1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetLoweringObjectFile.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
36 
37 /// NOTE: The TargetMachine owns TLOF.
TargetLowering(const TargetMachine & tm)38 TargetLowering::TargetLowering(const TargetMachine &tm)
39     : TargetLoweringBase(tm) {}
40 
getTargetNodeName(unsigned Opcode) const41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42   return nullptr;
43 }
44 
isPositionIndependent() const45 bool TargetLowering::isPositionIndependent() const {
46   return getTargetMachine().isPositionIndependent();
47 }
48 
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
isInTailCallPosition(SelectionDAG & DAG,SDNode * Node,SDValue & Chain) const51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52                                           SDValue &Chain) const {
53   const Function &F = DAG.getMachineFunction().getFunction();
54 
55   // First, check if tail calls have been disabled in this function.
56   if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
57     return false;
58 
59   // Conservatively require the attributes of the call to match those of
60   // the return. Ignore following attributes because they don't affect the
61   // call sequence.
62   AttrBuilder CallerAttrs(F.getAttributes(), AttributeList::ReturnIndex);
63   for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
64                            Attribute::DereferenceableOrNull, Attribute::NoAlias,
65                            Attribute::NonNull})
66     CallerAttrs.removeAttribute(Attr);
67 
68   if (CallerAttrs.hasAttributes())
69     return false;
70 
71   // It's not safe to eliminate the sign / zero extension of the return value.
72   if (CallerAttrs.contains(Attribute::ZExt) ||
73       CallerAttrs.contains(Attribute::SExt))
74     return false;
75 
76   // Check if the only use is a function return node.
77   return isUsedByReturnOnly(Node, Chain);
78 }
79 
parametersInCSRMatch(const MachineRegisterInfo & MRI,const uint32_t * CallerPreservedMask,const SmallVectorImpl<CCValAssign> & ArgLocs,const SmallVectorImpl<SDValue> & OutVals) const80 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
81     const uint32_t *CallerPreservedMask,
82     const SmallVectorImpl<CCValAssign> &ArgLocs,
83     const SmallVectorImpl<SDValue> &OutVals) const {
84   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
85     const CCValAssign &ArgLoc = ArgLocs[I];
86     if (!ArgLoc.isRegLoc())
87       continue;
88     MCRegister Reg = ArgLoc.getLocReg();
89     // Only look at callee saved registers.
90     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
91       continue;
92     // Check that we pass the value used for the caller.
93     // (We look for a CopyFromReg reading a virtual register that is used
94     //  for the function live-in value of register Reg)
95     SDValue Value = OutVals[I];
96     if (Value->getOpcode() != ISD::CopyFromReg)
97       return false;
98     Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
99     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
100       return false;
101   }
102   return true;
103 }
104 
105 /// Set CallLoweringInfo attribute flags based on the call instruction's
106 /// argument attributes.
setAttributes(const CallBase * Call,unsigned ArgIdx)107 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
108                                                      unsigned ArgIdx) {
109   auto Attrs = Call->getAttributes();
110 
111   IsSExt = Attrs.hasParamAttribute(ArgIdx, Attribute::SExt);
112   IsZExt = Attrs.hasParamAttribute(ArgIdx, Attribute::ZExt);
113   IsInReg = Attrs.hasParamAttribute(ArgIdx, Attribute::InReg);
114   IsSRet = Attrs.hasParamAttribute(ArgIdx, Attribute::StructRet);
115   IsNest = Attrs.hasParamAttribute(ArgIdx, Attribute::Nest);
116   IsReturned = Attrs.hasParamAttribute(ArgIdx, Attribute::Returned);
117   IsSwiftSelf = Attrs.hasParamAttribute(ArgIdx, Attribute::SwiftSelf);
118   IsSwiftAsync = Attrs.hasParamAttribute(ArgIdx, Attribute::SwiftAsync);
119   IsSwiftError = Attrs.hasParamAttribute(ArgIdx, Attribute::SwiftError);
120   Alignment = Attrs.getParamStackAlignment(ArgIdx);
121 
122   IsByVal = Attrs.hasParamAttribute(ArgIdx, Attribute::ByVal);
123   IsInAlloca = Attrs.hasParamAttribute(ArgIdx, Attribute::InAlloca);
124   IsPreallocated = Attrs.hasParamAttribute(ArgIdx, Attribute::Preallocated);
125 
126   assert(IsByVal + IsInAlloca + IsPreallocated <= 1 &&
127          "can't have multiple indirect attributes");
128   IndirectType = nullptr;
129   if (IsByVal) {
130     IndirectType = Call->getParamByValType(ArgIdx);
131     assert(IndirectType && "no byval type?");
132     if (!Alignment)
133       Alignment = Call->getParamAlign(ArgIdx);
134   }
135   if (IsInAlloca) {
136     IndirectType = Call->getParamInAllocaType(ArgIdx);
137     assert(IndirectType && "no inalloca type?");
138   }
139   if (IsPreallocated) {
140     IndirectType = Call->getParamPreallocatedType(ArgIdx);
141     assert(IndirectType && "no preallocated type?");
142   }
143 }
144 
145 /// Generate a libcall taking the given operands as arguments and returning a
146 /// result of type RetVT.
147 std::pair<SDValue, SDValue>
makeLibCall(SelectionDAG & DAG,RTLIB::Libcall LC,EVT RetVT,ArrayRef<SDValue> Ops,MakeLibCallOptions CallOptions,const SDLoc & dl,SDValue InChain) const148 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
149                             ArrayRef<SDValue> Ops,
150                             MakeLibCallOptions CallOptions,
151                             const SDLoc &dl,
152                             SDValue InChain) const {
153   if (!InChain)
154     InChain = DAG.getEntryNode();
155 
156   TargetLowering::ArgListTy Args;
157   Args.reserve(Ops.size());
158 
159   TargetLowering::ArgListEntry Entry;
160   for (unsigned i = 0; i < Ops.size(); ++i) {
161     SDValue NewOp = Ops[i];
162     Entry.Node = NewOp;
163     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
164     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
165                                                  CallOptions.IsSExt);
166     Entry.IsZExt = !Entry.IsSExt;
167 
168     if (CallOptions.IsSoften &&
169         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
170       Entry.IsSExt = Entry.IsZExt = false;
171     }
172     Args.push_back(Entry);
173   }
174 
175   if (LC == RTLIB::UNKNOWN_LIBCALL)
176     report_fatal_error("Unsupported library call operation!");
177   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
178                                          getPointerTy(DAG.getDataLayout()));
179 
180   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
181   TargetLowering::CallLoweringInfo CLI(DAG);
182   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
183   bool zeroExtend = !signExtend;
184 
185   if (CallOptions.IsSoften &&
186       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
187     signExtend = zeroExtend = false;
188   }
189 
190   CLI.setDebugLoc(dl)
191       .setChain(InChain)
192       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
193       .setNoReturn(CallOptions.DoesNotReturn)
194       .setDiscardResult(!CallOptions.IsReturnValueUsed)
195       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
196       .setSExtResult(signExtend)
197       .setZExtResult(zeroExtend);
198   return LowerCallTo(CLI);
199 }
200 
findOptimalMemOpLowering(std::vector<EVT> & MemOps,unsigned Limit,const MemOp & Op,unsigned DstAS,unsigned SrcAS,const AttributeList & FuncAttributes) const201 bool TargetLowering::findOptimalMemOpLowering(
202     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
203     unsigned SrcAS, const AttributeList &FuncAttributes) const {
204   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
205     return false;
206 
207   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
208 
209   if (VT == MVT::Other) {
210     // Use the largest integer type whose alignment constraints are satisfied.
211     // We only need to check DstAlign here as SrcAlign is always greater or
212     // equal to DstAlign (or zero).
213     VT = MVT::i64;
214     if (Op.isFixedDstAlign())
215       while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
216              !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
217         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
218     assert(VT.isInteger());
219 
220     // Find the largest legal integer type.
221     MVT LVT = MVT::i64;
222     while (!isTypeLegal(LVT))
223       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
224     assert(LVT.isInteger());
225 
226     // If the type we've chosen is larger than the largest legal integer type
227     // then use that instead.
228     if (VT.bitsGT(LVT))
229       VT = LVT;
230   }
231 
232   unsigned NumMemOps = 0;
233   uint64_t Size = Op.size();
234   while (Size) {
235     unsigned VTSize = VT.getSizeInBits() / 8;
236     while (VTSize > Size) {
237       // For now, only use non-vector load / store's for the left-over pieces.
238       EVT NewVT = VT;
239       unsigned NewVTSize;
240 
241       bool Found = false;
242       if (VT.isVector() || VT.isFloatingPoint()) {
243         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
244         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
245             isSafeMemOpType(NewVT.getSimpleVT()))
246           Found = true;
247         else if (NewVT == MVT::i64 &&
248                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
249                  isSafeMemOpType(MVT::f64)) {
250           // i64 is usually not legal on 32-bit targets, but f64 may be.
251           NewVT = MVT::f64;
252           Found = true;
253         }
254       }
255 
256       if (!Found) {
257         do {
258           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
259           if (NewVT == MVT::i8)
260             break;
261         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
262       }
263       NewVTSize = NewVT.getSizeInBits() / 8;
264 
265       // If the new VT cannot cover all of the remaining bits, then consider
266       // issuing a (or a pair of) unaligned and overlapping load / store.
267       bool Fast;
268       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
269           allowsMisalignedMemoryAccesses(
270               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
271               MachineMemOperand::MONone, &Fast) &&
272           Fast)
273         VTSize = Size;
274       else {
275         VT = NewVT;
276         VTSize = NewVTSize;
277       }
278     }
279 
280     if (++NumMemOps > Limit)
281       return false;
282 
283     MemOps.push_back(VT);
284     Size -= VTSize;
285   }
286 
287   return true;
288 }
289 
290 /// Soften the operands of a comparison. This code is shared among BR_CC,
291 /// SELECT_CC, and SETCC handlers.
softenSetCCOperands(SelectionDAG & DAG,EVT VT,SDValue & NewLHS,SDValue & NewRHS,ISD::CondCode & CCCode,const SDLoc & dl,const SDValue OldLHS,const SDValue OldRHS) const292 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
293                                          SDValue &NewLHS, SDValue &NewRHS,
294                                          ISD::CondCode &CCCode,
295                                          const SDLoc &dl, const SDValue OldLHS,
296                                          const SDValue OldRHS) const {
297   SDValue Chain;
298   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
299                              OldRHS, Chain);
300 }
301 
softenSetCCOperands(SelectionDAG & DAG,EVT VT,SDValue & NewLHS,SDValue & NewRHS,ISD::CondCode & CCCode,const SDLoc & dl,const SDValue OldLHS,const SDValue OldRHS,SDValue & Chain,bool IsSignaling) const302 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
303                                          SDValue &NewLHS, SDValue &NewRHS,
304                                          ISD::CondCode &CCCode,
305                                          const SDLoc &dl, const SDValue OldLHS,
306                                          const SDValue OldRHS,
307                                          SDValue &Chain,
308                                          bool IsSignaling) const {
309   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
310   // not supporting it. We can update this code when libgcc provides such
311   // functions.
312 
313   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
314          && "Unsupported setcc type!");
315 
316   // Expand into one or more soft-fp libcall(s).
317   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
318   bool ShouldInvertCC = false;
319   switch (CCCode) {
320   case ISD::SETEQ:
321   case ISD::SETOEQ:
322     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
323           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
324           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
325     break;
326   case ISD::SETNE:
327   case ISD::SETUNE:
328     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
329           (VT == MVT::f64) ? RTLIB::UNE_F64 :
330           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
331     break;
332   case ISD::SETGE:
333   case ISD::SETOGE:
334     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
335           (VT == MVT::f64) ? RTLIB::OGE_F64 :
336           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
337     break;
338   case ISD::SETLT:
339   case ISD::SETOLT:
340     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
341           (VT == MVT::f64) ? RTLIB::OLT_F64 :
342           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
343     break;
344   case ISD::SETLE:
345   case ISD::SETOLE:
346     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
347           (VT == MVT::f64) ? RTLIB::OLE_F64 :
348           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
349     break;
350   case ISD::SETGT:
351   case ISD::SETOGT:
352     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
353           (VT == MVT::f64) ? RTLIB::OGT_F64 :
354           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
355     break;
356   case ISD::SETO:
357     ShouldInvertCC = true;
358     LLVM_FALLTHROUGH;
359   case ISD::SETUO:
360     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
361           (VT == MVT::f64) ? RTLIB::UO_F64 :
362           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
363     break;
364   case ISD::SETONE:
365     // SETONE = O && UNE
366     ShouldInvertCC = true;
367     LLVM_FALLTHROUGH;
368   case ISD::SETUEQ:
369     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
370           (VT == MVT::f64) ? RTLIB::UO_F64 :
371           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
372     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
373           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
374           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
375     break;
376   default:
377     // Invert CC for unordered comparisons
378     ShouldInvertCC = true;
379     switch (CCCode) {
380     case ISD::SETULT:
381       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
382             (VT == MVT::f64) ? RTLIB::OGE_F64 :
383             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
384       break;
385     case ISD::SETULE:
386       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
387             (VT == MVT::f64) ? RTLIB::OGT_F64 :
388             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
389       break;
390     case ISD::SETUGT:
391       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
392             (VT == MVT::f64) ? RTLIB::OLE_F64 :
393             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
394       break;
395     case ISD::SETUGE:
396       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
397             (VT == MVT::f64) ? RTLIB::OLT_F64 :
398             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
399       break;
400     default: llvm_unreachable("Do not know how to soften this setcc!");
401     }
402   }
403 
404   // Use the target specific return value for comparions lib calls.
405   EVT RetVT = getCmpLibcallReturnType();
406   SDValue Ops[2] = {NewLHS, NewRHS};
407   TargetLowering::MakeLibCallOptions CallOptions;
408   EVT OpsVT[2] = { OldLHS.getValueType(),
409                    OldRHS.getValueType() };
410   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
411   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
412   NewLHS = Call.first;
413   NewRHS = DAG.getConstant(0, dl, RetVT);
414 
415   CCCode = getCmpLibcallCC(LC1);
416   if (ShouldInvertCC) {
417     assert(RetVT.isInteger());
418     CCCode = getSetCCInverse(CCCode, RetVT);
419   }
420 
421   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
422     // Update Chain.
423     Chain = Call.second;
424   } else {
425     EVT SetCCVT =
426         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
427     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
428     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
429     CCCode = getCmpLibcallCC(LC2);
430     if (ShouldInvertCC)
431       CCCode = getSetCCInverse(CCCode, RetVT);
432     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
433     if (Chain)
434       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
435                           Call2.second);
436     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
437                          Tmp.getValueType(), Tmp, NewLHS);
438     NewRHS = SDValue();
439   }
440 }
441 
442 /// Return the entry encoding for a jump table in the current function. The
443 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
getJumpTableEncoding() const444 unsigned TargetLowering::getJumpTableEncoding() const {
445   // In non-pic modes, just use the address of a block.
446   if (!isPositionIndependent())
447     return MachineJumpTableInfo::EK_BlockAddress;
448 
449   // In PIC mode, if the target supports a GPRel32 directive, use it.
450   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
451     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
452 
453   // Otherwise, use a label difference.
454   return MachineJumpTableInfo::EK_LabelDifference32;
455 }
456 
getPICJumpTableRelocBase(SDValue Table,SelectionDAG & DAG) const457 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
458                                                  SelectionDAG &DAG) const {
459   // If our PIC model is GP relative, use the global offset table as the base.
460   unsigned JTEncoding = getJumpTableEncoding();
461 
462   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
463       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
464     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
465 
466   return Table;
467 }
468 
469 /// This returns the relocation base for the given PIC jumptable, the same as
470 /// getPICJumpTableRelocBase, but as an MCExpr.
471 const MCExpr *
getPICJumpTableRelocBaseExpr(const MachineFunction * MF,unsigned JTI,MCContext & Ctx) const472 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
473                                              unsigned JTI,MCContext &Ctx) const{
474   // The normal PIC reloc base is the label at the start of the jump table.
475   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
476 }
477 
478 bool
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const479 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
480   const TargetMachine &TM = getTargetMachine();
481   const GlobalValue *GV = GA->getGlobal();
482 
483   // If the address is not even local to this DSO we will have to load it from
484   // a got and then add the offset.
485   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
486     return false;
487 
488   // If the code is position independent we will have to add a base register.
489   if (isPositionIndependent())
490     return false;
491 
492   // Otherwise we can do it.
493   return true;
494 }
495 
496 //===----------------------------------------------------------------------===//
497 //  Optimization Methods
498 //===----------------------------------------------------------------------===//
499 
500 /// If the specified instruction has a constant integer operand and there are
501 /// bits set in that constant that are not demanded, then clear those bits and
502 /// return true.
ShrinkDemandedConstant(SDValue Op,const APInt & DemandedBits,const APInt & DemandedElts,TargetLoweringOpt & TLO) const503 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
504                                             const APInt &DemandedBits,
505                                             const APInt &DemandedElts,
506                                             TargetLoweringOpt &TLO) const {
507   SDLoc DL(Op);
508   unsigned Opcode = Op.getOpcode();
509 
510   // Do target-specific constant optimization.
511   if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
512     return TLO.New.getNode();
513 
514   // FIXME: ISD::SELECT, ISD::SELECT_CC
515   switch (Opcode) {
516   default:
517     break;
518   case ISD::XOR:
519   case ISD::AND:
520   case ISD::OR: {
521     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
522     if (!Op1C)
523       return false;
524 
525     // If this is a 'not' op, don't touch it because that's a canonical form.
526     const APInt &C = Op1C->getAPIntValue();
527     if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
528       return false;
529 
530     if (!C.isSubsetOf(DemandedBits)) {
531       EVT VT = Op.getValueType();
532       SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
533       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
534       return TLO.CombineTo(Op, NewOp);
535     }
536 
537     break;
538   }
539   }
540 
541   return false;
542 }
543 
ShrinkDemandedConstant(SDValue Op,const APInt & DemandedBits,TargetLoweringOpt & TLO) const544 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
545                                             const APInt &DemandedBits,
546                                             TargetLoweringOpt &TLO) const {
547   EVT VT = Op.getValueType();
548   APInt DemandedElts = VT.isVector()
549                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
550                            : APInt(1, 1);
551   return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
552 }
553 
554 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
555 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
556 /// generalized for targets with other types of implicit widening casts.
ShrinkDemandedOp(SDValue Op,unsigned BitWidth,const APInt & Demanded,TargetLoweringOpt & TLO) const557 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
558                                       const APInt &Demanded,
559                                       TargetLoweringOpt &TLO) const {
560   assert(Op.getNumOperands() == 2 &&
561          "ShrinkDemandedOp only supports binary operators!");
562   assert(Op.getNode()->getNumValues() == 1 &&
563          "ShrinkDemandedOp only supports nodes with one result!");
564 
565   SelectionDAG &DAG = TLO.DAG;
566   SDLoc dl(Op);
567 
568   // Early return, as this function cannot handle vector types.
569   if (Op.getValueType().isVector())
570     return false;
571 
572   // Don't do this if the node has another user, which may require the
573   // full value.
574   if (!Op.getNode()->hasOneUse())
575     return false;
576 
577   // Search for the smallest integer type with free casts to and from
578   // Op's type. For expedience, just check power-of-2 integer types.
579   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
580   unsigned DemandedSize = Demanded.getActiveBits();
581   unsigned SmallVTBits = DemandedSize;
582   if (!isPowerOf2_32(SmallVTBits))
583     SmallVTBits = NextPowerOf2(SmallVTBits);
584   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
585     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
586     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
587         TLI.isZExtFree(SmallVT, Op.getValueType())) {
588       // We found a type with free casts.
589       SDValue X = DAG.getNode(
590           Op.getOpcode(), dl, SmallVT,
591           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
592           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
593       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
594       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
595       return TLO.CombineTo(Op, Z);
596     }
597   }
598   return false;
599 }
600 
SimplifyDemandedBits(SDValue Op,const APInt & DemandedBits,DAGCombinerInfo & DCI) const601 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
602                                           DAGCombinerInfo &DCI) const {
603   SelectionDAG &DAG = DCI.DAG;
604   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
605                         !DCI.isBeforeLegalizeOps());
606   KnownBits Known;
607 
608   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
609   if (Simplified) {
610     DCI.AddToWorklist(Op.getNode());
611     DCI.CommitTargetLoweringOpt(TLO);
612   }
613   return Simplified;
614 }
615 
SimplifyDemandedBits(SDValue Op,const APInt & DemandedBits,KnownBits & Known,TargetLoweringOpt & TLO,unsigned Depth,bool AssumeSingleUse) const616 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
617                                           KnownBits &Known,
618                                           TargetLoweringOpt &TLO,
619                                           unsigned Depth,
620                                           bool AssumeSingleUse) const {
621   EVT VT = Op.getValueType();
622 
623   // TODO: We can probably do more work on calculating the known bits and
624   // simplifying the operations for scalable vectors, but for now we just
625   // bail out.
626   if (VT.isScalableVector()) {
627     // Pretend we don't know anything for now.
628     Known = KnownBits(DemandedBits.getBitWidth());
629     return false;
630   }
631 
632   APInt DemandedElts = VT.isVector()
633                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
634                            : APInt(1, 1);
635   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
636                               AssumeSingleUse);
637 }
638 
639 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
640 // TODO: Under what circumstances can we create nodes? Constant folding?
SimplifyMultipleUseDemandedBits(SDValue Op,const APInt & DemandedBits,const APInt & DemandedElts,SelectionDAG & DAG,unsigned Depth) const641 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
642     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
643     SelectionDAG &DAG, unsigned Depth) const {
644   // Limit search depth.
645   if (Depth >= SelectionDAG::MaxRecursionDepth)
646     return SDValue();
647 
648   // Ignore UNDEFs.
649   if (Op.isUndef())
650     return SDValue();
651 
652   // Not demanding any bits/elts from Op.
653   if (DemandedBits == 0 || DemandedElts == 0)
654     return DAG.getUNDEF(Op.getValueType());
655 
656   unsigned NumElts = DemandedElts.getBitWidth();
657   unsigned BitWidth = DemandedBits.getBitWidth();
658   KnownBits LHSKnown, RHSKnown;
659   switch (Op.getOpcode()) {
660   case ISD::BITCAST: {
661     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
662     EVT SrcVT = Src.getValueType();
663     EVT DstVT = Op.getValueType();
664     if (SrcVT == DstVT)
665       return Src;
666 
667     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
668     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
669     if (NumSrcEltBits == NumDstEltBits)
670       if (SDValue V = SimplifyMultipleUseDemandedBits(
671               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
672         return DAG.getBitcast(DstVT, V);
673 
674     // TODO - bigendian once we have test coverage.
675     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 &&
676         DAG.getDataLayout().isLittleEndian()) {
677       unsigned Scale = NumDstEltBits / NumSrcEltBits;
678       unsigned NumSrcElts = SrcVT.getVectorNumElements();
679       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
680       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
681       for (unsigned i = 0; i != Scale; ++i) {
682         unsigned Offset = i * NumSrcEltBits;
683         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
684         if (!Sub.isNullValue()) {
685           DemandedSrcBits |= Sub;
686           for (unsigned j = 0; j != NumElts; ++j)
687             if (DemandedElts[j])
688               DemandedSrcElts.setBit((j * Scale) + i);
689         }
690       }
691 
692       if (SDValue V = SimplifyMultipleUseDemandedBits(
693               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
694         return DAG.getBitcast(DstVT, V);
695     }
696 
697     // TODO - bigendian once we have test coverage.
698     if ((NumSrcEltBits % NumDstEltBits) == 0 &&
699         DAG.getDataLayout().isLittleEndian()) {
700       unsigned Scale = NumSrcEltBits / NumDstEltBits;
701       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
702       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
703       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
704       for (unsigned i = 0; i != NumElts; ++i)
705         if (DemandedElts[i]) {
706           unsigned Offset = (i % Scale) * NumDstEltBits;
707           DemandedSrcBits.insertBits(DemandedBits, Offset);
708           DemandedSrcElts.setBit(i / Scale);
709         }
710 
711       if (SDValue V = SimplifyMultipleUseDemandedBits(
712               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
713         return DAG.getBitcast(DstVT, V);
714     }
715 
716     break;
717   }
718   case ISD::AND: {
719     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
720     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
721 
722     // If all of the demanded bits are known 1 on one side, return the other.
723     // These bits cannot contribute to the result of the 'and' in this
724     // context.
725     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
726       return Op.getOperand(0);
727     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
728       return Op.getOperand(1);
729     break;
730   }
731   case ISD::OR: {
732     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
733     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
734 
735     // If all of the demanded bits are known zero on one side, return the
736     // other.  These bits cannot contribute to the result of the 'or' in this
737     // context.
738     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
739       return Op.getOperand(0);
740     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
741       return Op.getOperand(1);
742     break;
743   }
744   case ISD::XOR: {
745     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
746     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
747 
748     // If all of the demanded bits are known zero on one side, return the
749     // other.
750     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
751       return Op.getOperand(0);
752     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
753       return Op.getOperand(1);
754     break;
755   }
756   case ISD::SHL: {
757     // If we are only demanding sign bits then we can use the shift source
758     // directly.
759     if (const APInt *MaxSA =
760             DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
761       SDValue Op0 = Op.getOperand(0);
762       unsigned ShAmt = MaxSA->getZExtValue();
763       unsigned NumSignBits =
764           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
765       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
766       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
767         return Op0;
768     }
769     break;
770   }
771   case ISD::SETCC: {
772     SDValue Op0 = Op.getOperand(0);
773     SDValue Op1 = Op.getOperand(1);
774     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
775     // If (1) we only need the sign-bit, (2) the setcc operands are the same
776     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
777     // -1, we may be able to bypass the setcc.
778     if (DemandedBits.isSignMask() &&
779         Op0.getScalarValueSizeInBits() == BitWidth &&
780         getBooleanContents(Op0.getValueType()) ==
781             BooleanContent::ZeroOrNegativeOneBooleanContent) {
782       // If we're testing X < 0, then this compare isn't needed - just use X!
783       // FIXME: We're limiting to integer types here, but this should also work
784       // if we don't care about FP signed-zero. The use of SETLT with FP means
785       // that we don't care about NaNs.
786       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
787           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
788         return Op0;
789     }
790     break;
791   }
792   case ISD::SIGN_EXTEND_INREG: {
793     // If none of the extended bits are demanded, eliminate the sextinreg.
794     SDValue Op0 = Op.getOperand(0);
795     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
796     unsigned ExBits = ExVT.getScalarSizeInBits();
797     if (DemandedBits.getActiveBits() <= ExBits)
798       return Op0;
799     // If the input is already sign extended, just drop the extension.
800     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
801     if (NumSignBits >= (BitWidth - ExBits + 1))
802       return Op0;
803     break;
804   }
805   case ISD::ANY_EXTEND_VECTOR_INREG:
806   case ISD::SIGN_EXTEND_VECTOR_INREG:
807   case ISD::ZERO_EXTEND_VECTOR_INREG: {
808     // If we only want the lowest element and none of extended bits, then we can
809     // return the bitcasted source vector.
810     SDValue Src = Op.getOperand(0);
811     EVT SrcVT = Src.getValueType();
812     EVT DstVT = Op.getValueType();
813     if (DemandedElts == 1 && DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
814         DAG.getDataLayout().isLittleEndian() &&
815         DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
816       return DAG.getBitcast(DstVT, Src);
817     }
818     break;
819   }
820   case ISD::INSERT_VECTOR_ELT: {
821     // If we don't demand the inserted element, return the base vector.
822     SDValue Vec = Op.getOperand(0);
823     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
824     EVT VecVT = Vec.getValueType();
825     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
826         !DemandedElts[CIdx->getZExtValue()])
827       return Vec;
828     break;
829   }
830   case ISD::INSERT_SUBVECTOR: {
831     // If we don't demand the inserted subvector, return the base vector.
832     SDValue Vec = Op.getOperand(0);
833     SDValue Sub = Op.getOperand(1);
834     uint64_t Idx = Op.getConstantOperandVal(2);
835     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
836     if (DemandedElts.extractBits(NumSubElts, Idx) == 0)
837       return Vec;
838     break;
839   }
840   case ISD::VECTOR_SHUFFLE: {
841     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
842 
843     // If all the demanded elts are from one operand and are inline,
844     // then we can use the operand directly.
845     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
846     for (unsigned i = 0; i != NumElts; ++i) {
847       int M = ShuffleMask[i];
848       if (M < 0 || !DemandedElts[i])
849         continue;
850       AllUndef = false;
851       IdentityLHS &= (M == (int)i);
852       IdentityRHS &= ((M - NumElts) == i);
853     }
854 
855     if (AllUndef)
856       return DAG.getUNDEF(Op.getValueType());
857     if (IdentityLHS)
858       return Op.getOperand(0);
859     if (IdentityRHS)
860       return Op.getOperand(1);
861     break;
862   }
863   default:
864     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
865       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
866               Op, DemandedBits, DemandedElts, DAG, Depth))
867         return V;
868     break;
869   }
870   return SDValue();
871 }
872 
SimplifyMultipleUseDemandedBits(SDValue Op,const APInt & DemandedBits,SelectionDAG & DAG,unsigned Depth) const873 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
874     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
875     unsigned Depth) const {
876   EVT VT = Op.getValueType();
877   APInt DemandedElts = VT.isVector()
878                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
879                            : APInt(1, 1);
880   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
881                                          Depth);
882 }
883 
SimplifyMultipleUseDemandedVectorElts(SDValue Op,const APInt & DemandedElts,SelectionDAG & DAG,unsigned Depth) const884 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
885     SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
886     unsigned Depth) const {
887   APInt DemandedBits = APInt::getAllOnesValue(Op.getScalarValueSizeInBits());
888   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
889                                          Depth);
890 }
891 
892 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
893 /// result of Op are ever used downstream. If we can use this information to
894 /// simplify Op, create a new simplified DAG node and return true, returning the
895 /// original and new nodes in Old and New. Otherwise, analyze the expression and
896 /// return a mask of Known bits for the expression (used to simplify the
897 /// caller).  The Known bits may only be accurate for those bits in the
898 /// OriginalDemandedBits and OriginalDemandedElts.
SimplifyDemandedBits(SDValue Op,const APInt & OriginalDemandedBits,const APInt & OriginalDemandedElts,KnownBits & Known,TargetLoweringOpt & TLO,unsigned Depth,bool AssumeSingleUse) const899 bool TargetLowering::SimplifyDemandedBits(
900     SDValue Op, const APInt &OriginalDemandedBits,
901     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
902     unsigned Depth, bool AssumeSingleUse) const {
903   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
904   assert(Op.getScalarValueSizeInBits() == BitWidth &&
905          "Mask size mismatches value type size!");
906 
907   // Don't know anything.
908   Known = KnownBits(BitWidth);
909 
910   // TODO: We can probably do more work on calculating the known bits and
911   // simplifying the operations for scalable vectors, but for now we just
912   // bail out.
913   if (Op.getValueType().isScalableVector())
914     return false;
915 
916   unsigned NumElts = OriginalDemandedElts.getBitWidth();
917   assert((!Op.getValueType().isVector() ||
918           NumElts == Op.getValueType().getVectorNumElements()) &&
919          "Unexpected vector size");
920 
921   APInt DemandedBits = OriginalDemandedBits;
922   APInt DemandedElts = OriginalDemandedElts;
923   SDLoc dl(Op);
924   auto &DL = TLO.DAG.getDataLayout();
925 
926   // Undef operand.
927   if (Op.isUndef())
928     return false;
929 
930   if (Op.getOpcode() == ISD::Constant) {
931     // We know all of the bits for a constant!
932     Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue());
933     return false;
934   }
935 
936   if (Op.getOpcode() == ISD::ConstantFP) {
937     // We know all of the bits for a floating point constant!
938     Known = KnownBits::makeConstant(
939         cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
940     return false;
941   }
942 
943   // Other users may use these bits.
944   EVT VT = Op.getValueType();
945   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
946     if (Depth != 0) {
947       // If not at the root, Just compute the Known bits to
948       // simplify things downstream.
949       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
950       return false;
951     }
952     // If this is the root being simplified, allow it to have multiple uses,
953     // just set the DemandedBits/Elts to all bits.
954     DemandedBits = APInt::getAllOnesValue(BitWidth);
955     DemandedElts = APInt::getAllOnesValue(NumElts);
956   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
957     // Not demanding any bits/elts from Op.
958     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
959   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
960     // Limit search depth.
961     return false;
962   }
963 
964   KnownBits Known2;
965   switch (Op.getOpcode()) {
966   case ISD::TargetConstant:
967     llvm_unreachable("Can't simplify this node");
968   case ISD::SCALAR_TO_VECTOR: {
969     if (!DemandedElts[0])
970       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
971 
972     KnownBits SrcKnown;
973     SDValue Src = Op.getOperand(0);
974     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
975     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
976     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
977       return true;
978 
979     // Upper elements are undef, so only get the knownbits if we just demand
980     // the bottom element.
981     if (DemandedElts == 1)
982       Known = SrcKnown.anyextOrTrunc(BitWidth);
983     break;
984   }
985   case ISD::BUILD_VECTOR:
986     // Collect the known bits that are shared by every demanded element.
987     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
988     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
989     return false; // Don't fall through, will infinitely loop.
990   case ISD::LOAD: {
991     auto *LD = cast<LoadSDNode>(Op);
992     if (getTargetConstantFromLoad(LD)) {
993       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
994       return false; // Don't fall through, will infinitely loop.
995     }
996     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
997       // If this is a ZEXTLoad and we are looking at the loaded value.
998       EVT MemVT = LD->getMemoryVT();
999       unsigned MemBits = MemVT.getScalarSizeInBits();
1000       Known.Zero.setBitsFrom(MemBits);
1001       return false; // Don't fall through, will infinitely loop.
1002     }
1003     break;
1004   }
1005   case ISD::INSERT_VECTOR_ELT: {
1006     SDValue Vec = Op.getOperand(0);
1007     SDValue Scl = Op.getOperand(1);
1008     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1009     EVT VecVT = Vec.getValueType();
1010 
1011     // If index isn't constant, assume we need all vector elements AND the
1012     // inserted element.
1013     APInt DemandedVecElts(DemandedElts);
1014     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
1015       unsigned Idx = CIdx->getZExtValue();
1016       DemandedVecElts.clearBit(Idx);
1017 
1018       // Inserted element is not required.
1019       if (!DemandedElts[Idx])
1020         return TLO.CombineTo(Op, Vec);
1021     }
1022 
1023     KnownBits KnownScl;
1024     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1025     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1026     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1027       return true;
1028 
1029     Known = KnownScl.anyextOrTrunc(BitWidth);
1030 
1031     KnownBits KnownVec;
1032     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1033                              Depth + 1))
1034       return true;
1035 
1036     if (!!DemandedVecElts)
1037       Known = KnownBits::commonBits(Known, KnownVec);
1038 
1039     return false;
1040   }
1041   case ISD::INSERT_SUBVECTOR: {
1042     // Demand any elements from the subvector and the remainder from the src its
1043     // inserted into.
1044     SDValue Src = Op.getOperand(0);
1045     SDValue Sub = Op.getOperand(1);
1046     uint64_t Idx = Op.getConstantOperandVal(2);
1047     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1048     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1049     APInt DemandedSrcElts = DemandedElts;
1050     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
1051 
1052     KnownBits KnownSub, KnownSrc;
1053     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1054                              Depth + 1))
1055       return true;
1056     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1057                              Depth + 1))
1058       return true;
1059 
1060     Known.Zero.setAllBits();
1061     Known.One.setAllBits();
1062     if (!!DemandedSubElts)
1063       Known = KnownBits::commonBits(Known, KnownSub);
1064     if (!!DemandedSrcElts)
1065       Known = KnownBits::commonBits(Known, KnownSrc);
1066 
1067     // Attempt to avoid multi-use src if we don't need anything from it.
