xref: /qemu/migration/ram.c (revision a0c78d81)
1 /*
2  * QEMU System Emulator
3  *
4  * Copyright (c) 2003-2008 Fabrice Bellard
5  * Copyright (c) 2011-2015 Red Hat Inc
6  *
7  * Authors:
8  *  Juan Quintela <quintela@redhat.com>
9  *
10  * Permission is hereby granted, free of charge, to any person obtaining a copy
11  * of this software and associated documentation files (the "Software"), to deal
12  * in the Software without restriction, including without limitation the rights
13  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14  * copies of the Software, and to permit persons to whom the Software is
15  * furnished to do so, subject to the following conditions:
16  *
17  * The above copyright notice and this permission notice shall be included in
18  * all copies or substantial portions of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26  * THE SOFTWARE.
27  */
28 
29 #include "qemu/osdep.h"
30 #include "qemu/cutils.h"
31 #include "qemu/bitops.h"
32 #include "qemu/bitmap.h"
33 #include "qemu/madvise.h"
34 #include "qemu/main-loop.h"
35 #include "xbzrle.h"
36 #include "ram.h"
37 #include "migration.h"
38 #include "migration-stats.h"
39 #include "migration/register.h"
40 #include "migration/misc.h"
41 #include "qemu-file.h"
42 #include "postcopy-ram.h"
43 #include "page_cache.h"
44 #include "qemu/error-report.h"
45 #include "qapi/error.h"
46 #include "qapi/qapi-types-migration.h"
47 #include "qapi/qapi-events-migration.h"
48 #include "qapi/qapi-commands-migration.h"
49 #include "qapi/qmp/qerror.h"
50 #include "trace.h"
51 #include "exec/ram_addr.h"
52 #include "exec/target_page.h"
53 #include "qemu/rcu_queue.h"
54 #include "migration/colo.h"
55 #include "sysemu/cpu-throttle.h"
56 #include "savevm.h"
57 #include "qemu/iov.h"
58 #include "multifd.h"
59 #include "sysemu/runstate.h"
60 #include "rdma.h"
61 #include "options.h"
62 #include "sysemu/dirtylimit.h"
63 #include "sysemu/kvm.h"
64 
65 #include "hw/boards.h" /* for machine_dump_guest_core() */
66 
67 #if defined(__linux__)
68 #include "qemu/userfaultfd.h"
69 #endif /* defined(__linux__) */
70 
71 /***********************************************************/
72 /* ram save/restore */
73 
74 /*
75  * RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
76  * worked for pages that were filled with the same char.  We switched
77  * it to only search for the zero value.  And to avoid confusion with
78  * RAM_SAVE_FLAG_COMPRESS_PAGE just rename it.
79  *
80  * RAM_SAVE_FLAG_FULL was obsoleted in 2009.
81  *
82  * RAM_SAVE_FLAG_COMPRESS_PAGE (0x100) was removed in QEMU 9.1.
83  */
84 #define RAM_SAVE_FLAG_FULL     0x01
85 #define RAM_SAVE_FLAG_ZERO     0x02
86 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
87 #define RAM_SAVE_FLAG_PAGE     0x08
88 #define RAM_SAVE_FLAG_EOS      0x10
89 #define RAM_SAVE_FLAG_CONTINUE 0x20
90 #define RAM_SAVE_FLAG_XBZRLE   0x40
91 /* 0x80 is reserved in rdma.h for RAM_SAVE_FLAG_HOOK */
92 #define RAM_SAVE_FLAG_MULTIFD_FLUSH    0x200
93 /* We can't use any flag that is bigger than 0x200 */
94 
95 /*
96  * mapped-ram migration supports O_DIRECT, so we need to make sure the
97  * userspace buffer, the IO operation size and the file offset are
98  * aligned according to the underlying device's block size. The first
99  * two are already aligned to page size, but we need to add padding to
100  * the file to align the offset.  We cannot read the block size
101  * dynamically because the migration file can be moved between
102  * different systems, so use 1M to cover most block sizes and to keep
103  * the file offset aligned at page size as well.
104  */
105 #define MAPPED_RAM_FILE_OFFSET_ALIGNMENT 0x100000
106 
107 /*
108  * When doing mapped-ram migration, this is the amount we read from
109  * the pages region in the migration file at a time.
110  */
111 #define MAPPED_RAM_LOAD_BUF_SIZE 0x100000
112 
113 XBZRLECacheStats xbzrle_counters;
114 
115 /* used by the search for pages to send */
116 struct PageSearchStatus {
117     /* The migration channel used for a specific host page */
118     QEMUFile    *pss_channel;
119     /* Last block from where we have sent data */
120     RAMBlock *last_sent_block;
121     /* Current block being searched */
122     RAMBlock    *block;
123     /* Current page to search from */
124     unsigned long page;
125     /* Set once we wrap around */
126     bool         complete_round;
127     /* Whether we're sending a host page */
128     bool          host_page_sending;
129     /* The start/end of current host page.  Invalid if host_page_sending==false */
130     unsigned long host_page_start;
131     unsigned long host_page_end;
132 };
133 typedef struct PageSearchStatus PageSearchStatus;
134 
135 /* struct contains XBZRLE cache and a static page
136    used by the compression */
137 static struct {
138     /* buffer used for XBZRLE encoding */
139     uint8_t *encoded_buf;
140     /* buffer for storing page content */
141     uint8_t *current_buf;
142     /* Cache for XBZRLE, Protected by lock. */
143     PageCache *cache;
144     QemuMutex lock;
145     /* it will store a page full of zeros */
146     uint8_t *zero_target_page;
147     /* buffer used for XBZRLE decoding */
148     uint8_t *decoded_buf;
149 } XBZRLE;
150 
XBZRLE_cache_lock(void)151 static void XBZRLE_cache_lock(void)
152 {
153     if (migrate_xbzrle()) {
154         qemu_mutex_lock(&XBZRLE.lock);
155     }
156 }
157 
XBZRLE_cache_unlock(void)158 static void XBZRLE_cache_unlock(void)
159 {
160     if (migrate_xbzrle()) {
161         qemu_mutex_unlock(&XBZRLE.lock);
162     }
163 }
164 
165 /**
166  * xbzrle_cache_resize: resize the xbzrle cache
167  *
168  * This function is called from migrate_params_apply in main
169  * thread, possibly while a migration is in progress.  A running
170  * migration may be using the cache and might finish during this call,
171  * hence changes to the cache are protected by XBZRLE.lock().
172  *
173  * Returns 0 for success or -1 for error
174  *
175  * @new_size: new cache size
176  * @errp: set *errp if the check failed, with reason
177  */
xbzrle_cache_resize(uint64_t new_size,Error ** errp)178 int xbzrle_cache_resize(uint64_t new_size, Error **errp)
179 {
180     PageCache *new_cache;
181     int64_t ret = 0;
182 
183     /* Check for truncation */
184     if (new_size != (size_t)new_size) {
185         error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
186                    "exceeding address space");
187         return -1;
188     }
189 
190     if (new_size == migrate_xbzrle_cache_size()) {
191         /* nothing to do */
192         return 0;
193     }
194 
195     XBZRLE_cache_lock();
196 
197     if (XBZRLE.cache != NULL) {
198         new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
199         if (!new_cache) {
200             ret = -1;
201             goto out;
202         }
203 
204         cache_fini(XBZRLE.cache);
205         XBZRLE.cache = new_cache;
206     }
207 out:
208     XBZRLE_cache_unlock();
209     return ret;
210 }
211 
postcopy_preempt_active(void)212 static bool postcopy_preempt_active(void)
213 {
214     return migrate_postcopy_preempt() && migration_in_postcopy();
215 }
216 
migrate_ram_is_ignored(RAMBlock * block)217 bool migrate_ram_is_ignored(RAMBlock *block)
218 {
219     return !qemu_ram_is_migratable(block) ||
220            (migrate_ignore_shared() && qemu_ram_is_shared(block)
221                                     && qemu_ram_is_named_file(block));
222 }
223 
224 #undef RAMBLOCK_FOREACH
225 
foreach_not_ignored_block(RAMBlockIterFunc func,void * opaque)226 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
227 {
228     RAMBlock *block;
229     int ret = 0;
230 
231     RCU_READ_LOCK_GUARD();
232 
233     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
234         ret = func(block, opaque);
235         if (ret) {
236             break;
237         }
238     }
239     return ret;
240 }
241 
ramblock_recv_map_init(void)242 static void ramblock_recv_map_init(void)
243 {
244     RAMBlock *rb;
245 
246     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
247         assert(!rb->receivedmap);
248         rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
249     }
250 }
251 
ramblock_recv_bitmap_test(RAMBlock * rb,void * host_addr)252 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
253 {
254     return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
255                     rb->receivedmap);
256 }
257 
ramblock_recv_bitmap_test_byte_offset(RAMBlock * rb,uint64_t byte_offset)258 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
259 {
260     return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
261 }
262 
ramblock_recv_bitmap_set(RAMBlock * rb,void * host_addr)263 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
264 {
265     set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
266 }
267 
ramblock_recv_bitmap_set_range(RAMBlock * rb,void * host_addr,size_t nr)268 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
269                                     size_t nr)
270 {
271     bitmap_set_atomic(rb->receivedmap,
272                       ramblock_recv_bitmap_offset(host_addr, rb),
273                       nr);
274 }
275 
ramblock_recv_bitmap_set_offset(RAMBlock * rb,uint64_t byte_offset)276 void ramblock_recv_bitmap_set_offset(RAMBlock *rb, uint64_t byte_offset)
277 {
278     set_bit_atomic(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
279 }
280 #define  RAMBLOCK_RECV_BITMAP_ENDING  (0x0123456789abcdefULL)
281 
282 /*
283  * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
284  *
285  * Returns >0 if success with sent bytes, or <0 if error.
286  */
ramblock_recv_bitmap_send(QEMUFile * file,const char * block_name)287 int64_t ramblock_recv_bitmap_send(QEMUFile *file,
288                                   const char *block_name)
289 {
290     RAMBlock *block = qemu_ram_block_by_name(block_name);
291     unsigned long *le_bitmap, nbits;
292     uint64_t size;
293 
294     if (!block) {
295         error_report("%s: invalid block name: %s", __func__, block_name);
296         return -1;
297     }
298 
299     nbits = block->postcopy_length >> TARGET_PAGE_BITS;
300 
301     /*
302      * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
303      * machines we may need 4 more bytes for padding (see below
304      * comment). So extend it a bit before hand.
305      */
306     le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
307 
308     /*
309      * Always use little endian when sending the bitmap. This is
310      * required that when source and destination VMs are not using the
311      * same endianness. (Note: big endian won't work.)
312      */
313     bitmap_to_le(le_bitmap, block->receivedmap, nbits);
314 
315     /* Size of the bitmap, in bytes */
316     size = DIV_ROUND_UP(nbits, 8);
317 
318     /*
319      * size is always aligned to 8 bytes for 64bit machines, but it
320      * may not be true for 32bit machines. We need this padding to
321      * make sure the migration can survive even between 32bit and
322      * 64bit machines.
323      */
324     size = ROUND_UP(size, 8);
325 
326     qemu_put_be64(file, size);
327     qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
328     g_free(le_bitmap);
329     /*
330      * Mark as an end, in case the middle part is screwed up due to
331      * some "mysterious" reason.
332      */
333     qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
334     int ret = qemu_fflush(file);
335     if (ret) {
336         return ret;
337     }
338 
339     return size + sizeof(size);
340 }
341 
342 /*
343  * An outstanding page request, on the source, having been received
344  * and queued
345  */
346 struct RAMSrcPageRequest {
347     RAMBlock *rb;
348     hwaddr    offset;
349     hwaddr    len;
350 
351     QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
352 };
353 
354 /* State of RAM for migration */
355 struct RAMState {
356     /*
357      * PageSearchStatus structures for the channels when send pages.
358      * Protected by the bitmap_mutex.
359      */
360     PageSearchStatus pss[RAM_CHANNEL_MAX];
361     /* UFFD file descriptor, used in 'write-tracking' migration */
362     int uffdio_fd;
363     /* total ram size in bytes */
364     uint64_t ram_bytes_total;
365     /* Last block that we have visited searching for dirty pages */
366     RAMBlock *last_seen_block;
367     /* Last dirty target page we have sent */
368     ram_addr_t last_page;
369     /* last ram version we have seen */
370     uint32_t last_version;
371     /* How many times we have dirty too many pages */
372     int dirty_rate_high_cnt;
373     /* these variables are used for bitmap sync */
374     /* last time we did a full bitmap_sync */
375     int64_t time_last_bitmap_sync;
376     /* bytes transferred at start_time */
377     uint64_t bytes_xfer_prev;
378     /* number of dirty pages since start_time */
379     uint64_t num_dirty_pages_period;
380     /* xbzrle misses since the beginning of the period */
381     uint64_t xbzrle_cache_miss_prev;
382     /* Amount of xbzrle pages since the beginning of the period */
383     uint64_t xbzrle_pages_prev;
384     /* Amount of xbzrle encoded bytes since the beginning of the period */
385     uint64_t xbzrle_bytes_prev;
386     /* Are we really using XBZRLE (e.g., after the first round). */
387     bool xbzrle_started;
388     /* Are we on the last stage of migration */
389     bool last_stage;
390 
391     /* total handled target pages at the beginning of period */
392     uint64_t target_page_count_prev;
393     /* total handled target pages since start */
394     uint64_t target_page_count;
395     /* number of dirty bits in the bitmap */
396     uint64_t migration_dirty_pages;
397     /*
398      * Protects:
399      * - dirty/clear bitmap
400      * - migration_dirty_pages
401      * - pss structures
402      */
403     QemuMutex bitmap_mutex;
404     /* The RAMBlock used in the last src_page_requests */
405     RAMBlock *last_req_rb;
406     /* Queue of outstanding page requests from the destination */
407     QemuMutex src_page_req_mutex;
408     QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
409 
410     /*
411      * This is only used when postcopy is in recovery phase, to communicate
412      * between the migration thread and the return path thread on dirty
413      * bitmap synchronizations.  This field is unused in other stages of
414      * RAM migration.
415      */
416     unsigned int postcopy_bmap_sync_requested;
417 };
418 typedef struct RAMState RAMState;
419 
420 static RAMState *ram_state;
421 
422 static NotifierWithReturnList precopy_notifier_list;
423 
424 /* Whether postcopy has queued requests? */
postcopy_has_request(RAMState * rs)425 static bool postcopy_has_request(RAMState *rs)
426 {
427     return !QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests);
428 }
429 
precopy_infrastructure_init(void)430 void precopy_infrastructure_init(void)
431 {
432     notifier_with_return_list_init(&precopy_notifier_list);
433 }
434 
precopy_add_notifier(NotifierWithReturn * n)435 void precopy_add_notifier(NotifierWithReturn *n)
436 {
437     notifier_with_return_list_add(&precopy_notifier_list, n);
438 }
439 
precopy_remove_notifier(NotifierWithReturn * n)440 void precopy_remove_notifier(NotifierWithReturn *n)
441 {
442     notifier_with_return_remove(n);
443 }
444 
precopy_notify(PrecopyNotifyReason reason,Error ** errp)445 int precopy_notify(PrecopyNotifyReason reason, Error **errp)
446 {
447     PrecopyNotifyData pnd;
448     pnd.reason = reason;
449 
450     return notifier_with_return_list_notify(&precopy_notifier_list, &pnd, errp);
451 }
452 
ram_bytes_remaining(void)453 uint64_t ram_bytes_remaining(void)
454 {
455     return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
456                        0;
457 }
458 
ram_transferred_add(uint64_t bytes)459 void ram_transferred_add(uint64_t bytes)
460 {
461     if (runstate_is_running()) {
462         stat64_add(&mig_stats.precopy_bytes, bytes);
463     } else if (migration_in_postcopy()) {
464         stat64_add(&mig_stats.postcopy_bytes, bytes);
465     } else {
466         stat64_add(&mig_stats.downtime_bytes, bytes);
467     }
468 }
469 
470 struct MigrationOps {
471     int (*ram_save_target_page)(RAMState *rs, PageSearchStatus *pss);
472 };
473 typedef struct MigrationOps MigrationOps;
474 
475 MigrationOps *migration_ops;
476 
477 static int ram_save_host_page_urgent(PageSearchStatus *pss);
478 
479 /* NOTE: page is the PFN not real ram_addr_t. */
pss_init(PageSearchStatus * pss,RAMBlock * rb,ram_addr_t page)480 static void pss_init(PageSearchStatus *pss, RAMBlock *rb, ram_addr_t page)
481 {
482     pss->block = rb;
483     pss->page = page;
484     pss->complete_round = false;
485 }
486 
487 /*
488  * Check whether two PSSs are actively sending the same page.  Return true
489  * if it is, false otherwise.
490  */
pss_overlap(PageSearchStatus * pss1,PageSearchStatus * pss2)491 static bool pss_overlap(PageSearchStatus *pss1, PageSearchStatus *pss2)
492 {
493     return pss1->host_page_sending && pss2->host_page_sending &&
494         (pss1->host_page_start == pss2->host_page_start);
495 }
496 
497 /**
498  * save_page_header: write page header to wire
499  *
500  * If this is the 1st block, it also writes the block identification
501  *
502  * Returns the number of bytes written
503  *
504  * @pss: current PSS channel status
505  * @block: block that contains the page we want to send
506  * @offset: offset inside the block for the page
507  *          in the lower bits, it contains flags
508  */
save_page_header(PageSearchStatus * pss,QEMUFile * f,RAMBlock * block,ram_addr_t offset)509 static size_t save_page_header(PageSearchStatus *pss, QEMUFile *f,
510                                RAMBlock *block, ram_addr_t offset)
511 {
512     size_t size, len;
513     bool same_block = (block == pss->last_sent_block);
514 
515     if (same_block) {
516         offset |= RAM_SAVE_FLAG_CONTINUE;
517     }
518     qemu_put_be64(f, offset);
519     size = 8;
520 
521     if (!same_block) {
522         len = strlen(block->idstr);
523         qemu_put_byte(f, len);
524         qemu_put_buffer(f, (uint8_t *)block->idstr, len);
525         size += 1 + len;
526         pss->last_sent_block = block;
527     }
528     return size;
529 }
530 
531 /**
532  * mig_throttle_guest_down: throttle down the guest
533  *
534  * Reduce amount of guest cpu execution to hopefully slow down memory
535  * writes. If guest dirty memory rate is reduced below the rate at
536  * which we can transfer pages to the destination then we should be
537  * able to complete migration. Some workloads dirty memory way too
538  * fast and will not effectively converge, even with auto-converge.
539  */
mig_throttle_guest_down(uint64_t bytes_dirty_period,uint64_t bytes_dirty_threshold)540 static void mig_throttle_guest_down(uint64_t bytes_dirty_period,
541                                     uint64_t bytes_dirty_threshold)
542 {
543     uint64_t pct_initial = migrate_cpu_throttle_initial();
544     uint64_t pct_increment = migrate_cpu_throttle_increment();
545     bool pct_tailslow = migrate_cpu_throttle_tailslow();
546     int pct_max = migrate_max_cpu_throttle();
547 
548     uint64_t throttle_now = cpu_throttle_get_percentage();
549     uint64_t cpu_now, cpu_ideal, throttle_inc;
550 
551     /* We have not started throttling yet. Let's start it. */
552     if (!cpu_throttle_active()) {
553         cpu_throttle_set(pct_initial);
554     } else {
555         /* Throttling already on, just increase the rate */
556         if (!pct_tailslow) {
557             throttle_inc = pct_increment;
558         } else {
559             /* Compute the ideal CPU percentage used by Guest, which may
560              * make the dirty rate match the dirty rate threshold. */
561             cpu_now = 100 - throttle_now;
562             cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 /
563                         bytes_dirty_period);
564             throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment);
565         }
566         cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max));
567     }
568 }
569 
mig_throttle_counter_reset(void)570 void mig_throttle_counter_reset(void)
571 {
572     RAMState *rs = ram_state;
573 
574     rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
575     rs->num_dirty_pages_period = 0;
576     rs->bytes_xfer_prev = migration_transferred_bytes();
577 }
578 
579 /**
580  * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
581  *
582  * @current_addr: address for the zero page
583  *
584  * Update the xbzrle cache to reflect a page that's been sent as all 0.
