SImode))) 1243 1244 #define CONST_OK_FOR_LETTER_P(VALUE, C) \ 1245 ((C) == 'I' ? SPARC_SIMM13_P (VALUE) \ 1246 : (C) == 'J' ? (VALUE) == 0 \ 1247 : (C) == 'K' ? SPARC_SETHI32_P (VALUE) \ 1248 : (C) == 'L' ? SPARC_SIMM11_P (VALUE) \ 1249 : (C) == 'M' ? SPARC_SIMM10_P (VALUE) \ 1250 : (C) == 'N' ? SPARC_SETHI_P (VALUE) \ 1251 : (C) == 'O' ? (VALUE) == 4096 \ 1252 : 0) 1253 1254 /* Similar, but for CONST_DOUBLEs, and defining letters G and H. 1255 Here VALUE is the CONST_DOUBLE rtx itself. */ 1256 1257 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \ 1258 ((C) == 'G' ? const_zero_operand (VALUE, GET_MODE (VALUE)) \ 1259 : (C) == 'H' ? arith_double_operand (VALUE, DImode) \ 1260 : 0) 1261 1262 /* Given an rtx X being reloaded into a reg required to be 1263 in class CLASS, return the class of reg to actually use. 1264 In general this is just CLASS; but on some machines 1265 in some cases it is preferable to use a more restrictive class. */ 1266 /* - We can't load constants into FP registers. 1267 - We can't load FP constants into integer registers when soft-float, 1268 because there is no soft-float pattern with a r/F constraint. 1269 - We can't load FP constants into integer registers for TFmode unless 1270 it is 0.0L, because there is no movtf pattern with a r/F constraint. 1271 - Try and reload integer constants (symbolic or otherwise) back into 1272 registers directly, rather than having them dumped to memory. */ 1273 1274 #define PREFERRED_RELOAD_CLASS(X,CLASS) \ 1275 (CONSTANT_P (X) \ 1276 ? ((FP_REG_CLASS_P (CLASS) \ 1277 || (CLASS) == GENERAL_OR_FP_REGS \ 1278 || (CLASS) == GENERAL_OR_EXTRA_FP_REGS \ 1279 || (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \ 1280 && ! TARGET_FPU) \ 1281 || (GET_MODE (X) == TFmode \ 1282 && ! const_zero_operand (X, TFmode))) \ 1283 ? NO_REGS \ 1284 : (!FP_REG_CLASS_P (CLASS) \ 1285 && GET_MODE_CLASS (GET_MODE (X)) == MODE_INT) \ 1286 ? GENERAL_REGS \ 1287 : (CLASS)) \ 1288 : (CLASS)) 1289 1290 /* Return the register class of a scratch register needed to load IN into 1291 a register of class CLASS in MODE. 1292 1293 We need a temporary when loading/storing a HImode/QImode value 1294 between memory and the FPU registers. This can happen when combine puts 1295 a paradoxical subreg in a float/fix conversion insn. 1296 1297 We need a temporary when loading/storing a DFmode value between 1298 unaligned memory and the upper FPU registers. */ 1299 1300 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \ 1301 ((FP_REG_CLASS_P (CLASS) \ 1302 && ((MODE) == HImode || (MODE) == QImode) \ 1303 && (GET_CODE (IN) == MEM \ 1304 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \ 1305 && true_regnum (IN) == -1))) \ 1306 ? GENERAL_REGS \ 1307 : ((CLASS) == EXTRA_FP_REGS && (MODE) == DFmode \ 1308 && GET_CODE (IN) == MEM && TARGET_ARCH32 \ 1309 && ! mem_min_alignment ((IN), 8)) \ 1310 ? FP_REGS \ 1311 : (((TARGET_CM_MEDANY \ 1312 && symbolic_operand ((IN), (MODE))) \ 1313 || (TARGET_CM_EMBMEDANY \ 1314 && text_segment_operand ((IN), (MODE)))) \ 1315 && !flag_pic) \ 1316 ? GENERAL_REGS \ 1317 : NO_REGS) 1318 1319 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, IN) \ 1320 ((FP_REG_CLASS_P (CLASS) \ 1321 && ((MODE) == HImode || (MODE) == QImode) \ 1322 && (GET_CODE (IN) == MEM \ 1323 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \ 1324 && true_regnum (IN) == -1))) \ 1325 ? GENERAL_REGS \ 1326 : ((CLASS) == EXTRA_FP_REGS && (MODE) == DFmode \ 1327 && GET_CODE (IN) == MEM && TARGET_ARCH32 \ 1328 && ! mem_min_alignment ((IN), 8)) \ 1329 ? FP_REGS \ 1330 : (((TARGET_CM_MEDANY \ 1331 && symbolic_operand ((IN), (MODE))) \ 1332 || (TARGET_CM_EMBMEDANY \ 1333 && text_segment_operand ((IN), (MODE)))) \ 1334 && !flag_pic) \ 1335 ? GENERAL_REGS \ 1336 : NO_REGS) 1337 1338 /* On SPARC it is not possible to directly move data between 1339 GENERAL_REGS and FP_REGS. */ 1340 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \ 1341 (FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2)) 1342 1343 /* Return the stack location to use for secondary memory needed reloads. 1344 We want to use the reserved location just below the frame pointer. 1345 However, we must ensure that there is a frame, so use assign_stack_local 1346 if the frame size is zero. */ 1347 #define SECONDARY_MEMORY_NEEDED_RTX(MODE) \ 1348 (get_frame_size () == 0 \ 1349 ? assign_stack_local (MODE, GET_MODE_SIZE (MODE), 0) \ 1350 : gen_rtx_MEM (MODE, plus_constant (frame_pointer_rtx, \ 1351 STARTING_FRAME_OFFSET))) 1352 1353 /* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on v9 1354 because the movsi and movsf patterns don't handle r/f moves. 1355 For v8 we copy the default definition. */ 1356 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \ 1357 (TARGET_ARCH64 \ 1358 ? (GET_MODE_BITSIZE (MODE) < 32 \ 1359 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \ 1360 : MODE) \ 1361 : (GET_MODE_BITSIZE (MODE) < BITS_PER_WORD \ 1362 ? mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0) \ 1363 : MODE)) 1364 1365 /* Return the maximum number of consecutive registers 1366 needed to represent mode MODE in a register of class CLASS. */ 1367 /* On SPARC, this is the size of MODE in words. */ 1368 #define CLASS_MAX_NREGS(CLASS, MODE) \ 1369 (FP_REG_CLASS_P (CLASS) ? (GET_MODE_SIZE (MODE) + 3) / 4 \ 1370 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) 1371 1372 /* Stack layout; function entry, exit and calling. */ 1373 1374 /* Define this if pushing a word on the stack 1375 makes the stack pointer a smaller address. */ 1376 #define STACK_GROWS_DOWNWARD 1377 1378 /* Define this to nonzero if the nominal address of the stack frame 1379 is at the high-address end of the local variables; 1380 that is, each additional local variable allocated 1381 goes at a more negative offset in the frame. */ 1382 #define FRAME_GROWS_DOWNWARD 1 1383 1384 /* Offset within stack frame to start allocating local variables at. 1385 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the 1386 first local allocated. Otherwise, it is the offset to the BEGINNING 1387 of the first local allocated. */ 1388 /* This allows space for one TFmode floating point value, which is used 1389 by SECONDARY_MEMORY_NEEDED_RTX. */ 1390 #define STARTING_FRAME_OFFSET \ 1391 (TARGET_ARCH64 ? -16 \ 1392 : (-SPARC_STACK_ALIGN (LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT))) 1393 1394 /* Offset of first parameter from the argument pointer register value. 