xref: /openbsd/gnu/gcc/gcc/config/sparc/sparc.h (revision c7c13d1a)
1 /* Definitions of target machine for GNU compiler, for Sun SPARC.
2    Copyright (C) 1987, 1988, 1989, 1992, 1994, 1995, 1996, 1997, 1998, 1999
3    2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4    Contributed by Michael Tiemann (tiemann@cygnus.com).
5    64-bit SPARC-V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
6    at Cygnus Support.
7 
8 This file is part of GCC.
9 
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
13 any later version.
14 
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 GNU General Public License for more details.
19 
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING.  If not, write to
22 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
23 Boston, MA 02110-1301, USA.  */
24 
25 /* Note that some other tm.h files include this one and then override
26    whatever definitions are necessary.  */
27 
28 /* Define the specific costs for a given cpu */
29 
30 struct processor_costs {
31   /* Integer load */
32   const int int_load;
33 
34   /* Integer signed load */
35   const int int_sload;
36 
37   /* Integer zeroed load */
38   const int int_zload;
39 
40   /* Float load */
41   const int float_load;
42 
43   /* fmov, fneg, fabs */
44   const int float_move;
45 
46   /* fadd, fsub */
47   const int float_plusminus;
48 
49   /* fcmp */
50   const int float_cmp;
51 
52   /* fmov, fmovr */
53   const int float_cmove;
54 
55   /* fmul */
56   const int float_mul;
57 
58   /* fdivs */
59   const int float_div_sf;
60 
61   /* fdivd */
62   const int float_div_df;
63 
64   /* fsqrts */
65   const int float_sqrt_sf;
66 
67   /* fsqrtd */
68   const int float_sqrt_df;
69 
70   /* umul/smul */
71   const int int_mul;
72 
73   /* mulX */
74   const int int_mulX;
75 
76   /* integer multiply cost for each bit set past the most
77      significant 3, so the formula for multiply cost becomes:
78 
79 	if (rs1 < 0)
80 	  highest_bit = highest_clear_bit(rs1);
81 	else
82 	  highest_bit = highest_set_bit(rs1);
83 	if (highest_bit < 3)
84 	  highest_bit = 3;
85 	cost = int_mul{,X} + ((highest_bit - 3) / int_mul_bit_factor);
86 
87      A value of zero indicates that the multiply costs is fixed,
88      and not variable.  */
89   const int int_mul_bit_factor;
90 
91   /* udiv/sdiv */
92   const int int_div;
93 
94   /* divX */
95   const int int_divX;
96 
97   /* movcc, movr */
98   const int int_cmove;
99 
100   /* penalty for shifts, due to scheduling rules etc. */
101   const int shift_penalty;
102 };
103 
104 extern const struct processor_costs *sparc_costs;
105 
106 /* Target CPU builtins.  FIXME: Defining sparc is for the benefit of
107    Solaris only; otherwise just define __sparc__.  Sadly the headers
108    are such a mess there is no Solaris-specific header.  */
109 #define TARGET_CPU_CPP_BUILTINS()		\
110   do						\
111     {						\
112 	builtin_define_std ("sparc");		\
113 	if (TARGET_64BIT)			\
114 	  { 					\
115 	    builtin_assert ("cpu=sparc64");	\
116 	    builtin_assert ("machine=sparc64");	\
117 	  }					\
118 	else					\
119 	  { 					\
120 	    builtin_assert ("cpu=sparc");	\
121 	    builtin_assert ("machine=sparc");	\
122 	  }					\
123     }						\
124   while (0)
125 
126 /* Specify this in a cover file to provide bi-architecture (32/64) support.  */
127 /* #define SPARC_BI_ARCH */
128 
129 /* Macro used later in this file to determine default architecture.  */
130 #define DEFAULT_ARCH32_P ((TARGET_DEFAULT & MASK_64BIT) == 0)
131 
132 /* TARGET_ARCH{32,64} are the main macros to decide which of the two
133    architectures to compile for.  We allow targets to choose compile time or
134    runtime selection.  */
135 #ifdef IN_LIBGCC2
136 #if defined(__sparcv9) || defined(__arch64__)
137 #define TARGET_ARCH32 0
138 #else
139 #define TARGET_ARCH32 1
140 #endif /* sparc64 */
141 #else
142 #ifdef SPARC_BI_ARCH
143 #define TARGET_ARCH32 (! TARGET_64BIT)
144 #else
145 #define TARGET_ARCH32 (DEFAULT_ARCH32_P)
146 #endif /* SPARC_BI_ARCH */
147 #endif /* IN_LIBGCC2 */
148 #define TARGET_ARCH64 (! TARGET_ARCH32)
149 
150 /* Code model selection in 64-bit environment.
151 
152    The machine mode used for addresses is 32-bit wide:
153 
154    TARGET_CM_32:     32-bit address space.
155                      It is the code model used when generating 32-bit code.
156 
157    The machine mode used for addresses is 64-bit wide:
158 
159    TARGET_CM_MEDLOW: 32-bit address space.
160                      The executable must be in the low 32 bits of memory.
161                      This avoids generating %uhi and %ulo terms.  Programs
162                      can be statically or dynamically linked.
163 
164    TARGET_CM_MEDMID: 44-bit address space.
165                      The executable must be in the low 44 bits of memory,
166                      and the %[hml]44 terms are used.  The text and data
167                      segments have a maximum size of 2GB (31-bit span).
168                      The maximum offset from any instruction to the label
169                      _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
170 
171    TARGET_CM_MEDANY: 64-bit address space.
172                      The text and data segments have a maximum size of 2GB
173                      (31-bit span) and may be located anywhere in memory.
174                      The maximum offset from any instruction to the label
175                      _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
176 
177    TARGET_CM_EMBMEDANY: 64-bit address space.
178                      The text and data segments have a maximum size of 2GB
179                      (31-bit span) and may be located anywhere in memory.
180                      The global register %g4 contains the start address of
181                      the data segment.  Programs are statically linked and
182                      PIC is not supported.
183 
184    Different code models are not supported in 32-bit environment.  */
185 
186 enum cmodel {
187   CM_32,
188   CM_MEDLOW,
189   CM_MEDMID,
190   CM_MEDANY,
191   CM_EMBMEDANY
192 };
193 
194 /* One of CM_FOO.  */
195 extern enum cmodel sparc_cmodel;
196 
197 /* V9 code model selection.  */
198 #define TARGET_CM_MEDLOW    (sparc_cmodel == CM_MEDLOW)
199 #define TARGET_CM_MEDMID    (sparc_cmodel == CM_MEDMID)
200 #define TARGET_CM_MEDANY    (sparc_cmodel == CM_MEDANY)
201 #define TARGET_CM_EMBMEDANY (sparc_cmodel == CM_EMBMEDANY)
202 
203 #define SPARC_DEFAULT_CMODEL CM_32
204 
205 /* The SPARC-V9 architecture defines a relaxed memory ordering model (RMO)
206    which requires the following macro to be true if enabled.  Prior to V9,
207    there are no instructions to even talk about memory synchronization.
208    Note that the UltraSPARC III processors don't implement RMO, unlike the
209    UltraSPARC II processors.  Niagara does not implement RMO either.
210 
211    Default to false; for example, Solaris never enables RMO, only ever uses
212    total memory ordering (TMO).  */
213 #define SPARC_RELAXED_ORDERING false
214 
215 /* Do not use the .note.GNU-stack convention by default.  */
216 #define NEED_INDICATE_EXEC_STACK 0
217 
218 /* This is call-clobbered in the normal ABI, but is reserved in the
219    home grown (aka upward compatible) embedded ABI.  */
220 #define EMBMEDANY_BASE_REG "%g4"
221 
222 /* Values of TARGET_CPU_DEFAULT, set via -D in the Makefile,
223    and specified by the user via --with-cpu=foo.
224    This specifies the cpu implementation, not the architecture size.  */
225 /* Note that TARGET_CPU_v9 is assumed to start the list of 64-bit
226    capable cpu's.  */
227 #define TARGET_CPU_sparc	0
228 #define TARGET_CPU_v7		0	/* alias for previous */
229 #define TARGET_CPU_sparclet	1
230 #define TARGET_CPU_sparclite	2
231 #define TARGET_CPU_v8		3	/* generic v8 implementation */
232 #define TARGET_CPU_supersparc	4
233 #define TARGET_CPU_hypersparc   5
234 #define TARGET_CPU_sparc86x	6
235 #define TARGET_CPU_sparclite86x	6
236 #define TARGET_CPU_v9		7	/* generic v9 implementation */
237 #define TARGET_CPU_sparcv9	7	/* alias */
238 #define TARGET_CPU_sparc64	7	/* alias */
239 #define TARGET_CPU_ultrasparc	8
240 #define TARGET_CPU_ultrasparc3	9
241 #define TARGET_CPU_niagara	10
242 
243 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9 \
244  || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc \
245  || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3 \
246  || TARGET_CPU_DEFAULT == TARGET_CPU_niagara
247 
248 #define CPP_CPU32_DEFAULT_SPEC ""
249 #define ASM_CPU32_DEFAULT_SPEC ""
250 
251 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9
252 /* ??? What does Sun's CC pass?  */
253 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
254 /* ??? It's not clear how other assemblers will handle this, so by default
255    use GAS.  Sun's Solaris assembler recognizes -xarch=v8plus, but this case
256    is handled in sol2.h.  */
257 #define ASM_CPU64_DEFAULT_SPEC "-Av9"
258 #endif
259 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc
260 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
261 #define ASM_CPU64_DEFAULT_SPEC "-Av9a"
262 #endif
263 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3
264 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
265 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
266 #endif
267 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara
268 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
269 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
270 #endif
271 
272 #else
273 
274 #define CPP_CPU64_DEFAULT_SPEC ""
275 #define ASM_CPU64_DEFAULT_SPEC ""
276 
277 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparc \
278  || TARGET_CPU_DEFAULT == TARGET_CPU_v8
279 #define CPP_CPU32_DEFAULT_SPEC ""
280 #define ASM_CPU32_DEFAULT_SPEC ""
281 #endif
282 
283 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclet
284 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclet__"
285 #define ASM_CPU32_DEFAULT_SPEC "-Asparclet"
286 #endif
287 
288 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite
289 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite__"
290 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
291 #endif
292 
293 #if TARGET_CPU_DEFAULT == TARGET_CPU_supersparc
294 #define CPP_CPU32_DEFAULT_SPEC "-D__supersparc__ -D__sparc_v8__"
295 #define ASM_CPU32_DEFAULT_SPEC ""
296 #endif
297 
298 #if TARGET_CPU_DEFAULT == TARGET_CPU_hypersparc
299 #define CPP_CPU32_DEFAULT_SPEC "-D__hypersparc__ -D__sparc_v8__"
300 #define ASM_CPU32_DEFAULT_SPEC ""
301 #endif
302 
303 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite86x
304 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite86x__"
305 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
306 #endif
307 
308 #endif
309 
310 #if !defined(CPP_CPU32_DEFAULT_SPEC) || !defined(CPP_CPU64_DEFAULT_SPEC)
311  #error Unrecognized value in TARGET_CPU_DEFAULT.
312 #endif
313 
314 #ifdef SPARC_BI_ARCH
315 
316 #define CPP_CPU_DEFAULT_SPEC \
317 (DEFAULT_ARCH32_P ? "\
318 %{m64:" CPP_CPU64_DEFAULT_SPEC "} \
319 %{!m64:" CPP_CPU32_DEFAULT_SPEC "} \
320 " : "\
321 %{m32:" CPP_CPU32_DEFAULT_SPEC "} \
322 %{!m32:" CPP_CPU64_DEFAULT_SPEC "} \
323 ")
324 #define ASM_CPU_DEFAULT_SPEC \
325 (DEFAULT_ARCH32_P ? "\
326 %{m64:" ASM_CPU64_DEFAULT_SPEC "} \
327 %{!m64:" ASM_CPU32_DEFAULT_SPEC "} \
328 " : "\
329 %{m32:" ASM_CPU32_DEFAULT_SPEC "} \
330 %{!m32:" ASM_CPU64_DEFAULT_SPEC "} \
331 ")
332 
333 #else /* !SPARC_BI_ARCH */
334 
335 #define CPP_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? CPP_CPU32_DEFAULT_SPEC : CPP_CPU64_DEFAULT_SPEC)
336 #define ASM_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? ASM_CPU32_DEFAULT_SPEC : ASM_CPU64_DEFAULT_SPEC)
337 
338 #endif /* !SPARC_BI_ARCH */
339 
340 /* Define macros to distinguish architectures.  */
341 
342 /* Common CPP definitions used by CPP_SPEC amongst the various targets
343    for handling -mcpu=xxx switches.  */
344 #define CPP_CPU_SPEC "\
345 %{msoft-float:-D_SOFT_FLOAT} \
346 %{mcypress:} \
347 %{msparclite:-D__sparclite__} \
348 %{mf930:-D__sparclite__} %{mf934:-D__sparclite__} \
349 %{mv8:-D__sparc_v8__} \
350 %{msupersparc:-D__supersparc__ -D__sparc_v8__} \
351 %{mcpu=sparclet:-D__sparclet__} %{mcpu=tsc701:-D__sparclet__} \
352 %{mcpu=sparclite:-D__sparclite__} \
353 %{mcpu=f930:-D__sparclite__} %{mcpu=f934:-D__sparclite__} \
354 %{mcpu=v8:-D__sparc_v8__} \
355 %{mcpu=supersparc:-D__supersparc__ -D__sparc_v8__} \
356 %{mcpu=hypersparc:-D__hypersparc__ -D__sparc_v8__} \
357 %{mcpu=sparclite86x:-D__sparclite86x__} \
358 %{mcpu=v9:-D__sparc_v9__} \
359 %{mcpu=ultrasparc:-D__sparc_v9__} \
360 %{mcpu=ultrasparc3:-D__sparc_v9__} \
361 %{mcpu=niagara:-D__sparc_v9__} \
362 %{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(cpp_cpu_default)}}}}}}} \
363 "
364 #define CPP_ARCH32_SPEC ""
365 #define CPP_ARCH64_SPEC "-D__arch64__"
366 
367 #define CPP_ARCH_DEFAULT_SPEC \
368 (DEFAULT_ARCH32_P ? CPP_ARCH32_SPEC : CPP_ARCH64_SPEC)
369 
370 #define CPP_ARCH_SPEC "\
371 %{m32:%(cpp_arch32)} \
372 %{m64:%(cpp_arch64)} \
373 %{!m32:%{!m64:%(cpp_arch_default)}} \
374 "
375 
376 /* Macros to distinguish endianness.  */
377 #define CPP_ENDIAN_SPEC "\
378 %{mlittle-endian:-D__LITTLE_ENDIAN__} \
379 %{mlittle-endian-data:-D__LITTLE_ENDIAN_DATA__}"
380 
381 /* Macros to distinguish the particular subtarget.  */
382 #define CPP_SUBTARGET_SPEC ""
383 
384 #define CPP_SPEC "%(cpp_cpu) %(cpp_arch) %(cpp_endian) %(cpp_subtarget)"
385 
386 /* Prevent error on `-sun4' and `-target sun4' options.  */
387 /* This used to translate -dalign to -malign, but that is no good
388    because it can't turn off the usual meaning of making debugging dumps.  */
389 /* Translate old style -m<cpu> into new style -mcpu=<cpu>.