585  * The important thing is that a stale (not-yet-0'd) page be replaced
586  * by the new data.
587  * As a bonus, if the page wasn't in the cache it gets added so that
588  * when a small write is made into the 0'd page it gets XBZRLE sent.
589  */
xbzrle_cache_zero_page(ram_addr_t current_addr)590 static void xbzrle_cache_zero_page(ram_addr_t current_addr)
591 {
592     /* We don't care if this fails to allocate a new cache page
593      * as long as it updated an old one */
594     cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
595                  stat64_get(&mig_stats.dirty_sync_count));
596 }
597 
598 #define ENCODING_FLAG_XBZRLE 0x1
599 
600 /**
601  * save_xbzrle_page: compress and send current page
602  *
603  * Returns: 1 means that we wrote the page
604  *          0 means that page is identical to the one already sent
605  *          -1 means that xbzrle would be longer than normal
606  *
607  * @rs: current RAM state
608  * @pss: current PSS channel
609  * @current_data: pointer to the address of the page contents
610  * @current_addr: addr of the page
611  * @block: block that contains the page we want to send
612  * @offset: offset inside the block for the page
613  */
save_xbzrle_page(RAMState * rs,PageSearchStatus * pss,uint8_t ** current_data,ram_addr_t current_addr,RAMBlock * block,ram_addr_t offset)614 static int save_xbzrle_page(RAMState *rs, PageSearchStatus *pss,
615                             uint8_t **current_data, ram_addr_t current_addr,
616                             RAMBlock *block, ram_addr_t offset)
617 {
618     int encoded_len = 0, bytes_xbzrle;
619     uint8_t *prev_cached_page;
620     QEMUFile *file = pss->pss_channel;
621     uint64_t generation = stat64_get(&mig_stats.dirty_sync_count);
622 
623     if (!cache_is_cached(XBZRLE.cache, current_addr, generation)) {
624         xbzrle_counters.cache_miss++;
625         if (!rs->last_stage) {
626             if (cache_insert(XBZRLE.cache, current_addr, *current_data,
627                              generation) == -1) {
628                 return -1;
629             } else {
630                 /* update *current_data when the page has been
631                    inserted into cache */
632                 *current_data = get_cached_data(XBZRLE.cache, current_addr);
633             }
634         }
635         return -1;
636     }
637 
638     /*
639      * Reaching here means the page has hit the xbzrle cache, no matter what
640      * encoding result it is (normal encoding, overflow or skipping the page),
641      * count the page as encoded. This is used to calculate the encoding rate.
642      *
643      * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB,
644      * 2nd page turns out to be skipped (i.e. no new bytes written to the
645      * page), the overall encoding rate will be 8KB / 2KB = 4, which has the
646      * skipped page included. In this way, the encoding rate can tell if the
647      * guest page is good for xbzrle encoding.
648      */
649     xbzrle_counters.pages++;
650     prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
651 
652     /* save current buffer into memory */
653     memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
654 
655     /* XBZRLE encoding (if there is no overflow) */
656     encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
657                                        TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
658                                        TARGET_PAGE_SIZE);
659 
660     /*
661      * Update the cache contents, so that it corresponds to the data
662      * sent, in all cases except where we skip the page.
663      */
664     if (!rs->last_stage && encoded_len != 0) {
665         memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
666         /*
667          * In the case where we couldn't compress, ensure that the caller
668          * sends the data from the cache, since the guest might have
669          * changed the RAM since we copied it.
670          */
671         *current_data = prev_cached_page;
672     }
673 
674     if (encoded_len == 0) {
675         trace_save_xbzrle_page_skipping();
676         return 0;
677     } else if (encoded_len == -1) {
678         trace_save_xbzrle_page_overflow();
679         xbzrle_counters.overflow++;
680         xbzrle_counters.bytes += TARGET_PAGE_SIZE;
681         return -1;
682     }
683 
684     /* Send XBZRLE based compressed page */
685     bytes_xbzrle = save_page_header(pss, pss->pss_channel, block,
686                                     offset | RAM_SAVE_FLAG_XBZRLE);
687     qemu_put_byte(file, ENCODING_FLAG_XBZRLE);
688     qemu_put_be16(file, encoded_len);
689     qemu_put_buffer(file, XBZRLE.encoded_buf, encoded_len);
690     bytes_xbzrle += encoded_len + 1 + 2;
691     /*
692      * The xbzrle encoded bytes don't count the 8 byte header with
693      * RAM_SAVE_FLAG_CONTINUE.
694      */
695     xbzrle_counters.bytes += bytes_xbzrle - 8;
696     ram_transferred_add(bytes_xbzrle);
697 
698     return 1;
699 }
700 
701 /**
702  * pss_find_next_dirty: find the next dirty page of current ramblock
703  *
704  * This function updates pss->page to point to the next dirty page index
705  * within the ramblock to migrate, or the end of ramblock when nothing
706  * found.  Note that when pss->host_page_sending==true it means we're
707  * during sending a host page, so we won't look for dirty page that is
708  * outside the host page boundary.
709  *
710  * @pss: the current page search status
711  */
pss_find_next_dirty(PageSearchStatus * pss)712 static void pss_find_next_dirty(PageSearchStatus *pss)
713 {
714     RAMBlock *rb = pss->block;
715     unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
716     unsigned long *bitmap = rb->bmap;
717 
718     if (migrate_ram_is_ignored(rb)) {
719         /* Points directly to the end, so we know no dirty page */
720         pss->page = size;
721         return;
722     }
723 
724     /*
725      * If during sending a host page, only look for dirty pages within the
726      * current host page being send.
727      */
728     if (pss->host_page_sending) {
729         assert(pss->host_page_end);
730         size = MIN(size, pss->host_page_end);
731     }
732 
733     pss->page = find_next_bit(bitmap, size, pss->page);
734 }
735 
migration_clear_memory_region_dirty_bitmap(RAMBlock * rb,unsigned long page)736 static void migration_clear_memory_region_dirty_bitmap(RAMBlock *rb,
737                                                        unsigned long page)
738 {
739     uint8_t shift;
740     hwaddr size, start;
741 
742     if (!rb->clear_bmap || !clear_bmap_test_and_clear(rb, page)) {
743         return;
744     }
745 
746     shift = rb->clear_bmap_shift;
747     /*
748      * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
749      * can make things easier sometimes since then start address
750      * of the small chunk will always be 64 pages aligned so the
751      * bitmap will always be aligned to unsigned long. We should
752      * even be able to remove this restriction but I'm simply
753      * keeping it.
754      */
755     assert(shift >= 6);
756 
757     size = 1ULL << (TARGET_PAGE_BITS + shift);
758     start = QEMU_ALIGN_DOWN((ram_addr_t)page << TARGET_PAGE_BITS, size);
759     trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
760     memory_region_clear_dirty_bitmap(rb->mr, start, size);
761 }
762 
763 static void
migration_clear_memory_region_dirty_bitmap_range(RAMBlock * rb,unsigned long start,unsigned long npages)764 migration_clear_memory_region_dirty_bitmap_range(RAMBlock *rb,
765                                                  unsigned long start,
766                                                  unsigned long npages)
767 {
768     unsigned long i, chunk_pages = 1UL << rb->clear_bmap_shift;
769     unsigned long chunk_start = QEMU_ALIGN_DOWN(start, chunk_pages);
770     unsigned long chunk_end = QEMU_ALIGN_UP(start + npages, chunk_pages);
771 
772     /*
773      * Clear pages from start to start + npages - 1, so the end boundary is
774      * exclusive.
775      */
776     for (i = chunk_start; i < chunk_end; i += chunk_pages) {
777         migration_clear_memory_region_dirty_bitmap(rb, i);
778     }
779 }
780 
781 /*
782  * colo_bitmap_find_diry:find contiguous dirty pages from start
783  *
784  * Returns the page offset within memory region of the start of the contiguout
785  * dirty page
786  *
787  * @rs: current RAM state
788  * @rb: RAMBlock where to search for dirty pages
789  * @start: page where we start the search
790  * @num: the number of contiguous dirty pages
791  */
792 static inline
colo_bitmap_find_dirty(RAMState * rs,RAMBlock * rb,unsigned long start,unsigned long * num)793 unsigned long colo_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
794                                      unsigned long start, unsigned long *num)
795 {
796     unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
797     unsigned long *bitmap = rb->bmap;
798     unsigned long first, next;
799 
800     *num = 0;
801 
802     if (migrate_ram_is_ignored(rb)) {
803         return size;
804     }
805 
806     first = find_next_bit(bitmap, size, start);
807     if (first >= size) {
808         return first;
809     }
810     next = find_next_zero_bit(bitmap, size, first + 1);
811     assert(next >= first);
812     *num = next - first;
813     return first;
814 }
815 
migration_bitmap_clear_dirty(RAMState * rs,RAMBlock * rb,unsigned long page)816 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
817                                                 RAMBlock *rb,
818                                                 unsigned long page)
819 {
820     bool ret;
821 
822     /*
823      * Clear dirty bitmap if needed.  This _must_ be called before we
824      * send any of the page in the chunk because we need to make sure
825      * we can capture further page content changes when we sync dirty
826      * log the next time.  So as long as we are going to send any of
827      * the page in the chunk we clear the remote dirty bitmap for all.
828      * Clearing it earlier won't be a problem, but too late will.
829      */
830     migration_clear_memory_region_dirty_bitmap(rb, page);
831 
832     ret = test_and_clear_bit(page, rb->bmap);
833     if (ret) {
834         rs->migration_dirty_pages--;
835     }
836 
837     return ret;
838 }
839 
dirty_bitmap_clear_section(MemoryRegionSection * section,void * opaque)840 static void dirty_bitmap_clear_section(MemoryRegionSection *section,
841                                        void *opaque)
842 {
843     const hwaddr offset = section->offset_within_region;
844     const hwaddr size = int128_get64(section->size);
845     const unsigned long start = offset >> TARGET_PAGE_BITS;
846     const unsigned long npages = size >> TARGET_PAGE_BITS;
847     RAMBlock *rb = section->mr->ram_block;
848     uint64_t *cleared_bits = opaque;
849 
850     /*
851      * We don't grab ram_state->bitmap_mutex because we expect to run
852      * only when starting migration or during postcopy recovery where
853      * we don't have concurrent access.
854      */
855     if (!migration_in_postcopy() && !migrate_background_snapshot()) {
856         migration_clear_memory_region_dirty_bitmap_range(rb, start, npages);
857     }
858     *cleared_bits += bitmap_count_one_with_offset(rb->bmap, start, npages);
859     bitmap_clear(rb->bmap, start, npages);
860 }
861 
862 /*
863  * Exclude all dirty pages from migration that fall into a discarded range as
864  * managed by a RamDiscardManager responsible for the mapped memory region of
865  * the RAMBlock. Clear the corresponding bits in the dirty bitmaps.
866  *
867  * Discarded pages ("logically unplugged") have undefined content and must
868  * not get migrated, because even reading these pages for migration might
869  * result in undesired behavior.
870  *
871  * Returns the number of cleared bits in the RAMBlock dirty bitmap.
872  *
873  * Note: The result is only stable while migrating (precopy/postcopy).
874  */
ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock * rb)875 static uint64_t ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock *rb)
876 {
877     uint64_t cleared_bits = 0;
878 
879     if (rb->mr && rb->bmap && memory_region_has_ram_discard_manager(rb->mr)) {
880         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
881         MemoryRegionSection section = {
882             .mr = rb->mr,
883             .offset_within_region = 0,
884             .size = int128_make64(qemu_ram_get_used_length(rb)),
885         };
886 
887         ram_discard_manager_replay_discarded(rdm, &section,
888                                              dirty_bitmap_clear_section,
889                                              &cleared_bits);
890     }
891     return cleared_bits;
892 }
893 
894 /*
895  * Check if a host-page aligned page falls into a discarded range as managed by
896  * a RamDiscardManager responsible for the mapped memory region of the RAMBlock.
897  *
898  * Note: The result is only stable while migrating (precopy/postcopy).
899  */
ramblock_page_is_discarded(RAMBlock * rb,ram_addr_t start)900 bool ramblock_page_is_discarded(RAMBlock *rb, ram_addr_t start)
901 {
902     if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
903         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
904         MemoryRegionSection section = {
905             .mr = rb->mr,
906             .offset_within_region = start,
907             .size = int128_make64(qemu_ram_pagesize(rb)),
908         };
909 
910         return !ram_discard_manager_is_populated(rdm, &section);
911     }
912     return false;
913 }
914 
915 /* Called with RCU critical section */
ramblock_sync_dirty_bitmap(RAMState * rs,RAMBlock * rb)916 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb)
917 {
918     uint64_t new_dirty_pages =
919         cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length);
920 
921     rs->migration_dirty_pages += new_dirty_pages;
922     rs->num_dirty_pages_period += new_dirty_pages;
923 }
924 
925 /**
926  * ram_pagesize_summary: calculate all the pagesizes of a VM
927  *
928  * Returns a summary bitmap of the page sizes of all RAMBlocks
929  *
930  * For VMs with just normal pages this is equivalent to the host page
931  * size. If it's got some huge pages then it's the OR of all the
932  * different page sizes.
933  */
ram_pagesize_summary(void)934 uint64_t ram_pagesize_summary(void)
935 {
936     RAMBlock *block;
937     uint64_t summary = 0;
938 
939     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
940         summary |= block->page_size;
941     }
942 
943     return summary;
944 }
945 
ram_get_total_transferred_pages(void)946 uint64_t ram_get_total_transferred_pages(void)
947 {
948     return stat64_get(&mig_stats.normal_pages) +
949         stat64_get(&mig_stats.zero_pages) +
950         xbzrle_counters.pages;
951 }
952 
migration_update_rates(RAMState * rs,int64_t end_time)953 static void migration_update_rates(RAMState *rs, int64_t end_time)
954 {
955     uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
956 
957     /* calculate period counters */
958     stat64_set(&mig_stats.dirty_pages_rate,
959                rs->num_dirty_pages_period * 1000 /
960                (end_time - rs->time_last_bitmap_sync));
961 
962     if (!page_count) {
963         return;
964     }
965 
966     if (migrate_xbzrle()) {
967         double encoded_size, unencoded_size;
968 
969         xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
970             rs->xbzrle_cache_miss_prev) / page_count;
971         rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
972         unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) *
973                          TARGET_PAGE_SIZE;
974         encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev;
975         if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) {
976             xbzrle_counters.encoding_rate = 0;
977         } else {
978             xbzrle_counters.encoding_rate = unencoded_size / encoded_size;
979         }
980         rs->xbzrle_pages_prev = xbzrle_counters.pages;
981         rs->xbzrle_bytes_prev = xbzrle_counters.bytes;
982     }
983 }
984 
985 /*
986  * Enable dirty-limit to throttle down the guest
987  */
migration_dirty_limit_guest(void)988 static void migration_dirty_limit_guest(void)
989 {
990     /*
991      * dirty page rate quota for all vCPUs fetched from
992      * migration parameter 'vcpu_dirty_limit'
993      */
994     static int64_t quota_dirtyrate;
995     MigrationState *s = migrate_get_current();
996 
997     /*
998      * If dirty limit already enabled and migration parameter
999      * vcpu-dirty-limit untouched.
1000      */
1001     if (dirtylimit_in_service() &&
1002         quota_dirtyrate == s->parameters.vcpu_dirty_limit) {
1003         return;
1004     }
1005 
1006     quota_dirtyrate = s->parameters.vcpu_dirty_limit;
1007 
1008     /*
1009      * Set all vCPU a quota dirtyrate, note that the second
1010      * parameter will be ignored if setting all vCPU for the vm
1011      */
1012     qmp_set_vcpu_dirty_limit(false, -1, quota_dirtyrate, NULL);
1013     trace_migration_dirty_limit_guest(quota_dirtyrate);
1014 }
1015 
migration_trigger_throttle(RAMState * rs)1016 static void migration_trigger_throttle(RAMState *rs)
1017 {
1018     uint64_t threshold = migrate_throttle_trigger_threshold();
1019     uint64_t bytes_xfer_period =
1020         migration_transferred_bytes() - rs->bytes_xfer_prev;
1021     uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE;
1022     uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100;
1023 
1024     /*
1025      * The following detection logic can be refined later. For now:
1026      * Check to see if the ratio between dirtied bytes and the approx.
1027      * amount of bytes that just got transferred since the last time
1028      * we were in this routine reaches the threshold. If that happens
1029      * twice, start or increase throttling.
1030      */
1031     if ((bytes_dirty_period > bytes_dirty_threshold) &&
1032         (++rs->dirty_rate_high_cnt >= 2)) {
1033         rs->dirty_rate_high_cnt = 0;
1034         if (migrate_auto_converge()) {
1035             trace_migration_throttle();
1036             mig_throttle_guest_down(bytes_dirty_period,
1037                                     bytes_dirty_threshold);
1038         } else if (migrate_dirty_limit()) {
1039             migration_dirty_limit_guest();
1040         }
1041     }
1042 }
1043 
migration_bitmap_sync(RAMState * rs,bool last_stage)1044 static void migration_bitmap_sync(RAMState *rs, bool last_stage)
1045 {
1046     RAMBlock *block;
1047     int64_t end_time;
1048 
1049     stat64_add(&mig_stats.dirty_sync_count, 1);
1050 
1051     if (!rs->time_last_bitmap_sync) {
1052         rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1053     }
1054 
1055     trace_migration_bitmap_sync_start();
1056     memory_global_dirty_log_sync(last_stage);
1057 
1058     WITH_QEMU_LOCK_GUARD(&rs->bitmap_mutex) {
1059         WITH_RCU_READ_LOCK_GUARD() {
1060             RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1061                 ramblock_sync_dirty_bitmap(rs, block);
1062             }
1063             stat64_set(&mig_stats.dirty_bytes_last_sync, ram_bytes_remaining());
1064         }
1065     }
1066 
1067     memory_global_after_dirty_log_sync();
1068     trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1069 
1070     end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1071 
1072     /* more than 1 second = 1000 millisecons */
1073     if (end_time > rs->time_last_bitmap_sync + 1000) {
1074         migration_trigger_throttle(rs);
1075 
1076         migration_update_rates(rs, end_time);
1077 
1078         rs->target_page_count_prev = rs->target_page_count;
1079 
1080         /* reset period counters */
1081         rs->time_last_bitmap_sync = end_time;
1082         rs->num_dirty_pages_period = 0;
1083         rs->bytes_xfer_prev = migration_transferred_bytes();
1084     }
1085     if (migrate_events()) {
1086         uint64_t generation = stat64_get(&mig_stats.dirty_sync_count);
1087         qapi_event_send_migration_pass(generation);
1088     }
1089 }
1090 
migration_bitmap_sync_precopy(RAMState * rs,bool last_stage)1091 static void migration_bitmap_sync_precopy(RAMState *rs, bool last_stage)
1092 {
1093     Error *local_err = NULL;
1094 
1095     /*
1096      * The current notifier usage is just an optimization to migration, so we
1097      * don't stop the normal migration process in the error case.
1098      */
1099     if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1100         error_report_err(local_err);
1101         local_err = NULL;
1102     }
1103 
1104     migration_bitmap_sync(rs, last_stage);
1105 
1106     if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1107         error_report_err(local_err);
1108     }
1109 }
1110 
ram_release_page(const char * rbname,uint64_t offset)1111 void ram_release_page(const char *rbname, uint64_t offset)
1112 {
1113     if (!migrate_release_ram() || !migration_in_postcopy()) {
1114         return;
1115     }
1116 
1117     ram_discard_range(rbname, offset, TARGET_PAGE_SIZE);
1118 }
1119 
1120 /**
1121  * save_zero_page: send the zero page to the stream
1122  *
1123  * Returns the number of pages written.