1395 !v9: This is 64 for the ins and locals, plus 4 for the struct-return reg 1396 even if this function isn't going to use it. 1397 v9: This is 128 for the ins and locals. */ 1398 #define FIRST_PARM_OFFSET(FNDECL) \ 1399 (TARGET_ARCH64 ? 16 * UNITS_PER_WORD : STRUCT_VALUE_OFFSET + UNITS_PER_WORD) 1400 1401 /* Offset from the argument pointer register value to the CFA. 1402 This is different from FIRST_PARM_OFFSET because the register window 1403 comes between the CFA and the arguments. */ 1404 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0 1405 1406 /* When a parameter is passed in a register, stack space is still 1407 allocated for it. 1408 !v9: All 6 possible integer registers have backing store allocated. 1409 v9: Only space for the arguments passed is allocated. */ 1410 /* ??? Ideally, we'd use zero here (as the minimum), but zero has special 1411 meaning to the backend. Further, we need to be able to detect if a 1412 varargs/unprototyped function is called, as they may want to spill more 1413 registers than we've provided space. Ugly, ugly. So for now we retain 1414 all 6 slots even for v9. */ 1415 #define REG_PARM_STACK_SPACE(DECL) (6 * UNITS_PER_WORD) 1416 1417 /* Definitions for register elimination. */ 1418 1419 #define ELIMINABLE_REGS \ 1420 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ 1421 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM} } 1422 1423 /* The way this is structured, we can't eliminate SFP in favor of SP 1424 if the frame pointer is required: we want to use the SFP->HFP elimination 1425 in that case. But the test in update_eliminables doesn't know we are 1426 assuming below that we only do the former elimination. */ 1427 #define CAN_ELIMINATE(FROM, TO) \ 1428 ((TO) == HARD_FRAME_POINTER_REGNUM || !FRAME_POINTER_REQUIRED) 1429 1430 /* We always pretend that this is a leaf function because if it's not, 1431 there's no point in trying to eliminate the frame pointer. If it 1432 is a leaf function, we guessed right! */ 1433 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \ 1434 do { \ 1435 if ((TO) == STACK_POINTER_REGNUM) \ 1436 (OFFSET) = sparc_compute_frame_size (get_frame_size (), 1); \ 1437 else \ 1438 (OFFSET) = 0; \ 1439 (OFFSET) += SPARC_STACK_BIAS; \ 1440 } while (0) 1441 1442 /* Keep the stack pointer constant throughout the function. 1443 This is both an optimization and a necessity: longjmp 1444 doesn't behave itself when the stack pointer moves within 1445 the function! */ 1446 #define ACCUMULATE_OUTGOING_ARGS 1 1447 1448 /* Value is the number of bytes of arguments automatically 1449 popped when returning from a subroutine call. 1450 FUNDECL is the declaration node of the function (as a tree), 1451 FUNTYPE is the data type of the function (as a tree), 1452 or for a library call it is an identifier node for the subroutine name. 1453 SIZE is the number of bytes of arguments passed on the stack. */ 1454 1455 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0 1456 1457 /* Define this macro if the target machine has "register windows". This 1458 C expression returns the register number as seen by the called function 1459 corresponding to register number OUT as seen by the calling function. 1460 Return OUT if register number OUT is not an outbound register. */ 1461 1462 #define INCOMING_REGNO(OUT) \ 1463 (((OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16) 1464 1465 /* Define this macro if the target machine has "register windows". This 1466 C expression returns the register number as seen by the calling function 1467 corresponding to register number IN as seen by the called function. 1468 Return IN if register number IN is not an inbound register. */ 1469 1470 #define OUTGOING_REGNO(IN) \ 1471 (((IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16) 1472 1473 /* Define this macro if the target machine has register windows. This 1474 C expression returns true if the register is call-saved but is in the 1475 register window. */ 1476 1477 #define LOCAL_REGNO(REGNO) \ 1478 ((REGNO) >= 16 && (REGNO) <= 31) 1479 1480 /* Define how to find the value returned by a function. 1481 VALTYPE is the data type of the value (as a tree). 1482 If the precise function being called is known, FUNC is its FUNCTION_DECL; 1483 otherwise, FUNC is 0. */ 1484 1485 /* On SPARC the value is found in the first "output" register. */ 1486 1487 #define FUNCTION_VALUE(VALTYPE, FUNC) \ 1488 function_value ((VALTYPE), TYPE_MODE (VALTYPE), 1) 1489 1490 /* But the called function leaves it in the first "input" register. */ 1491 1492 #define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \ 1493 function_value ((VALTYPE), TYPE_MODE (VALTYPE), 0) 1494 1495 /* Define how to find the value returned by a library function 1496 assuming the value has mode MODE. */ 1497 1498 #define LIBCALL_VALUE(MODE) \ 1499 function_value (NULL_TREE, (MODE), 1) 1500 1501 /* 1 if N is a possible register number for a function value 1502 as seen by the caller. 1503 On SPARC, the first "output" reg is used for integer values, 1504 and the first floating point register is used for floating point values. */ 1505 1506 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 8 || (N) == 32) 1507 1508 /* Define the size of space to allocate for the return value of an 1509 untyped_call. */ 1510 1511 #define APPLY_RESULT_SIZE (TARGET_ARCH64 ? 24 : 16) 1512 1513 /* 1 if N is a possible register number for function argument passing. 1514 On SPARC, these are the "output" registers. v9 also uses %f0-%f31. */ 1515 1516 #define FUNCTION_ARG_REGNO_P(N) \ 1517 (TARGET_ARCH64 \ 1518 ? (((N) >= 8 && (N) <= 13) || ((N) >= 32 && (N) <= 63)) \ 1519 : ((N) >= 8 && (N) <= 13)) 1520 1521 /* Define a data type for recording info about an argument list 1522 during the scan of that argument list. This data type should 1523 hold all necessary information about the function itself 1524 and about the args processed so far, enough to enable macros 1525 such as FUNCTION_ARG to determine where the next arg should go. 1526 1527 On SPARC (!v9), this is a single integer, which is a number of words 1528 of arguments scanned so far (including the invisible argument, 1529 if any, which holds the structure-value-address). 