390    ??? Delete support for -m<cpu> for 2.9.  */
391 
392 #define CC1_SPEC "\
393 %{sun4:} %{target:} \
394 %{mcypress:-mcpu=cypress} \
395 %{msparclite:-mcpu=sparclite} %{mf930:-mcpu=f930} %{mf934:-mcpu=f934} \
396 %{mv8:-mcpu=v8} %{msupersparc:-mcpu=supersparc} \
397 "
398 
399 /* Override in target specific files.  */
400 #define ASM_CPU_SPEC "\
401 %{mcpu=sparclet:-Asparclet} %{mcpu=tsc701:-Asparclet} \
402 %{msparclite:-Asparclite} \
403 %{mf930:-Asparclite} %{mf934:-Asparclite} \
404 %{mcpu=sparclite:-Asparclite} \
405 %{mcpu=sparclite86x:-Asparclite} \
406 %{mcpu=f930:-Asparclite} %{mcpu=f934:-Asparclite} \
407 %{mv8plus:-Av8plus} \
408 %{mcpu=v9:-Av9} \
409 %{mcpu=ultrasparc:%{!mv8plus:-Av9a}} \
410 %{mcpu=ultrasparc3:%{!mv8plus:-Av9b}} \
411 %{mcpu=niagara:%{!mv8plus:-Av9b}} \
412 %{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(asm_cpu_default)}}}}}}} \
413 "
414 
415 /* Word size selection, among other things.
416    This is what GAS uses.  Add %(asm_arch) to ASM_SPEC to enable.  */
417 
418 #define ASM_ARCH32_SPEC "-32"
419 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
420 #define ASM_ARCH64_SPEC "-64 -no-undeclared-regs"
421 #else
422 #define ASM_ARCH64_SPEC "-64"
423 #endif
424 #define ASM_ARCH_DEFAULT_SPEC \
425 (DEFAULT_ARCH32_P ? ASM_ARCH32_SPEC : ASM_ARCH64_SPEC)
426 
427 #define ASM_ARCH_SPEC "\
428 %{m32:%(asm_arch32)} \
429 %{m64:%(asm_arch64)} \
430 %{!m32:%{!m64:%(asm_arch_default)}} \
431 "
432 
433 #ifdef HAVE_AS_RELAX_OPTION
434 #define ASM_RELAX_SPEC "%{!mno-relax:-relax}"
435 #else
436 #define ASM_RELAX_SPEC ""
437 #endif
438 
439 /* Special flags to the Sun-4 assembler when using pipe for input.  */
440 
441 #define ASM_SPEC "\
442 %{R} %{!pg:%{!p:%{fpic|fPIC|fpie|fPIE:-k}}} %{keep-local-as-symbols:-L} \
443 %(asm_cpu) %(asm_relax)"
444 
445 #define AS_NEEDS_DASH_FOR_PIPED_INPUT
446 
447 /* This macro defines names of additional specifications to put in the specs
448    that can be used in various specifications like CC1_SPEC.  Its definition
449    is an initializer with a subgrouping for each command option.
450 
451    Each subgrouping contains a string constant, that defines the
452    specification name, and a string constant that used by the GCC driver
453    program.
454 
455    Do not define this macro if it does not need to do anything.  */
456 
457 #define EXTRA_SPECS \
458   { "cpp_cpu",		CPP_CPU_SPEC },		\
459   { "cpp_cpu_default",	CPP_CPU_DEFAULT_SPEC },	\
460   { "cpp_arch32",	CPP_ARCH32_SPEC },	\
461   { "cpp_arch64",	CPP_ARCH64_SPEC },	\
462   { "cpp_arch_default",	CPP_ARCH_DEFAULT_SPEC },\
463   { "cpp_arch",		CPP_ARCH_SPEC },	\
464   { "cpp_endian",	CPP_ENDIAN_SPEC },	\
465   { "cpp_subtarget",	CPP_SUBTARGET_SPEC },	\
466   { "asm_cpu",		ASM_CPU_SPEC },		\
467   { "asm_cpu_default",	ASM_CPU_DEFAULT_SPEC },	\
468   { "asm_arch32",	ASM_ARCH32_SPEC },	\
469   { "asm_arch64",	ASM_ARCH64_SPEC },	\
470   { "asm_relax",	ASM_RELAX_SPEC },	\
471   { "asm_arch_default",	ASM_ARCH_DEFAULT_SPEC },\
472   { "asm_arch",		ASM_ARCH_SPEC },	\
473   SUBTARGET_EXTRA_SPECS
474 
475 #define SUBTARGET_EXTRA_SPECS
476 
477 /* Because libgcc can generate references back to libc (via .umul etc.) we have
478    to list libc again after the second libgcc.  */
479 #define LINK_GCC_C_SEQUENCE_SPEC "%G %L %G %L"
480 
481 
482 #define PTRDIFF_TYPE (TARGET_ARCH64 ? "long int" : "int")
483 #define SIZE_TYPE (TARGET_ARCH64 ? "long unsigned int" : "unsigned int")
484 
485 /* ??? This should be 32 bits for v9 but what can we do?  */
486 #define WCHAR_TYPE "short unsigned int"
487 #define WCHAR_TYPE_SIZE 16
488 
489 /* Show we can debug even without a frame pointer.  */
490 #define CAN_DEBUG_WITHOUT_FP
491 
492 /* Option handling.  */
493 
494 #define OVERRIDE_OPTIONS  sparc_override_options ()
495 
496 /* Mask of all CPU selection flags.  */
497 #define MASK_ISA \
498 (MASK_V8 + MASK_SPARCLITE + MASK_SPARCLET + MASK_V9 + MASK_DEPRECATED_V8_INSNS)
499 
500 /* TARGET_HARD_MUL: Use hardware multiply instructions but not %y.
501    TARGET_HARD_MUL32: Use hardware multiply instructions with rd %y
502    to get high 32 bits.  False in V8+ or V9 because multiply stores
503    a 64 bit result in a register.  */
504 
505 #define TARGET_HARD_MUL32				\
506   ((TARGET_V8 || TARGET_SPARCLITE			\
507     || TARGET_SPARCLET || TARGET_DEPRECATED_V8_INSNS)	\
508    && ! TARGET_V8PLUS && TARGET_ARCH32)
509 
510 #define TARGET_HARD_MUL					\
511   (TARGET_V8 || TARGET_SPARCLITE || TARGET_SPARCLET	\
512    || TARGET_DEPRECATED_V8_INSNS || TARGET_V8PLUS)
513 
514 /* MASK_APP_REGS must always be the default because that's what
515    FIXED_REGISTERS is set to and -ffixed- is processed before
516    CONDITIONAL_REGISTER_USAGE is called (where we process -mno-app-regs).  */
517 #define TARGET_DEFAULT (MASK_APP_REGS + MASK_FPU)
518 
519 /* Processor type.
520    These must match the values for the cpu attribute in sparc.md.  */
521 enum processor_type {
522   PROCESSOR_V7,
523   PROCESSOR_CYPRESS,
524   PROCESSOR_V8,
525   PROCESSOR_SUPERSPARC,
526   PROCESSOR_SPARCLITE,
527   PROCESSOR_F930,
528   PROCESSOR_F934,
529   PROCESSOR_HYPERSPARC,
530   PROCESSOR_SPARCLITE86X,
531   PROCESSOR_SPARCLET,
532   PROCESSOR_TSC701,
533   PROCESSOR_V9,
534   PROCESSOR_ULTRASPARC,
535   PROCESSOR_ULTRASPARC3,
536   PROCESSOR_NIAGARA
537 };
538 
539 /* This is set from -m{cpu,tune}=xxx.  */
540 extern enum processor_type sparc_cpu;
541 
542 /* Recast the cpu class to be the cpu attribute.
543    Every file includes us, but not every file includes insn-attr.h.  */
544 #define sparc_cpu_attr ((enum attr_cpu) sparc_cpu)
545 
546 /* Support for a compile-time default CPU, et cetera.  The rules are:
547    --with-cpu is ignored if -mcpu is specified.
548    --with-tune is ignored if -mtune is specified.
549    --with-float is ignored if -mhard-float, -msoft-float, -mfpu, or -mno-fpu
550      are specified.  */
551 #define OPTION_DEFAULT_SPECS \
552   {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
553   {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
554   {"float", "%{!msoft-float:%{!mhard-float:%{!fpu:%{!no-fpu:-m%(VALUE)-float}}}}" }
555 
556 /* sparc_select[0] is reserved for the default cpu.  */
557 struct sparc_cpu_select
558 {
559   const char *string;
560   const char *const name;
561   const int set_tune_p;
562   const int set_arch_p;
563 };
564 
565 extern struct sparc_cpu_select sparc_select[];
566 
567 /* target machine storage layout */
568 
569 /* Define this if most significant bit is lowest numbered
570    in instructions that operate on numbered bit-fields.  */
571 #define BITS_BIG_ENDIAN 1
572 
573 /* Define this if most significant byte of a word is the lowest numbered.  */
574 #define BYTES_BIG_ENDIAN 1
575 
576 /* Define this if most significant word of a multiword number is the lowest
577    numbered.  */
578 #define WORDS_BIG_ENDIAN 1
579 
580 /* Define this to set the endianness to use in libgcc2.c, which can
581    not depend on target_flags.  */
582 #if defined (__LITTLE_ENDIAN__) || defined(__LITTLE_ENDIAN_DATA__)
583 #define LIBGCC2_WORDS_BIG_ENDIAN 0
584 #else
585 #define LIBGCC2_WORDS_BIG_ENDIAN 1
586 #endif
587 
588 #define MAX_BITS_PER_WORD	64
589 
590 /* Width of a word, in units (bytes).  */
591 #define UNITS_PER_WORD		(TARGET_ARCH64 ? 8 : 4)
592 #ifdef IN_LIBGCC2
593 #define MIN_UNITS_PER_WORD	UNITS_PER_WORD
594 #else
595 #define MIN_UNITS_PER_WORD	4
596 #endif
597 
598 #define UNITS_PER_SIMD_WORD	(TARGET_VIS ? 8 : UNITS_PER_WORD)
599 
600 /* Now define the sizes of the C data types.  */
601 
602 #define SHORT_TYPE_SIZE		16
603 #define INT_TYPE_SIZE		32
604 #define LONG_TYPE_SIZE		(TARGET_ARCH64 ? 64 : 32)
605 #define LONG_LONG_TYPE_SIZE	64
606 #define FLOAT_TYPE_SIZE		32
607 #define DOUBLE_TYPE_SIZE	64
608 /* LONG_DOUBLE_TYPE_SIZE is defined per OS even though the
609    SPARC ABI says that it is 128-bit wide.  */
610 /* #define LONG_DOUBLE_TYPE_SIZE	128 */
611 
612 /* Width in bits of a pointer.
613    See also the macro `Pmode' defined below.  */
614 #define POINTER_SIZE (TARGET_PTR64 ? 64 : 32)
615 
616 /* If we have to extend pointers (only when TARGET_ARCH64 and not
617    TARGET_PTR64), we want to do it unsigned.   This macro does nothing
618    if ptr_mode and Pmode are the same.  */
619 #define POINTERS_EXTEND_UNSIGNED 1
620 
621 /* For TARGET_ARCH64 we need this, as we don't have instructions
622    for arithmetic operations which do zero/sign extension at the same time,
623    so without this we end up with a srl/sra after every assignment to an
624    user variable,  which means very very bad code.  */
625 #define PROMOTE_FUNCTION_MODE(MODE, UNSIGNEDP, TYPE) \
626 if (TARGET_ARCH64				\
627     && GET_MODE_CLASS (MODE) == MODE_INT	\
628     && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)	\
629   (MODE) = word_mode;
630 
631 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
632 #define PARM_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
633 
634 /* Boundary (in *bits*) on which stack pointer should be aligned.  */
635 /* FIXME, this is wrong when TARGET_ARCH64 and TARGET_STACK_BIAS, because
636    then %sp+2047 is 128-bit aligned so %sp is really only byte-aligned.  */
637 #define STACK_BOUNDARY (TARGET_ARCH64 ? 128 : 64)
638 /* Temporary hack until the FIXME above is fixed.  */
639 #define SPARC_STACK_BOUNDARY_HACK (TARGET_ARCH64 && TARGET_STACK_BIAS)
640 
641 /* ALIGN FRAMES on double word boundaries */
642 
643 #define SPARC_STACK_ALIGN(LOC) \
644   (TARGET_ARCH64 ? (((LOC)+15) & ~15) : (((LOC)+7) & ~7))
645 
646 /* Allocation boundary (in *bits*) for the code of a function.  */
647 #define FUNCTION_BOUNDARY 32
648 
649 /* Alignment of field after `int : 0' in a structure.  */
650 #define EMPTY_FIELD_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
651 
652 /* Every structure's size must be a multiple of this.  */
653 #define STRUCTURE_SIZE_BOUNDARY 8
654 
655 /* A bit-field declared as `int' forces `int' alignment for the struct.  */
656 #define PCC_BITFIELD_TYPE_MATTERS 1
657 
658 /* No data type wants to be aligned rounder than this.  */
659 #define BIGGEST_ALIGNMENT (TARGET_ARCH64 ? 128 : 64)