1068     if (!DemandedBits.isAllOnesValue() || !DemandedSubElts.isAllOnesValue() ||
1069         !DemandedSrcElts.isAllOnesValue()) {
1070       SDValue NewSub = SimplifyMultipleUseDemandedBits(
1071           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1072       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1073           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1074       if (NewSub || NewSrc) {
1075         NewSub = NewSub ? NewSub : Sub;
1076         NewSrc = NewSrc ? NewSrc : Src;
1077         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1078                                         Op.getOperand(2));
1079         return TLO.CombineTo(Op, NewOp);
1080       }
1081     }
1082     break;
1083   }
1084   case ISD::EXTRACT_SUBVECTOR: {
1085     // Offset the demanded elts by the subvector index.
1086     SDValue Src = Op.getOperand(0);
1087     if (Src.getValueType().isScalableVector())
1088       break;
1089     uint64_t Idx = Op.getConstantOperandVal(1);
1090     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1091     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1092 
1093     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1094                              Depth + 1))
1095       return true;
1096 
1097     // Attempt to avoid multi-use src if we don't need anything from it.
1098     if (!DemandedBits.isAllOnesValue() || !DemandedSrcElts.isAllOnesValue()) {
1099       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1100           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1101       if (DemandedSrc) {
1102         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1103                                         Op.getOperand(1));
1104         return TLO.CombineTo(Op, NewOp);
1105       }
1106     }
1107     break;
1108   }
1109   case ISD::CONCAT_VECTORS: {
1110     Known.Zero.setAllBits();
1111     Known.One.setAllBits();
1112     EVT SubVT = Op.getOperand(0).getValueType();
1113     unsigned NumSubVecs = Op.getNumOperands();
1114     unsigned NumSubElts = SubVT.getVectorNumElements();
1115     for (unsigned i = 0; i != NumSubVecs; ++i) {
1116       APInt DemandedSubElts =
1117           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1118       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1119                                Known2, TLO, Depth + 1))
1120         return true;
1121       // Known bits are shared by every demanded subvector element.
1122       if (!!DemandedSubElts)
1123         Known = KnownBits::commonBits(Known, Known2);
1124     }
1125     break;
1126   }
1127   case ISD::VECTOR_SHUFFLE: {
1128     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1129 
1130     // Collect demanded elements from shuffle operands..
1131     APInt DemandedLHS(NumElts, 0);
1132     APInt DemandedRHS(NumElts, 0);
1133     for (unsigned i = 0; i != NumElts; ++i) {
1134       if (!DemandedElts[i])
1135         continue;
1136       int M = ShuffleMask[i];
1137       if (M < 0) {
1138         // For UNDEF elements, we don't know anything about the common state of
1139         // the shuffle result.
1140         DemandedLHS.clearAllBits();
1141         DemandedRHS.clearAllBits();
1142         break;
1143       }
1144       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1145       if (M < (int)NumElts)
1146         DemandedLHS.setBit(M);
1147       else
1148         DemandedRHS.setBit(M - NumElts);
1149     }
1150 
1151     if (!!DemandedLHS || !!DemandedRHS) {
1152       SDValue Op0 = Op.getOperand(0);
1153       SDValue Op1 = Op.getOperand(1);
1154 
1155       Known.Zero.setAllBits();
1156       Known.One.setAllBits();
1157       if (!!DemandedLHS) {
1158         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1159                                  Depth + 1))
1160           return true;
1161         Known = KnownBits::commonBits(Known, Known2);
1162       }
1163       if (!!DemandedRHS) {
1164         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1165                                  Depth + 1))
1166           return true;
1167         Known = KnownBits::commonBits(Known, Known2);
1168       }
1169 
1170       // Attempt to avoid multi-use ops if we don't need anything from them.
1171       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1172           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1173       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1174           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1175       if (DemandedOp0 || DemandedOp1) {
1176         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1177         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1178         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1179         return TLO.CombineTo(Op, NewOp);
1180       }
1181     }
1182     break;
1183   }
1184   case ISD::AND: {
1185     SDValue Op0 = Op.getOperand(0);
1186     SDValue Op1 = Op.getOperand(1);
1187 
1188     // If the RHS is a constant, check to see if the LHS would be zero without
1189     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1190     // simplify the LHS, here we're using information from the LHS to simplify
1191     // the RHS.
1192     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1193       // Do not increment Depth here; that can cause an infinite loop.
1194       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1195       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1196       if ((LHSKnown.Zero & DemandedBits) ==
1197           (~RHSC->getAPIntValue() & DemandedBits))
1198         return TLO.CombineTo(Op, Op0);
1199 
1200       // If any of the set bits in the RHS are known zero on the LHS, shrink
1201       // the constant.
1202       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1203                                  DemandedElts, TLO))
1204         return true;
1205 
1206       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1207       // constant, but if this 'and' is only clearing bits that were just set by
1208       // the xor, then this 'and' can be eliminated by shrinking the mask of
1209       // the xor. For example, for a 32-bit X:
1210       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1211       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1212           LHSKnown.One == ~RHSC->getAPIntValue()) {
1213         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1214         return TLO.CombineTo(Op, Xor);
1215       }
1216     }
1217 
1218     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1219                              Depth + 1))
1220       return true;
1221     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1222     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1223                              Known2, TLO, Depth + 1))
1224       return true;
1225     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1226 
1227     // Attempt to avoid multi-use ops if we don't need anything from them.
1228     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1229       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1230           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1231       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1232           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1233       if (DemandedOp0 || DemandedOp1) {
1234         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1235         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1236         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1237         return TLO.CombineTo(Op, NewOp);
1238       }
1239     }
1240 
1241     // If all of the demanded bits are known one on one side, return the other.
1242     // These bits cannot contribute to the result of the 'and'.
1243     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1244       return TLO.CombineTo(Op, Op0);
1245     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1246       return TLO.CombineTo(Op, Op1);
1247     // If all of the demanded bits in the inputs are known zeros, return zero.
1248     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1249       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1250     // If the RHS is a constant, see if we can simplify it.
1251     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1252                                TLO))
1253       return true;
1254     // If the operation can be done in a smaller type, do so.
1255     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1256       return true;
1257 
1258     Known &= Known2;
1259     break;
1260   }
1261   case ISD::OR: {
1262     SDValue Op0 = Op.getOperand(0);
1263     SDValue Op1 = Op.getOperand(1);
1264 
1265     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1266                              Depth + 1))
1267       return true;
1268     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1269     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1270                              Known2, TLO, Depth + 1))
1271       return true;
1272     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1273 
1274     // Attempt to avoid multi-use ops if we don't need anything from them.
1275     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1276       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1277           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1278       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1279           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1280       if (DemandedOp0 || DemandedOp1) {
1281         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1282         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1283         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1284         return TLO.CombineTo(Op, NewOp);
1285       }
1286     }
1287 
1288     // If all of the demanded bits are known zero on one side, return the other.
1289     // These bits cannot contribute to the result of the 'or'.
1290     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1291       return TLO.CombineTo(Op, Op0);
1292     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1293       return TLO.CombineTo(Op, Op1);
1294     // If the RHS is a constant, see if we can simplify it.
1295     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1296       return true;
1297     // If the operation can be done in a smaller type, do so.
1298     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1299       return true;
1300 
1301     Known |= Known2;
1302     break;
1303   }
1304   case ISD::XOR: {
1305     SDValue Op0 = Op.getOperand(0);
1306     SDValue Op1 = Op.getOperand(1);
1307 
1308     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1309                              Depth + 1))
1310       return true;
1311     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1312     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1313                              Depth + 1))
1314       return true;
1315     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1316 
1317     // Attempt to avoid multi-use ops if we don't need anything from them.
1318     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1319       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1320           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1321       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1322           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1323       if (DemandedOp0 || DemandedOp1) {
1324         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1325         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1326         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1327         return TLO.CombineTo(Op, NewOp);
1328       }
1329     }
1330 
1331     // If all of the demanded bits are known zero on one side, return the other.
1332     // These bits cannot contribute to the result of the 'xor'.
1333     if (DemandedBits.isSubsetOf(Known.Zero))
1334       return TLO.CombineTo(Op, Op0);
1335     if (DemandedBits.isSubsetOf(Known2.Zero))
1336       return TLO.CombineTo(Op, Op1);
1337     // If the operation can be done in a smaller type, do so.
1338     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1339       return true;
1340 
1341     // If all of the unknown bits are known to be zero on one side or the other
1342     // turn this into an *inclusive* or.
1343     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1344     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1345       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1346 
1347     ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts);
1348     if (C) {
1349       // If one side is a constant, and all of the set bits in the constant are
1350       // also known set on the other side, turn this into an AND, as we know
1351       // the bits will be cleared.
1352       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1353       // NB: it is okay if more bits are known than are requested
1354       if (C->getAPIntValue() == Known2.One) {
1355         SDValue ANDC =
1356             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1357         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1358       }
1359 
1360       // If the RHS is a constant, see if we can change it. Don't alter a -1
1361       // constant because that's a 'not' op, and that is better for combining
1362       // and codegen.
1363       if (!C->isAllOnesValue() &&
1364           DemandedBits.isSubsetOf(C->getAPIntValue())) {
1365         // We're flipping all demanded bits. Flip the undemanded bits too.
1366         SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1367         return TLO.CombineTo(Op, New);
1368       }
1369     }
1370 
1371     // If we can't turn this into a 'not', try to shrink the constant.
1372     if (!C || !C->isAllOnesValue())
1373       if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1374         return true;
1375 
1376     Known ^= Known2;
1377     break;
1378   }
1379   case ISD::SELECT:
1380     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1381                              Depth + 1))
1382       return true;
1383     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1384                              Depth + 1))
1385       return true;
1386     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1387     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1388 
1389     // If the operands are constants, see if we can simplify them.
1390     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1391       return true;
1392 
1393     // Only known if known in both the LHS and RHS.
1394     Known = KnownBits::commonBits(Known, Known2);
1395     break;
1396   case ISD::SELECT_CC:
1397     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1398                              Depth + 1))
1399       return true;
1400     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1401                              Depth + 1))
1402       return true;
1403     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1404     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1405 
1406     // If the operands are constants, see if we can simplify them.
1407     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1408       return true;
1409 
1410     // Only known if known in both the LHS and RHS.
1411     Known = KnownBits::commonBits(Known, Known2);
1412     break;
1413   case ISD::SETCC: {
1414     SDValue Op0 = Op.getOperand(0);
1415     SDValue Op1 = Op.getOperand(1);
1416     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1417     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1418     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1419     // -1, we may be able to bypass the setcc.
1420     if (DemandedBits.isSignMask() &&
1421         Op0.getScalarValueSizeInBits() == BitWidth &&
1422         getBooleanContents(Op0.getValueType()) ==
1423             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1424       // If we're testing X < 0, then this compare isn't needed - just use X!
1425       // FIXME: We're limiting to integer types here, but this should also work
1426       // if we don't care about FP signed-zero. The use of SETLT with FP means
1427       // that we don't care about NaNs.
1428       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1429           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1430         return TLO.CombineTo(Op, Op0);
1431 
1432       // TODO: Should we check for other forms of sign-bit comparisons?
1433       // Examples: X <= -1, X >= 0
1434     }
1435     if (getBooleanContents(Op0.getValueType()) ==
1436             TargetLowering::ZeroOrOneBooleanContent &&
1437         BitWidth > 1)
1438       Known.Zero.setBitsFrom(1);
1439     break;
1440   }
1441   case ISD::SHL: {
1442     SDValue Op0 = Op.getOperand(0);
1443     SDValue Op1 = Op.getOperand(1);
1444     EVT ShiftVT = Op1.getValueType();
1445 
1446     if (const APInt *SA =
1447             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1448       unsigned ShAmt = SA->getZExtValue();
1449       if (ShAmt == 0)
1450         return TLO.CombineTo(Op, Op0);
1451 
1452       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1453       // single shift.  We can do this if the bottom bits (which are shifted
1454       // out) are never demanded.
1455       // TODO - support non-uniform vector amounts.
1456       if (Op0.getOpcode() == ISD::SRL) {
1457         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1458           if (const APInt *SA2 =
1459                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1460             unsigned C1 = SA2->getZExtValue();
1461             unsigned Opc = ISD::SHL;
1462             int Diff = ShAmt - C1;
1463             if (Diff < 0) {
1464               Diff = -Diff;
1465               Opc = ISD::SRL;
1466             }
1467             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1468             return TLO.CombineTo(
1469                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1470           }
1471         }
1472       }
1473 
1474       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1475       // are not demanded. This will likely allow the anyext to be folded away.
1476       // TODO - support non-uniform vector amounts.
1477       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1478         SDValue InnerOp = Op0.getOperand(0);
1479         EVT InnerVT = InnerOp.getValueType();
1480         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1481         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1482             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1483           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1484           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1485             ShTy = InnerVT;
1486           SDValue NarrowShl =
1487               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1488                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1489           return TLO.CombineTo(
1490               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1491         }
1492 
1493         // Repeat the SHL optimization above in cases where an extension
1494         // intervenes: (shl (anyext (shr x, c1)), c2) to
1495         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1496         // aren't demanded (as above) and that the shifted upper c1 bits of
1497         // x aren't demanded.
1498         // TODO - support non-uniform vector amounts.
1499         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1500             InnerOp.hasOneUse()) {
1501           if (const APInt *SA2 =
1502                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1503             unsigned InnerShAmt = SA2->getZExtValue();
1504             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1505                 DemandedBits.getActiveBits() <=
1506                     (InnerBits - InnerShAmt + ShAmt) &&
1507                 DemandedBits.countTrailingZeros() >= ShAmt) {
1508               SDValue NewSA =
1509                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1510               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1511                                                InnerOp.getOperand(0));
1512               return TLO.CombineTo(
1513                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1514             }
1515           }
1516         }
1517       }
1518 
1519       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1520       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1521                                Depth + 1))
1522         return true;
1523       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1524       Known.Zero <<= ShAmt;
1525       Known.One <<= ShAmt;
1526       // low bits known zero.
1527       Known.Zero.setLowBits(ShAmt);
1528 
1529       // Try shrinking the operation as long as the shift amount will still be
1530       // in range.
1531       if ((ShAmt < DemandedBits.getActiveBits()) &&
1532           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1533         return true;
1534     }
1535 
1536     // If we are only demanding sign bits then we can use the shift source
1537     // directly.
1538     if (const APInt *MaxSA =
1539             TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
1540       unsigned ShAmt = MaxSA->getZExtValue();
1541       unsigned NumSignBits =
1542           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1543       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1544       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1545         return TLO.CombineTo(Op, Op0);
1546     }
1547     break;
1548   }
1549   case ISD::SRL: {
1550     SDValue Op0 = Op.getOperand(0);
1551     SDValue Op1 = Op.getOperand(1);
1552     EVT ShiftVT = Op1.getValueType();
1553 
1554     if (const APInt *SA =
1555             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1556       unsigned ShAmt = SA->getZExtValue();
1557       if (ShAmt == 0)
1558         return TLO.CombineTo(Op, Op0);
1559 
1560       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1561       // single shift.  We can do this if the top bits (which are shifted out)
1562       // are never demanded.
1563       // TODO - support non-uniform vector amounts.
1564       if (Op0.getOpcode() == ISD::SHL) {
1565         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1566           if (const APInt *SA2 =
1567                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1568             unsigned C1 = SA2->getZExtValue();
1569             unsigned Opc = ISD::SRL;
1570             int Diff = ShAmt - C1;
1571             if (Diff < 0) {
1572               Diff = -Diff;
1573               Opc = ISD::SHL;
1574             }
1575             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1576             return TLO.CombineTo(
1577                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1578           }
1579         }
1580       }
1581 
1582       APInt InDemandedMask = (DemandedBits << ShAmt);
1583 
1584       // If the shift is exact, then it does demand the low bits (and knows that
1585       // they are zero).
1586       if (Op->getFlags().hasExact())
1587         InDemandedMask.setLowBits(ShAmt);
1588 
1589       // Compute the new bits that are at the top now.
1590       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1591                                Depth + 1))
1592         return true;
1593       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1594       Known.Zero.lshrInPlace(ShAmt);
1595       Known.One.lshrInPlace(ShAmt);
1596       // High bits known zero.
1597       Known.Zero.setHighBits(ShAmt);
1598     }
1599     break;
1600   }
1601   case ISD::SRA: {
1602     SDValue Op0 = Op.getOperand(0);
1603     SDValue Op1 = Op.getOperand(1);
1604     EVT ShiftVT = Op1.getValueType();
1605 
1606     // If we only want bits that already match the signbit then we don't need
1607     // to shift.
1608     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1609     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1610         NumHiDemandedBits)
1611       return TLO.CombineTo(Op, Op0);
1612 
1613     // If this is an arithmetic shift right and only the low-bit is set, we can
1614     // always convert this into a logical shr, even if the shift amount is
1615     // variable.  The low bit of the shift cannot be an input sign bit unless
1616     // the shift amount is >= the size of the datatype, which is undefined.
1617     if (DemandedBits.isOneValue())
1618       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1619 
1620     if (const APInt *SA =
1621             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1622       unsigned ShAmt = SA->getZExtValue();
1623       if (ShAmt == 0)
1624         return TLO.CombineTo(Op, Op0);
1625 
1626       APInt InDemandedMask = (DemandedBits << ShAmt);
1627 
1628       // If the shift is exact, then it does demand the low bits (and knows that
1629       // they are zero).
1630       if (Op->getFlags().hasExact())
1631         InDemandedMask.setLowBits(ShAmt);
1632 
1633       // If any of the demanded bits are produced by the sign extension, we also
1634       // demand the input sign bit.
1635       if (DemandedBits.countLeadingZeros() < ShAmt)
1636         InDemandedMask.setSignBit();
1637 
1638       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1639                                Depth + 1))
1640         return true;
1641       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1642       Known.Zero.lshrInPlace(ShAmt);
1643       Known.One.lshrInPlace(ShAmt);
1644 
1645       // If the input sign bit is known to be zero, or if none of the top bits
1646       // are demanded, turn this into an unsigned shift right.
1647       if (Known.Zero[BitWidth - ShAmt - 1] ||
1648           DemandedBits.countLeadingZeros() >= ShAmt) {
1649         SDNodeFlags Flags;
1650         Flags.setExact(Op->getFlags().hasExact());
1651         return TLO.CombineTo(
1652             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1653       }
1654 
1655       int Log2 = DemandedBits.exactLogBase2();
1656       if (Log2 >= 0) {
1657         // The bit must come from the sign.
1658         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1659         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1660       }
1661 
1662       if (Known.One[BitWidth - ShAmt - 1])
1663         // New bits are known one.
1664         Known.One.setHighBits(ShAmt);
1665 
1666       // Attempt to avoid multi-use ops if we don't need anything from them.
1667       if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1668         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1669             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1670         if (DemandedOp0) {
1671           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1672           return TLO.CombineTo(Op, NewOp);
1673         }
1674       }
1675     }
1676     break;
1677   }
1678   case ISD::FSHL:
1679   case ISD::FSHR: {
1680     SDValue Op0 = Op.getOperand(0);
1681     SDValue Op1 = Op.getOperand(1);
1682     SDValue Op2 = Op.getOperand(2);
1683     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1684 
1685     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1686       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1687 
1688       // For fshl, 0-shift returns the 1st arg.
1689       // For fshr, 0-shift returns the 2nd arg.
1690       if (Amt == 0) {
1691         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1692                                  Known, TLO, Depth + 1))
1693           return true;
1694         break;
1695       }
1696 
1697       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1698       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1699       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1700       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1701       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1702                                Depth + 1))
1703         return true;
1704       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1705                                Depth + 1))
1706         return true;
1707 
1708       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1709       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1710       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1711       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1712       Known.One |= Known2.One;
1713       Known.Zero |= Known2.Zero;
1714     }
1715 
1716     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1717     if (isPowerOf2_32(BitWidth)) {
1718       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
1719       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
1720                                Known2, TLO, Depth + 1))
1721         return true;
1722     }
1723     break;
1724   }
1725   case ISD::ROTL:
1726   case ISD::ROTR: {
1727     SDValue Op0 = Op.getOperand(0);
1728     SDValue Op1 = Op.getOperand(1);
1729 
1730     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1731     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1732       return TLO.CombineTo(Op, Op0);
1733 
1734     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1735     if (isPowerOf2_32(BitWidth)) {
1736       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
1737       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
1738                                Depth + 1))
1739         return true;
1740     }
1741     break;
1742   }
1743   case ISD::UMIN: {
1744     // Check if one arg is always less than (or equal) to the other arg.
1745     SDValue Op0 = Op.getOperand(0);
1746     SDValue Op1 = Op.getOperand(1);
1747     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1748     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1749     Known = KnownBits::umin(Known0, Known1);
1750     if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1))
1751       return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1);
1752     if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1))
1753       return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1);
1754     break;
1755   }
1756   case ISD::UMAX: {
1757     // Check if one arg is always greater than (or equal) to the other arg.
1758     SDValue Op0 = Op.getOperand(0);
1759     SDValue Op1 = Op.getOperand(1);
1760     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1761     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1762     Known = KnownBits::umax(Known0, Known1);
1763     if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
1764       return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1);
1765     if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
1766       return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1);
1767     break;
1768   }
1769   case ISD::BITREVERSE: {
1770     SDValue Src = Op.getOperand(0);
1771     APInt DemandedSrcBits = DemandedBits.reverseBits();
1772     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1773                              Depth + 1))
1774       return true;
1775     Known.One = Known2.One.reverseBits();
1776     Known.Zero = Known2.Zero.reverseBits();
1777     break;
1778   }
1779   case ISD::BSWAP: {
1780     SDValue Src = Op.getOperand(0);
1781     APInt DemandedSrcBits = DemandedBits.byteSwap();
1782     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1783                              Depth + 1))
1784       return true;
1785     Known.One = Known2.One.byteSwap();
1786     Known.Zero = Known2.Zero.byteSwap();
1787     break;
1788   }
1789   case ISD::CTPOP: {
1790     // If only 1 bit is demanded, replace with PARITY as long as we're before
1791     // op legalization.
1792     // FIXME: Limit to scalars for now.
1793     if (DemandedBits.isOneValue() && !TLO.LegalOps && !VT.isVector())
1794       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
1795                                                Op.getOperand(0)));
1796 
1797     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1798     break;
1799   }
1800   case ISD::SIGN_EXTEND_INREG: {
1801     SDValue Op0 = Op.getOperand(0);
1802     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1803     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1804 
1805     // If we only care about the highest bit, don't bother shifting right.
1806     if (DemandedBits.isSignMask()) {
1807       unsigned NumSignBits =
1808           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1809       bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
1810       // However if the input is already sign extended we expect the sign
1811       // extension to be dropped altogether later and do not simplify.
1812       if (!AlreadySignExtended) {
1813         // Compute the correct shift amount type, which must be getShiftAmountTy
1814         // for scalar types after legalization.
1815         EVT ShiftAmtTy = VT;
1816         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1817           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1818 
1819         SDValue ShiftAmt =
1820             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1821         return TLO.CombineTo(Op,
1822                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1823       }
1824     }
1825 
1826     // If none of the extended bits are demanded, eliminate the sextinreg.
1827     if (DemandedBits.getActiveBits() <= ExVTBits)
1828       return TLO.CombineTo(Op, Op0);
1829 
1830     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1831 
1832     // Since the sign extended bits are demanded, we know that the sign
1833     // bit is demanded.
1834     InputDemandedBits.setBit(ExVTBits - 1);
1835 
1836     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1837       return true;
1838     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1839 
1840     // If the sign bit of the input is known set or clear, then we know the
1841     // top bits of the result.
1842 
1843     // If the input sign bit is known zero, convert this into a zero extension.
1844     if (Known.Zero[ExVTBits - 1])
1845       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
1846 
1847     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1848     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1849       Known.One.setBitsFrom(ExVTBits);
1850       Known.Zero &= Mask;
1851     } else { // Input sign bit unknown
1852       Known.Zero &= Mask;
1853       Known.One &= Mask;
1854     }
1855     break;
1856   }
1857   case ISD::BUILD_PAIR: {
1858     EVT HalfVT = Op.getOperand(0).getValueType();
1859     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1860 
1861     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1862     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1863 
1864     KnownBits KnownLo, KnownHi;
1865 
1866     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1867       return true;
1868 
1869     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1870       return true;
1871 
1872     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1873                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1874 
1875     Known.One = KnownLo.One.zext(BitWidth) |
1876                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1877     break;
1878   }
1879   case ISD::ZERO_EXTEND:
1880   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1881     SDValue Src = Op.getOperand(0);
1882     EVT SrcVT = Src.getValueType();
1883     unsigned InBits = SrcVT.getScalarSizeInBits();
1884     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1885     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1886 
1887     // If none of the top bits are demanded, convert this into an any_extend.
1888     if (DemandedBits.getActiveBits() <= InBits) {
1889       // If we only need the non-extended bits of the bottom element
1890       // then we can just bitcast to the result.
1891       if (IsVecInReg && DemandedElts == 1 &&
1892           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1893           TLO.DAG.getDataLayout().isLittleEndian())
1894         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1895 
1896       unsigned Opc =
1897           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1898       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1899         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1900     }
1901 
1902     APInt InDemandedBits = DemandedBits.trunc(InBits);
1903     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1904     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1905                              Depth + 1))
1906       return true;
1907     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1908     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1909     Known = Known.zext(BitWidth);
1910 
1911     // Attempt to avoid multi-use ops if we don't need anything from them.
1912     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1913             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1914       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1915     break;
1916   }
1917   case ISD::SIGN_EXTEND:
1918   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1919     SDValue Src = Op.getOperand(0);
1920     EVT SrcVT = Src.getValueType();
1921     unsigned InBits = SrcVT.getScalarSizeInBits();
1922     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1923     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1924 
1925     // If none of the top bits are demanded, convert this into an any_extend.
1926     if (DemandedBits.getActiveBits() <= InBits) {
1927       // If we only need the non-extended bits of the bottom element
1928       // then we can just bitcast to the result.
1929       if (IsVecInReg && DemandedElts == 1 &&
1930           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1931           TLO.DAG.getDataLayout().isLittleEndian())
1932         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1933 
1934       unsigned Opc =
1935           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1936       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1937         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1938     }
1939 
1940     APInt InDemandedBits = DemandedBits.trunc(InBits);
1941     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1942 
1943     // Since some of the sign extended bits are demanded, we know that the sign
1944     // bit is demanded.
1945     InDemandedBits.setBit(InBits - 1);
1946 
1947     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1948                              Depth + 1))
1949       return true;
1950     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1951     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1952 
1953     // If the sign bit is known one, the top bits match.
1954     Known = Known.sext(BitWidth);
1955 
1956     // If the sign bit is known zero, convert this to a zero extend.
1957     if (Known.isNonNegative()) {
1958       unsigned Opc =
1959           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1960       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1961         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1962     }
1963 
1964     // Attempt to avoid multi-use ops if we don't need anything from them.
1965     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1966             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1967       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1968     break;
1969   }
1970   case ISD::ANY_EXTEND:
1971   case ISD::ANY_EXTEND_VECTOR_INREG: {
1972     SDValue Src = Op.getOperand(0);
1973     EVT SrcVT = Src.getValueType();
1974     unsigned InBits = SrcVT.getScalarSizeInBits();
1975     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1976     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
1977 
1978     // If we only need the bottom element then we can just bitcast.
1979     // TODO: Handle ANY_EXTEND?
1980     if (IsVecInReg && DemandedElts == 1 &&
1981         VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1982         TLO.DAG.getDataLayout().isLittleEndian())
1983       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1984 
1985     APInt InDemandedBits = DemandedBits.trunc(InBits);
1986     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1987     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1988                              Depth + 1))
1989       return true;
1990     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1991     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1992     Known = Known.anyext(BitWidth);
1993 
1994     // Attempt to avoid multi-use ops if we don't need anything from them.
1995     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1996             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1997       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1998     break;
1999   }
2000   case ISD::TRUNCATE: {
2001     SDValue Src = Op.getOperand(0);
2002 
2003     // Simplify the input, using demanded bit information, and compute the known
2004     // zero/one bits live out.
2005     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
2006     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
2007     if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
2008                              Depth + 1))
2009       return true;
2010     Known = Known.trunc(BitWidth);
2011 
2012     // Attempt to avoid multi-use ops if we don't need anything from them.
2013     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2014             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
2015       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
2016 
2017     // If the input is only used by this truncate, see if we can shrink it based
2018     // on the known demanded bits.
2019     if (Src.getNode()->hasOneUse()) {
2020       switch (Src.getOpcode()) {
2021       default:
2022         break;
2023       case ISD::SRL:
2024         // Shrink SRL by a constant if none of the high bits shifted in are
2025         // demanded.
2026         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2027           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2028           // undesirable.
2029           break;
2030 
2031         const APInt *ShAmtC =
2032             TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts);
2033         if (!ShAmtC || ShAmtC->uge(BitWidth))
2034           break;
2035         uint64_t ShVal = ShAmtC->getZExtValue();
2036 
2037         APInt HighBits =
2038             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2039         HighBits.lshrInPlace(ShVal);
2040         HighBits = HighBits.trunc(BitWidth);
2041 
2042         if (!(HighBits & DemandedBits)) {
2043           // None of the shifted in bits are needed.  Add a truncate of the
2044           // shift input, then shift it.
2045           SDValue NewShAmt = TLO.DAG.getConstant(
2046               ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes()));
2047           SDValue NewTrunc =
2048               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2049           return TLO.CombineTo(
2050               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2051         }
2052         break;
2053       }
2054     }
2055 
2056     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2057     break;
2058   }
2059   case ISD::AssertZext: {
2060     // AssertZext demands all of the high bits, plus any of the low bits
2061     // demanded by its users.
2062     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2063     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2064     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2065                              TLO, Depth + 1))
2066       return true;
2067     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2068 
2069     Known.Zero |= ~InMask;
2070     break;
2071   }
2072   case ISD::EXTRACT_VECTOR_ELT: {
2073     SDValue Src = Op.getOperand(0);
2074     SDValue Idx = Op.getOperand(1);
2075     ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2076     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2077 
2078     if (SrcEltCnt.isScalable())
2079       return false;
2080 
2081     // Demand the bits from every vector element without a constant index.
2082     unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2083     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
2084     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2085       if (CIdx->getAPIntValue().ult(NumSrcElts))
2086         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2087 
2088     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2089     // anything about the extended bits.
2090     APInt DemandedSrcBits = DemandedBits;
2091     if (BitWidth > EltBitWidth)
2092       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2093 
2094     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2095                              Depth + 1))
2096       return true;
2097 
2098     // Attempt to avoid multi-use ops if we don't need anything from them.
2099     if (!DemandedSrcBits.isAllOnesValue() ||
2100         !DemandedSrcElts.isAllOnesValue()) {
2101       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2102               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2103         SDValue NewOp =
2104             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2105         return TLO.CombineTo(Op, NewOp);
2106       }
2107     }
2108 
2109     Known = Known2;
2110     if (BitWidth > EltBitWidth)
2111       Known = Known.anyext(BitWidth);
2112     break;
2113   }
2114   case ISD::BITCAST: {
2115     SDValue Src = Op.getOperand(0);
2116     EVT SrcVT = Src.getValueType();
2117     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2118 
2119     // If this is an FP->Int bitcast and if the sign bit is the only
2120     // thing demanded, turn this into a FGETSIGN.
2121     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2122         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2123         SrcVT.isFloatingPoint()) {
2124       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2125       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2126       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2127           SrcVT != MVT::f128) {
2128         // Cannot eliminate/lower SHL for f128 yet.
2129         EVT Ty = OpVTLegal ? VT : MVT::i32;
2130         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2131         // place.  We expect the SHL to be eliminated by other optimizations.
2132         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2133         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2134         if (!OpVTLegal && OpVTSizeInBits > 32)
2135           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2136         unsigned ShVal = Op.getValueSizeInBits() - 1;
2137         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2138         return TLO.CombineTo(Op,
2139                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2140       }
2141     }
2142 
2143     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2144     // Demand the elt/bit if any of the original elts/bits are demanded.
2145     // TODO - bigendian once we have test coverage.
2146     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 &&
2147         TLO.DAG.getDataLayout().isLittleEndian()) {
2148       unsigned Scale = BitWidth / NumSrcEltBits;
2149       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2150       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2151       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2152       for (unsigned i = 0; i != Scale; ++i) {
2153         unsigned Offset = i * NumSrcEltBits;
2154         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
2155         if (!Sub.isNullValue()) {
2156           DemandedSrcBits |= Sub;
2157           for (unsigned j = 0; j != NumElts; ++j)
2158             if (DemandedElts[j])
2159               DemandedSrcElts.setBit((j * Scale) + i);
2160         }
2161       }
2162 
2163       APInt KnownSrcUndef, KnownSrcZero;
2164       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2165                                      KnownSrcZero, TLO, Depth + 1))
2166         return true;
2167 
2168       KnownBits KnownSrcBits;
2169       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2170                                KnownSrcBits, TLO, Depth + 1))
2171         return true;
2172     } else if ((NumSrcEltBits % BitWidth) == 0 &&
2173                TLO.DAG.getDataLayout().isLittleEndian()) {
2174       unsigned Scale = NumSrcEltBits / BitWidth;
2175       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2176       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2177       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2178       for (unsigned i = 0; i != NumElts; ++i)
2179         if (DemandedElts[i]) {
2180           unsigned Offset = (i % Scale) * BitWidth;
2181           DemandedSrcBits.insertBits(DemandedBits, Offset);
2182           DemandedSrcElts.setBit(i / Scale);
2183         }
2184 
2185       if (SrcVT.isVector()) {
2186         APInt KnownSrcUndef, KnownSrcZero;
2187         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2188                                        KnownSrcZero, TLO, Depth + 1))
2189           return true;
2190       }
2191 
2192       KnownBits KnownSrcBits;
2193       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2194                                KnownSrcBits, TLO, Depth + 1))
2195         return true;
2196     }
2197 
2198     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2199     // recursive call where Known may be useful to the caller.
2200     if (Depth > 0) {
2201       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2202       return false;
2203     }
2204     break;
2205   }
2206   case ISD::ADD:
2207   case ISD::MUL:
2208   case ISD::SUB: {
2209     // Add, Sub, and Mul don't demand any bits in positions beyond that
2210     // of the highest bit demanded of them.
2211     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2212     SDNodeFlags Flags = Op.getNode()->getFlags();
2213     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2214     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2215     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2216                              Depth + 1) ||
2217         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2218                              Depth + 1) ||
2219         // See if the operation should be performed at a smaller bit width.
2220         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2221       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2222         // Disable the nsw and nuw flags. We can no longer guarantee that we
2223         // won't wrap after simplification.
2224         Flags.setNoSignedWrap(false);
2225         Flags.setNoUnsignedWrap(false);
2226         SDValue NewOp =
2227             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2228         return TLO.CombineTo(Op, NewOp);
2229       }
2230       return true;
2231     }
2232 
2233     // Attempt to avoid multi-use ops if we don't need anything from them.
2234     if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
2235       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2236           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2237       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2238           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2239       if (DemandedOp0 || DemandedOp1) {
2240         Flags.setNoSignedWrap(false);
2241         Flags.setNoUnsignedWrap(false);
2242         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2243         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2244         SDValue NewOp =
2245             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2246         return TLO.CombineTo(Op, NewOp);
2247       }
2248     }
2249 
2250     // If we have a constant operand, we may be able to turn it into -1 if we
2251     // do not demand the high bits. This can make the constant smaller to
2252     // encode, allow more general folding, or match specialized instruction
2253     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2254     // is probably not useful (and could be detrimental).
2255     ConstantSDNode *C = isConstOrConstSplat(Op1);
2256     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2257     if (C && !C->isAllOnesValue() && !C->isOne() &&
2258         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
2259       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2260       // Disable the nsw and nuw flags. We can no longer guarantee that we
2261       // won't wrap after simplification.
2262       Flags.setNoSignedWrap(false);
2263       Flags.setNoUnsignedWrap(false);
2264       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2265       return TLO.CombineTo(Op, NewOp);
2266     }
2267 
2268     LLVM_FALLTHROUGH;
2269   }
2270   default:
2271     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2272       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2273                                             Known, TLO, Depth))
2274         return true;
2275       break;
2276     }
2277 
2278     // Just use computeKnownBits to compute output bits.