1530 Thus 7 or more means all following args should go on the stack. 1531 1532 For v9, we also need to know whether a prototype is present. */ 1533 1534 struct sparc_args { 1535 int words; /* number of words passed so far */ 1536 int prototype_p; /* nonzero if a prototype is present */ 1537 int libcall_p; /* nonzero if a library call */ 1538 }; 1539 #define CUMULATIVE_ARGS struct sparc_args 1540 1541 /* Initialize a variable CUM of type CUMULATIVE_ARGS 1542 for a call to a function whose data type is FNTYPE. 1543 For a library call, FNTYPE is 0. */ 1544 1545 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \ 1546 init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (FNDECL)); 1547 1548 /* Update the data in CUM to advance over an argument 1549 of mode MODE and data type TYPE. 1550 TYPE is null for libcalls where that information may not be available. */ 1551 1552 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \ 1553 function_arg_advance (& (CUM), (MODE), (TYPE), (NAMED)) 1554 1555 /* Determine where to put an argument to a function. 1556 Value is zero to push the argument on the stack, 1557 or a hard register in which to store the argument. 1558 1559 MODE is the argument's machine mode. 1560 TYPE is the data type of the argument (as a tree). 1561 This is null for libcalls where that information may 1562 not be available. 1563 CUM is a variable of type CUMULATIVE_ARGS which gives info about 1564 the preceding args and about the function being called. 1565 NAMED is nonzero if this argument is a named parameter 1566 (otherwise it is an extra parameter matching an ellipsis). */ 1567 1568 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \ 1569 function_arg (& (CUM), (MODE), (TYPE), (NAMED), 0) 1570 1571 /* Define where a function finds its arguments. 1572 This is different from FUNCTION_ARG because of register windows. */ 1573 1574 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \ 1575 function_arg (& (CUM), (MODE), (TYPE), (NAMED), 1) 1576 1577 /* If defined, a C expression which determines whether, and in which direction, 1578 to pad out an argument with extra space. The value should be of type 1579 `enum direction': either `upward' to pad above the argument, 1580 `downward' to pad below, or `none' to inhibit padding. */ 1581 1582 #define FUNCTION_ARG_PADDING(MODE, TYPE) \ 1583 function_arg_padding ((MODE), (TYPE)) 1584 1585 /* If defined, a C expression that gives the alignment boundary, in bits, 1586 of an argument with the specified mode and type. If it is not defined, 1587 PARM_BOUNDARY is used for all arguments. 1588 For sparc64, objects requiring 16 byte alignment are passed that way. */ 1589 1590 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \ 1591 ((TARGET_ARCH64 \ 1592 && (GET_MODE_ALIGNMENT (MODE) == 128 \ 1593 || ((TYPE) && TYPE_ALIGN (TYPE) == 128))) \ 1594 ? 128 : PARM_BOUNDARY) 1595 1596 /* Define the information needed to generate branch and scc insns. This is 1597 stored from the compare operation. Note that we can't use "rtx" here 1598 since it hasn't been defined! */ 1599 1600 extern GTY(()) rtx sparc_compare_op0; 1601 extern GTY(()) rtx sparc_compare_op1; 1602 extern GTY(()) rtx sparc_compare_emitted; 1603 1604 1605 /* Generate the special assembly code needed to tell the assembler whatever 1606 it might need to know about the return value of a function. 1607 1608 For SPARC assemblers, we need to output a .proc pseudo-op which conveys 1609 information to the assembler relating to peephole optimization (done in 1610 the assembler). */ 1611 1612 #define ASM_DECLARE_RESULT(FILE, RESULT) \ 1613 fprintf ((FILE), "\t.proc\t0%lo\n", sparc_type_code (TREE_TYPE (RESULT))) 1614 1615 /* Output the special assembly code needed to tell the assembler some 1616 register is used as global register variable. 1617 1618 SPARC 64bit psABI declares registers %g2 and %g3 as application 1619 registers and %g6 and %g7 as OS registers. Any object using them 1620 should declare (for %g2/%g3 has to, for %g6/%g7 can) that it uses them 1621 and how they are used (scratch or some global variable). 1622 Linker will then refuse to link together objects which use those 1623 registers incompatibly. 1624 1625 Unless the registers are used for scratch, two different global 1626 registers cannot be declared to the same name, so in the unlikely 1627 case of a global register variable occupying more than one register 1628 we prefix the second and following registers with .gnu.part1. etc. */ 1629 1630 extern GTY(()) char sparc_hard_reg_printed[8]; 1631 1632 #ifdef HAVE_AS_REGISTER_PSEUDO_OP 1633 #define ASM_DECLARE_REGISTER_GLOBAL(FILE, DECL, REGNO, NAME) \ 1634 do { \ 1635 if (TARGET_ARCH64) \ 1636 { \ 1637 int end = HARD_REGNO_NREGS ((REGNO), DECL_MODE (decl)) + (REGNO); \ 1638 int reg; \ 1639 for (reg = (REGNO); reg < 8 && reg < end; reg++) \ 1640 if ((reg & ~1) == 2 || (reg & ~1) == 6) \ 1641 { \ 1642 if (reg == (REGNO)) \ 1643 fprintf ((FILE), "\t.register\t%%g%d, %s\n", reg, (NAME)); \ 1644 else \ 1645 fprintf ((FILE), "\t.register\t%%g%d, .gnu.part%d.%s\n", \ 1646 reg, reg - (REGNO), (NAME)); \ 1647 sparc_hard_reg_printed[reg] = 1; \ 1648 } \ 1649 } \ 1650 } while (0) 1651 #endif 1652 1653 1654 /* Emit rtl for profiling. */ 1655 #define PROFILE_HOOK(LABEL) sparc_profile_hook (LABEL) 1656 1657 /* All the work done in PROFILE_HOOK, but still required. */ 1658 #define FUNCTION_PROFILER(FILE, LABELNO) do { } while (0) 1659 1660 /* Set the name of the mcount function for the system. */ 1661 #define MCOUNT_FUNCTION "*mcount" 1662 1663 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function, 1664 the stack pointer does not matter. The value is tested only in 1665 functions that have frame pointers. 1666 No definition is equivalent to always zero. */ 1667 1668 #define EXIT_IGNORE_STACK \ 1669 (get_frame_size () != 0 \ 1670 || current_function_calls_alloca || current_function_outgoing_args_size) 1671 1672 /* Define registers used by the epilogue and return instruction. */ 1673 #define EPILOGUE_USES(REGNO) ((REGNO) == 31 \ 1674 || (current_function_calls_eh_return && (REGNO) == 1)) 1675 1676 /* Length in units of the trampoline for entering a nested function. */ 1677 1678 #define TRAMPOLINE_SIZE (TARGET_ARCH64 ? 