660 
661 /* The best alignment to use in cases where we have a choice.  */
662 #define FASTEST_ALIGNMENT 64
663 
664 /* Define this macro as an expression for the alignment of a structure
665    (given by STRUCT as a tree node) if the alignment computed in the
666    usual way is COMPUTED and the alignment explicitly specified was
667    SPECIFIED.
668 
669    The default is to use SPECIFIED if it is larger; otherwise, use
670    the smaller of COMPUTED and `BIGGEST_ALIGNMENT' */
671 #define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED)	\
672  (TARGET_FASTER_STRUCTS ?				\
673   ((TREE_CODE (STRUCT) == RECORD_TYPE			\
674     || TREE_CODE (STRUCT) == UNION_TYPE                 \
675     || TREE_CODE (STRUCT) == QUAL_UNION_TYPE)           \
676    && TYPE_FIELDS (STRUCT) != 0                         \
677      ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
678      : MAX ((COMPUTED), (SPECIFIED)))			\
679    :  MAX ((COMPUTED), (SPECIFIED)))
680 
681 /* Make strings word-aligned so strcpy from constants will be faster.  */
682 #define CONSTANT_ALIGNMENT(EXP, ALIGN)  \
683   ((TREE_CODE (EXP) == STRING_CST	\
684     && (ALIGN) < FASTEST_ALIGNMENT)	\
685    ? FASTEST_ALIGNMENT : (ALIGN))
686 
687 /* Make arrays of chars word-aligned for the same reasons.  */
688 #define DATA_ALIGNMENT(TYPE, ALIGN)		\
689   (TREE_CODE (TYPE) == ARRAY_TYPE		\
690    && TYPE_MODE (TREE_TYPE (TYPE)) == QImode	\
691    && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
692 
693 /* Make local arrays of chars word-aligned for the same reasons.  */
694 #define LOCAL_ALIGNMENT(TYPE, ALIGN) DATA_ALIGNMENT (TYPE, ALIGN)
695 
696 /* Set this nonzero if move instructions will actually fail to work
697    when given unaligned data.  */
698 #define STRICT_ALIGNMENT 1
699 
700 /* Things that must be doubleword aligned cannot go in the text section,
701    because the linker fails to align the text section enough!
702    Put them in the data section.  This macro is only used in this file.  */
703 #define MAX_TEXT_ALIGN 32
704 
705 /* Standard register usage.  */
706 
707 /* Number of actual hardware registers.
708    The hardware registers are assigned numbers for the compiler
709    from 0 to just below FIRST_PSEUDO_REGISTER.
710    All registers that the compiler knows about must be given numbers,
711    even those that are not normally considered general registers.
712 
713    SPARC has 32 integer registers and 32 floating point registers.
714    64 bit SPARC has 32 additional fp regs, but the odd numbered ones are not
715    accessible.  We still account for them to simplify register computations
716    (e.g.: in CLASS_MAX_NREGS).  There are also 4 fp condition code registers, so
717    32+32+32+4 == 100.
718    Register 100 is used as the integer condition code register.
719    Register 101 is used as the soft frame pointer register.  */
720 
721 #define FIRST_PSEUDO_REGISTER 102
722 
723 #define SPARC_FIRST_FP_REG     32
724 /* Additional V9 fp regs.  */
725 #define SPARC_FIRST_V9_FP_REG  64
726 #define SPARC_LAST_V9_FP_REG   95
727 /* V9 %fcc[0123].  V8 uses (figuratively) %fcc0.  */
728 #define SPARC_FIRST_V9_FCC_REG 96
729 #define SPARC_LAST_V9_FCC_REG  99
730 /* V8 fcc reg.  */
731 #define SPARC_FCC_REG 96
732 /* Integer CC reg.  We don't distinguish %icc from %xcc.  */
733 #define SPARC_ICC_REG 100
734 
735 /* Nonzero if REGNO is an fp reg.  */
736 #define SPARC_FP_REG_P(REGNO) \
737 ((REGNO) >= SPARC_FIRST_FP_REG && (REGNO) <= SPARC_LAST_V9_FP_REG)
738 
739 /* Argument passing regs.  */
740 #define SPARC_OUTGOING_INT_ARG_FIRST 8
741 #define SPARC_INCOMING_INT_ARG_FIRST 24
742 #define SPARC_FP_ARG_FIRST           32
743 
744 /* 1 for registers that have pervasive standard uses
745    and are not available for the register allocator.
746 
747    On non-v9 systems:
748    g1 is free to use as temporary.
749    g2-g4 are reserved for applications.  Gcc normally uses them as
750    temporaries, but this can be disabled via the -mno-app-regs option.
751    g5 through g7 are reserved for the operating system.
752 
753    On v9 systems:
754    g1,g5 are free to use as temporaries, and are free to use between calls
755    if the call is to an external function via the PLT.
756    g4 is free to use as a temporary in the non-embedded case.
757    g4 is reserved in the embedded case.
758    g2-g3 are reserved for applications.  Gcc normally uses them as
759    temporaries, but this can be disabled via the -mno-app-regs option.
760    g6-g7 are reserved for the operating system (or application in
761    embedded case).
762    ??? Register 1 is used as a temporary by the 64 bit sethi pattern, so must
763    currently be a fixed register until this pattern is rewritten.
764    Register 1 is also used when restoring call-preserved registers in large
765    stack frames.
766 
767    Registers fixed in arch32 and not arch64 (or vice-versa) are marked in
768    CONDITIONAL_REGISTER_USAGE in order to properly handle -ffixed-.
769 */
770 
771 #define FIXED_REGISTERS  \
772  {1, 0, 2, 2, 2, 2, 1, 1,	\
773   0, 0, 0, 0, 0, 0, 1, 0,	\
774   0, 0, 0, 0, 0, 0, 0, 0,	\
775   0, 0, 0, 0, 0, 0, 1, 1,	\
776 				\
777   0, 0, 0, 0, 0, 0, 0, 0,	\
778   0, 0, 0, 0, 0, 0, 0, 0,	\
779   0, 0, 0, 0, 0, 0, 0, 0,	\
780   0, 0, 0, 0, 0, 0, 0, 0,	\
781 				\
782   0, 0, 0, 0, 0, 0, 0, 0,	\
783   0, 0, 0, 0, 0, 0, 0, 0,	\
784   0, 0, 0, 0, 0, 0, 0, 0,	\
785   0, 0, 0, 0, 0, 0, 0, 0,	\
786 				\
787   0, 0, 0, 0, 0, 1}
788 
789 /* 1 for registers not available across function calls.
790    These must include the FIXED_REGISTERS and also any
791    registers that can be used without being saved.
792    The latter must include the registers where values are returned
793    and the register where structure-value addresses are passed.
794    Aside from that, you can include as many other registers as you like.  */
795 
796 #define CALL_USED_REGISTERS  \
797  {1, 1, 1, 1, 1, 1, 1, 1,	\
798   1, 1, 1, 1, 1, 1, 1, 1,	\
799   0, 0, 0, 0, 0, 0, 0, 0,	\
800   0, 0, 0, 0, 0, 0, 1, 1,	\
801 				\
802   1, 1, 1, 1, 1, 1, 1, 1,	\
803   1, 1, 1, 1, 1, 1, 1, 1,	\
804   1, 1, 1, 1, 1, 1, 1, 1,	\
805   1, 1, 1, 1, 1, 1, 1, 1,	\
806 				\
807   1, 1, 1, 1, 1, 1, 1, 1,	\
808   1, 1, 1, 1, 1, 1, 1, 1,	\
809   1, 1, 1, 1, 1, 1, 1, 1,	\
810   1, 1, 1, 1, 1, 1, 1, 1,	\
811 				\
812   1, 1, 1, 1, 1, 1}
813 
814 /* If !TARGET_FPU, then make the fp registers and fp cc regs fixed so that
815    they won't be allocated.  */
816 
817 #define CONDITIONAL_REGISTER_USAGE				\
818 do								\
819   {								\
820     if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)		\
821       {								\
822 	fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;		\
823 	call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;		\
824       }								\
825     /* If the user has passed -f{fixed,call-{used,saved}}-g5 */	\
826     /* then honor it.  */					\
827     if (TARGET_ARCH32 && fixed_regs[5])				\
828       fixed_regs[5] = 1;					\
829     else if (TARGET_ARCH64 && fixed_regs[5] == 2)		\
830       fixed_regs[5] = 0;					\
831     if (! TARGET_V9)						\
832       {								\
833 	int regno;						\
834 	for (regno = SPARC_FIRST_V9_FP_REG;			\
835 	     regno <= SPARC_LAST_V9_FP_REG;			\
836 	     regno++)						\
837 	  fixed_regs[regno] = 1;				\
838 	/* %fcc0 is used by v8 and v9.  */			\
839 	for (regno = SPARC_FIRST_V9_FCC_REG + 1;		\
840 	     regno <= SPARC_LAST_V9_FCC_REG;			\
841 	     regno++)						\
842 	  fixed_regs[regno] = 1;				\
843       }								\
844     if (! TARGET_FPU)						\
845       {								\
846 	int regno;						\
847 	for (regno = 32; regno < SPARC_LAST_V9_FCC_REG; regno++) \
848 	  fixed_regs[regno] = 1;				\
849       }								\
850     /* If the user has passed -f{fixed,call-{used,saved}}-g2 */	\
851     /* then honor it.  Likewise with g3 and g4.  */		\
852     if (fixed_regs[2] == 2)					\
853       fixed_regs[2] = ! TARGET_APP_REGS;			\
854     if (fixed_regs[3] == 2)					\
855       fixed_regs[3] = ! TARGET_APP_REGS;			\
856     if (TARGET_ARCH32 && fixed_regs[4] == 2)			\
857       fixed_regs[4] = ! TARGET_APP_REGS;			\
858     else if (TARGET_CM_EMBMEDANY)				\
859       fixed_regs[4] = 1;					\
860     else if (fixed_regs[4] == 2)				\
861       fixed_regs[4] = 0;					\
862   }								\
863 while (0)
864 
865 /* Return number of consecutive hard regs needed starting at reg REGNO
866    to hold something of mode MODE.
867    This is ordinarily the length in words of a value of mode MODE
868    but can be less for certain modes in special long registers.
869 
870    On SPARC, ordinary registers hold 32 bits worth;
871    this means both integer and floating point registers.
872    On v9, integer regs hold 64 bits worth; floating point regs hold
873    32 bits worth (this includes the new fp regs as even the odd ones are
874    included in the hard register count).  */
875 
876 #define HARD_REGNO_NREGS(REGNO, MODE) \
877   (TARGET_ARCH64							\
878    ? ((REGNO) < 32 || (REGNO) == FRAME_POINTER_REGNUM			\
879       ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD	\
880       : (GET_MODE_SIZE (MODE) + 3) / 4)					\
881    : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
882 
883 /* Due to the ARCH64 discrepancy above we must override this next
884    macro too.  */
885 #define REGMODE_NATURAL_SIZE(MODE) \
886   ((TARGET_ARCH64 && FLOAT_MODE_P (MODE)) ? 4 : UNITS_PER_WORD)
887 
888 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
889    See sparc.c for how we initialize this.  */
890 extern const int *hard_regno_mode_classes;
891 extern int sparc_mode_class[];
892 
893 /* ??? Because of the funny way we pass parameters we should allow certain
894    ??? types of float/complex values to be in integer registers during
895    ??? RTL generation.  This only matters on arch32.  */
896 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
897   ((hard_regno_mode_classes[REGNO] & sparc_mode_class[MODE]) != 0)
898 
899 /* Value is 1 if it is OK to rename a hard register FROM to another hard
900    register TO.  We cannot rename %g1 as it may be used before the save
901    register window instruction in the prologue.  */
902 #define HARD_REGNO_RENAME_OK(FROM, TO) ((FROM) != 1)
903 
904 /* Value is 1 if it is a good idea to tie two pseudo registers
905    when one has mode MODE1 and one has mode MODE2.
906    If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
907    for any hard reg, then this must be 0 for correct output.
908 
909    For V9: SFmode can't be combined with other float modes, because they can't
910    be allocated to the %d registers.  Also, DFmode won't fit in odd %f
911    registers, but SFmode will.  */
912 #define MODES_TIEABLE_P(MODE1, MODE2) \
913   ((MODE1) == (MODE2)						\
914    || (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2)		\
915        && (! TARGET_V9						\
916 	   || (GET_MODE_CLASS (MODE1) != MODE_FLOAT		\
917 	       || (MODE1 != SFmode && MODE2 != SFmode)))))
918 
919 /* Specify the registers used for certain standard purposes.
920    The values of these macros are register numbers.  */
921 
922 /* Register to use for pushing function arguments.  */
923 #define STACK_POINTER_REGNUM 14
924 
925 /* The stack bias (amount by which the hardware register is offset by).  */
926 #define SPARC_STACK_BIAS ((TARGET_ARCH64 && TARGET_STACK_BIAS) ? 2047 : 0)
927 
928 /* Actual top-of-stack address is 92/176 greater than the contents of the
929    stack pointer register for !v9/v9.  That is:
930    - !v9: 64 bytes for the in and local registers, 4 bytes for structure return
931      address, and 6*4 bytes for the 6 register parameters.
932    - v9: 128 bytes for the in and local registers + 6*8 bytes for the integer
933      parameter regs.  */
934 #define STACK_POINTER_OFFSET (FIRST_PARM_OFFSET(0) + SPARC_STACK_BIAS)
935 
936 /* Base register for access to local variables of the function.  */
937 #define HARD_FRAME_POINTER_REGNUM 30
938 
939 /* The soft frame pointer does not have the stack bias applied.  */
940 #define FRAME_POINTER_REGNUM 101
941 
942 /* Given the stack bias, the stack pointer isn't actually aligned.  */
943 #define INIT_EXPANDERS							 \
944   do {									 \
945     if (cfun && cfun->emit->regno_pointer_align && SPARC_STACK_BIAS)	 \
946       {									 \
947 	REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = BITS_PER_UNIT;	 \
948 	REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT; \
949       }									 \
950   } while (0)
951 
952 /* Value should be nonzero if functions must have frame pointers.