2279     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2280     break;
2281   }
2282 
2283   // If we know the value of all of the demanded bits, return this as a
2284   // constant.
2285   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2286     // Avoid folding to a constant if any OpaqueConstant is involved.
2287     const SDNode *N = Op.getNode();
2288     for (SDNode *Op :
2289          llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) {
2290       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2291         if (C->isOpaque())
2292           return false;
2293     }
2294     if (VT.isInteger())
2295       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2296     if (VT.isFloatingPoint())
2297       return TLO.CombineTo(
2298           Op,
2299           TLO.DAG.getConstantFP(
2300               APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
2301   }
2302 
2303   return false;
2304 }
2305 
SimplifyDemandedVectorElts(SDValue Op,const APInt & DemandedElts,APInt & KnownUndef,APInt & KnownZero,DAGCombinerInfo & DCI) const2306 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2307                                                 const APInt &DemandedElts,
2308                                                 APInt &KnownUndef,
2309                                                 APInt &KnownZero,
2310                                                 DAGCombinerInfo &DCI) const {
2311   SelectionDAG &DAG = DCI.DAG;
2312   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2313                         !DCI.isBeforeLegalizeOps());
2314 
2315   bool Simplified =
2316       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2317   if (Simplified) {
2318     DCI.AddToWorklist(Op.getNode());
2319     DCI.CommitTargetLoweringOpt(TLO);
2320   }
2321 
2322   return Simplified;
2323 }
2324 
2325 /// Given a vector binary operation and known undefined elements for each input
2326 /// operand, compute whether each element of the output is undefined.
getKnownUndefForVectorBinop(SDValue BO,SelectionDAG & DAG,const APInt & UndefOp0,const APInt & UndefOp1)2327 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2328                                          const APInt &UndefOp0,
2329                                          const APInt &UndefOp1) {
2330   EVT VT = BO.getValueType();
2331   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2332          "Vector binop only");
2333 
2334   EVT EltVT = VT.getVectorElementType();
2335   unsigned NumElts = VT.getVectorNumElements();
2336   assert(UndefOp0.getBitWidth() == NumElts &&
2337          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2338 
2339   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2340                                    const APInt &UndefVals) {
2341     if (UndefVals[Index])
2342       return DAG.getUNDEF(EltVT);
2343 
2344     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2345       // Try hard to make sure that the getNode() call is not creating temporary
2346       // nodes. Ignore opaque integers because they do not constant fold.
2347       SDValue Elt = BV->getOperand(Index);
2348       auto *C = dyn_cast<ConstantSDNode>(Elt);
2349       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2350         return Elt;
2351     }
2352 
2353     return SDValue();
2354   };
2355 
2356   APInt KnownUndef = APInt::getNullValue(NumElts);
2357   for (unsigned i = 0; i != NumElts; ++i) {
2358     // If both inputs for this element are either constant or undef and match
2359     // the element type, compute the constant/undef result for this element of
2360     // the vector.
2361     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2362     // not handle FP constants. The code within getNode() should be refactored
2363     // to avoid the danger of creating a bogus temporary node here.
2364     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2365     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2366     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2367       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2368         KnownUndef.setBit(i);
2369   }
2370   return KnownUndef;
2371 }
2372 
SimplifyDemandedVectorElts(SDValue Op,const APInt & OriginalDemandedElts,APInt & KnownUndef,APInt & KnownZero,TargetLoweringOpt & TLO,unsigned Depth,bool AssumeSingleUse) const2373 bool TargetLowering::SimplifyDemandedVectorElts(
2374     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2375     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2376     bool AssumeSingleUse) const {
2377   EVT VT = Op.getValueType();
2378   unsigned Opcode = Op.getOpcode();
2379   APInt DemandedElts = OriginalDemandedElts;
2380   unsigned NumElts = DemandedElts.getBitWidth();
2381   assert(VT.isVector() && "Expected vector op");
2382 
2383   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
2384 
2385   // TODO: For now we assume we know nothing about scalable vectors.
2386   if (VT.isScalableVector())
2387     return false;
2388 
2389   assert(VT.getVectorNumElements() == NumElts &&
2390          "Mask size mismatches value type element count!");
2391 
2392   // Undef operand.
2393   if (Op.isUndef()) {
2394     KnownUndef.setAllBits();
2395     return false;
2396   }
2397 
2398   // If Op has other users, assume that all elements are needed.
2399   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2400     DemandedElts.setAllBits();
2401 
2402   // Not demanding any elements from Op.
2403   if (DemandedElts == 0) {
2404     KnownUndef.setAllBits();
2405     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2406   }
2407 
2408   // Limit search depth.
2409   if (Depth >= SelectionDAG::MaxRecursionDepth)
2410     return false;
2411 
2412   SDLoc DL(Op);
2413   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2414 
2415   // Helper for demanding the specified elements and all the bits of both binary
2416   // operands.
2417   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
2418     SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
2419                                                            TLO.DAG, Depth + 1);
2420     SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
2421                                                            TLO.DAG, Depth + 1);
2422     if (NewOp0 || NewOp1) {
2423       SDValue NewOp = TLO.DAG.getNode(
2424           Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
2425       return TLO.CombineTo(Op, NewOp);
2426     }
2427     return false;
2428   };
2429 
2430   switch (Opcode) {
2431   case ISD::SCALAR_TO_VECTOR: {
2432     if (!DemandedElts[0]) {
2433       KnownUndef.setAllBits();
2434       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2435     }
2436     KnownUndef.setHighBits(NumElts - 1);
2437     break;
2438   }
2439   case ISD::BITCAST: {
2440     SDValue Src = Op.getOperand(0);
2441     EVT SrcVT = Src.getValueType();
2442 
2443     // We only handle vectors here.
2444     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2445     if (!SrcVT.isVector())
2446       break;
2447 
2448     // Fast handling of 'identity' bitcasts.
2449     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2450     if (NumSrcElts == NumElts)
2451       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2452                                         KnownZero, TLO, Depth + 1);
2453 
2454     APInt SrcZero, SrcUndef;
2455     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
2456 
2457     // Bitcast from 'large element' src vector to 'small element' vector, we
2458     // must demand a source element if any DemandedElt maps to it.
2459     if ((NumElts % NumSrcElts) == 0) {
2460       unsigned Scale = NumElts / NumSrcElts;
2461       for (unsigned i = 0; i != NumElts; ++i)
2462         if (DemandedElts[i])
2463           SrcDemandedElts.setBit(i / Scale);
2464 
2465       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2466                                      TLO, Depth + 1))
2467         return true;
2468 
2469       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2470       // of the large element.
2471       // TODO - bigendian once we have test coverage.
2472       if (TLO.DAG.getDataLayout().isLittleEndian()) {
2473         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2474         APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
2475         for (unsigned i = 0; i != NumElts; ++i)
2476           if (DemandedElts[i]) {
2477             unsigned Ofs = (i % Scale) * EltSizeInBits;
2478             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2479           }
2480 
2481         KnownBits Known;
2482         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2483                                  TLO, Depth + 1))
2484           return true;
2485       }
2486 
2487       // If the src element is zero/undef then all the output elements will be -
2488       // only demanded elements are guaranteed to be correct.
2489       for (unsigned i = 0; i != NumSrcElts; ++i) {
2490         if (SrcDemandedElts[i]) {
2491           if (SrcZero[i])
2492             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2493           if (SrcUndef[i])
2494             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2495         }
2496       }
2497     }
2498 
2499     // Bitcast from 'small element' src vector to 'large element' vector, we
2500     // demand all smaller source elements covered by the larger demanded element
2501     // of this vector.
2502     if ((NumSrcElts % NumElts) == 0) {
2503       unsigned Scale = NumSrcElts / NumElts;
2504       for (unsigned i = 0; i != NumElts; ++i)
2505         if (DemandedElts[i])
2506           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
2507 
2508       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2509                                      TLO, Depth + 1))
2510         return true;
2511 
2512       // If all the src elements covering an output element are zero/undef, then
2513       // the output element will be as well, assuming it was demanded.
2514       for (unsigned i = 0; i != NumElts; ++i) {
2515         if (DemandedElts[i]) {
2516           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
2517             KnownZero.setBit(i);
2518           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
2519             KnownUndef.setBit(i);
2520         }
2521       }
2522     }
2523     break;
2524   }
2525   case ISD::BUILD_VECTOR: {
2526     // Check all elements and simplify any unused elements with UNDEF.
2527     if (!DemandedElts.isAllOnesValue()) {
2528       // Don't simplify BROADCASTS.
2529       if (llvm::any_of(Op->op_values(),
2530                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2531         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2532         bool Updated = false;
2533         for (unsigned i = 0; i != NumElts; ++i) {
2534           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2535             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2536             KnownUndef.setBit(i);
2537             Updated = true;
2538           }
2539         }
2540         if (Updated)
2541           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2542       }
2543     }
2544     for (unsigned i = 0; i != NumElts; ++i) {
2545       SDValue SrcOp = Op.getOperand(i);
2546       if (SrcOp.isUndef()) {
2547         KnownUndef.setBit(i);
2548       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2549                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2550         KnownZero.setBit(i);
2551       }
2552     }
2553     break;
2554   }
2555   case ISD::CONCAT_VECTORS: {
2556     EVT SubVT = Op.getOperand(0).getValueType();
2557     unsigned NumSubVecs = Op.getNumOperands();
2558     unsigned NumSubElts = SubVT.getVectorNumElements();
2559     for (unsigned i = 0; i != NumSubVecs; ++i) {
2560       SDValue SubOp = Op.getOperand(i);
2561       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2562       APInt SubUndef, SubZero;
2563       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2564                                      Depth + 1))
2565         return true;
2566       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2567       KnownZero.insertBits(SubZero, i * NumSubElts);
2568     }
2569     break;
2570   }
2571   case ISD::INSERT_SUBVECTOR: {
2572     // Demand any elements from the subvector and the remainder from the src its
2573     // inserted into.
2574     SDValue Src = Op.getOperand(0);
2575     SDValue Sub = Op.getOperand(1);
2576     uint64_t Idx = Op.getConstantOperandVal(2);
2577     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2578     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2579     APInt DemandedSrcElts = DemandedElts;
2580     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
2581 
2582     APInt SubUndef, SubZero;
2583     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
2584                                    Depth + 1))
2585       return true;
2586 
2587     // If none of the src operand elements are demanded, replace it with undef.
2588     if (!DemandedSrcElts && !Src.isUndef())
2589       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2590                                                TLO.DAG.getUNDEF(VT), Sub,
2591                                                Op.getOperand(2)));
2592 
2593     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
2594                                    TLO, Depth + 1))
2595       return true;
2596     KnownUndef.insertBits(SubUndef, Idx);
2597     KnownZero.insertBits(SubZero, Idx);
2598 
2599     // Attempt to avoid multi-use ops if we don't need anything from them.
2600     if (!DemandedSrcElts.isAllOnesValue() ||
2601         !DemandedSubElts.isAllOnesValue()) {
2602       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2603           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2604       SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
2605           Sub, DemandedSubElts, TLO.DAG, Depth + 1);
2606       if (NewSrc || NewSub) {
2607         NewSrc = NewSrc ? NewSrc : Src;
2608         NewSub = NewSub ? NewSub : Sub;
2609         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2610                                         NewSub, Op.getOperand(2));
2611         return TLO.CombineTo(Op, NewOp);
2612       }
2613     }
2614     break;
2615   }
2616   case ISD::EXTRACT_SUBVECTOR: {
2617     // Offset the demanded elts by the subvector index.
2618     SDValue Src = Op.getOperand(0);
2619     if (Src.getValueType().isScalableVector())
2620       break;
2621     uint64_t Idx = Op.getConstantOperandVal(1);
2622     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2623     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2624 
2625     APInt SrcUndef, SrcZero;
2626     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2627                                    Depth + 1))
2628       return true;
2629     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2630     KnownZero = SrcZero.extractBits(NumElts, Idx);
2631 
2632     // Attempt to avoid multi-use ops if we don't need anything from them.
2633     if (!DemandedElts.isAllOnesValue()) {
2634       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2635           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2636       if (NewSrc) {
2637         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2638                                         Op.getOperand(1));
2639         return TLO.CombineTo(Op, NewOp);
2640       }
2641     }
2642     break;
2643   }
2644   case ISD::INSERT_VECTOR_ELT: {
2645     SDValue Vec = Op.getOperand(0);
2646     SDValue Scl = Op.getOperand(1);
2647     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2648 
2649     // For a legal, constant insertion index, if we don't need this insertion
2650     // then strip it, else remove it from the demanded elts.
2651     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2652       unsigned Idx = CIdx->getZExtValue();
2653       if (!DemandedElts[Idx])
2654         return TLO.CombineTo(Op, Vec);
2655 
2656       APInt DemandedVecElts(DemandedElts);
2657       DemandedVecElts.clearBit(Idx);
2658       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2659                                      KnownZero, TLO, Depth + 1))
2660         return true;
2661 
2662       KnownUndef.setBitVal(Idx, Scl.isUndef());
2663 
2664       KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
2665       break;
2666     }
2667 
2668     APInt VecUndef, VecZero;
2669     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2670                                    Depth + 1))
2671       return true;
2672     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2673     break;
2674   }
2675   case ISD::VSELECT: {
2676     // Try to transform the select condition based on the current demanded
2677     // elements.
2678     // TODO: If a condition element is undef, we can choose from one arm of the
2679     //       select (and if one arm is undef, then we can propagate that to the
2680     //       result).
2681     // TODO - add support for constant vselect masks (see IR version of this).
2682     APInt UnusedUndef, UnusedZero;
2683     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2684                                    UnusedZero, TLO, Depth + 1))
2685       return true;
2686 
2687     // See if we can simplify either vselect operand.
2688     APInt DemandedLHS(DemandedElts);
2689     APInt DemandedRHS(DemandedElts);
2690     APInt UndefLHS, ZeroLHS;
2691     APInt UndefRHS, ZeroRHS;
2692     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2693                                    ZeroLHS, TLO, Depth + 1))
2694       return true;
2695     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2696                                    ZeroRHS, TLO, Depth + 1))
2697       return true;
2698 
2699     KnownUndef = UndefLHS & UndefRHS;
2700     KnownZero = ZeroLHS & ZeroRHS;
2701     break;
2702   }
2703   case ISD::VECTOR_SHUFFLE: {
2704     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2705 
2706     // Collect demanded elements from shuffle operands..
2707     APInt DemandedLHS(NumElts, 0);
2708     APInt DemandedRHS(NumElts, 0);
2709     for (unsigned i = 0; i != NumElts; ++i) {
2710       int M = ShuffleMask[i];
2711       if (M < 0 || !DemandedElts[i])
2712         continue;
2713       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2714       if (M < (int)NumElts)
2715         DemandedLHS.setBit(M);
2716       else
2717         DemandedRHS.setBit(M - NumElts);
2718     }
2719 
2720     // See if we can simplify either shuffle operand.
2721     APInt UndefLHS, ZeroLHS;
2722     APInt UndefRHS, ZeroRHS;
2723     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2724                                    ZeroLHS, TLO, Depth + 1))
2725       return true;
2726     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2727                                    ZeroRHS, TLO, Depth + 1))
2728       return true;
2729 
2730     // Simplify mask using undef elements from LHS/RHS.
2731     bool Updated = false;
2732     bool IdentityLHS = true, IdentityRHS = true;
2733     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2734     for (unsigned i = 0; i != NumElts; ++i) {
2735       int &M = NewMask[i];
2736       if (M < 0)
2737         continue;
2738       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2739           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2740         Updated = true;
2741         M = -1;
2742       }
2743       IdentityLHS &= (M < 0) || (M == (int)i);
2744       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2745     }
2746 
2747     // Update legal shuffle masks based on demanded elements if it won't reduce
2748     // to Identity which can cause premature removal of the shuffle mask.
2749     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2750       SDValue LegalShuffle =
2751           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2752                                   NewMask, TLO.DAG);
2753       if (LegalShuffle)
2754         return TLO.CombineTo(Op, LegalShuffle);
2755     }
2756 
2757     // Propagate undef/zero elements from LHS/RHS.
2758     for (unsigned i = 0; i != NumElts; ++i) {
2759       int M = ShuffleMask[i];
2760       if (M < 0) {
2761         KnownUndef.setBit(i);
2762       } else if (M < (int)NumElts) {
2763         if (UndefLHS[M])
2764           KnownUndef.setBit(i);
2765         if (ZeroLHS[M])
2766           KnownZero.setBit(i);
2767       } else {
2768         if (UndefRHS[M - NumElts])
2769           KnownUndef.setBit(i);
2770         if (ZeroRHS[M - NumElts])
2771           KnownZero.setBit(i);
2772       }
2773     }
2774     break;
2775   }
2776   case ISD::ANY_EXTEND_VECTOR_INREG:
2777   case ISD::SIGN_EXTEND_VECTOR_INREG:
2778   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2779     APInt SrcUndef, SrcZero;
2780     SDValue Src = Op.getOperand(0);
2781     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2782     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2783     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2784                                    Depth + 1))
2785       return true;
2786     KnownZero = SrcZero.zextOrTrunc(NumElts);
2787     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2788 
2789     if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2790         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2791         DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
2792       // aext - if we just need the bottom element then we can bitcast.
2793       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2794     }
2795 
2796     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2797       // zext(undef) upper bits are guaranteed to be zero.
2798       if (DemandedElts.isSubsetOf(KnownUndef))
2799         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2800       KnownUndef.clearAllBits();
2801     }
2802     break;
2803   }
2804 
2805   // TODO: There are more binop opcodes that could be handled here - MIN,
2806   // MAX, saturated math, etc.
2807   case ISD::OR:
2808   case ISD::XOR:
2809   case ISD::ADD:
2810   case ISD::SUB:
2811   case ISD::FADD:
2812   case ISD::FSUB:
2813   case ISD::FMUL:
2814   case ISD::FDIV:
2815   case ISD::FREM: {
2816     SDValue Op0 = Op.getOperand(0);
2817     SDValue Op1 = Op.getOperand(1);
2818 
2819     APInt UndefRHS, ZeroRHS;
2820     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2821                                    Depth + 1))
2822       return true;
2823     APInt UndefLHS, ZeroLHS;
2824     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2825                                    Depth + 1))
2826       return true;
2827 
2828     KnownZero = ZeroLHS & ZeroRHS;
2829     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2830 
2831     // Attempt to avoid multi-use ops if we don't need anything from them.
2832     // TODO - use KnownUndef to relax the demandedelts?
2833     if (!DemandedElts.isAllOnesValue())
2834       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2835         return true;
2836     break;
2837   }
2838   case ISD::SHL:
2839   case ISD::SRL:
2840   case ISD::SRA:
2841   case ISD::ROTL:
2842   case ISD::ROTR: {
2843     SDValue Op0 = Op.getOperand(0);
2844     SDValue Op1 = Op.getOperand(1);
2845 
2846     APInt UndefRHS, ZeroRHS;
2847     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2848                                    Depth + 1))
2849       return true;
2850     APInt UndefLHS, ZeroLHS;
2851     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2852                                    Depth + 1))
2853       return true;
2854 
2855     KnownZero = ZeroLHS;
2856     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2857 
2858     // Attempt to avoid multi-use ops if we don't need anything from them.
2859     // TODO - use KnownUndef to relax the demandedelts?
2860     if (!DemandedElts.isAllOnesValue())
2861       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2862         return true;
2863     break;
2864   }
2865   case ISD::MUL:
2866   case ISD::AND: {
2867     SDValue Op0 = Op.getOperand(0);
2868     SDValue Op1 = Op.getOperand(1);
2869 
2870     APInt SrcUndef, SrcZero;
2871     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
2872                                    Depth + 1))
2873       return true;
2874     if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero,
2875                                    TLO, Depth + 1))
2876       return true;
2877 
2878     // If either side has a zero element, then the result element is zero, even
2879     // if the other is an UNDEF.
2880     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2881     // and then handle 'and' nodes with the rest of the binop opcodes.
2882     KnownZero |= SrcZero;
2883     KnownUndef &= SrcUndef;
2884     KnownUndef &= ~KnownZero;
2885 
2886     // Attempt to avoid multi-use ops if we don't need anything from them.
2887     // TODO - use KnownUndef to relax the demandedelts?
2888     if (!DemandedElts.isAllOnesValue())
2889       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2890         return true;
2891     break;
2892   }
2893   case ISD::TRUNCATE:
2894   case ISD::SIGN_EXTEND:
2895   case ISD::ZERO_EXTEND:
2896     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2897                                    KnownZero, TLO, Depth + 1))
2898       return true;
2899 
2900     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2901       // zext(undef) upper bits are guaranteed to be zero.
2902       if (DemandedElts.isSubsetOf(KnownUndef))
2903         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2904       KnownUndef.clearAllBits();
2905     }
2906     break;
2907   default: {
2908     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2909       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2910                                                   KnownZero, TLO, Depth))
2911         return true;
2912     } else {
2913       KnownBits Known;
2914       APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
2915       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2916                                TLO, Depth, AssumeSingleUse))
2917         return true;
2918     }
2919     break;
2920   }
2921   }
2922   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2923 
2924   // Constant fold all undef cases.
2925   // TODO: Handle zero cases as well.
2926   if (DemandedElts.isSubsetOf(KnownUndef))
2927     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2928 
2929   return false;
2930 }
2931 
2932 /// Determine which of the bits specified in Mask are known to be either zero or
2933 /// one and return them in the Known.
computeKnownBitsForTargetNode(const SDValue Op,KnownBits & Known,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth) const2934 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2935                                                    KnownBits &Known,
2936                                                    const APInt &DemandedElts,
2937                                                    const SelectionDAG &DAG,
2938                                                    unsigned Depth) const {
2939   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2940           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2941           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2942           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2943          "Should use MaskedValueIsZero if you don't know whether Op"
2944          " is a target node!");
2945   Known.resetAll();
2946 }
2947 
computeKnownBitsForTargetInstr(GISelKnownBits & Analysis,Register R,KnownBits & Known,const APInt & DemandedElts,const MachineRegisterInfo & MRI,unsigned Depth) const2948 void TargetLowering::computeKnownBitsForTargetInstr(
2949     GISelKnownBits &Analysis, Register R, KnownBits &Known,
2950     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
2951     unsigned Depth) const {
2952   Known.resetAll();
2953 }
2954 
computeKnownBitsForFrameIndex(const int FrameIdx,KnownBits & Known,const MachineFunction & MF) const2955 void TargetLowering::computeKnownBitsForFrameIndex(
2956   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
2957   // The low bits are known zero if the pointer is aligned.
2958   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
2959 }
2960 
computeKnownAlignForTargetInstr(GISelKnownBits & Analysis,Register R,const MachineRegisterInfo & MRI,unsigned Depth) const2961 Align TargetLowering::computeKnownAlignForTargetInstr(
2962   GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
2963   unsigned Depth) const {
2964   return Align(1);
2965 }
2966 
2967 /// This method can be implemented by targets that want to expose additional
2968 /// information about sign bits to the DAG Combiner.
ComputeNumSignBitsForTargetNode(SDValue Op,const APInt &,const SelectionDAG &,unsigned Depth) const2969 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2970                                                          const APInt &,
2971                                                          const SelectionDAG &,
2972                                                          unsigned Depth) const {
2973   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2974           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2975           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2976           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2977          "Should use ComputeNumSignBits if you don't know whether Op"
2978          " is a target node!");
2979   return 1;
2980 }
2981 
computeNumSignBitsForTargetInstr(GISelKnownBits & Analysis,Register R,const APInt & DemandedElts,const MachineRegisterInfo & MRI,unsigned Depth) const2982 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
2983   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
2984   const MachineRegisterInfo &MRI, unsigned Depth) const {
2985   return 1;
2986 }
2987 
SimplifyDemandedVectorEltsForTargetNode(SDValue Op,const APInt & DemandedElts,APInt & KnownUndef,APInt & KnownZero,TargetLoweringOpt & TLO,unsigned Depth) const2988 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
2989     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
2990     TargetLoweringOpt &TLO, unsigned Depth) const {
2991   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2992           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2993           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2994           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2995          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
2996          " is a target node!");
2997   return false;
2998 }
2999 
SimplifyDemandedBitsForTargetNode(SDValue Op,const APInt & DemandedBits,const APInt & DemandedElts,KnownBits & Known,TargetLoweringOpt & TLO,unsigned Depth) const3000 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
3001     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3002     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
3003   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3004           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3005           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3006           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3007          "Should use SimplifyDemandedBits if you don't know whether Op"
3008          " is a target node!");
3009   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
3010   return false;
3011 }
3012 
SimplifyMultipleUseDemandedBitsForTargetNode(SDValue Op,const APInt & DemandedBits,const APInt & DemandedElts,SelectionDAG & DAG,unsigned Depth) const3013 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
3014     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3015     SelectionDAG &DAG, unsigned Depth) const {
3016   assert(
3017       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3018        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3019        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3020        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3021       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3022       " is a target node!");
3023   return SDValue();
3024 }
3025 
3026 SDValue
buildLegalVectorShuffle(EVT VT,const SDLoc & DL,SDValue N0,SDValue N1,MutableArrayRef<int> Mask,SelectionDAG & DAG) const3027 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3028                                         SDValue N1, MutableArrayRef<int> Mask,
3029                                         SelectionDAG &DAG) const {
3030   bool LegalMask = isShuffleMaskLegal(Mask, VT);
3031   if (!LegalMask) {
3032     std::swap(N0, N1);
3033     ShuffleVectorSDNode::commuteMask(Mask);
3034     LegalMask = isShuffleMaskLegal(Mask, VT);
3035   }
3036 
3037   if (!LegalMask)
3038     return SDValue();
3039 
3040   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3041 }
3042 
getTargetConstantFromLoad(LoadSDNode *) const3043 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3044   return nullptr;
3045 }
3046 
isKnownNeverNaNForTargetNode(SDValue Op,const SelectionDAG & DAG,bool SNaN,unsigned Depth) const3047 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3048                                                   const SelectionDAG &DAG,
3049                                                   bool SNaN,
3050                                                   unsigned Depth) const {
3051   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3052           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3053           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3054           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3055          "Should use isKnownNeverNaN if you don't know whether Op"
3056          " is a target node!");
3057   return false;
3058 }
3059 
3060 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3061 // work with truncating build vectors and vectors with elements of less than
3062 // 8 bits.
isConstTrueVal(const SDNode * N) const3063 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
3064   if (!N)
3065     return false;
3066 
3067   APInt CVal;
3068   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
3069     CVal = CN->getAPIntValue();
3070   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
3071     auto *CN = BV->getConstantSplatNode();
3072     if (!CN)
3073       return false;
3074 
3075     // If this is a truncating build vector, truncate the splat value.
3076     // Otherwise, we may fail to match the expected values below.
3077     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
3078     CVal = CN->getAPIntValue();
3079     if (BVEltWidth < CVal.getBitWidth())
3080       CVal = CVal.trunc(BVEltWidth);
3081   } else {
3082     return false;
3083   }
3084 
3085   switch (getBooleanContents(N->getValueType(0))) {
3086   case UndefinedBooleanContent:
3087     return CVal[0];
3088   case ZeroOrOneBooleanContent:
3089     return CVal.isOneValue();
3090   case ZeroOrNegativeOneBooleanContent:
3091     return CVal.isAllOnesValue();
3092   }
3093 
3094   llvm_unreachable("Invalid boolean contents");
3095 }
3096 
isConstFalseVal(const SDNode * N) const3097 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
3098   if (!N)
3099     return false;
3100 
3101   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3102   if (!CN) {
3103     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3104     if (!BV)
3105       return false;
3106 
3107     // Only interested in constant splats, we don't care about undef
3108     // elements in identifying boolean constants and getConstantSplatNode
3109     // returns NULL if all ops are undef;
3110     CN = BV->getConstantSplatNode();
3111     if (!CN)
3112       return false;
3113   }
3114 
3115   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3116     return !CN->getAPIntValue()[0];
3117 
3118   return CN->isNullValue();
3119 }
3120 
isExtendedTrueVal(const ConstantSDNode * N,EVT VT,bool SExt) const3121 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3122                                        bool SExt) const {
3123   if (VT == MVT::i1)
3124     return N->isOne();
3125 
3126   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3127   switch (Cnt) {
3128   case TargetLowering::ZeroOrOneBooleanContent:
3129     // An extended value of 1 is always true, unless its original type is i1,
3130     // in which case it will be sign extended to -1.
3131     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3132   case TargetLowering::UndefinedBooleanContent:
3133   case TargetLowering::ZeroOrNegativeOneBooleanContent:
3134     return N->isAllOnesValue() && SExt;
3135   }
3136   llvm_unreachable("Unexpected enumeration.");
3137 }
3138 
3139 /// This helper function of SimplifySetCC tries to optimize the comparison when
3140 /// either operand of the SetCC node is a bitwise-and instruction.
foldSetCCWithAnd(EVT VT,SDValue N0,SDValue N1,ISD::CondCode Cond,const SDLoc & DL,DAGCombinerInfo & DCI) const3141 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3142                                          ISD::CondCode Cond, const SDLoc &DL,
3143                                          DAGCombinerInfo &DCI) const {
3144   // Match these patterns in any of their permutations:
3145   // (X & Y) == Y
3146   // (X & Y) != Y
3147   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3148     std::swap(N0, N1);
3149 
3150   EVT OpVT = N0.getValueType();
3151   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3152       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3153     return SDValue();
3154 
3155   SDValue X, Y;
3156   if (N0.getOperand(0) == N1) {
3157     X = N0.getOperand(1);
3158     Y = N0.getOperand(0);
3159   } else if (N0.getOperand(1) == N1) {
3160     X = N0.getOperand(0);
3161     Y = N0.getOperand(1);
3162   } else {
3163     return SDValue();
3164   }
3165 
3166   SelectionDAG &DAG = DCI.DAG;
3167   SDValue Zero = DAG.getConstant(0, DL, OpVT);
3168   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
3169     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
3170     // Note that where Y is variable and is known to have at most one bit set
3171     // (for example, if it is Z & 1) we cannot do this; the expressions are not
3172     // equivalent when Y == 0.
3173     assert(OpVT.isInteger());
3174     Cond = ISD::getSetCCInverse(Cond, OpVT);
3175     if (DCI.isBeforeLegalizeOps() ||
3176         isCondCodeLegal(Cond, N0.getSimpleValueType()))
3177       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
3178   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
3179     // If the target supports an 'and-not' or 'and-complement' logic operation,
3180     // try to use that to make a comparison operation more efficient.
3181     // But don't do this transform if the mask is a single bit because there are
3182     // more efficient ways to deal with that case (for example, 'bt' on x86 or
3183     // 'rlwinm' on PPC).
3184 
3185     // Bail out if the compare operand that we want to turn into a zero is
3186     // already a zero (otherwise, infinite loop).
3187     auto *YConst = dyn_cast<ConstantSDNode>(Y);
3188     if (YConst && YConst->isNullValue())
3189       return SDValue();
3190 
3191     // Transform this into: ~X & Y == 0.
3192     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3193     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3194     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3195   }
3196 
3197   return SDValue();
3198 }
3199 
3200 /// There are multiple IR patterns that could be checking whether certain
3201 /// truncation of a signed number would be lossy or not. The pattern which is
3202 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3203 /// We are looking for the following pattern: (KeptBits is a constant)
3204 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3205 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3206 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3207 /// We will unfold it into the natural trunc+sext pattern:
3208 ///   ((%x << C) a>> C) dstcond %x
3209 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
optimizeSetCCOfSignedTruncationCheck(EVT SCCVT,SDValue N0,SDValue N1,ISD::CondCode Cond,DAGCombinerInfo & DCI,const SDLoc & DL) const3210 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3211     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3212     const SDLoc &DL) const {
3213   // We must be comparing with a constant.
3214   ConstantSDNode *C1;
3215   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3216     return SDValue();
3217 
3218   // N0 should be:  add %x, (1 << (KeptBits-1))
3219   if (N0->getOpcode() != ISD::ADD)
3220     return SDValue();
3221 
3222   // And we must be 'add'ing a constant.
3223   ConstantSDNode *C01;
3224   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3225     return SDValue();
3226 
3227   SDValue X = N0->getOperand(0);
3228   EVT XVT = X.getValueType();
3229 
3230   // Validate constants ...
3231 
3232   APInt I1 = C1->getAPIntValue();
3233 
3234   ISD::CondCode NewCond;
3235   if (Cond == ISD::CondCode::SETULT) {
3236     NewCond = ISD::CondCode::SETEQ;
3237   } else if (Cond == ISD::CondCode::SETULE) {
3238     NewCond = ISD::CondCode::SETEQ;
3239     // But need to 'canonicalize' the constant.
3240     I1 += 1;
3241   } else if (Cond == ISD::CondCode::SETUGT) {
3242     NewCond = ISD::CondCode::SETNE;
3243     // But need to 'canonicalize' the constant.
3244     I1 += 1;
3245   } else if (Cond == ISD::CondCode::SETUGE) {
3246     NewCond = ISD::CondCode::SETNE;
3247   } else
3248     return SDValue();
3249 
3250   APInt I01 = C01->getAPIntValue();
3251 
3252   auto checkConstants = [&I1, &I01]() -> bool {
3253     // Both of them must be power-of-two, and the constant from setcc is bigger.
3254     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3255   };
3256 
3257   if (checkConstants()) {
3258     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3259   } else {
3260     // What if we invert constants? (and the target predicate)
3261     I1.negate();
3262     I01.negate();
3263     assert(XVT.isInteger());
3264     NewCond = getSetCCInverse(NewCond, XVT);
3265     if (!checkConstants())
3266       return SDValue();
3267     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3268   }
3269 
3270   // They are power-of-two, so which bit is set?
3271   const unsigned KeptBits = I1.logBase2();
3272   const unsigned KeptBitsMinusOne = I01.logBase2();
3273 
3274   // Magic!
3275   if (KeptBits != (KeptBitsMinusOne + 1))
3276     return SDValue();
3277   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3278 
3279   // We don't want to do this in every single case.
3280   SelectionDAG &DAG = DCI.DAG;
3281   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3282           XVT, KeptBits))
3283     return SDValue();
3284 
3285   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3286   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3287 
3288   // Unfold into:  ((%x << C) a>> C) cond %x
3289   // Where 'cond' will be either 'eq' or 'ne'.
3290   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3291   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3292   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3293   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3294 
3295   return T2;
3296 }
3297 
3298 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
optimizeSetCCByHoistingAndByConstFromLogicalShift(EVT SCCVT,SDValue N0,SDValue N1C,ISD::CondCode Cond,DAGCombinerInfo & DCI,const SDLoc & DL) const3299 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3300     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3301     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3302   assert(isConstOrConstSplat(N1C) &&
3303          isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() &&
3304          "Should be a comparison with 0.");
3305   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3306          "Valid only for [in]equality comparisons.");
3307 
3308   unsigned NewShiftOpcode;
3309   SDValue X, C, Y;
3310 
3311   SelectionDAG &DAG = DCI.DAG;
3312   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3313 
3314   // Look for '(C l>>/<< Y)'.
3315   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3316     // The shift should be one-use.
3317     if (!V.hasOneUse())
3318       return false;
3319     unsigned OldShiftOpcode = V.getOpcode();
3320     switch (OldShiftOpcode) {
3321     case ISD::SHL:
3322       NewShiftOpcode = ISD::SRL;
3323       break;
3324     case ISD::SRL:
3325       NewShiftOpcode = ISD::SHL;
3326       break;
3327     default:
3328       return false; // must be a logical shift.
3329     }
3330     // We should be shifting a constant.
3331     // FIXME: best to use isConstantOrConstantVector().
3332     C = V.getOperand(0);
3333     ConstantSDNode *CC =
3334         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3335     if (!CC)
3336       return false;
3337     Y = V.getOperand(1);
3338 
3339     ConstantSDNode *XC =
3340         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3341     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3342         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3343   };
3344 
3345   // LHS of comparison should be an one-use 'and'.