32 : 16) 1679 1680 #define TRAMPOLINE_ALIGNMENT 128 /* 16 bytes */ 1681 1682 /* Emit RTL insns to initialize the variable parts of a trampoline. 1683 FNADDR is an RTX for the address of the function's pure code. 1684 CXT is an RTX for the static chain value for the function. */ 1685 1686 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \ 1687 if (TARGET_ARCH64) \ 1688 sparc64_initialize_trampoline (TRAMP, FNADDR, CXT); \ 1689 else \ 1690 sparc_initialize_trampoline (TRAMP, FNADDR, CXT) 1691 1692 /* Implement `va_start' for varargs and stdarg. */ 1693 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \ 1694 sparc_va_start (valist, nextarg) 1695 1696 /* Generate RTL to flush the register windows so as to make arbitrary frames 1697 available. */ 1698 #define SETUP_FRAME_ADDRESSES() \ 1699 emit_insn (gen_flush_register_windows ()) 1700 1701 /* Given an rtx for the address of a frame, 1702 return an rtx for the address of the word in the frame 1703 that holds the dynamic chain--the previous frame's address. */ 1704 #define DYNAMIC_CHAIN_ADDRESS(frame) \ 1705 plus_constant (frame, 14 * UNITS_PER_WORD + SPARC_STACK_BIAS) 1706 1707 /* Given an rtx for the frame pointer, 1708 return an rtx for the address of the frame. */ 1709 #define FRAME_ADDR_RTX(frame) plus_constant (frame, SPARC_STACK_BIAS) 1710 1711 /* The return address isn't on the stack, it is in a register, so we can't 1712 access it from the current frame pointer. We can access it from the 1713 previous frame pointer though by reading a value from the register window 1714 save area. */ 1715 #define RETURN_ADDR_IN_PREVIOUS_FRAME 1716 1717 /* This is the offset of the return address to the true next instruction to be 1718 executed for the current function. */ 1719 #define RETURN_ADDR_OFFSET \ 1720 (8 + 4 * (! TARGET_ARCH64 && current_function_returns_struct)) 1721 1722 /* The current return address is in %i7. The return address of anything 1723 farther back is in the register window save area at [%fp+60]. */ 1724 /* ??? This ignores the fact that the actual return address is +8 for normal 1725 returns, and +12 for structure returns. */ 1726 #define RETURN_ADDR_RTX(count, frame) \ 1727 ((count == -1) \ 1728 ? gen_rtx_REG (Pmode, 31) \ 1729 : gen_rtx_MEM (Pmode, \ 1730 memory_address (Pmode, plus_constant (frame, \ 1731 15 * UNITS_PER_WORD \ 1732 + SPARC_STACK_BIAS)))) 1733 1734 /* Before the prologue, the return address is %o7 + 8. OK, sometimes it's 1735 +12, but always using +8 is close enough for frame unwind purposes. 1736 Actually, just using %o7 is close enough for unwinding, but %o7+8 1737 is something you can return to. */ 1738 #define INCOMING_RETURN_ADDR_RTX \ 1739 plus_constant (gen_rtx_REG (word_mode, 15), 8) 1740 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (15) 1741 1742 /* The offset from the incoming value of %sp to the top of the stack frame 1743 for the current function. On sparc64, we have to account for the stack 1744 bias if present. */ 1745 #define INCOMING_FRAME_SP_OFFSET SPARC_STACK_BIAS 1746 1747 /* Describe how we implement __builtin_eh_return. */ 1748 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 24 : INVALID_REGNUM) 1749 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 1) /* %g1 */ 1750 #define EH_RETURN_HANDLER_RTX gen_rtx_REG (Pmode, 31) /* %i7 */ 1751 1752 /* Select a format to encode pointers in exception handling data. CODE 1753 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is 1754 true if the symbol may be affected by dynamic relocations. 1755 1756 If assembler and linker properly support .uaword %r_disp32(foo), 1757 then use PC relative 32-bit relocations instead of absolute relocs 1758 for shared libraries. On sparc64, use pc relative 32-bit relocs even 1759 for binaries, to save memory. 1760 1761 binutils 2.12 would emit a R_SPARC_DISP32 dynamic relocation if the 1762 symbol %r_disp32() is against was not local, but .hidden. In that 1763 case, we have to use DW_EH_PE_absptr for pic personality. */ 1764 #ifdef HAVE_AS_SPARC_UA_PCREL 1765 #ifdef HAVE_AS_SPARC_UA_PCREL_HIDDEN 1766 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \ 1767 (flag_pic \ 1768 ? (GLOBAL ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\ 1769 : ((TARGET_ARCH64 && ! GLOBAL) \ 1770 ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4) \ 1771 : DW_EH_PE_absptr)) 1772 #else 1773 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \ 1774 (flag_pic \ 1775 ? (GLOBAL ? DW_EH_PE_absptr : (DW_EH_PE_pcrel | DW_EH_PE_sdata4)) \ 1776 : ((TARGET_ARCH64 && ! GLOBAL) \ 1777 ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4) \ 1778 : DW_EH_PE_absptr)) 1779 #endif 1780 1781 /* Emit a PC-relative relocation. */ 1782 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \ 1783 do { \ 1784 fputs (integer_asm_op (SIZE, FALSE), FILE); \ 1785 fprintf (FILE, "%%r_disp%d(", SIZE * 8); \ 1786 assemble_name (FILE, LABEL); \ 1787 fputc (')', FILE); \ 1788 } while (0) 1789 #endif 1790 1791 /* Addressing modes, and classification of registers for them. */ 1792 1793 /* Macros to check register numbers against specific register classes. */ 1794 1795 /* These assume that REGNO is a hard or pseudo reg number. 1796 They give nonzero only if REGNO is a hard reg of the suitable class 1797 or a pseudo reg currently allocated to a suitable hard reg. 1798 Since they use reg_renumber, they are safe only once reg_renumber 1799 has been allocated, which happens in local-alloc.c. */ 1800 1801 #define REGNO_OK_FOR_INDEX_P(REGNO) \ 1802 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < (unsigned)32 \ 1803 || (REGNO) == FRAME_POINTER_REGNUM \ 1804 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM) 1805 1806 #define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO) 1807 1808 #define REGNO_OK_FOR_FP_P(REGNO) \ 1809 (((unsigned) (REGNO) - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)) \ 1810 || ((unsigned) reg_renumber[REGNO] - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32))) 1811 #define REGNO_OK_FOR_CCFP_P(REGNO) \ 1812 (TARGET_V9 \ 1813 && (((unsigned) (REGNO) - 96 < (unsigned)4) \ 1814 || ((unsigned) reg_renumber[REGNO] - 96 < (unsigned)4))) 1815 1816 /* Now macros that check whether X is a register and also, 1817 strictly, whether it is in a specified class. 