953    Zero means the frame pointer need not be set up (and parms
954    may be accessed via the stack pointer) in functions that seem suitable.
955    Used in flow.c, global.c, ra.c and reload1.c.  */
956 #define FRAME_POINTER_REQUIRED	\
957   (! (leaf_function_p () && only_leaf_regs_used ()))
958 
959 /* Base register for access to arguments of the function.  */
960 #define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
961 
962 /* Register in which static-chain is passed to a function.  This must
963    not be a register used by the prologue.  */
964 #define STATIC_CHAIN_REGNUM (TARGET_ARCH64 ? 5 : 2)
965 
966 /* Register which holds offset table for position-independent
967    data references.  */
968 
969 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 23 : INVALID_REGNUM)
970 
971 /* Pick a default value we can notice from override_options:
972    !v9: Default is on.
973    v9: Default is off.  */
974 
975 #define DEFAULT_PCC_STRUCT_RETURN -1
976 
977 /* Functions which return large structures get the address
978    to place the wanted value at offset 64 from the frame.
979    Must reserve 64 bytes for the in and local registers.
980    v9: Functions which return large structures get the address to place the
981    wanted value from an invisible first argument.  */
982 #define STRUCT_VALUE_OFFSET 64
983 
984 /* Define the classes of registers for register constraints in the
985    machine description.  Also define ranges of constants.
986 
987    One of the classes must always be named ALL_REGS and include all hard regs.
988    If there is more than one class, another class must be named NO_REGS
989    and contain no registers.
990 
991    The name GENERAL_REGS must be the name of a class (or an alias for
992    another name such as ALL_REGS).  This is the class of registers
993    that is allowed by "g" or "r" in a register constraint.
994    Also, registers outside this class are allocated only when
995    instructions express preferences for them.
996 
997    The classes must be numbered in nondecreasing order; that is,
998    a larger-numbered class must never be contained completely
999    in a smaller-numbered class.
1000 
1001    For any two classes, it is very desirable that there be another
1002    class that represents their union.  */
1003 
1004 /* The SPARC has various kinds of registers: general, floating point,
1005    and condition codes [well, it has others as well, but none that we
1006    care directly about].
1007 
1008    For v9 we must distinguish between the upper and lower floating point
1009    registers because the upper ones can't hold SFmode values.
1010    HARD_REGNO_MODE_OK won't help here because reload assumes that register(s)
1011    satisfying a group need for a class will also satisfy a single need for
1012    that class.  EXTRA_FP_REGS is a bit of a misnomer as it covers all 64 fp
1013    regs.
1014 
1015    It is important that one class contains all the general and all the standard
1016    fp regs.  Otherwise find_reg() won't properly allocate int regs for moves,
1017    because reg_class_record() will bias the selection in favor of fp regs,
1018    because reg_class_subunion[GENERAL_REGS][FP_REGS] will yield FP_REGS,
1019    because FP_REGS > GENERAL_REGS.
1020 
1021    It is also important that one class contain all the general and all
1022    the fp regs.  Otherwise when spilling a DFmode reg, it may be from
1023    EXTRA_FP_REGS but find_reloads() may use class
1024    GENERAL_OR_FP_REGS. This will cause allocate_reload_reg() to die
1025    because the compiler thinks it doesn't have a spill reg when in
1026    fact it does.
1027 
1028    v9 also has 4 floating point condition code registers.  Since we don't
1029    have a class that is the union of FPCC_REGS with either of the others,
1030    it is important that it appear first.  Otherwise the compiler will die
1031    trying to compile _fixunsdfsi because fix_truncdfsi2 won't match its
1032    constraints.
1033 
1034    It is important that SPARC_ICC_REG have class NO_REGS.  Otherwise combine
1035    may try to use it to hold an SImode value.  See register_operand.
1036    ??? Should %fcc[0123] be handled similarly?
1037 */
1038 
1039 enum reg_class { NO_REGS, FPCC_REGS, I64_REGS, GENERAL_REGS, FP_REGS,
1040 		 EXTRA_FP_REGS, GENERAL_OR_FP_REGS, GENERAL_OR_EXTRA_FP_REGS,
1041 		 ALL_REGS, LIM_REG_CLASSES };
1042 
1043 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1044 
1045 /* Give names of register classes as strings for dump file.  */
1046 
1047 #define REG_CLASS_NAMES \
1048   { "NO_REGS", "FPCC_REGS", "I64_REGS", "GENERAL_REGS", "FP_REGS",	\
1049      "EXTRA_FP_REGS", "GENERAL_OR_FP_REGS", "GENERAL_OR_EXTRA_FP_REGS",	\
1050      "ALL_REGS" }
1051 
1052 /* Define which registers fit in which classes.
1053    This is an initializer for a vector of HARD_REG_SET
1054    of length N_REG_CLASSES.  */
1055 
1056 #define REG_CLASS_CONTENTS				\
1057   {{0, 0, 0, 0},	/* NO_REGS */			\
1058    {0, 0, 0, 0xf},	/* FPCC_REGS */			\
1059    {0xffff, 0, 0, 0},	/* I64_REGS */			\
1060    {-1, 0, 0, 0x20},	/* GENERAL_REGS */		\
1061    {0, -1, 0, 0},	/* FP_REGS */			\
1062    {0, -1, -1, 0},	/* EXTRA_FP_REGS */		\
1063    {-1, -1, 0, 0x20},	/* GENERAL_OR_FP_REGS */	\
1064    {-1, -1, -1, 0x20},	/* GENERAL_OR_EXTRA_FP_REGS */	\
1065    {-1, -1, -1, 0x3f}}	/* ALL_REGS */
1066 
1067 /* Defines invalid mode changes.  Borrowed from pa64-regs.h.
1068 
1069    SImode loads to floating-point registers are not zero-extended.
1070    The definition for LOAD_EXTEND_OP specifies that integer loads
1071    narrower than BITS_PER_WORD will be zero-extended.  As a result,
1072    we inhibit changes from SImode unless they are to a mode that is
1073    identical in size.  */
1074 
1075 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS)		\
1076   (TARGET_ARCH64						\
1077    && (FROM) == SImode						\
1078    && GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO)		\
1079    ? reg_classes_intersect_p (CLASS, FP_REGS) : 0)
1080 
1081 /* The same information, inverted:
1082    Return the class number of the smallest class containing
1083    reg number REGNO.  This could be a conditional expression
1084    or could index an array.  */
1085 
1086 extern enum reg_class sparc_regno_reg_class[FIRST_PSEUDO_REGISTER];
1087 
1088 #define REGNO_REG_CLASS(REGNO) sparc_regno_reg_class[(REGNO)]
1089 
1090 /* This is the order in which to allocate registers normally.
1091 
1092    We put %f0-%f7 last among the float registers, so as to make it more
1093    likely that a pseudo-register which dies in the float return register
1094    area will get allocated to the float return register, thus saving a move
1095    instruction at the end of the function.
1096 
1097    Similarly for integer return value registers.
1098 
1099    We know in this case that we will not end up with a leaf function.
1100 
1101    The register allocator is given the global and out registers first
1102    because these registers are call clobbered and thus less useful to
1103    global register allocation.
1104 
1105    Next we list the local and in registers.  They are not call clobbered
1106    and thus very useful for global register allocation.  We list the input
1107    registers before the locals so that it is more likely the incoming
1108    arguments received in those registers can just stay there and not be
1109    reloaded.  */
1110 
1111 #define REG_ALLOC_ORDER \
1112 { 1, 2, 3, 4, 5, 6, 7,			/* %g1-%g7 */	\
1113   13, 12, 11, 10, 9, 8, 		/* %o5-%o0 */	\
1114   15,					/* %o7 */	\
1115   16, 17, 18, 19, 20, 21, 22, 23,	/* %l0-%l7 */ 	\
1116   29, 28, 27, 26, 25, 24, 31,		/* %i5-%i0,%i7 */\
1117   40, 41, 42, 43, 44, 45, 46, 47,	/* %f8-%f15 */  \
1118   48, 49, 50, 51, 52, 53, 54, 55,	/* %f16-%f23 */ \
1119   56, 57, 58, 59, 60, 61, 62, 63,	/* %f24-%f31 */ \
1120   64, 65, 66, 67, 68, 69, 70, 71,	/* %f32-%f39 */ \
1121   72, 73, 74, 75, 76, 77, 78, 79,	/* %f40-%f47 */ \
1122   80, 81, 82, 83, 84, 85, 86, 87,	/* %f48-%f55 */ \
1123   88, 89, 90, 91, 92, 93, 94, 95,	/* %f56-%f63 */ \
1124   39, 38, 37, 36, 35, 34, 33, 32,	/* %f7-%f0 */   \
1125   96, 97, 98, 99,			/* %fcc0-3 */   \
1126   100, 0, 14, 30, 101}			/* %icc, %g0, %o6, %i6, %sfp */
1127 
1128 /* This is the order in which to allocate registers for
1129    leaf functions.  If all registers can fit in the global and
1130    output registers, then we have the possibility of having a leaf
1131    function.
1132 
1133    The macro actually mentioned the input registers first,
1134    because they get renumbered into the output registers once
1135    we know really do have a leaf function.
1136 
1137    To be more precise, this register allocation order is used
1138    when %o7 is found to not be clobbered right before register
1139    allocation.  Normally, the reason %o7 would be clobbered is
1140    due to a call which could not be transformed into a sibling
1141    call.
1142 
1143    As a consequence, it is possible to use the leaf register
1144    allocation order and not end up with a leaf function.  We will
1145    not get suboptimal register allocation in that case because by
1146    definition of being potentially leaf, there were no function
1147    calls.  Therefore, allocation order within the local register
1148    window is not critical like it is when we do have function calls.  */
1149 
1150 #define REG_LEAF_ALLOC_ORDER \
1151 { 1, 2, 3, 4, 5, 6, 7, 			/* %g1-%g7 */	\
1152   29, 28, 27, 26, 25, 24,		/* %i5-%i0 */	\
1153   15,					/* %o7 */	\
1154   13, 12, 11, 10, 9, 8,			/* %o5-%o0 */	\
1155   16, 17, 18, 19, 20, 21, 22, 23,	/* %l0-%l7 */	\
1156   40, 41, 42, 43, 44, 45, 46, 47,	/* %f8-%f15 */	\
1157   48, 49, 50, 51, 52, 53, 54, 55,	/* %f16-%f23 */	\
1158   56, 57, 58, 59, 60, 61, 62, 63,	/* %f24-%f31 */	\
1159   64, 65, 66, 67, 68, 69, 70, 71,	/* %f32-%f39 */	\
1160   72, 73, 74, 75, 76, 77, 78, 79,	/* %f40-%f47 */	\
1161   80, 81, 82, 83, 84, 85, 86, 87,	/* %f48-%f55 */	\
1162   88, 89, 90, 91, 92, 93, 94, 95,	/* %f56-%f63 */	\
1163   39, 38, 37, 36, 35, 34, 33, 32,	/* %f7-%f0 */	\
1164   96, 97, 98, 99,			/* %fcc0-3 */	\
1165   100, 0, 14, 30, 31, 101}		/* %icc, %g0, %o6, %i6, %i7, %sfp */
1166 
1167 #define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
1168 
1169 extern char sparc_leaf_regs[];
1170 #define LEAF_REGISTERS sparc_leaf_regs
1171 
1172 extern char leaf_reg_remap[];
1173 #define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
1174 
1175 /* The class value for index registers, and the one for base regs.  */
1176 #define INDEX_REG_CLASS GENERAL_REGS
1177 #define BASE_REG_CLASS GENERAL_REGS
1178 
1179 /* Local macro to handle the two v9 classes of FP regs.  */
1180 #define FP_REG_CLASS_P(CLASS) ((CLASS) == FP_REGS || (CLASS) == EXTRA_FP_REGS)
1181 
1182 /* Get reg_class from a letter such as appears in the machine description.
1183    In the not-v9 case, coerce v9's 'e' class to 'f', so we can use 'e' in the
1184    .md file for v8 and v9.
1185    'd' and 'b' are used for single and double precision VIS operations,
1186    if TARGET_VIS.
1187    'h' is used for V8+ 64 bit global and out registers.  */
1188 
1189 #define REG_CLASS_FROM_LETTER(C)		\
1190 (TARGET_V9					\
1191  ? ((C) == 'f' ? FP_REGS			\
1192     : (C) == 'e' ? EXTRA_FP_REGS 		\
1193     : (C) == 'c' ? FPCC_REGS			\
1194     : ((C) == 'd' && TARGET_VIS) ? FP_REGS\
1195     : ((C) == 'b' && TARGET_VIS) ? EXTRA_FP_REGS\
1196     : ((C) == 'h' && TARGET_V8PLUS) ? I64_REGS\
1197     : NO_REGS)					\
1198  : ((C) == 'f' ? FP_REGS			\
1199     : (C) == 'e' ? FP_REGS			\
1200     : (C) == 'c' ? FPCC_REGS			\
1201     : NO_REGS))
1202 
1203 /* The letters I, J, K, L, M, N, O, P in a register constraint string
1204    can be used to stand for particular ranges of CONST_INTs.
1205    This macro defines what the ranges are.
1206    C is the letter, and VALUE is a constant value.
1207    Return 1 if VALUE is in the range specified by C.
1208 
1209    `I' is used for the range of constants an insn can actually contain.
1210    `J' is used for the range which is just zero (since that is R0).
1211    `K' is used for constants which can be loaded with a single sethi insn.
1212    `L' is used for the range of constants supported by the movcc insns.
1213    `M' is used for the range of constants supported by the movrcc insns.
1214    `N' is like K, but for constants wider than 32 bits.
1215    `O' is used for the range which is just 4096.
1216    `P' is free.  */
1217 
1218 /* Predicates for 10-bit, 11-bit and 13-bit signed constants.  */
1219 #define SPARC_SIMM10_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x200 < 0x400)
1220 #define SPARC_SIMM11_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x400 < 0x800)
1221 #define SPARC_SIMM13_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x1000 < 0x2000)
1222 
1223 /* 10- and 11-bit immediates are only used for a few specific insns.