1124  *
1125  * @rs: current RAM state
1126  * @pss: current PSS channel
1127  * @offset: offset inside the block for the page
1128  */
save_zero_page(RAMState * rs,PageSearchStatus * pss,ram_addr_t offset)1129 static int save_zero_page(RAMState *rs, PageSearchStatus *pss,
1130                           ram_addr_t offset)
1131 {
1132     uint8_t *p = pss->block->host + offset;
1133     QEMUFile *file = pss->pss_channel;
1134     int len = 0;
1135 
1136     if (migrate_zero_page_detection() == ZERO_PAGE_DETECTION_NONE) {
1137         return 0;
1138     }
1139 
1140     if (!buffer_is_zero(p, TARGET_PAGE_SIZE)) {
1141         return 0;
1142     }
1143 
1144     stat64_add(&mig_stats.zero_pages, 1);
1145 
1146     if (migrate_mapped_ram()) {
1147         /* zero pages are not transferred with mapped-ram */
1148         clear_bit_atomic(offset >> TARGET_PAGE_BITS, pss->block->file_bmap);
1149         return 1;
1150     }
1151 
1152     len += save_page_header(pss, file, pss->block, offset | RAM_SAVE_FLAG_ZERO);
1153     qemu_put_byte(file, 0);
1154     len += 1;
1155     ram_release_page(pss->block->idstr, offset);
1156     ram_transferred_add(len);
1157 
1158     /*
1159      * Must let xbzrle know, otherwise a previous (now 0'd) cached
1160      * page would be stale.
1161      */
1162     if (rs->xbzrle_started) {
1163         XBZRLE_cache_lock();
1164         xbzrle_cache_zero_page(pss->block->offset + offset);
1165         XBZRLE_cache_unlock();
1166     }
1167 
1168     return len;
1169 }
1170 
1171 /*
1172  * @pages: the number of pages written by the control path,
1173  *        < 0 - error
1174  *        > 0 - number of pages written
1175  *
1176  * Return true if the pages has been saved, otherwise false is returned.
1177  */
control_save_page(PageSearchStatus * pss,ram_addr_t offset,int * pages)1178 static bool control_save_page(PageSearchStatus *pss,
1179                               ram_addr_t offset, int *pages)
1180 {
1181     int ret;
1182 
1183     ret = rdma_control_save_page(pss->pss_channel, pss->block->offset, offset,
1184                                  TARGET_PAGE_SIZE);
1185     if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1186         return false;
1187     }
1188 
1189     if (ret == RAM_SAVE_CONTROL_DELAYED) {
1190         *pages = 1;
1191         return true;
1192     }
1193     *pages = ret;
1194     return true;
1195 }
1196 
1197 /*
1198  * directly send the page to the stream
1199  *
1200  * Returns the number of pages written.
1201  *
1202  * @pss: current PSS channel
1203  * @block: block that contains the page we want to send
1204  * @offset: offset inside the block for the page
1205  * @buf: the page to be sent
1206  * @async: send to page asyncly
1207  */
save_normal_page(PageSearchStatus * pss,RAMBlock * block,ram_addr_t offset,uint8_t * buf,bool async)1208 static int save_normal_page(PageSearchStatus *pss, RAMBlock *block,
1209                             ram_addr_t offset, uint8_t *buf, bool async)
1210 {
1211     QEMUFile *file = pss->pss_channel;
1212 
1213     if (migrate_mapped_ram()) {
1214         qemu_put_buffer_at(file, buf, TARGET_PAGE_SIZE,
1215                            block->pages_offset + offset);
1216         set_bit(offset >> TARGET_PAGE_BITS, block->file_bmap);
1217     } else {
1218         ram_transferred_add(save_page_header(pss, pss->pss_channel, block,
1219                                              offset | RAM_SAVE_FLAG_PAGE));
1220         if (async) {
1221             qemu_put_buffer_async(file, buf, TARGET_PAGE_SIZE,
1222                                   migrate_release_ram() &&
1223                                   migration_in_postcopy());
1224         } else {
1225             qemu_put_buffer(file, buf, TARGET_PAGE_SIZE);
1226         }
1227     }
1228     ram_transferred_add(TARGET_PAGE_SIZE);
1229     stat64_add(&mig_stats.normal_pages, 1);
1230     return 1;
1231 }
1232 
1233 /**
1234  * ram_save_page: send the given page to the stream
1235  *
1236  * Returns the number of pages written.
1237  *          < 0 - error
1238  *          >=0 - Number of pages written - this might legally be 0
1239  *                if xbzrle noticed the page was the same.
1240  *
1241  * @rs: current RAM state
1242  * @block: block that contains the page we want to send
1243  * @offset: offset inside the block for the page
1244  */
ram_save_page(RAMState * rs,PageSearchStatus * pss)1245 static int ram_save_page(RAMState *rs, PageSearchStatus *pss)
1246 {
1247     int pages = -1;
1248     uint8_t *p;
1249     bool send_async = true;
1250     RAMBlock *block = pss->block;
1251     ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
1252     ram_addr_t current_addr = block->offset + offset;
1253 
1254     p = block->host + offset;
1255     trace_ram_save_page(block->idstr, (uint64_t)offset, p);
1256 
1257     XBZRLE_cache_lock();
1258     if (rs->xbzrle_started && !migration_in_postcopy()) {
1259         pages = save_xbzrle_page(rs, pss, &p, current_addr,
1260                                  block, offset);
1261         if (!rs->last_stage) {
1262             /* Can't send this cached data async, since the cache page
1263              * might get updated before it gets to the wire
1264              */
1265             send_async = false;
1266         }
1267     }
1268 
1269     /* XBZRLE overflow or normal page */
1270     if (pages == -1) {
1271         pages = save_normal_page(pss, block, offset, p, send_async);
1272     }
1273 
1274     XBZRLE_cache_unlock();
1275 
1276     return pages;
1277 }
1278 
ram_save_multifd_page(RAMBlock * block,ram_addr_t offset)1279 static int ram_save_multifd_page(RAMBlock *block, ram_addr_t offset)
1280 {
1281     if (!multifd_queue_page(block, offset)) {
1282         return -1;
1283     }
1284 
1285     return 1;
1286 }
1287 
1288 
1289 #define PAGE_ALL_CLEAN 0
1290 #define PAGE_TRY_AGAIN 1
1291 #define PAGE_DIRTY_FOUND 2
1292 /**
1293  * find_dirty_block: find the next dirty page and update any state
1294  * associated with the search process.
1295  *
1296  * Returns:
1297  *         <0: An error happened
1298  *         PAGE_ALL_CLEAN: no dirty page found, give up
1299  *         PAGE_TRY_AGAIN: no dirty page found, retry for next block
1300  *         PAGE_DIRTY_FOUND: dirty page found
1301  *
1302  * @rs: current RAM state
1303  * @pss: data about the state of the current dirty page scan
1304  * @again: set to false if the search has scanned the whole of RAM
1305  */
find_dirty_block(RAMState * rs,PageSearchStatus * pss)1306 static int find_dirty_block(RAMState *rs, PageSearchStatus *pss)
1307 {
1308     /* Update pss->page for the next dirty bit in ramblock */
1309     pss_find_next_dirty(pss);
1310 
1311     if (pss->complete_round && pss->block == rs->last_seen_block &&
1312         pss->page >= rs->last_page) {
1313         /*
1314          * We've been once around the RAM and haven't found anything.
1315          * Give up.
1316          */
1317         return PAGE_ALL_CLEAN;
1318     }
1319     if (!offset_in_ramblock(pss->block,
1320                             ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)) {
1321         /* Didn't find anything in this RAM Block */
1322         pss->page = 0;
1323         pss->block = QLIST_NEXT_RCU(pss->block, next);
1324         if (!pss->block) {
1325             if (migrate_multifd() &&
1326                 (!migrate_multifd_flush_after_each_section() ||
1327                  migrate_mapped_ram())) {
1328                 QEMUFile *f = rs->pss[RAM_CHANNEL_PRECOPY].pss_channel;
1329                 int ret = multifd_ram_flush_and_sync();
1330                 if (ret < 0) {
1331                     return ret;
1332                 }
1333 
1334                 if (!migrate_mapped_ram()) {
1335                     qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
1336                     qemu_fflush(f);
1337                 }
1338             }
1339 
1340             /* Hit the end of the list */
1341             pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
1342             /* Flag that we've looped */
1343             pss->complete_round = true;
1344             /* After the first round, enable XBZRLE. */
1345             if (migrate_xbzrle()) {
1346                 rs->xbzrle_started = true;
1347             }
1348         }
1349         /* Didn't find anything this time, but try again on the new block */
1350         return PAGE_TRY_AGAIN;
1351     } else {
1352         /* We've found something */
1353         return PAGE_DIRTY_FOUND;
1354     }
1355 }
1356 
1357 /**
1358  * unqueue_page: gets a page of the queue
1359  *
1360  * Helper for 'get_queued_page' - gets a page off the queue
1361  *
1362  * Returns the block of the page (or NULL if none available)
1363  *
1364  * @rs: current RAM state
1365  * @offset: used to return the offset within the RAMBlock
1366  */
unqueue_page(RAMState * rs,ram_addr_t * offset)1367 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
1368 {
1369     struct RAMSrcPageRequest *entry;
1370     RAMBlock *block = NULL;
1371 
1372     if (!postcopy_has_request(rs)) {
1373         return NULL;
1374     }
1375 
1376     QEMU_LOCK_GUARD(&rs->src_page_req_mutex);
1377 
1378     /*
1379      * This should _never_ change even after we take the lock, because no one
1380      * should be taking anything off the request list other than us.
1381      */
1382     assert(postcopy_has_request(rs));
1383 
1384     entry = QSIMPLEQ_FIRST(&rs->src_page_requests);
1385     block = entry->rb;
1386     *offset = entry->offset;
1387 
1388     if (entry->len > TARGET_PAGE_SIZE) {
1389         entry->len -= TARGET_PAGE_SIZE;
1390         entry->offset += TARGET_PAGE_SIZE;
1391     } else {
1392         memory_region_unref(block->mr);
1393         QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1394         g_free(entry);
1395         migration_consume_urgent_request();
1396     }
1397 
1398     return block;
1399 }
1400 
1401 #if defined(__linux__)
1402 /**
1403  * poll_fault_page: try to get next UFFD write fault page and, if pending fault
1404  *   is found, return RAM block pointer and page offset
1405  *
1406  * Returns pointer to the RAMBlock containing faulting page,
1407  *   NULL if no write faults are pending
1408  *
1409  * @rs: current RAM state
1410  * @offset: page offset from the beginning of the block
1411  */
poll_fault_page(RAMState * rs,ram_addr_t * offset)1412 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1413 {
1414     struct uffd_msg uffd_msg;
1415     void *page_address;
1416     RAMBlock *block;
1417     int res;
1418 
1419     if (!migrate_background_snapshot()) {
1420         return NULL;
1421     }
1422 
1423     res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1);
1424     if (res <= 0) {
1425         return NULL;
1426     }
1427 
1428     page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address;
1429     block = qemu_ram_block_from_host(page_address, false, offset);
1430     assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0);
1431     return block;
1432 }
1433 
1434 /**
1435  * ram_save_release_protection: release UFFD write protection after
1436  *   a range of pages has been saved
1437  *
1438  * @rs: current RAM state
1439  * @pss: page-search-status structure
1440  * @start_page: index of the first page in the range relative to pss->block
1441  *
1442  * Returns 0 on success, negative value in case of an error
1443 */
ram_save_release_protection(RAMState * rs,PageSearchStatus * pss,unsigned long start_page)1444 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1445         unsigned long start_page)
1446 {
1447     int res = 0;
1448 
1449     /* Check if page is from UFFD-managed region. */
1450     if (pss->block->flags & RAM_UF_WRITEPROTECT) {
1451         void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS);
1452         uint64_t run_length = (pss->page - start_page) << TARGET_PAGE_BITS;
1453 
1454         /* Flush async buffers before un-protect. */
1455         qemu_fflush(pss->pss_channel);
1456         /* Un-protect memory range. */
1457         res = uffd_change_protection(rs->uffdio_fd, page_address, run_length,
1458                 false, false);
1459     }
1460 
1461     return res;
1462 }
1463 
1464 /* ram_write_tracking_available: check if kernel supports required UFFD features
1465  *
1466  * Returns true if supports, false otherwise
1467  */
ram_write_tracking_available(void)1468 bool ram_write_tracking_available(void)
1469 {
1470     uint64_t uffd_features;
1471     int res;
1472 
1473     res = uffd_query_features(&uffd_features);
1474     return (res == 0 &&
1475             (uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0);
1476 }
1477 
1478 /* ram_write_tracking_compatible: check if guest configuration is
1479  *   compatible with 'write-tracking'
1480  *
1481  * Returns true if compatible, false otherwise
1482  */
ram_write_tracking_compatible(void)1483 bool ram_write_tracking_compatible(void)
1484 {
1485     const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT);
1486     int uffd_fd;
1487     RAMBlock *block;
1488     bool ret = false;
1489 
1490     /* Open UFFD file descriptor */
1491     uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false);
1492     if (uffd_fd < 0) {
1493         return false;
1494     }
1495 
1496     RCU_READ_LOCK_GUARD();
1497 
1498     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1499         uint64_t uffd_ioctls;
1500 
1501         /* Nothing to do with read-only and MMIO-writable regions */
1502         if (block->mr->readonly || block->mr->rom_device) {
1503             continue;
1504         }
1505         /* Try to register block memory via UFFD-IO to track writes */
1506         if (uffd_register_memory(uffd_fd, block->host, block->max_length,
1507                 UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) {
1508             goto out;
1509         }
1510         if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) {
1511             goto out;
1512         }
1513     }
1514     ret = true;
1515 
1516 out:
1517     uffd_close_fd(uffd_fd);
1518     return ret;
1519 }
1520 
populate_read_range(RAMBlock * block,ram_addr_t offset,ram_addr_t size)1521 static inline void populate_read_range(RAMBlock *block, ram_addr_t offset,
1522                                        ram_addr_t size)
1523 {
1524     const ram_addr_t end = offset + size;
1525 
1526     /*
1527      * We read one byte of each page; this will preallocate page tables if
1528      * required and populate the shared zeropage on MAP_PRIVATE anonymous memory
1529      * where no page was populated yet. This might require adaption when
1530      * supporting other mappings, like shmem.
1531      */
1532     for (; offset < end; offset += block->page_size) {
1533         char tmp = *((char *)block->host + offset);
1534 
1535         /* Don't optimize the read out */
1536         asm volatile("" : "+r" (tmp));
1537     }
1538 }
1539 
populate_read_section(MemoryRegionSection * section,void * opaque)1540 static inline int populate_read_section(MemoryRegionSection *section,
1541                                         void *opaque)
1542 {
1543     const hwaddr size = int128_get64(section->size);
1544     hwaddr offset = section->offset_within_region;
1545     RAMBlock *block = section->mr->ram_block;
1546 
1547     populate_read_range(block, offset, size);
1548     return 0;
1549 }
1550 
1551 /*
1552  * ram_block_populate_read: preallocate page tables and populate pages in the
1553  *   RAM block by reading a byte of each page.
1554  *
1555  * Since it's solely used for userfault_fd WP feature, here we just
1556  *   hardcode page size to qemu_real_host_page_size.
1557  *
1558  * @block: RAM block to populate
1559  */
ram_block_populate_read(RAMBlock * rb)1560 static void ram_block_populate_read(RAMBlock *rb)
1561 {
1562     /*
1563      * Skip populating all pages that fall into a discarded range as managed by
1564      * a RamDiscardManager responsible for the mapped memory region of the
1565      * RAMBlock. Such discarded ("logically unplugged") parts of a RAMBlock
1566      * must not get populated automatically. We don't have to track
1567      * modifications via userfaultfd WP reliably, because these pages will
1568      * not be part of the migration stream either way -- see
1569      * ramblock_dirty_bitmap_exclude_discarded_pages().
1570      *
1571      * Note: The result is only stable while migrating (precopy/postcopy).
1572      */
1573     if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1574         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1575         MemoryRegionSection section = {
1576             .mr = rb->mr,
1577             .offset_within_region = 0,
1578             .size = rb->mr->size,
1579         };
1580 
1581         ram_discard_manager_replay_populated(rdm, &section,
1582                                              populate_read_section, NULL);
1583     } else {
1584         populate_read_range(rb, 0, rb->used_length);
1585     }
1586 }
1587 
1588 /*
1589  * ram_write_tracking_prepare: prepare for UFFD-WP memory tracking
1590  */
ram_write_tracking_prepare(void)1591 void ram_write_tracking_prepare(void)
1592 {
1593     RAMBlock *block;
1594 
1595     RCU_READ_LOCK_GUARD();
1596 
1597     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1598         /* Nothing to do with read-only and MMIO-writable regions */
1599         if (block->mr->readonly || block->mr->rom_device) {
1600             continue;
1601         }
1602 
1603         /*
1604          * Populate pages of the RAM block before enabling userfault_fd
1605          * write protection.
1606          *
1607          * This stage is required since ioctl(UFFDIO_WRITEPROTECT) with
1608          * UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip
1609          * pages with pte_none() entries in page table.
1610          */
1611         ram_block_populate_read(block);
1612     }
1613 }
1614 
uffd_protect_section(MemoryRegionSection * section,void * opaque)1615 static inline int uffd_protect_section(MemoryRegionSection *section,
1616                                        void *opaque)
1617 {
1618     const hwaddr size = int128_get64(section->size);
1619     const hwaddr offset = section->offset_within_region;
1620     RAMBlock *rb = section->mr->ram_block;
1621     int uffd_fd = (uintptr_t)opaque;
1622 
1623     return uffd_change_protection(uffd_fd, rb->host + offset, size, true,
1624                                   false);
1625 }
1626 
ram_block_uffd_protect(RAMBlock * rb,int uffd_fd)1627 static int ram_block_uffd_protect(RAMBlock *rb, int uffd_fd)
1628 {
1629     assert(rb->flags & RAM_UF_WRITEPROTECT);
1630 
1631     /* See ram_block_populate_read() */
1632     if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1633         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1634         MemoryRegionSection section = {
1635             .mr = rb->mr,
1636             .offset_within_region = 0,
1637             .size = rb->mr->size,
1638         };
1639 
1640         return ram_discard_manager_replay_populated(rdm, &section,
1641                                                     uffd_protect_section,
1642                                                     (void *)(uintptr_t)uffd_fd);
1643     }
1644     return uffd_change_protection(uffd_fd, rb->host,
1645                                   rb->used_length, true, false);
1646 }
1647 
1648 /*
1649  * ram_write_tracking_start: start UFFD-WP memory tracking
1650  *
1651  * Returns 0 for success or negative value in case of error
1652  */
ram_write_tracking_start(void)1653 int ram_write_tracking_start(void)
1654 {
1655     int uffd_fd;
1656     RAMState *rs = ram_state;
1657     RAMBlock *block;
1658 
1659     /* Open UFFD file descriptor */
1660     uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true);
1661     if (uffd_fd < 0) {
1662         return uffd_fd;
1663     }
1664     rs->uffdio_fd = uffd_fd;
1665 
1666     RCU_READ_LOCK_GUARD();
1667 
1668     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1669         /* Nothing to do with read-only and MMIO-writable regions */
1670         if (block->mr->readonly || block->mr->rom_device) {
1671             continue;
1672         }
1673 
1674         /* Register block memory with UFFD to track writes */
1675         if (uffd_register_memory(rs->uffdio_fd, block->host,
1676                 block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) {
1677             goto fail;
1678         }
1679         block->flags |= RAM_UF_WRITEPROTECT;
1680         memory_region_ref(block->mr);
1681 
1682         /* Apply UFFD write protection to the block memory range */
1683         if (ram_block_uffd_protect(block, uffd_fd)) {
1684             goto fail;
1685         }
1686 
1687         trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size,
1688                 block->host, block->max_length);
1689     }
1690 
1691     return 0;
1692 
1693 fail:
1694     error_report("ram_write_tracking_start() failed: restoring initial memory state");
1695 
1696     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1697         if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1698             continue;
1699         }
1700         uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1701         /* Cleanup flags and remove reference */
1702         block->flags &= ~RAM_UF_WRITEPROTECT;
1703         memory_region_unref(block->mr);
1704     }
1705 
1706     uffd_close_fd(uffd_fd);
1707     rs->uffdio_fd = -1;
1708     return -1;
1709 }
1710 
1711 /**
1712  * ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection
1713  */
ram_write_tracking_stop(void)1714 void ram_write_tracking_stop(void)
1715 {
1716     RAMState *rs = ram_state;
1717     RAMBlock *block;
1718 
1719     RCU_READ_LOCK_GUARD();
1720 
1721     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1722         if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1723             continue;
1724         }
1725         uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1726 
1727         trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size,
1728                 block->host, block->max_length);
1729 
1730         /* Cleanup flags and remove reference */
1731         block->flags &= ~RAM_UF_WRITEPROTECT;
1732         memory_region_unref(block->mr);
1733     }
1734 
1735     /* Finally close UFFD file descriptor */
1736     uffd_close_fd(rs->uffdio_fd);
1737     rs->uffdio_fd = -1;
1738 }
1739 
1740 #else
1741 /* No target OS support, stubs just fail or ignore */
1742 
poll_fault_page(RAMState * rs,ram_addr_t * offset)1743 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1744 {
1745     (void) rs;
1746     (void) offset;
1747 
1748     return NULL;
1749 }
1750 
ram_save_release_protection(RAMState * rs,PageSearchStatus * pss,unsigned long start_page)1751 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1752         unsigned long start_page)
1753 {
1754     (void) rs;
1755     (void) pss;
1756     (void) start_page;
1757 
1758     return 0;
1759 }
1760 
ram_write_tracking_available(void)1761 bool ram_write_tracking_available(void)
1762 {
1763     return false;
1764 }
1765 
ram_write_tracking_compatible(void)1766 bool ram_write_tracking_compatible(void)
1767 {
1768     assert(0);
1769     return false;
1770 }
1771 
ram_write_tracking_start(void)1772 int ram_write_tracking_start(void)
1773 {
1774     assert(0);
1775     return -1;
1776 }
1777 
ram_write_tracking_stop(void)1778 void ram_write_tracking_stop(void)
1779 {
1780     assert(0);
1781 }
1782 #endif /* defined(__linux__) */
1783 
1784 /**
1785  * get_queued_page: unqueue a page from the postcopy requests
1786  *
1787  * Skips pages that are already sent (!dirty)
1788  *
1789  * Returns true if a queued page is found
1790  *
1791  * @rs: current RAM state
1792  * @pss: data about the state of the current dirty page scan
1793  */
get_queued_page(RAMState * rs,PageSearchStatus * pss)1794 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
1795 {
1796     RAMBlock  *block;
1797     ram_addr_t offset;
1798     bool dirty;
1799 
1800     do {
1801         block = unqueue_page(rs, &offset);
1802         /*
1803          * We're sending this page, and since it's postcopy nothing else
1804          * will dirty it, and we must make sure it doesn't get sent again
1805          * even if this queue request was received after the background
1806          * search already sent it.