3346   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3347     return SDValue();
3348 
3349   X = N0.getOperand(0);
3350   SDValue Mask = N0.getOperand(1);
3351 
3352   // 'and' is commutative!
3353   if (!Match(Mask)) {
3354     std::swap(X, Mask);
3355     if (!Match(Mask))
3356       return SDValue();
3357   }
3358 
3359   EVT VT = X.getValueType();
3360 
3361   // Produce:
3362   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3363   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3364   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3365   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3366   return T2;
3367 }
3368 
3369 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3370 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3371 /// handle the commuted versions of these patterns.
foldSetCCWithBinOp(EVT VT,SDValue N0,SDValue N1,ISD::CondCode Cond,const SDLoc & DL,DAGCombinerInfo & DCI) const3372 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3373                                            ISD::CondCode Cond, const SDLoc &DL,
3374                                            DAGCombinerInfo &DCI) const {
3375   unsigned BOpcode = N0.getOpcode();
3376   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3377          "Unexpected binop");
3378   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3379 
3380   // (X + Y) == X --> Y == 0
3381   // (X - Y) == X --> Y == 0
3382   // (X ^ Y) == X --> Y == 0
3383   SelectionDAG &DAG = DCI.DAG;
3384   EVT OpVT = N0.getValueType();
3385   SDValue X = N0.getOperand(0);
3386   SDValue Y = N0.getOperand(1);
3387   if (X == N1)
3388     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3389 
3390   if (Y != N1)
3391     return SDValue();
3392 
3393   // (X + Y) == Y --> X == 0
3394   // (X ^ Y) == Y --> X == 0
3395   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3396     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3397 
3398   // The shift would not be valid if the operands are boolean (i1).
3399   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3400     return SDValue();
3401 
3402   // (X - Y) == Y --> X == Y << 1
3403   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3404                                  !DCI.isBeforeLegalize());
3405   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3406   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3407   if (!DCI.isCalledByLegalizer())
3408     DCI.AddToWorklist(YShl1.getNode());
3409   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3410 }
3411 
simplifySetCCWithCTPOP(const TargetLowering & TLI,EVT VT,SDValue N0,const APInt & C1,ISD::CondCode Cond,const SDLoc & dl,SelectionDAG & DAG)3412 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
3413                                       SDValue N0, const APInt &C1,
3414                                       ISD::CondCode Cond, const SDLoc &dl,
3415                                       SelectionDAG &DAG) {
3416   // Look through truncs that don't change the value of a ctpop.
3417   // FIXME: Add vector support? Need to be careful with setcc result type below.
3418   SDValue CTPOP = N0;
3419   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
3420       N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
3421     CTPOP = N0.getOperand(0);
3422 
3423   if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
3424     return SDValue();
3425 
3426   EVT CTVT = CTPOP.getValueType();
3427   SDValue CTOp = CTPOP.getOperand(0);
3428 
3429   // If this is a vector CTPOP, keep the CTPOP if it is legal.
3430   // TODO: Should we check if CTPOP is legal(or custom) for scalars?
3431   if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT))
3432     return SDValue();
3433 
3434   // (ctpop x) u< 2 -> (x & x-1) == 0
3435   // (ctpop x) u> 1 -> (x & x-1) != 0
3436   if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
3437     unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
3438     if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
3439       return SDValue();
3440     if (C1 == 0 && (Cond == ISD::SETULT))
3441       return SDValue(); // This is handled elsewhere.
3442 
3443     unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
3444 
3445     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3446     SDValue Result = CTOp;
3447     for (unsigned i = 0; i < Passes; i++) {
3448       SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
3449       Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
3450     }
3451     ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3452     return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
3453   }
3454 
3455   // If ctpop is not supported, expand a power-of-2 comparison based on it.
3456   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
3457     // For scalars, keep CTPOP if it is legal or custom.
3458     if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT))
3459       return SDValue();
3460     // This is based on X86's custom lowering for CTPOP which produces more
3461     // instructions than the expansion here.
3462 
3463     // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3464     // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3465     SDValue Zero = DAG.getConstant(0, dl, CTVT);
3466     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3467     assert(CTVT.isInteger());
3468     ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3469     SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3470     SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3471     SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3472     SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3473     unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3474     return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3475   }
3476 
3477   return SDValue();
3478 }
3479 
3480 /// Try to simplify a setcc built with the specified operands and cc. If it is
3481 /// unable to simplify it, return a null SDValue.
SimplifySetCC(EVT VT,SDValue N0,SDValue N1,ISD::CondCode Cond,bool foldBooleans,DAGCombinerInfo & DCI,const SDLoc & dl) const3482 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3483                                       ISD::CondCode Cond, bool foldBooleans,
3484                                       DAGCombinerInfo &DCI,
3485                                       const SDLoc &dl) const {
3486   SelectionDAG &DAG = DCI.DAG;
3487   const DataLayout &Layout = DAG.getDataLayout();
3488   EVT OpVT = N0.getValueType();
3489 
3490   // Constant fold or commute setcc.
3491   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3492     return Fold;
3493 
3494   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3495   // TODO: Handle non-splat vector constants. All undef causes trouble.
3496   // FIXME: We can't yet fold constant scalable vector splats, so avoid an
3497   // infinite loop here when we encounter one.
3498   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3499   if (isConstOrConstSplat(N0) &&
3500       (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) &&
3501       (DCI.isBeforeLegalizeOps() ||
3502        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3503     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3504 
3505   // If we have a subtract with the same 2 non-constant operands as this setcc
3506   // -- but in reverse order -- then try to commute the operands of this setcc
3507   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3508   // instruction on some targets.
3509   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3510       (DCI.isBeforeLegalizeOps() ||
3511        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3512       DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
3513       !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
3514     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3515 
3516   if (auto *N1C = isConstOrConstSplat(N1)) {
3517     const APInt &C1 = N1C->getAPIntValue();
3518 
3519     // Optimize some CTPOP cases.
3520     if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
3521       return V;
3522 
3523     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3524     // equality comparison, then we're just comparing whether X itself is
3525     // zero.
3526     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
3527         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3528         isPowerOf2_32(N0.getScalarValueSizeInBits())) {
3529       if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
3530         if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3531             ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
3532           if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3533             // (srl (ctlz x), 5) == 0  -> X != 0
3534             // (srl (ctlz x), 5) != 1  -> X != 0
3535             Cond = ISD::SETNE;
3536           } else {
3537             // (srl (ctlz x), 5) != 0  -> X == 0
3538             // (srl (ctlz x), 5) == 1  -> X == 0
3539             Cond = ISD::SETEQ;
3540           }
3541           SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3542           return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
3543                               Cond);
3544         }
3545       }
3546     }
3547   }
3548 
3549   // FIXME: Support vectors.
3550   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3551     const APInt &C1 = N1C->getAPIntValue();
3552 
3553     // (zext x) == C --> x == (trunc C)
3554     // (sext x) == C --> x == (trunc C)
3555     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3556         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3557       unsigned MinBits = N0.getValueSizeInBits();
3558       SDValue PreExt;
3559       bool Signed = false;
3560       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3561         // ZExt
3562         MinBits = N0->getOperand(0).getValueSizeInBits();
3563         PreExt = N0->getOperand(0);
3564       } else if (N0->getOpcode() == ISD::AND) {
3565         // DAGCombine turns costly ZExts into ANDs
3566         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3567           if ((C->getAPIntValue()+1).isPowerOf2()) {
3568             MinBits = C->getAPIntValue().countTrailingOnes();
3569             PreExt = N0->getOperand(0);
3570           }
3571       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3572         // SExt
3573         MinBits = N0->getOperand(0).getValueSizeInBits();
3574         PreExt = N0->getOperand(0);
3575         Signed = true;
3576       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3577         // ZEXTLOAD / SEXTLOAD
3578         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3579           MinBits = LN0->getMemoryVT().getSizeInBits();
3580           PreExt = N0;
3581         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3582           Signed = true;
3583           MinBits = LN0->getMemoryVT().getSizeInBits();
3584           PreExt = N0;
3585         }
3586       }
3587 
3588       // Figure out how many bits we need to preserve this constant.
3589       unsigned ReqdBits = Signed ?
3590         C1.getBitWidth() - C1.getNumSignBits() + 1 :
3591         C1.getActiveBits();
3592 
3593       // Make sure we're not losing bits from the constant.
3594       if (MinBits > 0 &&
3595           MinBits < C1.getBitWidth() &&
3596           MinBits >= ReqdBits) {
3597         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3598         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3599           // Will get folded away.
3600           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3601           if (MinBits == 1 && C1 == 1)
3602             // Invert the condition.
3603             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3604                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3605           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3606           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3607         }
3608 
3609         // If truncating the setcc operands is not desirable, we can still
3610         // simplify the expression in some cases:
3611         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3612         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3613         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3614         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3615         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3616         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3617         SDValue TopSetCC = N0->getOperand(0);
3618         unsigned N0Opc = N0->getOpcode();
3619         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3620         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3621             TopSetCC.getOpcode() == ISD::SETCC &&
3622             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3623             (isConstFalseVal(N1C) ||
3624              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3625 
3626           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
3627                          (!N1C->isNullValue() && Cond == ISD::SETNE);
3628 
3629           if (!Inverse)
3630             return TopSetCC;
3631 
3632           ISD::CondCode InvCond = ISD::getSetCCInverse(
3633               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3634               TopSetCC.getOperand(0).getValueType());
3635           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3636                                       TopSetCC.getOperand(1),
3637                                       InvCond);
3638         }
3639       }
3640     }
3641 
3642     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3643     // equality or unsigned, and all 1 bits of the const are in the same
3644     // partial word, see if we can shorten the load.
3645     if (DCI.isBeforeLegalize() &&
3646         !ISD::isSignedIntSetCC(Cond) &&
3647         N0.getOpcode() == ISD::AND && C1 == 0 &&
3648         N0.getNode()->hasOneUse() &&
3649         isa<LoadSDNode>(N0.getOperand(0)) &&
3650         N0.getOperand(0).getNode()->hasOneUse() &&
3651         isa<ConstantSDNode>(N0.getOperand(1))) {
3652       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3653       APInt bestMask;
3654       unsigned bestWidth = 0, bestOffset = 0;
3655       if (Lod->isSimple() && Lod->isUnindexed()) {
3656         unsigned origWidth = N0.getValueSizeInBits();
3657         unsigned maskWidth = origWidth;
3658         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3659         // 8 bits, but have to be careful...
3660         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3661           origWidth = Lod->getMemoryVT().getSizeInBits();
3662         const APInt &Mask = N0.getConstantOperandAPInt(1);
3663         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3664           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3665           for (unsigned offset=0; offset<origWidth/width; offset++) {
3666             if (Mask.isSubsetOf(newMask)) {
3667               if (Layout.isLittleEndian())
3668                 bestOffset = (uint64_t)offset * (width/8);
3669               else
3670                 bestOffset = (origWidth/width - offset - 1) * (width/8);
3671               bestMask = Mask.lshr(offset * (width/8) * 8);
3672               bestWidth = width;
3673               break;
3674             }
3675             newMask <<= width;
3676           }
3677         }
3678       }
3679       if (bestWidth) {
3680         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3681         if (newVT.isRound() &&
3682             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3683           SDValue Ptr = Lod->getBasePtr();
3684           if (bestOffset != 0)
3685             Ptr =
3686                 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl);
3687           SDValue NewLoad =
3688               DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
3689                           Lod->getPointerInfo().getWithOffset(bestOffset),
3690                           Lod->getOriginalAlign());
3691           return DAG.getSetCC(dl, VT,
3692                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3693                                       DAG.getConstant(bestMask.trunc(bestWidth),
3694                                                       dl, newVT)),
3695                               DAG.getConstant(0LL, dl, newVT), Cond);
3696         }
3697       }
3698     }
3699 
3700     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3701     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3702       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3703 
3704       // If the comparison constant has bits in the upper part, the
3705       // zero-extended value could never match.
3706       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3707                                               C1.getBitWidth() - InSize))) {
3708         switch (Cond) {
3709         case ISD::SETUGT:
3710         case ISD::SETUGE:
3711         case ISD::SETEQ:
3712           return DAG.getConstant(0, dl, VT);
3713         case ISD::SETULT:
3714         case ISD::SETULE:
3715         case ISD::SETNE:
3716           return DAG.getConstant(1, dl, VT);
3717         case ISD::SETGT:
3718         case ISD::SETGE:
3719           // True if the sign bit of C1 is set.
3720           return DAG.getConstant(C1.isNegative(), dl, VT);
3721         case ISD::SETLT:
3722         case ISD::SETLE:
3723           // True if the sign bit of C1 isn't set.
3724           return DAG.getConstant(C1.isNonNegative(), dl, VT);
3725         default:
3726           break;
3727         }
3728       }
3729 
3730       // Otherwise, we can perform the comparison with the low bits.
3731       switch (Cond) {
3732       case ISD::SETEQ:
3733       case ISD::SETNE:
3734       case ISD::SETUGT:
3735       case ISD::SETUGE:
3736       case ISD::SETULT:
3737       case ISD::SETULE: {
3738         EVT newVT = N0.getOperand(0).getValueType();
3739         if (DCI.isBeforeLegalizeOps() ||
3740             (isOperationLegal(ISD::SETCC, newVT) &&
3741              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3742           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
3743           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3744 
3745           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3746                                           NewConst, Cond);
3747           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3748         }
3749         break;
3750       }
3751       default:
3752         break; // todo, be more careful with signed comparisons
3753       }
3754     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3755                (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3756                !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
3757                                       OpVT)) {
3758       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3759       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3760       EVT ExtDstTy = N0.getValueType();
3761       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3762 
3763       // If the constant doesn't fit into the number of bits for the source of
3764       // the sign extension, it is impossible for both sides to be equal.
3765       if (C1.getMinSignedBits() > ExtSrcTyBits)
3766         return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
3767 
3768       assert(ExtDstTy == N0.getOperand(0).getValueType() &&
3769              ExtDstTy != ExtSrcTy && "Unexpected types!");
3770       APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3771       SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
3772                                    DAG.getConstant(Imm, dl, ExtDstTy));
3773       if (!DCI.isCalledByLegalizer())
3774         DCI.AddToWorklist(ZextOp.getNode());
3775       // Otherwise, make this a use of a zext.
3776       return DAG.getSetCC(dl, VT, ZextOp,
3777                           DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
3778     } else if ((N1C->isNullValue() || N1C->isOne()) &&
3779                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3780       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
3781       if (N0.getOpcode() == ISD::SETCC &&
3782           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
3783           (N0.getValueType() == MVT::i1 ||
3784            getBooleanContents(N0.getOperand(0).getValueType()) ==
3785                        ZeroOrOneBooleanContent)) {
3786         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3787         if (TrueWhenTrue)
3788           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3789         // Invert the condition.
3790         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3791         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
3792         if (DCI.isBeforeLegalizeOps() ||
3793             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3794           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3795       }
3796 
3797       if ((N0.getOpcode() == ISD::XOR ||
3798            (N0.getOpcode() == ISD::AND &&
3799             N0.getOperand(0).getOpcode() == ISD::XOR &&
3800             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3801           isOneConstant(N0.getOperand(1))) {
3802         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
3803         // can only do this if the top bits are known zero.
3804         unsigned BitWidth = N0.getValueSizeInBits();
3805         if (DAG.MaskedValueIsZero(N0,
3806                                   APInt::getHighBitsSet(BitWidth,
3807                                                         BitWidth-1))) {
3808           // Okay, get the un-inverted input value.
3809           SDValue Val;
3810           if (N0.getOpcode() == ISD::XOR) {
3811             Val = N0.getOperand(0);
3812           } else {
3813             assert(N0.getOpcode() == ISD::AND &&
3814                     N0.getOperand(0).getOpcode() == ISD::XOR);
3815             // ((X^1)&1)^1 -> X & 1
3816             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3817                               N0.getOperand(0).getOperand(0),
3818                               N0.getOperand(1));
3819           }
3820 
3821           return DAG.getSetCC(dl, VT, Val, N1,
3822                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3823         }
3824       } else if (N1C->isOne()) {
3825         SDValue Op0 = N0;
3826         if (Op0.getOpcode() == ISD::TRUNCATE)
3827           Op0 = Op0.getOperand(0);
3828 
3829         if ((Op0.getOpcode() == ISD::XOR) &&
3830             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3831             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3832           SDValue XorLHS = Op0.getOperand(0);
3833           SDValue XorRHS = Op0.getOperand(1);
3834           // Ensure that the input setccs return an i1 type or 0/1 value.
3835           if (Op0.getValueType() == MVT::i1 ||
3836               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
3837                       ZeroOrOneBooleanContent &&
3838                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
3839                         ZeroOrOneBooleanContent)) {
3840             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3841             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3842             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
3843           }
3844         }
3845         if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
3846           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3847           if (Op0.getValueType().bitsGT(VT))
3848             Op0 = DAG.getNode(ISD::AND, dl, VT,
3849                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3850                           DAG.getConstant(1, dl, VT));
3851           else if (Op0.getValueType().bitsLT(VT))
3852             Op0 = DAG.getNode(ISD::AND, dl, VT,
3853                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3854                         DAG.getConstant(1, dl, VT));
3855 
3856           return DAG.getSetCC(dl, VT, Op0,
3857                               DAG.getConstant(0, dl, Op0.getValueType()),
3858                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3859         }
3860         if (Op0.getOpcode() == ISD::AssertZext &&
3861             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3862           return DAG.getSetCC(dl, VT, Op0,
3863                               DAG.getConstant(0, dl, Op0.getValueType()),
3864                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3865       }
3866     }
3867 
3868     // Given:
3869     //   icmp eq/ne (urem %x, %y), 0
3870     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3871     //   icmp eq/ne %x, 0
3872     if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() &&
3873         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3874       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3875       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3876       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3877         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3878     }
3879 
3880     if (SDValue V =
3881             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3882       return V;
3883   }
3884 
3885   // These simplifications apply to splat vectors as well.
3886   // TODO: Handle more splat vector cases.
3887   if (auto *N1C = isConstOrConstSplat(N1)) {
3888     const APInt &C1 = N1C->getAPIntValue();
3889 
3890     APInt MinVal, MaxVal;
3891     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3892     if (ISD::isSignedIntSetCC(Cond)) {
3893       MinVal = APInt::getSignedMinValue(OperandBitSize);
3894       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3895     } else {
3896       MinVal = APInt::getMinValue(OperandBitSize);
3897       MaxVal = APInt::getMaxValue(OperandBitSize);
3898     }
3899 
3900     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3901     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3902       // X >= MIN --> true
3903       if (C1 == MinVal)
3904         return DAG.getBoolConstant(true, dl, VT, OpVT);
3905 
3906       if (!VT.isVector()) { // TODO: Support this for vectors.
3907         // X >= C0 --> X > (C0 - 1)
3908         APInt C = C1 - 1;
3909         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
3910         if ((DCI.isBeforeLegalizeOps() ||
3911              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3912             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3913                                   isLegalICmpImmediate(C.getSExtValue())))) {
3914           return DAG.getSetCC(dl, VT, N0,
3915                               DAG.getConstant(C, dl, N1.getValueType()),
3916                               NewCC);
3917         }
3918       }
3919     }
3920 
3921     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3922       // X <= MAX --> true
3923       if (C1 == MaxVal)
3924         return DAG.getBoolConstant(true, dl, VT, OpVT);
3925 
3926       // X <= C0 --> X < (C0 + 1)
3927       if (!VT.isVector()) { // TODO: Support this for vectors.
3928         APInt C = C1 + 1;
3929         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
3930         if ((DCI.isBeforeLegalizeOps() ||
3931              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3932             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3933                                   isLegalICmpImmediate(C.getSExtValue())))) {
3934           return DAG.getSetCC(dl, VT, N0,
3935                               DAG.getConstant(C, dl, N1.getValueType()),
3936                               NewCC);
3937         }
3938       }
3939     }
3940 
3941     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
3942       if (C1 == MinVal)
3943         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
3944 
3945       // TODO: Support this for vectors after legalize ops.
3946       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3947         // Canonicalize setlt X, Max --> setne X, Max
3948         if (C1 == MaxVal)
3949           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3950 
3951         // If we have setult X, 1, turn it into seteq X, 0
3952         if (C1 == MinVal+1)
3953           return DAG.getSetCC(dl, VT, N0,
3954                               DAG.getConstant(MinVal, dl, N0.getValueType()),
3955                               ISD::SETEQ);
3956       }
3957     }
3958 
3959     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
3960       if (C1 == MaxVal)
3961         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
3962 
3963       // TODO: Support this for vectors after legalize ops.
3964       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3965         // Canonicalize setgt X, Min --> setne X, Min
3966         if (C1 == MinVal)
3967           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3968 
3969         // If we have setugt X, Max-1, turn it into seteq X, Max
3970         if (C1 == MaxVal-1)
3971           return DAG.getSetCC(dl, VT, N0,
3972                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
3973                               ISD::SETEQ);
3974       }
3975     }
3976 
3977     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
3978       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3979       if (C1.isNullValue())
3980         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
3981                 VT, N0, N1, Cond, DCI, dl))
3982           return CC;
3983 
3984       // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
3985       // For example, when high 32-bits of i64 X are known clear:
3986       // all bits clear: (X | (Y<<32)) ==  0 --> (X | Y) ==  0
3987       // all bits set:   (X | (Y<<32)) == -1 --> (X & Y) == -1
3988       bool CmpZero = N1C->getAPIntValue().isNullValue();
3989       bool CmpNegOne = N1C->getAPIntValue().isAllOnesValue();
3990       if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
3991         // Match or(lo,shl(hi,bw/2)) pattern.
3992         auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
3993           unsigned EltBits = V.getScalarValueSizeInBits();
3994           if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
3995             return false;
3996           SDValue LHS = V.getOperand(0);
3997           SDValue RHS = V.getOperand(1);
3998           APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
3999           // Unshifted element must have zero upperbits.
4000           if (RHS.getOpcode() == ISD::SHL &&
4001               isa<ConstantSDNode>(RHS.getOperand(1)) &&
4002               RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4003               DAG.MaskedValueIsZero(LHS, HiBits)) {
4004             Lo = LHS;
4005             Hi = RHS.getOperand(0);
4006             return true;
4007           }
4008           if (LHS.getOpcode() == ISD::SHL &&
4009               isa<ConstantSDNode>(LHS.getOperand(1)) &&
4010               LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4011               DAG.MaskedValueIsZero(RHS, HiBits)) {
4012             Lo = RHS;
4013             Hi = LHS.getOperand(0);
4014             return true;
4015           }
4016           return false;
4017         };
4018 
4019         auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
4020           unsigned EltBits = N0.getScalarValueSizeInBits();
4021           unsigned HalfBits = EltBits / 2;
4022           APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
4023           SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
4024           SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
4025           SDValue NewN0 =
4026               DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
4027           SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
4028           return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
4029         };
4030 
4031         SDValue Lo, Hi;
4032         if (IsConcat(N0, Lo, Hi))
4033           return MergeConcat(Lo, Hi);
4034 
4035         if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
4036           SDValue Lo0, Lo1, Hi0, Hi1;
4037           if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
4038               IsConcat(N0.getOperand(1), Lo1, Hi1)) {
4039             return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
4040                                DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
4041           }
4042         }
4043       }
4044     }
4045 
4046     // If we have "setcc X, C0", check to see if we can shrink the immediate
4047     // by changing cc.
4048     // TODO: Support this for vectors after legalize ops.
4049     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4050       // SETUGT X, SINTMAX  -> SETLT X, 0
4051       // SETUGE X, SINTMIN -> SETLT X, 0
4052       if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
4053           (Cond == ISD::SETUGE && C1.isMinSignedValue()))
4054         return DAG.getSetCC(dl, VT, N0,
4055                             DAG.getConstant(0, dl, N1.getValueType()),
4056                             ISD::SETLT);
4057 
4058       // SETULT X, SINTMIN  -> SETGT X, -1
4059       // SETULE X, SINTMAX  -> SETGT X, -1
4060       if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
4061           (Cond == ISD::SETULE && C1.isMaxSignedValue()))
4062         return DAG.getSetCC(dl, VT, N0,
4063                             DAG.getAllOnesConstant(dl, N1.getValueType()),
4064                             ISD::SETGT);
4065     }
4066   }
4067 
4068   // Back to non-vector simplifications.
4069   // TODO: Can we do these for vector splats?
4070   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4071     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4072     const APInt &C1 = N1C->getAPIntValue();
4073     EVT ShValTy = N0.getValueType();
4074 
4075     // Fold bit comparisons when we can. This will result in an
4076     // incorrect value when boolean false is negative one, unless
4077     // the bitsize is 1 in which case the false value is the same
4078     // in practice regardless of the representation.
4079     if ((VT.getSizeInBits() == 1 ||
4080          getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
4081         (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4082         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
4083         N0.getOpcode() == ISD::AND) {
4084       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4085         EVT ShiftTy =
4086             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4087         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
4088           // Perform the xform if the AND RHS is a single bit.
4089           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
4090           if (AndRHS->getAPIntValue().isPowerOf2() &&
4091               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4092             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4093                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4094                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4095           }
4096         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
4097           // (X & 8) == 8  -->  (X & 8) >> 3
4098           // Perform the xform if C1 is a single bit.
4099           unsigned ShCt = C1.logBase2();
4100           if (C1.isPowerOf2() &&
4101               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4102             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4103                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4104                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4105           }
4106         }
4107       }
4108     }
4109 
4110     if (C1.getMinSignedBits() <= 64 &&
4111         !isLegalICmpImmediate(C1.getSExtValue())) {
4112       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4113       // (X & -256) == 256 -> (X >> 8) == 1
4114       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4115           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
4116         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4117           const APInt &AndRHSC = AndRHS->getAPIntValue();
4118           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
4119             unsigned ShiftBits = AndRHSC.countTrailingZeros();
4120             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4121               SDValue Shift =
4122                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
4123                             DAG.getConstant(ShiftBits, dl, ShiftTy));
4124               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
4125               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
4126             }
4127           }
4128         }
4129       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
4130                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
4131         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
4132         // X <  0x100000000 -> (X >> 32) <  1
4133         // X >= 0x100000000 -> (X >> 32) >= 1
4134         // X <= 0x0ffffffff -> (X >> 32) <  1
4135         // X >  0x0ffffffff -> (X >> 32) >= 1
4136         unsigned ShiftBits;
4137         APInt NewC = C1;
4138         ISD::CondCode NewCond = Cond;
4139         if (AdjOne) {
4140           ShiftBits = C1.countTrailingOnes();
4141           NewC = NewC + 1;
4142           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4143         } else {
4144           ShiftBits = C1.countTrailingZeros();
4145         }
4146         NewC.lshrInPlace(ShiftBits);
4147         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
4148             isLegalICmpImmediate(NewC.getSExtValue()) &&
4149             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4150           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4151                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
4152           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
4153           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
4154         }
4155       }
4156     }
4157   }
4158 
4159   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
4160     auto *CFP = cast<ConstantFPSDNode>(N1);
4161     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
4162 
4163     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
4164     // constant if knowing that the operand is non-nan is enough.  We prefer to
4165     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
4166     // materialize 0.0.
4167     if (Cond == ISD::SETO || Cond == ISD::SETUO)
4168       return DAG.getSetCC(dl, VT, N0, N0, Cond);
4169 
4170     // setcc (fneg x), C -> setcc swap(pred) x, -C
4171     if (N0.getOpcode() == ISD::FNEG) {
4172       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
4173       if (DCI.isBeforeLegalizeOps() ||
4174           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
4175         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
4176         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
4177       }
4178     }
4179 
4180     // If the condition is not legal, see if we can find an equivalent one
4181     // which is legal.
4182     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
4183       // If the comparison was an awkward floating-point == or != and one of
4184       // the comparison operands is infinity or negative infinity, convert the
4185       // condition to a less-awkward <= or >=.
4186       if (CFP->getValueAPF().isInfinity()) {
4187         bool IsNegInf = CFP->getValueAPF().isNegative();
4188         ISD::CondCode NewCond = ISD::SETCC_INVALID;
4189         switch (Cond) {
4190         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
4191         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
4192         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
4193         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
4194         default: break;
4195         }
4196         if (NewCond != ISD::SETCC_INVALID &&
4197             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
4198           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4199       }
4200     }
4201   }
4202 
4203   if (N0 == N1) {
4204     // The sext(setcc()) => setcc() optimization relies on the appropriate
4205     // constant being emitted.
4206     assert(!N0.getValueType().isInteger() &&
4207            "Integer types should be handled by FoldSetCC");
4208 
4209     bool EqTrue = ISD::isTrueWhenEqual(Cond);
4210     unsigned UOF = ISD::getUnorderedFlavor(Cond);
4211     if (UOF == 2) // FP operators that are undefined on NaNs.
4212       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4213     if (UOF == unsigned(EqTrue))
4214       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4215     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
4216     // if it is not already.
4217     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
4218     if (NewCond != Cond &&
4219         (DCI.isBeforeLegalizeOps() ||
4220                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
4221       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4222   }
4223 
4224   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4225       N0.getValueType().isInteger()) {
4226     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
4227         N0.getOpcode() == ISD::XOR) {
4228       // Simplify (X+Y) == (X+Z) -->  Y == Z
4229       if (N0.getOpcode() == N1.getOpcode()) {
4230         if (N0.getOperand(0) == N1.getOperand(0))
4231           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
4232         if (N0.getOperand(1) == N1.getOperand(1))
4233           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
4234         if (isCommutativeBinOp(N0.getOpcode())) {
4235           // If X op Y == Y op X, try other combinations.
4236           if (N0.getOperand(0) == N1.getOperand(1))
4237             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
4238                                 Cond);
4239           if (N0.getOperand(1) == N1.getOperand(0))
4240             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
4241                                 Cond);
4242         }
4243       }
4244 
4245       // If RHS is a legal immediate value for a compare instruction, we need
4246       // to be careful about increasing register pressure needlessly.
4247       bool LegalRHSImm = false;
4248 
4249       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
4250         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4251           // Turn (X+C1) == C2 --> X == C2-C1
4252           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
4253             return DAG.getSetCC(dl, VT, N0.getOperand(0),
4254                                 DAG.getConstant(RHSC->getAPIntValue()-
4255                                                 LHSR->getAPIntValue(),
4256                                 dl, N0.getValueType()), Cond);
4257           }
4258 
4259           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
4260           if (N0.getOpcode() == ISD::XOR)
4261             // If we know that all of the inverted bits are zero, don't bother
4262             // performing the inversion.
4263             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
4264               return
4265                 DAG.getSetCC(dl, VT, N0.getOperand(0),
4266                              DAG.getConstant(LHSR->getAPIntValue() ^
4267                                                RHSC->getAPIntValue(),
4268                                              dl, N0.getValueType()),
4269                              Cond);
4270         }
4271 
4272         // Turn (C1-X) == C2 --> X == C1-C2
4273         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
4274           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
4275             return
4276               DAG.getSetCC(dl, VT, N0.getOperand(1),
4277                            DAG.getConstant(SUBC->getAPIntValue() -
4278                                              RHSC->getAPIntValue(),
4279                                            dl, N0.getValueType()),
4280                            Cond);
4281           }
4282         }
4283 
4284         // Could RHSC fold directly into a compare?
4285         if (RHSC->getValueType(0).getSizeInBits() <= 64)
4286           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
4287       }
4288 
4289       // (X+Y) == X --> Y == 0 and similar folds.
4290       // Don't do this if X is an immediate that can fold into a cmp
4291       // instruction and X+Y has other uses. It could be an induction variable
4292       // chain, and the transform would increase register pressure.
4293       if (!LegalRHSImm || N0.hasOneUse())
4294         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
4295           return V;
4296     }
4297 
4298     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4299         N1.getOpcode() == ISD::XOR)
4300       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4301         return V;
4302 
4303     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4304       return V;
4305   }
4306 
4307   // Fold remainder of division by a constant.
4308   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4309       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4310     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4311 
4312     // When division is cheap or optimizing for minimum size,
4313     // fall through to DIVREM creation by skipping this fold.
4314     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) {
4315       if (N0.getOpcode() == ISD::UREM) {
4316         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4317           return Folded;
4318       } else if (N0.getOpcode() == ISD::SREM) {
4319         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4320           return Folded;
4321       }
4322     }
4323   }
4324 
4325   // Fold away ALL boolean setcc's.
4326   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4327     SDValue Temp;
4328     switch (Cond) {
4329     default: llvm_unreachable("Unknown integer setcc!");
4330     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4331       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4332       N0 = DAG.getNOT(dl, Temp, OpVT);
4333       if (!DCI.isCalledByLegalizer())
4334         DCI.AddToWorklist(Temp.getNode());
4335       break;
4336     case ISD::SETNE:  // X != Y   -->  (X^Y)
4337       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4338       break;
4339     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4340     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4341       Temp = DAG.getNOT(dl, N0, OpVT);
4342       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4343       if (!DCI.isCalledByLegalizer())
4344         DCI.AddToWorklist(Temp.getNode());
4345       break;
4346     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4347     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4348       Temp = DAG.getNOT(dl, N1, OpVT);
4349       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4350       if (!DCI.isCalledByLegalizer())
4351         DCI.AddToWorklist(Temp.getNode());
4352       break;
4353     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4354     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4355       Temp = DAG.getNOT(dl, N0, OpVT);
4356       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4357       if (!DCI.isCalledByLegalizer())
4358         DCI.AddToWorklist(Temp.getNode());
4359       break;
4360     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4361     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4362       Temp = DAG.getNOT(dl, N1, OpVT);
4363       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4364       break;
4365     }
4366     if (VT.getScalarType() != MVT::i1) {
4367       if (!DCI.isCalledByLegalizer())
4368         DCI.AddToWorklist(N0.getNode());
4369       // FIXME: If running after legalize, we probably can't do this.
4370       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4371       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4372     }
4373     return N0;
4374   }
4375 
4376   // Could not fold it.
4377   return SDValue();
4378 }
4379 
4380 /// Returns true (and the GlobalValue and the offset) if the node is a
4381 /// GlobalAddress + offset.
isGAPlusOffset(SDNode * WN,const GlobalValue * & GA,int64_t & Offset) const4382 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4383                                     int64_t &Offset) const {
4384 
4385   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4386 
4387   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4388     GA = GASD->getGlobal();
4389     Offset += GASD->getOffset();
4390     return true;
4391   }
4392 
4393   if (N->getOpcode() == ISD::ADD) {
4394     SDValue N1 = N->getOperand(0);
4395     SDValue N2 = N->getOperand(1);
4396     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4397       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4398         Offset += V->getSExtValue();
4399         return true;
4400       }
4401     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4402       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4403         Offset += V->getSExtValue();
4404         return true;
4405       }
4406     }
4407   }
4408 
4409   return false;
4410 }
4411 
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const4412 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4413                                           DAGCombinerInfo &DCI) const {
4414   // Default implementation: no optimization.
4415   return SDValue();
4416 }
4417 
4418 //===----------------------------------------------------------------------===//
4419 //  Inline Assembler Implementation Methods
4420 //===----------------------------------------------------------------------===//
4421 
4422 TargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const4423 TargetLowering::getConstraintType(StringRef Constraint) const {
4424   unsigned S = Constraint.size();
4425 
4426   if (S == 1) {
4427     switch (Constraint[0]) {
4428     default: break;
4429     case 'r':
4430       return C_RegisterClass;
4431     case 'm': // memory
4432     case 'o': // offsetable
4433     case 'V': // not offsetable
4434       return C_Memory;
4435     case 'n': // Simple Integer
4436     case 'E': // Floating Point Constant
4437     case 'F': // Floating Point Constant
4438       return C_Immediate;
4439     case 'i': // Simple Integer or Relocatable Constant
4440     case 's': // Relocatable Constant
4441     case 'p': // Address.
4442     case 'X': // Allow ANY value.
4443     case 'I': // Target registers.