1224    SMALL_INT is used throughout the port so we continue to use it.  */
1225 #define SMALL_INT(X) (SPARC_SIMM13_P (INTVAL (X)))
1226 
1227 /* Predicate for constants that can be loaded with a sethi instruction.
1228    This is the general, 64-bit aware, bitwise version that ensures that
1229    only constants whose representation fits in the mask
1230 
1231      0x00000000fffffc00
1232 
1233    are accepted.  It will reject, for example, negative SImode constants
1234    on 64-bit hosts, so correct handling is to mask the value beforehand
1235    according to the mode of the instruction.  */
1236 #define SPARC_SETHI_P(X) \
1237   (((unsigned HOST_WIDE_INT) (X) \
1238     & ((unsigned HOST_WIDE_INT) 0x3ff - GET_MODE_MASK (SImode) - 1)) == 0)
1239 
1240 /* Version of the above predicate for SImode constants and below.  */
1241 #define SPARC_SETHI32_P(X) \
1242   (SPARC_SETHI_P ((unsigned HOST_WIDE_INT) (X) & GET_MODE_MASK (SImode)))
1243 
1244 #define CONST_OK_FOR_LETTER_P(VALUE, C)  \
1245   ((C) == 'I' ? SPARC_SIMM13_P (VALUE)			\
1246    : (C) == 'J' ? (VALUE) == 0				\
1247    : (C) == 'K' ? SPARC_SETHI32_P (VALUE)		\
1248    : (C) == 'L' ? SPARC_SIMM11_P (VALUE)		\
1249    : (C) == 'M' ? SPARC_SIMM10_P (VALUE)		\
1250    : (C) == 'N' ? SPARC_SETHI_P (VALUE)			\
1251    : (C) == 'O' ? (VALUE) == 4096			\
1252    : 0)
1253 
1254 /* Similar, but for CONST_DOUBLEs, and defining letters G and H.
1255    Here VALUE is the CONST_DOUBLE rtx itself.  */
1256 
1257 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)	\
1258   ((C) == 'G' ? const_zero_operand (VALUE, GET_MODE (VALUE))	\
1259    : (C) == 'H' ? arith_double_operand (VALUE, DImode)		\
1260    : 0)
1261 
1262 /* Given an rtx X being reloaded into a reg required to be
1263    in class CLASS, return the class of reg to actually use.
1264    In general this is just CLASS; but on some machines
1265    in some cases it is preferable to use a more restrictive class.  */
1266 /* - We can't load constants into FP registers.
1267    - We can't load FP constants into integer registers when soft-float,
1268      because there is no soft-float pattern with a r/F constraint.
1269    - We can't load FP constants into integer registers for TFmode unless
1270      it is 0.0L, because there is no movtf pattern with a r/F constraint.
1271    - Try and reload integer constants (symbolic or otherwise) back into
1272      registers directly, rather than having them dumped to memory.  */
1273 
1274 #define PREFERRED_RELOAD_CLASS(X,CLASS)			\
1275   (CONSTANT_P (X)					\
1276    ? ((FP_REG_CLASS_P (CLASS)				\
1277        || (CLASS) == GENERAL_OR_FP_REGS			\
1278        || (CLASS) == GENERAL_OR_EXTRA_FP_REGS		\
1279        || (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT	\
1280 	   && ! TARGET_FPU)				\
1281        || (GET_MODE (X) == TFmode			\
1282 	   && ! const_zero_operand (X, TFmode)))	\
1283       ? NO_REGS						\
1284       : (!FP_REG_CLASS_P (CLASS)			\
1285          && GET_MODE_CLASS (GET_MODE (X)) == MODE_INT)	\
1286       ? GENERAL_REGS					\
1287       : (CLASS))					\
1288    : (CLASS))
1289 
1290 /* Return the register class of a scratch register needed to load IN into
1291    a register of class CLASS in MODE.
1292 
1293    We need a temporary when loading/storing a HImode/QImode value
1294    between memory and the FPU registers.  This can happen when combine puts
1295    a paradoxical subreg in a float/fix conversion insn.
1296 
1297    We need a temporary when loading/storing a DFmode value between
1298    unaligned memory and the upper FPU registers.  */
1299 
1300 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN)		\
1301   ((FP_REG_CLASS_P (CLASS)					\
1302     && ((MODE) == HImode || (MODE) == QImode)			\
1303     && (GET_CODE (IN) == MEM					\
1304         || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG)	\
1305             && true_regnum (IN) == -1)))			\
1306    ? GENERAL_REGS						\
1307    : ((CLASS) == EXTRA_FP_REGS && (MODE) == DFmode		\
1308       && GET_CODE (IN) == MEM && TARGET_ARCH32			\
1309       && ! mem_min_alignment ((IN), 8))				\
1310      ? FP_REGS							\
1311      : (((TARGET_CM_MEDANY					\
1312 	  && symbolic_operand ((IN), (MODE)))			\
1313 	 || (TARGET_CM_EMBMEDANY				\
1314 	     && text_segment_operand ((IN), (MODE))))		\
1315 	&& !flag_pic)						\
1316        ? GENERAL_REGS						\
1317        : NO_REGS)
1318 
1319 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, IN)		\
1320   ((FP_REG_CLASS_P (CLASS)					\
1321      && ((MODE) == HImode || (MODE) == QImode)			\
1322      && (GET_CODE (IN) == MEM					\
1323          || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG)	\
1324              && true_regnum (IN) == -1)))			\
1325    ? GENERAL_REGS						\
1326    : ((CLASS) == EXTRA_FP_REGS && (MODE) == DFmode		\
1327       && GET_CODE (IN) == MEM && TARGET_ARCH32			\
1328       && ! mem_min_alignment ((IN), 8))				\
1329      ? FP_REGS							\
1330      : (((TARGET_CM_MEDANY					\
1331 	  && symbolic_operand ((IN), (MODE)))			\
1332 	 || (TARGET_CM_EMBMEDANY				\
1333 	     && text_segment_operand ((IN), (MODE))))		\
1334 	&& !flag_pic)						\
1335        ? GENERAL_REGS						\
1336        : NO_REGS)
1337 
1338 /* On SPARC it is not possible to directly move data between
1339    GENERAL_REGS and FP_REGS.  */
1340 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1341   (FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2))
1342 
1343 /* Return the stack location to use for secondary memory needed reloads.
1344    We want to use the reserved location just below the frame pointer.
1345    However, we must ensure that there is a frame, so use assign_stack_local
1346    if the frame size is zero.  */
1347 #define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
1348   (get_frame_size () == 0						\
1349    ? assign_stack_local (MODE, GET_MODE_SIZE (MODE), 0)			\
1350    : gen_rtx_MEM (MODE, plus_constant (frame_pointer_rtx,		\
1351 				       STARTING_FRAME_OFFSET)))
1352 
1353 /* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on v9
1354    because the movsi and movsf patterns don't handle r/f moves.
1355    For v8 we copy the default definition.  */
1356 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1357   (TARGET_ARCH64						\
1358    ? (GET_MODE_BITSIZE (MODE) < 32				\
1359       ? mode_for_size (32, GET_MODE_CLASS (MODE), 0)		\
1360       : MODE)							\
1361    : (GET_MODE_BITSIZE (MODE) < BITS_PER_WORD			\
1362       ? mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0)	\
1363       : MODE))
1364 
1365 /* Return the maximum number of consecutive registers
1366    needed to represent mode MODE in a register of class CLASS.  */
1367 /* On SPARC, this is the size of MODE in words.  */
1368 #define CLASS_MAX_NREGS(CLASS, MODE)	\
1369   (FP_REG_CLASS_P (CLASS) ? (GET_MODE_SIZE (MODE) + 3) / 4 \
1370    : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1371 
1372 /* Stack layout; function entry, exit and calling.  */
1373 
1374 /* Define this if pushing a word on the stack
1375    makes the stack pointer a smaller address.  */
1376 #define STACK_GROWS_DOWNWARD
1377 
1378 /* Define this to nonzero if the nominal address of the stack frame
1379    is at the high-address end of the local variables;
1380    that is, each additional local variable allocated
1381    goes at a more negative offset in the frame.  */
1382 #define FRAME_GROWS_DOWNWARD 1
1383 
1384 /* Offset within stack frame to start allocating local variables at.
1385    If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1386    first local allocated.  Otherwise, it is the offset to the BEGINNING
1387    of the first local allocated.  */
1388 /* This allows space for one TFmode floating point value, which is used
1389    by SECONDARY_MEMORY_NEEDED_RTX.  */
1390 #define STARTING_FRAME_OFFSET \
1391   (TARGET_ARCH64 ? -16 \
1392    : (-SPARC_STACK_ALIGN (LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)))
1393 
1394 /* Offset of first parameter from the argument pointer register value.
1395    !v9: This is 64 for the ins and locals, plus 4 for the struct-return reg
1396    even if this function isn't going to use it.
1397    v9: This is 128 for the ins and locals.  */
1398 #define FIRST_PARM_OFFSET(FNDECL) \
1399   (TARGET_ARCH64 ? 16 * UNITS_PER_WORD : STRUCT_VALUE_OFFSET + UNITS_PER_WORD)
1400 
1401 /* Offset from the argument pointer register value to the CFA.
1402    This is different from FIRST_PARM_OFFSET because the register window
1403    comes between the CFA and the arguments.  */
1404 #define ARG_POINTER_CFA_OFFSET(FNDECL)  0
1405 
1406 /* When a parameter is passed in a register, stack space is still
1407    allocated for it.
1408    !v9: All 6 possible integer registers have backing store allocated.
1409    v9: Only space for the arguments passed is allocated.  */
1410 /* ??? Ideally, we'd use zero here (as the minimum), but zero has special
1411    meaning to the backend.  Further, we need to be able to detect if a
1412    varargs/unprototyped function is called, as they may want to spill more
1413    registers than we've provided space.  Ugly, ugly.  So for now we retain
1414    all 6 slots even for v9.  */
1415 #define REG_PARM_STACK_SPACE(DECL) (6 * UNITS_PER_WORD)
1416 
1417 /* Definitions for register elimination.  */
1418 
1419 #define ELIMINABLE_REGS \
1420   {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1421    { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM} }
1422 
1423 /* The way this is structured, we can't eliminate SFP in favor of SP
1424    if the frame pointer is required: we want to use the SFP->HFP elimination
1425    in that case.  But the test in update_eliminables doesn't know we are
1426    assuming below that we only do the former elimination.  */
1427 #define CAN_ELIMINATE(FROM, TO) \
1428   ((TO) == HARD_FRAME_POINTER_REGNUM || !FRAME_POINTER_REQUIRED)
1429 
1430 /* We always pretend that this is a leaf function because if it's not,
1431    there's no point in trying to eliminate the frame pointer.  If it
1432    is a leaf function, we guessed right!  */
1433 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) 			\
1434   do {									\
1435     if ((TO) == STACK_POINTER_REGNUM)					\
1436       (OFFSET) = sparc_compute_frame_size (get_frame_size (), 1);	\
1437     else								\
1438       (OFFSET) = 0;							\
1439     (OFFSET) += SPARC_STACK_BIAS;					\
1440   } while (0)
1441 
1442 /* Keep the stack pointer constant throughout the function.
1443    This is both an optimization and a necessity: longjmp
1444    doesn't behave itself when the stack pointer moves within
1445    the function!  */
1446 #define ACCUMULATE_OUTGOING_ARGS 1
1447 
1448 /* Value is the number of bytes of arguments automatically
1449    popped when returning from a subroutine call.
1450    FUNDECL is the declaration node of the function (as a tree),
1451    FUNTYPE is the data type of the function (as a tree),
1452    or for a library call it is an identifier node for the subroutine name.
1453    SIZE is the number of bytes of arguments passed on the stack.  */
1454 
1455 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1456 
1457 /* Define this macro if the target machine has "register windows".  This
1458    C expression returns the register number as seen by the called function
1459    corresponding to register number OUT as seen by the calling function.
1460    Return OUT if register number OUT is not an outbound register.  */
1461 
1462 #define INCOMING_REGNO(OUT) \
1463  (((OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
1464 
1465 /* Define this macro if the target machine has "register windows".  This
1466    C expression returns the register number as seen by the calling function
1467    corresponding to register number IN as seen by the called function.
1468    Return IN if register number IN is not an inbound register.  */
1469 
1470 #define OUTGOING_REGNO(IN) \
1471  (((IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
1472 
1473 /* Define this macro if the target machine has register windows.  This
1474    C expression returns true if the register is call-saved but is in the
1475    register window.  */
1476 
1477 #define LOCAL_REGNO(REGNO) \
1478   ((REGNO) >= 16 && (REGNO) <= 31)
1479 
1480 /* Define how to find the value returned by a function.
1481    VALTYPE is the data type of the value (as a tree).
1482    If the precise function being called is known, FUNC is its FUNCTION_DECL;
1483    otherwise, FUNC is 0.  */
1484 
1485 /* On SPARC the value is found in the first "output" register.  */
1486 
1487 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1488   function_value ((VALTYPE), TYPE_MODE (VALTYPE), 1)
1489 
1490 /* But the called function leaves it in the first "input" register.  */
1491 
1492 #define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
1493   function_value ((VALTYPE), TYPE_MODE (VALTYPE), 0)
1494 
1495 /* Define how to find the value returned by a library function
1496    assuming the value has mode MODE.  */
1497 
1498 #define LIBCALL_VALUE(MODE) \
1499   function_value (NULL_TREE, (MODE), 1)
1500 
1501 /* 1 if N is a possible register number for a function value
1502    as seen by the caller.
1503    On SPARC, the first "output" reg is used for integer values,
1504    and the first floating point register is used for floating point values.  */
1505 
1506 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 8 || (N) == 32)
1507 
1508 /* Define the size of space to allocate for the return value of an
1509    untyped_call.  */
1510 
1511 #define APPLY_RESULT_SIZE (TARGET_ARCH64 ? 24 : 16)
1512 
1513 /* 1 if N is a possible register number for function argument passing.