1818 1819 These macros are specific to the SPARC, and may be used only 1820 in code for printing assembler insns and in conditions for 1821 define_optimization. */ 1822 1823 /* 1 if X is an fp register. */ 1824 1825 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X))) 1826 1827 /* Is X, a REG, an in or global register? i.e. is regno 0..7 or 24..31 */ 1828 #define IN_OR_GLOBAL_P(X) (REGNO (X) < 8 || (REGNO (X) >= 24 && REGNO (X) <= 31)) 1829 1830 /* Maximum number of registers that can appear in a valid memory address. */ 1831 1832 #define MAX_REGS_PER_ADDRESS 2 1833 1834 /* Recognize any constant value that is a valid address. 1835 When PIC, we do not accept an address that would require a scratch reg 1836 to load into a register. */ 1837 1838 #define CONSTANT_ADDRESS_P(X) constant_address_p (X) 1839 1840 /* Define this, so that when PIC, reload won't try to reload invalid 1841 addresses which require two reload registers. */ 1842 1843 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X) 1844 1845 /* Nonzero if the constant value X is a legitimate general operand. 1846 Anything can be made to work except floating point constants. 1847 If TARGET_VIS, 0.0 can be made to work as well. */ 1848 1849 #define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X) 1850 1851 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx 1852 and check its validity for a certain class. 1853 We have two alternate definitions for each of them. 1854 The usual definition accepts all pseudo regs; the other rejects 1855 them unless they have been allocated suitable hard regs. 1856 The symbol REG_OK_STRICT causes the latter definition to be used. 1857 1858 Most source files want to accept pseudo regs in the hope that 1859 they will get allocated to the class that the insn wants them to be in. 1860 Source files for reload pass need to be strict. 1861 After reload, it makes no difference, since pseudo regs have 1862 been eliminated by then. */ 1863 1864 /* Optional extra constraints for this machine. 1865 1866 'Q' handles floating point constants which can be moved into 1867 an integer register with a single sethi instruction. 1868 1869 'R' handles floating point constants which can be moved into 1870 an integer register with a single mov instruction. 1871 1872 'S' handles floating point constants which can be moved into 1873 an integer register using a high/lo_sum sequence. 1874 1875 'T' handles memory addresses where the alignment is known to 1876 be at least 8 bytes. 1877 1878 `U' handles all pseudo registers or a hard even numbered 1879 integer register, needed for ldd/std instructions. 1880 1881 'W' handles the memory operand when moving operands in/out 1882 of 'e' constraint floating point registers. 1883 1884 'Y' handles the zero vector constant. */ 1885 1886 #ifndef REG_OK_STRICT 1887 1888 /* Nonzero if X is a hard reg that can be used as an index 1889 or if it is a pseudo reg. */ 1890 #define REG_OK_FOR_INDEX_P(X) \ 1891 (REGNO (X) < 32 \ 1892 || REGNO (X) == FRAME_POINTER_REGNUM \ 1893 || REGNO (X) >= FIRST_PSEUDO_REGISTER) 1894 1895 /* Nonzero if X is a hard reg that can be used as a base reg 1896 or if it is a pseudo reg. */ 1897 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_INDEX_P (X) 1898 1899 /* 'T', 'U' are for aligned memory loads which aren't needed for arch64. 1900 'W' is like 'T' but is assumed true on arch64. 1901 1902 Remember to accept pseudo-registers for memory constraints if reload is 1903 in progress. */ 1904 1905 #define EXTRA_CONSTRAINT(OP, C) \ 1906 sparc_extra_constraint_check(OP, C, 0) 1907 1908 #else 1909 1910 /* Nonzero if X is a hard reg that can be used as an index. */ 1911 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X)) 1912 /* Nonzero if X is a hard reg that can be used as a base reg. */ 1913 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X)) 1914 1915 #define EXTRA_CONSTRAINT(OP, C) \ 1916 sparc_extra_constraint_check(OP, C, 1) 1917 1918 #endif 1919 1920 /* Should gcc use [%reg+%lo(xx)+offset] addresses? */ 1921 1922 #ifdef HAVE_AS_OFFSETABLE_LO10 1923 #define USE_AS_OFFSETABLE_LO10 1 1924 #else 1925 #define USE_AS_OFFSETABLE_LO10 0 1926 #endif 1927 1928 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression 1929 that is a valid memory address for an instruction. 1930 The MODE argument is the machine mode for the MEM expression 1931 that wants to use this address. 1932 1933 On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT 1934 ordinarily. This changes a bit when generating PIC. 1935 1936 If you change this, execute "rm explow.o recog.o reload.o". */ 1937 1938 #define SYMBOLIC_CONST(X) symbolic_operand (X, VOIDmode) 1939 1940 #define RTX_OK_FOR_BASE_P(X) \ 1941 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \ 1942 || (GET_CODE (X) == SUBREG \ 1943 && GET_CODE (SUBREG_REG (X)) == REG \ 1944 && REG_OK_FOR_BASE_P (SUBREG_REG (X)))) 1945 1946 #define RTX_OK_FOR_INDEX_P(X) \ 1947 ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \ 1948 || (GET_CODE (X) == SUBREG \ 1949 && GET_CODE (SUBREG_REG (X)) == REG \ 1950 && REG_OK_FOR_INDEX_P (SUBREG_REG (X)))) 1951 1952 #define RTX_OK_FOR_OFFSET_P(X) \ 1953 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0x1000 - 8) 1954 1955 #define RTX_OK_FOR_OLO10_P(X) \ 1956 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0xc00 - 8) 1957 1958 #ifdef REG_OK_STRICT 1959 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \ 1960 { \ 1961 if (legitimate_address_p (MODE, X, 1)) \ 1962 goto ADDR; \ 1963 } 1964 #else 1965 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \ 1966 { \ 1967 if (legitimate_address_p (MODE, X, 0)) \ 1968 goto ADDR; \ 1969 } 1970 #endif 1971 1972 /* Go to LABEL if ADDR (a legitimate address expression) 1973 has an effect that depends on the machine mode it is used for. 1974 1975 In PIC mode, 1976 1977 (mem:HI [%l7+a]) 1978 1979 is not equivalent to 1980 1981 (mem:QI [%l7+a]) (mem:QI [%l7+a+1]) 1982 1983 because [%l7+a+1] is interpreted as the address of (a+1). */ 1984 1985 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \ 1986 { \ 1987 if (flag_pic == 1) \ 1988 { \ 1989 if (GET_CODE (ADDR) == PLUS) \ 1990 { \ 1991 rtx op0 = XEXP (ADDR, 0); \ 1992 rtx op1 = XEXP (ADDR, 1); \ 1993 if (op0 == pic_offset_table_rtx \ 1994 && SYMBOLIC_CONST (op1)) \ 1995 goto LABEL; \ 1996 } \ 1997 } \ 1998 } 1999 2000 /* Try machine-dependent ways of modifying an illegitimate address 2001 to be legitimate. If we find one, return the new, valid address. 