4444     case 'J':
4445     case 'K':
4446     case 'L':
4447     case 'M':
4448     case 'N':
4449     case 'O':
4450     case 'P':
4451     case '<':
4452     case '>':
4453       return C_Other;
4454     }
4455   }
4456 
4457   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4458     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4459       return C_Memory;
4460     return C_Register;
4461   }
4462   return C_Unknown;
4463 }
4464 
4465 /// Try to replace an X constraint, which matches anything, with another that
4466 /// has more specific requirements based on the type of the corresponding
4467 /// operand.
LowerXConstraint(EVT ConstraintVT) const4468 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4469   if (ConstraintVT.isInteger())
4470     return "r";
4471   if (ConstraintVT.isFloatingPoint())
4472     return "f"; // works for many targets
4473   return nullptr;
4474 }
4475 
LowerAsmOutputForConstraint(SDValue & Chain,SDValue & Flag,const SDLoc & DL,const AsmOperandInfo & OpInfo,SelectionDAG & DAG) const4476 SDValue TargetLowering::LowerAsmOutputForConstraint(
4477     SDValue &Chain, SDValue &Flag, const SDLoc &DL,
4478     const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
4479   return SDValue();
4480 }
4481 
4482 /// Lower the specified operand into the Ops vector.
4483 /// If it is invalid, don't add anything to Ops.
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const4484 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4485                                                   std::string &Constraint,
4486                                                   std::vector<SDValue> &Ops,
4487                                                   SelectionDAG &DAG) const {
4488 
4489   if (Constraint.length() > 1) return;
4490 
4491   char ConstraintLetter = Constraint[0];
4492   switch (ConstraintLetter) {
4493   default: break;
4494   case 'X':     // Allows any operand; labels (basic block) use this.
4495     if (Op.getOpcode() == ISD::BasicBlock ||
4496         Op.getOpcode() == ISD::TargetBlockAddress) {
4497       Ops.push_back(Op);
4498       return;
4499     }
4500     LLVM_FALLTHROUGH;
4501   case 'i':    // Simple Integer or Relocatable Constant
4502   case 'n':    // Simple Integer
4503   case 's': {  // Relocatable Constant
4504 
4505     GlobalAddressSDNode *GA;
4506     ConstantSDNode *C;
4507     BlockAddressSDNode *BA;
4508     uint64_t Offset = 0;
4509 
4510     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4511     // etc., since getelementpointer is variadic. We can't use
4512     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4513     // while in this case the GA may be furthest from the root node which is
4514     // likely an ISD::ADD.
4515     while (1) {
4516       if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4517         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4518                                                  GA->getValueType(0),
4519                                                  Offset + GA->getOffset()));
4520         return;
4521       }
4522       if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') {
4523         // gcc prints these as sign extended.  Sign extend value to 64 bits
4524         // now; without this it would get ZExt'd later in
4525         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4526         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4527         BooleanContent BCont = getBooleanContents(MVT::i64);
4528         ISD::NodeType ExtOpc =
4529             IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND;
4530         int64_t ExtVal =
4531             ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue();
4532         Ops.push_back(
4533             DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64));
4534         return;
4535       }
4536       if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4537         Ops.push_back(DAG.getTargetBlockAddress(
4538             BA->getBlockAddress(), BA->getValueType(0),
4539             Offset + BA->getOffset(), BA->getTargetFlags()));
4540         return;
4541       }
4542       const unsigned OpCode = Op.getOpcode();
4543       if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4544         if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4545           Op = Op.getOperand(1);
4546         // Subtraction is not commutative.
4547         else if (OpCode == ISD::ADD &&
4548                  (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4549           Op = Op.getOperand(0);
4550         else
4551           return;
4552         Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4553         continue;
4554       }
4555       return;
4556     }
4557     break;
4558   }
4559   }
4560 }
4561 
4562 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * RI,StringRef Constraint,MVT VT) const4563 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4564                                              StringRef Constraint,
4565                                              MVT VT) const {
4566   if (Constraint.empty() || Constraint[0] != '{')
4567     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4568   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4569 
4570   // Remove the braces from around the name.
4571   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4572 
4573   std::pair<unsigned, const TargetRegisterClass *> R =
4574       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4575 
4576   // Figure out which register class contains this reg.
4577   for (const TargetRegisterClass *RC : RI->regclasses()) {
4578     // If none of the value types for this register class are valid, we
4579     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4580     if (!isLegalRC(*RI, *RC))
4581       continue;
4582 
4583     for (const MCPhysReg &PR : *RC) {
4584       if (RegName.equals_lower(RI->getRegAsmName(PR))) {
4585         std::pair<unsigned, const TargetRegisterClass *> S =
4586             std::make_pair(PR, RC);
4587 
4588         // If this register class has the requested value type, return it,
4589         // otherwise keep searching and return the first class found
4590         // if no other is found which explicitly has the requested type.
4591         if (RI->isTypeLegalForClass(*RC, VT))
4592           return S;
4593         if (!R.second)
4594           R = S;
4595       }
4596     }
4597   }
4598 
4599   return R;
4600 }
4601 
4602 //===----------------------------------------------------------------------===//
4603 // Constraint Selection.
4604 
4605 /// Return true of this is an input operand that is a matching constraint like
4606 /// "4".
isMatchingInputConstraint() const4607 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4608   assert(!ConstraintCode.empty() && "No known constraint!");
4609   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4610 }
4611 
4612 /// If this is an input matching constraint, this method returns the output
4613 /// operand it matches.
getMatchedOperand() const4614 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4615   assert(!ConstraintCode.empty() && "No known constraint!");
4616   return atoi(ConstraintCode.c_str());
4617 }
4618 
4619 /// Split up the constraint string from the inline assembly value into the
4620 /// specific constraints and their prefixes, and also tie in the associated
4621 /// operand values.
4622 /// If this returns an empty vector, and if the constraint string itself
4623 /// isn't empty, there was an error parsing.
4624 TargetLowering::AsmOperandInfoVector
ParseConstraints(const DataLayout & DL,const TargetRegisterInfo * TRI,const CallBase & Call) const4625 TargetLowering::ParseConstraints(const DataLayout &DL,
4626                                  const TargetRegisterInfo *TRI,
4627                                  const CallBase &Call) const {
4628   /// Information about all of the constraints.
4629   AsmOperandInfoVector ConstraintOperands;
4630   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
4631   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4632 
4633   // Do a prepass over the constraints, canonicalizing them, and building up the
4634   // ConstraintOperands list.
4635   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4636   unsigned ResNo = 0; // ResNo - The result number of the next output.
4637 
4638   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4639     ConstraintOperands.emplace_back(std::move(CI));
4640     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4641 
4642     // Update multiple alternative constraint count.
4643     if (OpInfo.multipleAlternatives.size() > maCount)
4644       maCount = OpInfo.multipleAlternatives.size();
4645 
4646     OpInfo.ConstraintVT = MVT::Other;
4647 
4648     // Compute the value type for each operand.
4649     switch (OpInfo.Type) {
4650     case InlineAsm::isOutput:
4651       // Indirect outputs just consume an argument.
4652       if (OpInfo.isIndirect) {
4653         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4654         break;
4655       }
4656 
4657       // The return value of the call is this value.  As such, there is no
4658       // corresponding argument.
4659       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
4660       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
4661         OpInfo.ConstraintVT =
4662             getSimpleValueType(DL, STy->getElementType(ResNo));
4663       } else {
4664         assert(ResNo == 0 && "Asm only has one result!");
4665         OpInfo.ConstraintVT = getSimpleValueType(DL, Call.getType());
4666       }
4667       ++ResNo;
4668       break;
4669     case InlineAsm::isInput:
4670       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4671       break;
4672     case InlineAsm::isClobber:
4673       // Nothing to do.
4674       break;
4675     }
4676 
4677     if (OpInfo.CallOperandVal) {
4678       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4679       if (OpInfo.isIndirect) {
4680         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4681         if (!PtrTy)
4682           report_fatal_error("Indirect operand for inline asm not a pointer!");
4683         OpTy = PtrTy->getElementType();
4684       }
4685 
4686       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4687       if (StructType *STy = dyn_cast<StructType>(OpTy))
4688         if (STy->getNumElements() == 1)
4689           OpTy = STy->getElementType(0);
4690 
4691       // If OpTy is not a single value, it may be a struct/union that we
4692       // can tile with integers.
4693       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4694         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4695         switch (BitSize) {
4696         default: break;
4697         case 1:
4698         case 8:
4699         case 16:
4700         case 32:
4701         case 64:
4702         case 128:
4703           OpInfo.ConstraintVT =
4704               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4705           break;
4706         }
4707       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4708         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4709         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4710       } else {
4711         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4712       }
4713     }
4714   }
4715 
4716   // If we have multiple alternative constraints, select the best alternative.
4717   if (!ConstraintOperands.empty()) {
4718     if (maCount) {
4719       unsigned bestMAIndex = 0;
4720       int bestWeight = -1;
4721       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
4722       int weight = -1;
4723       unsigned maIndex;
4724       // Compute the sums of the weights for each alternative, keeping track
4725       // of the best (highest weight) one so far.
4726       for (maIndex = 0; maIndex < maCount; ++maIndex) {
4727         int weightSum = 0;
4728         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4729              cIndex != eIndex; ++cIndex) {
4730           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4731           if (OpInfo.Type == InlineAsm::isClobber)
4732             continue;
4733 
4734           // If this is an output operand with a matching input operand,
4735           // look up the matching input. If their types mismatch, e.g. one
4736           // is an integer, the other is floating point, or their sizes are
4737           // different, flag it as an maCantMatch.
4738           if (OpInfo.hasMatchingInput()) {
4739             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4740             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4741               if ((OpInfo.ConstraintVT.isInteger() !=
4742                    Input.ConstraintVT.isInteger()) ||
4743                   (OpInfo.ConstraintVT.getSizeInBits() !=
4744                    Input.ConstraintVT.getSizeInBits())) {
4745                 weightSum = -1; // Can't match.
4746                 break;
4747               }
4748             }
4749           }
4750           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4751           if (weight == -1) {
4752             weightSum = -1;
4753             break;
4754           }
4755           weightSum += weight;
4756         }
4757         // Update best.
4758         if (weightSum > bestWeight) {
4759           bestWeight = weightSum;
4760           bestMAIndex = maIndex;
4761         }
4762       }
4763 
4764       // Now select chosen alternative in each constraint.
4765       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4766            cIndex != eIndex; ++cIndex) {
4767         AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
4768         if (cInfo.Type == InlineAsm::isClobber)
4769           continue;
4770         cInfo.selectAlternative(bestMAIndex);
4771       }
4772     }
4773   }
4774 
4775   // Check and hook up tied operands, choose constraint code to use.
4776   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4777        cIndex != eIndex; ++cIndex) {
4778     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4779 
4780     // If this is an output operand with a matching input operand, look up the
4781     // matching input. If their types mismatch, e.g. one is an integer, the
4782     // other is floating point, or their sizes are different, flag it as an
4783     // error.
4784     if (OpInfo.hasMatchingInput()) {
4785       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4786 
4787       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4788         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4789             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4790                                          OpInfo.ConstraintVT);
4791         std::pair<unsigned, const TargetRegisterClass *> InputRC =
4792             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4793                                          Input.ConstraintVT);
4794         if ((OpInfo.ConstraintVT.isInteger() !=
4795              Input.ConstraintVT.isInteger()) ||
4796             (MatchRC.second != InputRC.second)) {
4797           report_fatal_error("Unsupported asm: input constraint"
4798                              " with a matching output constraint of"
4799                              " incompatible type!");
4800         }
4801       }
4802     }
4803   }
4804 
4805   return ConstraintOperands;
4806 }
4807 
4808 /// Return an integer indicating how general CT is.
getConstraintGenerality(TargetLowering::ConstraintType CT)4809 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4810   switch (CT) {
4811   case TargetLowering::C_Immediate:
4812   case TargetLowering::C_Other:
4813   case TargetLowering::C_Unknown:
4814     return 0;
4815   case TargetLowering::C_Register:
4816     return 1;
4817   case TargetLowering::C_RegisterClass:
4818     return 2;
4819   case TargetLowering::C_Memory:
4820     return 3;
4821   }
4822   llvm_unreachable("Invalid constraint type");
4823 }
4824 
4825 /// Examine constraint type and operand type and determine a weight value.
4826 /// This object must already have been set up with the operand type
4827 /// and the current alternative constraint selected.
4828 TargetLowering::ConstraintWeight
getMultipleConstraintMatchWeight(AsmOperandInfo & info,int maIndex) const4829   TargetLowering::getMultipleConstraintMatchWeight(
4830     AsmOperandInfo &info, int maIndex) const {
4831   InlineAsm::ConstraintCodeVector *rCodes;
4832   if (maIndex >= (int)info.multipleAlternatives.size())
4833     rCodes = &info.Codes;
4834   else
4835     rCodes = &info.multipleAlternatives[maIndex].Codes;
4836   ConstraintWeight BestWeight = CW_Invalid;
4837 
4838   // Loop over the options, keeping track of the most general one.
4839   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
4840     ConstraintWeight weight =
4841       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
4842     if (weight > BestWeight)
4843       BestWeight = weight;
4844   }
4845 
4846   return BestWeight;
4847 }
4848 
4849 /// Examine constraint type and operand type and determine a weight value.
4850 /// This object must already have been set up with the operand type
4851 /// and the current alternative constraint selected.
4852 TargetLowering::ConstraintWeight
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const4853   TargetLowering::getSingleConstraintMatchWeight(
4854     AsmOperandInfo &info, const char *constraint) const {
4855   ConstraintWeight weight = CW_Invalid;
4856   Value *CallOperandVal = info.CallOperandVal;
4857     // If we don't have a value, we can't do a match,
4858     // but allow it at the lowest weight.
4859   if (!CallOperandVal)
4860     return CW_Default;
4861   // Look at the constraint type.
4862   switch (*constraint) {
4863     case 'i': // immediate integer.
4864     case 'n': // immediate integer with a known value.
4865       if (isa<ConstantInt>(CallOperandVal))
4866         weight = CW_Constant;
4867       break;
4868     case 's': // non-explicit intregal immediate.
4869       if (isa<GlobalValue>(CallOperandVal))
4870         weight = CW_Constant;
4871       break;
4872     case 'E': // immediate float if host format.
4873     case 'F': // immediate float.
4874       if (isa<ConstantFP>(CallOperandVal))
4875         weight = CW_Constant;
4876       break;
4877     case '<': // memory operand with autodecrement.
4878     case '>': // memory operand with autoincrement.
4879     case 'm': // memory operand.
4880     case 'o': // offsettable memory operand
4881     case 'V': // non-offsettable memory operand
4882       weight = CW_Memory;
4883       break;
4884     case 'r': // general register.
4885     case 'g': // general register, memory operand or immediate integer.
4886               // note: Clang converts "g" to "imr".
4887       if (CallOperandVal->getType()->isIntegerTy())
4888         weight = CW_Register;
4889       break;
4890     case 'X': // any operand.
4891   default:
4892     weight = CW_Default;
4893     break;
4894   }
4895   return weight;
4896 }
4897 
4898 /// If there are multiple different constraints that we could pick for this
4899 /// operand (e.g. "imr") try to pick the 'best' one.
4900 /// This is somewhat tricky: constraints fall into four classes:
4901 ///    Other         -> immediates and magic values
4902 ///    Register      -> one specific register
4903 ///    RegisterClass -> a group of regs
4904 ///    Memory        -> memory
4905 /// Ideally, we would pick the most specific constraint possible: if we have
4906 /// something that fits into a register, we would pick it.  The problem here
4907 /// is that if we have something that could either be in a register or in
4908 /// memory that use of the register could cause selection of *other*
4909 /// operands to fail: they might only succeed if we pick memory.  Because of
4910 /// this the heuristic we use is:
4911 ///
4912 ///  1) If there is an 'other' constraint, and if the operand is valid for
4913 ///     that constraint, use it.  This makes us take advantage of 'i'
4914 ///     constraints when available.
4915 ///  2) Otherwise, pick the most general constraint present.  This prefers
4916 ///     'm' over 'r', for example.
4917 ///
ChooseConstraint(TargetLowering::AsmOperandInfo & OpInfo,const TargetLowering & TLI,SDValue Op,SelectionDAG * DAG)4918 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
4919                              const TargetLowering &TLI,
4920                              SDValue Op, SelectionDAG *DAG) {
4921   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
4922   unsigned BestIdx = 0;
4923   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
4924   int BestGenerality = -1;
4925 
4926   // Loop over the options, keeping track of the most general one.
4927   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
4928     TargetLowering::ConstraintType CType =
4929       TLI.getConstraintType(OpInfo.Codes[i]);
4930 
4931     // Indirect 'other' or 'immediate' constraints are not allowed.
4932     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
4933                                CType == TargetLowering::C_Register ||
4934                                CType == TargetLowering::C_RegisterClass))
4935       continue;
4936 
4937     // If this is an 'other' or 'immediate' constraint, see if the operand is
4938     // valid for it. For example, on X86 we might have an 'rI' constraint. If
4939     // the operand is an integer in the range [0..31] we want to use I (saving a
4940     // load of a register), otherwise we must use 'r'.
4941     if ((CType == TargetLowering::C_Other ||
4942          CType == TargetLowering::C_Immediate) && Op.getNode()) {
4943       assert(OpInfo.Codes[i].size() == 1 &&
4944              "Unhandled multi-letter 'other' constraint");
4945       std::vector<SDValue> ResultOps;
4946       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
4947                                        ResultOps, *DAG);
4948       if (!ResultOps.empty()) {
4949         BestType = CType;
4950         BestIdx = i;
4951         break;
4952       }
4953     }
4954 
4955     // Things with matching constraints can only be registers, per gcc
4956     // documentation.  This mainly affects "g" constraints.
4957     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
4958       continue;
4959 
4960     // This constraint letter is more general than the previous one, use it.
4961     int Generality = getConstraintGenerality(CType);
4962     if (Generality > BestGenerality) {
4963       BestType = CType;
4964       BestIdx = i;
4965       BestGenerality = Generality;
4966     }
4967   }
4968 
4969   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
4970   OpInfo.ConstraintType = BestType;
4971 }
4972 
4973 /// Determines the constraint code and constraint type to use for the specific
4974 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
ComputeConstraintToUse(AsmOperandInfo & OpInfo,SDValue Op,SelectionDAG * DAG) const4975 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
4976                                             SDValue Op,
4977                                             SelectionDAG *DAG) const {
4978   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
4979 
4980   // Single-letter constraints ('r') are very common.
4981   if (OpInfo.Codes.size() == 1) {
4982     OpInfo.ConstraintCode = OpInfo.Codes[0];
4983     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4984   } else {
4985     ChooseConstraint(OpInfo, *this, Op, DAG);
4986   }
4987 
4988   // 'X' matches anything.
4989   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
4990     // Labels and constants are handled elsewhere ('X' is the only thing
4991     // that matches labels).  For Functions, the type here is the type of
4992     // the result, which is not what we want to look at; leave them alone.
4993     Value *v = OpInfo.CallOperandVal;
4994     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
4995       OpInfo.CallOperandVal = v;
4996       return;
4997     }
4998 
4999     if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
5000       return;
5001 
5002     // Otherwise, try to resolve it to something we know about by looking at
5003     // the actual operand type.
5004     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
5005       OpInfo.ConstraintCode = Repl;
5006       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5007     }
5008   }
5009 }
5010 
5011 /// Given an exact SDIV by a constant, create a multiplication
5012 /// with the multiplicative inverse of the constant.
BuildExactSDIV(const TargetLowering & TLI,SDNode * N,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDNode * > & Created)5013 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
5014                               const SDLoc &dl, SelectionDAG &DAG,
5015                               SmallVectorImpl<SDNode *> &Created) {
5016   SDValue Op0 = N->getOperand(0);
5017   SDValue Op1 = N->getOperand(1);
5018   EVT VT = N->getValueType(0);
5019   EVT SVT = VT.getScalarType();
5020   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
5021   EVT ShSVT = ShVT.getScalarType();
5022 
5023   bool UseSRA = false;
5024   SmallVector<SDValue, 16> Shifts, Factors;
5025 
5026   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5027     if (C->isNullValue())
5028       return false;
5029     APInt Divisor = C->getAPIntValue();
5030     unsigned Shift = Divisor.countTrailingZeros();
5031     if (Shift) {
5032       Divisor.ashrInPlace(Shift);
5033       UseSRA = true;
5034     }
5035     // Calculate the multiplicative inverse, using Newton's method.
5036     APInt t;
5037     APInt Factor = Divisor;
5038     while ((t = Divisor * Factor) != 1)
5039       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
5040     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
5041     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
5042     return true;
5043   };
5044 
5045   // Collect all magic values from the build vector.
5046   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
5047     return SDValue();
5048 
5049   SDValue Shift, Factor;
5050   if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
5051     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5052     Factor = DAG.getBuildVector(VT, dl, Factors);
5053   } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
5054     assert(Shifts.size() == 1 && Factors.size() == 1 &&
5055            "Expected matchUnaryPredicate to return one element for scalable "
5056            "vectors");
5057     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5058     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5059   } else {
5060     assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
5061     Shift = Shifts[0];
5062     Factor = Factors[0];
5063   }
5064 
5065   SDValue Res = Op0;
5066 
5067   // Shift the value upfront if it is even, so the LSB is one.
5068   if (UseSRA) {
5069     // TODO: For UDIV use SRL instead of SRA.
5070     SDNodeFlags Flags;
5071     Flags.setExact(true);
5072     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
5073     Created.push_back(Res.getNode());
5074   }
5075 
5076   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
5077 }
5078 
BuildSDIVPow2(SDNode * N,const APInt & Divisor,SelectionDAG & DAG,SmallVectorImpl<SDNode * > & Created) const5079 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
5080                               SelectionDAG &DAG,
5081                               SmallVectorImpl<SDNode *> &Created) const {
5082   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5083   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5084   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5085     return SDValue(N, 0); // Lower SDIV as SDIV
5086   return SDValue();
5087 }
5088 
5089 /// Given an ISD::SDIV node expressing a divide by constant,
5090 /// return a DAG expression to select that will generate the same value by
5091 /// multiplying by a magic number.
5092 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
BuildSDIV(SDNode * N,SelectionDAG & DAG,bool IsAfterLegalization,SmallVectorImpl<SDNode * > & Created) const5093 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
5094                                   bool IsAfterLegalization,
5095                                   SmallVectorImpl<SDNode *> &Created) const {
5096   SDLoc dl(N);
5097   EVT VT = N->getValueType(0);
5098   EVT SVT = VT.getScalarType();
5099   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5100   EVT ShSVT = ShVT.getScalarType();
5101   unsigned EltBits = VT.getScalarSizeInBits();
5102   EVT MulVT;
5103 
5104   // Check to see if we can do this.
5105   // FIXME: We should be more aggressive here.
5106   if (!isTypeLegal(VT)) {
5107     // Limit this to simple scalars for now.
5108     if (VT.isVector() || !VT.isSimple())
5109       return SDValue();
5110 
5111     // If this type will be promoted to a large enough type with a legal
5112     // multiply operation, we can go ahead and do this transform.
5113     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5114       return SDValue();
5115 
5116     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5117     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5118         !isOperationLegal(ISD::MUL, MulVT))
5119       return SDValue();
5120   }
5121 
5122   // If the sdiv has an 'exact' bit we can use a simpler lowering.
5123   if (N->getFlags().hasExact())
5124     return BuildExactSDIV(*this, N, dl, DAG, Created);
5125 
5126   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
5127 
5128   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5129     if (C->isNullValue())
5130       return false;
5131 
5132     const APInt &Divisor = C->getAPIntValue();
5133     APInt::ms magics = Divisor.magic();
5134     int NumeratorFactor = 0;
5135     int ShiftMask = -1;
5136 
5137     if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
5138       // If d is +1/-1, we just multiply the numerator by +1/-1.
5139       NumeratorFactor = Divisor.getSExtValue();
5140       magics.m = 0;
5141       magics.s = 0;
5142       ShiftMask = 0;
5143     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
5144       // If d > 0 and m < 0, add the numerator.
5145       NumeratorFactor = 1;
5146     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
5147       // If d < 0 and m > 0, subtract the numerator.
5148       NumeratorFactor = -1;
5149     }
5150 
5151     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
5152     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
5153     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
5154     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
5155     return true;
5156   };
5157 
5158   SDValue N0 = N->getOperand(0);
5159   SDValue N1 = N->getOperand(1);
5160 
5161   // Collect the shifts / magic values from each element.
5162   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
5163     return SDValue();
5164 
5165   SDValue MagicFactor, Factor, Shift, ShiftMask;
5166   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5167     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5168     Factor = DAG.getBuildVector(VT, dl, Factors);
5169     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5170     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
5171   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5172     assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
5173            Shifts.size() == 1 && ShiftMasks.size() == 1 &&
5174            "Expected matchUnaryPredicate to return one element for scalable "
5175            "vectors");
5176     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5177     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5178     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5179     ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
5180   } else {
5181     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5182     MagicFactor = MagicFactors[0];
5183     Factor = Factors[0];
5184     Shift = Shifts[0];
5185     ShiftMask = ShiftMasks[0];
5186   }
5187 
5188   // Multiply the numerator (operand 0) by the magic value.
5189   // FIXME: We should support doing a MUL in a wider type.
5190   auto GetMULHS = [&](SDValue X, SDValue Y) {
5191     // If the type isn't legal, use a wider mul of the the type calculated
5192     // earlier.
5193     if (!isTypeLegal(VT)) {
5194       X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
5195       Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
5196       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5197       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5198                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5199       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5200     }
5201 
5202     if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
5203       return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
5204     if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
5205       SDValue LoHi =
5206           DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5207       return SDValue(LoHi.getNode(), 1);
5208     }
5209     return SDValue();
5210   };
5211 
5212   SDValue Q = GetMULHS(N0, MagicFactor);
5213   if (!Q)
5214     return SDValue();
5215 
5216   Created.push_back(Q.getNode());
5217 
5218   // (Optionally) Add/subtract the numerator using Factor.
5219   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
5220   Created.push_back(Factor.getNode());
5221   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
5222   Created.push_back(Q.getNode());
5223 
5224   // Shift right algebraic by shift value.
5225   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
5226   Created.push_back(Q.getNode());
5227 
5228   // Extract the sign bit, mask it and add it to the quotient.
5229   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
5230   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
5231   Created.push_back(T.getNode());
5232   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
5233   Created.push_back(T.getNode());
5234   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
5235 }
5236 
5237 /// Given an ISD::UDIV node expressing a divide by constant,
5238 /// return a DAG expression to select that will generate the same value by
5239 /// multiplying by a magic number.
5240 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
BuildUDIV(SDNode * N,SelectionDAG & DAG,bool IsAfterLegalization,SmallVectorImpl<SDNode * > & Created) const5241 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
5242                                   bool IsAfterLegalization,
5243                                   SmallVectorImpl<SDNode *> &Created) const {
5244   SDLoc dl(N);
5245   EVT VT = N->getValueType(0);
5246   EVT SVT = VT.getScalarType();
5247   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5248   EVT ShSVT = ShVT.getScalarType();
5249   unsigned EltBits = VT.getScalarSizeInBits();
5250   EVT MulVT;
5251 
5252   // Check to see if we can do this.
5253   // FIXME: We should be more aggressive here.
5254   if (!isTypeLegal(VT)) {
5255     // Limit this to simple scalars for now.
5256     if (VT.isVector() || !VT.isSimple())
5257       return SDValue();
5258 
5259     // If this type will be promoted to a large enough type with a legal
5260     // multiply operation, we can go ahead and do this transform.
5261     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5262       return SDValue();
5263 
5264     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5265     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5266         !isOperationLegal(ISD::MUL, MulVT))
5267       return SDValue();
5268   }
5269 
5270   bool UseNPQ = false;
5271   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
5272 
5273   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
5274     if (C->isNullValue())
5275       return false;
5276     // FIXME: We should use a narrower constant when the upper
5277     // bits are known to be zero.
5278     const APInt& Divisor = C->getAPIntValue();
5279     APInt::mu magics = Divisor.magicu();
5280     unsigned PreShift = 0, PostShift = 0;
5281 
5282     // If the divisor is even, we can avoid using the expensive fixup by
5283     // shifting the divided value upfront.
5284     if (magics.a != 0 && !Divisor[0]) {
5285       PreShift = Divisor.countTrailingZeros();
5286       // Get magic number for the shifted divisor.
5287       magics = Divisor.lshr(PreShift).magicu(PreShift);
5288       assert(magics.a == 0 && "Should use cheap fixup now");
5289     }
5290 
5291     APInt Magic = magics.m;
5292 
5293     unsigned SelNPQ;
5294     if (magics.a == 0 || Divisor.isOneValue()) {
5295       assert(magics.s < Divisor.getBitWidth() &&
5296              "We shouldn't generate an undefined shift!");
5297       PostShift = magics.s;
5298       SelNPQ = false;
5299     } else {
5300       PostShift = magics.s - 1;
5301       SelNPQ = true;
5302     }
5303 
5304     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
5305     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
5306     NPQFactors.push_back(
5307         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
5308                                : APInt::getNullValue(EltBits),
5309                         dl, SVT));
5310     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
5311     UseNPQ |= SelNPQ;
5312     return true;
5313   };
5314 
5315   SDValue N0 = N->getOperand(0);
5316   SDValue N1 = N->getOperand(1);
5317 
5318   // Collect the shifts/magic values from each element.
5319   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
5320     return SDValue();
5321 
5322   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
5323   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5324     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
5325     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5326     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
5327     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
5328   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5329     assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
5330            NPQFactors.size() == 1 && PostShifts.size() == 1 &&
5331            "Expected matchUnaryPredicate to return one for scalable vectors");
5332     PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
5333     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5334     NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
5335     PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
5336   } else {
5337     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5338     PreShift = PreShifts[0];
5339     MagicFactor = MagicFactors[0];
5340     PostShift = PostShifts[0];
5341   }
5342 
5343   SDValue Q = N0;
5344   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
5345   Created.push_back(Q.getNode());
5346 
5347   // FIXME: We should support doing a MUL in a wider type.
5348   auto GetMULHU = [&](SDValue X, SDValue Y) {
5349     // If the type isn't legal, use a wider mul of the the type calculated
5350     // earlier.
5351     if (!isTypeLegal(VT)) {
5352       X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
5353       Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
5354       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5355       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5356                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5357       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5358     }
5359 
5360     if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
5361       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
5362     if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
5363       SDValue LoHi =
5364           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5365       return SDValue(LoHi.getNode(), 1);
5366     }
5367     return SDValue(); // No mulhu or equivalent
5368   };
5369 
5370   // Multiply the numerator (operand 0) by the magic value.
5371   Q = GetMULHU(Q, MagicFactor);
5372   if (!Q)
5373     return SDValue();
5374 
5375   Created.push_back(Q.getNode());
5376 
5377   if (UseNPQ) {
5378     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
5379     Created.push_back(NPQ.getNode());
5380 
5381     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5382     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
5383     if (VT.isVector())
5384       NPQ = GetMULHU(NPQ, NPQFactor);
5385     else
5386       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
5387 
5388     Created.push_back(NPQ.getNode());
5389 
5390     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5391     Created.push_back(Q.getNode());
5392   }
5393 
5394   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5395   Created.push_back(Q.getNode());
5396 
5397   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5398 
5399   SDValue One = DAG.getConstant(1, dl, VT);
5400   SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
5401   return DAG.getSelect(dl, VT, IsOne, N0, Q);
5402 }
5403 
5404 /// If all values in Values that *don't* match the predicate are same 'splat'
5405 /// value, then replace all values with that splat value.
5406 /// Else, if AlternativeReplacement was provided, then replace all values that
5407 /// do match predicate with AlternativeReplacement value.
5408 static void
turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,std::function<bool (SDValue)> Predicate,SDValue AlternativeReplacement=SDValue ())5409 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5410                           std::function<bool(SDValue)> Predicate,
5411                           SDValue AlternativeReplacement = SDValue()) {
5412   SDValue Replacement;
5413   // Is there a value for which the Predicate does *NOT* match? What is it?
5414   auto SplatValue = llvm::find_if_not(Values, Predicate);
5415   if (SplatValue != Values.end()) {
5416     // Does Values consist only of SplatValue's and values matching Predicate?
5417     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5418           return Value == *SplatValue || Predicate(Value);
5419         })) // Then we shall replace values matching predicate with SplatValue.
5420       Replacement = *SplatValue;
5421   }
5422   if (!Replacement) {
5423     // Oops, we did not find the "baseline" splat value.
5424     if (!AlternativeReplacement)
5425       return; // Nothing to do.
5426     // Let's replace with provided value then.
5427     Replacement = AlternativeReplacement;
5428   }
5429   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5430 }
5431 
5432 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5433 /// where the divisor is constant and the comparison target is zero,
5434 /// return a DAG expression that will generate the same comparison result
5435 /// using only multiplications, additions and shifts/rotations.
5436 /// Ref: "Hacker's Delight" 10-17.
buildUREMEqFold(EVT SETCCVT,SDValue REMNode,SDValue CompTargetNode,ISD::CondCode Cond,DAGCombinerInfo & DCI,const SDLoc & DL) const5437 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5438                                         SDValue CompTargetNode,
5439                                         ISD::CondCode Cond,
5440                                         DAGCombinerInfo &DCI,
5441                                         const SDLoc &DL) const {
5442   SmallVector<SDNode *, 5> Built;
5443   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5444                                          DCI, DL, Built)) {
5445     for (SDNode *N : Built)
5446       DCI.AddToWorklist(N);
5447     return Folded;
5448   }
5449 
5450   return SDValue();
5451 }
5452 
5453 SDValue
prepareUREMEqFold(EVT SETCCVT,SDValue REMNode,SDValue CompTargetNode,ISD::CondCode Cond,DAGCombinerInfo & DCI,const SDLoc & DL,SmallVectorImpl<SDNode * > & Created) const5454 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5455                                   SDValue CompTargetNode, ISD::CondCode Cond,
5456                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5457                                   SmallVectorImpl<SDNode *> &Created) const {
5458   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5459   // - D must be constant, with D = D0 * 2^K where D0 is odd
5460   // - P is the multiplicative inverse of D0 modulo 2^W
5461   // - Q = floor(((2^W) - 1) / D)
5462   // where W is the width of the common type of N and D.
5463   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5464          "Only applicable for (in)equality comparisons.");
5465 
5466   SelectionDAG &DAG = DCI.DAG;
5467 
5468   EVT VT = REMNode.getValueType();
5469   EVT SVT = VT.getScalarType();
5470   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
5471   EVT ShSVT = ShVT.getScalarType();
5472 
5473   // If MUL is unavailable, we cannot proceed in any case.
5474   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
5475     return SDValue();
5476 
5477   bool ComparingWithAllZeros = true;
5478   bool AllComparisonsWithNonZerosAreTautological = true;
5479   bool HadTautologicalLanes = false;
5480   bool AllLanesAreTautological = true;
5481   bool HadEvenDivisor = false;
5482   bool AllDivisorsArePowerOfTwo = true;
5483   bool HadTautologicalInvertedLanes = false;
5484   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
5485 
5486   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
5487     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5488     if (CDiv->isNullValue())
5489       return false;
5490 
5491     const APInt &D = CDiv->getAPIntValue();
5492     const APInt &Cmp = CCmp->getAPIntValue();
5493 
5494     ComparingWithAllZeros &= Cmp.isNullValue();
5495 
5496     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5497     // if C2 is not less than C1, the comparison is always false.
5498     // But we will only be able to produce the comparison that will give the
5499     // opposive tautological answer. So this lane would need to be fixed up.
5500     bool TautologicalInvertedLane = D.ule(Cmp);
5501     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
5502 
5503     // If all lanes are tautological (either all divisors are ones, or divisor
5504     // is not greater than the constant we are comparing with),
5505     // we will prefer to avoid the fold.
5506     bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane;
5507     HadTautologicalLanes |= TautologicalLane;
5508     AllLanesAreTautological &= TautologicalLane;
5509 
5510     // If we are comparing with non-zero, we need'll need  to subtract said
5511     // comparison value from the LHS. But there is no point in doing that if
5512     // every lane where we are comparing with non-zero is tautological..