1807          */
1808         if (block) {
1809             unsigned long page;
1810 
1811             page = offset >> TARGET_PAGE_BITS;
1812             dirty = test_bit(page, block->bmap);
1813             if (!dirty) {
1814                 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
1815                                                 page);
1816             } else {
1817                 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
1818             }
1819         }
1820 
1821     } while (block && !dirty);
1822 
1823     if (!block) {
1824         /*
1825          * Poll write faults too if background snapshot is enabled; that's
1826          * when we have vcpus got blocked by the write protected pages.
1827          */
1828         block = poll_fault_page(rs, &offset);
1829     }
1830 
1831     if (block) {
1832         /*
1833          * We want the background search to continue from the queued page
1834          * since the guest is likely to want other pages near to the page
1835          * it just requested.
1836          */
1837         pss->block = block;
1838         pss->page = offset >> TARGET_PAGE_BITS;
1839 
1840         /*
1841          * This unqueued page would break the "one round" check, even is
1842          * really rare.
1843          */
1844         pss->complete_round = false;
1845     }
1846 
1847     return !!block;
1848 }
1849 
1850 /**
1851  * migration_page_queue_free: drop any remaining pages in the ram
1852  * request queue
1853  *
1854  * It should be empty at the end anyway, but in error cases there may
1855  * be some left.  in case that there is any page left, we drop it.
1856  *
1857  */
migration_page_queue_free(RAMState * rs)1858 static void migration_page_queue_free(RAMState *rs)
1859 {
1860     struct RAMSrcPageRequest *mspr, *next_mspr;
1861     /* This queue generally should be empty - but in the case of a failed
1862      * migration might have some droppings in.
1863      */
1864     RCU_READ_LOCK_GUARD();
1865     QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
1866         memory_region_unref(mspr->rb->mr);
1867         QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1868         g_free(mspr);
1869     }
1870 }
1871 
1872 /**
1873  * ram_save_queue_pages: queue the page for transmission
1874  *
1875  * A request from postcopy destination for example.
1876  *
1877  * Returns zero on success or negative on error
1878  *
1879  * @rbname: Name of the RAMBLock of the request. NULL means the
1880  *          same that last one.
1881  * @start: starting address from the start of the RAMBlock
1882  * @len: length (in bytes) to send
1883  */
ram_save_queue_pages(const char * rbname,ram_addr_t start,ram_addr_t len,Error ** errp)1884 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len,
1885                          Error **errp)
1886 {
1887     RAMBlock *ramblock;
1888     RAMState *rs = ram_state;
1889 
1890     stat64_add(&mig_stats.postcopy_requests, 1);
1891     RCU_READ_LOCK_GUARD();
1892 
1893     if (!rbname) {
1894         /* Reuse last RAMBlock */
1895         ramblock = rs->last_req_rb;
1896 
1897         if (!ramblock) {
1898             /*
1899              * Shouldn't happen, we can't reuse the last RAMBlock if
1900              * it's the 1st request.
1901              */
1902             error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no previous block");
1903             return -1;
1904         }
1905     } else {
1906         ramblock = qemu_ram_block_by_name(rbname);
1907 
1908         if (!ramblock) {
1909             /* We shouldn't be asked for a non-existent RAMBlock */
1910             error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no block '%s'", rbname);
1911             return -1;
1912         }
1913         rs->last_req_rb = ramblock;
1914     }
1915     trace_ram_save_queue_pages(ramblock->idstr, start, len);
1916     if (!offset_in_ramblock(ramblock, start + len - 1)) {
1917         error_setg(errp, "MIG_RP_MSG_REQ_PAGES request overrun, "
1918                    "start=" RAM_ADDR_FMT " len="
1919                    RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
1920                    start, len, ramblock->used_length);
1921         return -1;
1922     }
1923 
1924     /*
1925      * When with postcopy preempt, we send back the page directly in the
1926      * rp-return thread.
1927      */
1928     if (postcopy_preempt_active()) {
1929         ram_addr_t page_start = start >> TARGET_PAGE_BITS;
1930         size_t page_size = qemu_ram_pagesize(ramblock);
1931         PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_POSTCOPY];
1932         int ret = 0;
1933 
1934         qemu_mutex_lock(&rs->bitmap_mutex);
1935 
1936         pss_init(pss, ramblock, page_start);
1937         /*
1938          * Always use the preempt channel, and make sure it's there.  It's
1939          * safe to access without lock, because when rp-thread is running
1940          * we should be the only one who operates on the qemufile
1941          */
1942         pss->pss_channel = migrate_get_current()->postcopy_qemufile_src;
1943         assert(pss->pss_channel);
1944 
1945         /*
1946          * It must be either one or multiple of host page size.  Just
1947          * assert; if something wrong we're mostly split brain anyway.
1948          */
1949         assert(len % page_size == 0);
1950         while (len) {
1951             if (ram_save_host_page_urgent(pss)) {
1952                 error_setg(errp, "ram_save_host_page_urgent() failed: "
1953                            "ramblock=%s, start_addr=0x"RAM_ADDR_FMT,
1954                            ramblock->idstr, start);
1955                 ret = -1;
1956                 break;
1957             }
1958             /*
1959              * NOTE: after ram_save_host_page_urgent() succeeded, pss->page
1960              * will automatically be moved and point to the next host page
1961              * we're going to send, so no need to update here.
1962              *
1963              * Normally QEMU never sends >1 host page in requests, so
1964              * logically we don't even need that as the loop should only
1965              * run once, but just to be consistent.
1966              */
1967             len -= page_size;
1968         };
1969         qemu_mutex_unlock(&rs->bitmap_mutex);
1970 
1971         return ret;
1972     }
1973 
1974     struct RAMSrcPageRequest *new_entry =
1975         g_new0(struct RAMSrcPageRequest, 1);
1976     new_entry->rb = ramblock;
1977     new_entry->offset = start;
1978     new_entry->len = len;
1979 
1980     memory_region_ref(ramblock->mr);
1981     qemu_mutex_lock(&rs->src_page_req_mutex);
1982     QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
1983     migration_make_urgent_request();
1984     qemu_mutex_unlock(&rs->src_page_req_mutex);
1985 
1986     return 0;
1987 }
1988 
1989 /**
1990  * ram_save_target_page_legacy: save one target page
1991  *
1992  * Returns the number of pages written
1993  *
1994  * @rs: current RAM state
1995  * @pss: data about the page we want to send
1996  */
ram_save_target_page_legacy(RAMState * rs,PageSearchStatus * pss)1997 static int ram_save_target_page_legacy(RAMState *rs, PageSearchStatus *pss)
1998 {
1999     ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2000     int res;
2001 
2002     if (control_save_page(pss, offset, &res)) {
2003         return res;
2004     }
2005 
2006     if (save_zero_page(rs, pss, offset)) {
2007         return 1;
2008     }
2009 
2010     return ram_save_page(rs, pss);
2011 }
2012 
2013 /**
2014  * ram_save_target_page_multifd: send one target page to multifd workers
2015  *
2016  * Returns 1 if the page was queued, -1 otherwise.
2017  *
2018  * @rs: current RAM state
2019  * @pss: data about the page we want to send
2020  */
ram_save_target_page_multifd(RAMState * rs,PageSearchStatus * pss)2021 static int ram_save_target_page_multifd(RAMState *rs, PageSearchStatus *pss)
2022 {
2023     RAMBlock *block = pss->block;
2024     ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2025 
2026     /*
2027      * While using multifd live migration, we still need to handle zero
2028      * page checking on the migration main thread.
2029      */
2030     if (migrate_zero_page_detection() == ZERO_PAGE_DETECTION_LEGACY) {
2031         if (save_zero_page(rs, pss, offset)) {
2032             return 1;
2033         }
2034     }
2035 
2036     return ram_save_multifd_page(block, offset);
2037 }
2038 
2039 /* Should be called before sending a host page */
pss_host_page_prepare(PageSearchStatus * pss)2040 static void pss_host_page_prepare(PageSearchStatus *pss)
2041 {
2042     /* How many guest pages are there in one host page? */
2043     size_t guest_pfns = qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2044 
2045     pss->host_page_sending = true;
2046     if (guest_pfns <= 1) {
2047         /*
2048          * This covers both when guest psize == host psize, or when guest
2049          * has larger psize than the host (guest_pfns==0).
2050          *
2051          * For the latter, we always send one whole guest page per
2052          * iteration of the host page (example: an Alpha VM on x86 host
2053          * will have guest psize 8K while host psize 4K).
2054          */
2055         pss->host_page_start = pss->page;
2056         pss->host_page_end = pss->page + 1;
2057     } else {
2058         /*
2059          * The host page spans over multiple guest pages, we send them
2060          * within the same host page iteration.
2061          */
2062         pss->host_page_start = ROUND_DOWN(pss->page, guest_pfns);
2063         pss->host_page_end = ROUND_UP(pss->page + 1, guest_pfns);
2064     }
2065 }
2066 
2067 /*
2068  * Whether the page pointed by PSS is within the host page being sent.
2069  * Must be called after a previous pss_host_page_prepare().
2070  */
pss_within_range(PageSearchStatus * pss)2071 static bool pss_within_range(PageSearchStatus *pss)
2072 {
2073     ram_addr_t ram_addr;
2074 
2075     assert(pss->host_page_sending);
2076 
2077     /* Over host-page boundary? */
2078     if (pss->page >= pss->host_page_end) {
2079         return false;
2080     }
2081 
2082     ram_addr = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2083 
2084     return offset_in_ramblock(pss->block, ram_addr);
2085 }
2086 
pss_host_page_finish(PageSearchStatus * pss)2087 static void pss_host_page_finish(PageSearchStatus *pss)
2088 {
2089     pss->host_page_sending = false;
2090     /* This is not needed, but just to reset it */
2091     pss->host_page_start = pss->host_page_end = 0;
2092 }
2093 
2094 /*
2095  * Send an urgent host page specified by `pss'.  Need to be called with
2096  * bitmap_mutex held.
2097  *
2098  * Returns 0 if save host page succeeded, false otherwise.
2099  */
ram_save_host_page_urgent(PageSearchStatus * pss)2100 static int ram_save_host_page_urgent(PageSearchStatus *pss)
2101 {
2102     bool page_dirty, sent = false;
2103     RAMState *rs = ram_state;
2104     int ret = 0;
2105 
2106     trace_postcopy_preempt_send_host_page(pss->block->idstr, pss->page);
2107     pss_host_page_prepare(pss);
2108 
2109     /*
2110      * If precopy is sending the same page, let it be done in precopy, or
2111      * we could send the same page in two channels and none of them will
2112      * receive the whole page.
2113      */
2114     if (pss_overlap(pss, &ram_state->pss[RAM_CHANNEL_PRECOPY])) {
2115         trace_postcopy_preempt_hit(pss->block->idstr,
2116                                    pss->page << TARGET_PAGE_BITS);
2117         return 0;
2118     }
2119 
2120     do {
2121         page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
2122 
2123         if (page_dirty) {
2124             /* Be strict to return code; it must be 1, or what else? */
2125             if (migration_ops->ram_save_target_page(rs, pss) != 1) {
2126                 error_report_once("%s: ram_save_target_page failed", __func__);
2127                 ret = -1;
2128                 goto out;
2129             }
2130             sent = true;
2131         }
2132         pss_find_next_dirty(pss);
2133     } while (pss_within_range(pss));
2134 out:
2135     pss_host_page_finish(pss);
2136     /* For urgent requests, flush immediately if sent */
2137     if (sent) {
2138         qemu_fflush(pss->pss_channel);
2139     }
2140     return ret;
2141 }
2142 
2143 /**
2144  * ram_save_host_page: save a whole host page
2145  *
2146  * Starting at *offset send pages up to the end of the current host
2147  * page. It's valid for the initial offset to point into the middle of
2148  * a host page in which case the remainder of the hostpage is sent.
2149  * Only dirty target pages are sent. Note that the host page size may
2150  * be a huge page for this block.
2151  *
2152  * The saving stops at the boundary of the used_length of the block
2153  * if the RAMBlock isn't a multiple of the host page size.
2154  *
2155  * The caller must be with ram_state.bitmap_mutex held to call this
2156  * function.  Note that this function can temporarily release the lock, but
2157  * when the function is returned it'll make sure the lock is still held.
2158  *
2159  * Returns the number of pages written or negative on error
2160  *
2161  * @rs: current RAM state
2162  * @pss: data about the page we want to send
2163  */
ram_save_host_page(RAMState * rs,PageSearchStatus * pss)2164 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss)
2165 {
2166     bool page_dirty, preempt_active = postcopy_preempt_active();
2167     int tmppages, pages = 0;
2168     size_t pagesize_bits =
2169         qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2170     unsigned long start_page = pss->page;
2171     int res;
2172 
2173     if (migrate_ram_is_ignored(pss->block)) {
2174         error_report("block %s should not be migrated !", pss->block->idstr);
2175         return 0;
2176     }
2177 
2178     /* Update host page boundary information */
2179     pss_host_page_prepare(pss);
2180 
2181     do {
2182         page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
2183 
2184         /* Check the pages is dirty and if it is send it */
2185         if (page_dirty) {
2186             /*
2187              * Properly yield the lock only in postcopy preempt mode
2188              * because both migration thread and rp-return thread can
2189              * operate on the bitmaps.
2190              */
2191             if (preempt_active) {
2192                 qemu_mutex_unlock(&rs->bitmap_mutex);
2193             }
2194             tmppages = migration_ops->ram_save_target_page(rs, pss);
2195             if (tmppages >= 0) {
2196                 pages += tmppages;
2197                 /*
2198                  * Allow rate limiting to happen in the middle of huge pages if
2199                  * something is sent in the current iteration.
2200                  */
2201                 if (pagesize_bits > 1 && tmppages > 0) {
2202                     migration_rate_limit();
2203                 }
2204             }
2205             if (preempt_active) {
2206                 qemu_mutex_lock(&rs->bitmap_mutex);
2207             }
2208         } else {
2209             tmppages = 0;
2210         }
2211 
2212         if (tmppages < 0) {
2213             pss_host_page_finish(pss);
2214             return tmppages;
2215         }
2216 
2217         pss_find_next_dirty(pss);
2218     } while (pss_within_range(pss));
2219 
2220     pss_host_page_finish(pss);
2221 
2222     res = ram_save_release_protection(rs, pss, start_page);
2223     return (res < 0 ? res : pages);
2224 }
2225 
2226 /**
2227  * ram_find_and_save_block: finds a dirty page and sends it to f
2228  *
2229  * Called within an RCU critical section.
2230  *
2231  * Returns the number of pages written where zero means no dirty pages,
2232  * or negative on error
2233  *
2234  * @rs: current RAM state
2235  *
2236  * On systems where host-page-size > target-page-size it will send all the
2237  * pages in a host page that are dirty.
2238  */
ram_find_and_save_block(RAMState * rs)2239 static int ram_find_and_save_block(RAMState *rs)
2240 {
2241     PageSearchStatus *pss = &rs->pss[RAM_CHANNEL_PRECOPY];
2242     int pages = 0;
2243 
2244     /* No dirty page as there is zero RAM */
2245     if (!rs->ram_bytes_total) {
2246         return pages;
2247     }
2248 
2249     /*
2250      * Always keep last_seen_block/last_page valid during this procedure,
2251      * because find_dirty_block() relies on these values (e.g., we compare
2252      * last_seen_block with pss.block to see whether we searched all the
2253      * ramblocks) to detect the completion of migration.  Having NULL value
2254      * of last_seen_block can conditionally cause below loop to run forever.