2002 This macro is used in only one place: `memory_address' in explow.c. 2003 2004 OLDX is the address as it was before break_out_memory_refs was called. 2005 In some cases it is useful to look at this to decide what needs to be done. 2006 2007 MODE and WIN are passed so that this macro can use 2008 GO_IF_LEGITIMATE_ADDRESS. 2009 2010 It is always safe for this macro to do nothing. It exists to recognize 2011 opportunities to optimize the output. */ 2012 2013 /* On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG. */ 2014 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \ 2015 { \ 2016 (X) = legitimize_address (X, OLDX, MODE); \ 2017 if (memory_address_p (MODE, X)) \ 2018 goto WIN; \ 2019 } 2020 2021 /* Try a machine-dependent way of reloading an illegitimate address 2022 operand. If we find one, push the reload and jump to WIN. This 2023 macro is used in only one place: `find_reloads_address' in reload.c. 2024 2025 For SPARC 32, we wish to handle addresses by splitting them into 2026 HIGH+LO_SUM pairs, retaining the LO_SUM in the memory reference. 2027 This cuts the number of extra insns by one. 2028 2029 Do nothing when generating PIC code and the address is a 2030 symbolic operand or requires a scratch register. */ 2031 2032 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \ 2033 do { \ 2034 /* Decompose SImode constants into hi+lo_sum. We do have to \ 2035 rerecognize what we produce, so be careful. */ \ 2036 if (CONSTANT_P (X) \ 2037 && (MODE != TFmode || TARGET_ARCH64) \ 2038 && GET_MODE (X) == SImode \ 2039 && GET_CODE (X) != LO_SUM && GET_CODE (X) != HIGH \ 2040 && ! (flag_pic \ 2041 && (symbolic_operand (X, Pmode) \ 2042 || pic_address_needs_scratch (X))) \ 2043 && sparc_cmodel <= CM_MEDLOW) \ 2044 { \ 2045 X = gen_rtx_LO_SUM (GET_MODE (X), \ 2046 gen_rtx_HIGH (GET_MODE (X), X), X); \ 2047 push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL, \ 2048 BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \ 2049 OPNUM, TYPE); \ 2050 goto WIN; \ 2051 } \ 2052 /* ??? 64-bit reloads. */ \ 2053 } while (0) 2054 2055 /* Specify the machine mode that this machine uses 2056 for the index in the tablejump instruction. */ 2057 /* If we ever implement any of the full models (such as CM_FULLANY), 2058 this has to be DImode in that case */ 2059 #ifdef HAVE_GAS_SUBSECTION_ORDERING 2060 #define CASE_VECTOR_MODE \ 2061 (! TARGET_PTR64 ? SImode : flag_pic ? SImode : TARGET_CM_MEDLOW ? SImode : DImode) 2062 #else 2063 /* If assembler does not have working .subsection -1, we use DImode for pic, as otherwise 2064 we have to sign extend which slows things down. */ 2065 #define CASE_VECTOR_MODE \ 2066 (! TARGET_PTR64 ? SImode : flag_pic ? DImode : TARGET_CM_MEDLOW ? SImode : DImode) 2067 #endif 2068 2069 /* Define this as 1 if `char' should by default be signed; else as 0. */ 2070 #define DEFAULT_SIGNED_CHAR 1 2071 2072 /* Max number of bytes we can move from memory to memory 2073 in one reasonably fast instruction. */ 2074 #define MOVE_MAX 8 2075 2076 /* If a memory-to-memory move would take MOVE_RATIO or more simple 2077 move-instruction pairs, we will do a movmem or libcall instead. */ 2078 2079 #define MOVE_RATIO (optimize_size ? 3 : 8) 2080 2081 /* Define if operations between registers always perform the operation 2082 on the full register even if a narrower mode is specified. */ 2083 #define WORD_REGISTER_OPERATIONS 2084 2085 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD 2086 will either zero-extend or sign-extend. The value of this macro should 2087 be the code that says which one of the two operations is implicitly 2088 done, UNKNOWN if none. */ 2089 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND 2090 2091 /* Nonzero if access to memory by bytes is slow and undesirable. 2092 For RISC chips, it means that access to memory by bytes is no 2093 better than access by words when possible, so grab a whole word 2094 and maybe make use of that. */ 2095 #define SLOW_BYTE_ACCESS 1 2096 2097 /* Define this to be nonzero if shift instructions ignore all but the low-order 2098 few bits. */ 2099 #define SHIFT_COUNT_TRUNCATED 1 2100 2101 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits 2102 is done just by pretending it is already truncated. */ 2103 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1 2104 2105 /* Specify the machine mode used for addresses. */ 2106 #define Pmode (TARGET_ARCH64 ? DImode : SImode) 2107 2108 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE, 2109 return the mode to be used for the comparison. For floating-point, 2110 CCFP[E]mode is used. CC_NOOVmode should be used when the first operand 2111 is a PLUS, MINUS, NEG, or ASHIFT. CCmode should be used when no special 2112 processing is needed. */ 2113 #define SELECT_CC_MODE(OP,X,Y) select_cc_mode ((OP), (X), (Y)) 2114 2115 /* Return nonzero if MODE implies a floating point inequality can be 2116 reversed. For SPARC this is always true because we have a full 2117 compliment of ordered and unordered comparisons, but until generic 2118 code knows how to reverse it correctly we keep the old definition. */ 2119 #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode && (MODE) != CCFPmode) 2120 2121 /* A function address in a call instruction for indexing purposes. */ 2122 #define FUNCTION_MODE Pmode 2123 2124 /* Define this if addresses of constant functions 2125 shouldn't be put through pseudo regs where they can be cse'd. 2126 Desirable on machines where ordinary constants are expensive 2127 but a CALL with constant address is cheap. */ 2128 #define NO_FUNCTION_CSE 2129 2130 /* alloca should avoid clobbering the old register save area. */ 2131 #define SETJMP_VIA_SAVE_AREA 2132 2133 /* The _Q_* comparison libcalls return booleans. */ 2134 #define FLOAT_LIB_COMPARE_RETURNS_BOOL(MODE, COMPARISON) ((MODE) == TFmode) 2135 2136 /* Assume by default that the _Qp_* 64-bit libcalls are implemented such 2137 that the inputs are fully consumed before the output memory is clobbered. */ 2138 2139 #define TARGET_BUGGY_QP_LIB 0 2140 2141 /* Assume by default that we do not have the Solaris-specific conversion 2142 routines nor 64-bit integer multiply and divide routines. */ 2143 2144 #define SUN_CONVERSION_LIBFUNCS 0 2145 #define DITF_CONVERSION_LIBFUNCS 0 2146 #define SUN_INTEGER_MULTIPLY_64 0 2147 2148 /* Compute extra cost of moving data between one register class 2149 and another. */ 2150 #define GENERAL_OR_I64(C) ((C) == GENERAL_REGS || (C) == I64_REGS) 2151 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \ 2152 (((FP_REG_CLASS_P (CLASS1) && GENERAL_OR_I64 (CLASS2)) \ 2153 || (GENERAL_OR_I64 (CLASS1) && FP_REG_CLASS_P (CLASS2)) \ 2154 || (CLASS1) == FPCC_REGS || (CLASS2) == FPCC_REGS) \ 2155 ? ((sparc_cpu == PROCESSOR_ULTRASPARC \ 2156 || sparc_cpu == PROCESSOR_ULTRASPARC3 \ 2157 || sparc_cpu == PROCESSOR_NIAGARA) ? 