5513     if (!Cmp.isNullValue())
5514       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
5515 
5516     // Decompose D into D0 * 2^K
5517     unsigned K = D.countTrailingZeros();
5518     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5519     APInt D0 = D.lshr(K);
5520 
5521     // D is even if it has trailing zeros.
5522     HadEvenDivisor |= (K != 0);
5523     // D is a power-of-two if D0 is one.
5524     // If all divisors are power-of-two, we will prefer to avoid the fold.
5525     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5526 
5527     // P = inv(D0, 2^W)
5528     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5529     unsigned W = D.getBitWidth();
5530     APInt P = D0.zext(W + 1)
5531                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5532                   .trunc(W);
5533     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5534     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5535 
5536     // Q = floor((2^W - 1) u/ D)
5537     // R = ((2^W - 1) u% D)
5538     APInt Q, R;
5539     APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R);
5540 
5541     // If we are comparing with zero, then that comparison constant is okay,
5542     // else it may need to be one less than that.
5543     if (Cmp.ugt(R))
5544       Q -= 1;
5545 
5546     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5547            "We are expecting that K is always less than all-ones for ShSVT");
5548 
5549     // If the lane is tautological the result can be constant-folded.
5550     if (TautologicalLane) {
5551       // Set P and K amount to a bogus values so we can try to splat them.
5552       P = 0;
5553       K = -1;
5554       // And ensure that comparison constant is tautological,
5555       // it will always compare true/false.
5556       Q = -1;
5557     }
5558 
5559     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5560     KAmts.push_back(
5561         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5562     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5563     return true;
5564   };
5565 
5566   SDValue N = REMNode.getOperand(0);
5567   SDValue D = REMNode.getOperand(1);
5568 
5569   // Collect the values from each element.
5570   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
5571     return SDValue();
5572 
5573   // If all lanes are tautological, the result can be constant-folded.
5574   if (AllLanesAreTautological)
5575     return SDValue();
5576 
5577   // If this is a urem by a powers-of-two, avoid the fold since it can be
5578   // best implemented as a bit test.
5579   if (AllDivisorsArePowerOfTwo)
5580     return SDValue();
5581 
5582   SDValue PVal, KVal, QVal;
5583   if (VT.isVector()) {
5584     if (HadTautologicalLanes) {
5585       // Try to turn PAmts into a splat, since we don't care about the values
5586       // that are currently '0'. If we can't, just keep '0'`s.
5587       turnVectorIntoSplatVector(PAmts, isNullConstant);
5588       // Try to turn KAmts into a splat, since we don't care about the values
5589       // that are currently '-1'. If we can't, change them to '0'`s.
5590       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5591                                 DAG.getConstant(0, DL, ShSVT));
5592     }
5593 
5594     PVal = DAG.getBuildVector(VT, DL, PAmts);
5595     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5596     QVal = DAG.getBuildVector(VT, DL, QAmts);
5597   } else {
5598     PVal = PAmts[0];
5599     KVal = KAmts[0];
5600     QVal = QAmts[0];
5601   }
5602 
5603   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
5604     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
5605       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
5606     assert(CompTargetNode.getValueType() == N.getValueType() &&
5607            "Expecting that the types on LHS and RHS of comparisons match.");
5608     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
5609   }
5610 
5611   // (mul N, P)
5612   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5613   Created.push_back(Op0.getNode());
5614 
5615   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5616   // divisors as a performance improvement, since rotating by 0 is a no-op.
5617   if (HadEvenDivisor) {
5618     // We need ROTR to do this.
5619     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
5620       return SDValue();
5621     SDNodeFlags Flags;
5622     Flags.setExact(true);
5623     // UREM: (rotr (mul N, P), K)
5624     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5625     Created.push_back(Op0.getNode());
5626   }
5627 
5628   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5629   SDValue NewCC =
5630       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5631                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5632   if (!HadTautologicalInvertedLanes)
5633     return NewCC;
5634 
5635   // If any lanes previously compared always-false, the NewCC will give
5636   // always-true result for them, so we need to fixup those lanes.
5637   // Or the other way around for inequality predicate.
5638   assert(VT.isVector() && "Can/should only get here for vectors.");
5639   Created.push_back(NewCC.getNode());
5640 
5641   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5642   // if C2 is not less than C1, the comparison is always false.
5643   // But we have produced the comparison that will give the
5644   // opposive tautological answer. So these lanes would need to be fixed up.
5645   SDValue TautologicalInvertedChannels =
5646       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
5647   Created.push_back(TautologicalInvertedChannels.getNode());
5648 
5649   // NOTE: we avoid letting illegal types through even if we're before legalize
5650   // ops – legalization has a hard time producing good code for this.
5651   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
5652     // If we have a vector select, let's replace the comparison results in the
5653     // affected lanes with the correct tautological result.
5654     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
5655                                               DL, SETCCVT, SETCCVT);
5656     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
5657                        Replacement, NewCC);
5658   }
5659 
5660   // Else, we can just invert the comparison result in the appropriate lanes.
5661   //
5662   // NOTE: see the note above VSELECT above.
5663   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
5664     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
5665                        TautologicalInvertedChannels);
5666 
5667   return SDValue(); // Don't know how to lower.
5668 }
5669 
5670 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5671 /// where the divisor is constant and the comparison target is zero,
5672 /// return a DAG expression that will generate the same comparison result
5673 /// using only multiplications, additions and shifts/rotations.
5674 /// Ref: "Hacker's Delight" 10-17.
buildSREMEqFold(EVT SETCCVT,SDValue REMNode,SDValue CompTargetNode,ISD::CondCode Cond,DAGCombinerInfo & DCI,const SDLoc & DL) const5675 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5676                                         SDValue CompTargetNode,
5677                                         ISD::CondCode Cond,
5678                                         DAGCombinerInfo &DCI,
5679                                         const SDLoc &DL) const {
5680   SmallVector<SDNode *, 7> Built;
5681   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5682                                          DCI, DL, Built)) {
5683     assert(Built.size() <= 7 && "Max size prediction failed.");
5684     for (SDNode *N : Built)
5685       DCI.AddToWorklist(N);
5686     return Folded;
5687   }
5688 
5689   return SDValue();
5690 }
5691 
5692 SDValue
prepareSREMEqFold(EVT SETCCVT,SDValue REMNode,SDValue CompTargetNode,ISD::CondCode Cond,DAGCombinerInfo & DCI,const SDLoc & DL,SmallVectorImpl<SDNode * > & Created) const5693 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5694                                   SDValue CompTargetNode, ISD::CondCode Cond,
5695                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5696                                   SmallVectorImpl<SDNode *> &Created) const {
5697   // Fold:
5698   //   (seteq/ne (srem N, D), 0)
5699   // To:
5700   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
5701   //
5702   // - D must be constant, with D = D0 * 2^K where D0 is odd
5703   // - P is the multiplicative inverse of D0 modulo 2^W
5704   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5705   // - Q = floor((2 * A) / (2^K))
5706   // where W is the width of the common type of N and D.
5707   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5708          "Only applicable for (in)equality comparisons.");
5709 
5710   SelectionDAG &DAG = DCI.DAG;
5711 
5712   EVT VT = REMNode.getValueType();
5713   EVT SVT = VT.getScalarType();
5714   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
5715   EVT ShSVT = ShVT.getScalarType();
5716 
5717   // If we are after ops legalization, and MUL is unavailable, we can not
5718   // proceed.
5719   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
5720     return SDValue();
5721 
5722   // TODO: Could support comparing with non-zero too.
5723   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5724   if (!CompTarget || !CompTarget->isNullValue())
5725     return SDValue();
5726 
5727   bool HadIntMinDivisor = false;
5728   bool HadOneDivisor = false;
5729   bool AllDivisorsAreOnes = true;
5730   bool HadEvenDivisor = false;
5731   bool NeedToApplyOffset = false;
5732   bool AllDivisorsArePowerOfTwo = true;
5733   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5734 
5735   auto BuildSREMPattern = [&](ConstantSDNode *C) {
5736     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5737     if (C->isNullValue())
5738       return false;
5739 
5740     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5741 
5742     // WARNING: this fold is only valid for positive divisors!
5743     APInt D = C->getAPIntValue();
5744     if (D.isNegative())
5745       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
5746 
5747     HadIntMinDivisor |= D.isMinSignedValue();
5748 
5749     // If all divisors are ones, we will prefer to avoid the fold.
5750     HadOneDivisor |= D.isOneValue();
5751     AllDivisorsAreOnes &= D.isOneValue();
5752 
5753     // Decompose D into D0 * 2^K
5754     unsigned K = D.countTrailingZeros();
5755     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5756     APInt D0 = D.lshr(K);
5757 
5758     if (!D.isMinSignedValue()) {
5759       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5760       // we don't care about this lane in this fold, we'll special-handle it.
5761       HadEvenDivisor |= (K != 0);
5762     }
5763 
5764     // D is a power-of-two if D0 is one. This includes INT_MIN.
5765     // If all divisors are power-of-two, we will prefer to avoid the fold.
5766     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5767 
5768     // P = inv(D0, 2^W)
5769     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5770     unsigned W = D.getBitWidth();
5771     APInt P = D0.zext(W + 1)
5772                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5773                   .trunc(W);
5774     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5775     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5776 
5777     // A = floor((2^(W - 1) - 1) / D0) & -2^K
5778     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5779     A.clearLowBits(K);
5780 
5781     if (!D.isMinSignedValue()) {
5782       // If divisor INT_MIN, then we don't care about this lane in this fold,
5783       // we'll special-handle it.
5784       NeedToApplyOffset |= A != 0;
5785     }
5786 
5787     // Q = floor((2 * A) / (2^K))
5788     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5789 
5790     assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) &&
5791            "We are expecting that A is always less than all-ones for SVT");
5792     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5793            "We are expecting that K is always less than all-ones for ShSVT");
5794 
5795     // If the divisor is 1 the result can be constant-folded. Likewise, we
5796     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5797     if (D.isOneValue()) {
5798       // Set P, A and K to a bogus values so we can try to splat them.
5799       P = 0;
5800       A = -1;
5801       K = -1;
5802 
5803       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
5804       Q = -1;
5805     }
5806 
5807     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5808     AAmts.push_back(DAG.getConstant(A, DL, SVT));
5809     KAmts.push_back(
5810         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5811     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5812     return true;
5813   };
5814 
5815   SDValue N = REMNode.getOperand(0);
5816   SDValue D = REMNode.getOperand(1);
5817 
5818   // Collect the values from each element.
5819   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5820     return SDValue();
5821 
5822   // If this is a srem by a one, avoid the fold since it can be constant-folded.
5823   if (AllDivisorsAreOnes)
5824     return SDValue();
5825 
5826   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5827   // since it can be best implemented as a bit test.
5828   if (AllDivisorsArePowerOfTwo)
5829     return SDValue();
5830 
5831   SDValue PVal, AVal, KVal, QVal;
5832   if (D.getOpcode() == ISD::BUILD_VECTOR) {
5833     if (HadOneDivisor) {
5834       // Try to turn PAmts into a splat, since we don't care about the values
5835       // that are currently '0'. If we can't, just keep '0'`s.
5836       turnVectorIntoSplatVector(PAmts, isNullConstant);
5837       // Try to turn AAmts into a splat, since we don't care about the
5838       // values that are currently '-1'. If we can't, change them to '0'`s.
5839       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5840                                 DAG.getConstant(0, DL, SVT));
5841       // Try to turn KAmts into a splat, since we don't care about the values
5842       // that are currently '-1'. If we can't, change them to '0'`s.
5843       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5844                                 DAG.getConstant(0, DL, ShSVT));
5845     }
5846 
5847     PVal = DAG.getBuildVector(VT, DL, PAmts);
5848     AVal = DAG.getBuildVector(VT, DL, AAmts);
5849     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5850     QVal = DAG.getBuildVector(VT, DL, QAmts);
5851   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
5852     assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
5853            QAmts.size() == 1 &&
5854            "Expected matchUnaryPredicate to return one element for scalable "
5855            "vectors");
5856     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
5857     AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
5858     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
5859     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
5860   } else {
5861     assert(isa<ConstantSDNode>(D) && "Expected a constant");
5862     PVal = PAmts[0];
5863     AVal = AAmts[0];
5864     KVal = KAmts[0];
5865     QVal = QAmts[0];
5866   }
5867 
5868   // (mul N, P)
5869   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5870   Created.push_back(Op0.getNode());
5871 
5872   if (NeedToApplyOffset) {
5873     // We need ADD to do this.
5874     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
5875       return SDValue();
5876 
5877     // (add (mul N, P), A)
5878     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
5879     Created.push_back(Op0.getNode());
5880   }
5881 
5882   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5883   // divisors as a performance improvement, since rotating by 0 is a no-op.
5884   if (HadEvenDivisor) {
5885     // We need ROTR to do this.
5886     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
5887       return SDValue();
5888     SDNodeFlags Flags;
5889     Flags.setExact(true);
5890     // SREM: (rotr (add (mul N, P), A), K)
5891     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5892     Created.push_back(Op0.getNode());
5893   }
5894 
5895   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
5896   SDValue Fold =
5897       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5898                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5899 
5900   // If we didn't have lanes with INT_MIN divisor, then we're done.
5901   if (!HadIntMinDivisor)
5902     return Fold;
5903 
5904   // That fold is only valid for positive divisors. Which effectively means,
5905   // it is invalid for INT_MIN divisors. So if we have such a lane,
5906   // we must fix-up results for said lanes.
5907   assert(VT.isVector() && "Can/should only get here for vectors.");
5908 
5909   // NOTE: we avoid letting illegal types through even if we're before legalize
5910   // ops – legalization has a hard time producing good code for the code that
5911   // follows.
5912   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
5913       !isOperationLegalOrCustom(ISD::AND, VT) ||
5914       !isOperationLegalOrCustom(Cond, VT) ||
5915       !isOperationLegalOrCustom(ISD::VSELECT, VT))
5916     return SDValue();
5917 
5918   Created.push_back(Fold.getNode());
5919 
5920   SDValue IntMin = DAG.getConstant(
5921       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
5922   SDValue IntMax = DAG.getConstant(
5923       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
5924   SDValue Zero =
5925       DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT);
5926 
5927   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
5928   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
5929   Created.push_back(DivisorIsIntMin.getNode());
5930 
5931   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
5932   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
5933   Created.push_back(Masked.getNode());
5934   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
5935   Created.push_back(MaskedIsZero.getNode());
5936 
5937   // To produce final result we need to blend 2 vectors: 'SetCC' and
5938   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
5939   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
5940   // constant-folded, select can get lowered to a shuffle with constant mask.
5941   SDValue Blended =
5942       DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold);
5943 
5944   return Blended;
5945 }
5946 
5947 bool TargetLowering::
verifyReturnAddressArgumentIsConstant(SDValue Op,SelectionDAG & DAG) const5948 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
5949   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
5950     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
5951                                 "be a constant integer");
5952     return true;
5953   }
5954 
5955   return false;
5956 }
5957 
getSqrtInputTest(SDValue Op,SelectionDAG & DAG,const DenormalMode & Mode) const5958 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
5959                                          const DenormalMode &Mode) const {
5960   SDLoc DL(Op);
5961   EVT VT = Op.getValueType();
5962   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5963   SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
5964   // Testing it with denormal inputs to avoid wrong estimate.
5965   if (Mode.Input == DenormalMode::IEEE) {
5966     // This is specifically a check for the handling of denormal inputs,
5967     // not the result.
5968 
5969     // Test = fabs(X) < SmallestNormal
5970     const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
5971     APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
5972     SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
5973     SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
5974     return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
5975   }
5976   // Test = X == 0.0
5977   return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
5978 }
5979 
getNegatedExpression(SDValue Op,SelectionDAG & DAG,bool LegalOps,bool OptForSize,NegatibleCost & Cost,unsigned Depth) const5980 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
5981                                              bool LegalOps, bool OptForSize,
5982                                              NegatibleCost &Cost,
5983                                              unsigned Depth) const {
5984   // fneg is removable even if it has multiple uses.
5985   if (Op.getOpcode() == ISD::FNEG) {
5986     Cost = NegatibleCost::Cheaper;
5987     return Op.getOperand(0);
5988   }
5989 
5990   // Don't recurse exponentially.
5991   if (Depth > SelectionDAG::MaxRecursionDepth)
5992     return SDValue();
5993 
5994   // Pre-increment recursion depth for use in recursive calls.
5995   ++Depth;
5996   const SDNodeFlags Flags = Op->getFlags();
5997   const TargetOptions &Options = DAG.getTarget().Options;
5998   EVT VT = Op.getValueType();
5999   unsigned Opcode = Op.getOpcode();
6000 
6001   // Don't allow anything with multiple uses unless we know it is free.
6002   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
6003     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
6004                         isFPExtFree(VT, Op.getOperand(0).getValueType());
6005     if (!IsFreeExtend)
6006       return SDValue();
6007   }
6008 
6009   auto RemoveDeadNode = [&](SDValue N) {
6010     if (N && N.getNode()->use_empty())
6011       DAG.RemoveDeadNode(N.getNode());
6012   };
6013 
6014   SDLoc DL(Op);
6015 
6016   // Because getNegatedExpression can delete nodes we need a handle to keep
6017   // temporary nodes alive in case the recursion manages to create an identical
6018   // node.
6019   std::list<HandleSDNode> Handles;
6020 
6021   switch (Opcode) {
6022   case ISD::ConstantFP: {
6023     // Don't invert constant FP values after legalization unless the target says
6024     // the negated constant is legal.
6025     bool IsOpLegal =
6026         isOperationLegal(ISD::ConstantFP, VT) ||
6027         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
6028                      OptForSize);
6029 
6030     if (LegalOps && !IsOpLegal)
6031       break;
6032 
6033     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
6034     V.changeSign();
6035     SDValue CFP = DAG.getConstantFP(V, DL, VT);
6036 
6037     // If we already have the use of the negated floating constant, it is free
6038     // to negate it even it has multiple uses.
6039     if (!Op.hasOneUse() && CFP.use_empty())
6040       break;
6041     Cost = NegatibleCost::Neutral;
6042     return CFP;
6043   }
6044   case ISD::BUILD_VECTOR: {
6045     // Only permit BUILD_VECTOR of constants.
6046     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
6047           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
6048         }))
6049       break;
6050 
6051     bool IsOpLegal =
6052         (isOperationLegal(ISD::ConstantFP, VT) &&
6053          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
6054         llvm::all_of(Op->op_values(), [&](SDValue N) {
6055           return N.isUndef() ||
6056                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
6057                               OptForSize);
6058         });
6059 
6060     if (LegalOps && !IsOpLegal)
6061       break;
6062 
6063     SmallVector<SDValue, 4> Ops;
6064     for (SDValue C : Op->op_values()) {
6065       if (C.isUndef()) {
6066         Ops.push_back(C);
6067         continue;
6068       }
6069       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
6070       V.changeSign();
6071       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
6072     }
6073     Cost = NegatibleCost::Neutral;
6074     return DAG.getBuildVector(VT, DL, Ops);
6075   }
6076   case ISD::FADD: {
6077     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6078       break;
6079 
6080     // After operation legalization, it might not be legal to create new FSUBs.
6081     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
6082       break;
6083     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6084 
6085     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
6086     NegatibleCost CostX = NegatibleCost::Expensive;
6087     SDValue NegX =
6088         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6089     // Prevent this node from being deleted by the next call.
6090     if (NegX)
6091       Handles.emplace_back(NegX);
6092 
6093     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
6094     NegatibleCost CostY = NegatibleCost::Expensive;
6095     SDValue NegY =
6096         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6097 
6098     // We're done with the handles.
6099     Handles.clear();
6100 
6101     // Negate the X if its cost is less or equal than Y.
6102     if (NegX && (CostX <= CostY)) {
6103       Cost = CostX;
6104       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
6105       if (NegY != N)
6106         RemoveDeadNode(NegY);
6107       return N;
6108     }
6109 
6110     // Negate the Y if it is not expensive.
6111     if (NegY) {
6112       Cost = CostY;
6113       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
6114       if (NegX != N)
6115         RemoveDeadNode(NegX);
6116       return N;
6117     }
6118     break;
6119   }
6120   case ISD::FSUB: {
6121     // We can't turn -(A-B) into B-A when we honor signed zeros.
6122     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6123       break;
6124 
6125     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6126     // fold (fneg (fsub 0, Y)) -> Y
6127     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
6128       if (C->isZero()) {
6129         Cost = NegatibleCost::Cheaper;
6130         return Y;
6131       }
6132 
6133     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
6134     Cost = NegatibleCost::Neutral;
6135     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
6136   }
6137   case ISD::FMUL:
6138   case ISD::FDIV: {
6139     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6140 
6141     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
6142     NegatibleCost CostX = NegatibleCost::Expensive;
6143     SDValue NegX =
6144         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6145     // Prevent this node from being deleted by the next call.
6146     if (NegX)
6147       Handles.emplace_back(NegX);
6148 
6149     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
6150     NegatibleCost CostY = NegatibleCost::Expensive;
6151     SDValue NegY =
6152         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6153 
6154     // We're done with the handles.
6155     Handles.clear();
6156 
6157     // Negate the X if its cost is less or equal than Y.
6158     if (NegX && (CostX <= CostY)) {
6159       Cost = CostX;
6160       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
6161       if (NegY != N)
6162         RemoveDeadNode(NegY);
6163       return N;
6164     }
6165 
6166     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
6167     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
6168       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
6169         break;
6170 
6171     // Negate the Y if it is not expensive.
6172     if (NegY) {
6173       Cost = CostY;
6174       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
6175       if (NegX != N)
6176         RemoveDeadNode(NegX);
6177       return N;
6178     }
6179     break;
6180   }
6181   case ISD::FMA:
6182   case ISD::FMAD: {
6183     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6184       break;
6185 
6186     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
6187     NegatibleCost CostZ = NegatibleCost::Expensive;
6188     SDValue NegZ =
6189         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
6190     // Give up if fail to negate the Z.
6191     if (!NegZ)
6192       break;
6193 
6194     // Prevent this node from being deleted by the next two calls.
6195     Handles.emplace_back(NegZ);
6196 
6197     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
6198     NegatibleCost CostX = NegatibleCost::Expensive;
6199     SDValue NegX =
6200         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6201     // Prevent this node from being deleted by the next call.
6202     if (NegX)
6203       Handles.emplace_back(NegX);
6204 
6205     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
6206     NegatibleCost CostY = NegatibleCost::Expensive;
6207     SDValue NegY =
6208         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6209 
6210     // We're done with the handles.
6211     Handles.clear();
6212 
6213     // Negate the X if its cost is less or equal than Y.
6214     if (NegX && (CostX <= CostY)) {
6215       Cost = std::min(CostX, CostZ);
6216       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
6217       if (NegY != N)
6218         RemoveDeadNode(NegY);
6219       return N;
6220     }
6221 
6222     // Negate the Y if it is not expensive.
6223     if (NegY) {
6224       Cost = std::min(CostY, CostZ);
6225       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
6226       if (NegX != N)
6227         RemoveDeadNode(NegX);
6228       return N;
6229     }
6230     break;
6231   }
6232 
6233   case ISD::FP_EXTEND:
6234   case ISD::FSIN:
6235     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6236                                             OptForSize, Cost, Depth))
6237       return DAG.getNode(Opcode, DL, VT, NegV);
6238     break;
6239   case ISD::FP_ROUND:
6240     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6241                                             OptForSize, Cost, Depth))
6242       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
6243     break;
6244   }
6245 
6246   return SDValue();
6247 }
6248 
6249 //===----------------------------------------------------------------------===//
6250 // Legalization Utilities
6251 //===----------------------------------------------------------------------===//
6252 
expandMUL_LOHI(unsigned Opcode,EVT VT,const SDLoc & dl,SDValue LHS,SDValue RHS,SmallVectorImpl<SDValue> & Result,EVT HiLoVT,SelectionDAG & DAG,MulExpansionKind Kind,SDValue LL,SDValue LH,SDValue RL,SDValue RH) const6253 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
6254                                     SDValue LHS, SDValue RHS,
6255                                     SmallVectorImpl<SDValue> &Result,
6256                                     EVT HiLoVT, SelectionDAG &DAG,
6257                                     MulExpansionKind Kind, SDValue LL,
6258                                     SDValue LH, SDValue RL, SDValue RH) const {
6259   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
6260          Opcode == ISD::SMUL_LOHI);
6261 
6262   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
6263                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
6264   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
6265                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
6266   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6267                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
6268   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6269                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
6270 
6271   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
6272     return false;
6273 
6274   unsigned OuterBitSize = VT.getScalarSizeInBits();
6275   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
6276 
6277   // LL, LH, RL, and RH must be either all NULL or all set to a value.
6278   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
6279          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
6280 
6281   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
6282   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
6283                           bool Signed) -> bool {
6284     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
6285       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
6286       Hi = SDValue(Lo.getNode(), 1);
6287       return true;
6288     }
6289     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
6290       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
6291       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
6292       return true;
6293     }
6294     return false;
6295   };
6296 
6297   SDValue Lo, Hi;
6298 
6299   if (!LL.getNode() && !RL.getNode() &&
6300       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6301     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
6302     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
6303   }
6304 
6305   if (!LL.getNode())
6306     return false;
6307 
6308   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
6309   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
6310       DAG.MaskedValueIsZero(RHS, HighMask)) {
6311     // The inputs are both zero-extended.
6312     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
6313       Result.push_back(Lo);
6314       Result.push_back(Hi);
6315       if (Opcode != ISD::MUL) {
6316         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6317         Result.push_back(Zero);
6318         Result.push_back(Zero);
6319       }
6320       return true;
6321     }
6322   }
6323 
6324   if (!VT.isVector() && Opcode == ISD::MUL &&
6325       DAG.ComputeNumSignBits(LHS) > InnerBitSize &&
6326       DAG.ComputeNumSignBits(RHS) > InnerBitSize) {
6327     // The input values are both sign-extended.
6328     // TODO non-MUL case?
6329     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
6330       Result.push_back(Lo);
6331       Result.push_back(Hi);
6332       return true;
6333     }
6334   }
6335 
6336   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
6337   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
6338   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
6339     // FIXME getShiftAmountTy does not always return a sensible result when VT
6340     // is an illegal type, and so the type may be too small to fit the shift
6341     // amount. Override it with i32. The shift will have to be legalized.
6342     ShiftAmountTy = MVT::i32;
6343   }
6344   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
6345 
6346   if (!LH.getNode() && !RH.getNode() &&
6347       isOperationLegalOrCustom(ISD::SRL, VT) &&
6348       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6349     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
6350     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
6351     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
6352     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
6353   }
6354 
6355   if (!LH.getNode())
6356     return false;
6357 
6358   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
6359     return false;
6360 
6361   Result.push_back(Lo);
6362 
6363   if (Opcode == ISD::MUL) {
6364     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
6365     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
6366     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
6367     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
6368     Result.push_back(Hi);
6369     return true;
6370   }
6371 
6372   // Compute the full width result.
6373   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
6374     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
6375     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6376     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
6377     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
6378   };
6379 
6380   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6381   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
6382     return false;
6383 
6384   // This is effectively the add part of a multiply-add of half-sized operands,
6385   // so it cannot overflow.
6386   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6387 
6388   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
6389     return false;
6390 
6391   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6392   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6393 
6394   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
6395                   isOperationLegalOrCustom(ISD::ADDE, VT));
6396   if (UseGlue)
6397     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
6398                        Merge(Lo, Hi));
6399   else
6400     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
6401                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
6402 
6403   SDValue Carry = Next.getValue(1);
6404   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6405   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6406 
6407   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
6408     return false;
6409 
6410   if (UseGlue)
6411     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
6412                      Carry);
6413   else
6414     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
6415                      Zero, Carry);
6416 
6417   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6418 
6419   if (Opcode == ISD::SMUL_LOHI) {
6420     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6421                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
6422     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
6423 
6424     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6425                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
6426     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
6427   }
6428 
6429   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6430   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6431   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6432   return true;
6433 }
6434 
expandMUL(SDNode * N,SDValue & Lo,SDValue & Hi,EVT HiLoVT,SelectionDAG & DAG,MulExpansionKind Kind,SDValue LL,SDValue LH,SDValue RL,SDValue RH) const6435 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
6436                                SelectionDAG &DAG, MulExpansionKind Kind,
6437                                SDValue LL, SDValue LH, SDValue RL,
6438                                SDValue RH) const {
6439   SmallVector<SDValue, 2> Result;
6440   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
6441                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
6442                            DAG, Kind, LL, LH, RL, RH);
6443   if (Ok) {
6444     assert(Result.size() == 2);
6445     Lo = Result[0];
6446     Hi = Result[1];
6447   }
6448   return Ok;
6449 }
6450 
6451 // Check that (every element of) Z is undef or not an exact multiple of BW.
isNonZeroModBitWidthOrUndef(SDValue Z,unsigned BW)6452 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
6453   return ISD::matchUnaryPredicate(
6454       Z,
6455       [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
6456       true);
6457 }
6458 
expandFunnelShift(SDNode * Node,SDValue & Result,SelectionDAG & DAG) const6459 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
6460                                        SelectionDAG &DAG) const {
6461   EVT VT = Node->getValueType(0);
6462 
6463   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6464                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6465                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6466                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6467     return false;
6468 
6469   SDValue X = Node->getOperand(0);
6470   SDValue Y = Node->getOperand(1);
6471   SDValue Z = Node->getOperand(2);
6472 
6473   unsigned BW = VT.getScalarSizeInBits();
6474   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
6475   SDLoc DL(SDValue(Node, 0));
6476 
6477   EVT ShVT = Z.getValueType();
6478 
6479   // If a funnel shift in the other direction is more supported, use it.
6480   unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
6481   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
6482       isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
6483     if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6484       // fshl X, Y, Z -> fshr X, Y, -Z
6485       // fshr X, Y, Z -> fshl X, Y, -Z
6486       SDValue Zero = DAG.getConstant(0, DL, ShVT);
6487       Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
6488     } else {
6489       // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
6490       // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
6491       SDValue One = DAG.getConstant(1, DL, ShVT);
6492       if (IsFSHL) {
6493         Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6494         X = DAG.getNode(ISD::SRL, DL, VT, X, One);
6495       } else {
6496         X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6497         Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
6498       }
6499       Z = DAG.getNOT(DL, Z, ShVT);
6500     }
6501     Result = DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
6502     return true;
6503   }
6504 
6505   SDValue ShX, ShY;
6506   SDValue ShAmt, InvShAmt;
6507   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6508     // fshl: X << C | Y >> (BW - C)
6509     // fshr: X << (BW - C) | Y >> C
6510     // where C = Z % BW is not zero
6511     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6512     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6513     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
6514     ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
6515     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6516   } else {
6517     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
6518     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
6519     SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
6520     if (isPowerOf2_32(BW)) {
6521       // Z % BW -> Z & (BW - 1)
6522       ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
6523       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
6524       InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
6525     } else {
6526       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6527       ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6528       InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
6529     }
6530 
6531     SDValue One = DAG.getConstant(1, DL, ShVT);
6532     if (IsFSHL) {
6533       ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
6534       SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
6535       ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
6536     } else {
6537       SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
6538       ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
6539       ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
6540     }
6541   }
6542   Result = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
6543   return true;
6544 }
6545 
6546 // TODO: Merge with expandFunnelShift.
expandROT(SDNode * Node,bool AllowVectorOps,SDValue & Result,SelectionDAG & DAG) const6547 bool TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
6548                                SDValue &Result, SelectionDAG &DAG) const {
6549   EVT VT = Node->getValueType(0);
6550   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6551   bool IsLeft = Node->getOpcode() == ISD::ROTL;
6552   SDValue Op0 = Node->getOperand(0);
6553   SDValue Op1 = Node->getOperand(1);
6554   SDLoc DL(SDValue(Node, 0));
6555 
6556   EVT ShVT = Op1.getValueType();
6557   SDValue Zero = DAG.getConstant(0, DL, ShVT);
6558 
6559   // If a rotate in the other direction is supported, use it.
6560   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
6561   if (isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
6562     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6563     Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
6564     return true;
6565   }
6566 
6567   if (!AllowVectorOps && VT.isVector() &&
6568       (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6569        !isOperationLegalOrCustom(ISD::SRL, VT) ||
6570        !isOperationLegalOrCustom(ISD::SUB, VT) ||
6571        !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
6572        !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6573     return false;
6574 
6575   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
6576   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
6577   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6578   SDValue ShVal;
6579   SDValue HsVal;
6580   if (isPowerOf2_32(EltSizeInBits)) {
6581     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
6582     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
6583     SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6584     SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
6585     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6586     SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
6587     HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
6588   } else {
6589     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
6590     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
6591     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6592     SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
6593     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6594     SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
6595     SDValue One = DAG.getConstant(1, DL, ShVT);
6596     HsVal =
6597         DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
6598   }
6599   Result = DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
6600   return true;
6601 }
6602 
expandShiftParts(SDNode * Node,SDValue & Lo,SDValue & Hi,SelectionDAG & DAG) const6603 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi,
6604                                       SelectionDAG &DAG) const {
6605   assert(Node->getNumOperands() == 3 && "Not a double-shift!");
6606   EVT VT = Node->getValueType(0);
6607   unsigned VTBits = VT.getScalarSizeInBits();
6608   assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected");
6609 
6610   bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS;
6611   bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS;
6612   SDValue ShOpLo = Node->getOperand(0);
6613   SDValue ShOpHi = Node->getOperand(1);
6614   SDValue ShAmt = Node->getOperand(2);
6615   EVT ShAmtVT = ShAmt.getValueType();
6616   EVT ShAmtCCVT =
6617       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT);
6618   SDLoc dl(Node);
6619 
6620   // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
6621   // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized
6622   // away during isel.
6623   SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
6624                                   DAG.getConstant(VTBits - 1, dl, ShAmtVT));
6625   SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
6626                                      DAG.getConstant(VTBits - 1, dl, ShAmtVT))
6627                        : DAG.getConstant(0, dl, VT);
6628 
6629   SDValue Tmp2, Tmp3;
6630   if (IsSHL) {
6631     Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
6632     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
6633   } else {
6634     Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
6635     Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
6636   }
6637 
6638   // If the shift amount is larger or equal than the width of a part we don't
6639   // use the result from the FSHL/FSHR. Insert a test and select the appropriate
6640   // values for large shift amounts.
6641   SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
6642                                 DAG.getConstant(VTBits, dl, ShAmtVT));
6643   SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode,
6644                               DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE);
6645 
6646   if (IsSHL) {
6647     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
6648     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
6649   } else {
6650     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
6651     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
6652   }
6653 }
6654 
expandFP_TO_SINT(SDNode * Node,SDValue & Result,SelectionDAG & DAG) const6655 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
6656                                       SelectionDAG &DAG) const {
6657   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6658   SDValue Src = Node->getOperand(OpNo);
6659   EVT SrcVT = Src.getValueType();
6660   EVT DstVT = Node->getValueType(0);
6661   SDLoc dl(SDValue(Node, 0));
6662 
6663   // FIXME: Only f32 to i64 conversions are supported.
6664   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
6665     return false;
6666 
6667   if (Node->isStrictFPOpcode())
6668     // When a NaN is converted to an integer a trap is allowed. We can't
6669     // use this expansion here because it would eliminate that trap. Other
6670     // traps are also allowed and cannot be eliminated. See
6671     // IEEE 754-2008 sec 5.8.