2255      */
2256     if (!rs->last_seen_block) {
2257         rs->last_seen_block = QLIST_FIRST_RCU(&ram_list.blocks);
2258         rs->last_page = 0;
2259     }
2260 
2261     pss_init(pss, rs->last_seen_block, rs->last_page);
2262 
2263     while (true){
2264         if (!get_queued_page(rs, pss)) {
2265             /* priority queue empty, so just search for something dirty */
2266             int res = find_dirty_block(rs, pss);
2267             if (res != PAGE_DIRTY_FOUND) {
2268                 if (res == PAGE_ALL_CLEAN) {
2269                     break;
2270                 } else if (res == PAGE_TRY_AGAIN) {
2271                     continue;
2272                 } else if (res < 0) {
2273                     pages = res;
2274                     break;
2275                 }
2276             }
2277         }
2278         pages = ram_save_host_page(rs, pss);
2279         if (pages) {
2280             break;
2281         }
2282     }
2283 
2284     rs->last_seen_block = pss->block;
2285     rs->last_page = pss->page;
2286 
2287     return pages;
2288 }
2289 
ram_bytes_total_with_ignored(void)2290 static uint64_t ram_bytes_total_with_ignored(void)
2291 {
2292     RAMBlock *block;
2293     uint64_t total = 0;
2294 
2295     RCU_READ_LOCK_GUARD();
2296 
2297     RAMBLOCK_FOREACH_MIGRATABLE(block) {
2298         total += block->used_length;
2299     }
2300     return total;
2301 }
2302 
ram_bytes_total(void)2303 uint64_t ram_bytes_total(void)
2304 {
2305     RAMBlock *block;
2306     uint64_t total = 0;
2307 
2308     RCU_READ_LOCK_GUARD();
2309 
2310     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2311         total += block->used_length;
2312     }
2313     return total;
2314 }
2315 
xbzrle_load_setup(void)2316 static void xbzrle_load_setup(void)
2317 {
2318     XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2319 }
2320 
xbzrle_load_cleanup(void)2321 static void xbzrle_load_cleanup(void)
2322 {
2323     g_free(XBZRLE.decoded_buf);
2324     XBZRLE.decoded_buf = NULL;
2325 }
2326 
ram_state_cleanup(RAMState ** rsp)2327 static void ram_state_cleanup(RAMState **rsp)
2328 {
2329     if (*rsp) {
2330         migration_page_queue_free(*rsp);
2331         qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2332         qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2333         g_free(*rsp);
2334         *rsp = NULL;
2335     }
2336 }
2337 
xbzrle_cleanup(void)2338 static void xbzrle_cleanup(void)
2339 {
2340     XBZRLE_cache_lock();
2341     if (XBZRLE.cache) {
2342         cache_fini(XBZRLE.cache);
2343         g_free(XBZRLE.encoded_buf);
2344         g_free(XBZRLE.current_buf);
2345         g_free(XBZRLE.zero_target_page);
2346         XBZRLE.cache = NULL;
2347         XBZRLE.encoded_buf = NULL;
2348         XBZRLE.current_buf = NULL;
2349         XBZRLE.zero_target_page = NULL;
2350     }
2351     XBZRLE_cache_unlock();
2352 }
2353 
ram_bitmaps_destroy(void)2354 static void ram_bitmaps_destroy(void)
2355 {
2356     RAMBlock *block;
2357 
2358     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2359         g_free(block->clear_bmap);
2360         block->clear_bmap = NULL;
2361         g_free(block->bmap);
2362         block->bmap = NULL;
2363         g_free(block->file_bmap);
2364         block->file_bmap = NULL;
2365     }
2366 }
2367 
ram_save_cleanup(void * opaque)2368 static void ram_save_cleanup(void *opaque)
2369 {
2370     RAMState **rsp = opaque;
2371 
2372     /* We don't use dirty log with background snapshots */
2373     if (!migrate_background_snapshot()) {
2374         /* caller have hold BQL or is in a bh, so there is
2375          * no writing race against the migration bitmap
2376          */
2377         if (global_dirty_tracking & GLOBAL_DIRTY_MIGRATION) {
2378             /*
2379              * do not stop dirty log without starting it, since
2380              * memory_global_dirty_log_stop will assert that
2381              * memory_global_dirty_log_start/stop used in pairs
2382              */
2383             memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
2384         }
2385     }
2386 
2387     ram_bitmaps_destroy();
2388 
2389     xbzrle_cleanup();
2390     multifd_ram_save_cleanup();
2391     ram_state_cleanup(rsp);
2392     g_free(migration_ops);
2393     migration_ops = NULL;
2394 }
2395 
ram_state_reset(RAMState * rs)2396 static void ram_state_reset(RAMState *rs)
2397 {
2398     int i;
2399 
2400     for (i = 0; i < RAM_CHANNEL_MAX; i++) {
2401         rs->pss[i].last_sent_block = NULL;
2402     }
2403 
2404     rs->last_seen_block = NULL;
2405     rs->last_page = 0;
2406     rs->last_version = ram_list.version;
2407     rs->xbzrle_started = false;
2408 }
2409 
2410 #define MAX_WAIT 50 /* ms, half buffered_file limit */
2411 
2412 /* **** functions for postcopy ***** */
2413 
ram_postcopy_migrated_memory_release(MigrationState * ms)2414 void ram_postcopy_migrated_memory_release(MigrationState *ms)
2415 {
2416     struct RAMBlock *block;
2417 
2418     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2419         unsigned long *bitmap = block->bmap;
2420         unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2421         unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
2422 
2423         while (run_start < range) {
2424             unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
2425             ram_discard_range(block->idstr,
2426                               ((ram_addr_t)run_start) << TARGET_PAGE_BITS,
2427                               ((ram_addr_t)(run_end - run_start))
2428                                 << TARGET_PAGE_BITS);
2429             run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2430         }
2431     }
2432 }
2433 
2434 /**
2435  * postcopy_send_discard_bm_ram: discard a RAMBlock
2436  *
2437  * Callback from postcopy_each_ram_send_discard for each RAMBlock
2438  *
2439  * @ms: current migration state
2440  * @block: RAMBlock to discard
2441  */
postcopy_send_discard_bm_ram(MigrationState * ms,RAMBlock * block)2442 static void postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block)
2443 {
2444     unsigned long end = block->used_length >> TARGET_PAGE_BITS;
2445     unsigned long current;
2446     unsigned long *bitmap = block->bmap;
2447 
2448     for (current = 0; current < end; ) {
2449         unsigned long one = find_next_bit(bitmap, end, current);
2450         unsigned long zero, discard_length;
2451 
2452         if (one >= end) {
2453             break;
2454         }
2455 
2456         zero = find_next_zero_bit(bitmap, end, one + 1);
2457 
2458         if (zero >= end) {
2459             discard_length = end - one;
2460         } else {
2461             discard_length = zero - one;
2462         }
2463         postcopy_discard_send_range(ms, one, discard_length);
2464         current = one + discard_length;
2465     }
2466 }
2467 
2468 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block);
2469 
2470 /**
2471  * postcopy_each_ram_send_discard: discard all RAMBlocks
2472  *
2473  * Utility for the outgoing postcopy code.
2474  *   Calls postcopy_send_discard_bm_ram for each RAMBlock
2475  *   passing it bitmap indexes and name.
2476  * (qemu_ram_foreach_block ends up passing unscaled lengths
2477  *  which would mean postcopy code would have to deal with target page)
2478  *
2479  * @ms: current migration state
2480  */
postcopy_each_ram_send_discard(MigrationState * ms)2481 static void postcopy_each_ram_send_discard(MigrationState *ms)
2482 {
2483     struct RAMBlock *block;
2484 
2485     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2486         postcopy_discard_send_init(ms, block->idstr);
2487 
2488         /*
2489          * Deal with TPS != HPS and huge pages.  It discard any partially sent
2490          * host-page size chunks, mark any partially dirty host-page size
2491          * chunks as all dirty.  In this case the host-page is the host-page
2492          * for the particular RAMBlock, i.e. it might be a huge page.
2493          */
2494         postcopy_chunk_hostpages_pass(ms, block);
2495 
2496         /*
2497          * Postcopy sends chunks of bitmap over the wire, but it
2498          * just needs indexes at this point, avoids it having
2499          * target page specific code.
2500          */
2501         postcopy_send_discard_bm_ram(ms, block);
2502         postcopy_discard_send_finish(ms);
2503     }
2504 }
2505 
2506 /**
2507  * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages
2508  *
2509  * Helper for postcopy_chunk_hostpages; it's called twice to
2510  * canonicalize the two bitmaps, that are similar, but one is
2511  * inverted.
2512  *
2513  * Postcopy requires that all target pages in a hostpage are dirty or
2514  * clean, not a mix.  This function canonicalizes the bitmaps.
2515  *
2516  * @ms: current migration state
2517  * @block: block that contains the page we want to canonicalize
2518  */
postcopy_chunk_hostpages_pass(MigrationState * ms,RAMBlock * block)2519 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block)
2520 {
2521     RAMState *rs = ram_state;
2522     unsigned long *bitmap = block->bmap;
2523     unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
2524     unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2525     unsigned long run_start;
2526 
2527     if (block->page_size == TARGET_PAGE_SIZE) {
2528         /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2529         return;
2530     }
2531 
2532     /* Find a dirty page */
2533     run_start = find_next_bit(bitmap, pages, 0);
2534 
2535     while (run_start < pages) {
2536 
2537         /*
2538          * If the start of this run of pages is in the middle of a host
2539          * page, then we need to fixup this host page.
2540          */
2541         if (QEMU_IS_ALIGNED(run_start, host_ratio)) {
2542             /* Find the end of this run */
2543             run_start = find_next_zero_bit(bitmap, pages, run_start + 1);
2544             /*
2545              * If the end isn't at the start of a host page, then the
2546              * run doesn't finish at the end of a host page
2547              * and we need to discard.
2548              */
2549         }
2550 
2551         if (!QEMU_IS_ALIGNED(run_start, host_ratio)) {
2552             unsigned long page;
2553             unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start,
2554                                                              host_ratio);
2555             run_start = QEMU_ALIGN_UP(run_start, host_ratio);
2556 
2557             /* Clean up the bitmap */
2558             for (page = fixup_start_addr;
2559                  page < fixup_start_addr + host_ratio; page++) {
2560                 /*
2561                  * Remark them as dirty, updating the count for any pages
2562                  * that weren't previously dirty.
2563                  */
2564                 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
2565             }
2566         }
2567 
2568         /* Find the next dirty page for the next iteration */
2569         run_start = find_next_bit(bitmap, pages, run_start);
2570     }
2571 }
2572 
2573 /**
2574  * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
2575  *
2576  * Transmit the set of pages to be discarded after precopy to the target
2577  * these are pages that:
2578  *     a) Have been previously transmitted but are now dirty again
2579  *     b) Pages that have never been transmitted, this ensures that
2580  *        any pages on the destination that have been mapped by background
2581  *        tasks get discarded (transparent huge pages is the specific concern)
2582  * Hopefully this is pretty sparse
2583  *
2584  * @ms: current migration state
2585  */
ram_postcopy_send_discard_bitmap(MigrationState * ms)2586 void ram_postcopy_send_discard_bitmap(MigrationState *ms)
2587 {
2588     RAMState *rs = ram_state;
2589 
2590     RCU_READ_LOCK_GUARD();
2591 
2592     /* This should be our last sync, the src is now paused */
2593     migration_bitmap_sync(rs, false);
2594 
2595     /* Easiest way to make sure we don't resume in the middle of a host-page */
2596     rs->pss[RAM_CHANNEL_PRECOPY].last_sent_block = NULL;
2597     rs->last_seen_block = NULL;
2598     rs->last_page = 0;
2599 
2600     postcopy_each_ram_send_discard(ms);
2601 
2602     trace_ram_postcopy_send_discard_bitmap();
2603 }
2604 
2605 /**
2606  * ram_discard_range: discard dirtied pages at the beginning of postcopy
2607  *
2608  * Returns zero on success
2609  *
2610  * @rbname: name of the RAMBlock of the request. NULL means the
2611  *          same that last one.
2612  * @start: RAMBlock starting page
2613  * @length: RAMBlock size
2614  */
ram_discard_range(const char * rbname,uint64_t start,size_t length)2615 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
2616 {
2617     trace_ram_discard_range(rbname, start, length);
2618 
2619     RCU_READ_LOCK_GUARD();
2620     RAMBlock *rb = qemu_ram_block_by_name(rbname);
2621 
2622     if (!rb) {
2623         error_report("ram_discard_range: Failed to find block '%s'", rbname);
2624         return -1;
2625     }
2626 
2627     /*
2628      * On source VM, we don't need to update the received bitmap since
2629      * we don't even have one.
2630      */
2631     if (rb->receivedmap) {
2632         bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
2633                      length >> qemu_target_page_bits());
2634     }
2635 
2636     return ram_block_discard_range(rb, start, length);
2637 }
2638 
2639 /*
2640  * For every allocation, we will try not to crash the VM if the
2641  * allocation failed.
2642  */
xbzrle_init(Error ** errp)2643 static bool xbzrle_init(Error **errp)
2644 {
2645     if (!migrate_xbzrle()) {
2646         return true;
2647     }
2648 
2649     XBZRLE_cache_lock();
2650 
2651     XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
2652     if (!XBZRLE.zero_target_page) {
2653         error_setg(errp, "%s: Error allocating zero page", __func__);
2654         goto err_out;
2655     }
2656 
2657     XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
2658                               TARGET_PAGE_SIZE, errp);
2659     if (!XBZRLE.cache) {
2660         goto free_zero_page;
2661     }
2662 
2663     XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
2664     if (!XBZRLE.encoded_buf) {
2665         error_setg(errp, "%s: Error allocating encoded_buf", __func__);
2666         goto free_cache;
2667     }
2668 
2669     XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
2670     if (!XBZRLE.current_buf) {
2671         error_setg(errp, "%s: Error allocating current_buf", __func__);
2672         goto free_encoded_buf;
2673     }
2674 
2675     /* We are all good */
2676     XBZRLE_cache_unlock();
2677     return true;
2678 
2679 free_encoded_buf:
2680     g_free(XBZRLE.encoded_buf);
2681     XBZRLE.encoded_buf = NULL;
2682 free_cache:
2683     cache_fini(XBZRLE.cache);
2684     XBZRLE.cache = NULL;
2685 free_zero_page:
2686     g_free(XBZRLE.zero_target_page);
2687     XBZRLE.zero_target_page = NULL;
2688 err_out:
2689     XBZRLE_cache_unlock();
2690     return false;
2691 }
2692 
ram_state_init(RAMState ** rsp,Error ** errp)2693 static bool ram_state_init(RAMState **rsp, Error **errp)
2694 {
2695     *rsp = g_try_new0(RAMState, 1);
2696 
2697     if (!*rsp) {
2698         error_setg(errp, "%s: Init ramstate fail", __func__);
2699         return false;
2700     }
2701 
2702     qemu_mutex_init(&(*rsp)->bitmap_mutex);
2703     qemu_mutex_init(&(*rsp)->src_page_req_mutex);
2704     QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
2705     (*rsp)->ram_bytes_total = ram_bytes_total();
2706 
2707     /*
2708      * Count the total number of pages used by ram blocks not including any
2709      * gaps due to alignment or unplugs.
2710      * This must match with the initial values of dirty bitmap.
2711      */
2712     (*rsp)->migration_dirty_pages = (*rsp)->ram_bytes_total >> TARGET_PAGE_BITS;
2713     ram_state_reset(*rsp);
2714 
2715     return true;
2716 }
2717 
ram_list_init_bitmaps(void)2718 static void ram_list_init_bitmaps(void)
2719 {
2720     MigrationState *ms = migrate_get_current();
2721     RAMBlock *block;
2722     unsigned long pages;
2723     uint8_t shift;
2724 
2725     /* Skip setting bitmap if there is no RAM */
2726     if (ram_bytes_total()) {
2727         shift = ms->clear_bitmap_shift;
2728         if (shift > CLEAR_BITMAP_SHIFT_MAX) {
2729             error_report("clear_bitmap_shift (%u) too big, using "
2730                          "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
2731             shift = CLEAR_BITMAP_SHIFT_MAX;
2732         } else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
2733             error_report("clear_bitmap_shift (%u) too small, using "
2734                          "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
2735             shift = CLEAR_BITMAP_SHIFT_MIN;
2736         }
2737 
2738         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2739             pages = block->max_length >> TARGET_PAGE_BITS;
2740             /*
2741              * The initial dirty bitmap for migration must be set with all
2742              * ones to make sure we'll migrate every guest RAM page to
2743              * destination.
2744              * Here we set RAMBlock.bmap all to 1 because when rebegin a
2745              * new migration after a failed migration, ram_list.
2746              * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
2747              * guest memory.
2748              */
2749             block->bmap = bitmap_new(pages);
2750             bitmap_set(block->bmap, 0, pages);
2751             if (migrate_mapped_ram()) {
2752                 block->file_bmap = bitmap_new(pages);
2753             }
2754             block->clear_bmap_shift = shift;
2755             block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
2756         }
2757     }
2758 }
2759 
migration_bitmap_clear_discarded_pages(RAMState * rs)2760 static void migration_bitmap_clear_discarded_pages(RAMState *rs)
2761 {
2762     unsigned long pages;
2763     RAMBlock *rb;
2764 
2765     RCU_READ_LOCK_GUARD();
2766 
2767     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
2768             pages = ramblock_dirty_bitmap_clear_discarded_pages(rb);
2769             rs->migration_dirty_pages -= pages;
2770     }
2771 }
2772 
ram_init_bitmaps(RAMState * rs,Error ** errp)2773 static bool ram_init_bitmaps(RAMState *rs, Error **errp)
2774 {
2775     bool ret = true;
2776 
2777     qemu_mutex_lock_ramlist();
2778 
2779     WITH_RCU_READ_LOCK_GUARD() {
2780         ram_list_init_bitmaps();
2781         /* We don't use dirty log with background snapshots */
2782         if (!migrate_background_snapshot()) {
2783             ret = memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION, errp);
2784             if (!ret) {
2785                 goto out_unlock;
2786             }
2787             migration_bitmap_sync_precopy(rs, false);
2788         }
2789     }
2790 out_unlock:
2791     qemu_mutex_unlock_ramlist();
2792 
2793     if (!ret) {
2794         ram_bitmaps_destroy();
2795         return false;
2796     }
2797 
2798     /*
2799      * After an eventual first bitmap sync, fixup the initial bitmap
2800      * containing all 1s to exclude any discarded pages from migration.
2801      */
2802     migration_bitmap_clear_discarded_pages(rs);
2803     return true;
2804 }
2805 
ram_init_all(RAMState ** rsp,Error ** errp)2806 static int ram_init_all(RAMState **rsp, Error **errp)
2807 {
2808     if (!ram_state_init(rsp, errp)) {
2809         return -1;
2810     }
2811 
2812     if (!xbzrle_init(errp)) {
2813         ram_state_cleanup(rsp);
2814         return -1;
2815     }
2816 
2817     if (!ram_init_bitmaps(*rsp, errp)) {
2818         return -1;
2819     }
2820 
2821     return 0;
2822 }
2823 
ram_state_resume_prepare(RAMState * rs,QEMUFile * out)2824 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
2825 {
2826     RAMBlock *block;
2827     uint64_t pages = 0;
2828 
2829     /*
2830      * Postcopy is not using xbzrle/compression, so no need for that.
2831      * Also, since source are already halted, we don't need to care
2832      * about dirty page logging as well.
2833      */
2834 
2835     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2836         pages += bitmap_count_one(block->bmap,
2837                                   block->used_length >> TARGET_PAGE_BITS);
2838     }
2839 
2840     /* This may not be aligned with current bitmaps. Recalculate. */
2841     rs->migration_dirty_pages = pages;
2842 
2843     ram_state_reset(rs);
2844 
2845     /* Update RAMState cache of output QEMUFile */
2846     rs->pss[RAM_CHANNEL_PRECOPY].pss_channel = out;
2847 
2848     trace_ram_state_resume_prepare(pages);
2849 }
2850 
2851 /*
2852  * This function clears bits of the free pages reported by the caller from the
2853  * migration dirty bitmap. @addr is the host address corresponding to the
2854  * start of the continuous guest free pages, and @len is the total bytes of
2855  * those pages.
2856  */
qemu_guest_free_page_hint(void * addr,size_t len)2857 void qemu_guest_free_page_hint(void *addr, size_t len)
2858 {
2859     RAMBlock *block;
2860     ram_addr_t offset;
2861     size_t used_len, start, npages;
2862 
2863     /* This function is currently expected to be used during live migration */
2864     if (!migration_is_setup_or_active()) {
2865         return;
2866     }
2867 
2868     for (; len > 0; len -= used_len, addr += used_len) {
2869         block = qemu_ram_block_from_host(addr, false, &offset);
2870         if (unlikely(!block || offset >= block->used_length)) {
2871             /*
2872              * The implementation might not support RAMBlock resize during
2873              * live migration, but it could happen in theory with future
2874              * updates. So we add a check here to capture that case.
2875              */
2876             error_report_once("%s unexpected error", __func__);
2877             return;
2878         }
2879 
2880         if (len <= block->used_length - offset) {
2881             used_len = len;
2882         } else {
2883             used_len = block->used_length - offset;
2884         }
2885 
2886         start = offset >> TARGET_PAGE_BITS;
2887         npages = used_len >> TARGET_PAGE_BITS;
2888 
2889         qemu_mutex_lock(&ram_state->bitmap_mutex);
2890         /*
2891          * The skipped free pages are equavalent to be sent from clear_bmap's
2892          * perspective, so clear the bits from the memory region bitmap which
2893          * are initially set. Otherwise those skipped pages will be sent in
2894          * the next round after syncing from the memory region bitmap.