12 : 6) : 2) 2158 2159 /* Provide the cost of a branch. For pre-v9 processors we use 2160 a value of 3 to take into account the potential annulling of 2161 the delay slot (which ends up being a bubble in the pipeline slot) 2162 plus a cycle to take into consideration the instruction cache 2163 effects. 2164 2165 On v9 and later, which have branch prediction facilities, we set 2166 it to the depth of the pipeline as that is the cost of a 2167 mispredicted branch. 2168 2169 On Niagara, normal branches insert 3 bubbles into the pipe 2170 and annulled branches insert 4 bubbles. */ 2171 2172 #define BRANCH_COST \ 2173 ((sparc_cpu == PROCESSOR_V9 \ 2174 || sparc_cpu == PROCESSOR_ULTRASPARC) \ 2175 ? 7 \ 2176 : (sparc_cpu == PROCESSOR_ULTRASPARC3 \ 2177 ? 9 \ 2178 : (sparc_cpu == PROCESSOR_NIAGARA \ 2179 ? 4 \ 2180 : 3))) 2181 2182 #define PREFETCH_BLOCK \ 2183 ((sparc_cpu == PROCESSOR_ULTRASPARC \ 2184 || sparc_cpu == PROCESSOR_ULTRASPARC3 \ 2185 || sparc_cpu == PROCESSOR_NIAGARA) \ 2186 ? 64 : 32) 2187 2188 #define SIMULTANEOUS_PREFETCHES \ 2189 ((sparc_cpu == PROCESSOR_ULTRASPARC \ 2190 || sparc_cpu == PROCESSOR_NIAGARA) \ 2191 ? 2 \ 2192 : (sparc_cpu == PROCESSOR_ULTRASPARC3 \ 2193 ? 8 : 3)) 2194 2195 /* Control the assembler format that we output. */ 2196 2197 /* A C string constant describing how to begin a comment in the target 2198 assembler language. The compiler assumes that the comment will end at 2199 the end of the line. */ 2200 2201 #define ASM_COMMENT_START "!" 2202 2203 /* Output to assembler file text saying following lines 2204 may contain character constants, extra white space, comments, etc. */ 2205 2206 #define ASM_APP_ON "" 2207 2208 /* Output to assembler file text saying following lines 2209 no longer contain unusual constructs. */ 2210 2211 #define ASM_APP_OFF "" 2212 2213 /* How to refer to registers in assembler output. 2214 This sequence is indexed by compiler's hard-register-number (see above). */ 2215 2216 #define REGISTER_NAMES \ 2217 {"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \ 2218 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \ 2219 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \ 2220 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \ 2221 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \ 2222 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \ 2223 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \ 2224 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31", \ 2225 "%f32", "%f33", "%f34", "%f35", "%f36", "%f37", "%f38", "%f39", \ 2226 "%f40", "%f41", "%f42", "%f43", "%f44", "%f45", "%f46", "%f47", \ 2227 "%f48", "%f49", "%f50", "%f51", "%f52", "%f53", "%f54", "%f55", \ 2228 "%f56", "%f57", "%f58", "%f59", "%f60", "%f61", "%f62", "%f63", \ 2229 "%fcc0", "%fcc1", "%fcc2", "%fcc3", "%icc", "%sfp" } 2230 2231 /* Define additional names for use in asm clobbers and asm declarations. */ 2232 2233 #define ADDITIONAL_REGISTER_NAMES \ 2234 {{"ccr", SPARC_ICC_REG}, {"cc", SPARC_ICC_REG}} 2235 2236 /* On Sun 4, this limit is 2048. We use 1000 to be safe, since the length 2237 can run past this up to a continuation point. Once we used 1500, but 2238 a single entry in C++ can run more than 500 bytes, due to the length of 2239 mangled symbol names. dbxout.c should really be fixed to do 2240 continuations when they are actually needed instead of trying to 2241 guess... */ 2242 #define DBX_CONTIN_LENGTH 1000 2243 2244 /* This is how to output a command to make the user-level label named NAME 2245 defined for reference from other files. */ 2246 2247 /* Globalizing directive for a label. */ 2248 #define GLOBAL_ASM_OP "\t.global " 2249 2250 /* The prefix to add to user-visible assembler symbols. */ 2251 2252 #define USER_LABEL_PREFIX "_" 2253 2254 /* This is how to store into the string LABEL 2255 the symbol_ref name of an internal numbered label where 2256 PREFIX is the class of label and NUM is the number within the class. 2257 This is suitable for output with `assemble_name'. */ 2258 2259 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \ 2260 sprintf ((LABEL), "*%s%ld", (PREFIX), (long)(NUM)) 2261 2262 /* This is how we hook in and defer the case-vector until the end of 2263 the function. */ 2264 #define ASM_OUTPUT_ADDR_VEC(LAB,VEC) \ 2265 sparc_defer_case_vector ((LAB),(VEC), 0) 2266 2267 #define ASM_OUTPUT_ADDR_DIFF_VEC(LAB,VEC) \ 2268 sparc_defer_case_vector ((LAB),(VEC), 1) 2269 2270 /* This is how to output an element of a case-vector that is absolute. */ 2271 2272 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \ 2273 do { \ 2274 char label[30]; \ 2275 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \ 2276 if (CASE_VECTOR_MODE == SImode) \ 2277 fprintf (FILE, "\t.word\t"); \ 2278 else \ 2279 fprintf (FILE, "\t.xword\t"); \ 2280 assemble_name (FILE, label); \ 2281 fputc ('\n', FILE); \ 2282 } while (0) 2283 2284 /* This is how to output an element of a case-vector that is relative. 