1514    On SPARC, these are the "output" registers.  v9 also uses %f0-%f31.  */
1515 
1516 #define FUNCTION_ARG_REGNO_P(N) \
1517 (TARGET_ARCH64 \
1518  ? (((N) >= 8 && (N) <= 13) || ((N) >= 32 && (N) <= 63)) \
1519  : ((N) >= 8 && (N) <= 13))
1520 
1521 /* Define a data type for recording info about an argument list
1522    during the scan of that argument list.  This data type should
1523    hold all necessary information about the function itself
1524    and about the args processed so far, enough to enable macros
1525    such as FUNCTION_ARG to determine where the next arg should go.
1526 
1527    On SPARC (!v9), this is a single integer, which is a number of words
1528    of arguments scanned so far (including the invisible argument,
1529    if any, which holds the structure-value-address).
1530    Thus 7 or more means all following args should go on the stack.
1531 
1532    For v9, we also need to know whether a prototype is present.  */
1533 
1534 struct sparc_args {
1535   int words;       /* number of words passed so far */
1536   int prototype_p; /* nonzero if a prototype is present */
1537   int libcall_p;   /* nonzero if a library call */
1538 };
1539 #define CUMULATIVE_ARGS struct sparc_args
1540 
1541 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1542    for a call to a function whose data type is FNTYPE.
1543    For a library call, FNTYPE is 0.  */
1544 
1545 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1546 init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (FNDECL));
1547 
1548 /* Update the data in CUM to advance over an argument
1549    of mode MODE and data type TYPE.
1550    TYPE is null for libcalls where that information may not be available.  */
1551 
1552 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1553 function_arg_advance (& (CUM), (MODE), (TYPE), (NAMED))
1554 
1555 /* Determine where to put an argument to a function.
1556    Value is zero to push the argument on the stack,
1557    or a hard register in which to store the argument.
1558 
1559    MODE is the argument's machine mode.
1560    TYPE is the data type of the argument (as a tree).
1561     This is null for libcalls where that information may
1562     not be available.
1563    CUM is a variable of type CUMULATIVE_ARGS which gives info about
1564     the preceding args and about the function being called.
1565    NAMED is nonzero if this argument is a named parameter
1566     (otherwise it is an extra parameter matching an ellipsis).  */
1567 
1568 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1569 function_arg (& (CUM), (MODE), (TYPE), (NAMED), 0)
1570 
1571 /* Define where a function finds its arguments.
1572    This is different from FUNCTION_ARG because of register windows.  */
1573 
1574 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
1575 function_arg (& (CUM), (MODE), (TYPE), (NAMED), 1)
1576 
1577 /* If defined, a C expression which determines whether, and in which direction,
1578    to pad out an argument with extra space.  The value should be of type
1579    `enum direction': either `upward' to pad above the argument,
1580    `downward' to pad below, or `none' to inhibit padding.  */
1581 
1582 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1583 function_arg_padding ((MODE), (TYPE))
1584 
1585 /* If defined, a C expression that gives the alignment boundary, in bits,
1586    of an argument with the specified mode and type.  If it is not defined,
1587    PARM_BOUNDARY is used for all arguments.
1588    For sparc64, objects requiring 16 byte alignment are passed that way.  */
1589 
1590 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1591 ((TARGET_ARCH64					\
1592   && (GET_MODE_ALIGNMENT (MODE) == 128		\
1593       || ((TYPE) && TYPE_ALIGN (TYPE) == 128)))	\
1594  ? 128 : PARM_BOUNDARY)
1595 
1596 /* Define the information needed to generate branch and scc insns.  This is
1597    stored from the compare operation.  Note that we can't use "rtx" here
1598    since it hasn't been defined!  */
1599 
1600 extern GTY(()) rtx sparc_compare_op0;
1601 extern GTY(()) rtx sparc_compare_op1;
1602 extern GTY(()) rtx sparc_compare_emitted;
1603 
1604 
1605 /* Generate the special assembly code needed to tell the assembler whatever
1606    it might need to know about the return value of a function.
1607 
1608    For SPARC assemblers, we need to output a .proc pseudo-op which conveys
1609    information to the assembler relating to peephole optimization (done in
1610    the assembler).  */
1611 
1612 #define ASM_DECLARE_RESULT(FILE, RESULT) \
1613   fprintf ((FILE), "\t.proc\t0%lo\n", sparc_type_code (TREE_TYPE (RESULT)))
1614 
1615 /* Output the special assembly code needed to tell the assembler some
1616    register is used as global register variable.
1617 
1618    SPARC 64bit psABI declares registers %g2 and %g3 as application
1619    registers and %g6 and %g7 as OS registers.  Any object using them
1620    should declare (for %g2/%g3 has to, for %g6/%g7 can) that it uses them
1621    and how they are used (scratch or some global variable).
1622    Linker will then refuse to link together objects which use those
1623    registers incompatibly.
1624 
1625    Unless the registers are used for scratch, two different global
1626    registers cannot be declared to the same name, so in the unlikely
1627    case of a global register variable occupying more than one register
1628    we prefix the second and following registers with .gnu.part1. etc.  */
1629 
1630 extern GTY(()) char sparc_hard_reg_printed[8];
1631 
1632 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
1633 #define ASM_DECLARE_REGISTER_GLOBAL(FILE, DECL, REGNO, NAME)		\
1634 do {									\
1635   if (TARGET_ARCH64)							\
1636     {									\
1637       int end = HARD_REGNO_NREGS ((REGNO), DECL_MODE (decl)) + (REGNO); \
1638       int reg;								\
1639       for (reg = (REGNO); reg < 8 && reg < end; reg++)			\
1640 	if ((reg & ~1) == 2 || (reg & ~1) == 6)				\
1641 	  {								\
1642 	    if (reg == (REGNO))						\
1643 	      fprintf ((FILE), "\t.register\t%%g%d, %s\n", reg, (NAME)); \
1644 	    else							\
1645 	      fprintf ((FILE), "\t.register\t%%g%d, .gnu.part%d.%s\n",	\
1646 		       reg, reg - (REGNO), (NAME));			\
1647 	    sparc_hard_reg_printed[reg] = 1;				\
1648 	  }								\
1649     }									\
1650 } while (0)
1651 #endif
1652 
1653 
1654 /* Emit rtl for profiling.  */
1655 #define PROFILE_HOOK(LABEL)   sparc_profile_hook (LABEL)
1656 
1657 /* All the work done in PROFILE_HOOK, but still required.  */
1658 #define FUNCTION_PROFILER(FILE, LABELNO) do { } while (0)
1659 
1660 /* Set the name of the mcount function for the system.  */
1661 #define MCOUNT_FUNCTION "*mcount"
1662 
1663 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1664    the stack pointer does not matter.  The value is tested only in
1665    functions that have frame pointers.
1666    No definition is equivalent to always zero.  */
1667 
1668 #define EXIT_IGNORE_STACK	\
1669  (get_frame_size () != 0	\
1670   || current_function_calls_alloca || current_function_outgoing_args_size)
1671 
1672 /* Define registers used by the epilogue and return instruction.  */
1673 #define EPILOGUE_USES(REGNO) ((REGNO) == 31 \
1674   || (current_function_calls_eh_return && (REGNO) == 1))
1675 
1676 /* Length in units of the trampoline for entering a nested function.  */
1677 
1678 #define TRAMPOLINE_SIZE (TARGET_ARCH64 ? 32 : 16)
1679 
1680 #define TRAMPOLINE_ALIGNMENT 128 /* 16 bytes */
1681 
1682 /* Emit RTL insns to initialize the variable parts of a trampoline.
1683    FNADDR is an RTX for the address of the function's pure code.
1684    CXT is an RTX for the static chain value for the function.  */
1685 
1686 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1687     if (TARGET_ARCH64)						\
1688       sparc64_initialize_trampoline (TRAMP, FNADDR, CXT);	\
1689     else							\
1690       sparc_initialize_trampoline (TRAMP, FNADDR, CXT)
1691 
1692 /* Implement `va_start' for varargs and stdarg.  */
1693 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1694   sparc_va_start (valist, nextarg)
1695 
1696 /* Generate RTL to flush the register windows so as to make arbitrary frames
1697    available.  */
1698 #define SETUP_FRAME_ADDRESSES()		\
1699   emit_insn (gen_flush_register_windows ())
1700 
1701 /* Given an rtx for the address of a frame,
1702    return an rtx for the address of the word in the frame
1703    that holds the dynamic chain--the previous frame's address.  */
1704 #define DYNAMIC_CHAIN_ADDRESS(frame)	\
1705   plus_constant (frame, 14 * UNITS_PER_WORD + SPARC_STACK_BIAS)
1706 
1707 /* Given an rtx for the frame pointer,
1708    return an rtx for the address of the frame.  */
1709 #define FRAME_ADDR_RTX(frame) plus_constant (frame, SPARC_STACK_BIAS)
1710 
1711 /* The return address isn't on the stack, it is in a register, so we can't
1712    access it from the current frame pointer.  We can access it from the
1713    previous frame pointer though by reading a value from the register window
1714    save area.  */
1715 #define RETURN_ADDR_IN_PREVIOUS_FRAME
1716 
1717 /* This is the offset of the return address to the true next instruction to be
1718    executed for the current function.  */
1719 #define RETURN_ADDR_OFFSET \
1720   (8 + 4 * (! TARGET_ARCH64 && current_function_returns_struct))
1721 
1722 /* The current return address is in %i7.  The return address of anything
1723    farther back is in the register window save area at [%fp+60].  */
1724 /* ??? This ignores the fact that the actual return address is +8 for normal
1725    returns, and +12 for structure returns.  */
1726 #define RETURN_ADDR_RTX(count, frame)		\
1727   ((count == -1)				\
1728    ? gen_rtx_REG (Pmode, 31)			\
1729    : gen_rtx_MEM (Pmode,			\
1730 		  memory_address (Pmode, plus_constant (frame, \
1731 							15 * UNITS_PER_WORD \
1732 							+ SPARC_STACK_BIAS))))
1733 
1734 /* Before the prologue, the return address is %o7 + 8.  OK, sometimes it's
1735    +12, but always using +8 is close enough for frame unwind purposes.
1736    Actually, just using %o7 is close enough for unwinding, but %o7+8
1737    is something you can return to.  */
1738 #define INCOMING_RETURN_ADDR_RTX \
1739   plus_constant (gen_rtx_REG (word_mode, 15), 8)
1740 #define DWARF_FRAME_RETURN_COLUMN	DWARF_FRAME_REGNUM (15)
1741 
1742 /* The offset from the incoming value of %sp to the top of the stack frame
1743    for the current function.  On sparc64, we have to account for the stack
1744    bias if present.  */
1745 #define INCOMING_FRAME_SP_OFFSET SPARC_STACK_BIAS
1746 
1747 /* Describe how we implement __builtin_eh_return.  */
1748 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 24 : INVALID_REGNUM)
1749 #define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, 1)	/* %g1 */
1750 #define EH_RETURN_HANDLER_RTX	gen_rtx_REG (Pmode, 31)	/* %i7 */
1751 
1752 /* Select a format to encode pointers in exception handling data.  CODE
1753    is 0 for data, 1 for code labels, 2 for function pointers.  GLOBAL is
1754    true if the symbol may be affected by dynamic relocations.
1755 
1756    If assembler and linker properly support .uaword %r_disp32(foo),
1757    then use PC relative 32-bit relocations instead of absolute relocs
1758    for shared libraries.  On sparc64, use pc relative 32-bit relocs even
1759    for binaries, to save memory.
1760 
1761    binutils 2.12 would emit a R_SPARC_DISP32 dynamic relocation if the
1762    symbol %r_disp32() is against was not local, but .hidden.  In that
1763    case, we have to use DW_EH_PE_absptr for pic personality.  */
1764 #ifdef HAVE_AS_SPARC_UA_PCREL
1765 #ifdef HAVE_AS_SPARC_UA_PCREL_HIDDEN
1766 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL)			\
1767   (flag_pic								\
1768    ? (GLOBAL ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
1769    : ((TARGET_ARCH64 && ! GLOBAL)					\
1770       ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4)				\
1771       : DW_EH_PE_absptr))
1772 #else
1773 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL)			\
1774   (flag_pic								\
1775    ? (GLOBAL ? DW_EH_PE_absptr : (DW_EH_PE_pcrel | DW_EH_PE_sdata4))	\
1776    : ((TARGET_ARCH64 && ! GLOBAL)					\
1777       ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4)				\
1778       : DW_EH_PE_absptr))
1779 #endif
1780 
1781 /* Emit a PC-relative relocation.  */
1782 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL)	\
1783   do {							\
1784     fputs (integer_asm_op (SIZE, FALSE), FILE);		\
1785     fprintf (FILE, "%%r_disp%d(", SIZE * 8);		\
1786     assemble_name (FILE, LABEL);			\
1787     fputc (')', FILE);					\
1788   } while (0)
1789 #endif
1790 
1791 /* Addressing modes, and classification of registers for them.  */
1792 
1793 /* Macros to check register numbers against specific register classes.  */
1794 
1795 /* These assume that REGNO is a hard or pseudo reg number.
1796    They give nonzero only if REGNO is a hard reg of the suitable class
1797    or a pseudo reg currently allocated to a suitable hard reg.
1798    Since they use reg_renumber, they are safe only once reg_renumber
1799    has been allocated, which happens in local-alloc.c.  */
1800 
1801 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1802 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < (unsigned)32	\
1803  || (REGNO) == FRAME_POINTER_REGNUM				\
1804  || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)
1805 
1806 #define REGNO_OK_FOR_BASE_P(REGNO)  REGNO_OK_FOR_INDEX_P (REGNO)
1807 
1808 #define REGNO_OK_FOR_FP_P(REGNO) \
1809   (((unsigned) (REGNO) - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)) \
1810    || ((unsigned) reg_renumber[REGNO] - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)))
1811 #define REGNO_OK_FOR_CCFP_P(REGNO) \
1812  (TARGET_V9 \
1813   && (((unsigned) (REGNO) - 96 < (unsigned)4) \
1814       || ((unsigned) reg_renumber[REGNO] - 96 < (unsigned)4)))
1815 
1816 /* Now macros that check whether X is a register and also,
1817    strictly, whether it is in a specified class.