2895          */
2896         migration_clear_memory_region_dirty_bitmap_range(block, start, npages);
2897         ram_state->migration_dirty_pages -=
2898                       bitmap_count_one_with_offset(block->bmap, start, npages);
2899         bitmap_clear(block->bmap, start, npages);
2900         qemu_mutex_unlock(&ram_state->bitmap_mutex);
2901     }
2902 }
2903 
2904 #define MAPPED_RAM_HDR_VERSION 1
2905 struct MappedRamHeader {
2906     uint32_t version;
2907     /*
2908      * The target's page size, so we know how many pages are in the
2909      * bitmap.
2910      */
2911     uint64_t page_size;
2912     /*
2913      * The offset in the migration file where the pages bitmap is
2914      * stored.
2915      */
2916     uint64_t bitmap_offset;
2917     /*
2918      * The offset in the migration file where the actual pages (data)
2919      * are stored.
2920      */
2921     uint64_t pages_offset;
2922 } QEMU_PACKED;
2923 typedef struct MappedRamHeader MappedRamHeader;
2924 
mapped_ram_setup_ramblock(QEMUFile * file,RAMBlock * block)2925 static void mapped_ram_setup_ramblock(QEMUFile *file, RAMBlock *block)
2926 {
2927     g_autofree MappedRamHeader *header = NULL;
2928     size_t header_size, bitmap_size;
2929     long num_pages;
2930 
2931     header = g_new0(MappedRamHeader, 1);
2932     header_size = sizeof(MappedRamHeader);
2933 
2934     num_pages = block->used_length >> TARGET_PAGE_BITS;
2935     bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long);
2936 
2937     /*
2938      * Save the file offsets of where the bitmap and the pages should
2939      * go as they are written at the end of migration and during the
2940      * iterative phase, respectively.
2941      */
2942     block->bitmap_offset = qemu_get_offset(file) + header_size;
2943     block->pages_offset = ROUND_UP(block->bitmap_offset +
2944                                    bitmap_size,
2945                                    MAPPED_RAM_FILE_OFFSET_ALIGNMENT);
2946 
2947     header->version = cpu_to_be32(MAPPED_RAM_HDR_VERSION);
2948     header->page_size = cpu_to_be64(TARGET_PAGE_SIZE);
2949     header->bitmap_offset = cpu_to_be64(block->bitmap_offset);
2950     header->pages_offset = cpu_to_be64(block->pages_offset);
2951 
2952     qemu_put_buffer(file, (uint8_t *) header, header_size);
2953 
2954     /* prepare offset for next ramblock */
2955     qemu_set_offset(file, block->pages_offset + block->used_length, SEEK_SET);
2956 }
2957 
mapped_ram_read_header(QEMUFile * file,MappedRamHeader * header,Error ** errp)2958 static bool mapped_ram_read_header(QEMUFile *file, MappedRamHeader *header,
2959                                    Error **errp)
2960 {
2961     size_t ret, header_size = sizeof(MappedRamHeader);
2962 
2963     ret = qemu_get_buffer(file, (uint8_t *)header, header_size);
2964     if (ret != header_size) {
2965         error_setg(errp, "Could not read whole mapped-ram migration header "
2966                    "(expected %zd, got %zd bytes)", header_size, ret);
2967         return false;
2968     }
2969 
2970     /* migration stream is big-endian */
2971     header->version = be32_to_cpu(header->version);
2972 
2973     if (header->version > MAPPED_RAM_HDR_VERSION) {
2974         error_setg(errp, "Migration mapped-ram capability version not "
2975                    "supported (expected <= %d, got %d)", MAPPED_RAM_HDR_VERSION,
2976                    header->version);
2977         return false;
2978     }
2979 
2980     header->page_size = be64_to_cpu(header->page_size);
2981     header->bitmap_offset = be64_to_cpu(header->bitmap_offset);
2982     header->pages_offset = be64_to_cpu(header->pages_offset);
2983 
2984     return true;
2985 }
2986 
2987 /*
2988  * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
2989  * long-running RCU critical section.  When rcu-reclaims in the code
2990  * start to become numerous it will be necessary to reduce the
2991  * granularity of these critical sections.
2992  */
2993 
2994 /**
2995  * ram_save_setup: Setup RAM for migration
2996  *
2997  * Returns zero to indicate success and negative for error
2998  *
2999  * @f: QEMUFile where to send the data
3000  * @opaque: RAMState pointer
3001  * @errp: pointer to Error*, to store an error if it happens.
3002  */
ram_save_setup(QEMUFile * f,void * opaque,Error ** errp)3003 static int ram_save_setup(QEMUFile *f, void *opaque, Error **errp)
3004 {
3005     RAMState **rsp = opaque;
3006     RAMBlock *block;
3007     int ret, max_hg_page_size;
3008 
3009     /* migration has already setup the bitmap, reuse it. */
3010     if (!migration_in_colo_state()) {
3011         if (ram_init_all(rsp, errp) != 0) {
3012             return -1;
3013         }
3014     }
3015     (*rsp)->pss[RAM_CHANNEL_PRECOPY].pss_channel = f;
3016 
3017     /*
3018      * ??? Mirrors the previous value of qemu_host_page_size,
3019      * but is this really what was intended for the migration?
3020      */
3021     max_hg_page_size = MAX(qemu_real_host_page_size(), TARGET_PAGE_SIZE);
3022 
3023     WITH_RCU_READ_LOCK_GUARD() {
3024         qemu_put_be64(f, ram_bytes_total_with_ignored()
3025                          | RAM_SAVE_FLAG_MEM_SIZE);
3026 
3027         RAMBLOCK_FOREACH_MIGRATABLE(block) {
3028             qemu_put_byte(f, strlen(block->idstr));
3029             qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3030             qemu_put_be64(f, block->used_length);
3031             if (migrate_postcopy_ram() &&
3032                 block->page_size != max_hg_page_size) {
3033                 qemu_put_be64(f, block->page_size);
3034             }
3035             if (migrate_ignore_shared()) {
3036                 qemu_put_be64(f, block->mr->addr);
3037             }
3038 
3039             if (migrate_mapped_ram()) {
3040                 mapped_ram_setup_ramblock(f, block);
3041             }
3042         }
3043     }
3044 
3045     ret = rdma_registration_start(f, RAM_CONTROL_SETUP);
3046     if (ret < 0) {
3047         error_setg(errp, "%s: failed to start RDMA registration", __func__);
3048         qemu_file_set_error(f, ret);
3049         return ret;
3050     }
3051 
3052     ret = rdma_registration_stop(f, RAM_CONTROL_SETUP);
3053     if (ret < 0) {
3054         error_setg(errp, "%s: failed to stop RDMA registration", __func__);
3055         qemu_file_set_error(f, ret);
3056         return ret;
3057     }
3058 
3059     migration_ops = g_malloc0(sizeof(MigrationOps));
3060 
3061     if (migrate_multifd()) {
3062         multifd_ram_save_setup();
3063         migration_ops->ram_save_target_page = ram_save_target_page_multifd;
3064     } else {
3065         migration_ops->ram_save_target_page = ram_save_target_page_legacy;
3066     }
3067 
3068     bql_unlock();
3069     ret = multifd_ram_flush_and_sync();
3070     bql_lock();
3071     if (ret < 0) {
3072         error_setg(errp, "%s: multifd synchronization failed", __func__);
3073         return ret;
3074     }
3075 
3076     if (migrate_multifd() && !migrate_multifd_flush_after_each_section()
3077         && !migrate_mapped_ram()) {
3078         qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
3079     }
3080 
3081     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3082     ret = qemu_fflush(f);
3083     if (ret < 0) {
3084         error_setg_errno(errp, -ret, "%s failed", __func__);
3085     }
3086     return ret;
3087 }
3088 
ram_save_file_bmap(QEMUFile * f)3089 static void ram_save_file_bmap(QEMUFile *f)
3090 {
3091     RAMBlock *block;
3092 
3093     RAMBLOCK_FOREACH_MIGRATABLE(block) {
3094         long num_pages = block->used_length >> TARGET_PAGE_BITS;
3095         long bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long);
3096 
3097         qemu_put_buffer_at(f, (uint8_t *)block->file_bmap, bitmap_size,
3098                            block->bitmap_offset);
3099         ram_transferred_add(bitmap_size);
3100 
3101         /*
3102          * Free the bitmap here to catch any synchronization issues
3103          * with multifd channels. No channels should be sending pages
3104          * after we've written the bitmap to file.
3105          */
3106         g_free(block->file_bmap);
3107         block->file_bmap = NULL;
3108     }
3109 }
3110 
ramblock_set_file_bmap_atomic(RAMBlock * block,ram_addr_t offset,bool set)3111 void ramblock_set_file_bmap_atomic(RAMBlock *block, ram_addr_t offset, bool set)
3112 {
3113     if (set) {
3114         set_bit_atomic(offset >> TARGET_PAGE_BITS, block->file_bmap);
3115     } else {
3116         clear_bit_atomic(offset >> TARGET_PAGE_BITS, block->file_bmap);
3117     }
3118 }
3119 
3120 /**
3121  * ram_save_iterate: iterative stage for migration
3122  *
3123  * Returns zero to indicate success and negative for error
3124  *
3125  * @f: QEMUFile where to send the data
3126  * @opaque: RAMState pointer
3127  */
ram_save_iterate(QEMUFile * f,void * opaque)3128 static int ram_save_iterate(QEMUFile *f, void *opaque)
3129 {
3130     RAMState **temp = opaque;
3131     RAMState *rs = *temp;
3132     int ret = 0;
3133     int i;
3134     int64_t t0;
3135     int done = 0;
3136 
3137     /*
3138      * We'll take this lock a little bit long, but it's okay for two reasons.
3139      * Firstly, the only possible other thread to take it is who calls
3140      * qemu_guest_free_page_hint(), which should be rare; secondly, see
3141      * MAX_WAIT (if curious, further see commit 4508bd9ed8053ce) below, which
3142      * guarantees that we'll at least released it in a regular basis.
3143      */
3144     WITH_QEMU_LOCK_GUARD(&rs->bitmap_mutex) {
3145         WITH_RCU_READ_LOCK_GUARD() {
3146             if (ram_list.version != rs->last_version) {
3147                 ram_state_reset(rs);
3148             }
3149 
3150             /* Read version before ram_list.blocks */
3151             smp_rmb();
3152 
3153             ret = rdma_registration_start(f, RAM_CONTROL_ROUND);
3154             if (ret < 0) {
3155                 qemu_file_set_error(f, ret);
3156                 goto out;
3157             }
3158 
3159             t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3160             i = 0;
3161             while ((ret = migration_rate_exceeded(f)) == 0 ||
3162                    postcopy_has_request(rs)) {
3163                 int pages;
3164 
3165                 if (qemu_file_get_error(f)) {
3166                     break;
3167                 }
3168 
3169                 pages = ram_find_and_save_block(rs);
3170                 /* no more pages to sent */
3171                 if (pages == 0) {
3172                     done = 1;
3173                     break;
3174                 }
3175 
3176                 if (pages < 0) {
3177                     qemu_file_set_error(f, pages);
3178                     break;
3179                 }
3180 
3181                 rs->target_page_count += pages;
3182 
3183                 /*
3184                  * we want to check in the 1st loop, just in case it was the 1st
3185                  * time and we had to sync the dirty bitmap.
3186                  * qemu_clock_get_ns() is a bit expensive, so we only check each
3187                  * some iterations
3188                  */
3189                 if ((i & 63) == 0) {
3190                     uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) /
3191                         1000000;
3192                     if (t1 > MAX_WAIT) {
3193                         trace_ram_save_iterate_big_wait(t1, i);
3194                         break;
3195                     }
3196                 }
3197                 i++;
3198             }
3199         }
3200     }
3201 
3202     /*
3203      * Must occur before EOS (or any QEMUFile operation)
3204      * because of RDMA protocol.
3205      */
3206     ret = rdma_registration_stop(f, RAM_CONTROL_ROUND);
3207     if (ret < 0) {
3208         qemu_file_set_error(f, ret);
3209     }
3210 
3211 out:
3212     if (ret >= 0
3213         && migration_is_setup_or_active()) {
3214         if (migrate_multifd() && migrate_multifd_flush_after_each_section() &&
3215             !migrate_mapped_ram()) {
3216             ret = multifd_ram_flush_and_sync();
3217             if (ret < 0) {
3218                 return ret;
3219             }
3220         }
3221 
3222         qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3223         ram_transferred_add(8);
3224         ret = qemu_fflush(f);
3225     }
3226     if (ret < 0) {
3227         return ret;
3228     }
3229 
3230     return done;
3231 }
3232 
3233 /**
3234  * ram_save_complete: function called to send the remaining amount of ram
3235  *
3236  * Returns zero to indicate success or negative on error
3237  *
3238  * Called with the BQL
3239  *
3240  * @f: QEMUFile where to send the data
3241  * @opaque: RAMState pointer
3242  */
ram_save_complete(QEMUFile * f,void * opaque)3243 static int ram_save_complete(QEMUFile *f, void *opaque)
3244 {
3245     RAMState **temp = opaque;
3246     RAMState *rs = *temp;
3247     int ret = 0;
3248 
3249     rs->last_stage = !migration_in_colo_state();
3250 
3251     WITH_RCU_READ_LOCK_GUARD() {
3252         if (!migration_in_postcopy()) {
3253             migration_bitmap_sync_precopy(rs, true);
3254         }
3255 
3256         ret = rdma_registration_start(f, RAM_CONTROL_FINISH);
3257         if (ret < 0) {
3258             qemu_file_set_error(f, ret);
3259             return ret;
3260         }
3261 
3262         /* try transferring iterative blocks of memory */
3263 
3264         /* flush all remaining blocks regardless of rate limiting */
3265         qemu_mutex_lock(&rs->bitmap_mutex);
3266         while (true) {
3267             int pages;
3268 
3269             pages = ram_find_and_save_block(rs);
3270             /* no more blocks to sent */
3271             if (pages == 0) {
3272                 break;
3273             }
3274             if (pages < 0) {
3275                 qemu_mutex_unlock(&rs->bitmap_mutex);
3276                 return pages;
3277             }
3278         }
3279         qemu_mutex_unlock(&rs->bitmap_mutex);
3280 
3281         ret = rdma_registration_stop(f, RAM_CONTROL_FINISH);
3282         if (ret < 0) {
3283             qemu_file_set_error(f, ret);
3284             return ret;
3285         }
3286     }
3287 
3288     ret = multifd_ram_flush_and_sync();
3289     if (ret < 0) {
3290         return ret;
3291     }
3292 
3293     if (migrate_mapped_ram()) {
3294         ram_save_file_bmap(f);
3295 
3296         if (qemu_file_get_error(f)) {
3297             Error *local_err = NULL;
3298             int err = qemu_file_get_error_obj(f, &local_err);
3299 
3300             error_reportf_err(local_err, "Failed to write bitmap to file: ");
3301             return -err;
3302         }
3303     }
3304 
3305     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3306     return qemu_fflush(f);
3307 }
3308 
ram_state_pending_estimate(void * opaque,uint64_t * must_precopy,uint64_t * can_postcopy)3309 static void ram_state_pending_estimate(void *opaque, uint64_t *must_precopy,
3310                                        uint64_t *can_postcopy)
3311 {
3312     RAMState **temp = opaque;
3313     RAMState *rs = *temp;
3314 
3315     uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3316 
3317     if (migrate_postcopy_ram()) {
3318         /* We can do postcopy, and all the data is postcopiable */
3319         *can_postcopy += remaining_size;
3320     } else {
3321         *must_precopy += remaining_size;
3322     }
3323 }
3324 
ram_state_pending_exact(void * opaque,uint64_t * must_precopy,uint64_t * can_postcopy)3325 static void ram_state_pending_exact(void *opaque, uint64_t *must_precopy,
3326                                     uint64_t *can_postcopy)
3327 {
3328     RAMState **temp = opaque;
3329     RAMState *rs = *temp;
3330     uint64_t remaining_size;
3331 
3332     if (!migration_in_postcopy()) {
3333         bql_lock();
3334         WITH_RCU_READ_LOCK_GUARD() {
3335             migration_bitmap_sync_precopy(rs, false);
3336         }
3337         bql_unlock();
3338     }
3339 
3340     remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3341 
3342     if (migrate_postcopy_ram()) {
3343         /* We can do postcopy, and all the data is postcopiable */
3344         *can_postcopy += remaining_size;
3345     } else {
3346         *must_precopy += remaining_size;
3347     }
3348 }
3349 
load_xbzrle(QEMUFile * f,ram_addr_t addr,void * host)3350 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3351 {
3352     unsigned int xh_len;
3353     int xh_flags;
3354     uint8_t *loaded_data;
3355 
3356     /* extract RLE header */
3357     xh_flags = qemu_get_byte(f);
3358     xh_len = qemu_get_be16(f);
3359 
3360     if (xh_flags != ENCODING_FLAG_XBZRLE) {
3361         error_report("Failed to load XBZRLE page - wrong compression!");
3362         return -1;
3363     }
3364 
3365     if (xh_len > TARGET_PAGE_SIZE) {
3366         error_report("Failed to load XBZRLE page - len overflow!");
3367         return -1;
3368     }
3369     loaded_data = XBZRLE.decoded_buf;
3370     /* load data and decode */
3371     /* it can change loaded_data to point to an internal buffer */
3372     qemu_get_buffer_in_place(f, &loaded_data, xh_len);
3373 
3374     /* decode RLE */
3375     if (xbzrle_decode_buffer(loaded_data, xh_len, host,
3376                              TARGET_PAGE_SIZE) == -1) {
3377         error_report("Failed to load XBZRLE page - decode error!");
3378         return -1;
3379     }
3380 
3381     return 0;
3382 }
3383 
3384 /**
3385  * ram_block_from_stream: read a RAMBlock id from the migration stream
3386  *
3387  * Must be called from within a rcu critical section.
3388  *
3389  * Returns a pointer from within the RCU-protected ram_list.
3390  *
3391  * @mis: the migration incoming state pointer
3392  * @f: QEMUFile where to read the data from
3393  * @flags: Page flags (mostly to see if it's a continuation of previous block)
3394  * @channel: the channel we're using
3395  */
ram_block_from_stream(MigrationIncomingState * mis,QEMUFile * f,int flags,int channel)3396 static inline RAMBlock *ram_block_from_stream(MigrationIncomingState *mis,
3397                                               QEMUFile *f, int flags,
3398                                               int channel)
3399 {
3400     RAMBlock *block = mis->last_recv_block[channel];
3401     char id[256];
3402     uint8_t len;
3403 
3404     if (flags & RAM_SAVE_FLAG_CONTINUE) {
3405         if (!block) {
3406             error_report("Ack, bad migration stream!");
3407             return NULL;
3408         }
3409         return block;
3410     }
3411 
3412     len = qemu_get_byte(f);
3413     qemu_get_buffer(f, (uint8_t *)id, len);
3414     id[len] = 0;
3415 
3416     block = qemu_ram_block_by_name(id);
3417     if (!block) {
3418         error_report("Can't find block %s", id);
3419         return NULL;
3420     }
3421 
3422     if (migrate_ram_is_ignored(block)) {
3423         error_report("block %s should not be migrated !", id);
3424         return NULL;
3425     }
3426 
3427     mis->last_recv_block[channel] = block;
3428 
3429     return block;
3430 }
3431 
host_from_ram_block_offset(RAMBlock * block,ram_addr_t offset)3432 static inline void *host_from_ram_block_offset(RAMBlock *block,
3433                                                ram_addr_t offset)
3434 {
3435     if (!offset_in_ramblock(block, offset)) {
3436         return NULL;
3437     }
3438 
3439     return block->host + offset;
3440 }
3441 
host_page_from_ram_block_offset(RAMBlock * block,ram_addr_t offset)3442 static void *host_page_from_ram_block_offset(RAMBlock *block,
3443                                              ram_addr_t offset)
3444 {
3445     /* Note: Explicitly no check against offset_in_ramblock(). */
3446     return (void *)QEMU_ALIGN_DOWN((uintptr_t)(block->host + offset),
3447                                    block->page_size);
3448 }
3449 
host_page_offset_from_ram_block_offset(RAMBlock * block,ram_addr_t offset)3450 static ram_addr_t host_page_offset_from_ram_block_offset(RAMBlock *block,
3451                                                          ram_addr_t offset)
3452 {
3453     return ((uintptr_t)block->host + offset) & (block->page_size - 1);
3454 }
3455 
colo_record_bitmap(RAMBlock * block,ram_addr_t * normal,uint32_t pages)3456 void colo_record_bitmap(RAMBlock *block, ram_addr_t *normal, uint32_t pages)
3457 {
3458     qemu_mutex_lock(&ram_state->bitmap_mutex);
3459     for (int i = 0; i < pages; i++) {
3460         ram_addr_t offset = normal[i];
3461         ram_state->migration_dirty_pages += !test_and_set_bit(
3462                                                 offset >> TARGET_PAGE_BITS,
3463                                                 block->bmap);
3464     }
3465     qemu_mutex_unlock(&ram_state->bitmap_mutex);
3466 }
3467 
colo_cache_from_block_offset(RAMBlock * block,ram_addr_t offset,bool record_bitmap)3468 static inline void *colo_cache_from_block_offset(RAMBlock *block,
3469                              ram_addr_t offset, bool record_bitmap)
3470 {
3471     if (!offset_in_ramblock(block, offset)) {
3472         return NULL;
3473     }
3474     if (!block->colo_cache) {
3475         error_report("%s: colo_cache is NULL in block :%s",
3476                      __func__, block->idstr);
3477         return NULL;
3478     }
3479 
3480     /*
3481     * During colo checkpoint, we need bitmap of these migrated pages.