2285 (SPARC uses such vectors only when generating PIC.) */ 2286 2287 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \ 2288 do { \ 2289 char label[30]; \ 2290 ASM_GENERATE_INTERNAL_LABEL (label, "L", (VALUE)); \ 2291 if (CASE_VECTOR_MODE == SImode) \ 2292 fprintf (FILE, "\t.word\t"); \ 2293 else \ 2294 fprintf (FILE, "\t.xword\t"); \ 2295 assemble_name (FILE, label); \ 2296 ASM_GENERATE_INTERNAL_LABEL (label, "L", (REL)); \ 2297 fputc ('-', FILE); \ 2298 assemble_name (FILE, label); \ 2299 fputc ('\n', FILE); \ 2300 } while (0) 2301 2302 /* This is what to output before and after case-vector (both 2303 relative and absolute). If .subsection -1 works, we put case-vectors 2304 at the beginning of the current section. */ 2305 2306 #ifdef HAVE_GAS_SUBSECTION_ORDERING 2307 2308 #define ASM_OUTPUT_ADDR_VEC_START(FILE) \ 2309 fprintf(FILE, "\t.subsection\t-1\n") 2310 2311 #define ASM_OUTPUT_ADDR_VEC_END(FILE) \ 2312 fprintf(FILE, "\t.previous\n") 2313 2314 #endif 2315 2316 /* This is how to output an assembler line 2317 that says to advance the location counter 2318 to a multiple of 2**LOG bytes. */ 2319 2320 #define ASM_OUTPUT_ALIGN(FILE,LOG) \ 2321 if ((LOG) != 0) \ 2322 fprintf (FILE, "\t.align %d\n", (1<<(LOG))) 2323 2324 /* This is how to output an assembler line that says to advance 2325 the location counter to a multiple of 2**LOG bytes using the 2326 "nop" instruction as padding. */ 2327 #define ASM_OUTPUT_ALIGN_WITH_NOP(FILE,LOG) \ 2328 if ((LOG) != 0) \ 2329 fprintf (FILE, "\t.align %d,0x1000000\n", (1<<(LOG))) 2330 2331 #define ASM_OUTPUT_SKIP(FILE,SIZE) \ 2332 fprintf (FILE, "\t.skip "HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE)) 2333 2334 /* This says how to output an assembler line 2335 to define a global common symbol. */ 2336 2337 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \ 2338 ( fputs ("\t.common ", (FILE)), \ 2339 assemble_name ((FILE), (NAME)), \ 2340 fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\"\n", (SIZE))) 2341 2342 /* This says how to output an assembler line to define a local common 2343 symbol. */ 2344 2345 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED) \ 2346 ( fputs ("\t.reserve ", (FILE)), \ 2347 assemble_name ((FILE), (NAME)), \ 2348 fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\",%u\n", \ 2349 (SIZE), ((ALIGNED) / BITS_PER_UNIT))) 2350 2351 /* A C statement (sans semicolon) to output to the stdio stream 2352 FILE the assembler definition of uninitialized global DECL named 2353 NAME whose size is SIZE bytes and alignment is ALIGN bytes. 2354 Try to use asm_output_aligned_bss to implement this macro. */ 2355 2356 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \ 2357 do { \ 2358 ASM_OUTPUT_ALIGNED_LOCAL (FILE, NAME, SIZE, ALIGN); \ 2359 } while (0) 2360 2361 #define IDENT_ASM_OP "\t.ident\t" 2362 2363 /* Output #ident as a .ident. */ 2364 2365 #define ASM_OUTPUT_IDENT(FILE, NAME) \ 2366 fprintf (FILE, "%s\"%s\"\n", IDENT_ASM_OP, NAME); 2367 2368 /* Prettify the assembly. */ 2369 2370 extern int sparc_indent_opcode; 2371 2372 #define ASM_OUTPUT_OPCODE(FILE, PTR) \ 2373 do { \ 2374 if (sparc_indent_opcode) \ 2375 { \ 2376 putc (' ', FILE); \ 2377 sparc_indent_opcode = 0; \ 2378 } \ 2379 } while (0) 2380 2381 #define SPARC_SYMBOL_REF_TLS_P(RTX) \ 2382 (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0) 2383 2384 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \ 2385 ((CHAR) == '#' || (CHAR) == '*' || (CHAR) == '(' \ 2386 || (CHAR) == ')' || (CHAR) == '_' || (CHAR) == '&') 2387 2388 /* Print operand X (an rtx) in assembler syntax to file FILE. 2389 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified. 2390 For `%' followed by punctuation, CODE is the punctuation and X is null. */ 2391 2392 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE) 2393 2394 /* Print a memory address as an operand to reference that memory location. */ 2395 2396 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \ 2397 { register rtx base, index = 0; \ 2398 int offset = 0; \ 2399 register rtx addr = ADDR; \ 2400 if (GET_CODE (addr) == REG) \ 2401 fputs (reg_names[REGNO (addr)], FILE); \ 2402 else if (GET_CODE (addr) == PLUS) \ 2403 { \ 2404 if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \ 2405 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\ 2406 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \ 2407 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\ 2408 else \ 2409 base = XEXP (addr, 0), index = XEXP (addr, 1); \ 2410 if (GET_CODE (base) == LO_SUM) \ 2411 { \ 2412 gcc_assert (USE_AS_OFFSETABLE_LO10 \ 2413 && TARGET_ARCH64 \ 2414 && ! TARGET_CM_MEDMID); \ 2415 output_operand (XEXP (base, 0), 0); \ 2416 fputs ("+%lo(", FILE); \ 2417 output_address (XEXP (base, 1)); \ 2418 fprintf (FILE, ")+%d", offset); \ 2419 } \ 2420 else \ 2421 { \ 2422 fputs (reg_names[REGNO (base)], FILE); \ 2423 if (index == 0) \ 2424 fprintf (FILE, "%+d", offset); \ 2425 else if (GET_CODE (index) == REG) \ 2426 fprintf (FILE, "+%s", reg_names[REGNO (index)]); \ 2427 else if (GET_CODE (index) == SYMBOL_REF \ 2428 || GET_CODE (index) == CONST) \ 2429 fputc ('+', FILE), output_addr_const (FILE, index); \ 2430 else gcc_unreachable (); \ 2431 } \ 2432 } \ 2433 else if (GET_CODE (addr) == MINUS \ 2434 && GET_CODE (XEXP (addr, 1)) == LABEL_REF) \ 2435 { \ 2436 output_addr_const (FILE, XEXP (addr, 0)); \ 2437 fputs ("-(", FILE); \ 2438 output_addr_const (FILE, XEXP (addr, 1)); \ 2439 fputs ("-.)", FILE); \ 2440 } \ 2441 else if (GET_CODE (addr) == LO_SUM) \ 2442 { \ 2443 output_operand (XEXP (addr, 0), 0); \ 2444 if (TARGET_CM_MEDMID) \ 2445 fputs ("+%l44(", FILE); \ 2446 else \ 2447 fputs ("+%lo(", FILE); \ 2448 output_address (XEXP (addr, 1)); \ 2449 fputc (')', FILE); \ 2450 } \ 2451 else if (flag_pic && GET_CODE (addr) == CONST \ 2452 && GET_CODE (XEXP (addr, 0)) == MINUS \ 2453 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST \ 2454 && GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS \ 2455 && XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx) \ 2456 { \ 2457 addr = XEXP (addr, 0); \ 2458 output_addr_const (FILE, XEXP (addr, 0)); \ 2459 /* Group the args of the second CONST in parenthesis. */ \ 2460 fputs ("-(", FILE); \ 2461 /* Skip past the second CONST--it does nothing for us. */\ 2462 output_addr_const (FILE, XEXP (XEXP (addr, 1), 0)); \ 2463 /* Close the parenthesis. */ \ 2464 fputc (')', FILE); \ 2465 } \ 2466 else \ 2467 { \ 2468 output_addr_const (FILE, addr); \ 2469 } \ 2470 } 2471 2472 /* TLS support defaulting to original Sun flavor. GNU extensions 2473 must be activated in separate configuration files. */ 2474 #ifdef HAVE_AS_TLS 2475 #define TARGET_TLS 1 2476 #else 2477 #define TARGET_TLS 0 2478 #endif 2479 2480 #define TARGET_SUN_TLS TARGET_TLS 2481 #define TARGET_GNU_TLS 0 2482 2483 /* The number of Pmode words for the setjmp buffer. */ 2484 #define JMP_BUF_SIZE 12 2485