1818 
1819    These macros are specific to the SPARC, and may be used only
1820    in code for printing assembler insns and in conditions for
1821    define_optimization.  */
1822 
1823 /* 1 if X is an fp register.  */
1824 
1825 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1826 
1827 /* Is X, a REG, an in or global register?  i.e. is regno 0..7 or 24..31 */
1828 #define IN_OR_GLOBAL_P(X) (REGNO (X) < 8 || (REGNO (X) >= 24 && REGNO (X) <= 31))
1829 
1830 /* Maximum number of registers that can appear in a valid memory address.  */
1831 
1832 #define MAX_REGS_PER_ADDRESS 2
1833 
1834 /* Recognize any constant value that is a valid address.
1835    When PIC, we do not accept an address that would require a scratch reg
1836    to load into a register.  */
1837 
1838 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1839 
1840 /* Define this, so that when PIC, reload won't try to reload invalid
1841    addresses which require two reload registers.  */
1842 
1843 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1844 
1845 /* Nonzero if the constant value X is a legitimate general operand.
1846    Anything can be made to work except floating point constants.
1847    If TARGET_VIS, 0.0 can be made to work as well.  */
1848 
1849 #define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
1850 
1851 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1852    and check its validity for a certain class.
1853    We have two alternate definitions for each of them.
1854    The usual definition accepts all pseudo regs; the other rejects
1855    them unless they have been allocated suitable hard regs.
1856    The symbol REG_OK_STRICT causes the latter definition to be used.
1857 
1858    Most source files want to accept pseudo regs in the hope that
1859    they will get allocated to the class that the insn wants them to be in.
1860    Source files for reload pass need to be strict.
1861    After reload, it makes no difference, since pseudo regs have
1862    been eliminated by then.  */
1863 
1864 /* Optional extra constraints for this machine.
1865 
1866    'Q' handles floating point constants which can be moved into
1867        an integer register with a single sethi instruction.
1868 
1869    'R' handles floating point constants which can be moved into
1870        an integer register with a single mov instruction.
1871 
1872    'S' handles floating point constants which can be moved into
1873        an integer register using a high/lo_sum sequence.
1874 
1875    'T' handles memory addresses where the alignment is known to
1876        be at least 8 bytes.
1877 
1878    `U' handles all pseudo registers or a hard even numbered
1879        integer register, needed for ldd/std instructions.
1880 
1881    'W' handles the memory operand when moving operands in/out
1882        of 'e' constraint floating point registers.
1883 
1884    'Y' handles the zero vector constant.  */
1885 
1886 #ifndef REG_OK_STRICT
1887 
1888 /* Nonzero if X is a hard reg that can be used as an index
1889    or if it is a pseudo reg.  */
1890 #define REG_OK_FOR_INDEX_P(X) \
1891   (REGNO (X) < 32				\
1892    || REGNO (X) == FRAME_POINTER_REGNUM		\
1893    || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1894 
1895 /* Nonzero if X is a hard reg that can be used as a base reg
1896    or if it is a pseudo reg.  */
1897 #define REG_OK_FOR_BASE_P(X)  REG_OK_FOR_INDEX_P (X)
1898 
1899 /* 'T', 'U' are for aligned memory loads which aren't needed for arch64.
1900    'W' is like 'T' but is assumed true on arch64.
1901 
1902    Remember to accept pseudo-registers for memory constraints if reload is
1903    in progress.  */
1904 
1905 #define EXTRA_CONSTRAINT(OP, C) \
1906 	sparc_extra_constraint_check(OP, C, 0)
1907 
1908 #else
1909 
1910 /* Nonzero if X is a hard reg that can be used as an index.  */
1911 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1912 /* Nonzero if X is a hard reg that can be used as a base reg.  */
1913 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1914 
1915 #define EXTRA_CONSTRAINT(OP, C) \
1916 	sparc_extra_constraint_check(OP, C, 1)
1917 
1918 #endif
1919 
1920 /* Should gcc use [%reg+%lo(xx)+offset] addresses?  */
1921 
1922 #ifdef HAVE_AS_OFFSETABLE_LO10
1923 #define USE_AS_OFFSETABLE_LO10 1
1924 #else
1925 #define USE_AS_OFFSETABLE_LO10 0
1926 #endif
1927 
1928 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1929    that is a valid memory address for an instruction.
1930    The MODE argument is the machine mode for the MEM expression
1931    that wants to use this address.
1932 
1933    On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT
1934    ordinarily.  This changes a bit when generating PIC.
1935 
1936    If you change this, execute "rm explow.o recog.o reload.o".  */
1937 
1938 #define SYMBOLIC_CONST(X) symbolic_operand (X, VOIDmode)
1939 
1940 #define RTX_OK_FOR_BASE_P(X)						\
1941   ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))			\
1942   || (GET_CODE (X) == SUBREG						\
1943       && GET_CODE (SUBREG_REG (X)) == REG				\
1944       && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
1945 
1946 #define RTX_OK_FOR_INDEX_P(X)						\
1947   ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X))			\
1948   || (GET_CODE (X) == SUBREG						\
1949       && GET_CODE (SUBREG_REG (X)) == REG				\
1950       && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
1951 
1952 #define RTX_OK_FOR_OFFSET_P(X)						\
1953   (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0x1000 - 8)
1954 
1955 #define RTX_OK_FOR_OLO10_P(X)						\
1956   (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0xc00 - 8)
1957 
1958 #ifdef REG_OK_STRICT
1959 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)		\
1960 {							\
1961   if (legitimate_address_p (MODE, X, 1))		\
1962     goto ADDR;						\
1963 }
1964 #else
1965 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)		\
1966 {							\
1967   if (legitimate_address_p (MODE, X, 0))		\
1968     goto ADDR;						\
1969 }
1970 #endif
1971 
1972 /* Go to LABEL if ADDR (a legitimate address expression)
1973    has an effect that depends on the machine mode it is used for.
1974 
1975    In PIC mode,
1976 
1977       (mem:HI [%l7+a])
1978 
1979    is not equivalent to
1980 
1981       (mem:QI [%l7+a]) (mem:QI [%l7+a+1])
1982 
1983    because [%l7+a+1] is interpreted as the address of (a+1).  */
1984 
1985 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)	\
1986 {							\
1987   if (flag_pic == 1)					\
1988     {							\
1989       if (GET_CODE (ADDR) == PLUS)			\
1990 	{						\
1991 	  rtx op0 = XEXP (ADDR, 0);			\
1992 	  rtx op1 = XEXP (ADDR, 1);			\
1993 	  if (op0 == pic_offset_table_rtx		\
1994 	      && SYMBOLIC_CONST (op1))			\
1995 	    goto LABEL;					\
1996 	}						\
1997     }							\
1998 }
1999 
2000 /* Try machine-dependent ways of modifying an illegitimate address
2001    to be legitimate.  If we find one, return the new, valid address.
2002    This macro is used in only one place: `memory_address' in explow.c.
2003 
2004    OLDX is the address as it was before break_out_memory_refs was called.
2005    In some cases it is useful to look at this to decide what needs to be done.
2006 
2007    MODE and WIN are passed so that this macro can use
2008    GO_IF_LEGITIMATE_ADDRESS.
2009 
2010    It is always safe for this macro to do nothing.  It exists to recognize
2011    opportunities to optimize the output.  */
2012 
2013 /* On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG.  */
2014 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN)	\
2015 {						\
2016   (X) = legitimize_address (X, OLDX, MODE);	\
2017   if (memory_address_p (MODE, X))		\
2018     goto WIN;					\
2019 }
2020 
2021 /* Try a machine-dependent way of reloading an illegitimate address
2022    operand.  If we find one, push the reload and jump to WIN.  This
2023    macro is used in only one place: `find_reloads_address' in reload.c.
2024 
2025    For SPARC 32, we wish to handle addresses by splitting them into
2026    HIGH+LO_SUM pairs, retaining the LO_SUM in the memory reference.
2027    This cuts the number of extra insns by one.
2028 
2029    Do nothing when generating PIC code and the address is a
2030    symbolic operand or requires a scratch register.  */
2031 
2032 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN)     \
2033 do {                                                                    \
2034   /* Decompose SImode constants into hi+lo_sum.  We do have to 		\
2035      rerecognize what we produce, so be careful.  */			\
2036   if (CONSTANT_P (X)							\
2037       && (MODE != TFmode || TARGET_ARCH64)				\
2038       && GET_MODE (X) == SImode						\
2039       && GET_CODE (X) != LO_SUM && GET_CODE (X) != HIGH			\
2040       && ! (flag_pic							\
2041 	    && (symbolic_operand (X, Pmode)				\
2042 		|| pic_address_needs_scratch (X)))			\
2043       && sparc_cmodel <= CM_MEDLOW)					\
2044     {									\
2045       X = gen_rtx_LO_SUM (GET_MODE (X),					\
2046 			  gen_rtx_HIGH (GET_MODE (X), X), X);		\
2047       push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL,		\
2048                    BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0,	\
2049                    OPNUM, TYPE);					\
2050       goto WIN;								\
2051     }									\
2052   /* ??? 64-bit reloads.  */						\
2053 } while (0)
2054 
2055 /* Specify the machine mode that this machine uses
2056    for the index in the tablejump instruction.  */
2057 /* If we ever implement any of the full models (such as CM_FULLANY),
2058    this has to be DImode in that case */
2059 #ifdef HAVE_GAS_SUBSECTION_ORDERING
2060 #define CASE_VECTOR_MODE \
2061 (! TARGET_PTR64 ? SImode : flag_pic ? SImode : TARGET_CM_MEDLOW ? SImode : DImode)
2062 #else
2063 /* If assembler does not have working .subsection -1, we use DImode for pic, as otherwise
2064    we have to sign extend which slows things down.  */
2065 #define CASE_VECTOR_MODE \
2066 (! TARGET_PTR64 ? SImode : flag_pic ? DImode : TARGET_CM_MEDLOW ? SImode : DImode)
2067 #endif
2068 
2069 /* Define this as 1 if `char' should by default be signed; else as 0.  */
2070 #define DEFAULT_SIGNED_CHAR 1
2071 
2072 /* Max number of bytes we can move from memory to memory
2073    in one reasonably fast instruction.  */
2074 #define MOVE_MAX 8
2075 
2076 /* If a memory-to-memory move would take MOVE_RATIO or more simple
2077    move-instruction pairs, we will do a movmem or libcall instead.  */
2078 
2079 #define MOVE_RATIO (optimize_size ? 3 : 8)
2080 
2081 /* Define if operations between registers always perform the operation
2082    on the full register even if a narrower mode is specified.  */
2083 #define WORD_REGISTER_OPERATIONS
2084 
2085 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2086    will either zero-extend or sign-extend.  The value of this macro should
2087    be the code that says which one of the two operations is implicitly
2088    done, UNKNOWN if none.  */
2089 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2090 
2091 /* Nonzero if access to memory by bytes is slow and undesirable.
2092    For RISC chips, it means that access to memory by bytes is no
2093    better than access by words when possible, so grab a whole word
2094    and maybe make use of that.  */
2095 #define SLOW_BYTE_ACCESS 1
2096 
2097 /* Define this to be nonzero if shift instructions ignore all but the low-order
2098    few bits.  */
2099 #define SHIFT_COUNT_TRUNCATED 1
2100 
2101 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2102    is done just by pretending it is already truncated.  */
2103 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2104 
2105 /* Specify the machine mode used for addresses.  */
2106 #define Pmode (TARGET_ARCH64 ? DImode : SImode)
2107 
2108 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2109    return the mode to be used for the comparison.  For floating-point,
2110    CCFP[E]mode is used.  CC_NOOVmode should be used when the first operand
2111    is a PLUS, MINUS, NEG, or ASHIFT.  CCmode should be used when no special
2112    processing is needed.  */
2113 #define SELECT_CC_MODE(OP,X,Y)  select_cc_mode ((OP), (X), (Y))
2114 
2115 /* Return nonzero if MODE implies a floating point inequality can be
2116    reversed.  For SPARC this is always true because we have a full
2117    compliment of ordered and unordered comparisons, but until generic
2118    code knows how to reverse it correctly we keep the old definition.  */
2119 #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode && (MODE) != CCFPmode)
2120 
2121 /* A function address in a call instruction for indexing purposes.  */
2122 #define FUNCTION_MODE Pmode
2123 
2124 /* Define this if addresses of constant functions
2125    shouldn't be put through pseudo regs where they can be cse'd.
2126    Desirable on machines where ordinary constants are expensive
2127    but a CALL with constant address is cheap.  */
2128 #define NO_FUNCTION_CSE
2129 
2130 /* alloca should avoid clobbering the old register save area.  */
2131 #define SETJMP_VIA_SAVE_AREA
2132 
2133 /* The _Q_* comparison libcalls return booleans.  */
2134 #define FLOAT_LIB_COMPARE_RETURNS_BOOL(MODE, COMPARISON) ((MODE) == TFmode)
2135 
2136 /* Assume by default that the _Qp_* 64-bit libcalls are implemented such
2137    that the inputs are fully consumed before the output memory is clobbered.  */
2138 
2139 #define TARGET_BUGGY_QP_LIB	0
2140 
2141 /* Assume by default that we do not have the Solaris-specific conversion
2142    routines nor 64-bit integer multiply and divide routines.  */
2143 
2144 #define SUN_CONVERSION_LIBFUNCS 	0
2145 #define DITF_CONVERSION_LIBFUNCS	0
2146 #define SUN_INTEGER_MULTIPLY_64 	0
2147 
2148 /* Compute extra cost of moving data between one register class
2149    and another.  */
2150 #define GENERAL_OR_I64(C) ((C) == GENERAL_REGS || (C) == I64_REGS)
2151 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2)		\
2152   (((FP_REG_CLASS_P (CLASS1) && GENERAL_OR_I64 (CLASS2)) \
2153     || (GENERAL_OR_I64 (CLASS1) && FP_REG_CLASS_P (CLASS2)) \
2154     || (CLASS1) == FPCC_REGS || (CLASS2) == FPCC_REGS)		\
2155    ? ((sparc_cpu == PROCESSOR_ULTRASPARC \
2156        || sparc_cpu == PROCESSOR_ULTRASPARC3 \
2157        || sparc_cpu == PROCESSOR_NIAGARA) ? 12 : 6) : 2)
2158 
2159 /* Provide the cost of a branch.  For pre-v9 processors we use
2160    a value of 3 to take into account the potential annulling of
2161    the delay slot (which ends up being a bubble in the pipeline slot)
2162    plus a cycle to take into consideration the instruction cache
2163    effects.