3482     * It help us to decide which pages in ram cache should be flushed
3483     * into VM's RAM later.
3484     */
3485     if (record_bitmap) {
3486         colo_record_bitmap(block, &offset, 1);
3487     }
3488     return block->colo_cache + offset;
3489 }
3490 
3491 /**
3492  * ram_handle_zero: handle the zero page case
3493  *
3494  * If a page (or a whole RDMA chunk) has been
3495  * determined to be zero, then zap it.
3496  *
3497  * @host: host address for the zero page
3498  * @ch: what the page is filled from.  We only support zero
3499  * @size: size of the zero page
3500  */
ram_handle_zero(void * host,uint64_t size)3501 void ram_handle_zero(void *host, uint64_t size)
3502 {
3503     if (!buffer_is_zero(host, size)) {
3504         memset(host, 0, size);
3505     }
3506 }
3507 
colo_init_ram_state(void)3508 static void colo_init_ram_state(void)
3509 {
3510     Error *local_err = NULL;
3511 
3512     if (!ram_state_init(&ram_state, &local_err)) {
3513         error_report_err(local_err);
3514     }
3515 }
3516 
3517 /*
3518  * colo cache: this is for secondary VM, we cache the whole
3519  * memory of the secondary VM, it is need to hold the global lock
3520  * to call this helper.
3521  */
colo_init_ram_cache(void)3522 int colo_init_ram_cache(void)
3523 {
3524     RAMBlock *block;
3525 
3526     WITH_RCU_READ_LOCK_GUARD() {
3527         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3528             block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3529                                                     NULL, false, false);
3530             if (!block->colo_cache) {
3531                 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3532                              "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3533                              block->used_length);
3534                 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3535                     if (block->colo_cache) {
3536                         qemu_anon_ram_free(block->colo_cache, block->used_length);
3537                         block->colo_cache = NULL;
3538                     }
3539                 }
3540                 return -errno;
3541             }
3542             if (!machine_dump_guest_core(current_machine)) {
3543                 qemu_madvise(block->colo_cache, block->used_length,
3544                              QEMU_MADV_DONTDUMP);
3545             }
3546         }
3547     }
3548 
3549     /*
3550     * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3551     * with to decide which page in cache should be flushed into SVM's RAM. Here
3552     * we use the same name 'ram_bitmap' as for migration.
3553     */
3554     if (ram_bytes_total()) {
3555         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3556             unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
3557             block->bmap = bitmap_new(pages);
3558         }
3559     }
3560 
3561     colo_init_ram_state();
3562     return 0;
3563 }
3564 
3565 /* TODO: duplicated with ram_init_bitmaps */
colo_incoming_start_dirty_log(void)3566 void colo_incoming_start_dirty_log(void)
3567 {
3568     RAMBlock *block = NULL;
3569     Error *local_err = NULL;
3570 
3571     /* For memory_global_dirty_log_start below. */
3572     bql_lock();
3573     qemu_mutex_lock_ramlist();
3574 
3575     memory_global_dirty_log_sync(false);
3576     WITH_RCU_READ_LOCK_GUARD() {
3577         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3578             ramblock_sync_dirty_bitmap(ram_state, block);
3579             /* Discard this dirty bitmap record */
3580             bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS);
3581         }
3582         if (!memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION,
3583                                            &local_err)) {
3584             error_report_err(local_err);
3585         }
3586     }
3587     ram_state->migration_dirty_pages = 0;
3588     qemu_mutex_unlock_ramlist();
3589     bql_unlock();
3590 }
3591 
3592 /* It is need to hold the global lock to call this helper */
colo_release_ram_cache(void)3593 void colo_release_ram_cache(void)
3594 {
3595     RAMBlock *block;
3596 
3597     memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
3598     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3599         g_free(block->bmap);
3600         block->bmap = NULL;
3601     }
3602 
3603     WITH_RCU_READ_LOCK_GUARD() {
3604         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3605             if (block->colo_cache) {
3606                 qemu_anon_ram_free(block->colo_cache, block->used_length);
3607                 block->colo_cache = NULL;
3608             }
3609         }
3610     }
3611     ram_state_cleanup(&ram_state);
3612 }
3613 
3614 /**
3615  * ram_load_setup: Setup RAM for migration incoming side
3616  *
3617  * Returns zero to indicate success and negative for error
3618  *
3619  * @f: QEMUFile where to receive the data
3620  * @opaque: RAMState pointer
3621  * @errp: pointer to Error*, to store an error if it happens.
3622  */
ram_load_setup(QEMUFile * f,void * opaque,Error ** errp)3623 static int ram_load_setup(QEMUFile *f, void *opaque, Error **errp)
3624 {
3625     xbzrle_load_setup();
3626     ramblock_recv_map_init();
3627 
3628     return 0;
3629 }
3630 
ram_load_cleanup(void * opaque)3631 static int ram_load_cleanup(void *opaque)
3632 {
3633     RAMBlock *rb;
3634 
3635     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3636         qemu_ram_block_writeback(rb);
3637     }
3638 
3639     xbzrle_load_cleanup();
3640 
3641     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3642         g_free(rb->receivedmap);
3643         rb->receivedmap = NULL;
3644     }
3645 
3646     return 0;
3647 }
3648 
3649 /**
3650  * ram_postcopy_incoming_init: allocate postcopy data structures
3651  *
3652  * Returns 0 for success and negative if there was one error
3653  *
3654  * @mis: current migration incoming state
3655  *
3656  * Allocate data structures etc needed by incoming migration with
3657  * postcopy-ram. postcopy-ram's similarly names
3658  * postcopy_ram_incoming_init does the work.
3659  */
ram_postcopy_incoming_init(MigrationIncomingState * mis)3660 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
3661 {
3662     return postcopy_ram_incoming_init(mis);
3663 }
3664 
3665 /**
3666  * ram_load_postcopy: load a page in postcopy case
3667  *
3668  * Returns 0 for success or -errno in case of error
3669  *
3670  * Called in postcopy mode by ram_load().
3671  * rcu_read_lock is taken prior to this being called.
3672  *
3673  * @f: QEMUFile where to send the data
3674  * @channel: the channel to use for loading
3675  */
ram_load_postcopy(QEMUFile * f,int channel)3676 int ram_load_postcopy(QEMUFile *f, int channel)
3677 {
3678     int flags = 0, ret = 0;
3679     bool place_needed = false;
3680     bool matches_target_page_size = false;
3681     MigrationIncomingState *mis = migration_incoming_get_current();
3682     PostcopyTmpPage *tmp_page = &mis->postcopy_tmp_pages[channel];
3683 
3684     while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3685         ram_addr_t addr;
3686         void *page_buffer = NULL;
3687         void *place_source = NULL;
3688         RAMBlock *block = NULL;
3689         uint8_t ch;
3690 
3691         addr = qemu_get_be64(f);
3692 
3693         /*
3694          * If qemu file error, we should stop here, and then "addr"
3695          * may be invalid
3696          */
3697         ret = qemu_file_get_error(f);
3698         if (ret) {
3699             break;
3700         }
3701 
3702         flags = addr & ~TARGET_PAGE_MASK;
3703         addr &= TARGET_PAGE_MASK;
3704 
3705         trace_ram_load_postcopy_loop(channel, (uint64_t)addr, flags);
3706         if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) {
3707             block = ram_block_from_stream(mis, f, flags, channel);
3708             if (!block) {
3709                 ret = -EINVAL;
3710                 break;
3711             }
3712 
3713             /*
3714              * Relying on used_length is racy and can result in false positives.
3715              * We might place pages beyond used_length in case RAM was shrunk
3716              * while in postcopy, which is fine - trying to place via
3717              * UFFDIO_COPY/UFFDIO_ZEROPAGE will never segfault.
3718              */
3719             if (!block->host || addr >= block->postcopy_length) {
3720                 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3721                 ret = -EINVAL;
3722                 break;
3723             }
3724             tmp_page->target_pages++;
3725             matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
3726             /*
3727              * Postcopy requires that we place whole host pages atomically;
3728              * these may be huge pages for RAMBlocks that are backed by
3729              * hugetlbfs.
3730              * To make it atomic, the data is read into a temporary page
3731              * that's moved into place later.
3732              * The migration protocol uses,  possibly smaller, target-pages
3733              * however the source ensures it always sends all the components
3734              * of a host page in one chunk.
3735              */
3736             page_buffer = tmp_page->tmp_huge_page +
3737                           host_page_offset_from_ram_block_offset(block, addr);
3738             /* If all TP are zero then we can optimise the place */
3739             if (tmp_page->target_pages == 1) {
3740                 tmp_page->host_addr =
3741                     host_page_from_ram_block_offset(block, addr);
3742             } else if (tmp_page->host_addr !=
3743                        host_page_from_ram_block_offset(block, addr)) {
3744                 /* not the 1st TP within the HP */
3745                 error_report("Non-same host page detected on channel %d: "
3746                              "Target host page %p, received host page %p "
3747                              "(rb %s offset 0x"RAM_ADDR_FMT" target_pages %d)",
3748                              channel, tmp_page->host_addr,
3749                              host_page_from_ram_block_offset(block, addr),
3750                              block->idstr, addr, tmp_page->target_pages);
3751                 ret = -EINVAL;
3752                 break;
3753             }
3754 
3755             /*
3756              * If it's the last part of a host page then we place the host
3757              * page
3758              */
3759             if (tmp_page->target_pages ==
3760                 (block->page_size / TARGET_PAGE_SIZE)) {
3761                 place_needed = true;
3762             }
3763             place_source = tmp_page->tmp_huge_page;
3764         }
3765 
3766         switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
3767         case RAM_SAVE_FLAG_ZERO:
3768             ch = qemu_get_byte(f);
3769             if (ch != 0) {
3770                 error_report("Found a zero page with value %d", ch);
3771                 ret = -EINVAL;
3772                 break;
3773             }
3774             /*
3775              * Can skip to set page_buffer when
3776              * this is a zero page and (block->page_size == TARGET_PAGE_SIZE).
3777              */
3778             if (!matches_target_page_size) {
3779                 memset(page_buffer, ch, TARGET_PAGE_SIZE);
3780             }
3781             break;
3782 
3783         case RAM_SAVE_FLAG_PAGE:
3784             tmp_page->all_zero = false;
3785             if (!matches_target_page_size) {
3786                 /* For huge pages, we always use temporary buffer */
3787                 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
3788             } else {
3789                 /*
3790                  * For small pages that matches target page size, we
3791                  * avoid the qemu_file copy.  Instead we directly use
3792                  * the buffer of QEMUFile to place the page.  Note: we
3793                  * cannot do any QEMUFile operation before using that
3794                  * buffer to make sure the buffer is valid when
3795                  * placing the page.
3796                  */
3797                 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
3798                                          TARGET_PAGE_SIZE);
3799             }
3800             break;
3801         case RAM_SAVE_FLAG_MULTIFD_FLUSH:
3802             multifd_recv_sync_main();
3803             break;
3804         case RAM_SAVE_FLAG_EOS:
3805             /* normal exit */
3806             if (migrate_multifd() &&
3807                 migrate_multifd_flush_after_each_section()) {
3808                 multifd_recv_sync_main();
3809             }
3810             break;
3811         default:
3812             error_report("Unknown combination of migration flags: 0x%x"
3813                          " (postcopy mode)", flags);
3814             ret = -EINVAL;
3815             break;
3816         }
3817 
3818         /* Detect for any possible file errors */
3819         if (!ret && qemu_file_get_error(f)) {
3820             ret = qemu_file_get_error(f);
3821         }
3822 
3823         if (!ret && place_needed) {
3824             if (tmp_page->all_zero) {
3825                 ret = postcopy_place_page_zero(mis, tmp_page->host_addr, block);
3826             } else {
3827                 ret = postcopy_place_page(mis, tmp_page->host_addr,
3828                                           place_source, block);
3829             }
3830             place_needed = false;
3831             postcopy_temp_page_reset(tmp_page);
3832         }
3833     }
3834 
3835     return ret;
3836 }
3837 
postcopy_is_running(void)3838 static bool postcopy_is_running(void)
3839 {
3840     PostcopyState ps = postcopy_state_get();
3841     return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
3842 }
3843 
3844 /*
3845  * Flush content of RAM cache into SVM's memory.
3846  * Only flush the pages that be dirtied by PVM or SVM or both.
3847  */
colo_flush_ram_cache(void)3848 void colo_flush_ram_cache(void)
3849 {
3850     RAMBlock *block = NULL;
3851     void *dst_host;
3852     void *src_host;
3853     unsigned long offset = 0;
3854 
3855     memory_global_dirty_log_sync(false);
3856     qemu_mutex_lock(&ram_state->bitmap_mutex);
3857     WITH_RCU_READ_LOCK_GUARD() {
3858         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3859             ramblock_sync_dirty_bitmap(ram_state, block);
3860         }
3861     }
3862 
3863     trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
3864     WITH_RCU_READ_LOCK_GUARD() {
3865         block = QLIST_FIRST_RCU(&ram_list.blocks);
3866 
3867         while (block) {
3868             unsigned long num = 0;
3869 
3870             offset = colo_bitmap_find_dirty(ram_state, block, offset, &num);
3871             if (!offset_in_ramblock(block,
3872                                     ((ram_addr_t)offset) << TARGET_PAGE_BITS)) {
3873                 offset = 0;
3874                 num = 0;
3875                 block = QLIST_NEXT_RCU(block, next);
3876             } else {
3877                 unsigned long i = 0;
3878 
3879                 for (i = 0; i < num; i++) {
3880                     migration_bitmap_clear_dirty(ram_state, block, offset + i);
3881                 }
3882                 dst_host = block->host
3883                          + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3884                 src_host = block->colo_cache
3885                          + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3886                 memcpy(dst_host, src_host, TARGET_PAGE_SIZE * num);
3887                 offset += num;
3888             }
3889         }
3890     }
3891     qemu_mutex_unlock(&ram_state->bitmap_mutex);
3892     trace_colo_flush_ram_cache_end();
3893 }
3894 
ram_load_multifd_pages(void * host_addr,size_t size,uint64_t offset)3895 static size_t ram_load_multifd_pages(void *host_addr, size_t size,
3896                                      uint64_t offset)
3897 {
3898     MultiFDRecvData *data = multifd_get_recv_data();
3899 
3900     data->opaque = host_addr;
3901     data->file_offset = offset;
3902     data->size = size;
3903 
3904     if (!multifd_recv()) {
3905         return 0;
3906     }
3907 
3908     return size;
3909 }
3910 
read_ramblock_mapped_ram(QEMUFile * f,RAMBlock * block,long num_pages,unsigned long * bitmap,Error ** errp)3911 static bool read_ramblock_mapped_ram(QEMUFile *f, RAMBlock *block,
3912                                      long num_pages, unsigned long *bitmap,
3913                                      Error **errp)
3914 {
3915     ERRP_GUARD();
3916     unsigned long set_bit_idx, clear_bit_idx;
3917     ram_addr_t offset;
3918     void *host;
3919     size_t read, unread, size;
3920 
3921     for (set_bit_idx = find_first_bit(bitmap, num_pages);
3922          set_bit_idx < num_pages;
3923          set_bit_idx = find_next_bit(bitmap, num_pages, clear_bit_idx + 1)) {
3924 
3925         clear_bit_idx = find_next_zero_bit(bitmap, num_pages, set_bit_idx + 1);
3926 
3927         unread = TARGET_PAGE_SIZE * (clear_bit_idx - set_bit_idx);
3928         offset = set_bit_idx << TARGET_PAGE_BITS;
3929 
3930         while (unread > 0) {
3931             host = host_from_ram_block_offset(block, offset);
3932             if (!host) {
3933                 error_setg(errp, "page outside of ramblock %s range",
3934                            block->idstr);
3935                 return false;
3936             }
3937 
3938             size = MIN(unread, MAPPED_RAM_LOAD_BUF_SIZE);
3939 
3940             if (migrate_multifd()) {
3941                 read = ram_load_multifd_pages(host, size,
3942                                               block->pages_offset + offset);
3943             } else {
3944                 read = qemu_get_buffer_at(f, host, size,
3945                                           block->pages_offset + offset);
3946             }
3947 
3948             if (!read) {
3949                 goto err;
3950             }
3951             offset += read;
3952             unread -= read;
3953         }
3954     }
3955 
3956     return true;
3957 
3958 err:
3959     qemu_file_get_error_obj(f, errp);
3960     error_prepend(errp, "(%s) failed to read page " RAM_ADDR_FMT
3961                   "from file offset %" PRIx64 ": ", block->idstr, offset,
3962                   block->pages_offset + offset);
3963     return false;
3964 }
3965 
parse_ramblock_mapped_ram(QEMUFile * f,RAMBlock * block,ram_addr_t length,Error ** errp)3966 static void parse_ramblock_mapped_ram(QEMUFile *f, RAMBlock *block,
3967                                       ram_addr_t length, Error **errp)
3968 {
3969     g_autofree unsigned long *bitmap = NULL;
3970     MappedRamHeader header;
3971     size_t bitmap_size;
3972     long num_pages;
3973 
3974     if (!mapped_ram_read_header(f, &header, errp)) {
3975         return;
3976     }
3977 
3978     block->pages_offset = header.pages_offset;
3979 
3980     /*
3981      * Check the alignment of the file region that contains pages. We
3982      * don't enforce MAPPED_RAM_FILE_OFFSET_ALIGNMENT to allow that
3983      * value to change in the future. Do only a sanity check with page
3984      * size alignment.