6672     return false;
6673 
6674   // Expand f32 -> i64 conversion
6675   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6676   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
6677   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
6678   EVT IntVT = SrcVT.changeTypeToInteger();
6679   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
6680 
6681   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
6682   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
6683   SDValue Bias = DAG.getConstant(127, dl, IntVT);
6684   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
6685   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
6686   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
6687 
6688   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
6689 
6690   SDValue ExponentBits = DAG.getNode(
6691       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
6692       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
6693   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
6694 
6695   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
6696                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
6697                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
6698   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
6699 
6700   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
6701                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
6702                           DAG.getConstant(0x00800000, dl, IntVT));
6703 
6704   R = DAG.getZExtOrTrunc(R, dl, DstVT);
6705 
6706   R = DAG.getSelectCC(
6707       dl, Exponent, ExponentLoBit,
6708       DAG.getNode(ISD::SHL, dl, DstVT, R,
6709                   DAG.getZExtOrTrunc(
6710                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
6711                       dl, IntShVT)),
6712       DAG.getNode(ISD::SRL, dl, DstVT, R,
6713                   DAG.getZExtOrTrunc(
6714                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
6715                       dl, IntShVT)),
6716       ISD::SETGT);
6717 
6718   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
6719                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
6720 
6721   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
6722                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
6723   return true;
6724 }
6725 
expandFP_TO_UINT(SDNode * Node,SDValue & Result,SDValue & Chain,SelectionDAG & DAG) const6726 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
6727                                       SDValue &Chain,
6728                                       SelectionDAG &DAG) const {
6729   SDLoc dl(SDValue(Node, 0));
6730   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6731   SDValue Src = Node->getOperand(OpNo);
6732 
6733   EVT SrcVT = Src.getValueType();
6734   EVT DstVT = Node->getValueType(0);
6735   EVT SetCCVT =
6736       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
6737   EVT DstSetCCVT =
6738       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
6739 
6740   // Only expand vector types if we have the appropriate vector bit operations.
6741   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
6742                                                    ISD::FP_TO_SINT;
6743   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
6744                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
6745     return false;
6746 
6747   // If the maximum float value is smaller then the signed integer range,
6748   // the destination signmask can't be represented by the float, so we can
6749   // just use FP_TO_SINT directly.
6750   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
6751   APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
6752   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
6753   if (APFloat::opOverflow &
6754       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
6755     if (Node->isStrictFPOpcode()) {
6756       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6757                            { Node->getOperand(0), Src });
6758       Chain = Result.getValue(1);
6759     } else
6760       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6761     return true;
6762   }
6763 
6764   // Don't expand it if there isn't cheap fsub instruction.
6765   if (!isOperationLegalOrCustom(
6766           Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
6767     return false;
6768 
6769   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
6770   SDValue Sel;
6771 
6772   if (Node->isStrictFPOpcode()) {
6773     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
6774                        Node->getOperand(0), /*IsSignaling*/ true);
6775     Chain = Sel.getValue(1);
6776   } else {
6777     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
6778   }
6779 
6780   bool Strict = Node->isStrictFPOpcode() ||
6781                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
6782 
6783   if (Strict) {
6784     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
6785     // signmask then offset (the result of which should be fully representable).
6786     // Sel = Src < 0x8000000000000000
6787     // FltOfs = select Sel, 0, 0x8000000000000000
6788     // IntOfs = select Sel, 0, 0x8000000000000000
6789     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
6790 
6791     // TODO: Should any fast-math-flags be set for the FSUB?
6792     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
6793                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
6794     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6795     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
6796                                    DAG.getConstant(0, dl, DstVT),
6797                                    DAG.getConstant(SignMask, dl, DstVT));
6798     SDValue SInt;
6799     if (Node->isStrictFPOpcode()) {
6800       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
6801                                 { Chain, Src, FltOfs });
6802       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6803                          { Val.getValue(1), Val });
6804       Chain = SInt.getValue(1);
6805     } else {
6806       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
6807       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
6808     }
6809     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
6810   } else {
6811     // Expand based on maximum range of FP_TO_SINT:
6812     // True = fp_to_sint(Src)
6813     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
6814     // Result = select (Src < 0x8000000000000000), True, False
6815 
6816     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6817     // TODO: Should any fast-math-flags be set for the FSUB?
6818     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
6819                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
6820     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
6821                         DAG.getConstant(SignMask, dl, DstVT));
6822     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6823     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
6824   }
6825   return true;
6826 }
6827 
expandUINT_TO_FP(SDNode * Node,SDValue & Result,SDValue & Chain,SelectionDAG & DAG) const6828 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
6829                                       SDValue &Chain,
6830                                       SelectionDAG &DAG) const {
6831   // This transform is not correct for converting 0 when rounding mode is set
6832   // to round toward negative infinity which will produce -0.0. So disable under
6833   // strictfp.
6834   if (Node->isStrictFPOpcode())
6835     return false;
6836 
6837   SDValue Src = Node->getOperand(0);
6838   EVT SrcVT = Src.getValueType();
6839   EVT DstVT = Node->getValueType(0);
6840 
6841   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
6842     return false;
6843 
6844   // Only expand vector types if we have the appropriate vector bit operations.
6845   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6846                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6847                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
6848                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
6849                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
6850     return false;
6851 
6852   SDLoc dl(SDValue(Node, 0));
6853   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
6854 
6855   // Implementation of unsigned i64 to f64 following the algorithm in
6856   // __floatundidf in compiler_rt.  This implementation performs rounding
6857   // correctly in all rounding modes with the exception of converting 0
6858   // when rounding toward negative infinity. In that case the fsub will produce
6859   // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect.
6860   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
6861   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
6862       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
6863   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
6864   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
6865   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
6866 
6867   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
6868   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
6869   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
6870   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
6871   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
6872   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
6873   SDValue HiSub =
6874       DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
6875   Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
6876   return true;
6877 }
6878 
expandFMINNUM_FMAXNUM(SDNode * Node,SelectionDAG & DAG) const6879 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
6880                                               SelectionDAG &DAG) const {
6881   SDLoc dl(Node);
6882   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
6883     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
6884   EVT VT = Node->getValueType(0);
6885 
6886   if (VT.isScalableVector())
6887     report_fatal_error(
6888         "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
6889 
6890   if (isOperationLegalOrCustom(NewOp, VT)) {
6891     SDValue Quiet0 = Node->getOperand(0);
6892     SDValue Quiet1 = Node->getOperand(1);
6893 
6894     if (!Node->getFlags().hasNoNaNs()) {
6895       // Insert canonicalizes if it's possible we need to quiet to get correct
6896       // sNaN behavior.
6897       if (!DAG.isKnownNeverSNaN(Quiet0)) {
6898         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
6899                              Node->getFlags());
6900       }
6901       if (!DAG.isKnownNeverSNaN(Quiet1)) {
6902         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
6903                              Node->getFlags());
6904       }
6905     }
6906 
6907     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
6908   }
6909 
6910   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
6911   // instead if there are no NaNs.
6912   if (Node->getFlags().hasNoNaNs()) {
6913     unsigned IEEE2018Op =
6914         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
6915     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
6916       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
6917                          Node->getOperand(1), Node->getFlags());
6918     }
6919   }
6920 
6921   // If none of the above worked, but there are no NaNs, then expand to
6922   // a compare/select sequence.  This is required for correctness since
6923   // InstCombine might have canonicalized a fcmp+select sequence to a
6924   // FMINNUM/FMAXNUM node.  If we were to fall through to the default
6925   // expansion to libcall, we might introduce a link-time dependency
6926   // on libm into a file that originally did not have one.
6927   if (Node->getFlags().hasNoNaNs()) {
6928     ISD::CondCode Pred =
6929         Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
6930     SDValue Op1 = Node->getOperand(0);
6931     SDValue Op2 = Node->getOperand(1);
6932     SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred);
6933     // Copy FMF flags, but always set the no-signed-zeros flag
6934     // as this is implied by the FMINNUM/FMAXNUM semantics.
6935     SDNodeFlags Flags = Node->getFlags();
6936     Flags.setNoSignedZeros(true);
6937     SelCC->setFlags(Flags);
6938     return SelCC;
6939   }
6940 
6941   return SDValue();
6942 }
6943 
expandCTPOP(SDNode * Node,SDValue & Result,SelectionDAG & DAG) const6944 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
6945                                  SelectionDAG &DAG) const {
6946   SDLoc dl(Node);
6947   EVT VT = Node->getValueType(0);
6948   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6949   SDValue Op = Node->getOperand(0);
6950   unsigned Len = VT.getScalarSizeInBits();
6951   assert(VT.isInteger() && "CTPOP not implemented for this type.");
6952 
6953   // TODO: Add support for irregular type lengths.
6954   if (!(Len <= 128 && Len % 8 == 0))
6955     return false;
6956 
6957   // Only expand vector types if we have the appropriate vector bit operations.
6958   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
6959                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6960                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6961                         (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
6962                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6963     return false;
6964 
6965   // This is the "best" algorithm from
6966   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
6967   SDValue Mask55 =
6968       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
6969   SDValue Mask33 =
6970       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
6971   SDValue Mask0F =
6972       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
6973   SDValue Mask01 =
6974       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
6975 
6976   // v = v - ((v >> 1) & 0x55555555...)
6977   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
6978                    DAG.getNode(ISD::AND, dl, VT,
6979                                DAG.getNode(ISD::SRL, dl, VT, Op,
6980                                            DAG.getConstant(1, dl, ShVT)),
6981                                Mask55));
6982   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
6983   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
6984                    DAG.getNode(ISD::AND, dl, VT,
6985                                DAG.getNode(ISD::SRL, dl, VT, Op,
6986                                            DAG.getConstant(2, dl, ShVT)),
6987                                Mask33));
6988   // v = (v + (v >> 4)) & 0x0F0F0F0F...
6989   Op = DAG.getNode(ISD::AND, dl, VT,
6990                    DAG.getNode(ISD::ADD, dl, VT, Op,
6991                                DAG.getNode(ISD::SRL, dl, VT, Op,
6992                                            DAG.getConstant(4, dl, ShVT))),
6993                    Mask0F);
6994   // v = (v * 0x01010101...) >> (Len - 8)
6995   if (Len > 8)
6996     Op =
6997         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
6998                     DAG.getConstant(Len - 8, dl, ShVT));
6999 
7000   Result = Op;
7001   return true;
7002 }
7003 
expandCTLZ(SDNode * Node,SDValue & Result,SelectionDAG & DAG) const7004 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
7005                                 SelectionDAG &DAG) const {
7006   SDLoc dl(Node);
7007   EVT VT = Node->getValueType(0);
7008   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7009   SDValue Op = Node->getOperand(0);
7010   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7011 
7012   // If the non-ZERO_UNDEF version is supported we can use that instead.
7013   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
7014       isOperationLegalOrCustom(ISD::CTLZ, VT)) {
7015     Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
7016     return true;
7017   }
7018 
7019   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7020   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
7021     EVT SetCCVT =
7022         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7023     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
7024     SDValue Zero = DAG.getConstant(0, dl, VT);
7025     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7026     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
7027                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
7028     return true;
7029   }
7030 
7031   // Only expand vector types if we have the appropriate vector bit operations.
7032   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7033                         !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
7034                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
7035                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
7036     return false;
7037 
7038   // for now, we do this:
7039   // x = x | (x >> 1);
7040   // x = x | (x >> 2);
7041   // ...
7042   // x = x | (x >>16);
7043   // x = x | (x >>32); // for 64-bit input
7044   // return popcount(~x);
7045   //
7046   // Ref: "Hacker's Delight" by Henry Warren
7047   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
7048     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
7049     Op = DAG.getNode(ISD::OR, dl, VT, Op,
7050                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
7051   }
7052   Op = DAG.getNOT(dl, Op, VT);
7053   Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
7054   return true;
7055 }
7056 
expandCTTZ(SDNode * Node,SDValue & Result,SelectionDAG & DAG) const7057 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
7058                                 SelectionDAG &DAG) const {
7059   SDLoc dl(Node);
7060   EVT VT = Node->getValueType(0);
7061   SDValue Op = Node->getOperand(0);
7062   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7063 
7064   // If the non-ZERO_UNDEF version is supported we can use that instead.
7065   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
7066       isOperationLegalOrCustom(ISD::CTTZ, VT)) {
7067     Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
7068     return true;
7069   }
7070 
7071   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7072   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
7073     EVT SetCCVT =
7074         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7075     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
7076     SDValue Zero = DAG.getConstant(0, dl, VT);
7077     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7078     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
7079                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
7080     return true;
7081   }
7082 
7083   // Only expand vector types if we have the appropriate vector bit operations.
7084   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7085                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7086                          !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
7087                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
7088                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
7089                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7090     return false;
7091 
7092   // for now, we use: { return popcount(~x & (x - 1)); }
7093   // unless the target has ctlz but not ctpop, in which case we use:
7094   // { return 32 - nlz(~x & (x-1)); }
7095   // Ref: "Hacker's Delight" by Henry Warren
7096   SDValue Tmp = DAG.getNode(
7097       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
7098       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
7099 
7100   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
7101   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
7102     Result =
7103         DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
7104                     DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
7105     return true;
7106   }
7107 
7108   Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
7109   return true;
7110 }
7111 
expandABS(SDNode * N,SDValue & Result,SelectionDAG & DAG,bool IsNegative) const7112 bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
7113                                SelectionDAG &DAG, bool IsNegative) const {
7114   SDLoc dl(N);
7115   EVT VT = N->getValueType(0);
7116   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7117   SDValue Op = N->getOperand(0);
7118 
7119   // abs(x) -> smax(x,sub(0,x))
7120   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7121       isOperationLegal(ISD::SMAX, VT)) {
7122     SDValue Zero = DAG.getConstant(0, dl, VT);
7123     Result = DAG.getNode(ISD::SMAX, dl, VT, Op,
7124                          DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7125     return true;
7126   }
7127 
7128   // abs(x) -> umin(x,sub(0,x))
7129   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7130       isOperationLegal(ISD::UMIN, VT)) {
7131     SDValue Zero = DAG.getConstant(0, dl, VT);
7132     Result = DAG.getNode(ISD::UMIN, dl, VT, Op,
7133                          DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7134     return true;
7135   }
7136 
7137   // 0 - abs(x) -> smin(x, sub(0,x))
7138   if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
7139       isOperationLegal(ISD::SMIN, VT)) {
7140     SDValue Zero = DAG.getConstant(0, dl, VT);
7141     Result = DAG.getNode(ISD::SMIN, dl, VT, Op,
7142                          DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7143     return true;
7144   }
7145 
7146   // Only expand vector types if we have the appropriate vector operations.
7147   if (VT.isVector() &&
7148       (!isOperationLegalOrCustom(ISD::SRA, VT) ||
7149        (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
7150        (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
7151        !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7152     return false;
7153 
7154   SDValue Shift =
7155       DAG.getNode(ISD::SRA, dl, VT, Op,
7156                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
7157   if (!IsNegative) {
7158     SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
7159     Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
7160   } else {
7161     // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
7162     SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
7163     Result = DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
7164   }
7165   return true;
7166 }
7167 
expandBSWAP(SDNode * N,SelectionDAG & DAG) const7168 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const {
7169   SDLoc dl(N);
7170   EVT VT = N->getValueType(0);
7171   SDValue Op = N->getOperand(0);
7172 
7173   if (!VT.isSimple())
7174     return SDValue();
7175 
7176   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7177   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
7178   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
7179   default:
7180     return SDValue();
7181   case MVT::i16:
7182     // Use a rotate by 8. This can be further expanded if necessary.
7183     return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7184   case MVT::i32:
7185     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7186     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7187     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7188     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7189     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7190                        DAG.getConstant(0xFF0000, dl, VT));
7191     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
7192     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7193     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7194     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7195   case MVT::i64:
7196     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7197     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7198     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7199     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7200     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7201     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7202     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7203     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7204     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
7205                        DAG.getConstant(255ULL<<48, dl, VT));
7206     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
7207                        DAG.getConstant(255ULL<<40, dl, VT));
7208     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
7209                        DAG.getConstant(255ULL<<32, dl, VT));
7210     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
7211                        DAG.getConstant(255ULL<<24, dl, VT));
7212     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7213                        DAG.getConstant(255ULL<<16, dl, VT));
7214     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
7215                        DAG.getConstant(255ULL<<8 , dl, VT));
7216     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
7217     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
7218     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7219     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7220     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
7221     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7222     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
7223   }
7224 }
7225 
expandBITREVERSE(SDNode * N,SelectionDAG & DAG) const7226 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
7227   SDLoc dl(N);
7228   EVT VT = N->getValueType(0);
7229   SDValue Op = N->getOperand(0);
7230   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7231   unsigned Sz = VT.getScalarSizeInBits();
7232 
7233   SDValue Tmp, Tmp2, Tmp3;
7234 
7235   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
7236   // and finally the i1 pairs.
7237   // TODO: We can easily support i4/i2 legal types if any target ever does.
7238   if (Sz >= 8 && isPowerOf2_32(Sz)) {
7239     // Create the masks - repeating the pattern every byte.
7240     APInt MaskHi4 = APInt::getSplat(Sz, APInt(8, 0xF0));
7241     APInt MaskHi2 = APInt::getSplat(Sz, APInt(8, 0xCC));
7242     APInt MaskHi1 = APInt::getSplat(Sz, APInt(8, 0xAA));
7243     APInt MaskLo4 = APInt::getSplat(Sz, APInt(8, 0x0F));
7244     APInt MaskLo2 = APInt::getSplat(Sz, APInt(8, 0x33));
7245     APInt MaskLo1 = APInt::getSplat(Sz, APInt(8, 0x55));
7246 
7247     // BSWAP if the type is wider than a single byte.
7248     Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
7249 
7250     // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4)
7251     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi4, dl, VT));
7252     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo4, dl, VT));
7253     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(4, dl, SHVT));
7254     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
7255     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7256 
7257     // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2)
7258     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi2, dl, VT));
7259     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo2, dl, VT));
7260     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(2, dl, SHVT));
7261     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
7262     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7263 
7264     // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1)
7265     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi1, dl, VT));
7266     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo1, dl, VT));
7267     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(1, dl, SHVT));
7268     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
7269     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7270     return Tmp;
7271   }
7272 
7273   Tmp = DAG.getConstant(0, dl, VT);
7274   for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
7275     if (I < J)
7276       Tmp2 =
7277           DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
7278     else
7279       Tmp2 =
7280           DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
7281 
7282     APInt Shift(Sz, 1);
7283     Shift <<= J;
7284     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
7285     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
7286   }
7287 
7288   return Tmp;
7289 }
7290 
7291 std::pair<SDValue, SDValue>
scalarizeVectorLoad(LoadSDNode * LD,SelectionDAG & DAG) const7292 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
7293                                     SelectionDAG &DAG) const {
7294   SDLoc SL(LD);
7295   SDValue Chain = LD->getChain();
7296   SDValue BasePTR = LD->getBasePtr();
7297   EVT SrcVT = LD->getMemoryVT();
7298   EVT DstVT = LD->getValueType(0);
7299   ISD::LoadExtType ExtType = LD->getExtensionType();
7300 
7301   if (SrcVT.isScalableVector())
7302     report_fatal_error("Cannot scalarize scalable vector loads");
7303 
7304   unsigned NumElem = SrcVT.getVectorNumElements();
7305 
7306   EVT SrcEltVT = SrcVT.getScalarType();
7307   EVT DstEltVT = DstVT.getScalarType();
7308 
7309   // A vector must always be stored in memory as-is, i.e. without any padding
7310   // between the elements, since various code depend on it, e.g. in the
7311   // handling of a bitcast of a vector type to int, which may be done with a
7312   // vector store followed by an integer load. A vector that does not have
7313   // elements that are byte-sized must therefore be stored as an integer
7314   // built out of the extracted vector elements.
7315   if (!SrcEltVT.isByteSized()) {
7316     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
7317     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
7318 
7319     unsigned NumSrcBits = SrcVT.getSizeInBits();
7320     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
7321 
7322     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
7323     SDValue SrcEltBitMask = DAG.getConstant(
7324         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
7325 
7326     // Load the whole vector and avoid masking off the top bits as it makes
7327     // the codegen worse.
7328     SDValue Load =
7329         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
7330                        LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
7331                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7332 
7333     SmallVector<SDValue, 8> Vals;
7334     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7335       unsigned ShiftIntoIdx =
7336           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7337       SDValue ShiftAmount =
7338           DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
7339                                      LoadVT, SL, /*LegalTypes=*/false);
7340       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
7341       SDValue Elt =
7342           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
7343       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
7344 
7345       if (ExtType != ISD::NON_EXTLOAD) {
7346         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
7347         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
7348       }
7349 
7350       Vals.push_back(Scalar);
7351     }
7352 
7353     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7354     return std::make_pair(Value, Load.getValue(1));
7355   }
7356 
7357   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
7358   assert(SrcEltVT.isByteSized());
7359 
7360   SmallVector<SDValue, 8> Vals;
7361   SmallVector<SDValue, 8> LoadChains;
7362 
7363   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7364     SDValue ScalarLoad =
7365         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
7366                        LD->getPointerInfo().getWithOffset(Idx * Stride),
7367                        SrcEltVT, LD->getOriginalAlign(),
7368                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7369 
7370     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride));
7371 
7372     Vals.push_back(ScalarLoad.getValue(0));
7373     LoadChains.push_back(ScalarLoad.getValue(1));
7374   }
7375 
7376   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
7377   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7378 
7379   return std::make_pair(Value, NewChain);
7380 }
7381 
scalarizeVectorStore(StoreSDNode * ST,SelectionDAG & DAG) const7382 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
7383                                              SelectionDAG &DAG) const {
7384   SDLoc SL(ST);
7385 
7386   SDValue Chain = ST->getChain();
7387   SDValue BasePtr = ST->getBasePtr();
7388   SDValue Value = ST->getValue();
7389   EVT StVT = ST->getMemoryVT();
7390 
7391   if (StVT.isScalableVector())
7392     report_fatal_error("Cannot scalarize scalable vector stores");
7393 
7394   // The type of the data we want to save
7395   EVT RegVT = Value.getValueType();
7396   EVT RegSclVT = RegVT.getScalarType();
7397 
7398   // The type of data as saved in memory.
7399   EVT MemSclVT = StVT.getScalarType();
7400 
7401   unsigned NumElem = StVT.getVectorNumElements();
7402 
7403   // A vector must always be stored in memory as-is, i.e. without any padding
7404   // between the elements, since various code depend on it, e.g. in the
7405   // handling of a bitcast of a vector type to int, which may be done with a
7406   // vector store followed by an integer load. A vector that does not have
7407   // elements that are byte-sized must therefore be stored as an integer
7408   // built out of the extracted vector elements.
7409   if (!MemSclVT.isByteSized()) {
7410     unsigned NumBits = StVT.getSizeInBits();
7411     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
7412 
7413     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
7414 
7415     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7416       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7417                                 DAG.getVectorIdxConstant(Idx, SL));
7418       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
7419       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
7420       unsigned ShiftIntoIdx =
7421           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7422       SDValue ShiftAmount =
7423           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
7424       SDValue ShiftedElt =
7425           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
7426       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
7427     }
7428 
7429     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
7430                         ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7431                         ST->getAAInfo());
7432   }
7433 
7434   // Store Stride in bytes
7435   unsigned Stride = MemSclVT.getSizeInBits() / 8;
7436   assert(Stride && "Zero stride!");
7437   // Extract each of the elements from the original vector and save them into
7438   // memory individually.
7439   SmallVector<SDValue, 8> Stores;
7440   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7441     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7442                               DAG.getVectorIdxConstant(Idx, SL));
7443 
7444     SDValue Ptr =
7445         DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride));
7446 
7447     // This scalar TruncStore may be illegal, but we legalize it later.
7448     SDValue Store = DAG.getTruncStore(
7449         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
7450         MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7451         ST->getAAInfo());
7452 
7453     Stores.push_back(Store);
7454   }
7455 
7456   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
7457 }
7458 
7459 std::pair<SDValue, SDValue>
expandUnalignedLoad(LoadSDNode * LD,SelectionDAG & DAG) const7460 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
7461   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
7462          "unaligned indexed loads not implemented!");
7463   SDValue Chain = LD->getChain();
7464   SDValue Ptr = LD->getBasePtr();
7465   EVT VT = LD->getValueType(0);
7466   EVT LoadedVT = LD->getMemoryVT();
7467   SDLoc dl(LD);
7468   auto &MF = DAG.getMachineFunction();
7469 
7470   if (VT.isFloatingPoint() || VT.isVector()) {
7471     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
7472     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
7473       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
7474           LoadedVT.isVector()) {
7475         // Scalarize the load and let the individual components be handled.
7476         return scalarizeVectorLoad(LD, DAG);
7477       }
7478 
7479       // Expand to a (misaligned) integer load of the same size,
7480       // then bitconvert to floating point or vector.
7481       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
7482                                     LD->getMemOperand());
7483       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
7484       if (LoadedVT != VT)
7485         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
7486                              ISD::ANY_EXTEND, dl, VT, Result);
7487 
7488       return std::make_pair(Result, newLoad.getValue(1));
7489     }
7490 
7491     // Copy the value to a (aligned) stack slot using (unaligned) integer
7492     // loads and stores, then do a (aligned) load from the stack slot.
7493     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
7494     unsigned LoadedBytes = LoadedVT.getStoreSize();
7495     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7496     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
7497 
7498     // Make sure the stack slot is also aligned for the register type.
7499     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
7500     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
7501     SmallVector<SDValue, 8> Stores;
7502     SDValue StackPtr = StackBase;
7503     unsigned Offset = 0;
7504 
7505     EVT PtrVT = Ptr.getValueType();
7506     EVT StackPtrVT = StackPtr.getValueType();
7507 
7508     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7509     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7510 
7511     // Do all but one copies using the full register width.
7512     for (unsigned i = 1; i < NumRegs; i++) {
7513       // Load one integer register's worth from the original location.
7514       SDValue Load = DAG.getLoad(
7515           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
7516           LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7517           LD->getAAInfo());
7518       // Follow the load with a store to the stack slot.  Remember the store.
7519       Stores.push_back(DAG.getStore(
7520           Load.getValue(1), dl, Load, StackPtr,
7521           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
7522       // Increment the pointers.
7523       Offset += RegBytes;
7524 
7525       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7526       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7527     }
7528 
7529     // The last copy may be partial.  Do an extending load.
7530     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
7531                                   8 * (LoadedBytes - Offset));
7532     SDValue Load =
7533         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
7534                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
7535                        LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7536                        LD->getAAInfo());
7537     // Follow the load with a store to the stack slot.  Remember the store.
7538     // On big-endian machines this requires a truncating store to ensure
7539     // that the bits end up in the right place.
7540     Stores.push_back(DAG.getTruncStore(
7541         Load.getValue(1), dl, Load, StackPtr,
7542         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
7543 
7544     // The order of the stores doesn't matter - say it with a TokenFactor.
7545     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7546 
7547     // Finally, perform the original load only redirected to the stack slot.
7548     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
7549                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
7550                           LoadedVT);
7551 
7552     // Callers expect a MERGE_VALUES node.
7553     return std::make_pair(Load, TF);
7554   }
7555 
7556   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
7557          "Unaligned load of unsupported type.");
7558 
7559   // Compute the new VT that is half the size of the old one.  This is an
7560   // integer MVT.
7561   unsigned NumBits = LoadedVT.getSizeInBits();
7562   EVT NewLoadedVT;
7563   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
7564   NumBits >>= 1;
7565 
7566   Align Alignment = LD->getOriginalAlign();
7567   unsigned IncrementSize = NumBits / 8;
7568   ISD::LoadExtType HiExtType = LD->getExtensionType();
7569 
7570   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
7571   if (HiExtType == ISD::NON_EXTLOAD)
7572     HiExtType = ISD::ZEXTLOAD;
7573 
7574   // Load the value in two parts
7575   SDValue Lo, Hi;
7576   if (DAG.getDataLayout().isLittleEndian()) {
7577     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7578                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7579                         LD->getAAInfo());
7580 
7581     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7582     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
7583                         LD->getPointerInfo().getWithOffset(IncrementSize),
7584                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7585                         LD->getAAInfo());
7586   } else {
7587     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7588                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7589                         LD->getAAInfo());
7590 
7591     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7592     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
7593                         LD->getPointerInfo().getWithOffset(IncrementSize),
7594                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7595                         LD->getAAInfo());
7596   }
7597 
7598   // aggregate the two parts
7599   SDValue ShiftAmount =
7600       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
7601                                                     DAG.getDataLayout()));
7602   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
7603   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
7604 
7605   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
7606                              Hi.getValue(1));
7607 
7608   return std::make_pair(Result, TF);
7609 }
7610 
expandUnalignedStore(StoreSDNode * ST,SelectionDAG & DAG) const7611 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
7612                                              SelectionDAG &DAG) const {
7613   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
7614          "unaligned indexed stores not implemented!");
7615   SDValue Chain = ST->getChain();
7616   SDValue Ptr = ST->getBasePtr();
7617   SDValue Val = ST->getValue();
7618   EVT VT = Val.getValueType();
7619   Align Alignment = ST->getOriginalAlign();
7620   auto &MF = DAG.getMachineFunction();
7621   EVT StoreMemVT = ST->getMemoryVT();
7622 
7623   SDLoc dl(ST);
7624   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
7625     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7626     if (isTypeLegal(intVT)) {
7627       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
7628           StoreMemVT.isVector()) {
7629         // Scalarize the store and let the individual components be handled.
7630         SDValue Result = scalarizeVectorStore(ST, DAG);
7631         return Result;
7632       }
7633       // Expand to a bitconvert of the value to the integer type of the
7634       // same size, then a (misaligned) int store.
7635       // FIXME: Does not handle truncating floating point stores!
7636       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
7637       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
7638                             Alignment, ST->getMemOperand()->getFlags());
7639       return Result;
7640     }
7641     // Do a (aligned) store to a stack slot, then copy from the stack slot
7642     // to the final destination using (unaligned) integer loads and stores.
7643     MVT RegVT = getRegisterType(
7644         *DAG.getContext(),
7645         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
7646     EVT PtrVT = Ptr.getValueType();
7647     unsigned StoredBytes = StoreMemVT.getStoreSize();
7648     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7649     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
7650 
7651     // Make sure the stack slot is also aligned for the register type.
7652     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
7653     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
7654 
7655     // Perform the original store, only redirected to the stack slot.
7656     SDValue Store = DAG.getTruncStore(
7657         Chain, dl, Val, StackPtr,
7658         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
7659 
7660     EVT StackPtrVT = StackPtr.getValueType();
7661 
7662     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7663     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7664     SmallVector<SDValue, 8> Stores;
7665     unsigned Offset = 0;
7666 
7667     // Do all but one copies using the full register width.
7668     for (unsigned i = 1; i < NumRegs; i++) {
7669       // Load one integer register's worth from the stack slot.
7670       SDValue Load = DAG.getLoad(
7671           RegVT, dl, Store, StackPtr,
7672           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
7673       // Store it to the final location.  Remember the store.
7674       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
7675                                     ST->getPointerInfo().getWithOffset(Offset),
7676                                     ST->getOriginalAlign(),
7677                                     ST->getMemOperand()->getFlags()));
7678       // Increment the pointers.
7679       Offset += RegBytes;
7680       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7681       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7682     }
7683 
7684     // The last store may be partial.  Do a truncating store.  On big-endian
7685     // machines this requires an extending load from the stack slot to ensure
7686     // that the bits are in the right place.
7687     EVT LoadMemVT =
7688         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
7689 
7690     // Load from the stack slot.
7691     SDValue Load = DAG.getExtLoad(
7692         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
7693         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
7694 
7695     Stores.push_back(
7696         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
7697                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
7698                           ST->getOriginalAlign(),
7699                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
7700     // The order of the stores doesn't matter - say it with a TokenFactor.
7701     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7702     return Result;
7703   }
7704 
7705   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
7706          "Unaligned store of unknown type.");
7707   // Get the half-size VT
7708   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
7709   unsigned NumBits = NewStoredVT.getFixedSizeInBits();
7710   unsigned IncrementSize = NumBits / 8;
7711 
7712   // Divide the stored value in two parts.
7713   SDValue ShiftAmount = DAG.getConstant(
7714       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
7715   SDValue Lo = Val;
7716   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
7717 
7718   // Store the two parts
7719   SDValue Store1, Store2;
7720   Store1 = DAG.getTruncStore(Chain, dl,
7721                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
7722                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
7723                              ST->getMemOperand()->getFlags());
7724 
7725   Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7726   Store2 = DAG.getTruncStore(
7727       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
7728       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
7729       ST->getMemOperand()->getFlags(), ST->getAAInfo());
7730 
7731   SDValue Result =
7732       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
7733   return Result;
7734 }
7735 
7736 SDValue
IncrementMemoryAddress(SDValue Addr,SDValue Mask,const SDLoc & DL,EVT DataVT,SelectionDAG & DAG,bool IsCompressedMemory) const7737 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
7738                                        const SDLoc &DL, EVT DataVT,
7739                                        SelectionDAG &DAG,
7740                                        bool IsCompressedMemory) const {
7741   SDValue Increment;
7742   EVT AddrVT = Addr.getValueType();
7743   EVT MaskVT = Mask.getValueType();
7744   assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
7745          "Incompatible types of Data and Mask");
7746   if (IsCompressedMemory) {
7747     if (DataVT.isScalableVector())
7748       report_fatal_error(
7749           "Cannot currently handle compressed memory with scalable vectors");
7750     // Incrementing the pointer according to number of '1's in the mask.
7751     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
7752     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
7753     if (MaskIntVT.getSizeInBits() < 32) {
7754       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
7755       MaskIntVT = MVT::i32;
7756     }
7757 
7758     // Count '1's with POPCNT.
7759     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
7760     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
7761     // Scale is an element size in bytes.
7762     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
7763                                     AddrVT);
7764     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
7765   } else if (DataVT.isScalableVector()) {
7766     Increment = DAG.getVScale(DL, AddrVT,
7767                               APInt(AddrVT.getFixedSizeInBits(),
7768                                     DataVT.getStoreSize().getKnownMinSize()));
7769   } else
7770     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
7771 
7772   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
7773 }
7774 
clampDynamicVectorIndex(SelectionDAG & DAG,SDValue Idx,EVT VecVT,const SDLoc & dl)7775 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
7776                                        SDValue Idx,
7777                                        EVT VecVT,
7778                                        const SDLoc &dl) {
7779   if (!VecVT.isScalableVector() && isa<ConstantSDNode>(Idx))
7780     return Idx;
7781 
7782   EVT IdxVT = Idx.getValueType();
7783   unsigned NElts = VecVT.getVectorMinNumElements();
7784   if (VecVT.isScalableVector()) {
7785     // If this is a constant index and we know the value is less than the
7786     // minimum number of elements then it's safe to return Idx.
7787     if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
7788       if (IdxCst->getZExtValue() < NElts)
7789         return Idx;
7790     SDValue VS =
7791         DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts));
7792     SDValue Sub =
7793         DAG.getNode(ISD::SUB, dl, IdxVT, VS, DAG.getConstant(1, dl, IdxVT));
7794     return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
7795   }
7796   if (isPowerOf2_32(NElts)) {
7797     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts));
7798     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
7799                        DAG.getConstant(Imm, dl, IdxVT));
7800   }
7801   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
7802                      DAG.getConstant(NElts - 1, dl, IdxVT));
7803 }
7804 
getVectorElementPointer(SelectionDAG & DAG,SDValue VecPtr,EVT VecVT,SDValue Index) const7805 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
7806                                                 SDValue VecPtr, EVT VecVT,
7807                                                 SDValue Index) const {
7808   SDLoc dl(Index);
7809   // Make sure the index type is big enough to compute in.
7810   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
7811 
7812   EVT EltVT = VecVT.getVectorElementType();
7813 
7814   // Calculate the element offset and add it to the pointer.
7815   unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
7816   assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
7817          "Converting bits to bytes lost precision");
7818 
7819   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
7820 
7821   EVT IdxVT = Index.getValueType();
7822 
7823   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7824                       DAG.getConstant(EltSize, dl, IdxVT));
7825   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
7826 }
7827 
7828 //===----------------------------------------------------------------------===//
7829 // Implementation of Emulated TLS Model
7830 //===----------------------------------------------------------------------===//
7831 
LowerToTLSEmulatedModel(const GlobalAddressSDNode * GA,SelectionDAG & DAG) const7832 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
7833                                                 SelectionDAG &DAG) const {
7834   // Access to address of TLS varialbe xyz is lowered to a function call:
7835   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
7836   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7837   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
7838   SDLoc dl(GA);
7839 
7840   ArgListTy Args;
7841   ArgListEntry Entry;
7842   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
7843   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
7844   StringRef EmuTlsVarName(NameString);
7845   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
7846   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
7847   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
7848   Entry.Ty = VoidPtrType;
7849   Args.push_back(Entry);
7850 
7851   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
7852 
7853   TargetLowering::CallLoweringInfo CLI(DAG);
7854   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
7855   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
7856   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
7857 
7858   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7859   // At last for X86 targets, maybe good for other targets too?