2164 
2165    On v9 and later, which have branch prediction facilities, we set
2166    it to the depth of the pipeline as that is the cost of a
2167    mispredicted branch.
2168 
2169    On Niagara, normal branches insert 3 bubbles into the pipe
2170    and annulled branches insert 4 bubbles.  */
2171 
2172 #define BRANCH_COST \
2173 	((sparc_cpu == PROCESSOR_V9 \
2174 	  || sparc_cpu == PROCESSOR_ULTRASPARC) \
2175 	 ? 7 \
2176          : (sparc_cpu == PROCESSOR_ULTRASPARC3 \
2177             ? 9 \
2178 	 : (sparc_cpu == PROCESSOR_NIAGARA \
2179 	    ? 4 \
2180 	 : 3)))
2181 
2182 #define PREFETCH_BLOCK \
2183 	((sparc_cpu == PROCESSOR_ULTRASPARC \
2184           || sparc_cpu == PROCESSOR_ULTRASPARC3 \
2185 	  || sparc_cpu == PROCESSOR_NIAGARA) \
2186          ? 64 : 32)
2187 
2188 #define SIMULTANEOUS_PREFETCHES \
2189 	((sparc_cpu == PROCESSOR_ULTRASPARC \
2190 	  || sparc_cpu == PROCESSOR_NIAGARA) \
2191          ? 2 \
2192          : (sparc_cpu == PROCESSOR_ULTRASPARC3 \
2193             ? 8 : 3))
2194 
2195 /* Control the assembler format that we output.  */
2196 
2197 /* A C string constant describing how to begin a comment in the target
2198    assembler language.  The compiler assumes that the comment will end at
2199    the end of the line.  */
2200 
2201 #define ASM_COMMENT_START "!"
2202 
2203 /* Output to assembler file text saying following lines
2204    may contain character constants, extra white space, comments, etc.  */
2205 
2206 #define ASM_APP_ON ""
2207 
2208 /* Output to assembler file text saying following lines
2209    no longer contain unusual constructs.  */
2210 
2211 #define ASM_APP_OFF ""
2212 
2213 /* How to refer to registers in assembler output.
2214    This sequence is indexed by compiler's hard-register-number (see above).  */
2215 
2216 #define REGISTER_NAMES \
2217 {"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7",		\
2218  "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7",		\
2219  "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7",		\
2220  "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7",		\
2221  "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7",		\
2222  "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15",		\
2223  "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23",	\
2224  "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31",	\
2225  "%f32", "%f33", "%f34", "%f35", "%f36", "%f37", "%f38", "%f39",	\
2226  "%f40", "%f41", "%f42", "%f43", "%f44", "%f45", "%f46", "%f47",	\
2227  "%f48", "%f49", "%f50", "%f51", "%f52", "%f53", "%f54", "%f55",	\
2228  "%f56", "%f57", "%f58", "%f59", "%f60", "%f61", "%f62", "%f63",	\
2229  "%fcc0", "%fcc1", "%fcc2", "%fcc3", "%icc", "%sfp" }
2230 
2231 /* Define additional names for use in asm clobbers and asm declarations.  */
2232 
2233 #define ADDITIONAL_REGISTER_NAMES \
2234 {{"ccr", SPARC_ICC_REG}, {"cc", SPARC_ICC_REG}}
2235 
2236 /* On Sun 4, this limit is 2048.  We use 1000 to be safe, since the length
2237    can run past this up to a continuation point.  Once we used 1500, but
2238    a single entry in C++ can run more than 500 bytes, due to the length of
2239    mangled symbol names.  dbxout.c should really be fixed to do
2240    continuations when they are actually needed instead of trying to
2241    guess...  */
2242 #define DBX_CONTIN_LENGTH 1000
2243 
2244 /* This is how to output a command to make the user-level label named NAME
2245    defined for reference from other files.  */
2246 
2247 /* Globalizing directive for a label.  */
2248 #define GLOBAL_ASM_OP "\t.global "
2249 
2250 /* The prefix to add to user-visible assembler symbols.  */
2251 
2252 #define USER_LABEL_PREFIX "_"
2253 
2254 /* This is how to store into the string LABEL
2255    the symbol_ref name of an internal numbered label where
2256    PREFIX is the class of label and NUM is the number within the class.
2257    This is suitable for output with `assemble_name'.  */
2258 
2259 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)	\
2260   sprintf ((LABEL), "*%s%ld", (PREFIX), (long)(NUM))
2261 
2262 /* This is how we hook in and defer the case-vector until the end of
2263    the function.  */
2264 #define ASM_OUTPUT_ADDR_VEC(LAB,VEC) \
2265   sparc_defer_case_vector ((LAB),(VEC), 0)
2266 
2267 #define ASM_OUTPUT_ADDR_DIFF_VEC(LAB,VEC) \
2268   sparc_defer_case_vector ((LAB),(VEC), 1)
2269 
2270 /* This is how to output an element of a case-vector that is absolute.  */
2271 
2272 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
2273 do {									\
2274   char label[30];							\
2275   ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE);			\
2276   if (CASE_VECTOR_MODE == SImode)					\
2277     fprintf (FILE, "\t.word\t");					\
2278   else									\
2279     fprintf (FILE, "\t.xword\t");					\
2280   assemble_name (FILE, label);						\
2281   fputc ('\n', FILE);							\
2282 } while (0)
2283 
2284 /* This is how to output an element of a case-vector that is relative.
2285    (SPARC uses such vectors only when generating PIC.)  */
2286 
2287 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)		\
2288 do {									\
2289   char label[30];							\
2290   ASM_GENERATE_INTERNAL_LABEL (label, "L", (VALUE));			\
2291   if (CASE_VECTOR_MODE == SImode)					\
2292     fprintf (FILE, "\t.word\t");					\
2293   else									\
2294     fprintf (FILE, "\t.xword\t");					\
2295   assemble_name (FILE, label);						\
2296   ASM_GENERATE_INTERNAL_LABEL (label, "L", (REL));			\
2297   fputc ('-', FILE);							\
2298   assemble_name (FILE, label);						\
2299   fputc ('\n', FILE);							\
2300 } while (0)
2301 
2302 /* This is what to output before and after case-vector (both
2303    relative and absolute).  If .subsection -1 works, we put case-vectors
2304    at the beginning of the current section.  */
2305 
2306 #ifdef HAVE_GAS_SUBSECTION_ORDERING
2307 
2308 #define ASM_OUTPUT_ADDR_VEC_START(FILE)					\
2309   fprintf(FILE, "\t.subsection\t-1\n")
2310 
2311 #define ASM_OUTPUT_ADDR_VEC_END(FILE)					\
2312   fprintf(FILE, "\t.previous\n")
2313 
2314 #endif
2315 
2316 /* This is how to output an assembler line
2317    that says to advance the location counter
2318    to a multiple of 2**LOG bytes.  */
2319 
2320 #define ASM_OUTPUT_ALIGN(FILE,LOG)	\
2321   if ((LOG) != 0)			\
2322     fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
2323 
2324 /* This is how to output an assembler line that says to advance
2325    the location counter to a multiple of 2**LOG bytes using the
2326    "nop" instruction as padding.  */
2327 #define ASM_OUTPUT_ALIGN_WITH_NOP(FILE,LOG)   \
2328   if ((LOG) != 0)                             \
2329     fprintf (FILE, "\t.align %d,0x1000000\n", (1<<(LOG)))
2330 
2331 #define ASM_OUTPUT_SKIP(FILE,SIZE)  \
2332   fprintf (FILE, "\t.skip "HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
2333 
2334 /* This says how to output an assembler line
2335    to define a global common symbol.  */
2336 
2337 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED)  \
2338 ( fputs ("\t.common ", (FILE)),		\
2339   assemble_name ((FILE), (NAME)),		\
2340   fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\"\n", (SIZE)))
2341 
2342 /* This says how to output an assembler line to define a local common
2343    symbol.  */
2344 
2345 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED)		\
2346 ( fputs ("\t.reserve ", (FILE)),					\
2347   assemble_name ((FILE), (NAME)),					\
2348   fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\",%u\n",	\
2349 	   (SIZE), ((ALIGNED) / BITS_PER_UNIT)))
2350 
2351 /* A C statement (sans semicolon) to output to the stdio stream
2352    FILE the assembler definition of uninitialized global DECL named
2353    NAME whose size is SIZE bytes and alignment is ALIGN bytes.
2354    Try to use asm_output_aligned_bss to implement this macro.  */
2355 
2356 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN)	\
2357   do {								\
2358     ASM_OUTPUT_ALIGNED_LOCAL (FILE, NAME, SIZE, ALIGN);		\
2359   } while (0)
2360 
2361 #define IDENT_ASM_OP "\t.ident\t"
2362 
2363 /* Output #ident as a .ident.  */
2364 
2365 #define ASM_OUTPUT_IDENT(FILE, NAME) \
2366   fprintf (FILE, "%s\"%s\"\n", IDENT_ASM_OP, NAME);
2367 
2368 /* Prettify the assembly.  */
2369 
2370 extern int sparc_indent_opcode;
2371 
2372 #define ASM_OUTPUT_OPCODE(FILE, PTR)	\
2373   do {					\
2374     if (sparc_indent_opcode)		\
2375       {					\
2376 	putc (' ', FILE);		\
2377 	sparc_indent_opcode = 0;	\
2378       }					\
2379   } while (0)
2380 
2381 #define SPARC_SYMBOL_REF_TLS_P(RTX) \
2382   (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
2383 
2384 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
2385   ((CHAR) == '#' || (CHAR) == '*' || (CHAR) == '('		\
2386    || (CHAR) == ')' || (CHAR) == '_' || (CHAR) == '&')
2387 
2388 /* Print operand X (an rtx) in assembler syntax to file FILE.
2389    CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2390    For `%' followed by punctuation, CODE is the punctuation and X is null.  */
2391 
2392 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2393 
2394 /* Print a memory address as an operand to reference that memory location.  */
2395 
2396 #define PRINT_OPERAND_ADDRESS(FILE, ADDR)  \
2397 { register rtx base, index = 0;					\
2398   int offset = 0;						\
2399   register rtx addr = ADDR;					\
2400   if (GET_CODE (addr) == REG)					\
2401     fputs (reg_names[REGNO (addr)], FILE);			\
2402   else if (GET_CODE (addr) == PLUS)				\
2403     {								\
2404       if (GET_CODE (XEXP (addr, 0)) == CONST_INT)		\
2405 	offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\
2406       else if (GET_CODE (XEXP (addr, 1)) == CONST_INT)		\
2407 	offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\
2408       else							\
2409 	base = XEXP (addr, 0), index = XEXP (addr, 1);		\
2410       if (GET_CODE (base) == LO_SUM)				\
2411 	{							\
2412 	  gcc_assert (USE_AS_OFFSETABLE_LO10			\
2413 	      	      && TARGET_ARCH64				\
2414 		      && ! TARGET_CM_MEDMID);			\
2415 	  output_operand (XEXP (base, 0), 0);			\
2416 	  fputs ("+%lo(", FILE);				\
2417 	  output_address (XEXP (base, 1));			\
2418 	  fprintf (FILE, ")+%d", offset);			\
2419 	}							\
2420       else							\
2421 	{							\
2422 	  fputs (reg_names[REGNO (base)], FILE);		\
2423 	  if (index == 0)					\
2424 	    fprintf (FILE, "%+d", offset);			\
2425 	  else if (GET_CODE (index) == REG)			\
2426 	    fprintf (FILE, "+%s", reg_names[REGNO (index)]);	\
2427 	  else if (GET_CODE (index) == SYMBOL_REF		\
2428 		   || GET_CODE (index) == CONST)		\
2429 	    fputc ('+', FILE), output_addr_const (FILE, index);	\
2430 	  else gcc_unreachable ();				\
2431 	}							\
2432     }								\
2433   else if (GET_CODE (addr) == MINUS				\
2434 	   && GET_CODE (XEXP (addr, 1)) == LABEL_REF)		\
2435     {								\
2436       output_addr_const (FILE, XEXP (addr, 0));			\
2437       fputs ("-(", FILE);					\
2438       output_addr_const (FILE, XEXP (addr, 1));			\
2439       fputs ("-.)", FILE);					\
2440     }								\
2441   else if (GET_CODE (addr) == LO_SUM)				\
2442     {								\
2443       output_operand (XEXP (addr, 0), 0);			\
2444       if (TARGET_CM_MEDMID)					\
2445         fputs ("+%l44(", FILE);					\
2446       else							\
2447         fputs ("+%lo(", FILE);					\
2448       output_address (XEXP (addr, 1));				\
2449       fputc (')', FILE);					\
2450     }								\
2451   else if (flag_pic && GET_CODE (addr) == CONST			\
2452 	   && GET_CODE (XEXP (addr, 0)) == MINUS		\
2453 	   && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST	\
2454 	   && GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS	\
2455 	   && XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx)	\
2456     {								\
2457       addr = XEXP (addr, 0);					\
2458       output_addr_const (FILE, XEXP (addr, 0));			\
2459       /* Group the args of the second CONST in parenthesis.  */	\
2460       fputs ("-(", FILE);					\
2461       /* Skip past the second CONST--it does nothing for us.  */\
2462       output_addr_const (FILE, XEXP (XEXP (addr, 1), 0));	\
2463       /* Close the parenthesis.  */				\
2464       fputc (')', FILE);					\
2465     }								\
2466   else								\
2467     {								\
2468       output_addr_const (FILE, addr);				\
2469     }								\
2470 }
2471 
2472 /* TLS support defaulting to original Sun flavor.  GNU extensions
2473    must be activated in separate configuration files.  */
2474 #ifdef HAVE_AS_TLS
2475 #define TARGET_TLS 1
2476 #else
2477 #define TARGET_TLS 0
2478 #endif
2479 
2480 #define TARGET_SUN_TLS TARGET_TLS
2481 #define TARGET_GNU_TLS 0
2482 
2483 /* The number of Pmode words for the setjmp buffer.  */
2484 #define JMP_BUF_SIZE 12
2485