3985      */
3986     if (!QEMU_IS_ALIGNED(block->pages_offset, TARGET_PAGE_SIZE)) {
3987         error_setg(errp,
3988                    "Error reading ramblock %s pages, region has bad alignment",
3989                    block->idstr);
3990         return;
3991     }
3992 
3993     num_pages = length / header.page_size;
3994     bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long);
3995 
3996     bitmap = g_malloc0(bitmap_size);
3997     if (qemu_get_buffer_at(f, (uint8_t *)bitmap, bitmap_size,
3998                            header.bitmap_offset) != bitmap_size) {
3999         error_setg(errp, "Error reading dirty bitmap");
4000         return;
4001     }
4002 
4003     if (!read_ramblock_mapped_ram(f, block, num_pages, bitmap, errp)) {
4004         return;
4005     }
4006 
4007     /* Skip pages array */
4008     qemu_set_offset(f, block->pages_offset + length, SEEK_SET);
4009 
4010     return;
4011 }
4012 
parse_ramblock(QEMUFile * f,RAMBlock * block,ram_addr_t length)4013 static int parse_ramblock(QEMUFile *f, RAMBlock *block, ram_addr_t length)
4014 {
4015     int ret = 0;
4016     /* ADVISE is earlier, it shows the source has the postcopy capability on */
4017     bool postcopy_advised = migration_incoming_postcopy_advised();
4018     int max_hg_page_size;
4019     Error *local_err = NULL;
4020 
4021     assert(block);
4022 
4023     if (migrate_mapped_ram()) {
4024         parse_ramblock_mapped_ram(f, block, length, &local_err);
4025         if (local_err) {
4026             error_report_err(local_err);
4027             return -EINVAL;
4028         }
4029         return 0;
4030     }
4031 
4032     if (!qemu_ram_is_migratable(block)) {
4033         error_report("block %s should not be migrated !", block->idstr);
4034         return -EINVAL;
4035     }
4036 
4037     if (length != block->used_length) {
4038         ret = qemu_ram_resize(block, length, &local_err);
4039         if (local_err) {
4040             error_report_err(local_err);
4041             return ret;
4042         }
4043     }
4044 
4045     /*
4046      * ??? Mirrors the previous value of qemu_host_page_size,
4047      * but is this really what was intended for the migration?
4048      */
4049     max_hg_page_size = MAX(qemu_real_host_page_size(), TARGET_PAGE_SIZE);
4050 
4051     /* For postcopy we need to check hugepage sizes match */
4052     if (postcopy_advised && migrate_postcopy_ram() &&
4053         block->page_size != max_hg_page_size) {
4054         uint64_t remote_page_size = qemu_get_be64(f);
4055         if (remote_page_size != block->page_size) {
4056             error_report("Mismatched RAM page size %s "
4057                          "(local) %zd != %" PRId64, block->idstr,
4058                          block->page_size, remote_page_size);
4059             return -EINVAL;
4060         }
4061     }
4062     if (migrate_ignore_shared()) {
4063         hwaddr addr = qemu_get_be64(f);
4064         if (migrate_ram_is_ignored(block) &&
4065             block->mr->addr != addr) {
4066             error_report("Mismatched GPAs for block %s "
4067                          "%" PRId64 "!= %" PRId64, block->idstr,
4068                          (uint64_t)addr, (uint64_t)block->mr->addr);
4069             return -EINVAL;
4070         }
4071     }
4072     ret = rdma_block_notification_handle(f, block->idstr);
4073     if (ret < 0) {
4074         qemu_file_set_error(f, ret);
4075     }
4076 
4077     return ret;
4078 }
4079 
parse_ramblocks(QEMUFile * f,ram_addr_t total_ram_bytes)4080 static int parse_ramblocks(QEMUFile *f, ram_addr_t total_ram_bytes)
4081 {
4082     int ret = 0;
4083 
4084     /* Synchronize RAM block list */
4085     while (!ret && total_ram_bytes) {
4086         RAMBlock *block;
4087         char id[256];
4088         ram_addr_t length;
4089         int len = qemu_get_byte(f);
4090 
4091         qemu_get_buffer(f, (uint8_t *)id, len);
4092         id[len] = 0;
4093         length = qemu_get_be64(f);
4094 
4095         block = qemu_ram_block_by_name(id);
4096         if (block) {
4097             ret = parse_ramblock(f, block, length);
4098         } else {
4099             error_report("Unknown ramblock \"%s\", cannot accept "
4100                          "migration", id);
4101             ret = -EINVAL;
4102         }
4103         total_ram_bytes -= length;
4104     }
4105 
4106     return ret;
4107 }
4108 
4109 /**
4110  * ram_load_precopy: load pages in precopy case
4111  *
4112  * Returns 0 for success or -errno in case of error
4113  *
4114  * Called in precopy mode by ram_load().
4115  * rcu_read_lock is taken prior to this being called.
4116  *
4117  * @f: QEMUFile where to send the data
4118  */
ram_load_precopy(QEMUFile * f)4119 static int ram_load_precopy(QEMUFile *f)
4120 {
4121     MigrationIncomingState *mis = migration_incoming_get_current();
4122     int flags = 0, ret = 0, invalid_flags = 0, i = 0;
4123 
4124     if (migrate_mapped_ram()) {
4125         invalid_flags |= (RAM_SAVE_FLAG_HOOK | RAM_SAVE_FLAG_MULTIFD_FLUSH |
4126                           RAM_SAVE_FLAG_PAGE | RAM_SAVE_FLAG_XBZRLE |
4127                           RAM_SAVE_FLAG_ZERO);
4128     }
4129 
4130     while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4131         ram_addr_t addr;
4132         void *host = NULL, *host_bak = NULL;
4133         uint8_t ch;
4134 
4135         /*
4136          * Yield periodically to let main loop run, but an iteration of
4137          * the main loop is expensive, so do it each some iterations
4138          */
4139         if ((i & 32767) == 0 && qemu_in_coroutine()) {
4140             aio_co_schedule(qemu_get_current_aio_context(),
4141                             qemu_coroutine_self());
4142             qemu_coroutine_yield();
4143         }
4144         i++;
4145 
4146         addr = qemu_get_be64(f);
4147         ret = qemu_file_get_error(f);
4148         if (ret) {
4149             error_report("Getting RAM address failed");
4150             break;
4151         }
4152 
4153         flags = addr & ~TARGET_PAGE_MASK;
4154         addr &= TARGET_PAGE_MASK;
4155 
4156         if (flags & invalid_flags) {
4157             error_report("Unexpected RAM flags: %d", flags & invalid_flags);
4158 
4159             ret = -EINVAL;
4160             break;
4161         }
4162 
4163         if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
4164                      RAM_SAVE_FLAG_XBZRLE)) {
4165             RAMBlock *block = ram_block_from_stream(mis, f, flags,
4166                                                     RAM_CHANNEL_PRECOPY);
4167 
4168             host = host_from_ram_block_offset(block, addr);
4169             /*
4170              * After going into COLO stage, we should not load the page
4171              * into SVM's memory directly, we put them into colo_cache firstly.
4172              * NOTE: We need to keep a copy of SVM's ram in colo_cache.
4173              * Previously, we copied all these memory in preparing stage of COLO
4174              * while we need to stop VM, which is a time-consuming process.
4175              * Here we optimize it by a trick, back-up every page while in
4176              * migration process while COLO is enabled, though it affects the
4177              * speed of the migration, but it obviously reduce the downtime of
4178              * back-up all SVM'S memory in COLO preparing stage.
4179              */
4180             if (migration_incoming_colo_enabled()) {
4181                 if (migration_incoming_in_colo_state()) {
4182                     /* In COLO stage, put all pages into cache temporarily */
4183                     host = colo_cache_from_block_offset(block, addr, true);
4184                 } else {
4185                    /*
4186                     * In migration stage but before COLO stage,
4187                     * Put all pages into both cache and SVM's memory.
4188                     */
4189                     host_bak = colo_cache_from_block_offset(block, addr, false);
4190                 }
4191             }
4192             if (!host) {
4193                 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4194                 ret = -EINVAL;
4195                 break;
4196             }
4197             if (!migration_incoming_in_colo_state()) {
4198                 ramblock_recv_bitmap_set(block, host);
4199             }
4200 
4201             trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
4202         }
4203 
4204         switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4205         case RAM_SAVE_FLAG_MEM_SIZE:
4206             ret = parse_ramblocks(f, addr);
4207             /*
4208              * For mapped-ram migration (to a file) using multifd, we sync
4209              * once and for all here to make sure all tasks we queued to
4210              * multifd threads are completed, so that all the ramblocks
4211              * (including all the guest memory pages within) are fully
4212              * loaded after this sync returns.
4213              */
4214             if (migrate_mapped_ram()) {
4215                 multifd_recv_sync_main();
4216             }
4217             break;
4218 
4219         case RAM_SAVE_FLAG_ZERO:
4220             ch = qemu_get_byte(f);
4221             if (ch != 0) {
4222                 error_report("Found a zero page with value %d", ch);
4223                 ret = -EINVAL;
4224                 break;
4225             }
4226             ram_handle_zero(host, TARGET_PAGE_SIZE);
4227             break;
4228 
4229         case RAM_SAVE_FLAG_PAGE:
4230             qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
4231             break;
4232 
4233         case RAM_SAVE_FLAG_XBZRLE:
4234             if (load_xbzrle(f, addr, host) < 0) {
4235                 error_report("Failed to decompress XBZRLE page at "
4236                              RAM_ADDR_FMT, addr);
4237                 ret = -EINVAL;
4238                 break;
4239             }
4240             break;
4241         case RAM_SAVE_FLAG_MULTIFD_FLUSH:
4242             multifd_recv_sync_main();
4243             break;
4244         case RAM_SAVE_FLAG_EOS:
4245             /* normal exit */
4246             if (migrate_multifd() &&
4247                 migrate_multifd_flush_after_each_section() &&
4248                 /*
4249                  * Mapped-ram migration flushes once and for all after
4250                  * parsing ramblocks. Always ignore EOS for it.
4251                  */
4252                 !migrate_mapped_ram()) {
4253                 multifd_recv_sync_main();
4254             }
4255             break;
4256         case RAM_SAVE_FLAG_HOOK:
4257             ret = rdma_registration_handle(f);
4258             if (ret < 0) {
4259                 qemu_file_set_error(f, ret);
4260             }
4261             break;
4262         default:
4263             error_report("Unknown combination of migration flags: 0x%x", flags);
4264             ret = -EINVAL;
4265         }
4266         if (!ret) {
4267             ret = qemu_file_get_error(f);
4268         }
4269         if (!ret && host_bak) {
4270             memcpy(host_bak, host, TARGET_PAGE_SIZE);
4271         }
4272     }
4273 
4274     return ret;
4275 }
4276 
ram_load(QEMUFile * f,void * opaque,int version_id)4277 static int ram_load(QEMUFile *f, void *opaque, int version_id)
4278 {
4279     int ret = 0;
4280     static uint64_t seq_iter;
4281     /*
4282      * If system is running in postcopy mode, page inserts to host memory must
4283      * be atomic
4284      */
4285     bool postcopy_running = postcopy_is_running();
4286 
4287     seq_iter++;
4288 
4289     if (version_id != 4) {
4290         return -EINVAL;
4291     }
4292 
4293     /*
4294      * This RCU critical section can be very long running.
4295      * When RCU reclaims in the code start to become numerous,
4296      * it will be necessary to reduce the granularity of this
4297      * critical section.
4298      */
4299     WITH_RCU_READ_LOCK_GUARD() {
4300         if (postcopy_running) {
4301             /*
4302              * Note!  Here RAM_CHANNEL_PRECOPY is the precopy channel of
4303              * postcopy migration, we have another RAM_CHANNEL_POSTCOPY to
4304              * service fast page faults.
4305              */
4306             ret = ram_load_postcopy(f, RAM_CHANNEL_PRECOPY);
4307         } else {
4308             ret = ram_load_precopy(f);
4309         }
4310     }
4311     trace_ram_load_complete(ret, seq_iter);
4312 
4313     return ret;
4314 }
4315 
ram_has_postcopy(void * opaque)4316 static bool ram_has_postcopy(void *opaque)
4317 {
4318     RAMBlock *rb;
4319     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4320         if (ramblock_is_pmem(rb)) {
4321             info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4322                          "is not supported now!", rb->idstr, rb->host);
4323             return false;
4324         }
4325     }
4326 
4327     return migrate_postcopy_ram();
4328 }
4329 
4330 /* Sync all the dirty bitmap with destination VM.  */
ram_dirty_bitmap_sync_all(MigrationState * s,RAMState * rs)4331 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4332 {
4333     RAMBlock *block;
4334     QEMUFile *file = s->to_dst_file;
4335 
4336     trace_ram_dirty_bitmap_sync_start();
4337 
4338     qatomic_set(&rs->postcopy_bmap_sync_requested, 0);
4339     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4340         qemu_savevm_send_recv_bitmap(file, block->idstr);
4341         trace_ram_dirty_bitmap_request(block->idstr);
4342         qatomic_inc(&rs->postcopy_bmap_sync_requested);
4343     }
4344 
4345     trace_ram_dirty_bitmap_sync_wait();
4346 
4347     /* Wait until all the ramblocks' dirty bitmap synced */
4348     while (qatomic_read(&rs->postcopy_bmap_sync_requested)) {
4349         if (migration_rp_wait(s)) {
4350             return -1;
4351         }
4352     }
4353 
4354     trace_ram_dirty_bitmap_sync_complete();
4355 
4356     return 0;
4357 }
4358 
4359 /*
4360  * Read the received bitmap, revert it as the initial dirty bitmap.
4361  * This is only used when the postcopy migration is paused but wants
4362  * to resume from a middle point.
4363  *
4364  * Returns true if succeeded, false for errors.
4365  */
ram_dirty_bitmap_reload(MigrationState * s,RAMBlock * block,Error ** errp)4366 bool ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block, Error **errp)
4367 {
4368     /* from_dst_file is always valid because we're within rp_thread */
4369     QEMUFile *file = s->rp_state.from_dst_file;
4370     g_autofree unsigned long *le_bitmap = NULL;
4371     unsigned long nbits = block->used_length >> TARGET_PAGE_BITS;
4372     uint64_t local_size = DIV_ROUND_UP(nbits, 8);
4373     uint64_t size, end_mark;
4374     RAMState *rs = ram_state;
4375 
4376     trace_ram_dirty_bitmap_reload_begin(block->idstr);
4377 
4378     if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4379         error_setg(errp, "Reload bitmap in incorrect state %s",
4380                    MigrationStatus_str(s->state));
4381         return false;
4382     }
4383 
4384     /*
4385      * Note: see comments in ramblock_recv_bitmap_send() on why we
4386      * need the endianness conversion, and the paddings.
4387      */
4388     local_size = ROUND_UP(local_size, 8);
4389 
4390     /* Add paddings */
4391     le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4392 
4393     size = qemu_get_be64(file);
4394 
4395     /* The size of the bitmap should match with our ramblock */
4396     if (size != local_size) {
4397         error_setg(errp, "ramblock '%s' bitmap size mismatch (0x%"PRIx64
4398                    " != 0x%"PRIx64")", block->idstr, size, local_size);
4399         return false;
4400     }
4401 
4402     size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4403     end_mark = qemu_get_be64(file);
4404 
4405     if (qemu_file_get_error(file) || size != local_size) {
4406         error_setg(errp, "read bitmap failed for ramblock '%s': "
4407                    "(size 0x%"PRIx64", got: 0x%"PRIx64")",
4408                    block->idstr, local_size, size);
4409         return false;
4410     }
4411 
4412     if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4413         error_setg(errp, "ramblock '%s' end mark incorrect: 0x%"PRIx64,
4414                    block->idstr, end_mark);
4415         return false;
4416     }
4417 
4418     /*
4419      * Endianness conversion. We are during postcopy (though paused).
4420      * The dirty bitmap won't change. We can directly modify it.
4421      */
4422     bitmap_from_le(block->bmap, le_bitmap, nbits);
4423 
4424     /*
4425      * What we received is "received bitmap". Revert it as the initial
4426      * dirty bitmap for this ramblock.
4427      */
4428     bitmap_complement(block->bmap, block->bmap, nbits);
4429 
4430     /* Clear dirty bits of discarded ranges that we don't want to migrate. */
4431     ramblock_dirty_bitmap_clear_discarded_pages(block);
4432 
4433     /* We'll recalculate migration_dirty_pages in ram_state_resume_prepare(). */
4434     trace_ram_dirty_bitmap_reload_complete(block->idstr);
4435 
4436     qatomic_dec(&rs->postcopy_bmap_sync_requested);
4437 
4438     /*
4439      * We succeeded to sync bitmap for current ramblock. Always kick the
4440      * migration thread to check whether all requested bitmaps are
4441      * reloaded.  NOTE: it's racy to only kick when requested==0, because
4442      * we don't know whether the migration thread may still be increasing
4443      * it.
4444      */
4445     migration_rp_kick(s);
4446 
4447     return true;
4448 }
4449 
ram_resume_prepare(MigrationState * s,void * opaque)4450 static int ram_resume_prepare(MigrationState *s, void *opaque)
4451 {
4452     RAMState *rs = *(RAMState **)opaque;
4453     int ret;
4454 
4455     ret = ram_dirty_bitmap_sync_all(s, rs);
4456     if (ret) {
4457         return ret;
4458     }
4459 
4460     ram_state_resume_prepare(rs, s->to_dst_file);
4461 
4462     return 0;
4463 }
4464 
postcopy_preempt_shutdown_file(MigrationState * s)4465 void postcopy_preempt_shutdown_file(MigrationState *s)
4466 {
4467     qemu_put_be64(s->postcopy_qemufile_src, RAM_SAVE_FLAG_EOS);
4468     qemu_fflush(s->postcopy_qemufile_src);
4469 }
4470 
4471 static SaveVMHandlers savevm_ram_handlers = {
4472     .save_setup = ram_save_setup,
4473     .save_live_iterate = ram_save_iterate,
4474     .save_live_complete_postcopy = ram_save_complete,
4475     .save_live_complete_precopy = ram_save_complete,
4476     .has_postcopy = ram_has_postcopy,
4477     .state_pending_exact = ram_state_pending_exact,
4478     .state_pending_estimate = ram_state_pending_estimate,
4479     .load_state = ram_load,
4480     .save_cleanup = ram_save_cleanup,
4481     .load_setup = ram_load_setup,
4482     .load_cleanup = ram_load_cleanup,
4483     .resume_prepare = ram_resume_prepare,
4484 };
4485 
ram_mig_ram_block_resized(RAMBlockNotifier * n,void * host,size_t old_size,size_t new_size)4486 static void ram_mig_ram_block_resized(RAMBlockNotifier *n, void *host,
4487                                       size_t old_size, size_t new_size)
4488 {
4489     PostcopyState ps = postcopy_state_get();
4490     ram_addr_t offset;
4491     RAMBlock *rb = qemu_ram_block_from_host(host, false, &offset);
4492     Error *err = NULL;
4493 
4494     if (!rb) {
4495         error_report("RAM block not found");
4496         return;
4497     }
4498 
4499     if (migrate_ram_is_ignored(rb)) {
4500         return;
4501     }
4502 
4503     if (!migration_is_idle()) {
4504         /*
4505          * Precopy code on the source cannot deal with the size of RAM blocks
4506          * changing at random points in time - especially after sending the
4507          * RAM block sizes in the migration stream, they must no longer change.
4508          * Abort and indicate a proper reason.
4509          */
4510         error_setg(&err, "RAM block '%s' resized during precopy.", rb->idstr);
4511         migration_cancel(err);
4512         error_free(err);
4513     }
4514 
4515     switch (ps) {
4516     case POSTCOPY_INCOMING_ADVISE:
4517         /*
4518          * Update what ram_postcopy_incoming_init()->init_range() does at the
4519          * time postcopy was advised. Syncing RAM blocks with the source will
4520          * result in RAM resizes.
4521          */
4522         if (old_size < new_size) {
4523             if (ram_discard_range(rb->idstr, old_size, new_size - old_size)) {
4524                 error_report("RAM block '%s' discard of resized RAM failed",
4525                              rb->idstr);
4526             }
4527         }
4528         rb->postcopy_length = new_size;
4529         break;
4530     case POSTCOPY_INCOMING_NONE:
4531     case POSTCOPY_INCOMING_RUNNING:
4532     case POSTCOPY_INCOMING_END:
4533         /*
4534          * Once our guest is running, postcopy does no longer care about
4535          * resizes. When growing, the new memory was not available on the
4536          * source, no handler needed.
4537          */
4538         break;
4539     default:
4540         error_report("RAM block '%s' resized during postcopy state: %d",
4541                      rb->idstr, ps);
4542         exit(-1);
4543     }
4544 }
4545 
4546 static RAMBlockNotifier ram_mig_ram_notifier = {
4547     .ram_block_resized = ram_mig_ram_block_resized,
4548 };
4549 
ram_mig_init(void)4550 void ram_mig_init(void)
4551 {
4552     qemu_mutex_init(&XBZRLE.lock);
4553     register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state);
4554     ram_block_notifier_add(&ram_mig_ram_notifier);
4555 }
4556