7860   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7861   MFI.setAdjustsStack(true); // Is this only for X86 target?
7862   MFI.setHasCalls(true);
7863 
7864   assert((GA->getOffset() == 0) &&
7865          "Emulated TLS must have zero offset in GlobalAddressSDNode");
7866   return CallResult.first;
7867 }
7868 
lowerCmpEqZeroToCtlzSrl(SDValue Op,SelectionDAG & DAG) const7869 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
7870                                                 SelectionDAG &DAG) const {
7871   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
7872   if (!isCtlzFast())
7873     return SDValue();
7874   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7875   SDLoc dl(Op);
7876   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
7877     if (C->isNullValue() && CC == ISD::SETEQ) {
7878       EVT VT = Op.getOperand(0).getValueType();
7879       SDValue Zext = Op.getOperand(0);
7880       if (VT.bitsLT(MVT::i32)) {
7881         VT = MVT::i32;
7882         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
7883       }
7884       unsigned Log2b = Log2_32(VT.getSizeInBits());
7885       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
7886       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
7887                                 DAG.getConstant(Log2b, dl, MVT::i32));
7888       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
7889     }
7890   }
7891   return SDValue();
7892 }
7893 
7894 // Convert redundant addressing modes (e.g. scaling is redundant
7895 // when accessing bytes).
7896 ISD::MemIndexType
getCanonicalIndexType(ISD::MemIndexType IndexType,EVT MemVT,SDValue Offsets) const7897 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT,
7898                                       SDValue Offsets) const {
7899   bool IsScaledIndex =
7900       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED);
7901   bool IsSignedIndex =
7902       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED);
7903 
7904   // Scaling is unimportant for bytes, canonicalize to unscaled.
7905   if (IsScaledIndex && MemVT.getScalarType() == MVT::i8) {
7906     IsScaledIndex = false;
7907     IndexType = IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED;
7908   }
7909 
7910   return IndexType;
7911 }
7912 
expandIntMINMAX(SDNode * Node,SelectionDAG & DAG) const7913 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
7914   SDValue Op0 = Node->getOperand(0);
7915   SDValue Op1 = Node->getOperand(1);
7916   EVT VT = Op0.getValueType();
7917   unsigned Opcode = Node->getOpcode();
7918   SDLoc DL(Node);
7919 
7920   // umin(x,y) -> sub(x,usubsat(x,y))
7921   if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
7922       isOperationLegal(ISD::USUBSAT, VT)) {
7923     return DAG.getNode(ISD::SUB, DL, VT, Op0,
7924                        DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
7925   }
7926 
7927   // umax(x,y) -> add(x,usubsat(y,x))
7928   if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
7929       isOperationLegal(ISD::USUBSAT, VT)) {
7930     return DAG.getNode(ISD::ADD, DL, VT, Op0,
7931                        DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
7932   }
7933 
7934   // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
7935   ISD::CondCode CC;
7936   switch (Opcode) {
7937   default: llvm_unreachable("How did we get here?");
7938   case ISD::SMAX: CC = ISD::SETGT; break;
7939   case ISD::SMIN: CC = ISD::SETLT; break;
7940   case ISD::UMAX: CC = ISD::SETUGT; break;
7941   case ISD::UMIN: CC = ISD::SETULT; break;
7942   }
7943 
7944   // FIXME: Should really try to split the vector in case it's legal on a
7945   // subvector.
7946   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
7947     return DAG.UnrollVectorOp(Node);
7948 
7949   SDValue Cond = DAG.getSetCC(DL, VT, Op0, Op1, CC);
7950   return DAG.getSelect(DL, VT, Cond, Op0, Op1);
7951 }
7952 
expandAddSubSat(SDNode * Node,SelectionDAG & DAG) const7953 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
7954   unsigned Opcode = Node->getOpcode();
7955   SDValue LHS = Node->getOperand(0);
7956   SDValue RHS = Node->getOperand(1);
7957   EVT VT = LHS.getValueType();
7958   SDLoc dl(Node);
7959 
7960   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
7961   assert(VT.isInteger() && "Expected operands to be integers");
7962 
7963   // usub.sat(a, b) -> umax(a, b) - b
7964   if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
7965     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
7966     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
7967   }
7968 
7969   // uadd.sat(a, b) -> umin(a, ~b) + b
7970   if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
7971     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
7972     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
7973     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
7974   }
7975 
7976   unsigned OverflowOp;
7977   switch (Opcode) {
7978   case ISD::SADDSAT:
7979     OverflowOp = ISD::SADDO;
7980     break;
7981   case ISD::UADDSAT:
7982     OverflowOp = ISD::UADDO;
7983     break;
7984   case ISD::SSUBSAT:
7985     OverflowOp = ISD::SSUBO;
7986     break;
7987   case ISD::USUBSAT:
7988     OverflowOp = ISD::USUBO;
7989     break;
7990   default:
7991     llvm_unreachable("Expected method to receive signed or unsigned saturation "
7992                      "addition or subtraction node.");
7993   }
7994 
7995   // FIXME: Should really try to split the vector in case it's legal on a
7996   // subvector.
7997   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
7998     return DAG.UnrollVectorOp(Node);
7999 
8000   unsigned BitWidth = LHS.getScalarValueSizeInBits();
8001   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8002   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8003   SDValue SumDiff = Result.getValue(0);
8004   SDValue Overflow = Result.getValue(1);
8005   SDValue Zero = DAG.getConstant(0, dl, VT);
8006   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
8007 
8008   if (Opcode == ISD::UADDSAT) {
8009     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8010       // (LHS + RHS) | OverflowMask
8011       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8012       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
8013     }
8014     // Overflow ? 0xffff.... : (LHS + RHS)
8015     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
8016   }
8017 
8018   if (Opcode == ISD::USUBSAT) {
8019     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8020       // (LHS - RHS) & ~OverflowMask
8021       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8022       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
8023       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
8024     }
8025     // Overflow ? 0 : (LHS - RHS)
8026     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
8027   }
8028 
8029   // SatMax -> Overflow && SumDiff < 0
8030   // SatMin -> Overflow && SumDiff >= 0
8031   APInt MinVal = APInt::getSignedMinValue(BitWidth);
8032   APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
8033   SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8034   SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8035   SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
8036   Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin);
8037   return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
8038 }
8039 
expandShlSat(SDNode * Node,SelectionDAG & DAG) const8040 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
8041   unsigned Opcode = Node->getOpcode();
8042   bool IsSigned = Opcode == ISD::SSHLSAT;
8043   SDValue LHS = Node->getOperand(0);
8044   SDValue RHS = Node->getOperand(1);
8045   EVT VT = LHS.getValueType();
8046   SDLoc dl(Node);
8047 
8048   assert((Node->getOpcode() == ISD::SSHLSAT ||
8049           Node->getOpcode() == ISD::USHLSAT) &&
8050           "Expected a SHLSAT opcode");
8051   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8052   assert(VT.isInteger() && "Expected operands to be integers");
8053 
8054   // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
8055 
8056   unsigned BW = VT.getScalarSizeInBits();
8057   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
8058   SDValue Orig =
8059       DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
8060 
8061   SDValue SatVal;
8062   if (IsSigned) {
8063     SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
8064     SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
8065     SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT),
8066                              SatMin, SatMax, ISD::SETLT);
8067   } else {
8068     SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
8069   }
8070   Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE);
8071 
8072   return Result;
8073 }
8074 
8075 SDValue
expandFixedPointMul(SDNode * Node,SelectionDAG & DAG) const8076 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
8077   assert((Node->getOpcode() == ISD::SMULFIX ||
8078           Node->getOpcode() == ISD::UMULFIX ||
8079           Node->getOpcode() == ISD::SMULFIXSAT ||
8080           Node->getOpcode() == ISD::UMULFIXSAT) &&
8081          "Expected a fixed point multiplication opcode");
8082 
8083   SDLoc dl(Node);
8084   SDValue LHS = Node->getOperand(0);
8085   SDValue RHS = Node->getOperand(1);
8086   EVT VT = LHS.getValueType();
8087   unsigned Scale = Node->getConstantOperandVal(2);
8088   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
8089                      Node->getOpcode() == ISD::UMULFIXSAT);
8090   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
8091                  Node->getOpcode() == ISD::SMULFIXSAT);
8092   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8093   unsigned VTSize = VT.getScalarSizeInBits();
8094 
8095   if (!Scale) {
8096     // [us]mul.fix(a, b, 0) -> mul(a, b)
8097     if (!Saturating) {
8098       if (isOperationLegalOrCustom(ISD::MUL, VT))
8099         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8100     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
8101       SDValue Result =
8102           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8103       SDValue Product = Result.getValue(0);
8104       SDValue Overflow = Result.getValue(1);
8105       SDValue Zero = DAG.getConstant(0, dl, VT);
8106 
8107       APInt MinVal = APInt::getSignedMinValue(VTSize);
8108       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
8109       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8110       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8111       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT);
8112       Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin);
8113       return DAG.getSelect(dl, VT, Overflow, Result, Product);
8114     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
8115       SDValue Result =
8116           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8117       SDValue Product = Result.getValue(0);
8118       SDValue Overflow = Result.getValue(1);
8119 
8120       APInt MaxVal = APInt::getMaxValue(VTSize);
8121       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8122       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
8123     }
8124   }
8125 
8126   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
8127          "Expected scale to be less than the number of bits if signed or at "
8128          "most the number of bits if unsigned.");
8129   assert(LHS.getValueType() == RHS.getValueType() &&
8130          "Expected both operands to be the same type");
8131 
8132   // Get the upper and lower bits of the result.
8133   SDValue Lo, Hi;
8134   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
8135   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
8136   if (isOperationLegalOrCustom(LoHiOp, VT)) {
8137     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
8138     Lo = Result.getValue(0);
8139     Hi = Result.getValue(1);
8140   } else if (isOperationLegalOrCustom(HiOp, VT)) {
8141     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8142     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
8143   } else if (VT.isVector()) {
8144     return SDValue();
8145   } else {
8146     report_fatal_error("Unable to expand fixed point multiplication.");
8147   }
8148 
8149   if (Scale == VTSize)
8150     // Result is just the top half since we'd be shifting by the width of the
8151     // operand. Overflow impossible so this works for both UMULFIX and
8152     // UMULFIXSAT.
8153     return Hi;
8154 
8155   // The result will need to be shifted right by the scale since both operands
8156   // are scaled. The result is given to us in 2 halves, so we only want part of
8157   // both in the result.
8158   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8159   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
8160                                DAG.getConstant(Scale, dl, ShiftTy));
8161   if (!Saturating)
8162     return Result;
8163 
8164   if (!Signed) {
8165     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
8166     // widened multiplication) aren't all zeroes.
8167 
8168     // Saturate to max if ((Hi >> Scale) != 0),
8169     // which is the same as if (Hi > ((1 << Scale) - 1))
8170     APInt MaxVal = APInt::getMaxValue(VTSize);
8171     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
8172                                       dl, VT);
8173     Result = DAG.getSelectCC(dl, Hi, LowMask,
8174                              DAG.getConstant(MaxVal, dl, VT), Result,
8175                              ISD::SETUGT);
8176 
8177     return Result;
8178   }
8179 
8180   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
8181   // widened multiplication) aren't all ones or all zeroes.
8182 
8183   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
8184   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
8185 
8186   if (Scale == 0) {
8187     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
8188                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
8189     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
8190     // Saturated to SatMin if wide product is negative, and SatMax if wide
8191     // product is positive ...
8192     SDValue Zero = DAG.getConstant(0, dl, VT);
8193     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
8194                                                ISD::SETLT);
8195     // ... but only if we overflowed.
8196     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
8197   }
8198 
8199   //  We handled Scale==0 above so all the bits to examine is in Hi.
8200 
8201   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
8202   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
8203   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
8204                                     dl, VT);
8205   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
8206   // Saturate to min if (Hi >> (Scale - 1)) < -1),
8207   // which is the same as if (HI < (-1 << (Scale - 1))
8208   SDValue HighMask =
8209       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
8210                       dl, VT);
8211   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
8212   return Result;
8213 }
8214 
8215 SDValue
expandFixedPointDiv(unsigned Opcode,const SDLoc & dl,SDValue LHS,SDValue RHS,unsigned Scale,SelectionDAG & DAG) const8216 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
8217                                     SDValue LHS, SDValue RHS,
8218                                     unsigned Scale, SelectionDAG &DAG) const {
8219   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
8220           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
8221          "Expected a fixed point division opcode");
8222 
8223   EVT VT = LHS.getValueType();
8224   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
8225   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
8226   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8227 
8228   // If there is enough room in the type to upscale the LHS or downscale the
8229   // RHS before the division, we can perform it in this type without having to
8230   // resize. For signed operations, the LHS headroom is the number of
8231   // redundant sign bits, and for unsigned ones it is the number of zeroes.
8232   // The headroom for the RHS is the number of trailing zeroes.
8233   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
8234                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
8235   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
8236 
8237   // For signed saturating operations, we need to be able to detect true integer
8238   // division overflow; that is, when you have MIN / -EPS. However, this
8239   // is undefined behavior and if we emit divisions that could take such
8240   // values it may cause undesired behavior (arithmetic exceptions on x86, for
8241   // example).
8242   // Avoid this by requiring an extra bit so that we never get this case.
8243   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
8244   // signed saturating division, we need to emit a whopping 32-bit division.
8245   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
8246     return SDValue();
8247 
8248   unsigned LHSShift = std::min(LHSLead, Scale);
8249   unsigned RHSShift = Scale - LHSShift;
8250 
8251   // At this point, we know that if we shift the LHS up by LHSShift and the
8252   // RHS down by RHSShift, we can emit a regular division with a final scaling
8253   // factor of Scale.
8254 
8255   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8256   if (LHSShift)
8257     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
8258                       DAG.getConstant(LHSShift, dl, ShiftTy));
8259   if (RHSShift)
8260     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
8261                       DAG.getConstant(RHSShift, dl, ShiftTy));
8262 
8263   SDValue Quot;
8264   if (Signed) {
8265     // For signed operations, if the resulting quotient is negative and the
8266     // remainder is nonzero, subtract 1 from the quotient to round towards
8267     // negative infinity.
8268     SDValue Rem;
8269     // FIXME: Ideally we would always produce an SDIVREM here, but if the
8270     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
8271     // we couldn't just form a libcall, but the type legalizer doesn't do it.
8272     if (isTypeLegal(VT) &&
8273         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
8274       Quot = DAG.getNode(ISD::SDIVREM, dl,
8275                          DAG.getVTList(VT, VT),
8276                          LHS, RHS);
8277       Rem = Quot.getValue(1);
8278       Quot = Quot.getValue(0);
8279     } else {
8280       Quot = DAG.getNode(ISD::SDIV, dl, VT,
8281                          LHS, RHS);
8282       Rem = DAG.getNode(ISD::SREM, dl, VT,
8283                         LHS, RHS);
8284     }
8285     SDValue Zero = DAG.getConstant(0, dl, VT);
8286     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
8287     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
8288     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
8289     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
8290     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
8291                                DAG.getConstant(1, dl, VT));
8292     Quot = DAG.getSelect(dl, VT,
8293                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
8294                          Sub1, Quot);
8295   } else
8296     Quot = DAG.getNode(ISD::UDIV, dl, VT,
8297                        LHS, RHS);
8298 
8299   return Quot;
8300 }
8301 
expandUADDSUBO(SDNode * Node,SDValue & Result,SDValue & Overflow,SelectionDAG & DAG) const8302 void TargetLowering::expandUADDSUBO(
8303     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8304   SDLoc dl(Node);
8305   SDValue LHS = Node->getOperand(0);
8306   SDValue RHS = Node->getOperand(1);
8307   bool IsAdd = Node->getOpcode() == ISD::UADDO;
8308 
8309   // If ADD/SUBCARRY is legal, use that instead.
8310   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
8311   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
8312     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
8313     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
8314                                     { LHS, RHS, CarryIn });
8315     Result = SDValue(NodeCarry.getNode(), 0);
8316     Overflow = SDValue(NodeCarry.getNode(), 1);
8317     return;
8318   }
8319 
8320   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8321                             LHS.getValueType(), LHS, RHS);
8322 
8323   EVT ResultType = Node->getValueType(1);
8324   EVT SetCCType = getSetCCResultType(
8325       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8326   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
8327   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
8328   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8329 }
8330 
expandSADDSUBO(SDNode * Node,SDValue & Result,SDValue & Overflow,SelectionDAG & DAG) const8331 void TargetLowering::expandSADDSUBO(
8332     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8333   SDLoc dl(Node);
8334   SDValue LHS = Node->getOperand(0);
8335   SDValue RHS = Node->getOperand(1);
8336   bool IsAdd = Node->getOpcode() == ISD::SADDO;
8337 
8338   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8339                             LHS.getValueType(), LHS, RHS);
8340 
8341   EVT ResultType = Node->getValueType(1);
8342   EVT OType = getSetCCResultType(
8343       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8344 
8345   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
8346   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
8347   if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) {
8348     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
8349     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
8350     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8351     return;
8352   }
8353 
8354   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
8355 
8356   // For an addition, the result should be less than one of the operands (LHS)
8357   // if and only if the other operand (RHS) is negative, otherwise there will
8358   // be overflow.
8359   // For a subtraction, the result should be less than one of the operands
8360   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
8361   // otherwise there will be overflow.
8362   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
8363   SDValue ConditionRHS =
8364       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
8365 
8366   Overflow = DAG.getBoolExtOrTrunc(
8367       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
8368       ResultType, ResultType);
8369 }
8370 
expandMULO(SDNode * Node,SDValue & Result,SDValue & Overflow,SelectionDAG & DAG) const8371 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
8372                                 SDValue &Overflow, SelectionDAG &DAG) const {
8373   SDLoc dl(Node);
8374   EVT VT = Node->getValueType(0);
8375   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8376   SDValue LHS = Node->getOperand(0);
8377   SDValue RHS = Node->getOperand(1);
8378   bool isSigned = Node->getOpcode() == ISD::SMULO;
8379 
8380   // For power-of-two multiplications we can use a simpler shift expansion.
8381   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
8382     const APInt &C = RHSC->getAPIntValue();
8383     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
8384     if (C.isPowerOf2()) {
8385       // smulo(x, signed_min) is same as umulo(x, signed_min).
8386       bool UseArithShift = isSigned && !C.isMinSignedValue();
8387       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
8388       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
8389       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
8390       Overflow = DAG.getSetCC(dl, SetCCVT,
8391           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
8392                       dl, VT, Result, ShiftAmt),
8393           LHS, ISD::SETNE);
8394       return true;
8395     }
8396   }
8397 
8398   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
8399   if (VT.isVector())
8400     WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
8401                               VT.getVectorNumElements());
8402 
8403   SDValue BottomHalf;
8404   SDValue TopHalf;
8405   static const unsigned Ops[2][3] =
8406       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
8407         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
8408   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
8409     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8410     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
8411   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
8412     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
8413                              RHS);
8414     TopHalf = BottomHalf.getValue(1);
8415   } else if (isTypeLegal(WideVT)) {
8416     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
8417     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
8418     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
8419     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
8420     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
8421         getShiftAmountTy(WideVT, DAG.getDataLayout()));
8422     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
8423                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
8424   } else {
8425     if (VT.isVector())
8426       return false;
8427 
8428     // We can fall back to a libcall with an illegal type for the MUL if we
8429     // have a libcall big enough.
8430     // Also, we can fall back to a division in some cases, but that's a big
8431     // performance hit in the general case.
8432     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
8433     if (WideVT == MVT::i16)
8434       LC = RTLIB::MUL_I16;
8435     else if (WideVT == MVT::i32)
8436       LC = RTLIB::MUL_I32;
8437     else if (WideVT == MVT::i64)
8438       LC = RTLIB::MUL_I64;
8439     else if (WideVT == MVT::i128)
8440       LC = RTLIB::MUL_I128;
8441     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
8442 
8443     SDValue HiLHS;
8444     SDValue HiRHS;
8445     if (isSigned) {
8446       // The high part is obtained by SRA'ing all but one of the bits of low
8447       // part.
8448       unsigned LoSize = VT.getFixedSizeInBits();
8449       HiLHS =
8450           DAG.getNode(ISD::SRA, dl, VT, LHS,
8451                       DAG.getConstant(LoSize - 1, dl,
8452                                       getPointerTy(DAG.getDataLayout())));
8453       HiRHS =
8454           DAG.getNode(ISD::SRA, dl, VT, RHS,
8455                       DAG.getConstant(LoSize - 1, dl,
8456                                       getPointerTy(DAG.getDataLayout())));
8457     } else {
8458         HiLHS = DAG.getConstant(0, dl, VT);
8459         HiRHS = DAG.getConstant(0, dl, VT);
8460     }
8461 
8462     // Here we're passing the 2 arguments explicitly as 4 arguments that are
8463     // pre-lowered to the correct types. This all depends upon WideVT not
8464     // being a legal type for the architecture and thus has to be split to
8465     // two arguments.
8466     SDValue Ret;
8467     TargetLowering::MakeLibCallOptions CallOptions;
8468     CallOptions.setSExt(isSigned);
8469     CallOptions.setIsPostTypeLegalization(true);
8470     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
8471       // Halves of WideVT are packed into registers in different order
8472       // depending on platform endianness. This is usually handled by
8473       // the C calling convention, but we can't defer to it in
8474       // the legalizer.
8475       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
8476       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8477     } else {
8478       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
8479       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8480     }
8481     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
8482            "Ret value is a collection of constituent nodes holding result.");
8483     if (DAG.getDataLayout().isLittleEndian()) {
8484       // Same as above.
8485       BottomHalf = Ret.getOperand(0);
8486       TopHalf = Ret.getOperand(1);
8487     } else {
8488       BottomHalf = Ret.getOperand(1);
8489       TopHalf = Ret.getOperand(0);
8490     }
8491   }
8492 
8493   Result = BottomHalf;
8494   if (isSigned) {
8495     SDValue ShiftAmt = DAG.getConstant(
8496         VT.getScalarSizeInBits() - 1, dl,
8497         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
8498     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
8499     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
8500   } else {
8501     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
8502                             DAG.getConstant(0, dl, VT), ISD::SETNE);
8503   }
8504 
8505   // Truncate the result if SetCC returns a larger type than needed.
8506   EVT RType = Node->getValueType(1);
8507   if (RType.bitsLT(Overflow.getValueType()))
8508     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
8509 
8510   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
8511          "Unexpected result type for S/UMULO legalization");
8512   return true;
8513 }
8514 
expandVecReduce(SDNode * Node,SelectionDAG & DAG) const8515 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
8516   SDLoc dl(Node);
8517   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8518   SDValue Op = Node->getOperand(0);
8519   EVT VT = Op.getValueType();
8520 
8521   if (VT.isScalableVector())
8522     report_fatal_error(
8523         "Expanding reductions for scalable vectors is undefined.");
8524 
8525   // Try to use a shuffle reduction for power of two vectors.
8526   if (VT.isPow2VectorType()) {
8527     while (VT.getVectorNumElements() > 1) {
8528       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
8529       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
8530         break;
8531 
8532       SDValue Lo, Hi;
8533       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
8534       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
8535       VT = HalfVT;
8536     }
8537   }
8538 
8539   EVT EltVT = VT.getVectorElementType();
8540   unsigned NumElts = VT.getVectorNumElements();
8541 
8542   SmallVector<SDValue, 8> Ops;
8543   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
8544 
8545   SDValue Res = Ops[0];
8546   for (unsigned i = 1; i < NumElts; i++)
8547     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
8548 
8549   // Result type may be wider than element type.
8550   if (EltVT != Node->getValueType(0))
8551     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
8552   return Res;
8553 }
8554 
expandVecReduceSeq(SDNode * Node,SelectionDAG & DAG) const8555 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
8556   SDLoc dl(Node);
8557   SDValue AccOp = Node->getOperand(0);
8558   SDValue VecOp = Node->getOperand(1);
8559   SDNodeFlags Flags = Node->getFlags();
8560 
8561   EVT VT = VecOp.getValueType();
8562   EVT EltVT = VT.getVectorElementType();
8563 
8564   if (VT.isScalableVector())
8565     report_fatal_error(
8566         "Expanding reductions for scalable vectors is undefined.");
8567 
8568   unsigned NumElts = VT.getVectorNumElements();
8569 
8570   SmallVector<SDValue, 8> Ops;
8571   DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
8572 
8573   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8574 
8575   SDValue Res = AccOp;
8576   for (unsigned i = 0; i < NumElts; i++)
8577     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
8578 
8579   return Res;
8580 }
8581 
expandREM(SDNode * Node,SDValue & Result,SelectionDAG & DAG) const8582 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
8583                                SelectionDAG &DAG) const {
8584   EVT VT = Node->getValueType(0);
8585   SDLoc dl(Node);
8586   bool isSigned = Node->getOpcode() == ISD::SREM;
8587   unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
8588   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
8589   SDValue Dividend = Node->getOperand(0);
8590   SDValue Divisor = Node->getOperand(1);
8591   if (isOperationLegalOrCustom(DivRemOpc, VT)) {
8592     SDVTList VTs = DAG.getVTList(VT, VT);
8593     Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
8594     return true;
8595   }
8596   if (isOperationLegalOrCustom(DivOpc, VT)) {
8597     // X % Y -> X-X/Y*Y
8598     SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
8599     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
8600     Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
8601     return true;
8602   }
8603   return false;
8604 }
8605 
expandFP_TO_INT_SAT(SDNode * Node,SelectionDAG & DAG) const8606 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
8607                                             SelectionDAG &DAG) const {
8608   bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
8609   SDLoc dl(SDValue(Node, 0));
8610   SDValue Src = Node->getOperand(0);
8611 
8612   // DstVT is the result type, while SatVT is the size to which we saturate
8613   EVT SrcVT = Src.getValueType();
8614   EVT DstVT = Node->getValueType(0);
8615 
8616   EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
8617   unsigned SatWidth = SatVT.getScalarSizeInBits();
8618   unsigned DstWidth = DstVT.getScalarSizeInBits();
8619   assert(SatWidth <= DstWidth &&
8620          "Expected saturation width smaller than result width");
8621 
8622   // Determine minimum and maximum integer values and their corresponding
8623   // floating-point values.
8624   APInt MinInt, MaxInt;
8625   if (IsSigned) {
8626     MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth);
8627     MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth);
8628   } else {
8629     MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth);
8630     MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth);
8631   }
8632 
8633   // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as
8634   // libcall emission cannot handle this. Large result types will fail.
8635   if (SrcVT == MVT::f16) {
8636     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
8637     SrcVT = Src.getValueType();
8638   }
8639 
8640   APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT));
8641   APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT));
8642 
8643   APFloat::opStatus MinStatus =
8644       MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
8645   APFloat::opStatus MaxStatus =
8646       MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
8647   bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
8648                              !(MaxStatus & APFloat::opStatus::opInexact);
8649 
8650   SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
8651   SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
8652 
8653   // If the integer bounds are exactly representable as floats and min/max are
8654   // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
8655   // of comparisons and selects.
8656   bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
8657                      isOperationLegal(ISD::FMAXNUM, SrcVT);
8658   if (AreExactFloatBounds && MinMaxLegal) {
8659     SDValue Clamped = Src;
8660 
8661     // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
8662     Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
8663     // Clamp by MaxFloat from above. NaN cannot occur.
8664     Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
8665     // Convert clamped value to integer.
8666     SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
8667                                   dl, DstVT, Clamped);
8668 
8669     // In the unsigned case we're done, because we mapped NaN to MinFloat,
8670     // which will cast to zero.
8671     if (!IsSigned)
8672       return FpToInt;
8673 
8674     // Otherwise, select 0 if Src is NaN.
8675     SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
8676     return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt,
8677                            ISD::CondCode::SETUO);
8678   }
8679 
8680   SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
8681   SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
8682 
8683   // Result of direct conversion. The assumption here is that the operation is
8684   // non-trapping and it's fine to apply it to an out-of-range value if we
8685   // select it away later.
8686   SDValue FpToInt =
8687       DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
8688 
8689   SDValue Select = FpToInt;
8690 
8691   // If Src ULT MinFloat, select MinInt. In particular, this also selects
8692   // MinInt if Src is NaN.
8693   Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select,
8694                            ISD::CondCode::SETULT);
8695   // If Src OGT MaxFloat, select MaxInt.
8696   Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select,
8697                            ISD::CondCode::SETOGT);
8698 
8699   // In the unsigned case we are done, because we mapped NaN to MinInt, which
8700   // is already zero.
8701   if (!IsSigned)
8702     return Select;
8703 
8704   // Otherwise, select 0 if Src is NaN.
8705   SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
8706   return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO);
8707 }
8708 
expandVectorSplice(SDNode * Node,SelectionDAG & DAG) const8709 SDValue TargetLowering::expandVectorSplice(SDNode *Node,
8710                                            SelectionDAG &DAG) const {
8711   assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!");
8712   assert(Node->getValueType(0).isScalableVector() &&
8713          "Fixed length vector types expected to use SHUFFLE_VECTOR!");
8714 
8715   EVT VT = Node->getValueType(0);
8716   SDValue V1 = Node->getOperand(0);
8717   SDValue V2 = Node->getOperand(1);
8718   int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
8719   SDLoc DL(Node);
8720 
8721   // Expand through memory thusly:
8722   //  Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
8723   //  Store V1, Ptr
8724   //  Store V2, Ptr + sizeof(V1)
8725   //  If (Imm < 0)
8726   //    TrailingElts = -Imm
8727   //    Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
8728   //  else
8729   //    Ptr = Ptr + (Imm * sizeof(VT.Elt))
8730   //  Res = Load Ptr
8731 
8732   Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
8733 
8734   EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
8735                                VT.getVectorElementCount() * 2);
8736   SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
8737   EVT PtrVT = StackPtr.getValueType();
8738   auto &MF = DAG.getMachineFunction();
8739   auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
8740   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
8741 
8742   // Store the lo part of CONCAT_VECTORS(V1, V2)
8743   SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
8744   // Store the hi part of CONCAT_VECTORS(V1, V2)
8745   SDValue OffsetToV2 = DAG.getVScale(
8746       DL, PtrVT,
8747       APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
8748   SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2);
8749   SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
8750 
8751   if (Imm >= 0) {
8752     // Load back the required element. getVectorElementPointer takes care of
8753     // clamping the index if it's out-of-bounds.
8754     StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
8755     // Load the spliced result
8756     return DAG.getLoad(VT, DL, StoreV2, StackPtr,
8757                        MachinePointerInfo::getUnknownStack(MF));
8758   }
8759 
8760   uint64_t TrailingElts = -Imm;
8761 
8762   // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
8763   TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
8764   SDValue TrailingBytes =
8765       DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT);
8766 
8767   if (TrailingElts > VT.getVectorMinNumElements()) {
8768     SDValue VLBytes = DAG.getVScale(
8769         DL, PtrVT,
8770         APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
8771     TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes);
8772   }
8773 
8774   // Calculate the start address of the spliced result.
8775   StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
8776 
8777   // Load the spliced result
8778   return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
8779                      MachinePointerInfo::getUnknownStack(MF));
8780 }
8781 
LegalizeSetCCCondCode(SelectionDAG & DAG,EVT VT,SDValue & LHS,SDValue & RHS,SDValue & CC,bool & NeedInvert,const SDLoc & dl,SDValue & Chain,bool IsSignaling) const8782 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT,
8783                                            SDValue &LHS, SDValue &RHS,
8784                                            SDValue &CC, bool &NeedInvert,
8785                                            const SDLoc &dl, SDValue &Chain,
8786                                            bool IsSignaling) const {
8787   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8788   MVT OpVT = LHS.getSimpleValueType();
8789   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
8790   NeedInvert = false;
8791   switch (TLI.getCondCodeAction(CCCode, OpVT)) {
8792   default:
8793     llvm_unreachable("Unknown condition code action!");
8794   case TargetLowering::Legal:
8795     // Nothing to do.
8796     break;
8797   case TargetLowering::Expand: {
8798     ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
8799     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8800       std::swap(LHS, RHS);
8801       CC = DAG.getCondCode(InvCC);
8802       return true;
8803     }
8804     // Swapping operands didn't work. Try inverting the condition.
8805     bool NeedSwap = false;
8806     InvCC = getSetCCInverse(CCCode, OpVT);
8807     if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8808       // If inverting the condition is not enough, try swapping operands
8809       // on top of it.
8810       InvCC = ISD::getSetCCSwappedOperands(InvCC);
8811       NeedSwap = true;
8812     }
8813     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8814       CC = DAG.getCondCode(InvCC);
8815       NeedInvert = true;
8816       if (NeedSwap)
8817         std::swap(LHS, RHS);
8818       return true;
8819     }
8820 
8821     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
8822     unsigned Opc = 0;
8823     switch (CCCode) {
8824     default:
8825       llvm_unreachable("Don't know how to expand this condition!");
8826     case ISD::SETUO:
8827       if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) {
8828         CC1 = ISD::SETUNE;
8829         CC2 = ISD::SETUNE;
8830         Opc = ISD::OR;
8831         break;
8832       }
8833       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
8834              "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
8835       NeedInvert = true;
8836       LLVM_FALLTHROUGH;
8837     case ISD::SETO:
8838       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
8839              "If SETO is expanded, SETOEQ must be legal!");
8840       CC1 = ISD::SETOEQ;
8841       CC2 = ISD::SETOEQ;
8842       Opc = ISD::AND;
8843       break;
8844     case ISD::SETONE:
8845     case ISD::SETUEQ:
8846       // If the SETUO or SETO CC isn't legal, we might be able to use
8847       // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
8848       // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
8849       // the operands.
8850       CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
8851       if (!TLI.isCondCodeLegal(CC2, OpVT) &&
8852           (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) ||
8853            TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) {
8854         CC1 = ISD::SETOGT;
8855         CC2 = ISD::SETOLT;
8856         Opc = ISD::OR;
8857         NeedInvert = ((unsigned)CCCode & 0x8U);
8858         break;
8859       }
8860       LLVM_FALLTHROUGH;
8861     case ISD::SETOEQ:
8862     case ISD::SETOGT:
8863     case ISD::SETOGE:
8864     case ISD::SETOLT:
8865     case ISD::SETOLE:
8866     case ISD::SETUNE:
8867     case ISD::SETUGT:
8868     case ISD::SETUGE:
8869     case ISD::SETULT:
8870     case ISD::SETULE:
8871       // If we are floating point, assign and break, otherwise fall through.
8872       if (!OpVT.isInteger()) {
8873         // We can use the 4th bit to tell if we are the unordered
8874         // or ordered version of the opcode.
8875         CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
8876         Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
8877         CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
8878         break;
8879       }
8880       // Fallthrough if we are unsigned integer.
8881       LLVM_FALLTHROUGH;
8882     case ISD::SETLE:
8883     case ISD::SETGT:
8884     case ISD::SETGE:
8885     case ISD::SETLT:
8886     case ISD::SETNE:
8887     case ISD::SETEQ:
8888       // If all combinations of inverting the condition and swapping operands
8889       // didn't work then we have no means to expand the condition.
8890       llvm_unreachable("Don't know how to expand this condition!");
8891     }
8892 
8893     SDValue SetCC1, SetCC2;
8894     if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
8895       // If we aren't the ordered or unorder operation,
8896       // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
8897       SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
8898       SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
8899     } else {
8900       // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
8901       SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
8902       SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
8903     }
8904     if (Chain)
8905       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
8906                           SetCC2.getValue(1));
8907     LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
8908     RHS = SDValue();
8909     CC = SDValue();
8910     return true;
8911   }
8912   }
8913   return false;
8914 }
8915